
Pipeline Gating: 
Speculation Control For Energy Reduction 

Srilatha Manne Artur Klauser, Dirk Grunwald 
University of Colorado University of Colorado 

Dept. of Electrical and Computer Engineering Department of Computer Science 
Boulder, CO 80309 

srilatha.manne@colorado.edu 

Abstract 

Branch prediction has enabled microprocessors to increase in- 
struction level parallelism (ILP) by allowing programs to specula- 
tively execute beyond control boundaries. Although speculative ex- 
ecution is essential for increasing the instructions per cycle ([PC). 
it does come at a cost. A large amount of unnecessaq work results 
from wrong-path instructions entering the pipeline due to branch 
misprediction. Results generated with the SimpleScalar tool set us- 
ing a 4-way issue pipeline and various branch predictors show an 
instruction overhead of 16% to 105% for even’ instruction commit- 
ted. The instruction overhead will increase in. the future as proces- 
sors use more aggressive speculation and wider issue widths [9]. 

In this paper: we present an innovative method for power re- 
duction which, unlike previous work that sacrificed flexibility or 
performance, reduces power in high-performance microprocessors 
without impacting performance. In particular; nre introduce a hard- 
ware mechanism called pipeline gating to control rampant specu- 
lation in the pipeline. We present inexpensive mechanisms for de- 
termining when a branch is likely to mispredict. and for stopping 
wrong-path instructions from entering the pipeline. Results show 
up to a 38% reduction in wrong-path instructions with a negligible 
petj%ormance loss (zz 1%). Best of all, even in programs with a 
high branch prediction accuracy, pegormance does not noticeably 
degrade. Our analysis indicates that there is little risk in imple- 
menting this method in existing processors since it does not impact 
performance and can beneft energy reduction. 

1 Introduction 

There has been considerable work on low porter processors. Most 
of this work focuses on reducing power in applications where bat- 
tery life is paramount. The focus of our research is to reduce the en- 
ergy demands of high performance microprocessors without com- 
promising performance. Such reductions will greatly reduce pack- 
aging costs and will allow the computer architect to better balance 
an overall “power budget” across different parts of the chip. 

Existing low power work has focused on reducing energy in the 
memory subsystem [3, 8.41. In embedded processors, such as the 
StrongArm [I I], the memory subsystem is the dominant source of 

1063-6897/98 $10.00 0 1998 IEEE 
132 

Boulder, CO 80309 
grunwald,klauser@cs.colorado.edu 

Figure I : Power consumption for PentiumPro chip, broken down 
by individual processor components. 

area and power because the rest of the processor has been simpli- 
fied to reduce power. State-of-the-art microprocessors have a high 
degree of control complexity and a large amount of area dedicated 
to structures that are essential for high-performance, speculative, 
out-of-order execution, such as branch prediction units, branch tar- 
get buffers, TLBs, instruction decoders, integer and floating point 
queues, register renaming tables, and load-store queues. For exam- 
ple, z 30% of the core die area on the DECchip 21264 is devoted 
to cache structures, while the StrongARM processor uses z 60% 
of the core die area for memory. Figure I shows a distribution of 
the power dissipated in a PentiumPro processor [6] during a test 
designed to consume the most power, which is when the proces- 
sor is committing each instruction that it fetches. The fetch and 
decode stages, along with components necessary to perform dy- 
namic scheduling and out-of-order execution, account for a signif- 
icant portion of the power budget. Therefore, pipeline activity is 
a dominant portion of the overall power dissipation for complex 
microprocessors. 

Performance is the primary goal of state-of-the-art micropro- 
cessor design. Architectural improvements for performance have 
centered on increasing the amount of instruction level parallelism 



If Low Conf Branch. II’ Low Contidencc Branch 
Incrcmcnf Counter Resolved. Dccrcmem Counlcr 

Ins~rucuons 
Writeback Commit 

, , 

--t--c--- 
l 2 3 4 5 fi 7 

2 Cycle Backward Edge Lntcncy for Branch Misprediclion 

Figure 2: Pipeline with a two fetch and decode cycles, showing additional hardware required for pipeline gating. The low-confidence branch 
counter records the number of unresolved branches that reported as low-confidence. The counter value is compared against a threshold value 
(“N”). The processor ceases instruction fetch if there are more than N unresolved low-confident branches in the pipeline.. 

through aggressive speculation and out-of-order execution. Al- 
though these advances have increased the number of instructions 
per cycle (IPC), they have come at the cost of wasted work. Most 
processors use branch prediction for speculative control flow exe- 
cution, and recent work has examined value and memory specula- 
tion [ 141. Branch prediction is used to execute beyond the control 
boundaries in the code. With high branch prediction accuracy, most 
issued instructions will actually commit. However, many programs 
have a high branch misprediction rate, and these programs issue 
many instructions that never commit. Each of those instructions 
uses many processor resources. If we can decrease the percentage 
of uncommitted instructions actually issued, we can decrease the 
power demands of the processor as a whole. 

Goals and Contributions It is the goal of this paper to con- 
trol speculation and reduce the amount of unnecessary work in 
high-performance, wide-issue, super-scalar processors. We accom- 
plish this by using a particular form of speculation control, called 
pipeline gating, to limit speculation and reduce energy consump- 
tion. In many processor implementations, functional units and 
clocks are gated to restrict spurious signals from producing un- 
necessary activity in circuits. Similarly, the pipeline can also be 
gated to restrict spurious or wrong-path instructions from entering 
the pipeline. Although a thorough power analysis is beyond the 
scope of this paper. the reduction in fetch and decode activity re- 
sulting from pipeline gating can clearly be exploited to reduce the 
power needs of a complex microprocessor. This paper makes the 
following contributions: 

. We present pipeline gating, a method to reduce the number 
of speculatively issued instructions, and demonstrate the ben- 
efits of that method using a detailed pipeline-level simula- 
tion of a wide-issue, out-of-order, super-scalar microproces- 
sor. By reducing the number of instructions fetched, decoded. 
issued and executed, we reduce the average activity in the 
processor without reducing performance, and thus reduce the 
total energy. 

. We compare the effectiveness and cost of this design using 
various conJidence estimation mechanisms, and show how 
to increase the effectiveness of these confidence estimation 
mechanisms for pipeline gating. 

. We present results which show a significant reduction in un- 
necessary work with a negligible performance loss. 

The rest of the paper discusses work reduction and the pipeline 
gating method in more detail. Section 2 describes the gating 
method and the work reduction metric used throughout the paper. 
An overview of the pipeline model, confidence estimators and char- 
acterization of the estimators for pipeline gating are presented in 
Section 3. Section 4 presents results for pipeline gating and Sec- 
tion 5 concludes the papers. 

2 Processor Pipeline Gating for Work Reduction 

The energy consumed by a processor is a function of the amount 
of work the processor performs to accomplish a given task. In a 
non-speculative processor all work performed is necessary. In a 
speculative, multi-issue, dynamically scheduled processor, a large 
amount of extra work is performed without realizing any perfor- 
mance benefits. We define the Extra Work of a given pipeline stage 
tobeEw= ( see,‘,,,-~~~~~‘~~dfnsn). There is a different EW 
value for each stage of the pipeline. For example, if only 100 out of 
I30 instructions fetched by the processor actually commit, the EW 
of the fetch stage is 30%. If 120 of the 130 instructions actually 
execute, the EW of the execution stage is 20%. The EW parameter 
has a lower bound of zero when no extra work is performed, but 
has no upper bound. 

The goal of pipeline gating is to reduce the amount of extra 
work performed to complete a task without affecting the overall 
performance of the system. Since performance drives the mar- 
ket for these processors, it is difficult to justify a performance 
loss without extraordinary savings in power. Secondly, overall en- 
ergy consumption is dependent on performance. Since Energy = 
Power x Time, simply reducing the power in a processor may 
not decrease the energy demands if the task now takes longer to 
execute. In [3], Fromm et al noted a correlation between energy 
and performance. Reducing performance does not always reduce 
the overall energy consumed by the processor because of the qui- 
escent energy consumed in the system [I]. In this paper, we reduce 
work while retaining performance and thus reduce the overall en- 
erm consumption of the processor. 

2.1 Pipeline Gating 

We will use the schematic of the processor pipeline shown in Fig- 
ure 2 to describe pipeline gating. Like many high-performance 
processors, such as the DEC AXP-21 I64 or Intel PentiumPro, our 
sample pipeline uses two fetch and decode cycles to allow the clock 

133 



rate to be Increased. We assume the fetch stage has a small instruc- 
tion buffer to allow instruction fetch to run ahead of decode. Branch 
prediction occurs when instructions are fetched to reduce the mis- 
fetch penalty. The actual mstruction type may not be known until 
the end of decode. Conditional branches are resolved in the exe- 
cution stage, and branch prediction logic is updated in the commit 
stage. Since the processor uses out-of-order execution, instructions 
may sit in the issue window for many cycles, and there may be 
several unresolved branches in the processor. 

We use a confidence estimator to assess the quality of each 
branch predIctIon. A “high conlidence” estimate means we believe 
the branch predictor is likely to be correct. A “low confidence” es- 
tImate means we believe the branch predictor has incorrectly pre- 
dicted the branch. We use these confidence estimates to decide 
when the processor is likely to be executing instructions that will 
not commit; once that decision has been reached, we “gate” the 
pipeline, stalling specific pipeline stages. 

In our study. we vary a number of parameters, including the 
branch predictor. the confidence estimator, the stage at which a gat- 
ing decision IS made, the stage that is actually gated and the num- 
ber ofoutstandmg low-confident branches needed to engage gating. 
The decision to gate can occur in the fetch, decode or issue stages. 
Equally important is the decision about whar to gate and how long 
to gate. Gatmg rhe fetch or decode stages would appear to make 
the most sense, and we examined both cases. We used the num- 
ber of unresolved low-confident branches to determine when and 
how long to gate. For example, if the instruction window includes 
one low-confident branch, and another low-confident branch exits 
the fetch (or, alternatively, decode or issue) stage, gating would be 
engaged until one or the other low-confident branch resolves. Fig- 
ure 2 illustrates this process for a specific configuration. We add a 
counter that is incremented whenever the decode encounters a low- 
confident branch and is decremented when a low-confident branch 
resolves. If the counter exceeds a threshold, the fetch stage is gated. 
Instructions in the fetch-buffer continue to be decoded and issued, 
but no new instructions are fetched. 

We have found that gating the processor typically stalls the pro- 
cessor for a very short duration. Figure 3 shows the number of 
times a specific configuration of our pipeline model is stalled while 
executing different programs. Generally, gating stalls occur for 
about 2-4 processor cycles. Most processor configurations exhibit 
a similar distribution, and indicate that our mechanism is exhibiting 
fine control over the speculative state of the processor. 

2.2 Confidence Estimation Metrics 

A complete comparison of confidence estimation mechanisms [5] 
IS beyond the scope of this paper. but we implement several con- 
fidence estimation methods and compare their performance for 
pipeline gating. There are two important metrics to characterize 
the performance of confidence estimators used by pipeline gating: 
speci$cify SPEC and the predictive value of a negative Tess (PvN). 
The specificity (SPEC) is the fraction of all mispredicted branches 
actually detected by the contidence estimator as being low con- 
tidence. The PVN is the probability of a low-confidence branch 
being incorrectly predicted. A larger SPEC means that more mis- 
predicted branches are marked as “low confidence”. A larger PVN 
means that a given low-confidence branch is more likely to be mis- 
predicted. A confidence estimator could have a perfect specificity 
by marking all branches as low contidence, but the PVN would then 
be no more than the branch misprediction rate. 

In practice, a contidence estimator must balance SPEC vs. PVN 
to provide a good quality confdence estimate for many branches. 
The contidence estimators we examined have an average SPEC be- 
tween l77~-77%. and an average PVN between l9%-40%; typi- 

Distribution of Number of Cycles Gated 

+ corn w --+-go ijp ~ 
*Ii + m88 --i-- per1 -“or 

3.E+06 r-w*---- -.“__-” -... --._-- . ..- .-.. “^ ._” ..- - --.-- - 

.F 2.E+06 

3 
5 l.E+06 

In 
E 
s 2.E+06 
w 

t 
f 5.E+05 
2 

O.E+OO I 

1 5 9 13 17 
Number of Cycles 

Figure 3: Distribution of gating events and the number of cycles 
gated per event. 

tally, estimators with a higher SPEC have a lower PVN. If we sim- 
ply used the PVN of a single branch to control pipeline gating, we 
would stall the pipeline too frequently, compromising performance. 
However, if there were N low-confident branches in the pipeline, 
the probability that at leasf one of those branches is mispredicted 
becomes 1 - (1 - PvN)~. Thus, if the average PVN is 30% 
and we gate when there are two or more low-confident branches 
in the pipeline, the probability of at least one misprediction be- 
comes 51%. Since any subsequently fetched instructions would be 
control dependent on both branches in the pipeline, this “boosting” 
improves our gating decision. 

3 Empirical Evaluation of Pipeline Gating 

To properly understand the effects of stalling the pipeline, we used 
the SimpleScalar tools [2] to develop a pipeline model of an out- 
of-order. speculative, wide-issue processor. We modified the sim- 
outorder processor model to produce the machine configuration 
listed in Tables 1 and 2. Table 3 shows the latency of the different 
operation types. Although we used a 32kByte instruction cache, it 
is effectively equivalent to a 16kByte instruction cache because the 
SimpleScalar instruction set uses S-byte instructions. The proces- 
sor can fetch, issue, and commit four instructions each cycle. 

We used both McFarling combining branch predictor and 
Gshare branch predictor to characterize the effect of branch pre- 
dictor accuracy on pipeline gating. The McFarling combining pre- 
dictor uses gshare and bimodal branch component predictors along 
with a meta predictor. The meta predictor chooses one of the branch 
predictors as the correct prediction for the branch. We chose the 
combination of gshare and bimodal because McFarling [IO] indi- 
cated this combination had the best performance for the predictor 
sizes used in this paper. In both the Gshare and McFarling pre- 
dictors. the branch prediction counters are updated at commit, and 
both predictors speculatively update the global history register, but 
not the prediction counters. The penalty for a branch misprediction 
is a minimum of seven cycles. Five of the cycles are incurred in 
the pipeline stage for the new instruction to travel to the point of 
execution, and the other 2 cycles are incurred for sending the mis- 
prediction signal to the rest of the pipeline and to calculate a new 
target address. The penalty will be larger than seven cycles if the 
new instruction is not available m the Ll instruction cache. 

134 



Table 4: Baseline performance for McFarling and Gshare predictors. Instruction count and execution cycles are given in millions. Also 
shown in the number of instructions fetched (in millions) for each branch predictor. 

Return Address Stack 32 entry queue 

Table 1: Machine configuration parameters. Cache configurations 
are described as Lines:Block Size:Associativity. c The 32kByte in- 
struction cache is equivalent to a 16kByte cache because the Sim- 
pleScalar Tool Set uses 8 byte instructions. 

FP ALU 
FP M~~l~~~ : 

Memory Ports ‘1 
2: 

k+&ructton window Enfrtes 4 
Load/Store Queue Entries 321 

Table 2: 
tecture. 

Table 3: 

Resource and pipeline configuration for simulated archi- 

Function unit configuration in terms of execution latency 

We used the SPECint95 applications to evaluate the different 
pipeline gating techniques. The applications were compiled with 
the Gee compiler with full optimization. We used scaled down in- 
puts to reduce the runtime of some applications, but each applica- 
tion was run to completion. Relevant information for the bench- 
marks, along with the conditional branch misprediction rates for 
Gshare and McFarling branch predictors,, are shown in Table 4. The 
misprediction measurements use the base processor configuration 
with no pipeline gating. The misprediction rate across our applica- 
tions ranges from 2% to 32%. We used the SPECint95 benchmarks 
for our performance evaluation and did not simulate the SPECfp95 
since those programs typically pose few difficulties for branch pre- 
dictors. 

A schematic model of the pipeline was given in Figure 2, and 
both fetch and decode take two cycles to complete. This model 
should highlight flaws in pipeline gating, because the time to re- 
cover from an incorrect pipeline gating decision is a function of the 
number of cycles it takes for the gated instructions to reach the is- 
sue stage. Hence, the longer the front end of the pipeline, the larger 
the penalty for incorrect gating. Figure 2 also shows the signals 
for the pipeline gating mechanism we found to be most effective. 
The decision to gate and the actual gating is performed during the 
first fetch cycle. Our performance results show that most of the ex- 
tra work in the pipeline occurs at the fetch and decode stages, and 
gating at the fetch stage will have the largest impact. The number 
of unresolved, low-confidence branches were measured at decode. 
This insures some “slip” between the fetch and decode stages if we 
made an incorrect gating decision. This increases the extra work 
(Ew) of the stages beyond fetch, but also reduces the performance 
loss by providing the issue stage with a few instructions from the 
correct-path while the pipeline catches up from an incorrect gating 
decision. 

Pipeline gating is engaged when the number of low confidence 
branches exceeds the gating rhreshold (N). As mentioned, this is 
used to improve the likelihood that at least one mispredicted branch 
is being processed. Gating is disengaged when the number of low 
confidence branches is less than or equal to the gating threshold. 
As was shown in Figure 3, gating is triggered a number of times, 
but for very few cycles each time. Therefore, pipeline gating ef- 
fectively slows the injection of instructions into the pipeline rather 
than stopping instructions altogether. 

3.1 Confidence Estimators 

Although branch predictors have been widely studied, confidence 
estimators have only recently been discussed [7, 51. Thus, we will 
describe the mechanics of contidence estimation and the confidence 
estimators we used in more detail. Conlidence estimation is a diag- 

135 



nostic test that attempts to classify each branch prediction as having 
“high contidence”, meaning that the branch was likely predicted 
correctly, or “low confidence”, meaning the branch was likely mis- 
predicted. We used the SPEC and PVN metrics defined in the previ- 
ous section to classify the confidence estimators discussed below. 

Perfect Confidence Estimation: Although a perfect confidence 
estimator is unattainable in practice, we used precise information 
from the pipeline state to evaluate the potential of pipeline gating, 
and to determine how much of that potential performance was ex- 
ploited by other configurations. 

Static Confidence Estimation: Static confidence estimation as- 
sociates a confidence estimate with each conditional branch in- 
struction. The confidence is determined by running the program 
through a branch prediction simulator and recording the branch 
misprediction rate of individual branch sites. Branch instructions 
with a misprediction rate above a specified threshold were consid- 
ered to have low confidence. Static confidence estimation has the 
benefit that it can be “customized” for a specific SPEC and PVN. 
For the experiments in this paper, we wanted to demonstrate the 
best performance that a static confidence estimator could provide. 
Thus, we use the same input to select and evaluate the static con!% 
dence sites, and we varied the selection threshold across each pro- 
gram to report the best performance. We used the static method for 
both Gshare and McFarling predictors. 

JRS Confidence Estimation: Jacobsen et al [7] proposed a con- 
fidence estimator that paralleled the structure of the gshare branch 
predictor. This estimator uses a table of miss distance coun- 
ters (MDC) to keep track of branch prediction correctness. Each 
MDC entry is a “saturating resetting counter”. Correctly predicted 
branches increment the corresponding MDC, while incorrectly pre- 
dicted branches set the MDC to zero. A branch is considered to 
have “high confidence” only when the MDC has reached a partic- 
ular confidence threshold value referred to as the MDC-threshold. 
For this simulation, we used a table of 4096 entries of 2-bit satu- 
rating/resetting counters. We also discuss the effectiveness of dif- 
ferent JRS configurations for pipeline gating in future sections. We 
use the JRS method for both Gshare and McFarling predictors. 

Saturating Counters: Most branch predictors use some form of 
saturating counters to predict the likely branch outcome. Smith [ 131 
mentioned that it may be possible to use these counters as branch 
confidence estimators. We used this mechanism with the McFarling 
predictor to produce the “Both Strong” estimation method which 
marks a branch as high confidence only if the saturating counters 
for both gshare and bimodal predictors are in a strong state and 
have the same predicted direction (taken or not-taken). We tried 
a number of other variants with the McFarling counters and found 
that the “Both Strong” configuration provided the best results for 
our needs because it produced a high SPEC value with a reasonable 
PVN. The saturating counters method did not work well for &hare. 

Distance: In [5], we found that branch mispredictions were clus- 
tered and that this clustering could be used to build an inexpensive 
confidence estimator. The conditional probability of a mispredic- 
tion for branches that issue d branches after a mispredicted branch 
is resolved is higher for smaller values of d. Varying the distance 
d affects the SPEC and PVN - smaller values increase the PVN (but 
reduce the SPEC). We found a value of d = 4 worked best for 
pipeline gating in our model. We used the Distance method as an 
inexpenstve confidence mechanism for Gshare. 

Gshare 
Conf Pred SPEC PVN 

static 87.5 27.5 
JRS 72.8 37.1 

Table 5: Assorted confidence estimators with the Gshare and Mc- 
Farling branch predictors. Values given are the arithmetic mean of 
all committed branches for Speclnt95 benchmarks. 

Table 5 shows the performance of the different confidence esti- 
mators in terms of SPEC and PVN using the Gshare and McFarling 
branch predictors. A complete comparison of different confidence 
estimation methods is beyond the scope of this paper. Instead, we 
wanted to compare the performance of pipeline gating using in- 
expensive implementations and more expensive implementations. 
Unlike the JRS estimator, which has a considerable overhead, the 
Distance estimator is very inexpensive to implement. Likewise, the 
“Both Strong” method simply uses existing processor state, and in- 
troduces negligible additional hardware cost. Although we tried 
other estimators with the branch predictors, we found that the ones 
presented in Table 5 performed the best by producing a high SPEC 
and a reasonable PVN. 

As we will see in later sections, it is more important, within 
reason, to select an estimation mechanism with a good SPEC value 
as opposed to one with just a good PVN value. Effectively, using 
a gating threshold boosts the effective PVN, and it becomes more 
important to see more low-confident branches (i.e., a higher SPEC) 
than to know that the low confident branches were truly mispre- 
dieted (Le., a higher PVN). 

4 Results 

The basic configuration used for pipeline gating is given in Fig- 
ure 2. We evaluated the McFarling and Gshare branch predictors 
using a variety of modifications. Analysis is performed across dif- 
ferent confidence estimators, gating threshold values, and pipeline 
configurations. 

Figures 4 and 5 show the amount of extra work being performed 
with the McFarling and Gshare predictors, respectively for the base 
case with no pipeline gating. The bars represent the amount of ex- 
tra work (Ew) performed in each stage of the pipeline. Most of 
the extra work occurs in the front stages of the pipeline, at fetch 
and decode. As we progress down the pipeline, the amount of ex- 
tra work decreases dramatically. This is because most mispredicted 
branches resolve in a reasonable amount of time, and the probabil- 
ity is small that an instruction from the wrong-path has progressed 
deep into the pipeline. As expected, the amount of unnecessary 
work is generally correlated to the misprediction rate. For exam- 
ple, vorrex has a low misprediction rate, and there is very little extra 
work being done for this program. On the other hand, the pipeline 
performs twice the amount of necessary work for go, which suffers 
from a high misprediction rate. Fortunately, confidence mecha- 
nisms inherently do better on programs with a large misprediction 
rate [5], and are most effective in reducing the amount of extra work 
in programs that have the largest overhead. 

136 



McFarllng: Base Case 

II Fetch H Decode II Issue 0 WriteBack 

Figure 4: Extra work for base case with the McFarling predictor. 

Gshare: Base Case 

~ w Fetch l Decode 0 Issue 0 WriteBack 

Figure 5: Extra work for base case wirh the Gshare predictor. 

McFarllng/Perfect 

Speedup 0 Not Gated n Gated 
1.1 , ~~110 

Figure 6: Extra work (Ew) and speedup for McFarling predictor 
with a perfect confidence estimator. The entire thin bar shows Ew 
with “No Gating” while the dark ponion shows EW with gatmg. 

The wide. gray bar represents relative speedup. 

GshardPerfect 

” Speedup ONotGeled n Gated 1 . 
1.1 ‘I ,,,P . 110 

1 100 

0.9 90 

0.8 80 

0.7 70 

a 0.6 

B 

60 iz 

0.5 50 5 
ln 0.4 40 

0.3 30 

0.2 20 

0.1 10 

0 0 

Figure 7: Extra work and speedup for Gshare predictor with a per- 
fect confidence estimator. The entire thin bar shows EW with “No 
Gating”, while the dark portion shows EW with gating. The wide, 
gray bar represents relative speedup. 

YcFarllnglSoth SrrpnB 

1.1 -‘~ 
100 
90 
80 
70 

60 g 

50 5 
40 

30 

20 

10 

0 

Figure 8: Results for McFarling and “Both Strong” using a gating 
threshold value of 2. 

GsharelDistance 

Speedup q Not Gated n Gated 

Figure 9: Results for Cshare and Distance using a gating threshold 
of 2. 

137 



4.1 Performance with Different Confidence Estimators 

We tirst explore the effectiveness of pipeline gating as a function 
of the contidence estimation mechanisms. We present results us- 
ing perfect confidence estimation, inexpensive dynamic estimation, 
static estimation, and a more expensive dynamic estimation based 
on the JRS estimator. For the analysis of different confidence es- 
timators, we used the eating mechanism shown in Figure 2. The 
pipeline is gated at fetch, and the number of unresolved branches is 
measured at decode. 

Perfect Confidence Estimation: Figures 6 and 7 show the ex- 
tra work and speedup results when using McFarling and Gshare 
branch predictors, respectively, with a perfect confidence estima- 
tor. The dark portion of the thinner bars represents the amount 
of extra work with pipeline gatmg. The entire thin bar represents 
the amount of extra work without any pipeline gating. The four 
bars per group represent the four stages of the pipeline: fetch, de- 
code, issue and writeback. We do not show the commit stage since 
the number of committed instructions is the same with and without 
pipeline gating. The wide, gray bars represent the speedup of the 
pipeline gating method relative to the base case. For Ew, lower is 
better, whereas for speedup, higher is better. All speedup numbers 
above 1 .O represent a performance improvement from pipeline gat- 
ing, while numbers below I .O represent a performance loss. All the 
data we present for pipeline gating is presented in a similar manner. 

With a perfect confidence estimator, one would expect a 100% 
reduction in extra work. This does not happen with the pipeline 
gating contiguration used because we do not “see” the low confi- 
dence branch until it reaches the decode stage. Therefore, some 
extra instructions will “leak” into the pipeline before gating is ini- 
tiated. Pipeline gating with perfect confidence estimation can re- 
sult in increased speedup for a number of programs, such as li and 
m88ksitn. Performance improves in the gated pipeline because op- 
erations from the wrong path do not consume resources which cor- 
rect path instructions might need. On the other hand, some pro- 
grams, such as per1 with the McFarling branch predictor, show 
a performance loss with perfect confidence estimation. Specula- 
tive execution has been shown to be beneficial for performance by 
warming up instruction caches [ 121, and gating the pipeline reduces 
the benefits of the warm-up effect. With more realistic confdence 
estimation mechanisms, we do not gate as many of the incorrectly 
predicted paths. Hence we still benefit from some of the warm-up 
effects in the instruction caches. 

Inexpensive Dynamic Confidence Estimation: Figures 8 and 9 
show results for the “Both Strong” and Distance confidence estima- 
tors, respectively. Gating is engaged when there are more than two 
low-confident branches in the pipeline. Gshare uses the Distance 
estimator, and McFarling uses the “Both Strong” estimator. These 
were determined to be the best and least expensive dynamic con- 
fidence mechamsms for pipeline gating for the respective branch 
predictors. The figures show the reduction in extra work and rel- 
ative speedup for each SpecInt95 program. The dynamic conli- 
dence estimation mechanisms for both branch predictors perform 
well enough to reduce approximately 30% of the extra work in go, 
and yet not hurt performance in vorrex through unnecessary gating. 

Static Confidence Estimation: In Figures IO and Il. we show 
results for gating when using a best-case static confidence estima- 
tor discussed in Section 3. The static confidence estimators do well 
for both McFarling and &hare predictors. In the case of the Mc- 
Farling predictor, a few programs, such as compt-as, do better with 
static profiling. but the results in general are about the same as the 

“Both Strong” estimation mechanism. For Gshare, on the other 
hand, there is marked reduction in extra work. For gee, the EW is 
reduced from over 80% to just over 50% in the fetch stage. With the 
Distance estimator, we were only able to reduce this to 65%. The 
Distance estimator relies on the clustering behavior of mispredicted 
branches. Some programs, such as go, exhibit significant mispre- 
diction clustering while others, such as compress and m88ksim do 
not. Hence, the Distance method is not as consistent or accurate 
in its confidence estimations for Gshare as the Saturating Counters 
method is for McFarling. 

Dynamic Confidence Estimation with JRS: Data for McFar- 
ling and Gshare predictors with a small JRS estimation mechanism 
is shown in Figures 12 and 13. We restricted ourselves to a JRS size 
of I kByte or less because of area and power considerations. The 
results shown use a 128 entry, 4-bit JRS table for both branch pre- 
dictors. The JRS estimator for McFarling used a MDC-threshold of 
15, while the JRS estimator for Gshare used a MDC-threshold of 
12. As mentioned earlier, a branch is considered to have “high con- 
fidence” only when the miss distance counters (MDC) have reached 
a specified MDC-threshold value. The results for McFarling with 
JRS are similar to those using the “Both Strong” estimator. Gshare 
results, on the other hand, improve significantly with the JRS es- 
timator. For example, the reduction in EW for compress improves 
from 6% to 32%. Results produced are similar to those generated 
with the static estimation method. There are a couple of explana- 
tions for this. First, as discussed earlier, the Distance predictor does 
not do well for some types of programs. Secondly, the JRS estima- 
tor is tuned to work well with the Gshare predictor [7, 51, and does 
not perform as well with the McFarling predictor. If the hardware 
can be justified, a small, multi-bit, JRS confidence estimator will 
provide the best results of any dynamic estimation mechanism for 
Gshare. 

JRS Configurations For Pipeline Gating: The JRS configura- 
tions that worked best for both Gshare and McFarling had a small 
table size and a large counter size. The question that remains is why 
such a small JRS table does so well. Figure 14 shows the geometric 
mean of Ew and speedup for a variety of JRS table configurations 
with the Gshare predictor. The values of EW without pipeline gat- 
ing does not change as a function of the JRS table, because the 
JRS estimator does not affect the “Not Gated” case. Although the 
first two sets of data (12811bit, 256-2bit) use the same size JRS ta- 
ble, albeit different configurations, they show very different results. 
Furthermore, the larger tables shown do not produce significantly 
better results for the amount of hardware used. This is because 
even the largest JRS table suffers from a relatively low PVN value, 
and a gating threshold must be used to boost the effective PVN. As 
noted earlier, the best PVN values are around 0.4, and even a small 
increase in PVN requires considerable extra hardware. Therefore, 
it is far less expensive to target a high SPEC value and increase the 
accuracy of the estimation with the aid of the gating threshold. 

To verify this hypothesis, we ran the 128 entry JRS table with 
different MDC-threshold values. Figure 15 shows the geometric 
mean of EW and speedup for a range of MDC-threshold values 
(which are labeled r) using a 128 entry JRS table with the Gshare 
predictor. The gating threshold was set to 2 for all of these simula- 
tions, which means that gating is engaged when there are 3 or more 
low confident branches in the pipeline. Figure 15 clearly shows the 
reduction in extra work with larger MDC-threshold values. As we 
increase the MDC-threshold, more branches are classified as “low 
confidence”, resulting in a larger SPEC and lower PVN. With the 
lower PVN, we see a corresponding reduction in performance be- 
cause the confidence estimation is less accurate. However, the in- 

138 



McFarlinglStatic 

Speedup 0 Not Gated q Gated 

110 

1 100 

- 90 

Figure 10: Extra work and speedup for McFarling with static con- 
fidence estimation. 

GshadStatic 

j Speedup q Not Gated n Gated ~ 

110 

100 

90 

60 

70 

60 g 

50 ; 

40 

30 

20 

10 

0 

Figure 11: Extra work and speedup for Gshare with static confi- 
dence estrmatron. 

McFarlinglJRS 

Speedup 0 Not Gated I G&d 

110 

GshadJRS 

Speedup q Not Gated n Gated 

Figure 13: Results for gating using a 128 entry, 4-bit JRS table with 
Gshare. A gating threshold value of 2 was used. 

GsharelJRS With Various Sires 

Speedup ONot Gated n Gated I 

4 0.8 

1::; 
5 0.5 

B 0.4 

z 0.3 
a 

0.2 

0.1 

0 

1.1 55 

1 50 

0.9 45 

4og 

352 

30 c 

25$ 

20 $ 

150 

Figure 14: The effectiveness of various JRS table sizes for work 
reduction. The size of each table is given in <entries>-<bits per 
entry>. 

Figure 12: Results for gating using a 128 entry, 4-bit JRS table with 
McFarling. A gating threshold value of 3 was used. 

139 



crease in SPEC is much larger than the decrease in PVN. The SPEC 
increases from a value 34.4 to 93. IO as the MDC-threshold changes 
from 1 to 15, while the PVN decreases from 3 1.5 to 21.3. Since gat- 
ing is engaged when there are 3 or more unresolved, low confident 
branches in the pipeline, the probability that at least one of the three 
low confident branches is mispredicted is 1 - (1 - .315)3 = 68% 
for a MDC-threshold of I, and 1 - (1 - .213)3 = 51% for a MDC- 
threshold of 15. Although we are less accurate when the MDC- 
threshold is large, the short duration of gating events and the “slip” 
between instruction fetch and decode helps reduce the performance 
penalty due to incorrect gating. 

4.2 Varying the Gating Threshold 

Figures 16 and 17 show EW and speedup for the McFarling and 
&hare predictors, respectively, as a function of the gating thresh- 
old value N. The gating threshold is used to determine the maxi- 
mum number of low-confidence branches allowed in the pipeline 
before gating is triggered. The “Both Strong” confidence mecha- 
nism was used with McFarling, and the Distance mechanism was 
used with Gshare. The data given is the geometric mean of EW and 
speedup for different gating threshold values. Note that the value 
of EW without pipeline gating does not change as a function of N, 
since the gating threshold does not affect the “Not Gated” case. 

The leftmost set of bars show the results for a configuration 
with a gating threshold of zero and all branches tagged as low con- 
fidence. This effectively reduces the pipeline to a super-scalar, 
non-speculative machine, which provides the best energy reduc- 
tion albeit with a high performance penalty. This is not an exact 
replica of a non-speculative machine, which would see a EW value 
of zero. As with the perfect confidence estimation case, EW is not 
zero because we only “see” a low-confidence branch at decode. The 
speedup loss is over 35% for both predictors when approximating a 
non-speculative machine, although we achieve a substantial reduc- 
tion in Ew. With a reasonable confidence estimator and a gating 
threshold of zero, we still significantly reduce the amount of EW 
without the performance loss seen in a non-speculative machine. 
Although this loss in performance is not appropriate for power 
reduction, other applications, such as bandwidth multi-threading, 
might benefit from a zero gating threshold. 

For work reduction with no performance loss, both figures 
clearly show the need for a gating threshold to compensate for a low 
PVN value. As the gating threshold (labeled N) increases, speedup 
improves but EW also increases. Ideally, as N increases, the im- 
provement in speedup should be greater than the increase in Ew. 
In both figures, this occurs for N = 2, given tight constraints on 
performance. Using a gating threshold value of two, we are able to 
reduce EW in the fetch and decode stages by approximately 25% 
and 23% for McFarling, and 18% and 17% for Gshare with a neg- 
ligible performance loss. 

4.3 Varying the Pipeline Structure 

So far, we have investigated various confidence estimation mecha- 
nisms and eating threshold values, but have not changed the under- 
lying structure of the gated pipeline. We decided to gate at fetch 
and measure at decode so that we could I) capture a large portion 
of the wrong path instructions in fetch, and 2) allow some slip into 
the pipeline. respectively. We explored moving the point of gat- 
ing to the decode and issue stages. All results in this section were 
generated for the McFarling predictor using the “Both Strong” esti- 
mation method. Table 6 shows results for no gating, for measuring 
at decode and gating at fetch, and measuring and gating at decode. 

Gating at decode produces worse results for Ew at the fetch 
stage than gating at fetch, although there is still an overall reduction 

Gshare: Contldence Threshold Effect 

11 
~ n Speedup q NotGated WGated ~ 

a5 __ 

1 50 

0.9 45 

0.9 40 

Oo.7 

d 

35 z 

uI 0.6 30 
c 0.5 25 

i 
3 

c 2o 8 

15 

0.2 10 

0.t 5 

0 0 

Figure 15: The effectiveness of a 128 entry JRS table as a function 
of MDC-threshold value. T denotes the MDC-threshold. 

McFrrllng: Secondary Filter Effects 

- 55 

25 
c 

20 8 

15 cJ 

10 

5 

0 

Figure 16: EW and speedup as a function of gating threshold values 
(denoted N) for the McFarling predictor. Also shown is the non- 
speculative version of the processor (NS). 

Gshare: Secondary Filter Effects 
~ Speedup q Not Gated n Gated 

55 

Figure 17: EW and speedup as a function of gating threshold val- 
ues for Gshare. Also shown is the non-speculative version of the 
processor (NS). 

140 



IGate at I 

Table 6: Geometric Mean of EW for base case (No Gating), gating 
at fetch, and gating at decode for McFarling. 

in work when compared to the base case. This is reasonable since 
we are allowing the fetch stage to continue fetching until the fetch 
buffer is full. Therefore, more instructions will enter the pipeline; 
this would not happen if gating disabled instruction fetch. We ex- 
pected to see an improvement in performance with gating at decode 
since the recovery penalty for incorrect gating would be less than 
gating at fetch. It takes only three cycles for an instruction to “catch 
up” and issue after an incorrect gating event with gating at decode 
as opposed to five cycles with gating at fetch. Results show no real 
performance benefit from moving the gating point from fetch to de- 
code. As shown in Figure 3, the pipeline is generally not gated for 
more than a few cycles. The current pipeline model has a 64-entry 
register update unit, and results show that it usually has enough in- 
structions in the issue queue to keep the execution units occupied 
while the pipeline catches up from gating. 

We also tried other gating configurations such as measuring low 
confidence branches at the second decode cycle, and gating at is- 
sue. None of these configurations performed as well as gating at 
fetch and measuring at decode. Measuring at the second decode 
cycle did not change the results in any significant manner. Gating at 
issue resulted in very little savings since most of the wrong-path in- 
structions do not reach the issue stage. Due to space limitations, we 
will not present results for these configurations. Of all the pipeline 
gating configurations attempted, gating at fetch and measuring at 
decode produced the best results. 

5 Conclusion 

We have looked at speculation control to reduce the amount of en- 
ergy consumed in a speculative, multi-issue, out-of-order proces- 
sor. We introduced a new mechanism, pipeline gating, which re- 
sults in a reduction of instructions in the pipeline without signifi- 
cantly altering performance. We have shown results for different 
branch predictors and confidence estimators, and implemented in- 
expensive dynamic confidence estimation methods that do a rea- 
sonable job of reducing unnecessary work. Furthermore, we pre- 
sented a practical configuration for the JRS confidence estimator 
that successfully reduces energy without a large hardware penalty. 
Most importantly, we showed that inexpensive, dynamic confi- 
dence estimation mechanisms exist which, at worst, do not impact 
performance for highly predictable programs, and at best, reduce 
work by a measurable amount for programs with a large mispredic- 
tion rate. 

Architectural level power reduction in high performance pro- 
cessors is a broad field and one that is in its infancy. We have 
presented an Innovative method for reducing power, and there is 
much work left to be done in this area. With wider width proces- 
sors and hyper speculation in the foreseeable future [9], pipeline 
gating methods will become even more essential for no-risk energy 
reduction in high performance processors. 

Acknowledgments: We would like to thank Steve Gunther for 
many invaluable conversations on power dissipation in micro- 
processors, Doug Burger and Todd Austin for supporting Sim- 
pIeScalar, and Todd Austin for his help in developing the ideas 
presented in this paper. We would also like to thank the referees 
for their helpful comments. This work was conducted on equip- 
ment provided by a Digital Equipment Corporation grant, and was 
partially supported by a grant from Hewlett-Packard, NSF grants 
No. CCR-9401689, No. MIP-9706286 and in part by ARPA con- 
tract ARMY DABT63-94-C-0029. 

References 

Ul 

PI 

[31 

141 

PI 

[61 

[71 

PI 

[91 

[lOI 

[Ill 

1121 

[I31 

[I41 

Thomas D. Burd and Robert W. Brodersen. Processor de- 
sign for portable systems. Journal ov VLSI Signal Processing, 
13(2/3):203-222, August 1996. 

D. Burger and T. M. Austin. The simplescalar tool set, version 
2.0. TR 1342, University of Wisconson, June 1997. 

Richard Fromm, Stylianos Perissakis, Neal Cardwell, 
Christoforos Kozyrakis, Bruce McGaughy, and David Patter- 
son. The Energy Efficiency of IRAM Architectures. Techni- 
cal report, May 1997. 

Ricardo Gonzalez and Mark Horowitz. Energy Dissipation 
in General Purpose Microprocessors. IEEE Journal of Solid- 
Stare Circuits, 3 l(9): 1277-l 284, September 1996. 

Dirk Grunwald, Artur Klauser, Srilatha Manne, and Andrew 
Pleszkun. Confidence esimation for speculation control. In 
Proceedings 25th Annual International Symposium on Com- 
puter Architecture, SIGARCH Newsletter. Barcelona, Spain, 
June 1998. ACM. 

Steve Gunther and Suresh Rajgopal. Personal communica- 
tion. 

E. Jacobsen, E. Rotenberg, and J.E. Smith. Assigning Con- 
fidence to Conditional Branch Predictions. In lntemarional 
Symposium on Microarchitecture, pages 142-152, December 
1996. 

J. Kin, M. Gupta, and W. Mangione-Smith. The Filter Cache: 
An Energy Efficient Memory Structure. HXE Micro, Decem- 
ber 1997. 

M. H. Lipasti and J. P. Shen. Superspeculative microarchitec- 
ture for beyond ad 2000. IEEE Computer, 30(9), 1997. 

S. McFarling. Combining branch predictors. TN 36, DEC- 
WRL, June 1993. 

J. Montanaro and er. all. A 160-MHz, 32-b. 0.5-W CMOS 
RISC Microprocessor. In Digifal Technical Journal, vol- 
ume 9. Digital Equipment Corporation, 1997. 

I. Pierce and T. Mudge. Wrong-Path Instruction Prefetching. 
l,!XE Micro, December 1996. 

J.E. Smith. A Study of Branch Prediction Strategies. In 
Annual International Symposium on Computer Architecture, 
SIGARCH Newsletrer, pages 135-l 48, May I98 I. 

A. Sodani and G. S. Sohi. Dynamic Instruction Reuse. In 
Annual International Symposium on Computer Architecture, 
SIGARCH Newsletter, pages 194-205. IEEE, June 1997. 

141 


