
1

1

Pipeline Review

0

1

Read
address

Instruction
memory

Instruction
[31-0] Address

Write
data

 Data
 memory

Read
data

MemWrite

MemRead

1

0

 MemToReg

 4

Shift
left 2

 Add

ALUSrc

Result

Zero ALU

ALUOp

Instr [15 - 0] RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

 Add

Instr [15 - 11]

Instr [20 - 16]

 0

 1

IF/ID

ID/EX

EX/MEM

MEM/WB Control
M

WB

WB

P
C

1

0

PCSrc

Sign
extend

EX

M

WB

2

Here is the example instruction sequence used to
illustrate pipelining on the previous page

 lw $8, 4($29)

 sub $2, $4, $5
 and $9, $10, $11
 or $16, $17, $18
 add $13, $14, $0

The instructions in this example are independent
 Each instruction reads and writes completely different

registers
 Our datapath handles this sequence easily

But most sequences of instructions are not
independent!

Our examples are too simple

2

3

An example with dependences

 Read after Write dependences

 sub $2, $1, $3
 and $12, $2, $5
 or $13, $6, $2
 add $14, $2, $2
 sw $15, 100($2)

Dependences are a property of how the
computation is expressed

4

An example with dependences
 sub $2, $1, $3
 and $12, $2, $5
 or $13, $6, $2
 add $14, $2, $2
 sw $15, 100($2)

There are several dependences in this code fragment
 The first instruction, SUB, stores a value into $2
 That register is used as a source in the rest of the instructions

This is no problem for 1-cycle and multicycle datapaths
 Each instruction executes completely before the next begins
 This ensures that instructions 2 through 5 above use the new

value of $2 (the sub result), just as we expect.

How would this code sequence fare in our pipelined
datapath?

3

5

Clock cycle
1 2 3 4 5 6 7 8 9

sub$2, $1, $3 IF ID EX MEM WB

and$12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

add$14, $2, $2 IF ID EX MEM WB

sw $15, 100($2) IF ID EX MEM WB

The SUB does not write to register $2 until clock cycle 5
causeing 2 data hazards in our pipelined datapath
 The AND reads register $2 in cycle 3. Since SUB hasn’t

modified the register yet, this is the old value of $2
 Similarly, the OR instruction uses register $2 in cycle 4, again

before it’s actually updated by SUB

Data hazards in the pipeline diagram

6

Clock cycle
1 2 3 4 5 6 7 8 9

sub$2, $1, $3 IF ID EX MEM WB

and$12, $2, $5 IF ID EX MEM WB

or $13, $6, $2 IF ID EX MEM WB

add$14, $2, $2 IF ID EX MEM WB

sw $15, 100($2) IF ID EX MEM WB

The ADD is okay, because of the register file design
 Registers are written at the beginning of a clock cycle
 The new value will be available by the end of that cycle

The SW is no problem at all, since it reads $2 after the
SUB finishes

Things that are okay

4

7

One Solution To Data �Hazards

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

Since it takes two instruction cycles to get the value stored,
one solution is for the assembler to insert no-ops or for
compilers to reorder instructions to do useful work while
the pipeline proceeds

A software solution to data hazards

sub $2, $1, $3
sll $0, $0, $0
sll $0, $0, $0
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

8

A fancier pipeline diagram

 DM Reg Reg IM

 DM Reg Reg IM

 DM Reg Reg IM

 DM Reg Reg IM

 DM Reg Reg IM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Clock cycle
 1 2 3 4 5 6 7 8 9

5

9

Forwarding

 DM Reg Reg IM

 DM Reg Reg IM

 DM Reg Reg IM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

Clock cycle
 1 2 3 4 5 6 7

Since the pipeline registers already contain the ALU
result, we could just forward the value to later
instructions, to prevent data hazards

•  In clock cycle 4, the AND instruction can get the value of $1 -
$3 from the EX/MEM pipeline register used by SUB

•  Then in cycle 5, the OR can get that same result from the MEM/
WB pipeline register being used by SUB

Forwarding Implementation

Forwarding requires …
(a) Recognizing when a potential data hazard

exists, and
(b) Revising the pipeline to introduce

forwarding paths …
We’ll do those revisions next time

10

6

11

What about stores?

Two “easy” cases:

 DM Reg Reg IM

 DM Reg Reg IM

add $1, $2, $3

sw $1, 0($4)

 DM Reg Reg IM

 DM Reg Reg IM

add $1, $2, $3

sw $4, 0($1)

1 2 3 4 5 6

1 2 3 4 5 6

12

What about stores?

A harder case:

In what cycle is:
 The load value available?
 The store value needed?

What do we have to add to the datapath?

 DM Reg Reg IM

 DM Reg Reg IM

lw $1, 0($2)

sw $1, 0($4)

1 2 3 4 5 6

7

Load/Store Bypassing: Extends Datapath#

By cycling the result of Read data
back to be the value for Write
data, the combination

can operate at normal pipeline
speeds … until there is a cache
miss!

13

 Address

 Write
 data

Data
memory

Read
data 1

0

EX/MEM MEM/WB

Sequence :
lw $1, 0($2)
sw $1, 0($4)

ForwardC

1

0

14

Stalls and flushes
We have seen data hazards can occur in pipelined CPUs

when instructions depend upon others still executing
 Many hazards can be resolved by forwarding data from the

pipeline registers, instead of waiting for the writeback stage
 The pipeline continues running at full speed, with one

instruction beginning on every clock cycle

Now, we’ll see some real limitations of pipelining
 Forwarding may not work for data hazards from load

instructions
 Branches affect the instruction fetch for the next clock cycle

In both of these cases we may need to slow down, or
stall, the pipeline

8

15

What about loads?
Imagine if the first instruction in the example was LW

instead of SUB
 The load data doesn’t come from memory until the end of

cycle 4
 But the AND needs that value at the beginning of the same

cycle!

This is a “true” data hazard—the data is simply not
available when its needed

 DM Reg Reg IM

 DM Reg Reg IM

lw $2, 20($3)

and $12, $2, $5

Clock cycle
 1 2 3 4 5 6

16

Stalling
The easiest solution is to stall the pipeline
We can delay the AND instruction by introducing a 1

cycle delay in the pipeline, often called a bubble

Notice that we’re still using forwarding in cycle 5, to get
data from the MEM/WB pipeline register to the ALU

 DM Reg Reg IM

 DM Reg Reg IM

lw $2, 20($3)

and $12, $2, $5

Clock cycle
 1 2 3 4 5 6 7

9

17

Stalling and forwarding
Without forwarding, we’d have to stall for two cycles to

wait for the LW instruction’s writeback stage.

In general, you can always stall to avoid hazards—but
dependencies are very common in real code, and
stalling will often reduce performance significantly

 DM Reg Reg IM

 DM Reg Reg IM

lw $2, 20($3)

and $12, $2, $5

Clock cycle
 1 2 3 4 5 6 7 8

18

Stalling delays the entire pipeline
If we delay the 2nd instruction, we must delay the 3rd too

 This is necessary to make forwarding work between AND and
OR

 It also prevents problems such as two instructions trying to
write to the same register in the same cycle.

 DM Reg Reg IM

 DM Reg Reg IM

 DM Reg Reg IM

lw $2, 20($3)

and $12, $2, $5

or $13, $12, $2

Clock cycle
 1 2 3 4 5 6 7 8

10

19

To implement a stall we force the two instructions after
LW to remain in their ID & IF stages for 1 extra cycle

This is easily accomplished
 Don’t update the IF/ID register, so the ID stage is repeated
 Don’t update the PC, so the current IF stage is repeated

Implementing stalls

Reg

 DM Reg Reg IM

 Reg IM

IM

lw $2, 20($3)

and $12, $2, $5

or $13, $12, $2
 DM Reg Reg IM

 DM Reg

Clock cycle
 1 2 3 4 5 6 7 8

20

But what about the ALU during cycle 4, the data
memory in cycle 5, and the register file write in cycle
6?

Those units aren’t used in those cycles because of the
stall, so we can set the EX, MEM and WB control
signals to all 0s … the bubble “bubbles” through

What about EXE, MEM, WB

Reg

 DM Reg Reg IM

 Reg IM

IM

lw $2, 20($3)

and $12, $2, $5

or $13, $12, $2
 DM Reg Reg IM

 DM Reg

Clock cycle
 1 2 3 4 5 6 7 8

11

21

Stall = Nop conversion

The effect of a load stall is to insert an empty or
nop instruction into the pipeline

 DM Reg Reg IM

 Reg IM

IM

lw $2, 20($3)

and -> nop

and $12, $2, $5

or $13, $12, $2
 DM Reg Reg IM

 DM Reg Reg

Clock cycle
 1 2 3 4 5 6 7 8

 DM Reg

