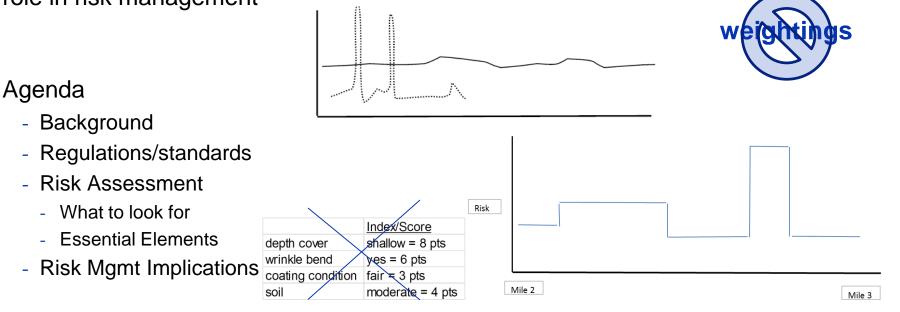


Pipeline Risk Assessment/Management


Mini-Workshop

The Basics – PL Risk Management

Objective:

Understand the essential elements of an effective pipeline risk assessment and its role in risk management

Bellingham, WA 1999

San Bruno, CA 2010

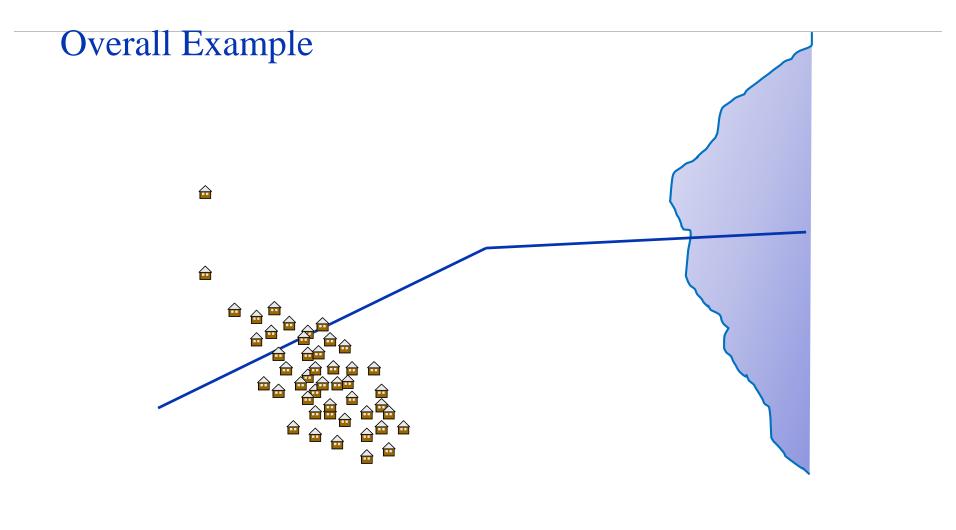
Carlsbad, NM 2000

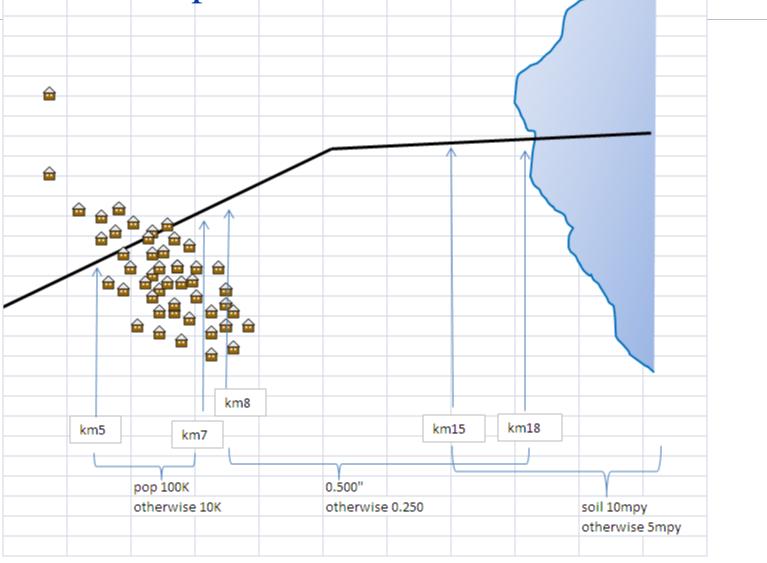
Kalamazoo River, MI 2010

Mayflower, AR 2013

Appomattox, VA 2008

Kalamazoo River, 2010




10ft creek

PoF: 1/1000yr CoF: \$1B Expected Loss: \$1M/yr/10ft!

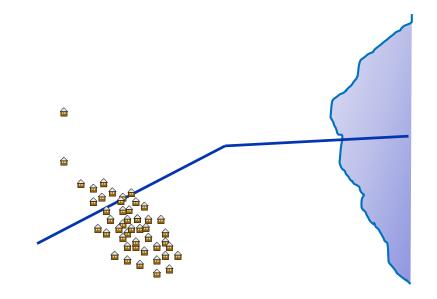
\$1,000,000,000 spent

Overall Example

beg	<u>end</u>	<u>event</u>	<u>code</u>	<u>Units</u>
0	8	pipe wall		inches
8	18	pipe wall		inches
18	20	pipe wall		inches
0	15	soil		mpy
15	20	soil		mpy
0	5	рор		\$/event
5	7	рор		\$/event
7	20	рор		\$/event
0	20	coat/CP		% effective

How to segment?

<u>beg</u>	<u>end</u>	pipe_wall	<u>soil</u>	pop	<u>mpy mit</u>	TTF <i>,</i> yrs	PoF, yr1	EL, \$/yr
0	5	0.25	5	10000	0.5	500	0.002	\$ 20
5	7	0.25	5	100000	0.5	500	0.002	\$ 200
7	8	0.25	5	10000	0.5	500	0.002	\$ 20
8	15	0.5	5	10000	0.5	1000	0.001	\$ 10
15	18	0.5	10	10000	1	500	0.002	\$ 20
18	20	0.25	10	10000	1	250	0.004	\$ 40
							0.013	\$ 310
				coat/CP	90%			


CoF = pop TTF = pipe_wall / mpy mit PoF = 1 / TTF EL = PoF x CoF

Overall Example

1.3% PoF Corr Ext for 20 km EL =\$310 / year

Demonstrations of

Centerlines Efficient data collection Data management Dynamic segmentation Risk estimates Risk aggregation High tech on a 'scratch pad'

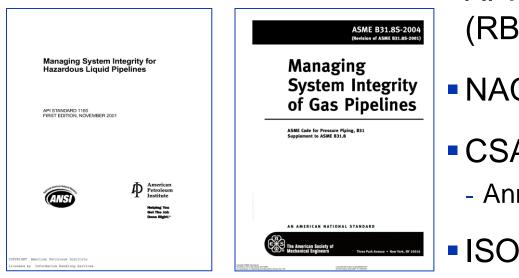
Background

Reality Check

- RM is not new; requires RA
- Risk-based decision-making is complex
 - Because the real world is complex, measuring risk is complex
 - 200+ variables & 200+ calculations for every inch of pipe
 - real factors, real considerations
 - RM is even more complex than RA
- Dealing with the complexity is worthwhile
 - increases understanding
 - shows full range of options; many opportunities to impact risk
 - cheaper than prescriptive 'solutions'
 - Improves decision-making

If you put tomfoolery into a computer, nothing comes out of it but tomfoolery. But this tomfoolery, having passed through a very expensive machine, is somehow ennobled and no-one dares criticize it.

- Pierre Gallois



The Illusion of Knowledge

IMP RA Regulations & Standards

Pertinent Regulatory/Standards

- 49 CFR Parts 192, 195
- Advisory Bulletin (Jan 2011)
- Public Presentations (June 2011)

- ASME B31.8s
- API STANDARD 1160
 - Managing Pipeline System Integrity
- API Risk Based Inspection (RBI) RP's
- NACE DA RP's
- CSA Z662
 - Annex O

RA is the Centerpiece of IMP

- Prioritize pipeline segments
- Evaluate benefits of mitigation
- Determine most effective mitigation
- Evaluate effect of inspection intervals
- Assess the use of alternative assessment
- Allocate resources more effectively

Gas IM Rule RA

- Account for relevant attributes
- Use conservative defaults for unknown data
- Identify significant risk-driving factors
- Sufficient segment discretization or resolution
- Predictive or "what-if" capability
- Updateable to reflect changes or new information
- Populating risk model is resource intensive
- Validate model, show to be plausible with respect to known history and significance of threats

- ASME B31.8 supplement considers 3 categories of threat:
 - <u>Time dependent</u> may worsen over time; require periodic reassessment
 - <u>Time stable</u> does not worsen over time; one-time assessment is sufficient (unless conditions of operation change)
 - <u>Time independent</u> occurs randomly; best addressed by prevention

Threat Categories: Time Dependent Threats

External corrosion

Internal corrosion

Stress-corrosion cracking (SCC)

Threat Categories: Time Independent (Random) Threats

- Third-party/Mechanical damage
 - Immediate failure
 - Delayed failure (previously damaged)
 - Vandalism
- Incorrect operations
- Weather related
 - Cold weather
 - Lightning
 - Heavy rain, flood
 - Earth movement

Threat Categories:

Time Stable Threats Resistance

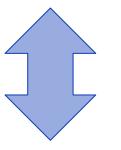
- Manufacturing-related flaws in
 - Pipe body
 - Pipe seam
- Welding / Fabrication-caused flaws in
 - Girth welds
 - Fabrication welds
 - Wrinkled / buckled bend
 - Threads / couplings

- Defects present in equipment
 - Gaskets, O-rings
 - Control / relief devices
 - Seals, packing
 - Other equipment

Subject Matter Experts

Relative Assessments

Scenario Assessments


Probabilistic Assessments

Confusion: tools vs models

IMP Objectives vs RA Techniques

Objectives

- (a) prioritization of pipelines/segments for scheduling integrity assessments and mitigating action
- (b) assessment of the benefits derived from mitigating action
- (c) determination of the most effective mitigation measures for the identified threats
- (d) assessment of the integrity impact from modified inspection intervals
- (e) assessment of the use of or need for alternative inspection methodologies
- (f) more effective resource allocation

Techniques

- Subject Matter Experts
- Relative Assessments
- Scenario Assessments
- Probabilistic
 Assessments

Numbers Needed

- •Failure rate estimates for each threat on each PL segment
- •Mitigation effectiveness for each contemplated measure
- •Time to Failure (TTF) estimates (time-dep threats)

PL RA Methodologies

ASME B31.8s •Subject Matter Experts •Relative Assessments •Scenario Assessments •Probabilistic Assessments

Probabilistic Mechanistic Deterministic

Qualitative Quantitative Semi-quantitative

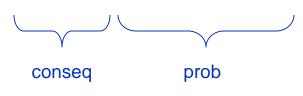
	Index/Score
depth cover	shallow = 8 pts
wrinkle bend	yes = 6 pts
coating condition	fair = 3 pts
soil	moderate = 4 pts

Types of Models

- Absolute Results
- Relative Results

ASME B31.8s •Subject Matter Experts •Relative Assessments •Scenario Assessments •Probabilistic Assessments

Ingredients in All Models

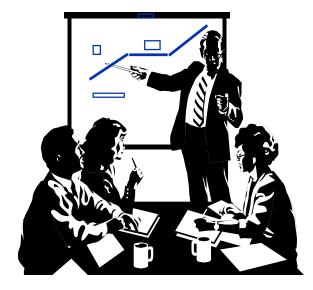

- Probabilistic methods
 - Scenarios, trees
 - Statistics
- SME (input and validation)

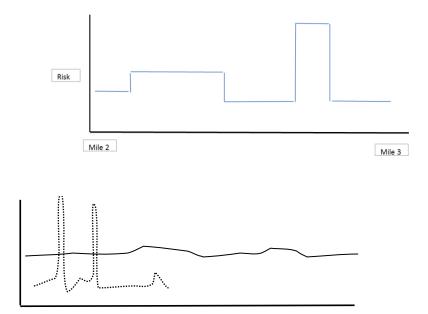
Qualitative Quantitative Semi-quantitative Probabilistic

Frequency of consequence

- Temporally
- Spatially
 - Incidents per mile-year
 - •fatalities per mile-year

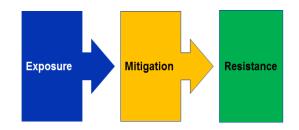
Ingredients events/yr events/mile-year mpy corrosion mpy cracking TTF = pipe wall / mpy % reduction in events/mi-yr % reduction in mpy % damage vs failure


Measure in Verifiable Units


ASME B31.8S Summary of Updates Needed

- The stated objectives of risk assessment cannot be effectively accomplished using some of the risk assessment techniques that are currently acceptable according to ASME B31.8s.
- The ASME B31.8s threat list confuses failure mechanisms and vulnerabilities.
- The ASME B31.8s methodology discussion confuses risk models with characteristics of risk models or tools used in risk analyses.
- The use of weightings is always problematic, rarely appropriate, but appears to be mandated in inspection protocols based on ASME B31.8S language.

Inspecting a Risk Assessment


Easy to Spot (and Correct!) Methodology Weaknesses

	Index/Score
depth cover	shallow = 8 pts
wrinkle bend	yes = 6 pts
coating condition	fair = 3 pts
soil	moderate = 4 pts

What does that mean?

ASME B31.8s •Subject Matter Experts •Relative Assessments •Scenario Assessments •Probabilistic Assessments

Qualitative Quantitative Semi-quantitative

Probabilistic Mechanistic Deterministic

Hazard ID & Risk Analyses Tools

High

Med

Low

5

3

2

Low

6

5

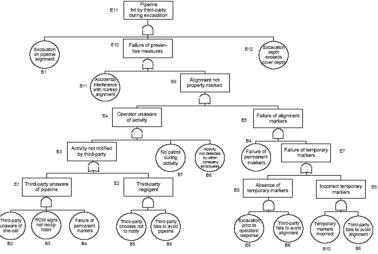
4

3

6

5

4


Med

6

Scenarios

- Event / fault trees
- Safety reviews / Checklists
- Matrix
- What-if analysis
- FMEA
- PHA, HAZOPS

LOPA

0

8

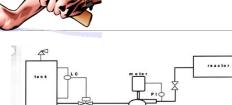
7

6

5

High

P = P				
HAZOPS EXERCISE				
Guideword	Cause	Consequence	Safeguards	Recommendation
No Flow				
More Flow				
Reverse Flow				
Less Flow				
Higher pressure				
Lower pressure				

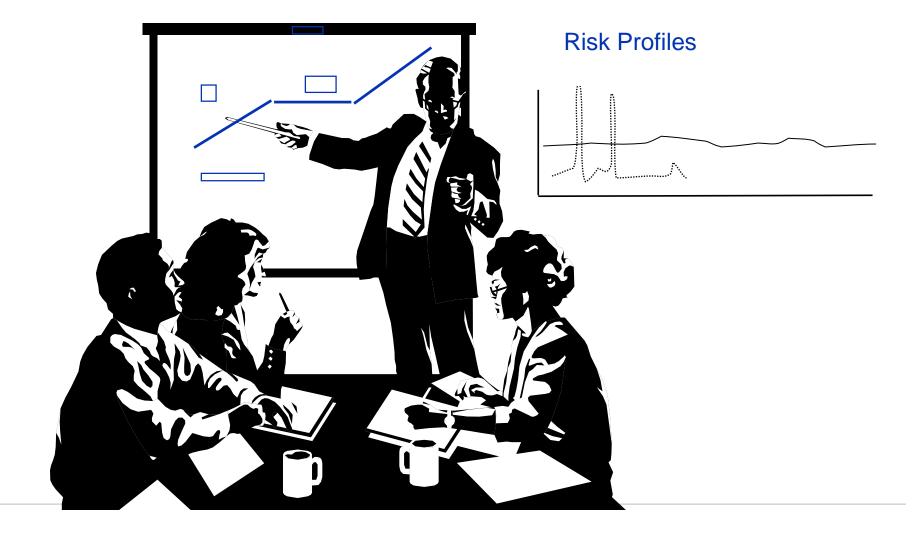

4

Make and note any necessary assumptions (trip points, tank pressure, equipment failure modes, etc)

Use any method to designate lines and equipment (for recording purposes).

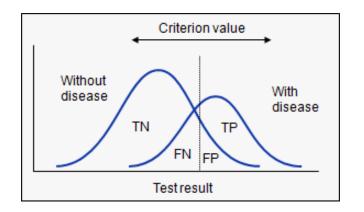
Use additional sheets of paper.

ligher temperatur

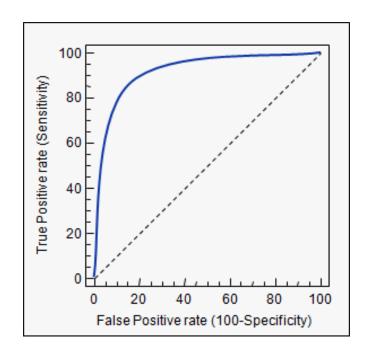


Judging a Risk Assessment

- "Technically justifiable . . ."
- "Logical, structured, and documented...."
- "Assurance of completeness..."
- "...incorporates sufficient resolution..."
- "Appropriate application of risk factors...."
- "Explicitly accounts for..." and combines PoF and CoF factors
- "Process to validate results..."
- P&M based on risk analyses



Passing the 'Map Point' Test



Receiver Operating Characteristic (ROC) Curve

statistical perspective	management perspective	public perspective	
false positive	false alarm	crying wolf	
false negative	missed alarm	wolf in sheep's clothing	
true positive	actual alarm	wolf in plain sight	
true negative	no alarm	no wolf	

can you tolerate 20% FP in exchange for only missing one in one-hundred?

PHMSA Concerns

U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration

<u>Inspections</u> Identify Weaknesses in Risk Analysis

- Current challenge is for industry to develop
 - More rigorous quantitative risk analyses
 - More investigative approach
 - Engineering critical assessment
 - Robust approach for P&M measures
 - Technically sound risk-based criteria

Limitations of Simple Index Models

Ineffective analysis of complex risk factor interactions

- Output not useful for identifying previously unrecognized threats/risks
- Not proven as adequate basis for evaluating P&M measures
- Poor capability to identify risk drivers
- Uncertainties (due to quantifying risk scores based on opinion) are not appropriately considered

<u>Recent Events</u> Illustrate Weaknesses in Risk Analysis

- Effective risk analysis might have prevented or mitigated recent high consequence accidents
- Weaknesses include inadequate:
 - Knowledge of pipeline risk characteristics
 - Processes to analyze interactive threats
 - Evaluation of way to reduce or mitigate consequences
 - Process to select P&M measures
 - Lack of objective, systematic approach

PHMSA Risk Assessment Concerns

- Weaknesses of Simple Relative Index Models
- Records (Availability and Quality of Data)
- Data Integration
- Interacting Threats
- Vintage/Legacy Pipe
- Connection to Real Decision-Making
- Uncertainties

- Intuitive
- Comprehensive
- Ease of setup and use
- Optimum for prioritization
- Mainstream
- Served us well in the past

Scoring Model Issues

- Artificial, inefficient layer
- Not designed for IMP
- Difficult to anchor
- Potential for masking
- Technical compromises
 - Weightings
 - Scale direction
 - Interactions of variables (dep vs indep)
- Validation (reg reqmt)

New uses

Hearsay

Common Complaints:

"We've been waiting for two years to start generating results we can trust"

"We have a risk assessment, but we can't use the results for anything"

"We purchased a sophisticated off-the-shelf solution, but we're not really sure how it calculates risk"

"Our risk assessment methodology was developed internally ages ago, how do we know if it's still acceptable?"

Myths: Data Availability vs Modeling Rigor

Myth:

Some RA models are better able to accommodate low data availability

Reality:

- Strong data + strong model = accurate results
- Weak data + strong model = uncertain results
- Weak data + weak model = meaningless results

Myth: QRA / PRA Requirements

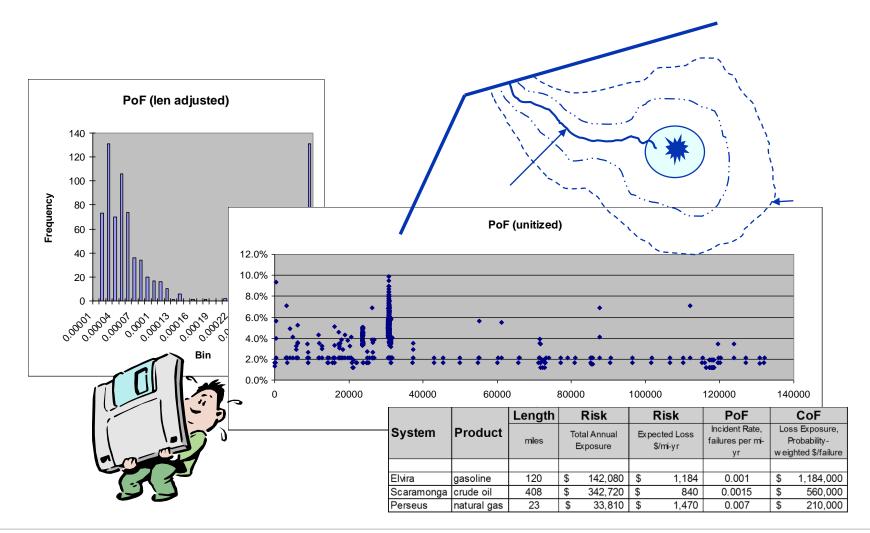
Myth:

QRA requires vast amounts of incident histories

Reality:

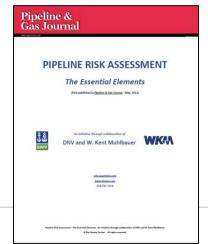
- QRA 'requires' <u>no</u> more data than other techniques
- All assessments work better with better information

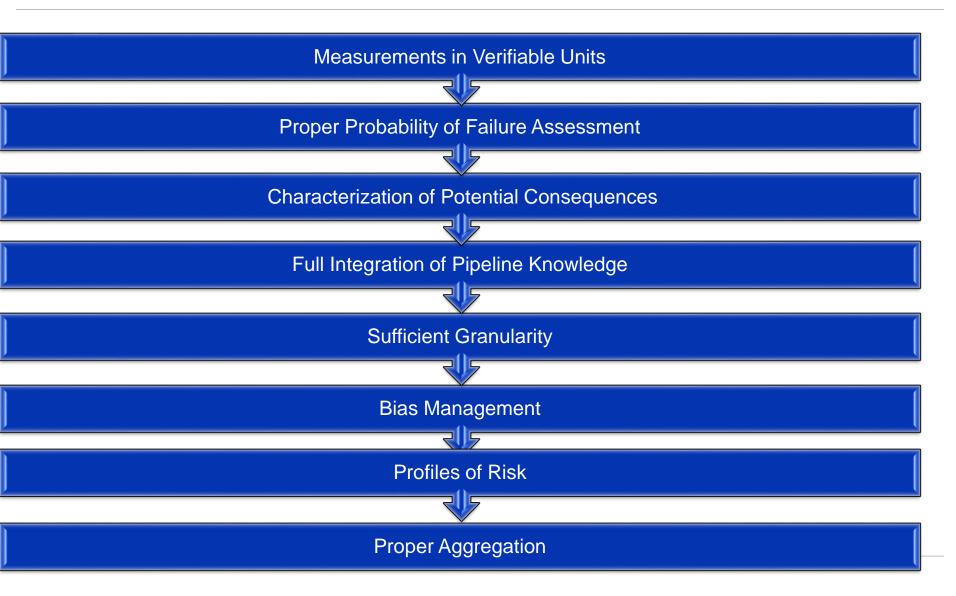
Footnotes:


- Some classical QRA does over-emphasize history
- Excessive reliance on history is an error in any methodology

Risk Assessment Maturity

- High resolution
- Measurements instead of scores
- Accurate/Appropriate mathematical relationships
- Direct use of inspection results
- Ability to express results in absolute terms


Modern Pipeline Risk Assessment

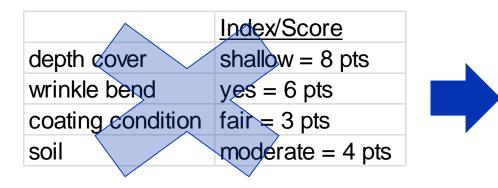

Essential Elements

Essential Elements

- The Essential Elements are meant to
 - Be common sense ingredients that make risk assessment meaningful, objective, and acceptable to all stakeholders
 - Be concise yet flexible, allowing tailored solutions to situation-specific concerns
 - Lead to smarter risk assessment
 - Avoid need for 'one size fits all' solutions
 - Response to stakeholder criticisms
 - Stepping stone towards RP
- The elements are meant to supplement, not replace, guidance, recommended practice, and regulations already in place
- The elements are a basis for risk assessment certifications
- www.pipelinerisk.net

The Essential Elements

Measure in Verifiable Units



Must include a definition of "Failure"

- Must produce verifiable estimates of PoF and CoF in commonly used measurement units
- PoF must capture effects of length and time
- Must be free from intermediate schemes (scoring, point assignments, etc)

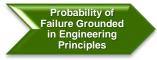
"Measure in verifiable units" keeps the process transparent by expressing risk elements in understandable terms that can be calibrated to reality

events/yr events/mile-year mpy corrosion mpy cracking TTF = pipe wall / mpy % reduction in events/mi-yr % reduction in mpy % damage vs failure

Risk = Frequency of consequence

- Temporally
- Spatially

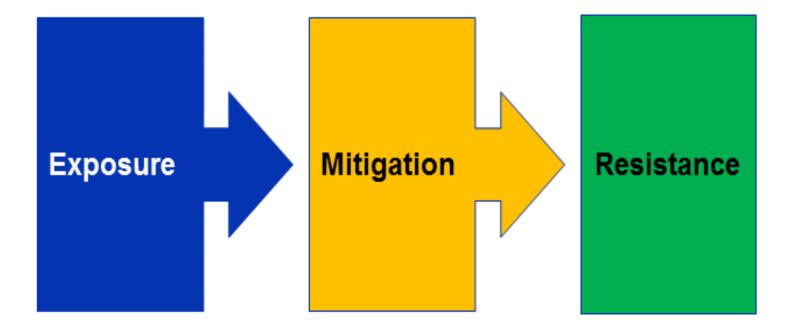
Incidents per mile-yearfatalities per mile-yeardollars per km-decade

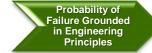


- Less subjective
- Anchored in 'real world' (incl orders magnitude, OR gates, etc)
- Defensible, verifiable over time
- Avoids need for 'cook book'
- Avoids erosion of score definitions
- Allows calculation of costs and benefits
- Supports better decisions
- Auditable

Probability of Failure Grounded in Engineering Principles

- All plausible failure mechanisms must be included in the assessment of PoF
- Each failure mechanism must have the following elements independently measured:
 - Exposure
 - Mitigation
 - Resistance
- For each time dependent failure mechanism, a theoretical remaining life estimate must be produced

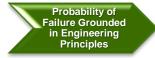

- <u>Exposure</u>: likelihood and aggressiveness of a failure mechanism reaching the pipe when no mitigation applied (ATTACK)
- <u>Mitigation</u>: prevents or reduces likelihood or intensity of the exposure reaching the pipe (DEFENSE)
- <u>Resistance</u>: ability to resist failure given presence of exposure (SURVIVABILITY)


Information Use--Exposure, Mitigation, or Resistance?

pipe wall thickness air patrol frequency soil resistivity coating type CP P-S voltage reading date of pipe manufacture stress level operating procedures nearby traffic type and volume nearby AC power lines (2) ILI date and type pressure test psig

maintenance pigging surge relief valve casing pipe flowrate depth cover training SMYS one-call system type SCADA pipe wall lamination wrinkle bend

PoF: Critical Aspects


- Probability of Damage (PoD) = exposure x (1 mitigation)
- Probability of Failure (PoF) = PoD x (1- resistance)

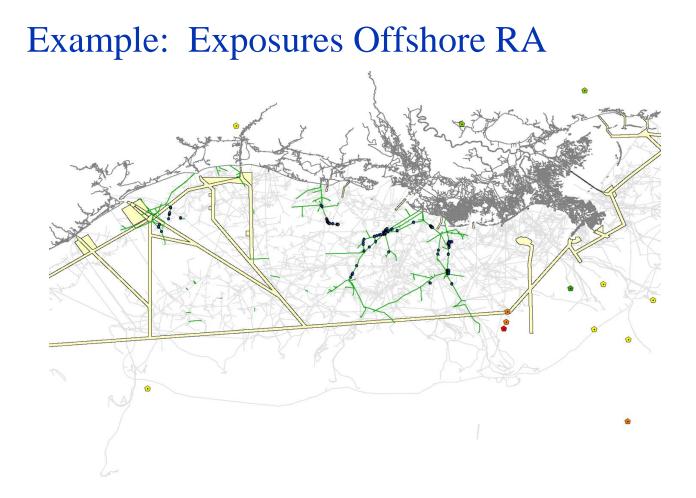
{PoF = exposure x (1 - mitigation) x (1 - resistance)}

PoF (time-dependent) = 1 / TTF

= exposure * (1 – mitigation) / resistance (example only)

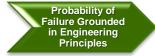
Exposure PoD Mitigation PoF Resistance

- Events per mile-year (km-yr) for time independent mechanism
 - third party
 - incorrect operations
 - weather & land movements

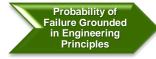

MPY (mm/yr) for degradation mechanisms

- Corrosion (Ext, Int)
- Cracking (EAC / fatigue)

List the Exposures

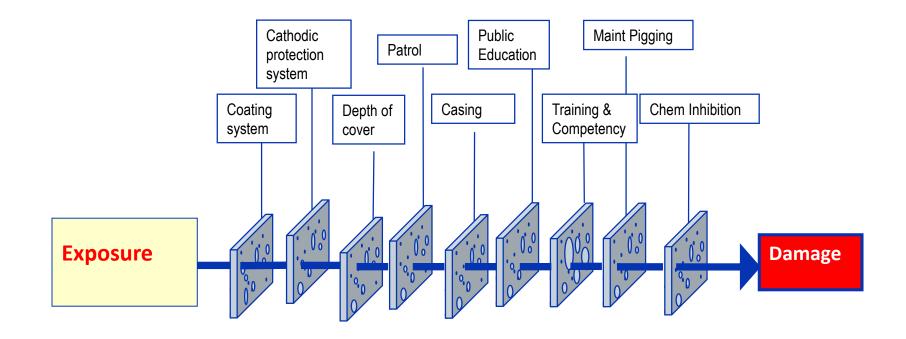


Vehicle impact; 1 mile along busy highway
 0.1 to 10 events/mile-year


excavation; 530 ft heavy construction
 ~400 events/mile-year

 vehicle impact; 1 mile along RR ~0.01 events/mile-year

power pole falling
 0.05 to 2 events/mile-year



Failures/yr	Years to Fail Approximate Rule Thumb	
1,000,000	0.000001	Continuous failures
100,000	0.00001	fails ~10 times per hour
10,000	0.0001	fails ~1 times per hour
1,000	0.001	fails ~3 times per day
100	0.01	fails ~2 times per week
10	0.1	fails ~1 times per month
1	1	fails ~1 times per year
0.1	10	fails ~1 per 10 years
0.01	100	fails ~1 per 100 years
0.001	1,000	fails ~1 per 1000 years
0.0001	10,000	fails ~1 per 10,000 years
0.00001	100,000	fails ~1 per 100,000 years
0.000001	1,000,000	One in a million chance of failure
0.000000001	1,000,000,000	Effectively, it never fails

- Estimates can often be validated over time
- Estimate values from several causes are directly additive. E.G. Falling objects, landslide, subsidence, etc, each with their own frequency of occurrence can be added together
- Estimates are in a form that consider segment-length effects and supports PoF estimates in absolute terms
- Avoids need to standardize qualitative measures such as "high", "medium", "low" avoids interpretation and erosion of definitions over time and when different assessors become involved.
- Can directly incorporate pertinent company and industry historical data.
- Forces SME to provide more considered values. It is more difficult to present a number such as 1 hit every 2 years

Estimating Mitigation Measure Effectiveness

Strong, single measure

Or

Accumulation of lesser measures

Mitigation % = 1 - (remaining threat)

Remaining threat = (remnant from mit1) AND (remnant from mit2) AND (remnant from mit3) ...

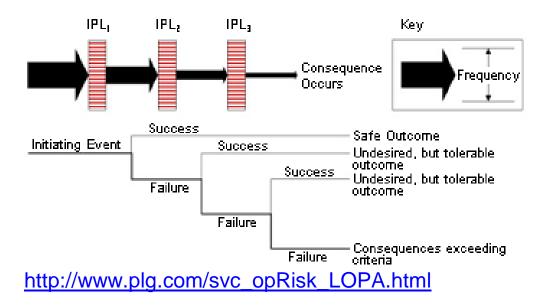
Exposure	Mitigation	Reduction	freq damage	prob damage
events/mi-yr			events/mi-yr	Prob/mi-yr
10	90.0%	10	1	63.2%
10	99.0%	100	0.1	9.52%
10	99.9%	1000	0.01	1.00%

Mitigation % = 1-[(1-mit1) x (1-mit2) x (1-mit3)...]

In words:

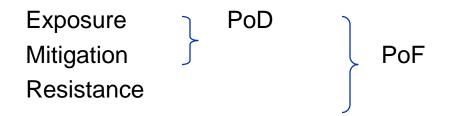
Mitigation % = 1 - (remaining threat)
Remaining threat = (remnant from mit1) AND (remnant from mit2) AND (remnant from
mit3) ...

Measuring Mitigation


What is the overall mitigation effectiveness if:

Depth cover	50%
One call	60%

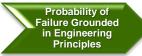
Mitigation	Impact on risk
Increase soil cover	56% reduction in mechanical damage when soil cover increased from 1.0 to 1.5 m
Deeper burial	25% reduction in impact failure frequency for burial at 1.5 m; 50% reduction for 2m; 99% for 3m
Increased wall thickness	90% reduction in impact frequency for >11.9-mm wall or >9.1-mm wall with 0.3 safety factor
Concrete slab	Same effect as pipe wall thickness increase
Concrete slab	Reduces risk of mechanical damage to "negligible"
Underground tape marker	60% reduction in mechanical damage
Additional signage	40% reduction in mechanical damage
Increased one-call	
awareness and response	50% reduction in mechanical damage
Increased ROW patrol	30% reduction in mechanical damage
	30% heavy equipment-related damages; 20% ranch/farm activities; 10%
Increased ROW patrol	homeowner activities
Improved ROW, signage,	
public education	5–15% reduction in third-party damages


Level of Protection Analysis

LOPA ANSI/ISA-84.00.01-2004, IEC 61511 Mod

SIL selection requirements of the American National Standards Institute (ANSI)/Instrumentation, Systems, and Automation Society (ISA) standard 84.00.01 – 2004

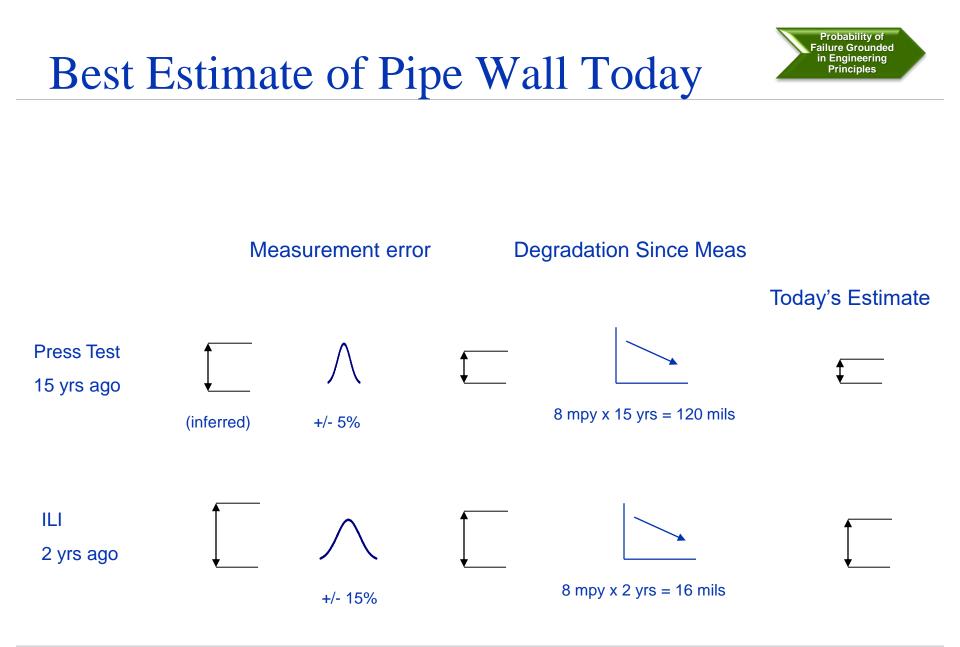
- Probability of damage (PoD) = f (exposure, mitigation)
- Probability of failure (PoF) = f (PoD, resistance)


Resistance

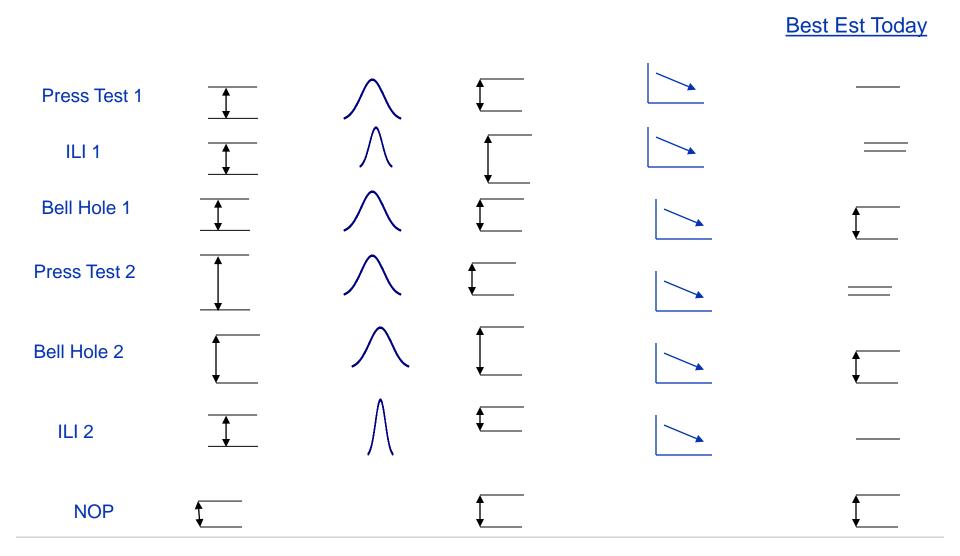
Report 09-077, Page 24

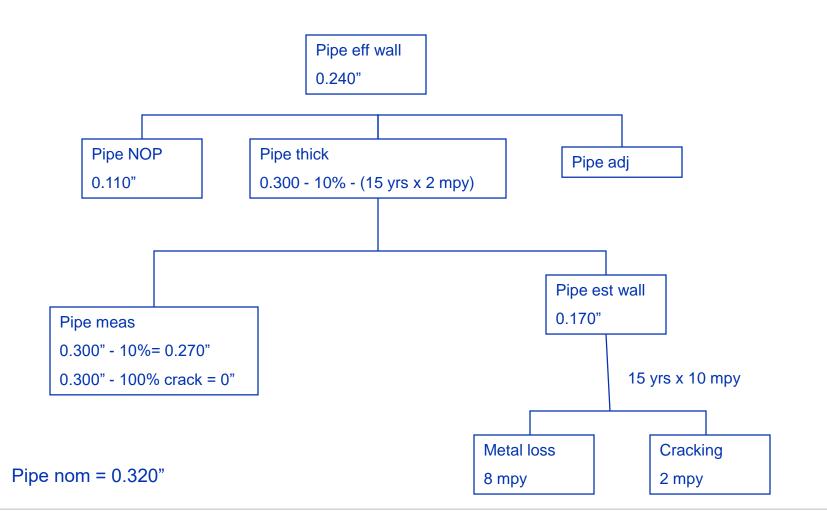
Figure 1. Photographs of the two fracture pipe segments and crater. Photograph on the upper page is looking north. Composite photograph at the lower portion of the page is looking west. The origin of the fracture was determined to be located in the area indicated by arrow "O". General direction of fracture propagation is indicated by white unmarked arrows.

Estimating Resistance


- Pipe spec (original)
- Historical issues
 - Low toughness
 - Hard spots
 - Seam type
 - Manufacturing

Pipe spec (current)


- ILI measurements
- Calcs from pressure test
- Visual inspections
- Effect of estimated degradations


Required pipe strength

- Normal internal pressure
- Normal external loadings

Best Estimate of Pipe Wall Today

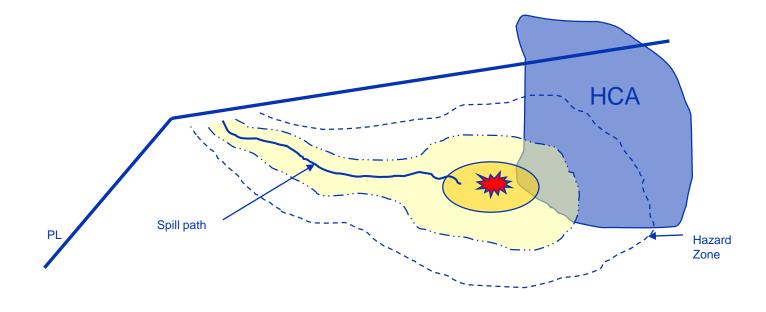
- Stress capacity
- Load capacity
- Effective wall thickness
- Fraction of damage events that do not result in failure

Full solution: ...formal reliability assessment to study the relation of tensile strain resistance distribution to tensile strain demand distribution

Comprehensive

- Pipe specification;
- Last measured wall thickness;
- Age of last measured wall thickness;
- Wall thickness "measured" (implied) by last pressure test;
- Age of last pressure test;
- Detection capabilities of last inspection (ILI, etc), including data analyses and confirmatory digs;
- Maximum depth of a defect remaining after last inspection; age of last inspection
- Estimated metal loss mpy since last measurement;
- Estimated cracking mpy since last measurement;
- Maximum depth of a defect surviving at last pressure test and/or normal operating pressure (NOP) or last known pressure peak;
- Penalties for possible manufacturing/construction weaknesses

- Implicit, if not explicit, categorization because:
 - knowledge of all 3 is required for PoF
- Benefits of explicit categorization
 - without all 3, inability to diagnose
 - without diagnosis, inability to optimize P&M
- Eg, Corr in sand vs swamp


- Exposure (events per year)
- Mitigation (% of avoided events)
- Resistance (% damage events that do not result in failure)

	Index/Score	New	Measurement/Estimate
depth cover	shallow = 8 pts	mitigation	15%
wrinkle bend	yes = 6 pts	resistance	-0.07" pipe wall
coating condition	fair = 3 pts	mitigation	0.01 gaps/ft2
soil	moderate = 4 pts	exposure	4 mpy

Fully Characterize Consequence of Failure

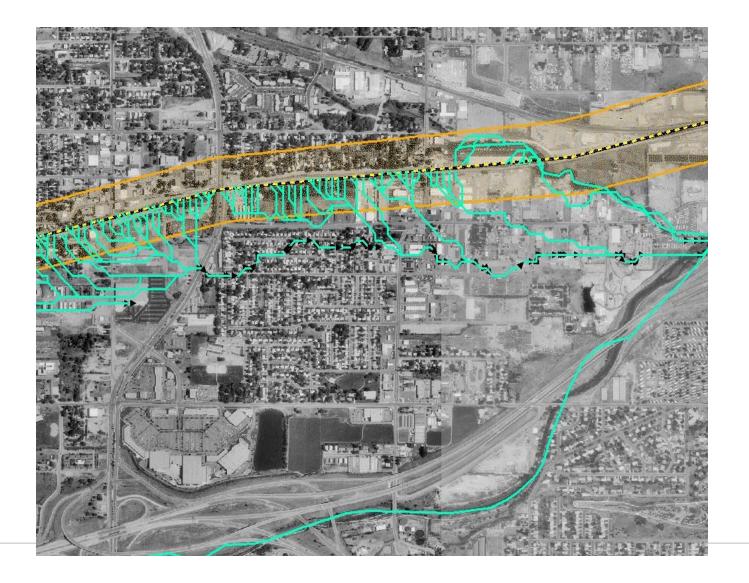
- Must identify and acknowledge the full range of possible consequence scenario hazard zones
- Must consider 'most probable' and 'worst case' scenarios

Common Consequences of Interest

Human health

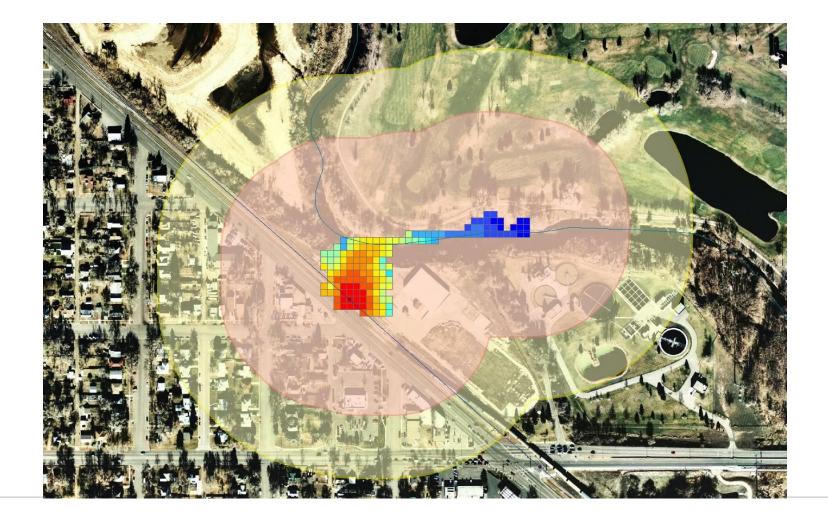
Environment

Costs

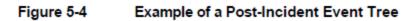

Choose receptors and CoF units

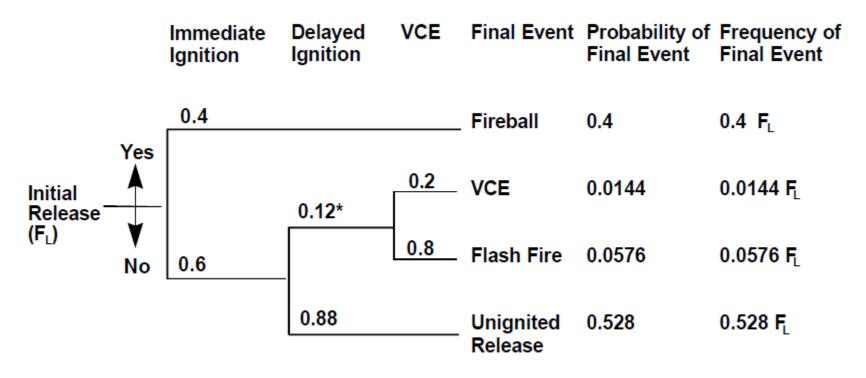
CoF = ProdHaz x Spill x Spread x Receptors

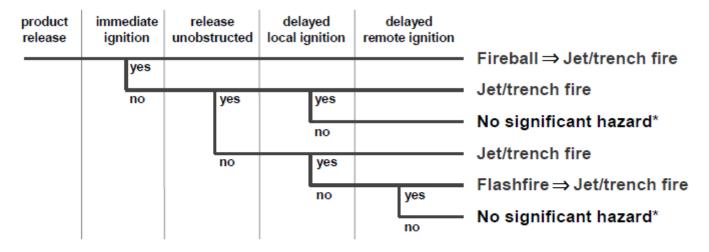
Liquid Releases


Particle Trace Analysis

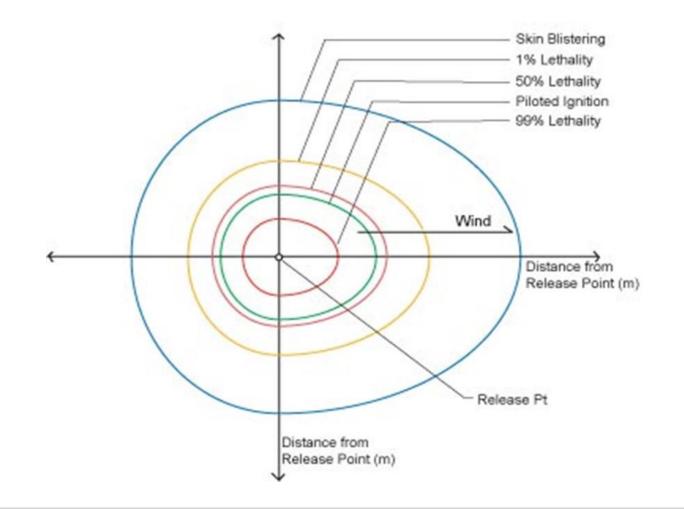
Why are DEM and structures so important??




Thermal Radiation—Pool Fire



Hazard Zone Scenarios


* Example for Suburban Population Density

* ignoring hazard potential of overpressure and flying debris

Figure 1.1 Event tree for high pressure gas pipeline failure (adapted from Bilo and Kinsman 1997).

Hazard Zone Criteria

6300

Radiation intensity (kW/m ²)	Observed effect
37.5	Sufficient to cause damage to process equipment
12.5	Minimum energy required for piloted ignition of wood, melting of plastic tubing
9.5	Pain threshold reached after 8 s; second degree burns after 20 s
4	Sufficient to cause pain to personnel if unable to reach cover within 20 s; however, blistering of the skin (second degree burns) is likely; 0% lethality
1.6	Will cause no discomfort for long exposure

Table A2.2 Effects of Thermal Radiation (CCPS, 1989a)

•		· · ·
Radiation intensity (Btu/hr/ft ²)	kW/m ²	Time to pain threshold (s)
500	1.74	60
740	2.33	40
920	2.90	30
1500	4.73	16
2200	6.94	9
3000	9.46	6
3700	11.67	4
		_

10 87

2

Table A2.3 Exposure Time Necessary to Reach the Pain Threshold (API 521)

PIR Flame Jet

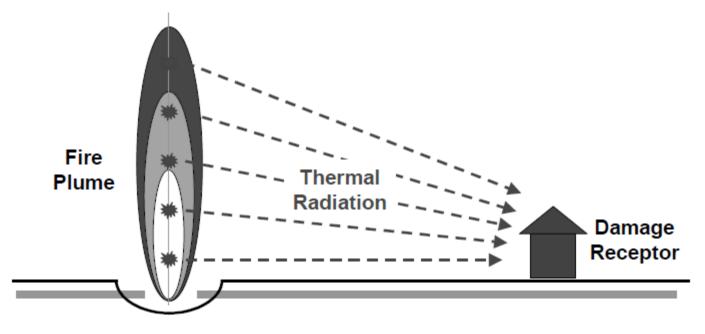
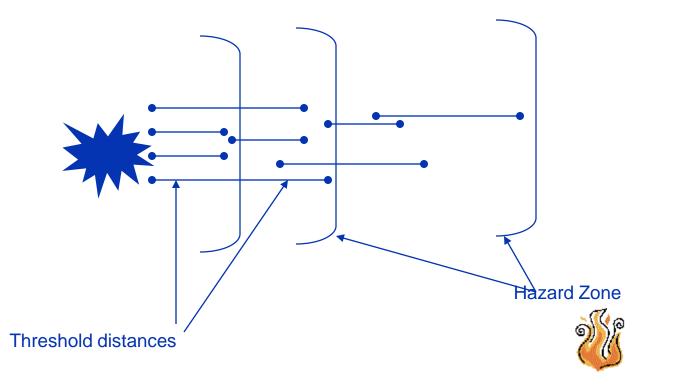


Figure 2.1 Conceptual fire hazard model.

TTO13 & TTO14

Table 7.1 Summary of Potential Impact Radius Formulae


Product	PIR Formula					
Ethylene	$r = 1.04 \cdot \sqrt{p \cdot d^2}$					
Hydrogen	$r = 0.47 \cdot \sqrt{p \cdot d^2}$					
Natural Gas (Lean)	$r = 0.69 \cdot \sqrt{p \cdot d^2}$					
Natural Gas (Rich)	$r = 0.73 \cdot \sqrt{p \cdot d^2}$					
Syngas	$r = 0.49 \cdot \sqrt{p \cdot d^2}$ Note 1					
Note 1 See discussion in Se	Note 1 See discussion in Section 4.8.5					

	Product		PIR Formula				
	Acetylene	1 psi Overpressure	$r = 0.021 \cdot \left(d^2 \cdot p\right)^{1/3}$				
		1 psi Overpressure	$r = 0.014 \cdot (d^2 \cdot p)^{1/3}$				
	Anhydrous Ammonia (Liquefied under pressure)	Rural Conditions	$r = 0.08 \cdot \left(d^2 \cdot p\right)^{0.48}$				
		Urban Conditions	$r = 0.07 \cdot \left(d^2 \cdot p\right)^{0.45}$				
		1 psi Overpressure	$r = 0.012 \cdot (d^2 \cdot p)^{1/3}$				
	Carbon Monoxide	Rural Conditions	$r = 0.04 \cdot \left(d^2 \cdot p\right)^{0.5}$				
		Urban Conditions	$r = 0.03 \cdot \left(d^2 \cdot p\right)^{0.45}$				
	Chlorine	Rural Conditions	$r = 0.38 \cdot (d^2 \cdot p)^{0.49}$				
	Chlonine	Urban Conditions	$r = 0.16 \cdot \left(d^2 \cdot p\right)^{0.5}$				
	Ethylene	1 psi Overpressure	$r = 0.021 \cdot \left(d^2 \cdot p\right)^{1/3}$				
		1 psi Overpressure	$r = 0.015 \cdot (d^2 \cdot p)^{1/3}$				
	Hydrogen Sulfide	Rural Conditions	$r = 0.37 \cdot \left(d^2 \cdot p\right)^{0.45}$				
		Urban Conditions	$r = 0.27 \cdot \left(d^2 \cdot p\right)^{0.46}$				
	Methane	1 psi Overpressure	$r = 0.019 \cdot \left(d^2 \cdot p\right)^{1/3}$				
	Rich Gas	1 psi Overpressure	$r = 0.020 \cdot (d^2 \cdot p)^{1/3}$				
ч			•				

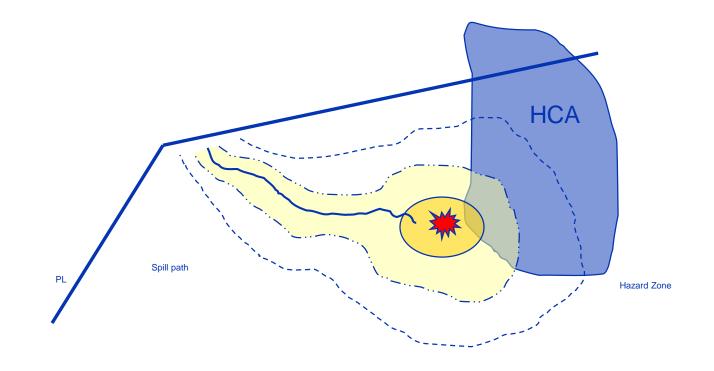
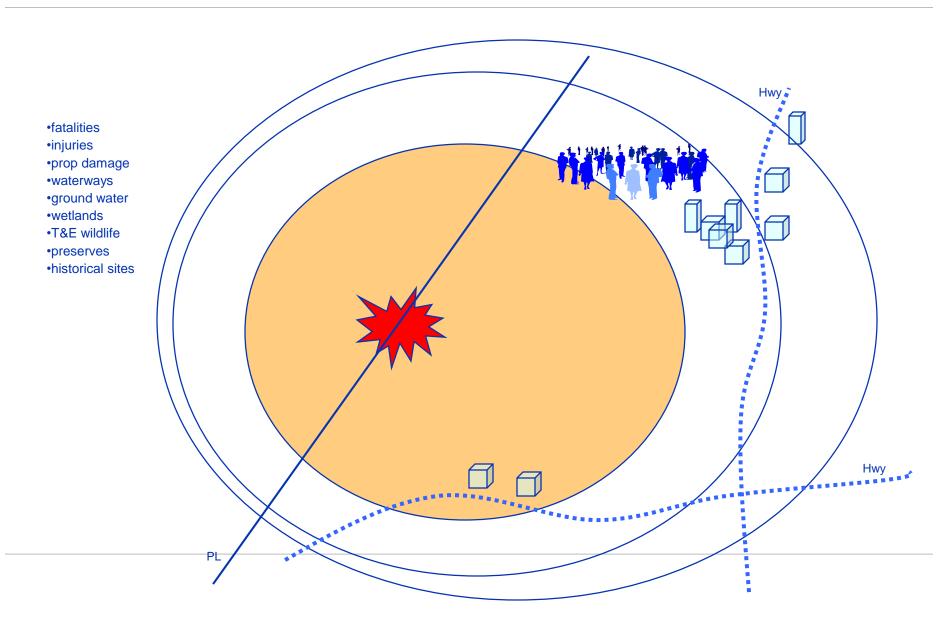

Summary of PIR Formulae

Table 8.1

Grouping of Distance Estimates

CoF = f {**Hazard Zones**}



		hole size			dist	therm haz	overpress	contam		prob of
prod	hole size	prob	ignition scenario	prob	source	zone	haz	haz zone	haz zone	haz zone
					ft	ft	ft	ft	ft	
			immediate ignition							
	rupt	2%	delayed ig							
			no ignition							
	med	8%	immediate ignition							
fuel oil			delayed ig							
			no ignition							
			immediate ignition							
	small		delayed ig							
			no ignition							

Hazard Zones

Product	Hole size	Hole size probability	Ignition scenario	Ignition probability	Distance from source (ft)	thermal hazard zone (ft)	Contaminati on hazard zone (ft)	Total (ft)	probability of hazard zone
			immediate ignition	5%	0		0	400	0.2%
	rupture	4%	delayed ignition	10%	600	500	400	1100	0.4%
		*	no ignition	85%	600	0	900	1500	3.4%
			immediate ignition	2%	0	200	0	200	0.3%
oil	medium	16%	delayed ignition	5%	200	300	200	500	0.8%
	Ĩ	*	no ignition	93%	200	0	500	700	14.9%
		80%	immediate ignition	1%	0	50	0	50	0.8%
	small		delayed ignition	2%	80	100	0	180	1.6%
			no ignition	97%	80	0	80	160	77.6%
									100.0%
		16%	immediate ignition	20%	0	400	0	400	3.2%
	rupture		delayed ignition	20%	500	2000	0	2500	3.2%
	Ĩ		no ignition	60%	500	0	0	500	9.6%
			immediate ignition	15%	0	200	0	200	3.6%
LPG	medium	24%	delayed ignition	15%	200	1200	0	1400	3.6%
			no ignition	70%	200	0	0	200	16.8%
			immediate ignition	10%	0	50	0	50	6.0%
	small	60%	delayed ignition	10%	30	100	0	130	6.0%
			no ignition	80%	30	0	0	30	48.0%
									100.0%

Receptor Characterization

Population Characterization

- Building density
- Building characterization
- Occupancy rate
- Mobility
- $O_f = D \times R$

Where,

- O_f= The occupancy factor, which is an indication of the number of people within a hazard zone;
- D = building density of land use areas within the hazard zone (includes buildings or other areas that define a class location or HCA); and,
- R = The expected average occupancy rate per building within the land use area

•Create Zones Based on Threshold Distances

•Estimate Damage States (or PoD) for Each Zone

Hazard Zone	injury rate	fatality rate	environ damage rate	service interruption rate
<100'	80%	8%	50%	100%
100'-50% PIR	50%	5%	30%	90%
50% -100% PIR	20%	2%	10%	80%

CoF at Facilities

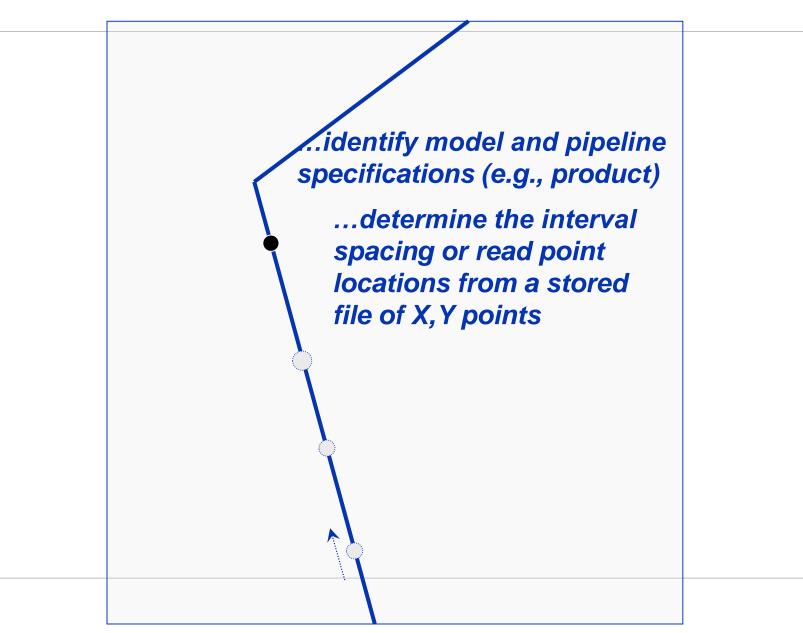
Hazard Zone Assessment

Potential Loss = Hazard Are

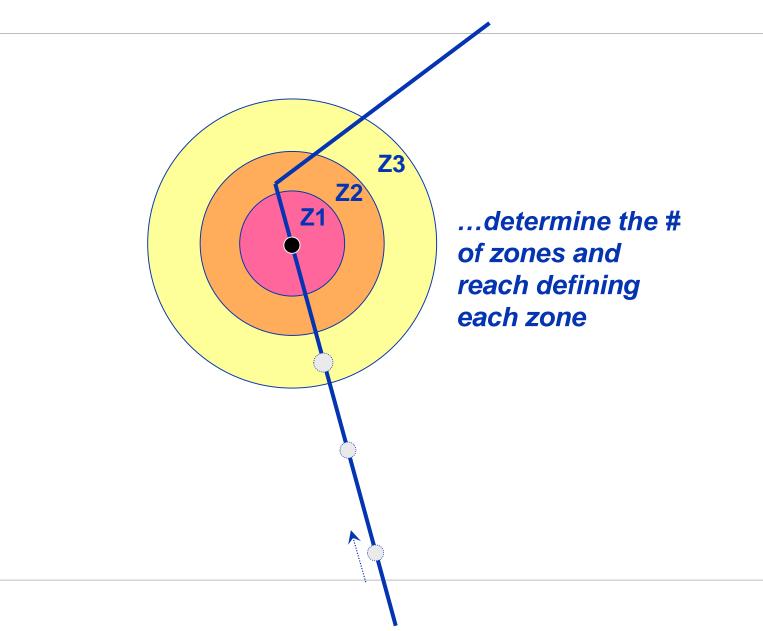
= Hazard Area^{*} x Σ(receptor unit value x receptor density x receptor damage rate)

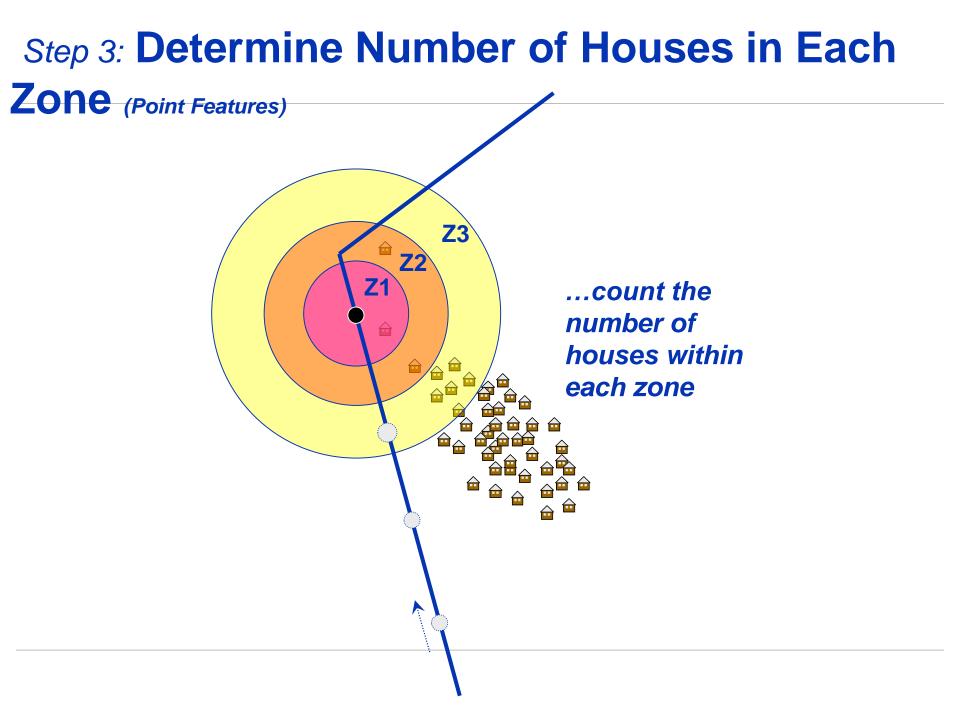
						unit cost	unit cost		unit cost	
							\$3,500,000		\$ 50,000	Expected Loss
Hole Size	Ignition Scenario	Maximum Distance (ft)	Probability of Maximum Distance	Hazard Zone Group	# people	Human injury costs	Human fatality costs	# environ units	Environ Damage Costs	Probability weighted dollars per failure
	immediate	400	4.8%	100'-50% PIR	5	\$ 3,600	\$ 12,600	1	\$ 720	\$ 16,920
rupture	delayed	1500	1.6%	50% -100% PIR	10	\$ 960	\$ 3,360	1	\$80	\$ 4,400
	no ignition	300	1.6%	100'-50% PIR	5	\$ 1,200	\$ 4,200	1	\$ 240	\$ 5,640
	immediate	300	1.8%	100'-50% PIR	5	\$ 1,350	\$ 4,725	1	\$ 270	\$ 6,345
medium	delayed	600	1.8%	100'-50% PIR	5	\$ 1,350	\$ 4,725	1	\$ 270	\$ 6,345
	no ignition	100	8.4%	100'-50% PIR	5	\$ 6,300	\$ 22,050	1	\$ 1,260	\$ 29,610
	immediate	50	8.0%	<100'	1	\$ 1,920	\$ 6,720	0.5	\$ 1,000	\$ 9,640
small	delayed	80	8.0%	<100'	1	\$ 1,920	\$ 6,720	0.5	\$ 1,000	\$ 9,640
	no ignition	30	64.0%	<100'	1	\$15,360	\$ 53,760	0.5	\$ 8,000	\$ 77,120
	100.0% Total expected loss per failure at this location								\$165,660	

Final EL Value

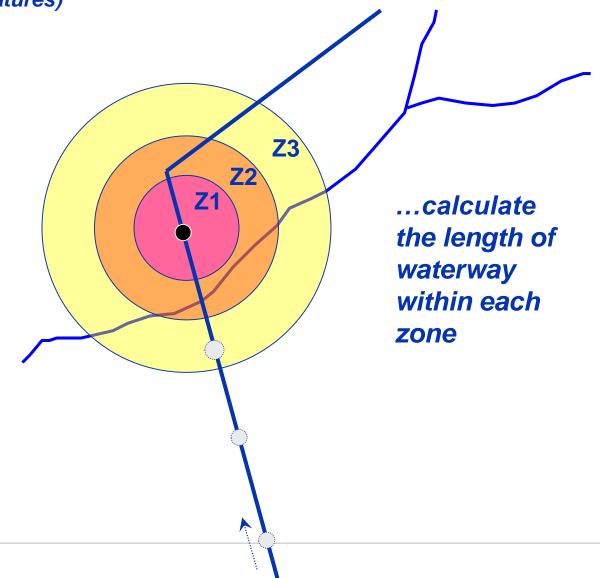

At a specific location along a pipeline:

Expected Loss								
Failure Rate (failures per mile-year)	Probability of Hazard Zone ^{1,2}	Probability weighted dollars ^{2,3}	Probability weighted dollars per mile-year					
	4.80%	\$16,920	\$0.81					
	1.60%	\$4,400	\$0.07					
	1.60%	\$5,640	\$0.09					
0.004	1.80%	\$6,345	\$0.11					
0.001	1.80%	\$6,345	\$0.11					
	8.40%	\$29,610	\$2.49					
	8.00%	\$9,640	\$0.77					
	8.00%	\$9,640	\$0.77					
	64.00%	\$77,120	\$49.36					
	100.00%	\$165,660	\$54.59					

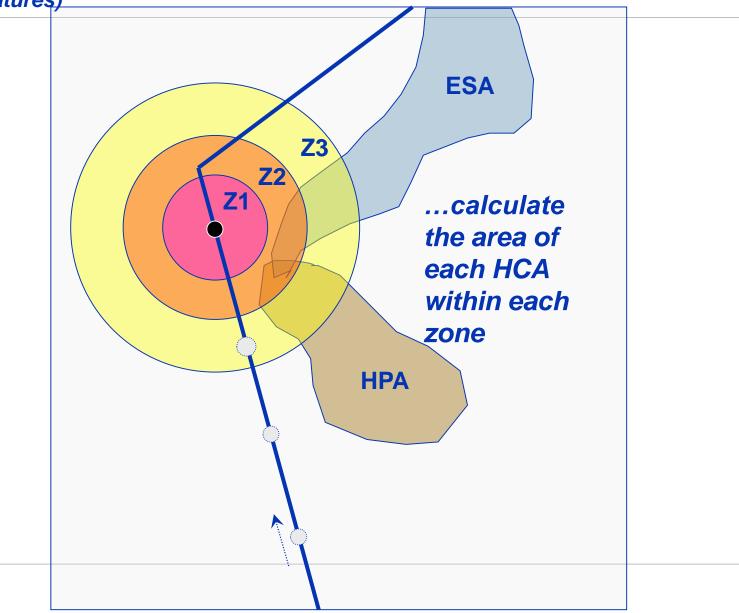

Table Notes


- 1. after a failure has occurred
- 2. from Table 2 above, per event
- 3. (damage rate) x (value of receptors in hazard zone), per event

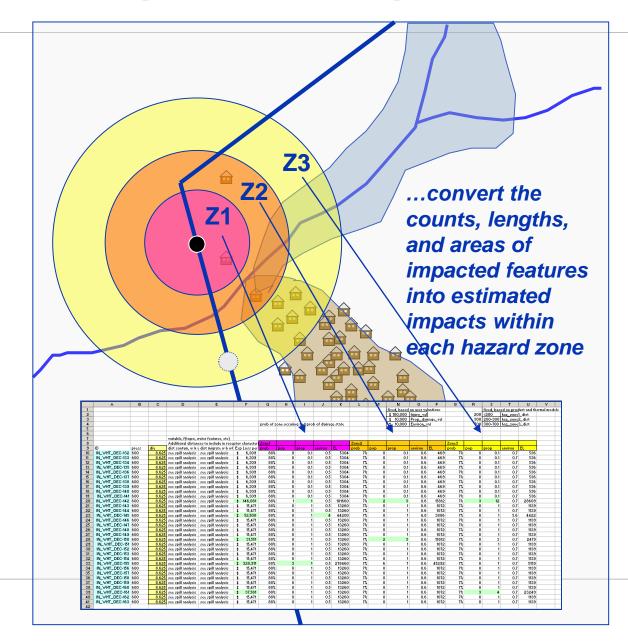
Step 1: Determine On-Line Sampling Interval



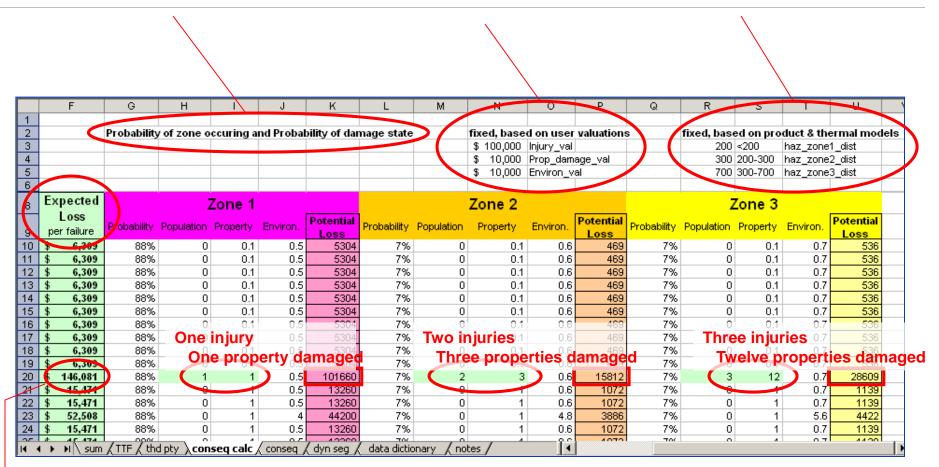
Step 2: Establish Hazard Zones



Step 4: Determine Length of Waterways in Each Zone (Line Features)



Step 5: Determine Area of HCAs in Each Zone


(Polygon Features)

Summarize Impacted Receptors (Data Table)

Expected Loss Calcs (Probability * Impacted Feature Valuation)

Each row represents one pipeline release location

Expected Loss is a function of each Zone's Probability of occurring and the Zone's Potential Loss Expected Loss = (Z1_Prob * Z1_PLoss) + (Z2_Prob * Z2_PLoss) + (Z3_Prob * Z3_PLoss)

EL₂₀ = (.88 * 101660) + (.07 * 15812) + (.07 * 28609) = \$146,081 ...<u>considerable</u>risk exposure at this le

Consequence Estimation Overview

Sequence of Analysis

- 1. Chance of failure (threat models)
- 2. Chance of failure hole size
- 3. Spill size (considering leak detection and reaction scenarios)
 - Volume Out
- 4. Chance of ignition
 - Immediate
 - Delayed
 - None
- 5. Spill dispersion
 - Pipeline/product characteristics
 - Topography (if liquid release)
 - Meteorology (if gaseous release)
- 6. Hazard area size and probability (for each scenario)
- 7. Chance of receptor(s) being in hazard area (counts, density, or area)
- 8. Chance of various damage states to various receptor (including consequence mitigation)

From Probability

Assessment

9. Calculate Expected Loss (Prob x Consequence \$)

		(2)		(4)	(5)			6	\sum
Product	Hole size	Hole size probability	Ignition scenario	Ignition	from source	hazard	Contaminati on hazard zone (ft)	fotal	probability of hazard zone
		ture 4%	immediate ignition	5%	0	400	0	400	0.2%
	rupture		delayed ignition	10%	600	500	400	1100	0.4%
			no ignition	85%	600	0	900	1500	3.4%
			immediate ignition	2%	0	200	0	200	0.3%
oil	medium	16%	delayed ignition	5%	200	300	200	500	0.8%
			no ignition	93%	200	0	500	700	14.9%
		all 80%	immediate ignition	1%	0	50	0	50	0.8%
	small		delayed ignition	2%	80	100	0	180	1.6%
			no ignition	97%	80	0	80	160	77.6%

- Service Interruption
- Production/transportation loss
- Repair costs
- Resumption of service
- Contract penalties
- Legal costs
- Increased regulatory oversight
- Corp reputation

Service interruption risk

= (Upset potential) X (impact factor)

Where:

Upset potential = (PSD + DPD)

Service Interruptions

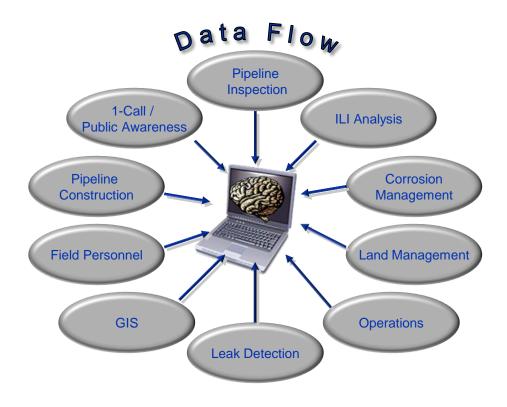
Product spec deviation (PSD)

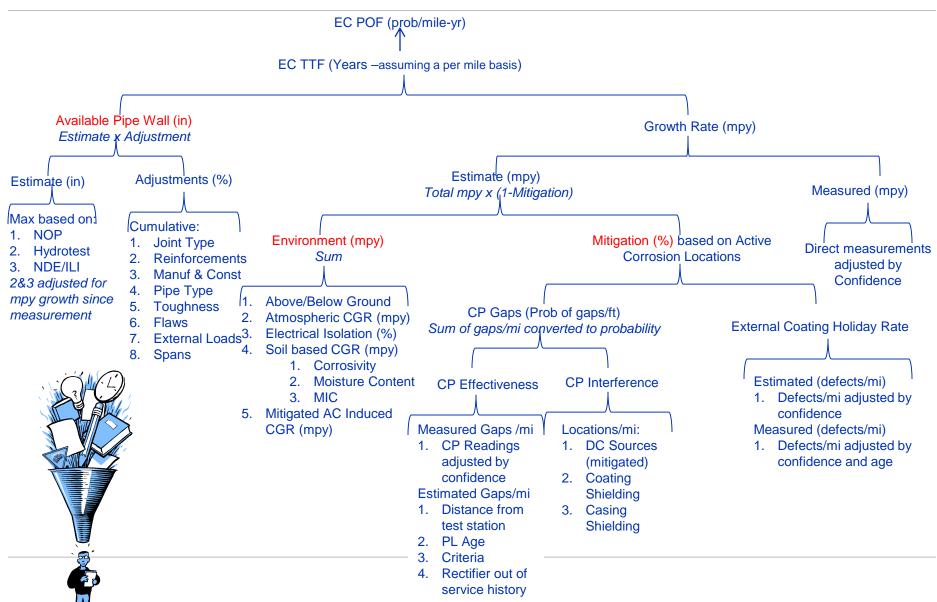
- Product origin
- Equipment
- Dynamics
- Other

Delivery parameter deviation (DPD)

- Pipeline failures
- Blockages
- Equipment
- Operator error
- Intervention adjustment
- Upset potential

Integrate Pipeline Knowledge

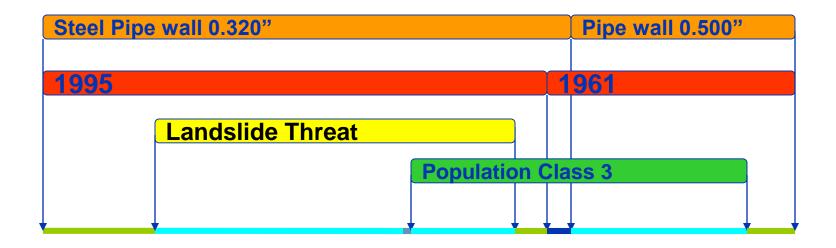

- The assessment must include complete, appropriate, and transparent use of all available information
- Appropriate' when model uses info as would an SME


How much is enough?

 The risk assessment should use all the information in substantially the same way that an SME uses information to improve the understanding of risk

External Corrosion Model

Integrate Pipeline Knowledge


Incorporate Sufficient Granularity

- Risk assessment must divide the pipeline into segments where risks are unchanging
- Compromises involving the use of averages or extremes can significantly weaken the analysis and are to be avoided

Due to the numerous and constantly-varying factors effecting the risk to the pipeline, proper analysis will require at least 10-100 segments per mile*

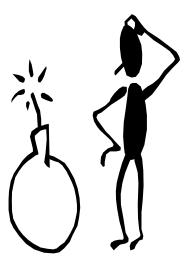
*thousands of segments per mile is not unusual today

Facility Risks

Control the Bias

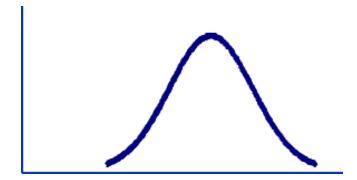
 Risk assessment must state the level of conservatism employed in all of its components

 Assessment must be free of inappropriate bias that tends to force incorrect conclusions


Certainty

"ABSOLUTE CERTAINTY IS THE PRIVILEGE OF FOOLS AND FANATICS."

Dealing With Uncertainty

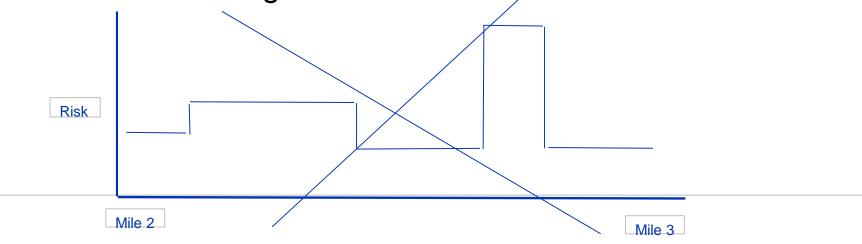

Error 1: call it 'good' when its really 'bad' Error 2: call it 'bad' when its really 'good'

A way to measure and communicate conservatism in risk estimates

- PXX
 - P50
 - P90
 - P99.9

Useful in conveying intended level of conservatism

Problems:


- Historical data usefulness in current situation
- Small amount of data in rare-event situations
- Representative population
- Behavior of the individual vs population

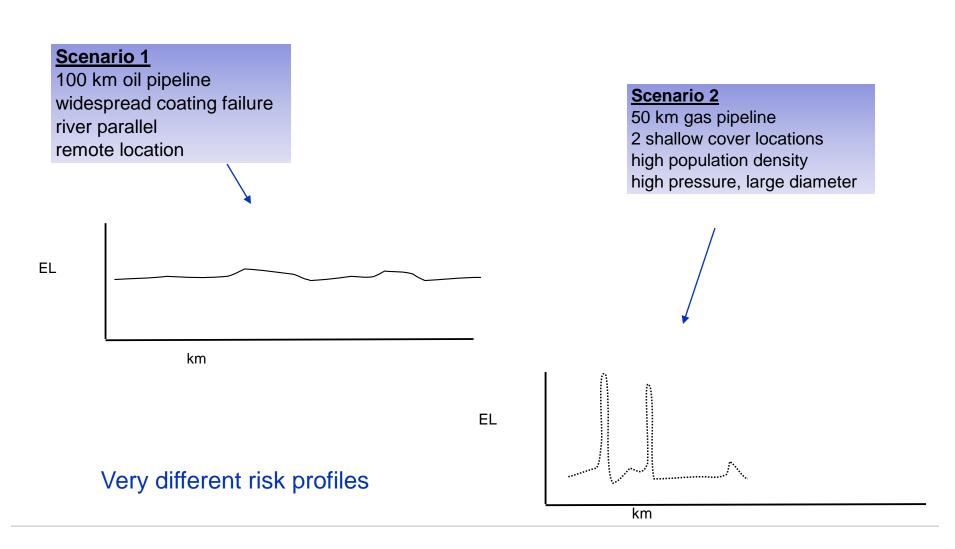
Profile the Risk Reality

- The risk assessment must be performed at all points along the pipeline
- Must produce a continuous profile of changing risks along the entire pipeline
- Profile must reflect the changing characteristics of the pipe and its surroundings

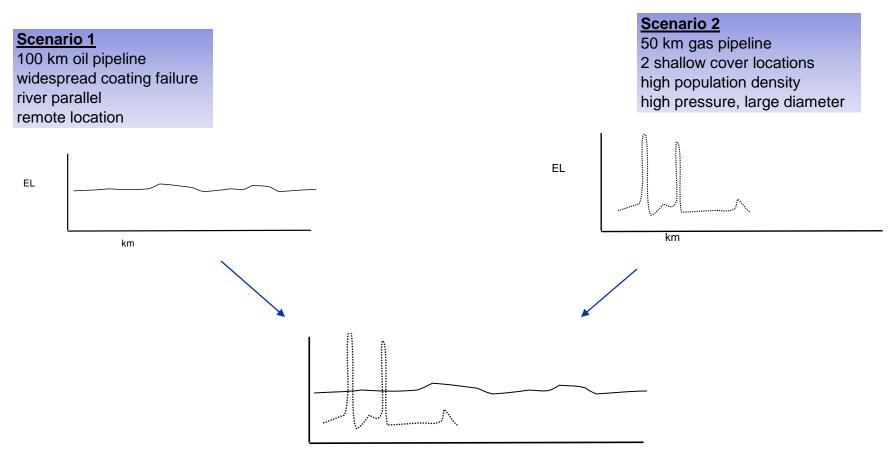
Profile to Characterize Risk

<u>Scenario 1</u>

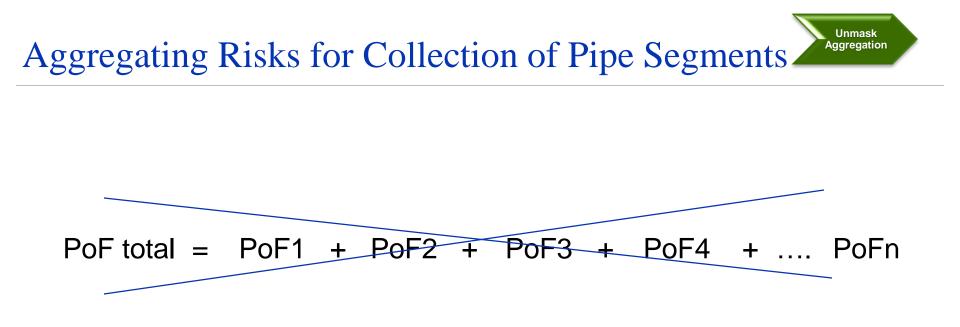
100 km oil pipeline widespread coating failure river parallel remote



<u>Scenario 2</u>


50 km gas pipeline 2 shallow cover locations high population density high pressure, large diameter

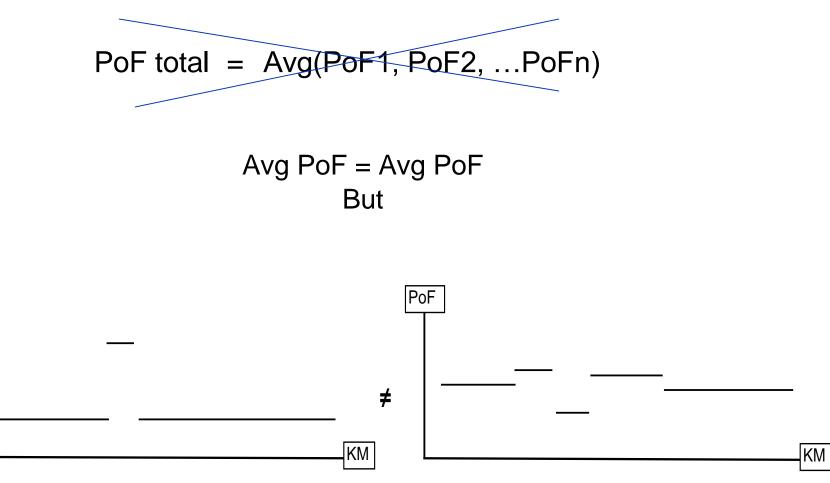
Risk Characterization



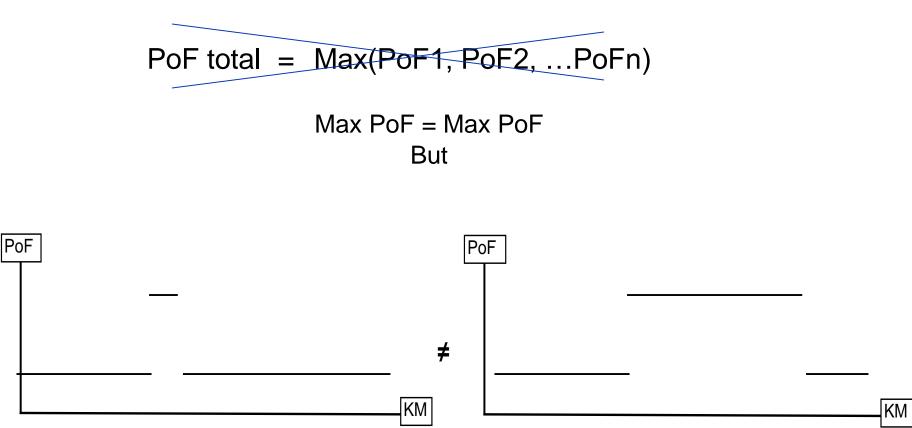
What is best action to take?

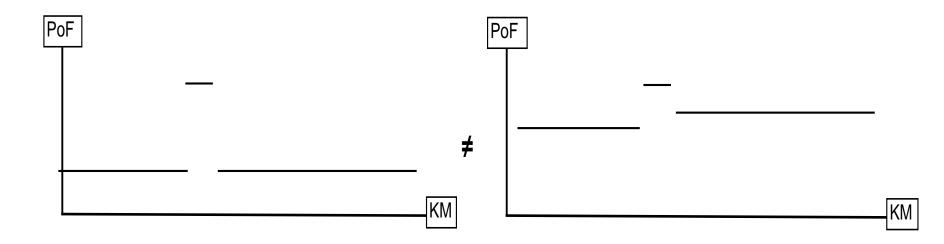
ProperAggregation

- Proper process for aggregation of the risks from multiple pipeline segments must be included
- Summarization of the risks from multiple segments must avoid simple statistics or weighted statistics that mask the actual risks


PoF total = 137% . . . ?

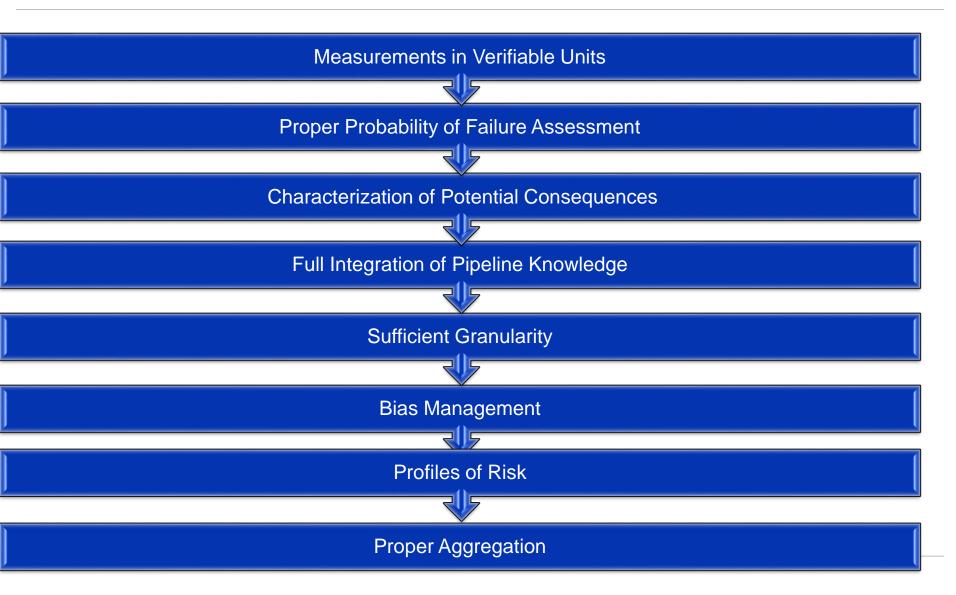
Simple sum only works when values are very low.


PoF



Max PoF = Max PoF But

Overall pf is prob failure by [(thd pty) OR (corr) OR (geohaz)...]

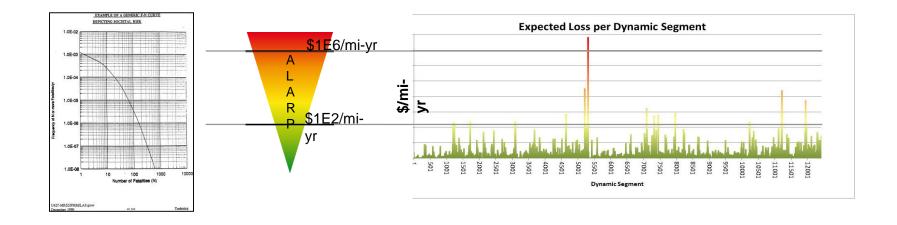

Ps = 1 - pf

Overall ps is prob surviving [(thd pty) AND (corr) AND (geohaz)....]

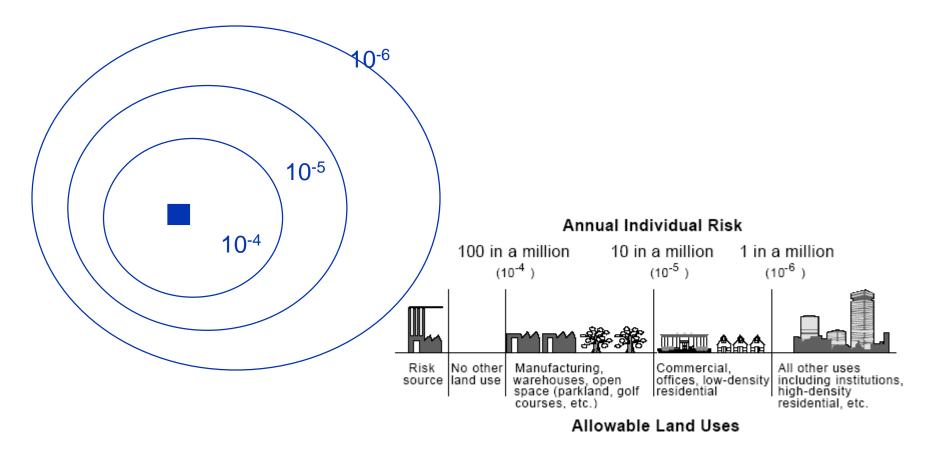
So...

 $Pf_{overall} = 1-[(1-pf_{thdpty}) \times (1-pf_{corr}) \times (1-pf_{geohaz}) \times (1-pf_{incops})]$

The Essential Elements

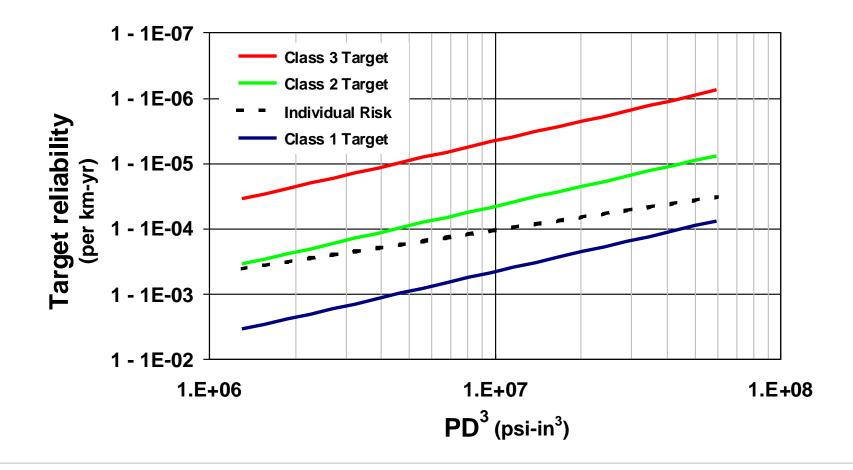


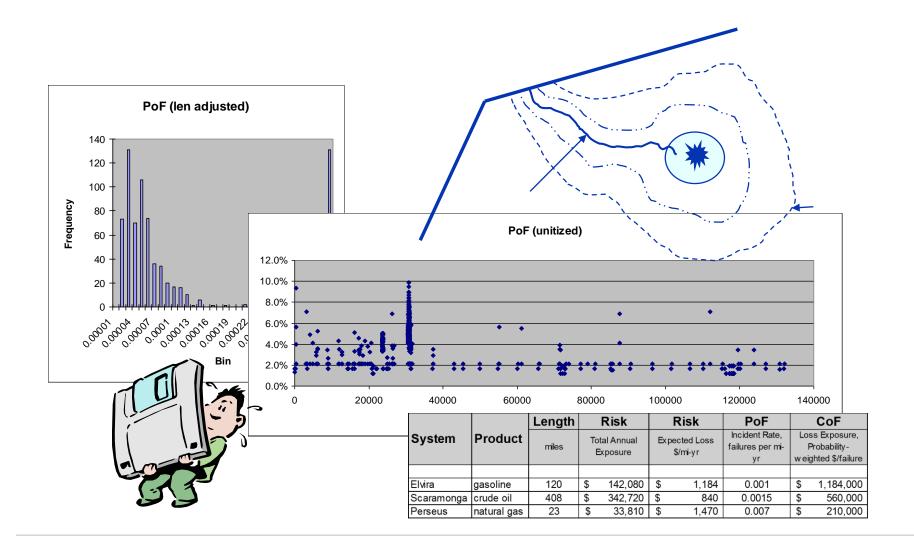
Situations in life often permit no delay; and when we cannot determine the action that is certainly the best, we must follow the action that is probably the best.


If the action selected is indeed not good, at least the reasons for selecting it are excellent.

Participating in Important Discussions

How safe is 'safe enough'?

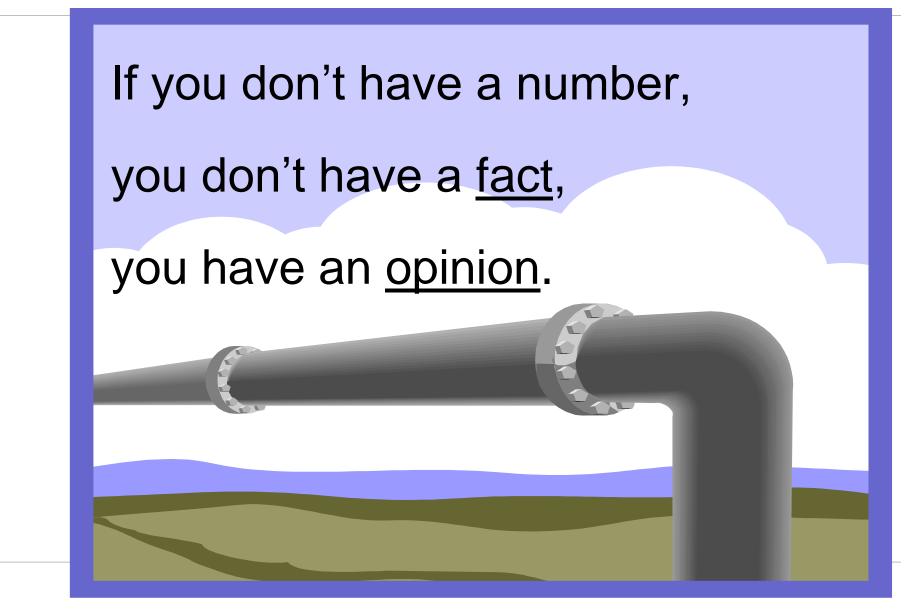

Canadian Risk-Based Land Uses


Acceptable Risk

UNACCEPTABLE REGION		Risk cannot be justified save in extraordinary circumstances
ALARP REGION (Risk is undertaken only if a benefit is desired)		Tolerable only if risk reduction is impracticable or if its cost is grossly disproportionate to the improvement gained Tolerable if cost of reduction would exceed the improvement
BROADLY ACCEPTABLE REGION (No need for detailed working to demonstrate ALARP)	Negligible risk	Necessary to maintain assurance that risk remains at this level

Reliability Targets

Modern PL RA is Specialized QRA-PRA



Application of EE's—benefits realized

- Efficient and transparent risk modeling
- Accurate, verifiable, and complete results
- Improved understanding of actual risk
- Risk-based input to guide integrity decision-making: *true risk management*

• Optimized resource allocation leading to higher levels of public safety

- Appropriate level of standardization facilitating smoother regulatory audits
 - Does not stifle creativity
 - Does not dictate all aspects of the process
 - Avoids need for (high-overhead) prescriptive documentation
- Expectations of regulators, the public, and operators fulfilled

Key Takeaways

- Significant confusion and errors in terminology and current guidance documents
- Threat interaction requires no special treatment in a modern, complete RA
- Multiple models are not necessary
- Mandating a methodology is not needed—a short list of essential elements ensures acceptability
- RA model certification has begun

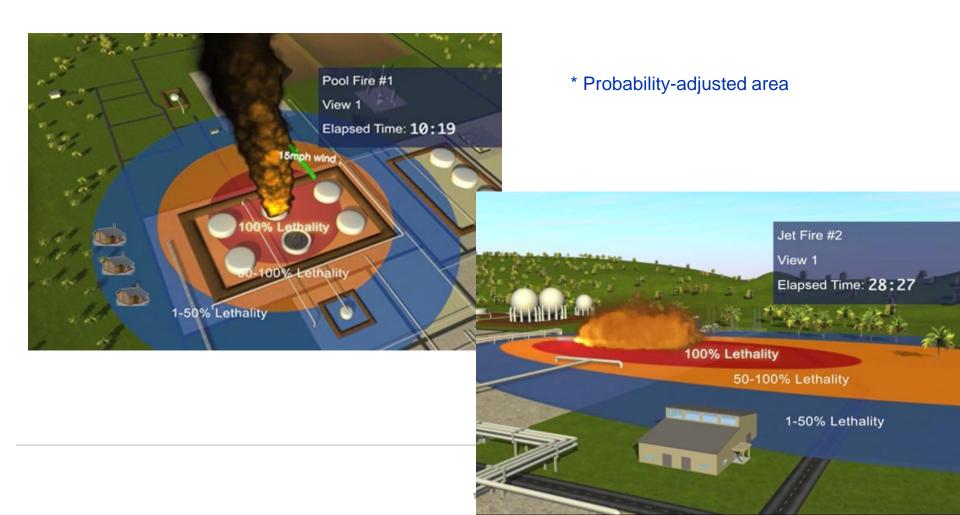
"Anything that is studied, improves."

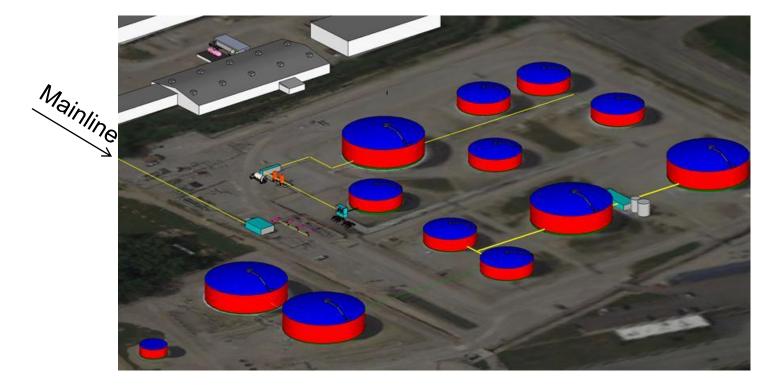
Anticipate enormously more useful information

Appendix

Protocols

- C.03.c. Verify that the risk assessment explicitly accounts for factors that could affect the likelihood of a release and for factors that could affect the consequences of potential releases, and that these factors are combined in an appropriate manner to produce a risk value for each pipeline segment
- The risk assessment approach contains a defined logic and is structured to provide a complete, accurate, and objective analysis of risk [ASME B31.8S-2004, Section 5.7(a)];
 - ii. The risk assessment considers the frequency and consequences of past events, using company and industry data [ASME B31.8S-2004, Section 5.7(c)];
 - iii. The risk assessment approach integrates the results of pipeline inspections in the development of risk estimates [ASME B31.8S-2004, Section 5.7(d)];
 - iv. The risk assessment process includes a structured set of weighting factors to indicate the relative level of influence of each risk assessment component [ASME B31.8S-2004, Section 5.7(i)];
 - v. The risk assessment process incorporates sufficient resolution of pipeline segment size to analyze data as it exists along the pipeline [ASME B31.8S-2004, Section 5.7(k)].

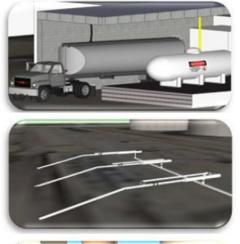

Surface Facilities Assessment


CoF at Facilities

Hazard Zone Assessment

Potential Loss = Hazard Area^{*} x Σ(receptor unit value x receptor density x receptor damage rate)

Dynamic Segmentation is applied to find equipment items with similar characteristics



 Using the same assessment methodology for pipelines and facilities ensures applesto-apples comparisons

Equipment Specific Risk

							Come a start			
	Expected		_		the second se		Expected			
	Loss (\$/yr) F	PoF C	CoF	- and			Loss (\$/yr)	PoF		CoF
Loading Rack		1.13E-02	\$72,000	$\left(\right)$	Pump 102		1	8	0.0015	\$
	Ş013.00	1.132 02	Ş72,000		Pump 103		2.5	9	0.0007	\$
					Pump 201		1.9	2 0	0.00006	\$
									2	
~		No.					Expected Loss (\$/yr) PoF	Cc		X
		No.		- state		Tank 10	Loss (\$/yr) PoF \$630	0.015	\$42,000	1
B		No.	3			Tank 10 Tank 11	Loss (\$/yr) PoF \$630 \$26 C	0.015).0007	\$42,000 \$37,500	~
L P	12.000	No.				Tank 10 Tank 11 Tank 12	Loss (\$/yr) PoF \$630 \$26 (\$105	0.015 0.0007 0.002	\$42,000 \$37,500 \$52,300	
E E	8					Tank 10 Tank 11 Tank 12 Tank 13	Loss (\$/yr) POF \$630 \$26 (\$105 \$206	0.015 0.0007 0.002 0.005	\$42,000 \$37,500 \$52,300 \$41,250	~
	8			A REAL PROPERTY AND A REAL		Tank 10 Tank 11 Tank 12 Tank 13 Tank 14	Loss (\$/yr) POF \$630 \$26 (C) \$105 \$206 \$28 (C)	0.015 0.0007 0.002 0.005 0.0005	\$42,000 \$37,500 \$52,300 \$41,250 \$55,000	
	8	Expected		and the second sec		Tank 10 Tank 11 Tank 12 Tank 13 Tank 14 Tank 15	Loss (\$/yr) POF \$630 \$26 \$105 \$206 \$28 \$0 \$78	0.015 0.0007 0.002 0.005 0.0005	\$42,000 \$37,500 \$52,300 \$41,250 \$55,000 \$65,000	
PB	8			CoF		Tank 10 Tank 11 Tank 12 Tank 13 Tank 14 Tank 15 Tank 16	Loss (\$/yr) POF \$630 \$26 \$105 \$206 \$28 \$0 \$78 \$0 \$620	0.015 0.0007 0.002 0.005 0.0005 0.0012 0.02	\$42,000 \$37,500 \$52,300 \$41,250 \$55,000 \$65,000 \$31,000	
PB	8	Loss (\$/y	r) PoF			Tank 10 Tank 11 Tank 12 Tank 13 Tank 14 Tank 15 Tank 16 Tank 17	Loss (\$/yr) POF \$630 \$26 \$0 \$105 \$ \$206 \$ \$28 \$0 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.015 0.0007 0.002 0.005 0.0005 0.0012 0.02 0.002	\$42,000 \$37,500 \$52,300 \$41,250 \$55,000 \$65,000 \$31,000 \$26,500	
P P P	Pig Launche	Loss (\$/y er 1 \$11.	r) PoF 76 0.00012	\$98,000		Tank 10 Tank 11 Tank 12 Tank 13 Tank 14 Tank 14 Tank 15 Tank 16 Tank 17 Tank 18	Loss (\$/yr) POF \$630 \$26 \$105 \$276 \$28 \$0 \$28 \$0 \$28 \$0 \$0 \$53 \$0 \$53 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0	0.015 0.0007 0.002 0.005 0.0005 0.0012 0.002 0.002 0.002	\$42,000 \$37,500 \$52,300 \$41,250 \$55,000 \$65,000 \$31,000 \$26,500 \$15,900	
PB	8	Loss (\$/y er 1 \$11. er 2 \$23.	r) PoF 76 0.00012 52 0.00024	\$98,000 \$98,000		Tank 10 Tank 11 Tank 12 Tank 13 Tank 14 Tank 15 Tank 16 Tank 17	Loss (\$/yr) POF \$630 \$26 \$105 \$206 \$28 \$0 \$28 \$0 \$53 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.015 0.0007 0.002 0.005 0.0005 0.0012 0.002 0.002 0.0006 0.0056	\$42,000 \$37,500 \$52,300 \$41,250 \$55,000 \$65,000 \$31,000 \$26,500	

Total Risk from a facility

4	Ex
	Lc
	Тс
and the second second	Μ

Expected	
Loss (\$/yr)	\$23
Total PoF	2.26E-03
Max CoF	\$32,000

Expected Loss (\$/yr)

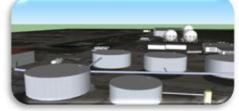
Total PoF

Max CoF

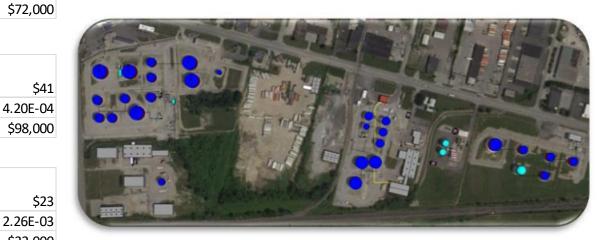
Expected Loss (\$/yr)

Total PoF

Max CoF

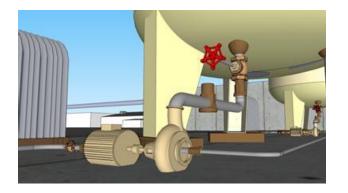

\$814

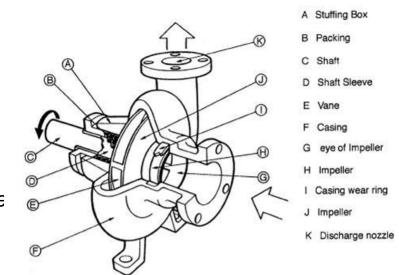
1.13E-02


Tankage

Pumps

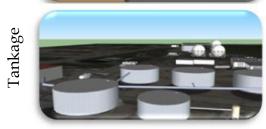
Pig Launchers Truck Loading


Expected	
Loss (\$/yr)	\$4,831
Total PoF	9.46E-02
Max CoF	\$68,000


Total Facility			
Expected			
Loss (\$/yr)	\$5,708		
Total PoF	1.07E-01		
Max CoF	\$98,000		

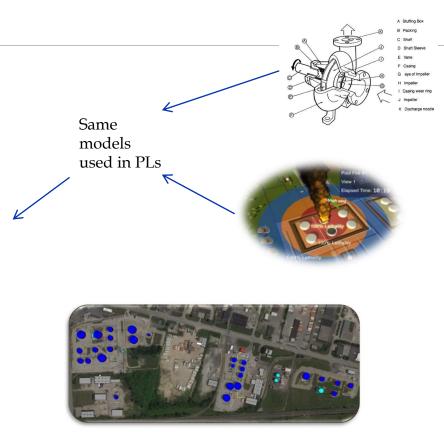
- Utilizes the same models developed for pipelines
- Each equipment item is assessed for threats that may lead to a loss of containment

Example



- 1) What components can lead to a loss of containme
- 2) What threats apply to those components?

Absolute Facility Risk



۰.		
1	Expected	
Ĺ	Loss (\$/yr)	\$814
Í.	Total PoF	1.13E-02
	Max CoF	\$72,000

Expected	
Loss (\$/yr)	\$41
Total PoF	4.20E-04
Max CoF	\$98,000

Expected	
Loss (\$/yr)	\$23
Total PoF	2.26E-03
Max CoF	\$32,000

Expected	
Loss (\$/yr)	\$4,831
Total PoF	9.46E-02
Max CoF	\$68,000

Total Facility			
Expected			
Loss (\$/yr)	\$5,708		
Total PoF	1.07E-01		
Max CoF	\$98,000		

"...when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the state of Science, whatever the matter may be."

Lord Kelvin

Sample Audit Questions

- What is maximum and average segment length?
 - If less than 20 segs per mile, then only appropriate if very low variations along route, including hydraulic profile
- How do you discriminate between low-exp and low-mit vs high-exp and high-mit?
- Show how non-HCA data is being used.
- Obtain counts and ranges (min, max, average):
 - Inputs
 - Defaults & assignments
 - Threats
 - Equations
- What is target level of conservatism? P50? P90? P99.9? For various uses of results.
- Show how risk assessment is driving risk management (P&M).
- Show where remaining life (TTF) is used to set integrity re-assessment intervals.

Practice PoD, PoF

What is PoD and PoF when . . .

- Exposure = 10 events/mile-year
- Mitigation = 99%
- Resistance = 90%

```
PoD = Exposure x (1 - mitigation)
= 10 x (1 - 0.99)
= 0.1 damages/mile-year = damage incident every 10 yrs
```

```
PoF = PoD x (1 - resistance)
```

 $= 0.1 \times (1 - 0.9)$

= 0.01 failures/mile-year = failure every 100 years

Practice PoD, PoF

What is PoD and PoF when . . .

- Exposure = 1 events/mile-year
- Mitigation = 50%
- Resistance = 50%
- Exposure = 2 events/mile-year
- Mitigation = 90%
- Resistance = 80%
- Exposure = 10 events/mile-year
- Mitigation = 99.9%
- Resistance = 90%
- Exposure = 0.01 events/mile-year
- Mitigation = 99.99%
- Resistance = 95%

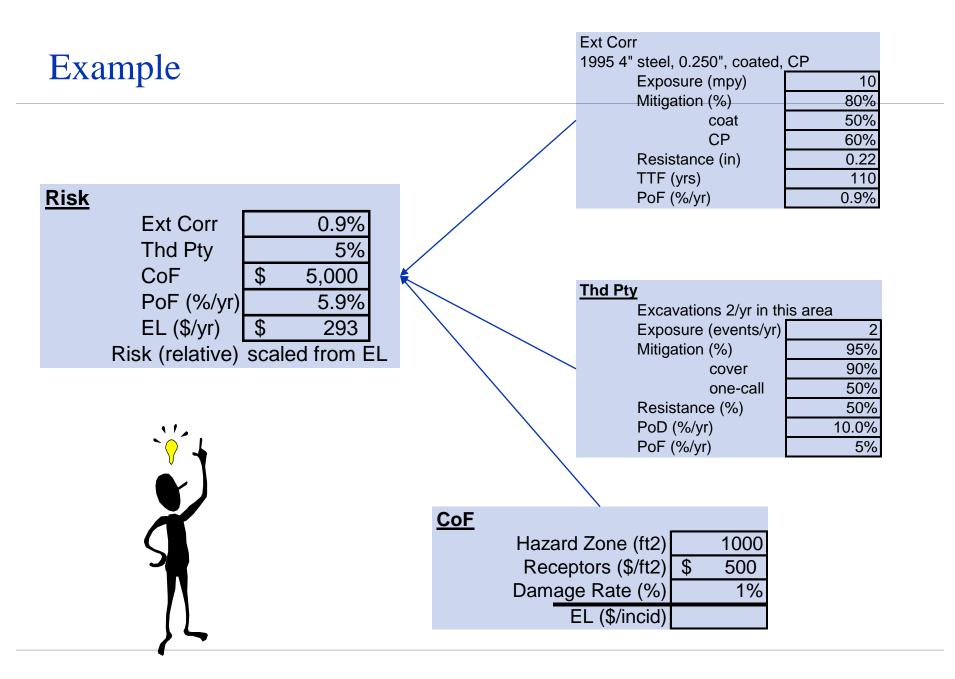
Practice TTF, PoF

What is TTF and PoF when ...

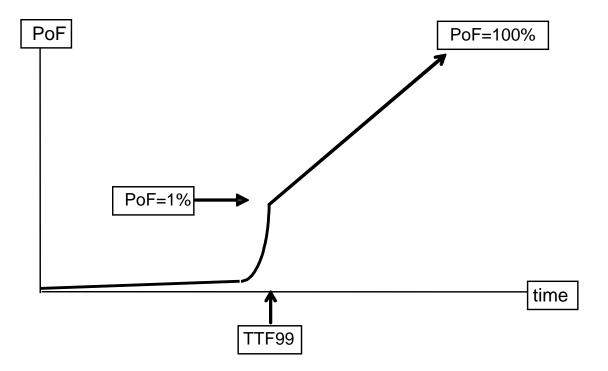
- Exposure = 10 mpy
- Mitigation = 50%
- Resistance = 0.100"

```
Damage rate = Exposure x (1 - mitigation)
= 10 \times (1 - 0.5)
= 5 mpy
```

TTF = Resistance / Damage rate = 100 mils / 5 mpy = 20 years


PoF = 1 / TTF

= 1/20 years = 0.05 / year = 5% prob failure in year one


Practice TTF, PoF

What is TTF and PoF when ...

- Exposure = 5 mpy
- Mitigation = 80%
- Resistance = 0.100"
- Exposure = 10 mpy
- Mitigation = 90%
- Resistance = 0.100"

PoF: TTF & TTF99

Examples

- TTF = 0.160" / [(16 mpy) x (1 0.9)] = 100 years
- TTF99 = 0.160" / (16 mpy) = 10 years
- PoF => lognormal or other =>0.001% for year 1

- TTF = 0.016" / [(16 mpy) x (1 0.9)] = 10 years
- TTF99 = 0.016" / (16 mpy) = 1 year
- PoF = 1/TTF = 10% for year 1

Pof
$$_{overall} = pof_{thdpty} + pof_{ttf} + pof_{theftsab} + pof_{incops} + pof_{geohazard}$$

Pof _{overall} =
$$1 - [(1 - pof_{thdpty}) \times (1 - pof_{ttf}) \times (1 - pof_{theftsab}) \times (1 - pof_{incops}) \times (1 - pof_{geohazard})]$$

Guess pof if 1%, 4%, 2%, 2%, 0%

Calc: