Pipefitter/Steamfitter

Certification Examination \#F-106
Figures, Formulas and Tables
Formula 1. The parts of an offset

Table 1-A. Offset Factors

To find side	When you know side	Multiply side	For 45 by	For 22-1/2 ells by
T	O	\mathbf{O}	1.414	2.613
\mathbf{O}	T	T	.707	.383
R	O	\mathbf{O}	1	2.414
\mathbf{O}	R	R	1	.414
T	R	R	1.414	1.082
\mathbf{R}	T	T	.707	.933

Formula 2.

One of the basic fan laws states that cubic feet delivered per minute (CFM) varies in direct proportion to the revolutions per minute (RPM).

$$
\begin{gathered}
\frac{C F M_{1}}{C F M_{2}}=\frac{R P M_{1}}{R P M_{2}} \\
C F M_{2}=\frac{C F M_{1} \times R P M_{2}}{R P M_{1}}
\end{gathered}
$$

Formula 3. $E=I R$ where:

$$
\begin{aligned}
E & =\text { Voltage } \\
\mathrm{I} & =\text { Amperes } \\
\mathrm{R} & =\text { Resistance in OHMS }
\end{aligned}
$$

Formula 4. Perimeter $=2 \times$ length $+2 \times$ width

Formula 5. Volume $=$ length \mathbf{x} width x height

Formula 6. The circle:

Area $=\pi r^{2} \mathrm{a}$ or $\mathrm{A}=.7854$ diameter squared
Circumference $=\pi \times$ diameter

Formula 7. Rectangular solid:

Volume $=$ altitude \times base \mathbf{x} thickness

Formula 8. Parallelogram:

Area $=$ altitude \times base

Formula 9. Triangle:

Area $=1 / 2$ altitude \times base

Formula 10. Cylindrical tanks:

Capacity in gallons = diameter squared $\mathbf{x} .7854 \times$ length $\times 7.48$ gallons

$$
\mathbf{V}=\pi \mathbf{r}^{2} \mathbf{a}
$$

Formula 11. Spheres:

$$
\begin{aligned}
& \text { Surface }=\text { diameter squared } \times \pi \\
& \text { Volume }=\text { diameter cubed } \times .5236
\end{aligned}
$$

Formula 12. Rolling offsets:

Finding Travel and Run for a Rolling Offset
Formula:
$\mathrm{A}=\sqrt{\mathrm{roll}^{2}+\mathrm{set}^{2}}$
Travel $=$ A \times cosecant of angle of fitting (See Trigonometry Table.)

Run $=\mathrm{A} \times$ cotangent of angle of fitting (See Trigonometry Table.)

Fig. 45. Rolling offset.

Table 12-A. Trigonometry Table (a portion)

Deg.	Min.	Sine	Cosine	Tangent	Cotangent	Secant	Cosecant
44	30	. 70091	. 71325	. 98270	1.0176	1.4020	1.4267
45		. 70711	. 70711	1.0000	1.0000	1.4142	1.4142

Formula 13. Total Force:

$$
\begin{aligned}
\text { Total Force } & =\text { area } x \text { pressure } \\
& =\text { area } \times \text { height } x \text { density } \\
& =\text { AHD }
\end{aligned}
$$

Formula 14. Percentage:
Base $=$ percentage divided by the rate
Formula 15. Density:
Density = weight divided by the volume
Formula 16. Inches of mercury to psi:
Inches $\times 0.491=\mathrm{psi}$
Formula 17. Atmospheric pressure:
Absolute pressure $=$ atmospheric pressure minus vacuum pressure

Formula 18. Water:
H = SW, where:
H = Btu of sensible heat
S = Specific heat
W = Weight in pounds
Formula 19. U-bolts:

Figuring rod lengths for U-bolts
For the values in the following formulas, see Fig. 29.
$A=D+F$
$B=$ one-half outside diameter of the pipe
C = nut thickness
D = outside diameter of the pipe
E = amount of rod protruding through the nut
$F=$ diameter of the rod
$L=1.571 \times \mathrm{A}$
$\mathrm{T}=$ thickness of the plate
$W=2 B+2 C+2 E+L+2 T$ (length of rod required)

Fig. 29. Values for U-bolt formulas.

Fig. 20

Formula 21. Linear expansion of piping:

$$
\begin{aligned}
\text { Where } E & =\text { expansion in inches per } 100 \mathrm{ft} \text {. of pipe } \\
F & =\text { starting temperature } \\
T & =\text { final temperature } \\
E & =\text { consent } x(T-F)
\end{aligned}
$$

Table 21-A. Constants per 100 ft .

Metal	Constant
Steel	.00804
Wrought Iron	.00816
Cast Iron	.00780
Copper and Brass	.01141

Formula 22. Centigrade/Fahrenheit conversion

$$
\begin{aligned}
& C=\frac{5}{9}(F-32) \\
& F=\frac{9}{5} C+32
\end{aligned}
$$

Formula 23. Liquid pressure is proportional to density
P = H x D
To find the pressure in lbs. per sq. inch (psi), divide lbs. per sq. ft. by 144 (the number of sq. inches in one square foot)

Formula 24. Specific weight:

$$
\text { Specific weight }=\frac{\text { weight in air }}{\text { loss of weight in water }}
$$

Formula 25. Absolute pressure: = psig + (barometer) x . $491=$ psia

