Pinhole Camera Model

Today's lecture

Mapping between image and world coordinates

- Pinhole camera model
- Projective geometry
- Vanishing points and lines
- Projection matrix

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- What will the image look like?

Pinhole camera

Idea 2: add a barrier to block off most of the rays

- Few rays from a point reach the film (small blur)
- The opening is called the aperture

Pinhole camera

Camera obscura: the pre-camera

- First idea: Mozi, China (470BC to 390BC)
- First built: Alhacen, Iraq/Egypt (965 to 1039AD)

Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Camera Obscura used for Tracing

Lens Based Camera Obscura, 1568

First Photograph

Oldest surviving photograph

- Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

Dimensionality Reduction Machine (3D to 2D)

3D world 2D image

Point of observation

Projection can be tricky...

Projective Geometry

What is lost?

- Length

Length is not preserved

Projective Geometry

What is lost?

- Length
- Angles

Projective Geometry

What is preserved?

- Straight lines are still straight

Vanishing points and lines

Parallel lines in the world intersect in the image at a "vanishing point"

Vanishing points and lines

- The projections of parallel 3D lines intersect at a vanishing point
- The projection of parallel 3D planes intersect at a vanishing line
- If a set of parallel 3D lines are also parallel to a particular plane, their vanishing point will lie on the vanishing line of the plane
- Not all lines that intersect are parallel
- Vanishing point <-> 3D direction of a line
- Vanishing line <-> 3D orientation of a surface

Vanishing points and lines

Vanishing points and lines

Vanishing objects

Projection: world coordinates \rightarrow image coordinates

Homogeneous coordinates

Conversion

Converting to homogeneous coordinates

$$
(x, y) \Rightarrow\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \quad(x, y, z) \Rightarrow\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

homogeneous image coordinates coordinates

Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

Homogeneous coordinates

Invariant to scaling

$$
\begin{aligned}
& k\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{c}
k x \\
k y \\
k w
\end{array}\right] \Rightarrow\left[\begin{array}{c}
\frac{k x}{k w} \\
\frac{k y}{k w}
\end{array}\right]=\left[\begin{array}{c}
\frac{x}{w} \\
\frac{y}{w}
\end{array}\right] \\
& \text { Homogeneous Cartesian } \\
& \text { Coordinates Coordinates }
\end{aligned}
$$

Point in Cartesian is ray in Homogeneous

Basic geometry in homogeneous coordinates

- Line equation: $a x+b y+c=0$

$$
\text { line }_{i}=\left[\begin{array}{l}
a_{i} \\
b_{i} \\
c_{i}
\end{array}\right]
$$

- Append 1 to pixel coordinate to get homogeneous coordinate

$$
p_{i}=\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right]
$$

- Line given by cross product of two points

$$
\text { line }_{i j}=p_{i} \times p_{j}
$$

- Intersection of two lines given by cross product of the lines

$$
q_{i j}=\text { line }_{i} \times \text { line }_{j}
$$

Another problem solved by homogeneous coordinates

Intersection of parallel lines

Pinhole Camera Model

Interlude: when have I used this stuff?

When have I used this stuff?

Object Recognition (CVPR 2006)

When have I used this stuff?

Single-view reconstruction (SIGGRAPH 2005)

When have I used this stuff?

Getting spatial layout in indoor scenes (ICCV 2009)

When have I used this stuff?

Inserting synthetic objects into images: http://vimeo.com/28962540

When have I used this stuff?

Creating detailed and complete 3D scene models from a single view

When have I used this stuff?

Multiview 3D reconstruction at Reconstruct

Projection matrix

Intrinsic Assumptions Extrinsic Assumptions

- Unit aspect ratio
- No rotation
- Principal point at $(0,0) \quad$ - Camera at $(0,0,0)$
- No skew

K

Remove assumption about principal point

> Intrinsic Assumptions Extrinsic Assumptions
> - Unit aspect ratio
> - No rotation
> - Camera at ($0,0,0$)

This is a very commonly used model

Remove assumption that pixels are square

Intrinsic Assumptions Extrinsic Assumptions

- No skew
- No rotation
- Camera at $(0,0,0)$

Remove assumption that pixels are not skewed

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at ($0,0,0$)

$$
\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] \mathbf{X} \Rightarrow w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc|c|c}
\hdashline \alpha-\cdots & - & u_{0} & 0 \\
10 & \beta & v_{0} & 0 \\
10 & 0 & 1 & 0 \\
y \\
y \\
z \\
1
\end{array}\right]
$$

Oriented and Translated Camera

Allow camera translation

Intrinsic Assumptions Extrinsic Assumptions
- No rotation

$$
\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{t}
\end{array}\right] \mathbf{X} \Rightarrow w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
\alpha & 0 & u_{0} \\
0 & \beta & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

$$
\begin{aligned}
& R_{x}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right] \\
& R_{y}(\beta)=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right] \\
& R_{z}(\gamma)=\left[\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Allow camera rotation

$$
\begin{gathered}
\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \mathbf{X} \\
\boldsymbol{V} \\
w\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
\alpha & s & u_{0} \\
0 & \beta & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{x} & r_{x} \\
r_{31} & r_{22} & r_{23} \\
r_{32} & r_{33} & t_{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
\end{gathered}
$$

Degrees of freedom

$\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right] \mathbf{X}$

$$
w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\alpha & s & u_{0} \\
0 & \beta & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & t_{x} \\
r_{21} & r_{22} & r_{23} & t_{y} \\
r_{31} & r_{32} & r_{33} & t_{z}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Vanishing Point $=$ Projection from Infinity

$$
\mathbf{p}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
0
\end{array}\right] \Rightarrow \mathbf{p}=\mathbf{K} \mathbf{R}\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right] \Rightarrow \mathbf{p}=\mathbf{K}\left[\begin{array}{c}
x_{R} \\
y_{R} \\
z_{R}
\end{array}\right]
$$

$$
w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
f & 0 & u_{0} \\
0 & f & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{R} \\
y_{R} \\
z_{R}
\end{array}\right] \Rightarrow \begin{gathered}
u=\frac{f x_{R}}{z_{R}}+u_{0} \\
v=\frac{f y_{R}}{z_{R}}+v_{0}
\end{gathered}
$$

Orthographic Projection

- Special case of perspective projection
- Distance from the center of projection to the image plane is infinite

- Also called "parallel projection"
- What's the projection matrix?

$$
\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & u_{0} \\
0 & 1 & 0 & v_{0} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Scaled Orthographic Projection

- Special case of perspective projection
- Object dimensions are small compared to distance to camera

Illustration from George Bebis

- Also called "weak perspective" $\quad w\left[\begin{array}{c}u \\ v \\ 1\end{array}\right]=\left[\begin{array}{cccc}f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 0 & s\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]$
pixel scale

Take-home question

Suppose we have two 3D cubes on the ground facing the viewer, one near, one far.

1. What would they look like in perspective?
2. What would they look like in weak perspective?

Take-home questions

- Suppose the camera axis is in the direction of ($x=0, y=0, z=1$) in its own coordinate system. What is the camera axis in world coordinates given the extrinsic parameters $\boldsymbol{R}, \boldsymbol{t}$
- Suppose a camera at height $y=h(x=0, z=0)$ observes a point at (u, v) known to be on the ground ($y=0$). Assume R is identity. What is the 3D position of the point in terms of f, u_{0}, v_{o} ?

Beyond Pinholes: Radial Distortion

Corrected Barrel Distortion

Things to remember

- Vanishing points and vanishing lines

- Pinhole camera model and camera projection matrix

Next lectures

- Single-view metrology and more camera model
- Measuring 3D distances from the image
- Effects of lens, aperture, focal length, sensor size
- Single-view 3D reconstruction

