
PRODUCT DOCUMENTATION

Pivotal™ Greenplum
Database®

Version 6.11

Pivotal Greenplum Database
Documentation
Rev: A03

© 2020 VMware, Inc.

Copyright Release Notes

2

Notice

Copyright

Privacy Policy | Terms of Use

Copyright © 2020 VMware, Inc. or its affiliates. All Rights Reserved.

Revised October 2020 (6.11.2)

http://pivotal.io/privacy-policy
http://pivotal.io/terms-of-use

Contents Release Notes

3

Contents

Chapter 1: Pivotal Greenplum 6.11 Release Notes................................ 14
Release 6.11.2.. 15

Changed Features.. 15
Resolved Issues... 15

Release 6.11.1.. 16
Changed Features.. 16
Resolved Issues... 16
Upgrading from Greenplum 6.x to Greenplum 6.11...16

Release 6.11.0.. 17
Features.. 17
Resolved Issues... 17
Upgrading from Greenplum 6.x to Greenplum 6.11...19

Deprecated Features...20
Migrating Data to Greenplum 6.. 21
Known Issues and Limitations.. 22
Differences Compared to Open Source Greenplum Database...25

Chapter 2: Installing and Upgrading Greenplum................................... 26
Platform Requirements..27

Operating Systems... 27
Hardware and Network...29
Storage..29
Tools and Extensions Compatibility... 30
Hadoop Distributions.. 32

Introduction to Greenplum...33
The Greenplum Master...34
The Segments.. 34
The Interconnect...38
ETL Hosts for Data Loading.. 40
Greenplum Performance Monitoring.. 41

Estimating Storage Capacity... 43
Calculating Usable Disk Capacity.. 43
Calculating User Data Size.. 44
Calculating Space Requirements for Metadata and Logs..44

Configuring Your Systems...45
Disabling SELinux and Firewall Software.. 45
Recommended OS Parameters Settings... 46
Synchronizing System Clocks.. 53
Creating the Greenplum Administrative User...54
Next Steps.. 55

Installing the Greenplum Database Software... 56
Installing Greenplum Database.. 56
(Optional) Installing to a Non-Default Directory... 57
Enabling Passwordless SSH.. 57
Confirming Your Installation... 58
About Your Greenplum Database Installation..59
Next Steps.. 59

Creating the Data Storage Areas..60

Contents Release Notes

4

Creating Data Storage Areas on the Master and Standby Master Hosts...............................60
Creating Data Storage Areas on Segment Hosts.. 60
Next Steps.. 61

Validating Your Systems... 62
Validating Network Performance.. 62
Validating Disk I/O and Memory Bandwidth...63

Initializing a Greenplum Database System...64
Overview... 64
Initializing Greenplum Database...64
Setting Greenplum Environment Variables.. 68
Next Steps.. 69

Installing Optional Extensions... 70
Procedural Language, Machine Learning, and Geospatial Extensions..................................70
Python Data Science Module Package..70
R Data Science Library Package... 74
Greenplum Platform Extension Framework (PXF)... 77

Installing Additional Supplied Modules..78
Configuring Timezone and Localization Settings..79

Configuring the Timezone.. 79
About Locale Support in Greenplum Database... 79
Character Set Support..81
Setting the Character Set...83
Character Set Conversion Between Server and Client..84

Upgrading to Greenplum 6..87
Upgrading from an Earlier Greenplum 6 Release..87
Migrating Data from Greenplum 4.3 or 5 to Greenplum 6... 90

Enabling iptables (Optional).. 97
Example iptables Rules..97

Installation Management Utilities...100
Greenplum Environment Variables... 101

Required Environment Variables..101
Optional Environment Variables... 101

Example Ansible Playbook..103

Chapter 3: Greenplum Database Administrator Guide........................ 105
Greenplum Database Concepts.. 106

About the Greenplum Architecture... 106
About Management and Monitoring Utilities.. 108
About Concurrency Control in Greenplum Database...109
About Parallel Data Loading.. 117
About Redundancy and Failover in Greenplum Database...118
About Database Statistics in Greenplum Database... 120

Managing a Greenplum System... 128
About the Greenplum Database Release Version Number... 128
Starting and Stopping Greenplum Database... 128
Accessing the Database...131
Configuring the Greenplum Database System...140
Enabling Compression..142
Configuring Proxies for the Greenplum Interconnect... 142
Enabling High Availability and Data Consistency Features... 145
Backing Up and Restoring Databases... 163
Expanding a Greenplum System..203
Migrating Data with gpcopy..218
Monitoring a Greenplum System..218
Routine System Maintenance Tasks..234

Contents Release Notes

5

Recommended Monitoring and Maintenance Tasks.. 239
Managing Greenplum Database Access...246

Configuring Client Authentication... 246
Managing Roles and Privileges..266

Defining Database Objects..273
Creating and Managing Databases..273
Creating and Managing Tablespaces...275
Creating and Managing Schemas..277
Creating and Managing Tables.. 279
Choosing the Table Storage Model... 284
Partitioning Large Tables..295
Creating and Using Sequences... 308
Using Indexes in Greenplum Database... 311
Creating and Managing Views... 315
Creating and Managing Materialized Views...322

Distribution and Skew... 324
Local (Co-located) Joins...324
Data Skew.. 324
Processing Skew.. 325

Inserting, Updating, and Deleting Data...328
About Concurrency Control in Greenplum Database...328
Inserting Rows.. 329
Updating Existing Rows..330
Deleting Rows...330
Working With Transactions...330
Global Deadlock Detector...332
Vacuuming the Database... 334
Running Out of Locks...334

Querying Data... 336
About Greenplum Query Processing..336
About GPORCA..339
Defining Queries... 352
WITH Queries (Common Table Expressions)..364
Using Functions and Operators..368
Working with JSON Data... 379
Working with XML Data..392
Using Full Text Search...404
Using Greenplum MapReduce... 439
Query Performance.. 447
Managing Spill Files Generated by Queries.. 447
Query Profiling.. 447

Working with External Data...453
Accessing External Data with PXF.. 453
Defining External Tables.. 453
Accessing External Data with Foreign Tables... 471
Using the Greenplum Parallel File Server (gpfdist)..480

Loading and Unloading Data.. 484
Loading Data Using an External Table.. 485
Loading and Writing Non-HDFS Custom Data.. 485
Handling Load Errors..488
Loading Data with gpload...490
Accessing External Data with PXF.. 491
Transforming External Data with gpfdist and gpload... 492
Loading Data with COPY... 502
Running COPY in Single Row Error Isolation Mode..503
Optimizing Data Load and Query Performance... 503

Contents Release Notes

6

Unloading Data from Greenplum Database... 503
Formatting Data Files... 506
Example Custom Data Access Protocol.. 509

Managing Performance... 516
Defining Database Performance.. 516
Common Causes of Performance Issues.. 517
Greenplum Database Memory Overview... 520
Managing Resources..524
Investigating a Performance Problem.. 554

Chapter 4: Greenplum Database Security Configuration Guide......... 557
Securing the Database..558
Greenplum Database Ports and Protocols... 559
Configuring Client Authentication.. 563

Allowing Connections to Greenplum Database..563
Editing the pg_hba.conf File...565
Authentication Methods.. 566
SSL Client Authentication...569
PAM-Based Authentication...572
Radius Authentication...573
Limiting Concurrent Connections... 573
Encrypting Client/Server Connections..574

Configuring Database Authorization..575
Access Permissions and Roles..575
Managing Object Privileges..575
Using SSH-256 Encryption...576
Restricting Access by Time..578
Dropping a Time-based Restriction.. 580

Greenplum Command Center Security... 581
Auditing.. 584
Encrypting Data and Database Connections.. 589

Encrypting gpfdist Connections.. 589
Encrypting Data at Rest with pgcrypto...590

Security Best Practices... 598

Chapter 5: Greenplum Database Best Practices..................................602
Best Practices Summary...603
System Configuration.. 609
Schema Design... 614

Data Types... 614
Storage Model.. 614
Compression... 615
Distributions.. 616
Partitioning.. 619
Indexes..621
Column Sequence and Byte Alignment... 621

Memory and Resource Management with Resource Groups... 623
Memory and Resource Management with Resource Queues.. 626
System Monitoring and Maintenance..630

Monitoring... 630
Updating Statistics with ANALYZE...631
Managing Bloat in a Database...632
Monitoring Greenplum Database Log Files..636

Loading Data... 638

Contents Release Notes

7

INSERT Statement with Column Values..638
COPY Statement.. 638
External Tables...638
External Tables with Gpfdist.. 638
Gpload...639
Best Practices...640

Security.. 641
Encrypting Data and Database Connections.. 644
Tuning SQL Queries... 653

How to Generate Explain Plans... 653
How to Read Explain Plans... 653
Optimizing Greenplum Queries.. 655

High Availability... 657
Disk Storage... 657
Master Mirroring..657
Segment Mirroring.. 658
Dual Clusters.. 659
Backup and Restore...659
Detecting Failed Master and Segment Instances.. 660
Segment Mirroring Configurations..661

Chapter 6: Greenplum Database Utility Guide..................................... 666
About the Greenplum Database Utilities...667

Referencing IP Addresses..667
Running Backend Server Programs...667

Utility Reference.. 669
analyzedb..669
clusterdb..673
createdb.. 675
createlang... 677
createuser... 678
dropdb... 681
droplang.. 683
dropuser.. 684
gpactivatestandby... 685
gpaddmirrors... 687
gpbackup_manager.. 691
gpbackup...695
gpcheckcat.. 701
gpcheckperf...704
gpconfig...707
gpcopy...710
gpdeletesystem... 710
gpexpand.. 712
gpfdist..715
gpinitstandby... 719
gpinitsystem.. 721
gpload... 730
gplogfilter...740
gpmapreduce.. 743
gpmapreduce.yaml..744
gpmovemirrors.. 752
gppkg.. 753
gprecoverseg.. 755
gpreload.. 759

Contents Release Notes

8

gprestore... 761
gpscp...767
gpssh...769
gpssh-exkeys.. 772
gpstart... 774
gpstate.. 776
gpstop... 780
pg_config...783
pg_dump... 785
pg_dumpall..793
pg_restore... 798
pgbouncer... 803
pgbouncer.ini...804
pgbouncer-admin.. 817
plcontainer...826
plcontainer Configuration File...831
psql..835
reindexdb.. 860
vacuumdb..861

Additional Supplied Programs... 864

Chapter 7: Greenplum Database Reference Guide.............................. 865
SQL Commands.. 866

SQL Syntax Summary..869
ABORT..907
ALTER AGGREGATE...908
ALTER COLLATION...909
ALTER CONVERSION... 910
ALTER DATABASE.. 911
ALTER DEFAULT PRIVILEGES.. 913
ALTER DOMAIN...915
ALTER EXTENSION...917
ALTER EXTERNAL TABLE..920
ALTER FOREIGN DATA WRAPPER...921
ALTER FOREIGN TABLE.. 923
ALTER FUNCTION...926
ALTER GROUP.. 929
ALTER INDEX.. 930
ALTER LANGUAGE... 931
ALTER MATERIALIZED VIEW...932
ALTER OPERATOR... 933
ALTER OPERATOR CLASS.. 934
ALTER OPERATOR FAMILY...935
ALTER PROTOCOL... 937
ALTER RESOURCE GROUP.. 938
ALTER RESOURCE QUEUE...941
ALTER ROLE... 943
ALTER SCHEMA..948
ALTER SEQUENCE... 948
ALTER SERVER.. 951
ALTER TABLE..952
ALTER TABLESPACE..965
ALTER TEXT SEARCH CONFIGURATION...966
ALTER TEXT SEARCH DICTIONARY.. 968
ALTER TEXT SEARCH PARSER..969

Contents Release Notes

9

ALTER TEXT SEARCH TEMPLATE..970
ALTER TYPE..970
ALTER USER... 973
ALTER USER MAPPING... 974
ALTER VIEW.. 975
ANALYZE..976
BEGIN... 980
CHECKPOINT...982
CLOSE.. 983
CLUSTER... 983
COMMENT..985
COMMIT..988
COPY.. 989
CREATE AGGREGATE..1001
CREATE CAST...1007
CREATE COLLATION..1011
CREATE CONVERSION.. 1012
CREATE DATABASE... 1013
CREATE DOMAIN..1015
CREATE EXTENSION..1017
CREATE EXTERNAL TABLE...1018
CREATE FOREIGN DATA WRAPPER..1028
CREATE FOREIGN TABLE... 1029
CREATE FUNCTION..1031
CREATE GROUP... 1041
CREATE INDEX... 1042
CREATE LANGUAGE.. 1046
CREATE MATERIALIZED VIEW..1049
CREATE OPERATOR.. 1051
CREATE OPERATOR CLASS... 1055
CREATE OPERATOR FAMILY..1058
CREATE PROTOCOL.. 1059
CREATE RESOURCE GROUP... 1060
CREATE RESOURCE QUEUE..1063
CREATE ROLE.. 1066
CREATE RULE...1071
CREATE SCHEMA...1073
CREATE SEQUENCE.. 1074
CREATE SERVER... 1077
CREATE TABLE...1079
CREATE TABLE AS...1093
CREATE TABLESPACE...1097
CREATE TEXT SEARCH CONFIGURATION..1099
CREATE TEXT SEARCH DICTIONARY..1100
CREATE TEXT SEARCH PARSER...1101
CREATE TEXT SEARCH TEMPLATE...1102
CREATE TYPE...1103
CREATE USER.. 1110
CREATE USER MAPPING.. 1111
CREATE VIEW... 1112
DEALLOCATE.. 1115
DECLARE... 1115
DELETE.. 1118
DISCARD.. 1121
DO...1122
DROP AGGREGATE..1123

Contents Release Notes

10

DROP CAST...1124
DROP COLLATION.. 1125
DROP CONVERSION.. 1126
DROP DATABASE... 1127
DROP DOMAIN.. 1127
DROP EXTENSION..1128
DROP EXTERNAL TABLE...1129
DROP FOREIGN DATA WRAPPER..1130
DROP FOREIGN TABLE... 1130
DROP FUNCTION..1131
DROP GROUP... 1132
DROP INDEX... 1133
DROP LANGUAGE...1134
DROP MATERIALIZED VIEW..1134
DROP OPERATOR.. 1135
DROP OPERATOR CLASS... 1136
DROP OPERATOR FAMILY.. 1137
DROP OWNED...1138
DROP PROTOCOL.. 1139
DROP RESOURCE GROUP..1139
DROP RESOURCE QUEUE.. 1140
DROP ROLE...1141
DROP RULE...1142
DROP SCHEMA... 1143
DROP SEQUENCE.. 1144
DROP SERVER..1144
DROP TABLE... 1145
DROP TABLESPACE...1146
DROP TEXT SEARCH CONFIGURATION..1147
DROP TEXT SEARCH DICTIONARY..1148
DROP TEXT SEARCH PARSER... 1149
DROP TEXT SEARCH TEMPLATE...1149
DROP TYPE... 1150
DROP USER.. 1151
DROP USER MAPPING...1151
DROP VIEW... 1152
END...1153
EXECUTE... 1153
EXPLAIN... 1154
FETCH.. 1159
GRANT..1162
INSERT... 1167
LOAD.. 1169
LOCK.. 1170
MOVE..1173
PREPARE... 1175
REASSIGN OWNED...1177
REFRESH MATERIALIZED VIEW... 1178
REINDEX.. 1179
RELEASE SAVEPOINT..1180
RESET.. 1181
REVOKE... 1182
ROLLBACK... 1185
ROLLBACK TO SAVEPOINT...1186
SAVEPOINT..1187
SELECT.. 1188

Contents Release Notes

11

SELECT INTO.. 1206
SET... 1207
SET CONSTRAINTS.. 1209
SET ROLE.. 1210
SET SESSION AUTHORIZATION... 1211
SET TRANSACTION.. 1213
SHOW... 1215
START TRANSACTION... 1216
TRUNCATE...1218
UPDATE..1219
VACUUM...1223
VALUES.. 1226

Data Types.. 1229
Date/Time Types.. 1231
Pseudo-Types... 1241
Text Search Data Types.. 1243
Range Types.. 1245

Summary of Built-in Functions.. 1250
Greenplum Database Function Types..1250
Built-in Functions and Operators..1251
JSON Functions and Operators... 1254
Window Functions.. 1261
Advanced Aggregate Functions... 1263
Text Search Functions and Operators... 1265
Range Functions and Operators.. 1269

Additional Supplied Modules... 1272
auto_explain..1272
citext..1272
dblink...1273
diskquota...1276
fuzzystrmatch.. 1280
gp_sparse_vector..1281
hstore.. 1285
orafce.. 1285
pageinspect...1287
pgcrypto.. 1287
sslinfo.. 1288

Character Set Support...1289
Setting the Character Set...1291
Character Set Conversion Between Server and Client.. 1291

Server Configuration Parameters..1294
Parameter Types and Values...1294
Setting Parameters... 1294
Parameter Categories...1295
Configuration Parameters...1305

System Catalogs... 1389
System Tables.. 1389
System Views... 1390
System Catalogs Definitions...1391

The gp_toolkit Administrative Schema..1496
Checking for Tables that Need Routine Maintenance..1496
Checking for Locks...1497
Checking Append-Optimized Tables.. 1499
Viewing Greenplum Database Server Log Files.. 1503
Checking Server Configuration Files..1506
Checking for Failed Segments... 1507

Contents Release Notes

12

Checking Resource Group Activity and Status.. 1508
Checking Resource Queue Activity and Status... 1512
Checking Query Disk Spill Space Usage...1514
Viewing Users and Groups (Roles)..1516
Checking Database Object Sizes and Disk Space.. 1516
Checking for Uneven Data Distribution.. 1520
Including Data for Materialized Views.. 1521

The gpperfmon Database..1523
database_*...1525
diskspace_*... 1526
interface_stats_*.. 1526
log_alert_*..1528
queries_*... 1529
segment_*..1531
socket_stats_*...1532
system_*... 1533
dynamic_memory_info.. 1535
memory_info.. 1535

Server Programmatic Interfaces..1537
Greenplum Partner Connector API.. 1537
Developing a Background Worker Process... 1556

SQL Features, Reserved and Key Words, and Compliance.. 1559
Summary of Greenplum Features.. 1559
Reserved Identifiers and SQL Key Words... 1569
SQL 2008 Optional Feature Compliance... 1585

Chapter 8: Greenplum Client and Loader Tools Package................. 1615

Chapter 9: About the Tools Package.. 1616

Chapter 10: Installing the Client and Loader Tools Package............ 1617
Supported Platforms..1618
Installation Procedure..1619
About Your Installation.. 1620
Running the UNIX Tools Installer... 1621

Prerequisites... 1621
Procedure..1621

Running the Windows Tools Installer... 1622
Prerequisites... 1622
Procedure..1622

Chapter 11: Configuring Greenplum Database for Remote Client
Access... 1623

Chapter 12: Configuring a Client System for Kerberos
Authentication.. 1624

Chapter 13: Using the Client and Loader Tools................................. 1625
Prerequisites.. 1626

Contents Release Notes

13

Setting Up Your Greenplum Database Clients Runtime Environment.. 1627
Running the Client and Loader Programs.. 1628
Greenplum Database Documentation References..1629
Windows Considerations... 1630

Chapter 14: Client and Loader Utility Reference................................1631

Chapter 15: DataDirect ODBC Drivers for Greenplum....................... 1632
Prerequisites.. 1633
Supported Client Platforms... 1634
Installing on Linux Systems.. 1635

Configuring the Driver on Linux... 1636
Testing the Driver Connection on Linux...1637

Installing on Windows Systems.. 1639
Verifying the Version on Windows... 1639
Configuring and Testing the Driver on Windows..1639

DataDirect Driver Documentation..1641

Chapter 16: DataDirect JDBC Driver for Greenplum..........................1642
Prerequisites.. 1643
Downloading the DataDirect JDBC Driver.. 1644
Obtaining Version Details for the Driver... 1645
Usage Information... 1646
Configuring Prepared Statement Execution..1647
DataDirect Driver Documentation..1648

Pivotal Greenplum 6.11 Release Notes Release Notes

14

Chapter 1

Pivotal Greenplum 6.11 Release Notes

This document contains pertinent release information about Pivotal Greenplum 6.11 releases. For previous
versions of the release notes for Greenplum Database, go to Pivotal Greenplum Database Documentation.
For information about Greenplum Database end of life, see Pivotal Greenplum Database end of life policy.

Pivotal Greenplum 6 software is available for download from VMware Tanzu Network.

Pivotal Greenplum 6 is based on the open source Greenplum Database project code.

Important: VMware does not provide support for open source versions of Greenplum Database.
Only Pivotal Greenplum is supported by VMware.

https://gpdb.docs.pivotal.io/
https://support.pivotal.io/hc/en-us/articles/201143553-GPDB-software-EOL-policy
https://network.pivotal.io/products/pivotal-gpdb
http://greenplum.org/

Pivotal Greenplum 6.11 Release Notes Release Notes

15

Release 6.11.2
Release Date: 2020-10-2

Pivotal Greenplum 6.11.2 is a maintenance release that includes changes and resolves several issues.

Changed Features
Greenplum Database 6.11.2 includes these changes:

• Pivotal GPText version 3.4.5 is included, which includes bug fixes. See the GPText 3.4.5 Release
Notes for more information.

• Pivotal Greenplum-Spark connector version 2.0.0 is included, which includes feature changes and bug
fixes. See the Greenplum-Spark Connector 2.0.0 Release Notes for more information.

Resolved Issues
Pivotal Greenplum 6.11.2 resolves these issues:

30549 - Management and Monitoring

Greenplum excluded externally-routable loopback addresses from replication entries,
which caused utilities such as gpinitstandby and gpaddmirrors to fail. This problem
has been resolved.

30795 - GPORCA

Fixed a problem where GPORCA did not utilize an index scan for certain subqueries,
which could lead to poor performance for affected queries.

30878 - GPORCA

If a CREATE TABLE .. AS statement was used to create a table with non-legacy
(jump consistent) hash algorithm distribution from a source table that used the legacy
(modulo) hash algorithm, GPORCA would distribute the data according to the value of
gp_use_legacy_hashops; however, it would set the table's distribution policy hash
algorithm to the value of the original table. This could cause queries to give incorrect
results if the distribution policy did not match the data distribution. This problem has been
resolved.

30903 - Metrics Collector

Workfile entries were sometimes freed prematurely, which could lead to the postmaster
process being reset on segments and failures in query execution. This problem has been
resolved.

30928 - GPORCA

If gp_use_legacy_hashops was enabled, GPORCA could crash when generating the
query plan for certain queries that included an aggregate. This problem has been resolved.

174812955 - Query Execution

When executing a long query that contained multi-byte characters, Greenplum
could incorrectly truncate the query string (removing multi-byte characters) and, if
log_min_duration_statement was set to 0, could subsequent write an invalid symbol
to segment logs. This behavior could cause errors in gp_toolkit and Command Center.
This problem has been resolved.

http://gptext.docs.pivotal.io/340/relnotes/GPText_345_README.html
http://gptext.docs.pivotal.io/340/relnotes/GPText_345_README.html
https://greenplum-spark.docs.pivotal.io/2-0/release_notes.html

Pivotal Greenplum 6.11 Release Notes Release Notes

16

Release 6.11.1
Release Date: 2020-09-17

Pivotal Greenplum 6.11.1 is a maintenance release that includes changes and resolves several issues.

Changed Features
Greenplum Database 6.11.1 includes this change:

• Greenplum Platform Extension Framework (PXF) version 5.15.1 is included, which includes changes
and bug fixes. Refer to the PXF Release Notes for more information on release content and to access
the PXF documentation.

Resolved Issues
Pivotal Greenplum 6.11.1 resolves these issues:

30751, 173714727 - Query Optimizer

Resolves an issue where a correlated subquery that contained at least one left or right
outer join caused the Greenplum Database master to crash when the server configuration
parameter optimizer_join_order was set to exhaustive2.

30880 - gpload

Fixed a problem where gpload operations would fail if a table column name included
capital letters or special characters.

30901 - GPORCA

For queries that included an outer ref in a subquery, such as select * from foo
where foo.a = (select foo.b from bar), GPORCA always used the results of
the subquery after unnesting the outer reference. This could cause a crash or incorrect
results if the subquery returned no rows, or if the subquery contained a projection with
multiple values below the outer reference. To address this problem, all such queries now
fall back to using the Postgres planner instead of GPORCA. Note that this behavior occurs
for cases where GPORCA would have returned correct results, as well as for cases that
could cause crashes or return incorrect results.

30913, 170824967 - gpfdists

A command that accessed an external table using the gpfdists protocol failed if the
external table did not use an IP address when specifying a host system in the LOCATION
clause of the external table definition. This issue is resolved in Greenplum 6.11.1.

174609237 - gpstart

gpstart was updated so that it does not attempt to start a standby master segment when
that segment is unreachable, preventing an associated stack trace during startup.

Upgrading from Greenplum 6.x to Greenplum 6.11
Note: Greenplum 6 does not support direct upgrades from Greenplum 4 or Greenplum 5 releases,
or from earlier Greenplum 6 Beta releases.

See Upgrading from an Earlier Greenplum 6 Release to upgrade your existing Greenplum 6.x software to
Greenplum 6.11.0.

https://greenplum.docs.pivotal.io/pxf/5-15/release/release-notes.html

Pivotal Greenplum 6.11 Release Notes Release Notes

17

Release 6.11.0
Release Date: 2020-09-11

Pivotal Greenplum 6.11.0 is a minor release that includes changed features and resolves several issues.

Features
Greenplum Database 6.11.0 includes these new and changed features:

• GPORCA partition elimination has been enhanced to support a subset of lossy assignment casts
that are order-preserving (increasing) functions, including timestamp::date and float::int.
For example, GPORCA supports partition elimination when a partition column is defined with
the timestamp datatype and the query contains a predicate such as WHERE ts::date ==
'2020-05-10' that performs a cast on the partitioned column (ts) to compare column data (a
timestamp) to a date.

• PXF version 5.15.0 is included, which includes new and changed features and bug fixes. Refer to the
PXF Release Notes for more information on release content and supported platforms, and to access
the PXF documentation.

• Greenplum Command Center 6.3.0 and 4.11.0 are included, which include new workload management
and other features, as well as bug fixes. See the Command Center Release Notes for more information.

• The DataDirect ODBC Drivers for Pivotal Greenplum were updated to version 07.16.0389 (B0562,
U0408). This version introduces support for the following datatypes:

Greenplum Datatype ODBC Datatype

citext SQL_LONGVARCHAR

float SQL_REAL

tinyint SQL_SMALLINT

wchar SQL_CHAR

wvarchar SQL_VARCHAR

Resolved Issues
Pivotal Greenplum 6.11.0 resolves these issues:

30899 - Resource Groups

In some cases when running queries are managed by resource groups, Greenplum
Database generated a PANIC when managing runaway queries (queries that use an
excessive amount of memory) because of locking issues. This issue is resolved.

30877 - VACUUM

In some cases, running VACUUM returns ERROR: found xmin <xid> from before
relfrozenxid <frozen_xid>. The error was caused when a previously run VACUUM
FULL was interrupted and aborted on a query executor (QE) and corrupted catalog frozen
XID information. This issue is resolved.

30870 - Segment Mirroring

In some cases, performing an incremental recovery of a Greenplum Database segment
instance failed with the message requested WAL segment has already been
removed because the recovery checkpoint was not created properly. This issue is
resolved.

30858 - analyzedb

../../pxf/5-15/release/release-notes.html
http://gpcc.docs.pivotal.io/630/relnotes/GPCC-630-release-notes.html

Pivotal Greenplum 6.11 Release Notes Release Notes

18

analyzedb failed if analyzedb attempted to update statistics for a set of tables and one
of the tables was dropped and then recreated while analyzedb was running. analyzedb
has been enhanced better handle the specified situation.

30845 - Query Execution

Under heavy load when running multiple queries, some queries randomly failed with the
error Error on receive from seg<ID>. The error was caused when Greenplum
Database encountered a divide by 0 error while managing the backend processes that are
used to run queries on the segment instances. This issue is resolved.

30761 - Postgres Planner

In some cases, Greenplum Database generated a PANIC when a DROP VIEW command
was cancelled from the Greenplum Command Center. The PANIC was generated when
Greenplum Database did not correctly handle the visibility of the relation.

30721 - gpcheckcat

Resolved a problem where gpcheckcat would fail with Missing or extraneous
entries check errors if the gp_sparse_vector extension was installed.

30637 - Query Optimizer

For some queries against partitioned tables, GPORCA did not perform partition elimination
when a predicate that includes the partition column also performs an explicit cast. For
example, GPORCA would not perform partition elimination when a partition column is
defined with the timestamp datatype and the query contains a predicate such as WHERE
ts::date == '2020-05-10' that performs a cast on the partitioned column (ts) to
compare column data (a timestamp) to a date. GPORCA partition elimination has been
improved to support the specified type of query. See Features.

10491 - Postgres Planner

For some queries that contain nested subqueries that do not specify a relation and also
contain a nested GROUP BY clauses, Greenplum Database generated a PANIC. The
PANIC was generated when Greenplum Database did not correctly manage the subquery
correctly. This is an example of the specified type or query.

SELECT * FROM (SELECT * FROM (SELECT c1, SUM(c2) c2 FROM mytbl
 GROUP BY c1) t2) t3
 GROUP BY c2, ROLLUP((c1))
 ORDER BY 1, 2;

This issue is resolved.

10561 - Server

Greenplum Database does not support altering the datatype of a column defined as a
distribution key or with a constraint. When attempting to change the datatype, the error
message did not clearly indicate the cause. The error message has been altered to provide
more information.

174505130 - Resource Groups

In some cases for a query managed by resource group, the resource group cancelled
the query with the message Canceling query because of high VMEM usage
because the resource group calculated the incorrect memory used by the query. This issue
is resolved.

174353156 - Interconnect

In some cases when Greenplum Database uses proxies for interconnect communication
(the server configuration parameter gp_interconnect_type is set to proxy), a
Greenplum background worker process became an orphaned process after the postmaster
process was terminated. This issue is resolved.

174205590 - Interconnect

https://github.com/greenplum-db/gpdb/issues/10491
https://github.com/greenplum-db/gpdb/issues/10561

Pivotal Greenplum 6.11 Release Notes Release Notes

19

When Greenplum Database uses proxies for interconnect communication (the server
configuration parameter gp_interconnect_type is set to proxy), a query might
have hung if the query contains multiple concurrent subplans running on the segment
instances. The query hung when the Greenplum interconnect did not properly handle the
communication among the concurrent subplans. This issue is resolved.

174483149 - Cluster Management - gpinitsystem

gpinitsystem now exports the MASTER_DATA_DIRECTORY environment variable
before calling gpconfig, to avoid throwing warning messages when configuring system
parameters on Greenplum Database appliances (DCA).

Upgrading from Greenplum 6.x to Greenplum 6.11
Note: Greenplum 6 does not support direct upgrades from Greenplum 4 or Greenplum 5 releases,
or from earlier Greenplum 6 Beta releases.

See Upgrading from an Earlier Greenplum 6 Release to upgrade your existing Greenplum 6.x software to
Greenplum 6.11.0.

Pivotal Greenplum 6.11 Release Notes Release Notes

20

Deprecated Features
Deprecated features will be removed in a future major release of Greenplum Database. Pivotal Greenplum
6.x deprecates:

• The gpsys1 utility.
• The analzyedb option --skip_root_stats (deprecated since 6.2).

If the option is specified, a warning is issued stating that the option will be ignored.
• The server configuration parameter gp_statistics_use_fkeys (deprecated since 6.2).
• The server configuration parameter gp_ignore_error_table (deprecated since 6.0).

To avoid a Greenplum Database syntax error, set the value of this parameter to true when you
run applications that execute CREATE EXTERNAL TABLE or COPY commands that include the now
removed Greenplum Database 4.3.x INTO ERROR TABLE clause.

• Specifying => as an operator name in the CREATE OPERATOR command (deprecated since 6.0).
• The Greenplum external table C API (deprecated since 6.0).

Any developers using this API are encouraged to use the new Foreign Data Wrapper API in its place.
• Commas placed between a SUBPARTITION TEMPLATE clause and its corresponding SUBPARTITION

BY clause, and between consecutive SUBPARTITION BY clauses in a CREATE TABLE command
(deprecated since 6.0).

Using this undocumented syntax will generate a deprecation warning message.
• The timestamp format YYYYMMDDHH24MISS (deprecated since 6.0).

This format could not be parsed unambiguously in previous Greenplum Database releases, and is not
supported in PostgreSQL 9.4.

• The createlang and droplang utilities (deprecated since 6.0).
• The pg_resqueue_status system view (deprecated since 6.0).

Use the gp_toolkit.gp_resqueue_status view instead.
• The GLOBAL and LOCAL modifiers when creating a temporary table with the CREATE TABLE and

CREATE TABLE AS commands (deprecated since 6.0).

These keywords are present for SQL standard compatibility, but have no effect in Greenplum Database.
• Using WITH OIDS or oids=TRUE to assign an OID system column when creating or altering a table

(deprecated since 6.0).
• Allowing superusers to specify the SQL_ASCII encoding regardless of the locale settings (deprecated

since 6.0).

This choice may result in misbehavior of character-string functions when data that is not encoding-
compatible with the locale is stored in the database.

• The @@@ text search operator (deprecated since 6.0).

This operator is currently a synonym for the @@ operator.
• The unparenthesized syntax for option lists in the VACUUM command (deprecated since 6.0).

This syntax requires that the options to the command be specified in a specific order.
• The plain pgbouncer authentication type (auth_type = plain) (deprecated since 4.x).

Pivotal Greenplum 6.11 Release Notes Release Notes

21

Migrating Data to Greenplum 6
Note: Greenplum 6 does not support direct upgrades from Greenplum 4 or Greenplum 5 releases,
or from earlier Greenplum 6 Beta releases.

See Migrating Data from Greenplum 4.3 or 5 for guidelines and considerations for migrating existing
Greenplum data to Greenplum 6, using standard backup and restore procedures.

Pivotal Greenplum 6.11 Release Notes Release Notes

22

Known Issues and Limitations
Pivotal Greenplum 6 has these limitations:

• Upgrading a Greenplum Database 4 or 5 release, or Greenplum 6 Beta release, to Greenplum 6 is not
supported.

• MADlib, GPText, and PostGIS are not yet provided for installation on Ubuntu systems.
• Greenplum 6 is not supported for installation on DCA systems.
• Greenplum for Kubernetes is not yet provided with this release.

The following table lists key known issues in Pivotal Greenplum 6.x.

Table 1: Key Known Issues in Pivotal Greenplum 6.x

Issue Category Description

N/A Backup/Restore Restoring the Greenplum Database backup for a table fails in
Greenplum 6 versions earlier than version 6.10 when a replicated
table has an inheritance relationship to/from another table that was
assigned via an ALTER TABLE ... INHERIT statement after table
creation.

Workaround: Use the following SQL commands to determine if
Greenplum Database includes any replicated tables that inherit from
a parent table, or if there are replicated tables that are inherited by a
child table:

SELECT inhrelid::regclass FROM pg_inherits,
 gp_distribution_policy dp
WHERE inhrelid=dp.localoid AND dp.policytype='r';
SELECT inhparent::regclass FROM pg_inherits,
 gp_distribution_policy dp
WHERE inhparent=dp.localoid AND dp.policytype=
'r';

If these queries return any tables, you may choose to run
gprestore with the -–on-error-continue flag to not fail the
entire restore when this issue is hit. Or, you can specify the list of
tables returned by the queries to the -–exclude-table-file
option to skip those tables during restore. You must recreate and
repopulate the affected tables after restore.

N/A Spark
Connector

This version of Greenplum is not compatible with Greenplum-Spark
Connector versions earlier than version 1.7.0, due to a change in how
Greenplum handles distributed transaction IDs.

N/A PXF Starting in 6.x, Greenplum does not bundle cURL and instead loads
the system-provided library. PXF requires cURL version 7.29.0 or
newer. The officially-supported cURL for the CentOS 6.x and Red Hat
Enterprise Linux 6.x operating systems is version 7.19.*. Greenplum
Database 6 does not support running PXF on CentOS 6.x or RHEL 6.
x due to this limitation.

Workaround: Upgrade the operating system of your Greenplum
Database 6 hosts to CentOS 7+ or RHEL 7+, which provides a cURL
version suitable to run PXF.

Pivotal Greenplum 6.11 Release Notes Release Notes

23

Issue Category Description

29703 Loading Data
from External
Tables

Due to limitations in the Greenplum Database external table
framework, Greenplum Database cannot log the following types of
errors that it encounters while loading data:

• data type parsing errors
• unexpected value type errors
• data type conversion errors
• errors returned by native and user-defined functions

LOG ERRORS returns error information for data exceptions only.
When it encounters a parsing error, Greenplum terminates the load
job, but it cannot log and propagate the error back to the user via gp_
read_error_log().

Workaround: Clean the input data before loading it into Greenplum
Database.

30594 Resource
Management

Resource queue-related statistics may be inaccurate in certain cases.
VMware recommends that you use the resource group resource
management scheme that is available in Greenplum 6.

30522 Logging Greenplum Database may write a FATAL message to the standby
master or mirror log stating that the database system is in recovery
mode when the instance is synchronizing with the master and
Greenplum attempts to contact it before the operation completes.
Ignore these messages and use gpstate -f output to determine if
the standby successfully synchronized with the Greenplum master;
the command returns Sync state: sync if it is synchronized.

30537 Postgres
Planner

The Postgres Planner generates a very large query plan that causes
out of memory issues for the following type of CTE (common table
expression) query: the WITH clause of the CTE contains a partitioned
table with a large number partitions, and the WITH reference is used
in a subquery that joins another partitioned table.

Workaround: If possible, use the GPORCA query optimizer. With
the server configuration parameter optimizer=on, Greenplum
Database attempts to use GPORCA for query planning and
optimization when possible and falls back to the Postgres Planner
when GPORCA cannot be used. Also, the specified type of query
might require a long time to complete.

170824967 gpfidsts For Greenplum Database 6.x, a command that accesses an external
table that uses the gpfdists protocol fails if the external table
does not use an IP address when specifying a host system in the
LOCATION clause of the external table definition. This issue is
resolved in Greenplum 6.11.1.

n/a Materialized
Views

By default, certain gp_toolkit views do not display data for
materialized views. If you want to include this information in gp_
toolkit view output, you must redefine a gp_toolkit internal
view as described in Including Data for Materialized Views.

168957894 PXF The PXF Hive Connector does not support using the Hive* profiles
to access Hive transactional tables.

Workaround: Use the PXF JDBC Connector to access Hive.

Pivotal Greenplum 6.11 Release Notes Release Notes

24

Issue Category Description

168548176 gpbackup When using gpbackup to back up a Greenplum Database 5.7.1 or
earlier 5.x release with resource groups enabled, gpbackup returns
a column not found error for t6.value AS memoryauditor.

164791118 PL/R PL/R cannot be installed using the deprecated createlang utility,
and displays the error:

createlang: language installation failed: ERROR:
no schema has been selected to create in

Workaround: Use CREATE EXTENSION to install PL/R, as described
in the documentation.

N/A Greenplum
Client/Load
Tools on
Windows

The Greenplum Database client and load tools on Windows have not
been tested with Active Directory Kerberos authentication.

Pivotal Greenplum 6.11 Release Notes Release Notes

25

Differences Compared to Open Source Greenplum
Database

Pivotal Greenplum 6.x includes all of the functionality in the open source Greenplum Database project and
adds:

• Product packaging and installation script
• Support for QuickLZ compression. QuickLZ compression is not provided in the open source version of

Greenplum Database due to licensing restrictions.
• Support for data connectors:

• Greenplum-Spark Connector
• Greenplum-Informatica Connector
• Greenplum-Kafka Integration
• Greenplum Streaming Server

• Data Direct ODBC/JDBC Drivers
• gpcopy utility for copying or migrating objects between Greenplum systems
• Support for managing Greenplum Database using Pivotal Greenplum Command Center
• Support for full text search and text analysis using Pivotal GPText
• Greenplum backup plugin for DD Boost
• Backup/restore storage plugin API

http://greenplum.org/

Installing and Upgrading Greenplum Release Notes

26

Chapter 2

Installing and Upgrading Greenplum

Information about installing, configuring, and upgrading Greenplum Database software and configuring
Greenplum Database host machines.

Installing and Upgrading Greenplum Release Notes

27

Platform Requirements
This topic describes the Pivotal Greenplum Database 6 platform and operating system software
requirements.

Important: Pivotal Support does not provide support for open source versions of Greenplum
Database. Only Pivotal Greenplum Database is supported by Pivotal Support.

• Operating Systems

• Software Dependencies
• Java

• Hardware and Network
• Storage
• Tools and Extensions Compatibility

• Client Tools
• Extensions
• Data Connectors
• GPText
• Greenplum Command Center

• Hadoop Distributions

Operating Systems
Pivotal Greenplum 6 runs on the following operating system platforms:

• Red Hat Enterprise Linux 64-bit 7.x (See the following Note.)
• Red Hat Enterprise Linux 64-bit 6.x
• CentOS 64-bit 7.x
• CentOS 64-bit 6.x
• Ubuntu 18.04 LTS
• Oracle Linux 64-bit 7, using the Red Hat Compatible Kernel (RHCK)

Important: Significant Greenplum Database performance degradation has been observed when
enabling resource group-based workload management on RedHat 6.x and CentOS 6.x systems.
This issue is caused by a Linux cgroup kernel bug. This kernel bug has been fixed in CentOS 7.x
and Red Hat 7.x systems.

If you use RedHat 6 and the performance with resource groups is acceptable for your use case,
upgrade your kernel to version 2.6.32-696 or higher to benefit from other fixes to the cgroups
implementation.

Note: For Greenplum Database that is installed on Red Hat Enterprise Linux 7.x or CentOS 7.x
prior to 7.3, an operating system issue might cause Greenplum Database that is running large
workloads to hang in the workload. The Greenplum Database issue is caused by Linux kernel bugs.

RHEL 7.3 and CentOS 7.3 resolves the issue.

Greenplum Database server supports TLS version 1.2 on RHEL/CentOS systems, and TLS version 1.3 on
Ubuntu systems.

Software Dependencies
Greenplum Database 6 requires the following software packages on RHEL/CentOS 6/7 systems which are
installed automatically as dependencies when you install the Pivotal Greenplum Database RPM package):

• apr

Installing and Upgrading Greenplum Release Notes

28

• apr-util
• bash
• bzip2
• curl
• krb5
• libcurl
• libevent (or libevent2 on RHEL/CentOS 6)
• libxml2
• libyaml
• zlib
• openldap
• openssh
• openssl
• openssl-libs (RHEL7/Centos7)
• perl
• readline
• rsync
• R
• sed (used by gpinitsystem)
• tar
• zip

Greenplum Database 6 client software requires these operating system packages:

• apr
• apr-util
• libyaml
• libevent

On Ubuntu systems, Greenplum Database 6 requires the following software packages, which are installed
automatically as dependencies when you install Greenplum Database with the Debian package installer:

• libapr1
• libaprutil1
• bash
• bzip2
• krb5-multidev
• libcurl3-gnutls
• libcurl4
• libevent-2.1-6
• libxml2
• libyaml-0-2
• zlib1g
• libldap-2.4-2
• openssh-client
• openssh-client
• openssl
• perl
• readline
• rsync
• sed
• tar
• zip

Installing and Upgrading Greenplum Release Notes

29

• net-tools
• less
• iproute2

Greenplum Database 6 uses Python 2.7.12, which is included with the product installation (and not
installed as a package dependency).

Important: SSL is supported only on the Greenplum Database master host system. It cannot be
used on the segment host systems.

Important: For all Greenplum Database host systems, SELinux must be disabled. You should
also disable firewall software, although firewall software can be enabled if it is required for security
purposes. See Disabling SELinux and Firewall Software.

Java
Greenplum 6 supports these Java versions for PL/Java and PXF:

• Open JDK 8 or Open JDK 11, available from AdoptOpenJDK
• Oracle JDK 8 or Oracle JDK 11

Hardware and Network
The following table lists minimum recommended specifications for hardware servers intended to support
Greenplum Database on Linux systems in a production environment. All host servers in your Greenplum
Database system must have the same hardware and software configuration. Greenplum also provides
hardware build guides for its certified hardware platforms. It is recommended that you work with a
Greenplum Systems Engineer to review your anticipated environment to ensure an appropriate hardware
configuration for Greenplum Database.

Table 2: Minimum Hardware Requirements

Minimum CPU Any x86_64 compatible CPU

Minimum Memory 16 GB RAM per server

Disk Space Requirements • 150MB per host for Greenplum installation
• Approximately 300MB per segment instance for

meta data
• Appropriate free space for data with disks at no

more than 70% capacity

Network Requirements 10 Gigabit Ethernet within the array

NIC bonding is recommended when multiple
interfaces are present

Pivotal Greenplum can use either IPV4 or IPV6
protocols.

Storage
The only file system supported for running Greenplum Database is the XFS file system. All other file
systems are explicitly not supported by Pivotal.

Greenplum Database is supported on network or shared storage if the shared storage is presented as
a block device to the servers running Greenplum Database and the XFS file system is mounted on the
block device. Network file systems are not supported. When using network or shared storage, Greenplum

https://adoptopenjdk.net

Installing and Upgrading Greenplum Release Notes

30

Database mirroring must be used in the same way as with local storage, and no modifications may be
made to the mirroring scheme or the recovery scheme of the segments.

Other features of the shared storage such as de-duplication and/or replication are not directly supported by
Pivotal Greenplum Database, but may be used with support of the storage vendor as long as they do not
interfere with the expected operation of Greenplum Database at the discretion of Pivotal.

Greenplum Database can be deployed to virtualized systems only if the storage is presented as block
devices and the XFS file system is mounted for the storage of the segment directories.

Greenplum Database is supported on Amazon Web Services (AWS) servers using either Amazon instance
store (Amazon uses the volume names ephemeral[0-20]) or Amazon Elastic Block Store (Amazon
EBS) storage. If using Amazon EBS storage the storage should be RAID of Amazon EBS volumes and
mounted with the XFS file system for it to be a supported configuration.

Data Domain Boost
Pivotal Greenplum 6.0.0 supports Data Domain Boost for backup on Red Hat Enterprise Linux. This table
lists the versions of Data Domain Boost SDK and DDOS supported by Pivotal Greenplum 6.x.

Table 3: Data Domain Boost Compatibility

Pivotal Greenplum Data Domain Boost DDOS

6.x 3.3 6.1 (all versions)

6.0 (all versions)

Note: In addition to the DDOS versions listed in the previous table, Pivotal Greenplum supports all
minor patch releases (fourth digit releases) later than the certified version.

Tools and Extensions Compatibility
• Client Tools
• Extensions
• Data Connectors
• GPText
• Greenplum Command Center

Client Tools
Greenplum Database 6 releases a Clients tool package on various platforms that can be used to access
Greenplum Database from a client system. The Greenplum 6 Clients tool package is supported on the
following platforms:

• Red Hat Enterprise Linux x86_64 6.x (RHEL 6)
• Red Hat Enterprise Linux x86_64 7.x (RHEL 7)
• Ubuntu 18.04 LTS
• Windows 10 (32-bit and 64-bit)
• Windows 8 (32-bit and 64-bit)
• Windows Server 2012 (32-bit and 64-bit)
• Windows Server 2012 R2 (32-bit and 64-bit)
• Windows Server 2008 R2 (32-bit and 64-bit)

The Greenplum 6 Clients package includes the client and loader programs provided in the Greenplum 5
packages plus the addition of database/role/language commands and the Greenplum-Kafka Integration
and Greenplum Streaming Server command utilities. Refer to Greenplum Client and Loader Tools Package
for installation and usage details of the Greenplum 6 Client tools.

Installing and Upgrading Greenplum Release Notes

31

Extensions
This table lists the versions of the Pivotal Greenplum Extensions that are compatible with this release of
Greenplum Database 6.

Table 4: Pivotal Greenplum 6 Extensions Compatibility

Component Package Version Additional Information

PL/Java 2.0.2 Supports Java 8 and 11.

Python Data Science Module
Package

2.0.2

PL/R 3.0.3 (CentOS) R 3.3.3

(Ubuntu) You install R 3.5.1+.

R Data Science Library Package 2.0.2

PL/Container 2.1.2

PL/Container Image for R 2.1.2 R 3.6.3

PL/Container Images for Python 2.1.2 Python 2.7.12

Python 3.7

PL/Container Beta 3.0.0-beta

PL/Container Beta Image for R 3.0.0-beta R 3.4.4

GreenplumR 1.1.0 Supports R 3.6+.

MADlib Machine Learning 1.17, 1.16 Support matrix at MADlib FAQ.

PostGIS Spatial and Geographic
Objects

2.5.4+pivotal.3, 2.5.4+pivotal.2, 2.
5.4+pivotal.1,

2.1.5+pivotal.2-2

For information about the Oracle Compatibility Functions, see Oracle Compatibility Functions.

These Greenplum Database extensions are installed with Pivotal Greenplum Database

• Fuzzy String Match Extension
• PL/Python Extension
• pgcrypto Extension

Data Connectors
• Greenplum Platform Extension Framework (PXF) v5.15.0 - PXF, integrated with Greenplum Database

6, provides access to Hadoop, object store, and SQL external data stores. Refer to Accessing External
Data with PXF in the Greenplum Database Administrator Guide for PXF configuration and usage
information.

• Greenplum-Kafka Integration - The Pivotal Greenplum-Kafka Integration provides high speed, parallel
data transfer from a Kafka cluster to a Pivotal Greenplum Database cluster for batch and streaming ETL
operations. It requires Kafka version 0.11 or newer for exactly-once delivery assurance. Refer to the
Pivotal Greenplum-Kafka Integration Documentation for more information about this feature.

• Greenplum Streaming Server v1.4.1 - The Pivotal Greenplum Streaming Server is an ETL tool that
provides high speed, parallel data transfer from Informatica, Kafka, and custom client data sources to a

https://cwiki.apache.org/confluence/display/MADLIB/FAQ#FAQ-Q1-2WhatdatabaseplatformsdoesMADlibsupportandwhatistheupgradematrix?
https://greenplum.docs.pivotal.io/streaming-server/1-4/kafka/intro.html
https://greenplum.docs.pivotal.io/streaming-server/1-4/kafka/intro.html

Installing and Upgrading Greenplum Release Notes

32

Pivotal Greenplum Database cluster. Refer to the Pivotal Greenplum Streaming Server Documentation
for more information about this feature.

• Greenplum Informatica Connector v1.0.5 - The Pivotal Greenplum Informatica Connector supports high
speed data transfer from an Informatica PowerCenter cluster to a Pivotal Greenplum Database cluster
for batch and streaming ETL operations.

• Greenplum Spark Connector v1.6.2 - The Pivotal Greenplum Spark Connector supports high speed,
parallel data transfer between Greenplum Database and an Apache Spark cluster using Spark’s Scala
API.

• Progress DataDirect JDBC Drivers v5.1.4.000223 - The Progress DataDirect JDBC drivers are
compliant with the Type 4 architecture, but provide advanced features that define them as Type 5
drivers.

• Progress DataDirect ODBC Drivers v7.1.6 (07.16.0389) - The Progress DataDirect ODBC drivers
enable third party applications to connect via a common interface to the Pivotal Greenplum Database
system.

Note: Pivotal Greenplum 6 does not support the ODBC driver for Cognos Analytics V11.

Connecting to IBM Cognos software with an ODBC driver is not supported. Greenplum Database
supports connecting to IBM Cognos software with the DataDirect JDBC driver for Pivotal
Greenplum. This driver is available as a download from Pivotal Network.

GPText
Pivotal Greenplum Database 6 is compatible with Pivotal Greenplum Text version 3.3.1 and later. See the
Greenplum Text documentation for additional compatibility information.

Greenplum Command Center
Pivotal Greenplum Database 6.8 and later are compatible only with Pivotal Greenplum Command Center
6.2 and later. See the Greenplum Command Center documentation for additional compatibility information.

Hadoop Distributions
Greenplum Database provides access to HDFS with the Greenplum Platform Extension Framework (PXF).

PXF can use Cloudera, Hortonworks Data Platform, MapR, and generic Apache Hadoop distributions. PXF
bundles all of the JAR files on which it depends, including the following Hadoop libraries:

Table 5: PXF Hadoop Supported Platforms

PXF Version Hadoop Version Hive Server Version HBase Server Version

5.15.0, 5.14.0, 5.13.0, 5.
12.0, 5.11.1, 5.10.1

2.x, 3.1+ 1.x, 2.x, 3.1+ 1.3.2

5.8.2 2.x 1.x 1.3.2

5.8.1 2.x 1.x 1.3.2

Note: If you plan to access JSON format data stored in a Cloudera Hadoop cluster, PXF requires a
Cloudera version 5.8 or later Hadoop distribution.

https://greenplum.docs.pivotal.io/streaming-server/1-4/intro.html
https://network.pivotal.io/products/pivotal-gpdb
http://gptext.docs.pivotal.io
http://gpcc.docs.pivotal.io

Installing and Upgrading Greenplum Release Notes

33

Introduction to Greenplum
High-level overview of the Greenplum Database system architecture.

Greenplum Database stores and processes large amounts of data by distributing the load across several
servers or hosts. A logical database in Greenplum is an array of individual PostgreSQL databases working
together to present a single database image. The master is the entry point to the Greenplum Database
system. It is the database instance to which users connect and submit SQL statements. The master
coordinates the workload across the other database instances in the system, called segments, which
handle data processing and storage. The segments communicate with each other and the master over the
interconnect, the networking layer of Greenplum Database.

Greenplum Database is a software-only solution; the hardware and database software are not coupled.
Greenplum Database runs on a variety of commodity server platforms from Greenplum-certified hardware
vendors. Performance depends on the hardware on which it is installed. Because the database is
distributed across multiple machines in a Greenplum Database system, proper selection and configuration
of hardware is vital to achieving the best possible performance.

This chapter describes the major components of a Greenplum Database system and the hardware
considerations and concepts associated with each component: The Greenplum Master, The Segments and
The Interconnect. Additionally, a system may have optional ETL Hosts for Data Loading and Greenplum
Performance Monitoring for monitoring query workload and performance.

Installing and Upgrading Greenplum Release Notes

34

The Greenplum Master
The master is the entry point to the Greenplum Database system. It is the database server process that
accepts client connections and processes the SQL commands that system users issue. Users connect to
Greenplum Database through the master using a PostgreSQL-compatible client program such as psql or
ODBC.

The master maintains the system catalog (a set of system tables that contain metadata about the
Greenplum Database system itself), however the master does not contain any user data. Data resides
only on the segments. The master authenticates client connections, processes incoming SQL commands,
distributes the work load between segments, coordinates the results returned by each segment, and
presents the final results to the client program.

Because the master does not contain any user data, it has very little disk load. The master needs a fast,
dedicated CPU for data loading, connection handling, and query planning because extra space is often
necessary for landing load files and backup files, especially in production environments. Customers may
decide to also run ETL and reporting tools on the master, which requires more disk space and processing
power.

Master Redundancy
You may optionally deploy a backup or mirror of the master instance. A backup master host serves as a
warm standby if the primary master host becomes nonoperational. You can deploy the standby master on
a designated redundant master host or on one of the segment hosts.

The standby master is kept up to date by a transaction log replication process, which runs on the standby
master host and synchronizes the data between the primary and standby master hosts. If the primary
master fails, the log replication process shuts down, and an administrator can activate the standby master
in its place. When an the standby master is active, the replicated logs are used to reconstruct the state of
the master host at the time of the last successfully committed transaction.

Since the master does not contain any user data, only the system catalog tables need to be synchronized
between the primary and backup copies. When these tables are updated, changes automatically copy over
to the standby master so it is always synchronized with the primary.

Figure 1: Master Mirroring in Greenplum Database

The Segments
In Greenplum Database, the segments are where data is stored and where most query processing occurs.
User-defined tables and their indexes are distributed across the available segments in the Greenplum
Database system; each segment contains a distinct portion of the data. Segment instances are the

Installing and Upgrading Greenplum Release Notes

35

database server processes that serve segments. Users do not interact directly with the segments in a
Greenplum Database system, but do so through the master.

In the reference Greenplum Database hardware configurations, the number of segment instances per
segment host is determined by the number of effective CPUs or CPU core. For example, if your segment
hosts have two dual-core processors, you may have two or four primary segments per host. If your
segment hosts have three quad-core processors, you may have three, six or twelve segments per host.
Performance testing will help decide the best number of segments for a chosen hardware platform.

Segment Redundancy
When you deploy your Greenplum Database system, you have the option to configure mirror segments.
Mirror segments allow database queries to fail over to a backup segment if the primary segment becomes
unavailable. Mirroring is a requirement for Pivotal-supported production Greenplum Database systems.

A mirror segment must always reside on a different host than its primary segment. Mirror segments can be
arranged across the hosts in the system in one of two standard configurations, or in a custom configuration
you design. The default configuration, called group mirroring, places the mirror segments for all primary
segments on a host on one other host. Another option, called spread mirroring, spreads mirrors for each
host's primary segments over the remaining hosts. Spread mirroring requires that there be more hosts
in the system than there are primary segments on the host. On hosts with multiple network interfaces,
the primary and mirror segments are distributed equally among the interfaces. Figure 2: Data Mirroring in
Greenplum Database shows how table data is distributed across the segments when the default group
mirroring option is configured.

Figure 2: Data Mirroring in Greenplum Database

Segment Failover and Recovery

When mirroring is enabled in a Greenplum Database system, the system automatically fails over to the
mirror copy if a primary copy becomes unavailable. A Greenplum Database system can remain operational

Installing and Upgrading Greenplum Release Notes

36

if a segment instance or host goes down only if all portions of data are available on the remaining active
segments.

If the master cannot connect to a segment instance, it marks that segment instance as invalid in the
Greenplum Database system catalog. The segment instance remains invalid and out of operation until an
administrator brings that segment back online. An administrator can recover a failed segment while the
system is up and running. The recovery process copies over only the changes that were missed while the
segment was nonoperational.

If you do not have mirroring enabled and a segment becomes invalid, the system automatically shuts
down. An administrator must recover all failed segments before operations can continue.

Example Segment Host Hardware Stack
Regardless of the hardware platform you choose, a production Greenplum Database processing node (a
segment host) is typically configured as described in this section.

The segment hosts do the majority of database processing, so the segment host servers are configured
in order to achieve the best performance possible from your Greenplum Database system. Greenplum
Database's performance will be as fast as the slowest segment server in the array. Therefore, it is
important to ensure that the underlying hardware and operating systems that are running Greenplum
Database are all running at their optimal performance level. It is also advised that all segment hosts in a
Greenplum Database array have identical hardware resources and configurations.

Segment hosts should also be dedicated to Greenplum Database operations only. To get the best query
performance, you do not want Greenplum Database competing with other applications for machine or
network resources.

The following diagram shows an example Greenplum Database segment host hardware stack. The
number of effective CPUs on a host is the basis for determining how many primary Greenplum Database
segment instances to deploy per segment host. This example shows a host with two effective CPUs (one
dual-core CPU). Note that there is one primary segment instance (or primary/mirror pair if using mirroring)
per CPU core.

Installing and Upgrading Greenplum Release Notes

37

Figure 3: Example Greenplum Database Segment Host Configuration

Example Segment Disk Layout
Each CPU is typically mapped to a logical disk. A logical disk consists of one primary file system (and
optionally a mirror file system) accessing a pool of physical disks through an I/O channel or disk controller.
The logical disk and file system are provided by the operating system. Most operating systems provide the
ability for a logical disk drive to use groups of physical disks arranged in RAID arrays.

Figure 4: Logical Disk Layout in Greenplum Database

Depending on the hardware platform you choose, different RAID configurations offer different performance
and capacity levels. Greenplum supports and certifies a number of reference hardware platforms and
operating systems. Check with your sales account representative for the recommended configuration on
your chosen platform.

Installing and Upgrading Greenplum Release Notes

38

The Interconnect
The interconnect is the networking layer of Greenplum Database. When a user connects to a database
and issues a query, processes are created on each of the segments to handle the work of that query. The
interconnect refers to the inter-process communication between the segments, as well as the network
infrastructure on which this communication relies. The interconnect uses a standard 10 Gigabit Ethernet
switching fabric.

By default, Greenplum Database interconnect uses UDP (User Datagram Protocol) with flow control
for interconnect traffic to send messages over the network. The Greenplum software does the
additional packet verification and checking not performed by UDP, so the reliability is equivalent to TCP
(Transmission Control Protocol), and the performance and scalability exceeds that of TCP. For information
about the types of interconnect supported by Greenplum Database, see server configuration parameter
gp_interconnect_type in the Greenplum Database Reference Guide.

Interconnect Redundancy
A highly available interconnect can be achieved by deploying dual 10 Gigabit Ethernet switches on your
network, and redundant 10 Gigabit connections to the Greenplum Database master and segment host
servers.

Network Interface Configuration
A segment host typically has multiple network interfaces designated to Greenplum interconnect traffic.
The master host typically has additional external network interfaces in addition to the interfaces used for
interconnect traffic.

Depending on the number of interfaces available, you will want to distribute interconnect network traffic
across the number of available interfaces. This is done by assigning segment instances to a particular
network interface and ensuring that the primary segments are evenly balanced over the number of
available interfaces.

This is done by creating separate host address names for each network interface. For example, if a host
has four network interfaces, then it would have four corresponding host addresses, each of which maps to
one or more primary segment instances. The /etc/hosts file should be configured to contain not only the
host name of each machine, but also all interface host addresses for all of the Greenplum Database hosts
(master, standby master, segments, and ETL hosts).

With this configuration, the operating system automatically selects the best path to the destination.
Greenplum Database automatically balances the network destinations to maximize parallelism.

Installing and Upgrading Greenplum Release Notes

39

Figure 5: Example Network Interface Architecture

Switch Configuration
When using multiple 10 Gigabit Ethernet switches within your Greenplum Database array, evenly divide
the number of subnets between each switch. In this example configuration, if we had two switches, NICs 1
and 2 on each host would use switch 1 and NICs 3 and 4 on each host would use switch 2. For the master
host, the host name bound to NIC 1 (and therefore using switch 1) is the effective master host name for the
array. Therefore, if deploying a warm standby master for redundancy purposes, the standby master should
map to a NIC that uses a different switch than the primary master.

Installing and Upgrading Greenplum Release Notes

40

Figure 6: Example Switch Configuration

ETL Hosts for Data Loading
Greenplum supports fast, parallel data loading with its external tables feature. By using external tables
in conjunction with Greenplum Database's parallel file server (gpfdist), administrators can achieve
maximum parallelism and load bandwidth from their Greenplum Database system. Many production
systems deploy designated ETL servers for data loading purposes. These machines run the Greenplum
parallel file server (gpfdist), but not Greenplum Database instances.

One advantage of using the gpfdist file server program is that it ensures that all of the segments in your
Greenplum Database system are fully utilized when reading from external table data files.

The gpfdist program can serve data to the segment instances at an average rate of about 350 MB/s
for delimited text formatted files and 200 MB/s for CSV formatted files. Therefore, you should consider
the following options when running gpfdist in order to maximize the network bandwidth of your ETL
systems:

• If your ETL machine is configured with multiple network interface cards (NICs) as described in Network
Interface Configuration, run one instance of gpfdist on your ETL host and then define your external
table definition so that the host name of each NIC is declared in the LOCATION clause (see CREATE
EXTERNAL TABLE in the Greenplum Database Reference Guide). This allows network traffic between
your Greenplum segment hosts and your ETL host to use all NICs simultaneously.

Installing and Upgrading Greenplum Release Notes

41

Figure 7: External Table Using Single gpfdist Instance with Multiple NICs

• Run multiple gpfdist instances on your ETL host and divide your external data files equally between
each instance. For example, if you have an ETL system with two network interface cards (NICs), then
you could run two gpfdist instances on that machine to maximize your load performance. You would
then divide the external table data files evenly between the two gpfdist programs.

Figure 8: External Tables Using Multiple gpfdist Instances with Multiple NICs

Greenplum Performance Monitoring
Greenplum Database includes a dedicated system monitoring and management database, named
gpperfmon, that administrators can install and enable. When this database is enabled, data collection

Installing and Upgrading Greenplum Release Notes

42

agents on each segment host collect query status and system metrics. At regular intervals (typically every
15 seconds), an agent on the Greenplum master requests the data from the segment agents and updates
the gpperfmon database. Users can query the gpperfmon database to see the stored query and system
metrics. For more information see the "gpperfmon Database Reference" in the Greenplum Database
Reference Guide.

Greenplum Command Center is an optional web-based performance monitoring and management tool
for Greenplum Database, based on the gpperfmon database. Administrators can install Command Center
separately from Greenplum Database.

Figure 9: Greenplum Performance Monitoring Architecture

Installing and Upgrading Greenplum Release Notes

43

Estimating Storage Capacity
To estimate how much data your Greenplum Database system can accommodate, use these
measurements as guidelines. Also keep in mind that you may want to have extra space for landing backup
files and data load files on each segment host.

Calculating Usable Disk Capacity
To calculate how much data a Greenplum Database system can hold, you have to calculate the usable
disk capacity per segment host and then multiply that by the number of segment hosts in your Greenplum
Database array. Start with the raw capacity of the physical disks on a segment host that are available for
data storage (raw_capacity), which is:

disk_size * number_of_disks

Account for file system formatting overhead (roughly 10 percent) and the RAID level you are using. For
example, if using RAID-10, the calculation would be:

(raw_capacity * 0.9) / 2 = formatted_disk_space

For optimal performance, do not completely fill your disks to capacity, but run at 70% or lower. So with this
in mind, calculate the usable disk space as follows:

formatted_disk_space * 0.7 = usable_disk_space

Using only 70% of your disk space allows Greenplum Database to use the other 30% for temporary and
transaction files on the same disks. If your host systems have a separate disk system that can be used
for temporary and transaction files, you can specify a tablespace that Greenplum Database uses for the
files. Moving the location of the files might improve performance depending on the performance of the disk
system.

Once you have formatted RAID disk arrays and accounted for the maximum recommended capacity
(usable_disk_space), you will need to calculate how much storage is actually available for user data (U). If
using Greenplum Database mirrors for data redundancy, this would then double the size of your user data
(2 * U). Greenplum Database also requires some space be reserved as a working area for active queries.
The work space should be approximately one third the size of your user data (work space = U/3):

With mirrors: (2 * U) + U/3 = usable_disk_space

Without mirrors: U + U/3 = usable_disk_space

Guidelines for temporary file space and user data space assume a typical analytic workload. Highly
concurrent workloads or workloads with queries that require very large amounts of temporary space can
benefit from reserving a larger working area. Typically, overall system throughput can be increased while
decreasing work area usage through proper workload management. Additionally, temporary space and
user space can be isolated from each other by specifying that they reside on different tablespaces.

In the Greenplum Database Administrator Guide, see these topics:

• Managing Performance for information about workload management
• Creating and Managing Tablespaces for information about moving the location of temporary and

transaction files
• Monitoring System State for information about monitoring Greenplum Database disk space usage

Installing and Upgrading Greenplum Release Notes

44

Calculating User Data Size
As with all databases, the size of your raw data will be slightly larger once it is loaded into the database.
On average, raw data will be about 1.4 times larger on disk after it is loaded into the database, but could be
smaller or larger depending on the data types you are using, table storage type, in-database compression,
and so on.

• Page Overhead - When your data is loaded into Greenplum Database, it is divided into pages of 32KB
each. Each page has 20 bytes of page overhead.

• Row Overhead - In a regular 'heap' storage table, each row of data has 24 bytes of row overhead. An
'append-optimized' storage table has only 4 bytes of row overhead.

• Attribute Overhead - For the data values itself, the size associated with each attribute value is
dependent upon the data type chosen. As a general rule, you want to use the smallest data type
possible to store your data (assuming you know the possible values a column will have).

• Indexes - In Greenplum Database, indexes are distributed across the segment hosts as is table data.
The default index type in Greenplum Database is B-tree. Because index size depends on the number
of unique values in the index and the data to be inserted, precalculating the exact size of an index is
impossible. However, you can roughly estimate the size of an index using these formulas.

B-tree: unique_values * (data_type_size + 24 bytes)

Bitmap: (unique_values * number_of_rows * 1 bit * compression_ratio / 8) +
 (unique_values * 32)

Calculating Space Requirements for Metadata and Logs
On each segment host, you will also want to account for space for Greenplum Database log files and
metadata:

• System Metadata — For each Greenplum Database segment instance (primary or mirror) or master
instance running on a host, estimate approximately 20 MB for the system catalogs and metadata.

• Write Ahead Log — For each Greenplum Database segment (primary or mirror) or master instance
running on a host, allocate space for the write ahead log (WAL). The WAL is divided into segment files
of 64 MB each. At most, the number of WAL files will be:

2 * checkpoint_segments + 1

You can use this to estimate space requirements for WAL. The default checkpoint_segments setting
for a Greenplum Database instance is 8, meaning 1088 MB WAL space allocated for each segment or
master instance on a host.

• Greenplum Database Log Files — Each segment instance and the master instance generates
database log files, which will grow over time. Sufficient space should be allocated for these log files,
and some type of log rotation facility should be used to ensure that to log files do not grow too large.

• Command Center Data — The data collection agents utilized by Command Center run on the same
set of hosts as your Greenplum Database instance and utilize the system resources of those hosts. The
resource consumption of the data collection agent processes on these hosts is minimal and should not
significantly impact database performance. Historical data collected by the collection agents is stored
in its own Command Center database (named gpperfmon) within your Greenplum Database system.
Collected data is distributed just like regular database data, so you will need to account for disk space
in the data directory locations of your Greenplum segment instances. The amount of space required
depends on the amount of historical data you would like to keep. Historical data is not automatically
truncated. Database administrators must set up a truncation policy to maintain the size of the Command
Center database.

Installing and Upgrading Greenplum Release Notes

45

Configuring Your Systems
Describes how to prepare your operating system environment for Greenplum Database software
installation.

Perform the following tasks in order:

1. Make sure your host systems meet the requirements described in Platform Requirements.
2. Disable SELinux and firewall software.
3. Set the required operating system parameters.
4. Synchronize system clocks.
5. Create the gpadmin account.

Unless noted, these tasks should be performed for all hosts in your Greenplum Database array (master,
standby master, and segment hosts).

The Greenplum Database host naming convention for the master host is mdw and for the standby master
host is smdw.

The segment host naming convention is sdwN where sdw is a prefix and N is an integer. For example,
segment host names would be sdw1, sdw2 and so on. NIC bonding is recommended for hosts with
multiple interfaces, but when the interfaces are not bonded, the convention is to append a dash (-) and
number to the host name. For example, sdw1-1 and sdw1-2 are the two interface names for host sdw1.

For information about running Greenplum Database in the cloud see Cloud Services in the Pivotal
Greenplum Partner Marketplace.

Important: When data loss is not acceptable for a Greenplum Database cluster, Greenplum
master and segment mirroring is recommended. If mirroring is not enabled then Greenplum stores
only one copy of the data, so the underlying storage media provides the only guarantee for data
availability and correctness in the event of a hardware failure.

Kubernetes enables quick recovery from both pod and host failures, and Kubernetes storage
services provide a high level of availability for the underlying data. Furthermore, virtualized
environments make it difficult to ensure the anti-affinity guarantees required for Greenplum
mirroring solutions. For these reasons, mirrorless deployments are fully supported with Greenplum
for Kubernetes. Other deployment environments are generally not supported for production use
unless both Greenplum master and segment mirroring are enabled.

Note: For information about upgrading Pivotal Greenplum Database from a previous version, see
the Greenplum Database Release Notes for the release that you are installing.

Note: Automating the configuration steps described in this topic and Installing the Greenplum
Database Software with a system provisioning tool, such as Ansible, Chef, or Puppet, can save
time and ensure a reliable and repeatable Greenplum Database installation.

Disabling SELinux and Firewall Software
For all Greenplum Database host systems running RHEL or CentOS, SELinux must be disabled. Follow
these steps:

1. As the root user, check the status of SELinux:

sestatus
SELinuxstatus: disabled

https://pivotal.io/pivotal-greenplum/greenplum-partner-marketplace
https://pivotal.io/pivotal-greenplum/greenplum-partner-marketplace

Installing and Upgrading Greenplum Release Notes

46

2. If SELinux is not disabled, disable it by editing the /etc/selinux/config file. As root, change the
value of the SELINUX parameter in the config file as follows:

SELINUX=disabled

3. If the System Security Services Daemon (SSSD) is installed on your systems, edit the SSSD
configuration file and set the selinux_provider parameter to none to prevent SELinux-related
SSH authentication denials that could occur even with SELinux disabled. As root, edit /etc/sssd/
sssd.conf and add this parameter:

selinux_provider=none

4. Reboot the system to apply any changes that you made and verify that SELinux is disabled.

For information about disabling SELinux, see the SELinux documentation.

You should also disable firewall software such as iptables (on systems such as RHEL 6.x and CentOS
6.x), firewalld (on systems such as RHEL 7.x and CentOS 7.x), or ufw (on Ubuntu systems, disabled
by default).

If you decide to enable iptables with Greenplum Database for security purposes, see Enabling iptables
(Optional).

Follow these steps to disable iptables:

1. As the root user, check the status of iptables:

/sbin/chkconfig --list iptables

If iptables is disabled, the command output is:

iptables 0:off 1:off 2:off 3:off 4:off 5:off 6:off

2. If necessary, execute this command as root to disable iptables:

/sbin/chkconfig iptables off

You will need to reboot your system after applying the change.
3. For systems with firewalld, check the status of firewalld with the command:

systemctl status firewalld

If firewalld is disabled, the command output is:

* firewalld.service - firewalld - dynamic firewall daemon
 Loaded: loaded (/usr/lib/systemd/system/firewalld.service; disabled;
 vendor preset: enabled)
 Active: inactive (dead)

4. If necessary, execute these commands as root to disable firewalld:

systemctl stop firewalld.service
systemctl disable firewalld.service

For more information about configuring your firewall software, see the documentation for the firewall or
your operating system.

Recommended OS Parameters Settings
Greenplum requires that certain Linux operating system (OS) parameters be set on all hosts in your
Greenplum Database system (masters and segments).

Installing and Upgrading Greenplum Release Notes

47

In general, the following categories of system parameters need to be altered:

• Shared Memory - A Greenplum Database instance will not work unless the shared memory segment
for your kernel is properly sized. Most default OS installations have the shared memory values set
too low for Greenplum Database. On Linux systems, you must also disable the OOM (out of memory)
killer. For information about Greenplum Database shared memory requirements, see the Greenplum
Database server configuration parameter shared_buffers in the Greenplum Database Reference
Guide.

• Network - On high-volume Greenplum Database systems, certain network-related tuning parameters
must be set to optimize network connections made by the Greenplum interconnect.

• User Limits - User limits control the resources available to processes started by a user's shell.
Greenplum Database requires a higher limit on the allowed number of file descriptors that a single
process can have open. The default settings may cause some Greenplum Database queries to fail
because they will run out of file descriptors needed to process the query.

More specifically, you need to edit the following Linux configuration settings:

• The hosts File
• The sysctl.conf File
• System Resources Limits
• XFS Mount Options
• Disk I/O Settings

• Read ahead values
• Disk I/O scheduler disk access

• Transparent Huge Pages (THP)
• IPC Object Removal
• SSH Connection Threshold

The hosts File
Edit the /etc/hosts file and make sure that it includes the host names and all interface address names
for every machine participating in your Greenplum Database system.

The sysctl.conf File
The sysctl.conf parameters listed in this topic are for performance, optimization, and consistency in a
wide variety of environments. Change these settings according to your specific situation and setup.

Set the parameters in the /etc/sysctl.conf file and reload with sysctl -p:

kernel.shmall = _PHYS_PAGES / 2 # See Shared Memory Pages
kernel.shmall = 197951838
kernel.shmmax = kernel.shmall * PAGE_SIZE
kernel.shmmax = 810810728448
kernel.shmmni = 4096
vm.overcommit_memory = 2 # See Segment Host Memory
vm.overcommit_ratio = 95 # See Segment Host Memory

net.ipv4.ip_local_port_range = 10000 65535 # See Port Settings
kernel.sem = 500 2048000 200 4096
kernel.sysrq = 1
kernel.core_uses_pid = 1
kernel.msgmnb = 65536
kernel.msgmax = 65536
kernel.msgmni = 2048
net.ipv4.tcp_syncookies = 1
net.ipv4.conf.default.accept_source_route = 0
net.ipv4.tcp_max_syn_backlog = 4096

Installing and Upgrading Greenplum Release Notes

48

net.ipv4.conf.all.arp_filter = 1
net.core.netdev_max_backlog = 10000
net.core.rmem_max = 2097152
net.core.wmem_max = 2097152
vm.swappiness = 10
vm.zone_reclaim_mode = 0
vm.dirty_expire_centisecs = 500
vm.dirty_writeback_centisecs = 100
vm.dirty_background_ratio = 0 # See System Memory
vm.dirty_ratio = 0
vm.dirty_background_bytes = 1610612736
vm.dirty_bytes = 4294967296

Shared Memory Pages

Greenplum Database uses shared memory to communicate between postgres processes that are part
of the same postgres instance. kernel.shmall sets the total amount of shared memory, in pages, that
can be used system wide. kernel.shmmax sets the maximum size of a single shared memory segment in
bytes.

Set kernel.shmall and kernel.shmax values based on your system's physical memory and page
size. In general, the value for both parameters should be one half of the system physical memory.

Use the operating system variables _PHYS_PAGES and PAGE_SIZE to set the parameters.

kernel.shmall = (_PHYS_PAGES / 2)
kernel.shmmax = (_PHYS_PAGES / 2) * PAGE_SIZE

To calculate the values for kernel.shmall and kernel.shmax, run the following commands using the
getconf command, which returns the value of an operating system variable.

$ echo $(expr $(getconf _PHYS_PAGES) / 2)
$ echo $(expr $(getconf _PHYS_PAGES) / 2 * $(getconf PAGE_SIZE))

As best practice, we recommend you set the following values in the /etc/sysctl.conf file using
calculated values. For example, a host system has 1583 GB of memory installed and returns these values:
_PHYS_PAGES = 395903676 and PAGE_SIZE = 4096. These would be the kernel.shmall and
kernel.shmmax values:

kernel.shmall = 197951838
kernel.shmmax = 810810728448

If the Greeplum Database master the has a different shared memory configuration than the segment hosts,
the _PHYS_PAGES and PAGE_SIZE values might differ, and the kernel.shmall and kernel.shmax
values on the master host will differ from those on the segment hosts.

Segment Host Memory

The vm.overcommit_memory Linux kernel parameter is used by the OS to determine how much memory
can be allocated to processes. For Greenplum Database, this parameter should always be set to 2.

vm.overcommit_ratio is the percent of RAM that is used for application processes and the remainder
is reserved for the operating system. The default is 50 on Red Hat Enterprise Linux.

For vm.overcommit_ratio tuning and calculation recommendations with resource group-based
resource management or resource queue-based resource management, refer to Options for Configuring
Segment Host Memory in the Geenplum Database Administrator Guide. Also refer to the Greenplum
Database server configuration parameter gp_vmem_protect_limit in the Greenplum Database
Reference Guide.

Port Settings

Installing and Upgrading Greenplum Release Notes

49

To avoid port conflicts between Greenplum Database and other applications during Greenplum
initialization, make a note of the port range specified by the operating system parameter
net.ipv4.ip_local_port_range. When initializing Greenplum using the gpinitsystem
cluster configuration file, do not specify Greenplum Database ports in that range. For example, if
net.ipv4.ip_local_port_range = 10000 65535, set the Greenplum Database base port numbers
to these values.

PORT_BASE = 6000
MIRROR_PORT_BASE = 7000

For information about the gpinitsystem cluster configuration file, see Initializing a Greenplum Database
System.

For Azure deployments with Greenplum Database avoid using port 65330; add the following line to
sysctl.conf:

net.ipv4.ip_local_reserved_ports=65330

For additional requirements and recommendations for cloud deployments, see Greenplum Database Cloud
Technical Recommendations.

System Memory

For host systems with more than 64GB of memory, these settings are recommended:

vm.dirty_background_ratio = 0
vm.dirty_ratio = 0
vm.dirty_background_bytes = 1610612736 # 1.5GB
vm.dirty_bytes = 4294967296 # 4GB

For host systems with 64GB of memory or less, remove vm.dirty_background_bytes and
vm.dirty_bytes and set the two ratio parameters to these values:

vm.dirty_background_ratio = 3
vm.dirty_ratio = 10

Increase vm.min_free_kbytes to ensure PF_MEMALLOC requests from network and storage drivers are
easily satisfied. This is especially critical on systems with large amounts of system memory. The default
value is often far too low on these systems. Use this awk command to set vm.min_free_kbytes to a
recommended 3% of system physical memory:

awk 'BEGIN {OFMT = "%.0f";} /MemTotal/ {print "vm.min_free_kbytes =", $2
 * .03;}'
 /proc/meminfo >> /etc/sysctl.conf

Do not set vm.min_free_kbytes to higher than 5% of system memory as doing so might cause out of
memory conditions.

System Resources Limits
Set the following parameters in the /etc/security/limits.conf file:

* soft nofile 524288
* hard nofile 524288
* soft nproc 131072
* hard nproc 131072

For Red Hat Enterprise Linux (RHEL) and CentOS systems, parameter values in the /etc/security/
limits.d/90-nproc.conf file (RHEL/CentOS 6) or /etc/security/limits.d/20-nproc.conf
file (RHEL/CentOS 7) override the values in the limits.conf file. Ensure that any parameters in the

../cloud/gpdb-cloud-tech-rec.html
../cloud/gpdb-cloud-tech-rec.html

Installing and Upgrading Greenplum Release Notes

50

override file are set to the required value. The Linux module pam_limits sets user limits by reading the
values from the limits.conf file and then from the override file. For information about PAM and user
limits, see the documentation on PAM and pam_limits.

Execute the ulimit -u command on each segment host to display the maximum number of processes
that are available to each user. Validate that the return value is 131072.

XFS Mount Options
XFS is the preferred data storage file system on Linux platforms. Use the mount command with the
following recommended XFS mount options for RHEL and CentOS systems:

rw,nodev,noatime,nobarrier,inode64

The nobarrier option is not supported on Ubuntu systems. Use only the options:

rw,nodev,noatime,inode64

See the mount manual page (man mount opens the man page) for more information about using this
command.

The XFS options can also be set in the /etc/fstab file. This example entry from an fstab file specifies
the XFS options.

/dev/data /data xfs nodev,noatime,nobarrier,inode64 0 0

Disk I/O Settings
• Read-ahead value

Each disk device file should have a read-ahead (blockdev) value of 16384. To verify the read-ahead
value of a disk device:

/sbin/blockdev --getra devname

For example:

/sbin/blockdev --getra /dev/sdb

To set blockdev (read-ahead) on a device:

/sbin/blockdev --setra bytes devname

For example:

/sbin/blockdev --setra 16384 /dev/sdb

See the manual page (man) for the blockdev command for more information about using that
command (man blockdev opens the man page).

Note: The blockdev --setra command is not persistent. You must ensure the read-ahead
value is set whenever the system restarts. How to set the value will vary based on your system.

One method to set the blockdev value at system startup is by adding the /sbin/blockdev --
setra command in the rc.local file. For example, add this line to the rc.local file to set the read-
ahead value for the disk sdb.

/sbin/blockdev --setra 16384 /dev/sdb

Installing and Upgrading Greenplum Release Notes

51

On systems that use systemd, you must also set the execute permissions on the rc.local file to
enable it to run at startup. For example, on a RHEL/CentOS 7 system, this command sets execute
permissions on the file.

chmod +x /etc/rc.d/rc.local

Restart the system to have the setting take effect.
• Disk I/O scheduler

The Linux disk I/O scheduler for disk access supports different policies, such as CFQ, AS, and
deadline.

The deadline scheduler option is recommended. To specify a scheduler until the next system reboot,
run the following:

echo schedulername > /sys/block/devname/queue/scheduler

For example:

echo deadline > /sys/block/sbd/queue/scheduler

Note: Using the echo command to set the disk I/O scheduler policy is not persistent, therefore
you must ensure the command is run whenever the system reboots. How to run the command
will vary based on your system.

One method to set the I/O scheduler policy at boot time is with the elevator kernel parameter. Add
the parameter elevator=deadline to the kernel command in the file /boot/grub/grub.conf,
the GRUB boot loader configuration file. This is an example kernel command from a grub.conf file
on RHEL 6.x or CentOS 6.x. The command is on multiple lines for readability.

kernel /vmlinuz-2.6.18-274.3.1.el5 ro root=LABEL=/
 elevator=deadline crashkernel=128M@16M quiet
 console=tty1
 console=ttyS1,115200 panic=30 transparent_hugepage=never
 initrd /initrd-2.6.18-274.3.1.el5.img

To specify the I/O scheduler at boot time on systems that use grub2 such as RHEL 7.x or CentOS 7.x,
use the system utility grubby. This command adds the parameter when run as root.

grubby --update-kernel=ALL --args="elevator=deadline"

After adding the parameter, reboot the system.

This grubby command displays kernel parameter settings.

grubby --info=ALL

For more information about the grubby utility, see your operating system documentation. If the grubby
command does not update the kernels, see the Note at the end of the section.

Transparent Huge Pages (THP)
Disable Transparent Huge Pages (THP) as it degrades Greenplum Database performance. RHEL 6.0
or higher enables THP by default. One way to disable THP on RHEL 6.x is by adding the parameter
transparent_hugepage=never to the kernel command in the file /boot/grub/grub.conf, the
GRUB boot loader configuration file. This is an example kernel command from a grub.conf file. The
command is on multiple lines for readability:

kernel /vmlinuz-2.6.18-274.3.1.el5 ro root=LABEL=/

Installing and Upgrading Greenplum Release Notes

52

 elevator=deadline crashkernel=128M@16M quiet console=tty1
 console=ttyS1,115200 panic=30 transparent_hugepage=never
 initrd /initrd-2.6.18-274.3.1.el5.img

On systems that use grub2 such as RHEL 7.x or CentOS 7.x, use the system utility grubby. This
command adds the parameter when run as root.

grubby --update-kernel=ALL --args="transparent_hugepage=never"

After adding the parameter, reboot the system.

For Ubuntu systems, install the hugepages package and execute this command as root:

hugeadm --thp-never

This cat command checks the state of THP. The output indicates that THP is disabled.

$ cat /sys/kernel/mm/*transparent_hugepage/enabled
always [never]

For more information about Transparent Huge Pages or the grubby utility, see your operating system
documentation. If the grubby command does not update the kernels, see the Note at the end of the
section.

IPC Object Removal
Disable IPC object removal for RHEL 7.2 or CentOS 7.2, or Ubuntu. The default systemd setting
RemoveIPC=yes removes IPC connections when non-system user accounts log out. This causes the
Greenplum Database utility gpinitsystem to fail with semaphore errors. Perform one of the following to
avoid this issue.

• When you add the gpadmin operating system user account to the master node in Creating the
Greenplum Administrative User, create the user as a system account.

• Disable RemoveIPC. Set this parameter in /etc/systemd/logind.conf on the Greenplum
Database host systems.

RemoveIPC=no

The setting takes effect after restarting the systemd-login service or rebooting the system. To restart
the service, run this command as the root user.

service systemd-logind restart

SSH Connection Threshold
Certain Greenplum Database management utilities including gpexpand, gpinitsystem, and
gpaddmirrors, use secure shell (SSH) connections between systems to perform their tasks. In large
Greenplum Database deployments, cloud deployments, or deployments with a large number of segments
per host, these utilities may exceed the hosts' maximum threshold for unauthenticated connections. When
this occurs, you receive errors such as: ssh_exchange_identification: Connection closed by
remote host.

To increase this connection threshold for your Greenplum Database system, update the SSH
MaxStartups and MaxSessions configuration parameters in one of the /etc/ssh/sshd_config or /
etc/sshd_config SSH daemon configuration files.

Installing and Upgrading Greenplum Release Notes

53

If you specify MaxStartups and MaxSessions using a single integer value, you identify the maximum
number of concurrent unauthenticated connections (MaxStartups) and maximum number of open shell,
login, or subsystem sessions permitted per network connection (MaxSessions). For example:

MaxStartups 200
MaxSessions 200

If you specify MaxStartups using the "start:rate:full" syntax, you enable random early connection drop
by the SSH daemon. start identifies the maximum number of unauthenticated SSH connection attempts
allowed. Once start number of unauthenticated connection attempts is reached, the SSH daemon refuses
rate percent of subsequent connection attempts. full identifies the maximum number of unauthenticated
connection attempts after which all attempts are refused. For example:

Max Startups 10:30:200
MaxSessions 200

Restart the SSH daemon after you update MaxStartups and MaxSessions. For example, on a CentOS
6 system, run the following command as the root user:

service sshd restart

For detailed information about SSH configuration options, refer to the SSH documentation for your Linux
distribution.

Note: If the grubby command does not update the kernels of a RHEL 7.x or CentOS 7.x
system, you can manually update all kernels on the system. For example, to add the parameter
transparent_hugepage=never to all kernels on a system.

1. Add the parameter to the GRUB_CMDLINE_LINUX line in the file parameter in /etc/default/
grub.

GRUB_TIMEOUT=5
GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"
GRUB_DEFAULT=saved
GRUB_DISABLE_SUBMENU=true
GRUB_TERMINAL_OUTPUT="console"
GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.lv=cl/root rd.lvm.lv=cl/
swap rhgb quiet transparent_hugepage=never"
GRUB_DISABLE_RECOVERY="true"

2. As root, run the grub2-mkconfig command to update the kernels.

grub2-mkconfig -o /boot/grub2/grub.cfg

3. Reboot the system.

Synchronizing System Clocks
You should use NTP (Network Time Protocol) to synchronize the system clocks on all hosts that comprise
your Greenplum Database system. See www.ntp.org for more information about NTP.

NTP on the segment hosts should be configured to use the master host as the primary time source, and
the standby master as the secondary time source. On the master and standby master hosts, configure
NTP to point to your preferred time server.

http://www.ntp.org

Installing and Upgrading Greenplum Release Notes

54

To configure NTP
1. On the master host, log in as root and edit the /etc/ntp.conf file. Set the server parameter to point

to your data center's NTP time server. For example (if 10.6.220.20 was the IP address of your data
center's NTP server):

server 10.6.220.20

2. On each segment host, log in as root and edit the /etc/ntp.conf file. Set the first server parameter
to point to the master host, and the second server parameter to point to the standby master host. For
example:

server mdw prefer
server smdw

3. On the standby master host, log in as root and edit the /etc/ntp.conf file. Set the first server
parameter to point to the primary master host, and the second server parameter to point to your data
center's NTP time server. For example:

server mdw prefer
server 10.6.220.20

4. On the master host, use the NTP daemon synchronize the system clocks on all Greenplum hosts. For
example, using gpssh:

gpssh -f hostfile_gpssh_allhosts -v -e 'ntpd'

Creating the Greenplum Administrative User
Create a dedicated operating system user account on each node to run and administer Greenplum
Database. This user account is named gpadmin by convention.

Important: You cannot run the Greenplum Database server as root.

The gpadmin user must have permission to access the services and directories required to install and run
Greenplum Database.

The gpadmin user on each Greenplum host must have an SSH key pair installed and be able to SSH from
any host in the cluster to any other host in the cluster without entering a password or passphrase (called
"passwordless SSH"). If you enable passwordless SSH from the master host to every other host in the
cluster ("1-n passwordless SSH"), you can use the Greenplum Database gpssh-exkeys command-line
utility later to enable passwordless SSH from every host to every other host ("n-n passwordless SSH").

You can optionally give the gpadmin user sudo privilege, so that you can easily administer all hosts in the
Greenplum Database cluster as gpadmin using the sudo, ssh/scp, and gpssh/gpscp commands.

The following steps show how to set up the gpadmin user on a host, set a password, create an SSH key
pair, and (optionally) enable sudo capability. These steps must be performed as root on every Greenplum
Database cluster host. (For a large Greenplum Database cluster you will want to automate these steps
using your system provisioning tools.)

Note: See Example Ansible Playbook for an example that shows how to automate the tasks of
creating the gpadmin user and installing the Greenplum Database software on all hosts in the
cluster.

1. Create the gpadmin group and user.

Note: If you are installing Greenplum Database on RHEL 7.2 or CentOS 7.2 and want to
disable IPC object removal by creating the gpadmin user as a system account, provide both
the -r option (create the user as a system account) and the -m option (create a home directory)
to the useradd command. On Ubuntu systems, you must use the -m option with the useradd
command to create a home directory for a user.

Installing and Upgrading Greenplum Release Notes

55

This example creates the gpadmin group, creates the gpadmin user as a system account with a home
directory and as a member of the gpadmin group, and creates a password for the user.

groupadd gpadmin
useradd gpadmin -r -m -g gpadmin
passwd gpadmin
New password: <changeme>
Retype new password: <changeme>

Note: Make sure the gpadmin user has the same user id (uid) and group id (gid) numbers on
each host to prevent problems with scripts or services that use them for identity or permissions.
For example, backing up Greenplum databases to some networked filesy stems or storage
appliances could fail if the gpadmin user has different uid or gid numbers on different segment
hosts. When you create the gpadmin group and user, you can use the groupadd -g option to
specify a gid number and the useradd -u option to specify the uid number. Use the command
id gpadmin to see the uid and gid for the gpadmin user on the current host.

2. Switch to the gpadmin user and generate an SSH key pair for the gpadmin user.

$ su gpadmin
$ ssh-keygen -t rsa -b 4096
Generating public/private rsa key pair.
Enter file in which to save the key (/home/gpadmin/.ssh/id_rsa):
Created directory '/home/gpadmin/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:

At the passphrase prompts, press Enter so that SSH connections will not require entry of a passphrase.
3. (Optional) Grant sudo access to the gpadmin user.

On Red Hat or CentOS, run visudo and uncomment the %wheel group entry.

%wheel ALL=(ALL) NOPASSWD: ALL

Make sure you uncomment the line that has the NOPASSWD keyword.

Add the gpadmin user to the wheel group with this command.

usermod -aG wheel gpadmin

Next Steps
• Installing Greenplum Database Software
• Validating Your Systems
• Initializing a Greenplum Database System

Installing and Upgrading Greenplum Release Notes

56

Installing the Greenplum Database Software
Describes how to install the Greenplum Database software binaries on all of the hosts that will comprise
your Greenplum Database system, how to enable passwordless SSH for the gpadmin user, and how to
verify the installation.

Perform the following tasks in order:

1. Installing Greenplum Database
2. Enabling Passwordless SSH
3. Confirm the software installation.
4. Next Steps

Installing Greenplum Database
You must install Greenplum Database on each host machine of the Greenplum Database system. Pivotal
distributes the Greenplum Database software as a downloadable package that you install on each host
system with the operating system's package management system. You can download the package from
Pivotal Network.

Before you begin installing Greenplum Database, be sure you have completed the steps in Configuring
Your Systems to configure each of the master, standby master, and segment host machines for
Greenplum Database.

Important: After installing Greenplum Database, you must set Greenplum Database environment
variables. See Setting Greenplum Environment Variables.

See Example Ansible Playbook for an example script that shows how you can automate creating the
gpadmin user and installing the Greenplum Database.

Follow these instructions to install Greenplum Database.

Important: You require sudo or root user access to install from a pre-built RPM or DEB file.

1. Download and copy the Greenplum Database package to the gpadmin user's home directory on the
master, standby master, and every segment host machine. The distribution file name has the format
greenplum-db-<version>-<platform>.rpm for RHEL, CentOS, and Oracle Linux systems, or
greenplum-db-<version>-<platform>.deb for Ubuntu systems, where <platform> is similar to
rhel7-x86_64 (Red Hat 7 64-bit).

Note: For Oracle Linux installations, download and install the rhel7-x86_64distribution files.
2. With sudo (or as root), install the Greenplum Database package on each host machine using your

system's package manager software.

• For RHEL/CentOS systems, execute the yum command:

$ sudo yum install ./greenplum-db-<version>-<platform>.rpm

• For Ubuntu systems, execute the apt command:

$ sudo apt install ./greenplum-db-<version>-<platform>.deb

The yum or apt command automatically installs software dependencies, copies the Greenplum
Database software files into a version-specific directory under /usr/local, /usr/local/
greenplum-db-<version>, and creates the symbolic link /usr/local/greenplum-db to the
installation directory.

3. Change the owner and group of the installed files to gpadmin:

$ sudo chown -R gpadmin:gpadmin /usr/local/greenplum*

https://network.pivotal.io/products/pivotal-gpdb

Installing and Upgrading Greenplum Release Notes

57

$ sudo chgrp -R gpadmin /usr/local/greenplum*

(Optional) Installing to a Non-Default Directory
On RHEL/CentOS systems, you can use the rpm command with the --prefix option to install
Greenplum Database to a non-default directory (instead of under /usr/local). Note, however, that
using rpm does not automatically install Greenplum Database dependencies; you must manually install
dependencies to each host system.

Follow these instructions to install Greenplum Database to a specific directory.

Important: You require sudo or root user access to install from a pre-built RPM file.

1. Download and copy the Greenplum Database package to the gpadmin user's home directory on the
master, standby master, and every segment host machine. The distribution file name has the format
greenplum-db-<version>-<platform>.rpm for RHEL and CentOS systems, or greenplum-db-
<version>-<platform>.deb for Ubuntu systems, where <platform> is similar to rhel7-x86_64
(Red Hat 7 64-bit).

2. Manually install the Greenplum Database dependencies to each host system. For RHEL/CentOS 7:

$ sudo yum install apr apr-util bash bzip2 curl krb5 libcurl libevent \
libxml2 libyaml zlib openldap openssh openssl openssl-libs perl readline
 rsync R sed tar zip

For RHEL/CentOS 6:

$ sudo yum install apr apr-util bash bzip2 curl krb5 libcurl libevent2 \
libxml2 libyaml zlib openldap openssh openssl openssl-libs perl readline
 rsync R sed tar zip

3. Use rpm with the --prefix option to install the Greenplum Database package to your chosen
installation directory on each host machine:

$ sudo rpm --install ./greenplum-db-<version>-<platform>.rpm --
prefix=<directory>

The rpm command copies the Greenplum Database software files into a version-specific directory
under your chosen <directory>, <directory>/greenplum-db-<version>, and creates the
symbolic link <directory>/greenplum-db to the versioned directory.

4. Change the owner and group of the installed files to gpadmin:

$ sudo chown -R gpadmin:gpadmin <directory>/greenplum*

Note: All example procedures in the Greenplum Database documentation assume that you
installed to the default directory, /usr/local. If you install to a non-default directory, substitute
that directory for /usr/local.

If you install to a non-default directory using rpm, you will need to continue using rpm (and of yum)
to perform minor version upgrades; these changes are covered in the upgrade documentation.

Enabling Passwordless SSH
The gpadmin user on each Greenplum host must be able to SSH from any host in the cluster to any other
host in the cluster without entering a password or passphrase (called "passwordless SSH"). If you enable
passwordless SSH from the master host to every other host in the cluster ("1-n passwordless SSH"), you
can use the Greenplum Database gpssh-exkeys command-line utility to enable passwordless SSH from
every host to every other host ("n-n passwordless SSH").

1. Log in to the master host as the gpadmin user.

Installing and Upgrading Greenplum Release Notes

58

2. Source the path file in the Greenplum Database installation directory.

$ source /usr/local/greenplum-db-<version>/greenplum_path.sh

Note: Add the above source command to the gpadmin user's .bashrc or other shell startup
file so that the Greenplum Database path and environment variables are set whenever you log in
as gpadmin.

3. Use the ssh-copy-id command to add the gpadmin user's public key to the authorized_hosts
SSH file on every other host in the cluster.

$ ssh-copy-id smdw
$ ssh-copy-id sdw1
$ ssh-copy-id sdw2
$ ssh-copy-id sdw3
. . .

This enables 1-n passwordless SSH. You will be prompted to enter the gpadmin user's password
for each host. If you have the sshpass command on your system, you can use a command like the
following to avoid the prompt.

$ SSHPASS=<password> sshpass -e ssh-copy-id smdw

4. In the gpadmin home directory, create a file named hostfile_exkeys that has the machine
configured host names and host addresses (interface names) for each host in your Greenplum system
(master, standby master, and segment hosts). Make sure there are no blank lines or extra spaces.
Check the /etc/hosts file on your systems for the correct host names to use for your environment.
For example, if you have a master, standby master, and three segment hosts with two unbonded
network interfaces per host, your file would look something like this:

mdw
mdw-1
mdw-2
smdw
smdw-1
smdw-2
sdw1
sdw1-1
sdw1-2
sdw2
sdw2-1
sdw2-2
sdw3
sdw3-1
sdw3-2

5. Run the gpssh-exkeys utility with your hostfile_exkeys file to enable n-n passwordless SSH for
the gpadmin user.

$ gpssh-exkeys -f hostfile_exkeys

Confirming Your Installation
To make sure the Greenplum software was installed and configured correctly, run the following
confirmation steps from your Greenplum master host. If necessary, correct any problems before continuing
on to the next task.

1. Log in to the master host as gpadmin:

$ su - gpadmin

Installing and Upgrading Greenplum Release Notes

59

2. Use the gpssh utility to see if you can log in to all hosts without a password prompt, and to confirm that
the Greenplum software was installed on all hosts. Use the hostfile_exkeys file you used to set up
passwordless SSH. For example:

$ gpssh -f hostfile_exkeys -e 'ls -l /usr/local/greenplum-db-<version>'

If the installation was successful, you should be able to log in to all hosts without a password prompt.
All hosts should show that they have the same contents in their installation directories, and that the
directories are owned by the gpadmin user.

If you are prompted for a password, run the following command to redo the ssh key exchange:

$ gpssh-exkeys -f hostfile_exkeys

About Your Greenplum Database Installation
• greenplum_path.sh — This file contains the environment variables for Greenplum Database. See

Setting Greenplum Environment Variables.
• bin — This directory contains the Greenplum Database management utilities. This directory also

contains the PostgreSQL client and server programs, most of which are also used in Greenplum
Database.

• docs/cli_help — This directory contains help files for Greenplum Database command-line utilities.
• docs/cli_help/gpconfigs — This directory contains sample gpinitsystem configuration files and

host files that can be modified and used when installing and initializing a Greenplum Database system.
• ext — Bundled programs (such as Python) used by some Greenplum Database utilities.
• include — The C header files for Greenplum Database.
• lib — Greenplum Database and PostgreSQL library files.
• sbin — Supporting/Internal scripts and programs.
• share — Shared files for Greenplum Database.

Next Steps
• Creating the Data Storage Areas
• Validating Your Systems
• Initializing a Greenplum Database System

Installing and Upgrading Greenplum Release Notes

60

Creating the Data Storage Areas
Describes how to create the directory locations where Greenplum Database data is stored for each master,
standby, and segment instance.

Creating Data Storage Areas on the Master and Standby Master
Hosts

A data storage area is required on the Greenplum Database master and standby master hosts to store
Greenplum Database system data such as catalog data and other system metadata.

To create the data directory location on the master
The data directory location on the master is different than those on the segments. The master does
not store any user data, only the system catalog tables and system metadata are stored on the master
instance, therefore you do not need to designate as much storage space as on the segments.

1. Create or choose a directory that will serve as your master data storage area. This directory should
have sufficient disk space for your data and be owned by the gpadmin user and group. For example,
run the following commands as root:

mkdir -p /data/master

2. Change ownership of this directory to the gpadmin user. For example:

chown gpadmin:gpadmin /data/master

3. Using gpssh, create the master data directory location on your standby master as well. For example:

source /usr/local/greenplum-db/greenplum_path.sh
gpssh -h smdw -e 'mkdir -p /data/master'
gpssh -h smdw -e 'chown gpadmin:gpadmin /data/master'

Creating Data Storage Areas on Segment Hosts
Data storage areas are required on the Greenplum Database segment hosts for primary segments.
Separate storage areas are required for mirror segments.

To create the data directory locations on all segment hosts
1. On the master host, log in as root:

su

2. Create a file called hostfile_gpssh_segonly. This file should have only one machine configured
host name for each segment host. For example, if you have three segment hosts:

sdw1
sdw2
sdw3

3. Using gpssh, create the primary and mirror data directory locations on all segment hosts at once using
the hostfile_gpssh_segonly file you just created. For example:

source /usr/local/greenplum-db/greenplum_path.sh
gpssh -f hostfile_gpssh_segonly -e 'mkdir -p /data/primary'

Installing and Upgrading Greenplum Release Notes

61

gpssh -f hostfile_gpssh_segonly -e 'mkdir -p /data/mirror'
gpssh -f hostfile_gpssh_segonly -e 'chown -R gpadmin /data/*'

Next Steps
• Validating Your Systems
• Initializing a Greenplum Database System

Installing and Upgrading Greenplum Release Notes

62

Validating Your Systems
Validate your hardware and network performance.

Greenplum provides a management utility called gpcheckperf, which can be used to identify hardware
and system-level issues on the machines in your Greenplum Database array. gpcheckperf starts a
session on the specified hosts and runs the following performance tests:

• Network Performance (gpnetbench*)
• Disk I/O Performance (dd test)
• Memory Bandwidth (stream test)

Before using gpcheckperf, you must have a trusted host setup between the hosts involved in the
performance test. You can use the utility gpssh-exkeys to update the known host files and exchange
public keys between hosts if you have not done so already. Note that gpcheckperf calls to gpssh and
gpscp, so these Greenplum utilities must be in your $PATH.

Validating Network Performance
To test network performance, run gpcheckperf with one of the network test run options: parallel pair test
(-r N), serial pair test (-r n), or full matrix test (-r M). The utility runs a network benchmark program
that transfers a 5 second stream of data from the current host to each remote host included in the test. By
default, the data is transferred in parallel to each remote host and the minimum, maximum, average and
median network transfer rates are reported in megabytes (MB) per second. If the summary transfer rate is
slower than expected (less than 100 MB/s), you can run the network test serially using the -r n option to
obtain per-host results. To run a full-matrix bandwidth test, you can specify -r M which will cause every
host to send and receive data from every other host specified. This test is best used to validate if the switch
fabric can tolerate a full-matrix workload.

Most systems in a Greenplum Database array are configured with multiple network interface cards (NICs),
each NIC on its own subnet. When testing network performance, it is important to test each subnet
individually. For example, considering the following network configuration of two NICs per host:

Table 6: Example Network Interface Configuration

Greenplum Host Subnet1 NICs Subnet2 NICs

Segment 1 sdw1-1 sdw1-2

Segment 2 sdw2-1 sdw2-2

Segment 3 sdw3-1 sdw3-2

You would create four distinct host files for use with the gpcheckperf network test:

Table 7: Example Network Test Host File Contents

hostfile_gpchecknet_ic1 hostfile_gpchecknet_ic2

sdw1-1 sdw1-2

sdw2-1 sdw2-2

sdw3-1 sdw3-2

Installing and Upgrading Greenplum Release Notes

63

You would then run gpcheckperf once per subnet. For example (if testing an even number of hosts, run
in parallel pairs test mode):

$ gpcheckperf -f hostfile_gpchecknet_ic1 -r N -d /tmp > subnet1.out
$ gpcheckperf -f hostfile_gpchecknet_ic2 -r N -d /tmp > subnet2.out

If you have an odd number of hosts to test, you can run in serial test mode (-r n).

Validating Disk I/O and Memory Bandwidth
To test disk and memory bandwidth performance, run gpcheckperf with the disk and stream test run
options (-r ds). The disk test uses the dd command (a standard UNIX utility) to test the sequential
throughput performance of a logical disk or file system. The memory test uses the STREAM benchmark
program to measure sustainable memory bandwidth. Results are reported in MB per second (MB/s).

To run the disk and stream tests
1. Log in on the master host as the gpadmin user.
2. Source the greenplum_path.sh path file from your Greenplum installation. For example:

$ source /usr/local/greenplum-db/greenplum_path.sh

3. Create a host file named hostfile_gpcheckperf that has one host name per segment host. Do not
include the master host. For example:

sdw1
sdw2
sdw3
sdw4

4. Run the gpcheckperf utility using the hostfile_gpcheckperf file you just created. Use the -d
option to specify the file systems you want to test on each host (you must have write access to these
directories). You will want to test all primary and mirror segment data directory locations. For example:

$ gpcheckperf -f hostfile_gpcheckperf -r ds -D \
 -d /data1/primary -d /data2/primary \
 -d /data1/mirror -d /data2/mirror

5. The utility may take a while to perform the tests as it is copying very large files between the hosts.
When it is finished you will see the summary results for the Disk Write, Disk Read, and Stream tests.

Installing and Upgrading Greenplum Release Notes

64

Initializing a Greenplum Database System
Describes how to initialize a Greenplum Database database system.

The instructions in this chapter assume you have already prepared your hosts as described in Configuring
Your Systems and installed the Greenplum Database software on all of the hosts in the system according
to the instructions in Installing the Greenplum Database Software.

This chapter contains the following topics:

• Overview
• Initializing Greenplum Database
• Setting Greenplum Environment Variables
• Next Steps

Overview
Because Greenplum Database is distributed, the process for initializing a Greenplum Database
management system (DBMS) involves initializing several individual PostgreSQL database instances
(called segment instances in Greenplum).

Each database instance (the master and all segments) must be initialized across all of the hosts in the
system in such a way that they can all work together as a unified DBMS. Greenplum provides its own
version of initdb called gpinitsystem, which takes care of initializing the database on the master and
on each segment instance, and starting each instance in the correct order.

After the Greenplum Database database system has been initialized and started, you can then create and
manage databases as you would in a regular PostgreSQL DBMS by connecting to the Greenplum master.

Initializing Greenplum Database
These are the high-level tasks for initializing Greenplum Database:

1. Make sure you have completed all of the installation tasks described in Configuring Your Systems and
Installing the Greenplum Database Software.

2. Create a host file that contains the host addresses of your segments. See Creating the Initialization
Host File.

3. Create your Greenplum Database system configuration file. See Creating the Greenplum Database
Configuration File.

4. By default, Greenplum Database will be initialized using the locale of the master host system. Make
sure this is the correct locale you want to use, as some locale options cannot be changed after
initialization. See Configuring Timezone and Localization Settings for more information.

5. Run the Greenplum Database initialization utility on the master host. See Running the Initialization
Utility.

6. Set the Greenplum Database timezone. See Setting the Greenplum Database Timezone.
7. Set environment variables for the Greenplum Database user. See Setting Greenplum Environment

Variables.

When performing the following initialization tasks, you must be logged into the master host as the
gpadmin user, and to run Greenplum Database utilities, you must source the greenplum_path.sh file to
set Greenplum Database environment variables. For example, if you are logged into the master, run these
commands.

$ su - gpadmin
$ source /usr/local/greenplum-db/greenplum_path.sh

Installing and Upgrading Greenplum Release Notes

65

Creating the Initialization Host File
The gpinitsystem utility requires a host file that contains the list of addresses for each segment
host. The initialization utility determines the number of segment instances per host by the number
host addresses listed per host times the number of data directory locations specified in the
gpinitsystem_config file.

This file should only contain segment host addresses (not the master or standby master). For segment
machines with multiple, unbonded network interfaces, this file should list the host address names for each
interface — one per line.

Note: The Greenplum Database segment host naming convention is sdwN where sdw is a prefix
and N is an integer. For example, sdw2 and so on. If hosts have multiple unbonded NICs, the
convention is to append a dash (-) and number to the host name. For example, sdw1-1 and
sdw1-2 are the two interface names for host sdw1. However, NIC bonding is recommended to
create a load-balanced, fault-tolerant network.

To create the initialization host file
1. Create a file named hostfile_gpinitsystem. In this file add the host address name(s) of your

segment host interfaces, one name per line, no extra lines or spaces. For example, if you have four
segment hosts with two unbonded network interfaces each:

sdw1-1
sdw1-2
sdw2-1
sdw2-2
sdw3-1
sdw3-2
sdw4-1
sdw4-2

2. Save and close the file.

Note: If you are not sure of the host names and/or interface address names used by your
machines, look in the /etc/hosts file.

Creating the Greenplum Database Configuration File
Your Greenplum Database configuration file tells the gpinitsystem utility how you want to configure your
Greenplum Database system. An example configuration file can be found in $GPHOME/docs/cli_help/
gpconfigs/gpinitsystem_config.

To create a gpinitsystem_config file
1. Make a copy of the gpinitsystem_config file to use as a starting point. For example:

$ cp $GPHOME/docs/cli_help/gpconfigs/gpinitsystem_config \
 /home/gpadmin/gpconfigs/gpinitsystem_config

2. Open the file you just copied in a text editor.

Set all of the required parameters according to your environment. See gpinitsystem for more
information. A Greenplum Database system must contain a master instance and at least two segment
instances (even if setting up a single node system).

The DATA_DIRECTORY parameter is what determines how many segments per host will be created. If
your segment hosts have multiple network interfaces, and you used their interface address names in
your host file, the number of segments will be evenly spread over the number of available interfaces.

Installing and Upgrading Greenplum Release Notes

66

To specify PORT_BASE, review the port range specified in the net.ipv4.ip_local_port_range
parameter in the /etc/sysctl.conf file. See Recommended OS Parameters Settings.

Here is an example of the required parameters in the gpinitsystem_config file:

ARRAY_NAME="Greenplum Data Platform"
SEG_PREFIX=gpseg
PORT_BASE=6000
declare -a DATA_DIRECTORY=(/data1/primary /data1/primary /data1/primary /
data2/primary /data2/primary /data2/primary)
MASTER_HOSTNAME=mdw
MASTER_DIRECTORY=/data/master
MASTER_PORT=5432
TRUSTED SHELL=ssh
CHECK_POINT_SEGMENTS=8
ENCODING=UNICODE

3. (Optional) If you want to deploy mirror segments, uncomment and set the mirroring parameters
according to your environment. To specify MIRROR_PORT_BASE, review the port range specified
under the net.ipv4.ip_local_port_range parameter in the /etc/sysctl.conf file. Here is an
example of the optional mirror parameters in the gpinitsystem_config file:

MIRROR_PORT_BASE=7000
declare -a MIRROR_DATA_DIRECTORY=(/data1/mirror /data1/mirror /data1/
mirror /data2/mirror /data2/mirror /data2/mirror)

Note: You can initialize your Greenplum system with primary segments only and deploy mirrors
later using the gpaddmirrors utility.

4. Save and close the file.

Running the Initialization Utility
The gpinitsystem utility will create a Greenplum Database system using the values defined in the
configuration file.

These steps assume you are logged in as the gpadmin user and have sourced the greenplum_path.sh
file to set Greenplum Database environment variables.

To run the initialization utility
1. Run the following command referencing the path and file name of your initialization configuration file

(gpinitsystem_config) and host file (hostfile_gpinitsystem). For example:

$ cd ~
$ gpinitsystem -c gpconfigs/gpinitsystem_config -h gpconfigs/
hostfile_gpinitsystem

For a fully redundant system (with a standby master and a spread mirror configuration) include the -s
and -S options. For example:

$ gpinitsystem -c gpconfigs/gpinitsystem_config -h gpconfigs/
hostfile_gpinitsystem \
 -s standby_master_hostname -S

During a new cluster creation, you may use the -O output_configuration_file option to save
the cluster configuration details in a file. For example:

$ gpinitsystem -c gpconfigs/gpinitsystem_config -O gpconfigs/
config_template

Installing and Upgrading Greenplum Release Notes

67

This output file can be edited and used at a later stage as the input file of the -I option, to create a new
cluster or to recover from a backup. See gpinitsystem for further details.

2. The utility will verify your setup information and make sure it can connect to each host and access the
data directories specified in your configuration. If all of the pre-checks are successful, the utility will
prompt you to confirm your configuration. For example:

=> Continue with Greenplum creation? Yy/Nn

3. Press y to start the initialization.
4. The utility will then begin setup and initialization of the master instance and each segment instance in

the system. Each segment instance is set up in parallel. Depending on the number of segments, this
process can take a while.

5. At the end of a successful setup, the utility will start your Greenplum Database system. You should see:

=> Greenplum Database instance successfully created.

Troubleshooting Initialization Problems

If the utility encounters any errors while setting up an instance, the entire process will fail, and could
possibly leave you with a partially created system. Refer to the error messages and logs to determine
the cause of the failure and where in the process the failure occurred. Log files are created in ~/
gpAdminLogs.

Depending on when the error occurred in the process, you may need to clean up and then try the
gpinitsystem utility again. For example, if some segment instances were created and some failed, you
may need to stop postgres processes and remove any utility-created data directories from your data
storage area(s). A backout script is created to help with this cleanup if necessary.

Using the Backout Script
If the gpinitsystem utility fails, it will create the following backout script if it has left your system in a partially
installed state:

~/gpAdminLogs/backout_gpinitsystem_<user>_<timestamp>

You can use this script to clean up a partially created Greenplum Database system. This backout script will
remove any utility-created data directories, postgres processes, and log files. After correcting the error
that caused gpinitsystem to fail and running the backout script, you should be ready to retry initializing
your Greenplum Database array.

The following example shows how to run the backout script:

$ sh backout_gpinitsystem_gpadmin_20071031_121053

Setting the Greenplum Database Timezone
As a best practice, configure Greenplum Database and the host systems to use a known, supported
timezone. Greenplum Database uses a timezone from a set of internally stored PostgreSQL timezones.
Setting the Greenplum Database timezone prevents Greenplum Database from selecting a timezone
each time the cluster is restarted and sets the timezone for the Greenplum Database master and segment
instances.

Use the gpconfig utility to show and set the Greenplum Database timezone. For example, these
commands show the Greenplum Database timezone and set the timezone to US/Pacific.

$ gpconfig -s TimeZone
$ gpconfig -c TimeZone -v 'US/Pacific'

Installing and Upgrading Greenplum Release Notes

68

You must restart Greenplum Database after changing the timezone. The command gpstop -ra restarts
Greenplum Database. The catalog view pg_timezone_names provides Greenplum Database timezone
information.

For more information about the Greenplum Database timezone, see Configuring Timezone and
Localization Settings.

Setting Greenplum Environment Variables
You must set environment variables in the Greenplum Database user (gpadmin) environment
that runs Greenplum Database on the Greenplum Database master and standby master hosts. A
greenplum_path.sh file is provided in the Greenplum Database installation directory with environment
variable settings for Greenplum Database.

The Greenplum Database management utilities also require that the MASTER_DATA_DIRECTORY
environment variable be set. This should point to the directory created by the gpinitsystem utility in the
master data directory location.

Note: The greenplum_path.sh script changes the operating environment in order to support
running the Greenplum Database-specific utilities. These same changes to the environment can
negatively affect the operation of other system-level utilities, such as ps or yum. Use separate
accounts for performing system administration and database administration, instead of attempting
to perform both functions as gpadmin.

These steps ensure that the environment variables are set for the gpadmin user after a system reboot.

To set up the gpadmin environment for Greenplum Database
1. Open the gpadmin profile file (such as .bashrc) in a text editor. For example:

$ vi ~/.bashrc

2. Add lines to this file to source the greenplum_path.sh file and set the MASTER_DATA_DIRECTORY
environment variable. For example:

source /usr/local/greenplum-db/greenplum_path.sh
export MASTER_DATA_DIRECTORY=/data/master/gpseg-1

3. (Optional) You may also want to set some client session environment variables such as PGPORT,
PGUSER and PGDATABASE for convenience. For example:

export PGPORT=5432
export PGUSER=gpadmin
export PGDATABASE=default_login_database_name

4. (Optional) If you use RHEL 7 or CentOS 7, add the following line to the end of the .bashrc file to
enable using the ps command in the greenplum_path.sh environment:

export LD_PRELOAD=/lib64/libz.so.1 ps

5. Save and close the file.
6. After editing the profile file, source it to make the changes active. For example:

$ source ~/.bashrc

7. If you have a standby master host, copy your environment file to the standby master as well. For
example:

$ cd ~
$ scp .bashrc standby_hostname:`pwd`

Installing and Upgrading Greenplum Release Notes

69

Note: The .bashrc file should not produce any output. If you wish to have a message display to
users upon logging in, use the .bash_profile file instead.

Next Steps
After your system is up and running, the next steps are:

• Allowing Client Connections
• Creating Databases and Loading Data

Allowing Client Connections
After a Greenplum Database is first initialized it will only allow local connections to the database from
the gpadmin role (or whatever system user ran gpinitsystem). If you would like other users or client
machines to be able to connect to Greenplum Database, you must give them access. See the Greenplum
Database Administrator Guide for more information.

Creating Databases and Loading Data
After verifying your installation, you may want to begin creating databases and loading data. See Defining
Database Objects and Loading and Unloading Data in the Greenplum Database Administrator Guide for
more information about creating databases, schemas, tables, and other database objects in Greenplum
Database and loading your data.

Installing and Upgrading Greenplum Release Notes

70

Installing Optional Extensions
Information about installing optional Greenplum Database extensions and packages, such as the
Procedural Language extensions and the Python and R Data Science Packages.

Procedural Language, Machine Learning, and Geospatial
Extensions

Optional. Use the Greenplum package manager (gppkg) to install Greenplum Database extensions such
as PL/Java, PL/R, PostGIS, and MADlib, along with their dependencies, across an entire cluster. The
package manager also integrates with existing scripts so that any packages are automatically installed on
any new hosts introduced into the system following cluster expansion or segment host recovery.

See gppkg for more information, including usage.

Extension packages can be downloaded from the Greenplum Database page on Pivotal Network. The
extension documentation in the Greenplum Database Reference Guide contains information about
installing extension packages and using extensions.

• Greenplum PL/R Language Extension
• Greenplum PL/Java Language Extension
• Greenplum MADlib Extension for Analytics
• Greenplum PostGIS Extension

Important: If you intend to use an extension package with Greenplum Database 6 you must install
and use a Greenplum Database extension package (gppkg files and contrib modules) that is built
for Greenplum Database 6. Any custom modules that were used with earlier versions must be
rebuilt for use with Greenplum Database 6.

Python Data Science Module Package
Greenplum Database provides a collection of data science-related Python modules that can be used with
the Greenplum Database PL/Python language. You can download these modules in .gppkg format from
Pivotal Network.

This section contains the following information:

• Python Data Science Modules
• Installing the Python Data Science Module Package
• Uninstalling the Python Data Science Module Package

For information about the Greenplum Database PL/Python Language, see Greenplum PL/Python
Language Extension.

Python Data Science Modules
Modules provided in the Python Data Science package include:

Table 8: Data Science Modules

Module Name Description/Used For

atomicwrites Atomic file writes

attrs Declarative approach for defining class attributes

Autograd Gradient-based optimization

https://network.pivotal.io/products/pivotal-gpdb
https://network.pivotal.io/products/pivotal-gpdb

Installing and Upgrading Greenplum Release Notes

71

Module Name Description/Used For

backports.functools-lru-cache Backports functools.lru_cache from Python 3.3

Beautiful Soup Navigating HTML and XML

Blis Blis linear algebra routines

Boto Amazon Web Services library

Boto3 The AWS SDK

botocore Low-level, data-driven core of boto3

Bottleneck Fast NumPy array functions

Bz2file Read and write bzip2-compressed files

Certifi Provides Mozilla CA bundle

Chardet Universal encoding detector for Python 2 and 3

ConfigParser Updated configparser module

contextlib2 Backports and enhancements for the contextlib module

Cycler Composable style cycles

cymem Manage calls to calloc/free through Cython

Docutils Python documentation utilities

enum34 Backport of Python 3.4 Enum

Funcsigs Python function signatures from PEP362

functools32 Backport of the functools module from Python 3.2.3

funcy Functional tools focused on practicality

future Compatibility layer between Python 2 and Python 3

futures Backport of the concurrent.futures package from Python 3

Gensim Topic modeling and document indexing

GluonTS (Python 3 only) Probabilistic time series modeling

h5py Read and write HDF5 files

idna Internationalized Domain Names in Applications (IDNA)

importlib-metadata Read metadata from Python packages

Jinja2 Stand-alone template engine

JMESPath JSON Matching Expressions

Joblib Python functions as pipeline jobs

jsonschema JSON Schema validation

Keras (RHEL/CentOS 7 only) Deep learning

Keras Applications Reference implementations of popular deep learning models

Keras Preprocessing Easy data preprocessing and data augmentation for deep learning
models

Kiwi A fast implementation of the Cassowary constraint solver

Installing and Upgrading Greenplum Release Notes

72

Module Name Description/Used For

Lifelines Survival analysis

lxml XML and HTML processing

MarkupSafe Safely add untrusted strings to HTML/XML markup

Matplotlib Python plotting package

mock Rolling backport of unittest.mock

more-itertools More routines for operating on iterables, beyond itertools

MurmurHash Cython bindings for MurmurHash

NLTK Natural language toolkit

NumExpr Fast numerical expression evaluator for NumPy

NumPy Scientific computing

packaging Core utilities for Python packages

Pandas Data analysis

pathlib, pathlib2 Object-oriented filesystem paths

patsy Package for describing statistical models and for building design
matrices

Pattern-en Part-of-speech tagging

pip Tool for installing Python packages

plac Command line arguments parser

pluggy Plugin and hook calling mechanisms

preshed Cython hash table that trusts the keys are pre-hashed

protobuf Protocol buffers

py Cross-python path, ini-parsing, io, code, log facilities

pyLDAvis Interactive topic model visualization

PyMC3 Statistical modeling and probabilistic machine learning

pyparsing Python parsing

pytest Testing framework

python-dateutil Extensions to the standard Python datetime module

pytz World timezone definitions, modern and historical

PyYAML YAML parser and emitter

requests HTTP library

s3transfer Amazon S3 transfer manager

scandir Directory iteration function

scikit-learn Machine learning data mining and analysis

SciPy Scientific computing

setuptools Download, build, install, upgrade, and uninstall Python packages

Installing and Upgrading Greenplum Release Notes

73

Module Name Description/Used For

six Python 2 and 3 compatibility library

smart-open Utilities for streaming large files (S3, HDFS, gzip, bz2, and so forth)

spaCy Large scale natural language processing

srsly Modern high-performance serialization utilities for Python

StatsModels Statistical modeling

subprocess32 Backport of the subprocess module from Python 3

Tensorflow (RHEL/CentOS 7
only)

Numerical computation using data flow graphs

Theano Optimizing compiler for evaluating mathematical expressions on
CPUs and GPUs

thinc Practical Machine Learning for NLP

tqdm Fast, extensible progress meter

urllib3 HTTP library with thread-safe connection pooling, file post, and more

wasabi Lightweight console printing and formatting toolkit

wcwidth Measures number of Terminal column cells of wide-character codes

Werkzeug Comprehensive WSGI web application library

wheel A built-package format for Python

XGBoost Gradient boosting, classifying, ranking

zipp Backport of pathlib-compatible object wrapper for zip files

Installing the Python Data Science Module Package
Before you install the Python Data Science Module package, make sure that your Greenplum Database
is running, you have sourced greenplum_path.sh, and that the $MASTER_DATA_DIRECTORY and
$GPHOME environment variables are set.

Note: The PyMC3 module depends on Tk. If you want to use PyMC3, you must install the tk OS
package on every node in your cluster. For example:

$ yum install tk

1. Locate the Python Data Science module package that you built or downloaded.

The file name format of the package is DataSciencePython-<version>-relhel<N>-
x86_64.gppkg.

2. Copy the package to the Greenplum Database master host.
3. Use the gppkg command to install the package. For example:

$ gppkg -i DataSciencePython-<version>-relhel<N>_x86_64.gppkg

gppkg installs the Python Data Science modules on all nodes in your Greenplum Database cluster.
The command also updates the PYTHONPATH, PATH, and LD_LIBRARY_PATH environment variables in
your greenplum_path.sh file.

Installing and Upgrading Greenplum Release Notes

74

4. Restart Greenplum Database. You must re-source greenplum_path.sh before restarting your
Greenplum cluster:

$ source /usr/local/greenplum-db/greenplum_path.sh
$ gpstop -r

The Greenplum Database Python Data Science Modules are installed in the following directory:

$GPHOME/ext/DataSciencePython/lib/python2.7/site-packages/

Uninstalling the Python Data Science Module Package
Use the gppkg utility to uninstall the Python Data Science Module package. You must include the version
number in the package name you provide to gppkg.

To determine your Python Data Science Module package version number and remove this package:

$ gppkg -q --all | grep DataSciencePython
DataSciencePython-<version>
$ gppkg -r DataSciencePython-<version>

The command removes the Python Data Science modules from your Greenplum Database cluster.
It also updates the PYTHONPATH, PATH, and LD_LIBRARY_PATH environment variables in your
greenplum_path.sh file to their pre-installation values.

Re-source greenplum_path.sh and restart Greenplum Database after you remove the Python Data
Science Module package:

$. /usr/local/greenplum-db/greenplum_path.sh
$ gpstop -r

Note: When you uninstall the Python Data Science Module package from your Greenplum
Database cluster, any UDFs that you have created that import Python modules installed with this
package will return an error.

R Data Science Library Package
R packages are modules that contain R functions and data sets. Greenplum Database provides a
collection of data science-related R libraries that can be used with the Greenplum Database PL/R
language. You can download these libraries in .gppkg format from Pivotal Network.

This chapter contains the following information:

• R Data Science Libraries
• Installing the R Data Science Library Package
• Uninstalling the R Data Science Library Package

For information about the Greenplum Database PL/R Language, see Greenplum PL/R Language
Extension.

R Data Science Libraries
Libraries provided in the R Data Science package include:

abind

adabag

arm

gss

gtable

gtools

R2WinBUGS

R6

randomForest

https://network.pivotal.io/products/pivotal-gpdb

Installing and Upgrading Greenplum Release Notes

75

assertthat

backports

BH

bitops

car

caret

caTools

cli

clipr

coda

colorspace

compHclust

crayon

curl

data.table

DBI

Deriv

dichromat

digest

doParallel

dplyr

e1071

fansi

fastICA

fBasics

fGarch

flashClust

foreach

forecast

foreign

fracdiff

gdata

generics

ggplot2

glmnet

glue

gower

hms

hybridHclust

igraph

ipred

iterators

labeling

lattice

lava

lazyeval

lme4

lmtest

lubridate

magrittr

MASS

Matrix

MatrixModels

mcmc

MCMCpack

minqa

ModelMetrics

MTS

munsell

mvtnorm

neuralnet

nloptr

nnet

numDeriv

pbkrtest

pillar

pkgconfig

plogr

plyr

prodlim

purrr

quadprog

quantmod

quantreg

RColorBrewer

Rcpp

RcppArmadillo

RcppEigen

RcppRoll

readr

recipes

reshape2

rjags

rlang

RobustRankAggreg

ROCR

rpart

RPostgreSQL

sandwich

scales

SparseM

SQUAREM

stabledist

stringi

stringr

survival

tibble

tidyr

tidyselect

timeDate

timeSeries

tseries

TTR

urca

utf8

vctrs

viridisLite

withr

xts

zeallot

zoo

Installing and Upgrading Greenplum Release Notes

76

gplots R2jags

Installing the R Data Science Library Package
Before you install the R Data Science Library package, make sure that your Greenplum Database is
running, you have sourced greenplum_path.sh, and that the $MASTER_DATA_DIRECTORY and
$GPHOME environment variables are set.

1. Locate the R Data Science library package that you built or downloaded.

The file name format of the package is DataScienceR-<version>-relhel<N>_x86_64.gppkg.
2. Copy the package to the Greenplum Database master host.
3. Use the gppkg command to install the package. For example:

$ gppkg -i DataScienceR-<version>-relhel<N>_x86_64.gppkg

gppkg installs the R Data Science libraries on all nodes in your Greenplum Database cluster.
The command also sets the R_LIBS_USER environment variable and updates the PATH and
LD_LIBRARY_PATH environment variables in your greenplum_path.sh file.

4. Restart Greenplum Database. You must re-source greenplum_path.sh before restarting your
Greenplum cluster:

$ source /usr/local/greenplum-db/greenplum_path.sh
$ gpstop -r

The Greenplum Database R Data Science Modules are installed in the following directory:

$GPHOME/ext/DataScienceR/library

Note: rjags libraries are installed in the $GPHOME/ext/DataScienceR/extlib/lib directory.
If you want to use rjags and your $GPHOME is not /usr/local/greenplum-db, you must
perform additional configuration steps to create a symbolic link from $GPHOME to /usr/local/
greenplum-db on each node in your Greenplum Database cluster. For example:

$ gpssh -f all_hosts -e 'ln -s $GPHOME /usr/local/greenplum-db'
$ gpssh -f all_hosts -e 'chown -h gpadmin /usr/local/greenplum-db'

Uninstalling the R Data Science Library Package
Use the gppkg utility to uninstall the R Data Science Library package. You must include the version
number in the package name you provide to gppkg.

To determine your R Data Science Library package version number and remove this package:

$ gppkg -q --all | grep DataScienceR
DataScienceR-<version>
$ gppkg -r DataScienceR-<version>

The command removes the R Data Science libraries from your Greenplum Database cluster. It also
removes the R_LIBS_USER environment variable and updates the PATH and LD_LIBRARY_PATH
environment variables in your greenplum_path.sh file to their pre-installation values.

Re-source greenplum_path.sh and restart Greenplum Database after you remove the R Data Science
Library package:

$. /usr/local/greenplum-db/greenplum_path.sh
$ gpstop -r

Installing and Upgrading Greenplum Release Notes

77

Note: When you uninstall the R Data Science Library package from your Greenplum Database
cluster, any UDFs that you have created that use R libraries installed with this package will return
an error.

Greenplum Platform Extension Framework (PXF)
Optional. If you do not plan to use PXF, no action is necessary.

If you plan to use PXF, refer to Accessing External Data with PXF for introductory PXF information.

Installing and Upgrading Greenplum Release Notes

78

Installing Additional Supplied Modules
The Greenplum Database distribution includes several PostgreSQL- and Greenplum-sourced contrib
modules that you have the option to install.

Each module is typically packaged as a Greenplum Database extension. You must register these modules
in each database in which you want to use it. For example, to register the dblink module in the database
named testdb, use the command:

$ psql -d testdb -c 'CREATE EXTENSION dblink;'

To remove a module from a database, drop the associated extension. For example, to remove the dblink
module from the testdb database:

$ psql -d testdb -c 'DROP EXTENSION dblink;'

Note: When you drop a module extension from a database, any user-defined function that you
created in the database that references functions defined in the module will no longer work. If you
created any database objects that use data types defined in the module, Greenplum Database will
notify you of these dependencies when you attempt to drop the module extension.

You can register the following modules in this manner:

For additional information about the modules supplied with Greenplum Database, refer to Additional
Supplied Modules in the Greenplum Database Reference Guide.

Installing and Upgrading Greenplum Release Notes

79

Configuring Timezone and Localization Settings
Describes the available timezone and localization features of Greenplum Database.

Configuring the Timezone
Greenplum Database selects a timezone to use from a set of internally stored PostgreSQL timezones. The
available PostgreSQL timezones are taken from the Internet Assigned Numbers Authority (IANA) Time
Zone Database, and Greenplum Database updates its list of available timezones as necessary when the
IANA database changes for PostgreSQL.

Greenplum Database selects the timezone by matching a PostgreSQL timezone with the value of the
TimeZone server configuration parameter, or the host system time zone if TimeZone is not set. For
example, when selecting a default timezone from the host system time zone, Greenplum Database uses
an algorithm to select a PostgreSQL timezone based on the host system timezone files. If the system
timezone includes leap second information, Greenplum Database cannot match the system timezone with
a PostgreSQL timezone. In this case, Greenplum Database calculates a "best match" with a PostgreSQL
timezone based on information from the host system.

As a best practice, configure Greenplum Database and the host systems to use a known, supported
timezone. This sets the timezone for the Greenplum Database master and segment instances, and
prevents Greenplum Database from selecting a best match timezone each time the cluster is restarted,
using the current system timezone and Greenplum Database timezone files (which may have been
updated from the IANA database since the last restart). Use the gpconfig utility to show and set the
Greenplum Database timezone. For example, these commands show the Greenplum Database timezone
and set the timezone to US/Pacific.

gpconfig -s TimeZone
gpconfig -c TimeZone -v 'US/Pacific'

You must restart Greenplum Database after changing the timezone. The command gpstop -ra restarts
Greenplum Database. The catalog view pg_timezone_names provides Greenplum Database timezone
information.

About Locale Support in Greenplum Database
Greenplum Database supports localization with two approaches:

• Using the locale features of the operating system to provide locale-specific collation order, number
formatting, and so on.

• Providing a number of different character sets defined in the Greenplum Database server, including
multiple-byte character sets, to support storing text in all kinds of languages, and providing character
set translation between client and server.

Locale support refers to an application respecting cultural preferences regarding alphabets, sorting,
number formatting, etc. Greenplum Database uses the standard ISO C and POSIX locale facilities
provided by the server operating system. For additional information refer to the documentation of your
operating system.

Locale support is automatically initialized when a Greenplum Database system is initialized. The
initialization utility, gpinitsystem, will initialize the Greenplum array with the locale setting of its
execution environment by default, so if your system is already set to use the locale that you want in your
Greenplum Database system then there is nothing else you need to do.

Installing and Upgrading Greenplum Release Notes

80

When you are ready to initiate Greenplum Database and you want to use a different locale (or you are not
sure which locale your system is set to), you can instruct gpinitsystem exactly which locale to use by
specifying the -n locale option. For example:

$ gpinitsystem -c gp_init_config -n sv_SE

See Initializing a Greenplum Database System for information about the database initialization process.

The example above sets the locale to Swedish (sv) as spoken in Sweden (SE). Other possibilities might
be en_US (U.S. English) and fr_CA (French Canadian). If more than one character set can be useful for
a locale then the specifications look like this: cs_CZ.ISO8859-2. What locales are available under what
names on your system depends on what was provided by the operating system vendor and what was
installed. On most systems, the command locale -a will provide a list of available locales.

Occasionally it is useful to mix rules from several locales, for example use English collation rules but
Spanish messages. To support that, a set of locale subcategories exist that control only a certain aspect of
the localization rules:

• LC_COLLATE — String sort order
• LC_CTYPE — Character classification (What is a letter? Its upper-case equivalent?)
• LC_MESSAGES — Language of messages
• LC_MONETARY — Formatting of currency amounts
• LC_NUMERIC — Formatting of numbers
• LC_TIME — Formatting of dates and times

If you want the system to behave as if it had no locale support, use the special locale C or POSIX.

The nature of some locale categories is that their value has to be fixed for the lifetime of a Greenplum
Database system. That is, once gpinitsystem has run, you cannot change them anymore. LC_COLLATE
and LC_CTYPE are those categories. They affect the sort order of indexes, so they must be kept fixed, or
indexes on text columns will become corrupt. Greenplum Database enforces this by recording the values
of LC_COLLATE and LC_CTYPE that are seen by gpinitsystem. The server automatically adopts those two
values based on the locale that was chosen at initialization time.

The other locale categories can be changed as desired whenever the server is running by setting the
server configuration parameters that have the same name as the locale categories (see the Greenplum
Database Reference Guide for more information on setting server configuration parameters). The defaults
that are chosen by gpinitsystem are written into the master and segment postgresql.conf configuration
files to serve as defaults when the Greenplum Database system is started. If you delete these assignments
from the master and each segment postgresql.conf files then the server will inherit the settings from
its execution environment.

Note that the locale behavior of the server is determined by the environment variables seen by the server,
not by the environment of any client. Therefore, be careful to configure the correct locale settings on each
Greenplum Database host (master and segments) before starting the system. A consequence of this is that
if client and server are set up in different locales, messages may appear in different languages depending
on where they originated.

Inheriting the locale from the execution environment means the following on most operating systems: For
a given locale category, say the collation, the following environment variables are consulted in this order
until one is found to be set: LC_ALL, LC_COLLATE (the variable corresponding to the respective category),
LANG. If none of these environment variables are set then the locale defaults to C.

Some message localization libraries also look at the environment variable LANGUAGE which overrides
all other locale settings for the purpose of setting the language of messages. If in doubt, please refer to
the documentation for your operating system, in particular the documentation about gettext, for more
information.

Native language support (NLS), which enables messages to be translated to the user's preferred language,
is not enabled in Greenplum Database for languages other than English. This is independent of the other
locale support.

Installing and Upgrading Greenplum Release Notes

81

Locale Behavior
The locale settings influence the following SQL features:

• Sort order in queries using ORDER BY on textual data
• The ability to use indexes with LIKE clauses
• The upper, lower, and initcap functions
• The to_char family of functions

The drawback of using locales other than C or POSIX in Greenplum Database is its performance impact.
It slows character handling and prevents ordinary indexes from being used by LIKE. For this reason use
locales only if you actually need them.

Troubleshooting Locales
If locale support does not work as expected, check that the locale support in your operating system is
correctly configured. To check what locales are installed on your system, you may use the command
locale -a if your operating system provides it.

Check that Greenplum Database is actually using the locale that you think it is. LC_COLLATE and
LC_CTYPE settings are determined at initialization time and cannot be changed without redoing
gpinitsystem. Other locale settings including LC_MESSAGES and LC_MONETARY are initially determined
by the operating system environment of the master and/or segment host, but can be changed after
initialization by editing the postgresql.conf file of each Greenplum master and segment instance. You
can check the active locale settings of the master host using the SHOW command. Note that every host in
your Greenplum Database array should be using identical locale settings.

Character Set Support
The character set support in Greenplum Database allows you to store text in a variety of character sets,
including single-byte character sets such as the ISO 8859 series and multiple-byte character sets such
as EUC (Extended Unix Code), UTF-8, and Mule internal code. All supported character sets can be used
transparently by clients, but a few are not supported for use within the server (that is, as a server-side
encoding). The default character set is selected while initializing your Greenplum Database array using
gpinitsystem. It can be overridden when you create a database, so you can have multiple databases
each with a different character set.

Table 9: Greenplum Database Character Sets

Name Description Language Server? Bytes/Char Aliases

BIG5 Big Five Traditional
Chinese

No 1-2 WIN950,
Windows950

EUC_CN Extended UNIX
Code-CN

Simplified
Chinese

Yes 1-3

EUC_JP Extended UNIX
Code-JP

Japanese Yes 1-3

EUC_KR Extended UNIX
Code-KR

Korean Yes 1-3

1 Not all APIs support all the listed character sets. For example, the JDBC driver does not support
MULE_INTERNAL, LATIN6, LATIN8, and LATIN10.

Installing and Upgrading Greenplum Release Notes

82

Name Description Language Server? Bytes/Char Aliases

EUC_TW Extended UNIX
Code-TW

Traditional
Chinese,
Taiwanese

Yes 1-3

GB18030 National
Standard

Chinese No 1-2

GBK Extended
National
Standard

Simplified
Chinese

No 1-2 WIN936,
Windows936

ISO_8859_5 ISO 8859-5,
ECMA 113

Latin/Cyrillic Yes 1

ISO_8859_6 ISO 8859-6,
ECMA 114

Latin/Arabic Yes 1

ISO_8859_7 ISO 8859-7,
ECMA 118

Latin/Greek Yes 1

ISO_8859_8 ISO 8859-8,
ECMA 121

Latin/Hebrew Yes 1

JOHAB JOHA Korean
(Hangul)

Yes 1-3

KOI8 KOI8-R(U) Cyrillic Yes 1 KOI8R

LATIN1 ISO 8859-1,
ECMA 94

Western
European

Yes 1 ISO88591

LATIN2 ISO 8859-2,
ECMA 94

Central
European

Yes 1 ISO88592

LATIN3 ISO 8859-3,
ECMA 94

South
European

Yes 1 ISO88593

LATIN4 ISO 8859-4,
ECMA 94

North European Yes 1 ISO88594

LATIN5 ISO 8859-9,
ECMA 128

Turkish Yes 1 ISO88599

LATIN6 ISO 8859-10,
ECMA 144

Nordic Yes 1 ISO885910

LATIN7 ISO 8859-13 Baltic Yes 1 ISO885913

LATIN8 ISO 8859-14 Celtic Yes 1 ISO885914

LATIN9 ISO 8859-15 LATIN1 with
Euro and
accents

Yes 1 ISO885915

LATIN10 ISO 8859-16,
ASRO SR
14111

Romanian Yes 1 ISO885916

MULE_
INTERNAL

Mule internal
code

Multilingual
Emacs

Yes 1-4

Installing and Upgrading Greenplum Release Notes

83

Name Description Language Server? Bytes/Char Aliases

SJIS Shift JIS Japanese No 1-2 Mskanji,
ShiftJIS,
WIN932,
Windows932

SQL_ASCII unspecifiedFootnote.any No 1

UHC Unified Hangul
Code

Korean No 1-2 WIN949,
Windows949

UTF8 Unicode, 8-bit all Yes 1-4 Unicode

WIN866 Windows
CP866

Cyrillic Yes 1 ALT

WIN874 Windows
CP874

Thai Yes 1

WIN1250 Windows
CP1250

Central
European

Yes 1

WIN1251 Windows
CP1251

Cyrillic Yes 1 WIN

WIN1252 Windows
CP1252

Western
European

Yes 1

WIN1253 Windows
CP1253

Greek Yes 1

WIN1254 Windows
CP1254

Turkish Yes 1

WIN1255 Windows
CP1255

Hebrew Yes 1

WIN1256 Windows
CP1256

Arabic Yes 1

WIN1257 Windows
CP1257

Baltic Yes 1

WIN1258 Windows
CP1258

Vietnamese Yes 1 ABC, TCVN,
TCVN5712,
VSCII

Setting the Character Set
gpinitsystem defines the default character set for a Greenplum Database system by reading the setting of
the ENCODING parameter in the gp_init_config file at initialization time. The default character set is
UNICODE or UTF8.

2 The SQL_ASCII setting behaves considerably differently from the other settings. Byte values 0-127
are interpreted according to the ASCII standard, while byte values 128-255 are taken as uninterpreted
characters. If you are working with any non-ASCII data, it is unwise to use the SQL_ASCII setting as a
client encoding. SQL_ASCII is not supported as a server encoding.

Installing and Upgrading Greenplum Release Notes

84

You can create a database with a different character set besides what is used as the system-wide default.
For example:

=> CREATE DATABASE korean WITH ENCODING 'EUC_KR';

Important: Although you can specify any encoding you want for a database, it is unwise to choose
an encoding that is not what is expected by the locale you have selected. The LC_COLLATE and
LC_CTYPE settings imply a particular encoding, and locale-dependent operations (such as sorting)
are likely to misinterpret data that is in an incompatible encoding.

Since these locale settings are frozen by gpinitsystem, the apparent flexibility to use different encodings in
different databases is more theoretical than real.

One way to use multiple encodings safely is to set the locale to C or POSIX during initialization time, thus
disabling any real locale awareness.

Character Set Conversion Between Server and Client
Greenplum Database supports automatic character set conversion between server and client for certain
character set combinations. The conversion information is stored in the master pg_conversion system
catalog table. Greenplum Database comes with some predefined conversions or you can create a new
conversion using the SQL command CREATE CONVERSION.

Table 10: Client/Server Character Set Conversions

Server Character Set Available Client Character Sets

BIG5 not supported as a server encoding

EUC_CN EUC_CN, MULE_INTERNAL, UTF8

EUC_JP EUC_JP, MULE_INTERNAL, SJIS, UTF8

EUC_KR EUC_KR, MULE_INTERNAL, UTF8

EUC_TW EUC_TW, BIG5, MULE_INTERNAL, UTF8

GB18030 not supported as a server encoding

GBK not supported as a server encoding

ISO_8859_5 ISO_8859_5, KOI8, MULE_INTERNAL, UTF8,
WIN866, WIN1251

ISO_8859_6 ISO_8859_6, UTF8

ISO_8859_7 ISO_8859_7, UTF8

ISO_8859_8 ISO_8859_8, UTF8

JOHAB JOHAB, UTF8

KOI8 KOI8, ISO_8859_5, MULE_INTERNAL, UTF8,
WIN866, WIN1251

LATIN1 LATIN1, MULE_INTERNAL, UTF8

LATIN2 LATIN2, MULE_INTERNAL, UTF8, WIN1250

LATIN3 LATIN3, MULE_INTERNAL, UTF8

LATIN4 LATIN4, MULE_INTERNAL, UTF8

LATIN5 LATIN5, UTF8

Installing and Upgrading Greenplum Release Notes

85

Server Character Set Available Client Character Sets

LATIN6 LATIN6, UTF8

LATIN7 LATIN7, UTF8

LATIN8 LATIN8, UTF8

LATIN9 LATIN9, UTF8

LATIN10 LATIN10, UTF8

MULE_INTERNAL MULE_INTERNAL, BIG5, EUC_CN, EUC_JP,
EUC_KR, EUC_TW, ISO_8859_5, KOI8, LATIN1 to
LATIN4, SJIS, WIN866, WIN1250, WIN1251

SJIS not supported as a server encoding

SQL_ASCII not supported as a server encoding

UHC not supported as a server encoding

UTF8 all supported encodings

WIN866 WIN866

ISO_8859_5 KOI8, MULE_INTERNAL, UTF8, WIN1251

WIN874 WIN874, UTF8

WIN1250 WIN1250, LATIN2, MULE_INTERNAL, UTF8

WIN1251 WIN1251, ISO_8859_5, KOI8, MULE_INTERNAL,
UTF8, WIN866

WIN1252 WIN1252, UTF8

WIN1253 WIN1253, UTF8

WIN1254 WIN1254, UTF8

WIN1255 WIN1255, UTF8

WIN1256 WIN1256, UTF8

WIN1257 WIN1257, UTF8

WIN1258 WIN1258, UTF8

To enable automatic character set conversion, you have to tell Greenplum Database the character set
(encoding) you would like to use in the client. There are several ways to accomplish this:

• Using the \encoding command in psql, which allows you to change client encoding on the fly.
• Using SET client_encoding TO. Setting the client encoding can be done with this SQL command:

=> SET CLIENT_ENCODING TO 'value';

To query the current client encoding:

=> SHOW client_encoding;

To return to the default encoding:

=> RESET client_encoding;

Installing and Upgrading Greenplum Release Notes

86

• Using the PGCLIENTENCODING environment variable. When PGCLIENTENCODING is defined in the
client's environment, that client encoding is automatically selected when a connection to the server is
made. (This can subsequently be overridden using any of the other methods mentioned above.)

• Setting the configuration parameter client_encoding. If client_encoding is set in the master
postgresql.conf file, that client encoding is automatically selected when a connection to Greenplum
Database is made. (This can subsequently be overridden using any of the other methods mentioned
above.)

If the conversion of a particular character is not possible — suppose you chose EUC_JP for the server and
LATIN1 for the client, then some Japanese characters do not have a representation in LATIN1 — then an
error is reported.

If the client character set is defined as SQL_ASCII, encoding conversion is disabled, regardless of the
server's character set. The use of SQL_ASCII is unwise unless you are working with all-ASCII data.
SQL_ASCII is not supported as a server encoding.

Installing and Upgrading Greenplum Release Notes

87

Upgrading to Greenplum 6
This topic identifies the upgrade and migration paths supported for the Greenplum Database 6.x. release.

Greenplum Database 6 supports upgrading from a Greenplum 6.x release to a newer Greenplum 6.x
release. Direct upgrade from Greenplum Database 4.3 or 5 to Greenplum 6 is not supported; you must
migrate the data to Greenplum 6.

Upgrading from an Earlier Greenplum 6 Release
The upgrade path supported for this release is Greenplum Database 6.x to a newer Greenplum Database
6.x release.

Important: Set the Greenplum Database timezone to a value that is compatible with your host
systems. Setting the Greenplum Database timezone prevents Greenplum Database from selecting
a timezone each time the cluster is restarted and sets the timezone for the Greenplum Database
master and segment instances. After you upgrade to this release and if you have not set a
Greenplum Database timezone value, verify that the selected Greenplum Database timezone is
acceptable for your deployment. See Configuring Timezone and Localization Settings for more
information.

Prerequisites
Before starting the upgrade process, perform the following checks.

• Verify the health of the Greenplum Database host hardware, and verify that the hosts meet the
requirements for running Greenplum Database. The Greenplum Database gpcheckperf utility can
assist you in confirming the host requirements.

Note: If you need to run the gpcheckcat utility, run it a few weeks before the upgrade during
a maintenance period. If necessary, you can resolve any issues found by the utility before the
scheduled upgrade.

The utility is in $GPHOME/bin. Place Greenplum Database in restricted mode when you run the
gpcheckcat utility. See the Greenplum Database Utility Guide for information about the gpcheckcat
utility.

If gpcheckcat reports catalog inconsistencies, you can run gpcheckcat with the -g option to
generate SQL scripts to fix the inconsistencies.

After you run the SQL scripts, run gpcheckcat again. You might need to repeat the process of running
gpcheckcat and creating SQL scripts to ensure that there are no inconsistencies. Run the SQL scripts
generated by gpcheckcat on a quiescent system. The utility might report false alerts if there is activity
on the system.

Important: If the gpcheckcat utility reports errors, but does not generate a SQL script to
fix the errors, contact Pivotal Support. Information for contacting Pivotal Support is at https://
support.pivotal.io.

• If you have configured the Greenplum Platform Extension Framework (PXF) in your previous
Greenplum Database installation, you must stop the PXF service, and you might need to back up
PXF configuration files before upgrading to a new version of Greenplum Database. Refer to PXF Pre-
Upgrade Actions for instructions.

If you have not yet configured PXF, no action is necessary.
• If you have configured and used the Greenplum Streaming Server (GPSS) in your previous Greenplum

Database installation, you must stop any running GPSS jobs and service instances before you upgrade
to a new version of Greenplum Database. Refer to GPSS Pre-Upgrade Actions for instructions.

If you do not plan to use GPSS, or you have not yet configured GPSS, no action is necessary.

https://support.pivotal.io
https://support.pivotal.io
pxf/upgrade_pxf_6x.html#pxfpre
pxf/upgrade_pxf_6x.html#pxfpre
http://greenplum.docs.pivotal.io/streaming-server/1-4/upgrading-gpss.html#step1

Installing and Upgrading Greenplum Release Notes

88

Upgrading from 6.x to a Newer 6.x Release
An upgrade from Greenplum Database 6.x to a newer 6.x release involves stopping Greenplum Database,
updating the Greenplum Database software binaries, and restarting Greenplum Database. If you are using
Greenplum Database extension packages there are additional requirements. See Prerequisites in the
previous section.

1. Log in to your Greenplum Database master host as the Greenplum administrative user:

$ su - gpadmin

2. Perform a smart shutdown of your Greenplum Database 6.x system (there can be no active
connections to the database). This example uses the -a option to disable confirmation prompts:

$ gpstop -a

3. Copy the new Greenplum Database software installation package to the gpadmin user's home
directory on each master, standby, and segment host.

4. If you used yum or apt to install Greenplum Database to the default location, execute these commands
on each host to upgrade to the new software release.

For RHEL/CentOS systems:

$ sudo yum upgrade ./greenplum-db-<version>-<platform>.rpm

For Ubuntu systems:

apt install ./greenplum-db-<version>-<platform>.deb

The yum or apt command installs the new Greenplum Database software files into a version-specific
directory under /usr/local and updates the symbolic link /usr/local/greenplum-db to point to
the new installation directory.

5. If you used rpm to install Greenplum Database to a non-default location on RHEL/CentOS systems,
execute rpm on each host to upgrade to the new software release and specify the same custom
installation directory with the --prefix option. For example:

$ sudo rpm -U ./greenplum-db-<version>-<platform>.rpm --prefix=<directory>

The rpm command installs the new Greenplum Database software files into a version-specific directory
under the <directory> you specify, and updates the symbolic link <directory>/greenplum-db to
point to the new installation directory.

6. Update the permissions for the new installation. For example, run this command as root to change the
user and group of the installed files to gpadmin.

$ sudo chown -R gpadmin:gpadmin /usr/local/greenplum*

7. If needed, update the greenplum_path.sh file on the master and standby master hosts for use with
your specific installation. These are some examples.

• If Greenplum Database uses LDAP authentication, edit the greenplum_path.sh file to add the
line:

export LDAPCONF=/etc/openldap/ldap.conf

• If Greenplum Database uses PL/Java, you might need to set or update the environment variables
JAVA_HOME and LD_LIBRARY_PATH in greenplum_path.sh.

Note: When comparing the previous and new greenplum_path.sh files, be aware that
installing some Greenplum Database extensions also updates the greenplum_path.sh file.

Installing and Upgrading Greenplum Release Notes

89

The greenplum_path.sh from the previous release might contain updates that were the result
of installing those extensions.

8. Edit the environment of the Greenplum Database superuser (gpadmin) and make sure you are
sourcing the greenplum_path.sh file for the new installation. For example change the following line
in the .bashrc or your chosen profile file:

source /usr/local/greenplum-db-<current_version>/greenplum_path.sh

to:

source /usr/local/greenplum-db-<new_version>/greenplum_path.sh

Or if you are sourcing a symbolic link (/usr/local/greenplum-db) in your profile files, update the
link to point to the newly installed version. For example:

$ rm /usr/local/greenplum-db
$ ln -s /usr/local/greenplum-db-<new_version> /usr/local/greenplum-db

9. Source the environment file you just edited. For example:

$ source ~/.bashrc

10.Use the Greenplum Database gppkg utility to re-install Greenplum Database extensions. If you were
previously using any Greenplum Database extensions such as pgcrypto, PL/R, PL/Java, or PostGIS,
download the corresponding packages from Pivotal Network, and install using this utility. See the
extension documentation for details.

Also copy any files that are used by the extensions (such as JAR files, shared object files, and libraries)
from the previous version installation directory to the new version installation directory on the master
and segment host systems.

11.After all segment hosts have been upgraded, log in as the gpadmin user and restart your Greenplum
Database system:

su - gpadmin
$ gpstart

12.If you configured PXF in your previous Greenplum Database installation, you may need to install PXF
in your new Greenplum installation, and you may be required to re-initialize the PXF service after you
upgrade Greenplum Database. Refer to the Step 2 PXF upgrade procedure for instructions.

13.If you configured GPSS in your previous Greenplum Database installation, you may be required to
perform some upgrade actions, and you must re-restart the GPSS service instances and jobs. Refer to
Step 2 of the GPSS upgrade procedure for instructions.

After upgrading Greenplum Database, ensure that all features work as expected. For example, test
that backup and restore perform as expected, and Greenplum Database features such as user-defined
functions, and extensions such as MADlib and PostGIS perform as expected.

Troubleshooting a Failed Upgrade
If you experience issues during the migration process and have active entitlements for Greenplum
Database that were purchased through Pivotal, contact Pivotal Support. Information for contacting Pivotal
Support is at https://support.pivotal.io.

Be prepared to provide the following information:

• A completed Upgrade Procedure
• Log output from gpcheckcat (located in ~/gpAdminLogs)

https://network.pivotal.io/products/pivotal-gpdb
pxf/upgrade_pxf_6x.html#pxfup
http://greenplum.docs.pivotal.io/streaming-server/1-4/upgrading-gpss.html#step2
https://support.pivotal.io

Installing and Upgrading Greenplum Release Notes

90

Migrating Data from Greenplum 4.3 or 5 to Greenplum 6
You can migrate data from Greenplum Database 4.3 or 5 to Greenplum 6 using the standard backup and
restore procedures, gpbackup and gprestore, or by using gpcopy.

Note: Currently, you cannot upgrade a Greenplum Database 4.3 or 5 system directly to Greenplum
Database 6.

This topic identifies known issues you may encounter when moving data from Greenplum 4.3 to
Greenplum 6. You can work around these problems by making needed changes to your Greenplum 4.3
databases so that you can create backups that can be restored successfully to Greenplum 6.

• Preparing the Greenplum 6 Cluster
• Preparing Greenplum 4.3 and 5 Databases for Backup
• Backing Up and Restoring a Database
• Completing the Migration

Preparing the Greenplum 6 Cluster
• Install and initialize a new Greenplum Database 6 cluster using the version 6 gpinitsystem utility.

Note: gprestore only supports restoring data to a cluster that has an identical number of
hosts and an identical number of segments per host, with each segment having the same
content_id as the segment in the original cluster. Use gpcopy if you need to migrate data to
a different-sized Greenplum 6 cluster.

Note: Set the Greenplum Database 6 timezone to a value that is compatible with your host
systems. Setting the Greenplum Database timezone prevents Greenplum Database from
selecting a timezone each time the cluster is restarted. See Configuring Timezone and
Localization Settings for more information.

• Install the latest release of the Greenplum Backup and Restore utilities, available to download from
Pivotal Network.

• If you intend to install Greenplum Database 6 on the same hardware as your 4.3 system, you will
need enough disk space to accommodate over five times the original data set (two full copies of the
primary and mirror data sets, plus the original backup data in ASCII format) in order to migrate data with
gpbackup and gprestore. Keep in mind that the ASCII backup data will require more disk space than
the original data, which may be stored in compressed binary format. Offline backup solutions such as
Dell EMC Data Domain can reduce the required disk space on each host.

If you want to migrate your data on the same hardware but do not have enough free disk space on your
host systems, gpcopy provides the --truncate-source-after option to truncate each source
table after copying the table to the destination cluster and validating that the copy succeeded. This
reduces the amount of free space needed to migrate clusters that reside on the same hardware. See
Migrating Data with gpcopy for more information.

• Install any external modules used in your Greenplum 4.3 system in the Greenplum 6 system before
you restore the backup, for example MADlib or PostGIS. If versions of the external modules are not
compatible, you may need to exclude tables that reference them when restoring the Greenplum 4.3
backup to Greenplum 6.

• The Greenplum 4.3 Oracle Compatibility Functions module is not compatible with Greenplum 6.
Uninstall the module from Greenplum 4.3 by running the uninstall_orafunc.sql script before you
back up your databases:

$ $GPHOME/share/postgresql/contrib/uninstall_orafunc.sql

You will also need to drop any dependent database objects that reference compatibility functions.

https://network.pivotal.io/products/pivotal-gpdb-backup-restore

Installing and Upgrading Greenplum Release Notes

91

Install the Oracle Compatibility Functions in Greenplum 6 by creating the orafce module in each
database where you require the functions:

$ psql -d dbname 'CREATE EXTENSION orafce'

See Installing Additional Supplied Modules for information about installing orafce and other modules.
• When restoring language-based user-defined functions, the shared object file must be in the location

specified in the CREATE FUNCTION SQL command and must have been recompiled on the Greenplum
6 system. This applies to user-defined functions, user-defined types, and any other objects that use
custom functions, such as aggregates created with the CREATE AGGREGATE command.

• Greenplum 6 provides resource groups, an alternative to managing resources using resource queues.
Setting the gp_resource_manager server configuration parameter to queue or group selects the
resource management scheme the Greenplum Database system will use. The default is queue, so no
action is required when you move from Greenplum version 4.3 to version 6. To more easily transition
from resource queues to resource groups, you can set resource groups to allocate and manage
memory in a way that is similar to resource queue memory management. To select this feature, set
the MEMORY_LIMIT and MEMORY_SPILL_RATIO attributes of your resource groups to 0. See Using
Resource Groups for information about enabling and configuring resource groups.

Preparing Greenplum 4.3 and 5 Databases for Backup
Note: A Greenplum 4 system must be at least version 4.3.22 to use the gpbackup and
gprestore utilities. A Greenplum 5 system must be at least version 5.5. Be sure to use the latest
release of the backup and restore utilities, available for download from Pivotal Network.

Important: Make sure that you have a complete backup of all data in the Greenplum Database 4.3
or 5 cluster, and that you can successfully restore the Greenplum Database cluster if necessary.

Following are some issues that are known to cause errors when restoring a Greenplum 4.3 or 5 backup
to Greenplum 6. Keep a list of any changes you make to the Greenplum 4.3 or 5 database to enable
migration so that you can fix them in Greenplum 6 after restoring the backup.

• If you have configured PXF in your Greenplum Database 5 installation, review Migrating PXF from
Greenplum 5 to plan for the PXF migration.

• Greenplum Database version 6 removes support for the gphdfs protocol. If you have created external
tables that use gphdfs, remove the external table definitions and (optionally) recreate them to use
Pivotal Extension Framework (PXF) before you migrate the data to Greenplum 6. Refer to Migrating
gphdfs External Tables to PXF in the PXF documentation for the migration procedure.

• References to catalog tables or their attributes can cause a restore to fail due to catalog changes from
Greenplum 4.3 or 5 to Greenplum 6. Here are some catalog issues to be aware of when migrating to
Greenplum 6:

• In the pg_class system table, the reltoastidxid column has been removed.
• In the pg_stat_replication system table, the procpid column is renamed to pid.
• In the pg_stat_activity system table, the procpid column is renamed to pid. The

current_query column is replaced by two columns state: the state of the backend, and query:
the last run query, or currently running query if state is active.

• In the gp_distribution_policy system table, the attrnums column is renamed
to distkey and its data type is changed to int2vector. A backend function
pg_get_table_distributedby() was added to get the distribution policy for a table as a string.

• The __gp_localid and __gp_masterid columns are removed from the
session_level_memory_consumption system view in Greenplum 6. The underlying external
tables and functions are removed from the gp_toolkit schema.

• Filespaces are removed in Greenplum 6. The pg_filespace and pg_filespace_entry
system tables are removed. Any reference to pg_filespace or pg_filespace_entry will fail in
Greenplum 6.

https://network.pivotal.io/products/pivotal-gpdb-backup-restore
../pxf/migrate_5to6.html
../pxf/migrate_5to6.html

Installing and Upgrading Greenplum Release Notes

92

• Restoring a Greenplum 4 backup can fail due to lack of dependency checking in Greenplum 4
catalog tables. For example, restoring a UDF can fail if it references a custom data type that is
created later in the backup file.

• The INTO error_table clause of the CREATE EXTERNAL TABLE and COPY commands was
deprecated in Greenplum 4.3 and is unsupported in Greenplum 5 and 6. Remove this clause from
any external table definitions before you create a backup of your Greenplum 4.3 system. The
ERROR_TABLE parameter of the gpload utility load control YAML file must also be removed from any
gpload YAML files before you run gpload.

• The int4_avg_accum() function signature changed in Greenplum 6 from
int4_avg_accum(bytea, integer) to int4_avg_accum(bigint[], integer). This function
is the state transition function (sfunc) called when calculating the average of a series of 4-byte integers.
If you have created a custom aggregate in a previous Greenplum release that called the built-in
int4_avg_accum() function, you will need to revise your aggregate for the new signature.

• The string_agg(expression) function has been removed from Greenplum 6. The function
concatenates text values into a string. You can replace the single argument function with the function
string_agg(expression, delimiter) and specify an empty string as the delimiter, for
example string_agg(txt_col1, '').

• The offset argument of the lag(expr, offset[, default]) window function has changed from
int8 in Greenplum 4.3 to int4 in Greenplum 5 and 6.

• gpbackup saves the distribution policy and distribution key for each table in the backup so that data
can be restored to the same segment. If a table's distribution key in the Greenplum 4.3 or 5 database
is incompatible with Greenplum 6, gprestore cannot restore the table to the correct segment in the
Greenplum 6 database. This can happen if the distribution key in the older Greenplum release has
columns with data types not allowed in Greenplum 6 distribution keys, or if the data representation
for data types has changed or is insufficient for Greenplum 6 to generate the same hash value for a
distribution key. You should correct these kinds of problems by altering distribution keys in the tables
before you back up the Greenplum database.

• Greenplum 6 requires primary keys and unique index keys to match a table's distribution key. The leaf
partitions of partitioned tables must have the same distribution policy as the root partition. These known
issues should be corrected in the source Greenplum database before you back up the database:

• If the primary key is different than the distribution key for a table, alter the table to either remove the
primary key or change the primary key to match the distribution key.

• If the key columns for a unique index are not a subset of the distribution key columns, before you
back up the source database, drop the index and, optionally, recreate it with a compatible key.

• If a partitioned table in the source database has a DISTRIBUTED BY distribution policy, but has leaf
partitions that are DISTRIBUTED RANDOMLY, alter the leaf tables to match the root table distribution
policy before you back up the source database.

• In Greenplum 4.3, the name provided for a constraint in a CREATE TABLE command was the name
of the index created to enforce the constraint, which could lead to indexes having the same name. In
Greenplum 6, duplicate index names are not allowed; restoring from a Greenplum 4.3 backup that has
duplicate index names will generate errors.

• Columns of type abstime, reltime, tinterval, money, or anyarray are not supported as
distribution keys in Greenplum 6.

If you have tables distributed on columns of type abstime, reltime, tinterval, money, or
anyarray, use the ALTER TABLE command to set the distribution to RANDOM before you back up the
database. After the data is restored, you can set a new distribution policy.

• In Greenplum 4.3 and 5, it was possible to ALTER a table that has a primary key or unique index to be
DISTRIBUTED RANDOMLY. Greenplum 6 does not permit tables DISTRIBUTED RANDOMLY to have
primary keys or unique indexes. Restoring such a table from a Greenplum 4.3 or 5 backup will cause an
error.

• Greenplum 6 no longer automatically converts from the deprecated timestamp format
YYYYMMDDHH24MISS. The format could not be parsed unambiguously in previous Greenplum
Database releases. You can still specify the YYYYMMDDHH24MISS format in conversion functions such

Installing and Upgrading Greenplum Release Notes

93

as to_timestamp and to_char for compatibility with other database systems. You can use input
formats for converting text to date or timestamp values to avoid unexpected results or query execution
failures. For example, this SELECT command returns a timestamp in Greenplum Database 5 and fails in
6.

SELECT to_timestamp('20190905140000');

To convert the string to a timestamp in Greenplum Database 6, you must use a valid format. Both of
these commands return a timestamp in Greenplum Database 6. The first example explicitly specifies
a timestamp format. The second example uses the string in a format that Greenplum Database
recognizes.

SELECT to_timestamp('20190905140000','YYYYMMDDHH24MISS');
SELECT to_timestamp('201909051 40000');

The timestamp issue also applies when you use the :: syntax. In Greenplum Database 6, the first
command returns an error. The second command returns a timestamp.

SELECT '20190905140000'::timestamp ;
SELECT '20190905 140000'::timestamp ;

• Creating a table using the CREATE TABLE AS command in Greenplum 4.3 or 5 could create a table
with a duplicate distribution key. The gpbackup utility saves the table to the backup using a CREATE
TABLE command that lists the duplicate keys in the DISTRIBUTED BY clause. Restoring this backup
will cause a duplicate distribution key error. The CREATE TABLE AS command was fixed in Greenplum
5.10 to disallow duplicate distribution keys.

• Greenplum 4.3 supports foreign key constraints on columns of different types, for example, numeric
and bigint, with implicit type conversion. Greenplum 5 and 6 do not support implicit type conversion.
Restoring a table with a foreign key on columns with different data types causes an error.

• Only Boolean operators can use Boolean negators. In Greenplum Database 4.3 and 5 it was possible
to create a non-Boolean operator that specifies a Boolean negator function. For example, this CREATE
OPERATOR command creates an integer @@ operator with a Boolean negator:

CREATE OPERATOR public.@@ (
 PROCEDURE = int4pl,
 LEFTARG = integer,
 RIGHTARG = integer,
 NEGATOR = OPERATOR(public.!!)
);

If you restore a backup containing an operator like this to a Greenplum 6 system, gprestore produces
an error: ERROR: only boolean operators can have negators (SQLSTATE 42P13).

• In Greenplum Database 4.3 and 5, the undocumented server configuration parameter
allow_system_table_mods could have a value of none, ddl, dml, or all. In Greenplum 6, this
parameter has changed to a Boolean value, with a default value of false. If there are any references
to this parameter in the source database, remove them to prevent errors during the restore.

Backing Up and Restoring a Database
First use gpbackup to create a --metadata-only backup from the source Greenplum database and
restore it to the Greenplum 6 system. This helps find any additional problems that are not identified in
Preparing Greenplum 4.3 and 5 Databases for Backup. Refer to the Greenplum Backup and Restore
documentation for syntax and examples for the gpbackup and gprestore utilities.

Review the gprestore log file for error messages and correct any remaining problems in the source
Greenplum database.

https://gpdb.docs.pivotal.io/backup-restore/latest/
https://gpdb.docs.pivotal.io/backup-restore/latest/

Installing and Upgrading Greenplum Release Notes

94

When you are able to restore a metadata backup successfully, create the full backup and then restore it to
the Greenplum 6 system, or use gpcopy to transfer the data. If needed, use the gpbackup or gprestore
filter options to omit schemas or tables that cannot be restored without error.

If you use gpcopy to migrate data, initiate the gpcopy operation from the Greenplum 4.3.26 (or later) or
the 5.9 (or later) cluster. See Migrating Data with gpcopy for more information.

Important: When you restore a backup taken from a Greenplum Database 4.3 or 5 system,
gprestore warns that the restore will use legacy hash operators when loading the data. This
is because Greenplum 6 has new hash algorithms that map distribution keys to segments, but
the data in the backup set must be restored to the same segments as the cluster from which
the backup was taken. The gprestore utility sets the gp_use_legacy_hashops server
configuration parameter to on when restoring to Greenplum 6 from an earlier version so that the
restored tables are created using the legacy operator classes instead of the new default operator
classes.

After restoring, you can redistribute these tables with the gp_use_legacy_hashops parameter
set to off so that the tables use the new Greenplum 6 hash operators. See Working With Hash
Operator Classes in Greenplum 6 for more information and examples.

Completing the Migration
Migrate any tables you skipped during the restore using other methods, for example using the COPY TO
command to create an external file and then loading the data from the external file into Greenplum 6 with
the COPY FROM command.

Recreate any objects you dropped in the Greenplum 4.3 or 5 database to enable migration, such as
external tables, indexes, user-defined functions, or user-defined aggregates.

Here are some additional items to consider to complete your migration to Greenplum 6.

• If you are migrating from Greenplum Database 4.3.27 or an earlier 4.3.x release and have configured
PgBouncer in your Greenplum Database installation, you must migrate to the new PgBouncer when you
upgrade Greenplum Database. Refer to Migrating PgBouncer for specific migration instructions.

• Greenplum Database 5 and 6 remove automatic casts between the text type and other data types. After
you migrate from Greenplum Database version 4.3 to version 6, this changed behavior may impact
existing applications and queries. Refer to About Implicit Text Casting in Greenplum Database for
information, including a discussion about supported and unsupported workarounds.

• After migrating data you may need to modify SQL scripts, administration scripts, and user-defined
functions as necessary to account for changes in Greenplum Database version 6. Review the Pivotal
Greenplum 6.0.0 Release Notes for features and changes that may necessitate post-migration tasks.

• To use the new Greenplum 6 default hash operator classes, use the command ALTER TABLE
<table> SET DISTRIBUTED BY (<key>) to redistribute tables restored from Greenplum 4.3 or
5 backups. The gp_use_legacy_hashops parameter must be set to off when your execute the
command. See Working With Hash Operator Classes in Greenplum 6 for more information about hash
operator classes.

Working With Hash Operator Classes in Greenplum 6

Greenplum 6 has new jump consistent hash operators that map distribution keys for distributed tables
to the segments. The new hash operators enable faster database expansion because they don't require
redistributing rows unless they map to a different segment. The hash operators used in Greenplum
4.3 and 5 are present in Greenplum 6 as non-default legacy hash operator classes. For example, for
integer columns, the new hash operator class is named int_ops and the legacy operator class is named
cdbhash_int_ops.

This example creates a table using the legacy hash operator class cdbhash_int_ops.

test=# SET gp_use_legacy_hashops=on;
SET

https://gpdb.docs.pivotal.io/latest/relnotes/GPDB_600_README.html
https://gpdb.docs.pivotal.io/latest/relnotes/GPDB_600_README.html

Installing and Upgrading Greenplum Release Notes

95

test=# CREATE TABLE t1 (
 c1 integer,
 c2 integer,
 p integer
) DISTRIBUTED BY (c1);
CREATE TABLE
test=# \d+ t1
 Table "public.t1"
 Column | Type | Modifiers | Storage | Stats target | Description
--------+---------+-----------+---------+--------------+-------------
 c1 | integer | | plain | |
 c2 | integer | | plain | |
 p | integer | | plain | |
Distributed by: (c1)

Notice that the distribution key is c1. If the gp_use_legacy_hashops parameter is on and
the operator class is a legacy operator class, the operator class name is not shown. However, if
gp_use_legacy_hashops is off, the legacy operator class name is reported with the distribution key.

test=# SET gp_use_legacy_hashops=off;
SET
test=# \d+ t1
 Table "public.t1"
 Column | Type | Modifiers | Storage | Stats target | Description
--------+---------+-----------+---------+--------------+-------------
 c1 | integer | | plain | |
 c2 | integer | | plain | |
 p | integer | | plain | |
Distributed by: (c1 cdbhash_int4_ops)

The operator class name is reported only when it does not match the setting of the
gp_use_legacy_hashops parameter.

To change the table to use the new jump consistent operator class, use the ALTER TABLE command to
redistribute the table with the gp_use_legacy_hashops parameter set to off.

Note: Redistributing tables with a large amount of data can take a long time.

test=# SHOW gp_use_legacy_hashops;
 gp_use_legacy_hashops

 off
(1 row)

test=# ALTER TABLE t1 SET DISTRIBUTED BY (c1);
ALTER TABLE
test=# \d+ t1
 Table "public.t1"
 Column | Type | Modifiers | Storage | Stats target | Description
--------+---------+-----------+---------+--------------+-------------
 c1 | integer | | plain | |
 c2 | integer | | plain | |
 p | integer | | plain | |
Distributed by: (c1)

To verify the default jump consistent operator class has been used, set gp_use_legacy_hashops to on
before you show the table definition.

test=# SET gp_use_legacy_hashops=on;
SET
test=# \d+ t1
 Table "public.t1"

Installing and Upgrading Greenplum Release Notes

96

 Column | Type | Modifiers | Storage | Stats target | Description
--------+---------+-----------+---------+--------------+-------------
 c1 | integer | | plain | |
 c2 | integer | | plain | |
 p | integer | | plain | |
Distributed by: (c1 int4_ops)

Installing and Upgrading Greenplum Release Notes

97

Enabling iptables (Optional)
On Linux systems, you can configure and enable the iptables firewall to work with Greenplum
Database.

Note: Greenplum Database performance might be impacted when iptables is enabled. You
should test the performance of your application with iptables enabled to ensure that performance
is acceptable.

For more information about iptables see the iptables and firewall documentation for your operating
system. See also Disabling SELinux and Firewall Software.

How to Enable iptables
1. As gpadmin, run this command on the Greenplum Database master host to stop Greenplum Database:

$ gpstop -a

2. On the Greenplum Database hosts:

a. Update the file /etc/sysconfig/iptables based on the Example iptables Rules.
b. As root user, run these commands to enable iptables:

chkconfig iptables on
service iptables start

3. As gpadmin, run this command on the Greenplum Database master host to start Greenplum Database:

$ gpstart -a

Warning: After enabling iptables, this error in the /var/log/messages file indicates that the
setting for the iptables table is too low and needs to be increased.

ip_conntrack: table full, dropping packet.

As root, run this command to view the iptables table value:

sysctl net.ipv4.netfilter.ip_conntrack_max

To ensure that the Greenplum Database workload does not overflow the iptables table, as root,
set it to the following value:

sysctl net.ipv4.netfilter.ip_conntrack_max=6553600

The value might need to be adjusted for your hosts. To maintain the value after reboot, you can
update the /etc/sysctl.conf file as discussed in Setting the Greenplum Recommended OS
Parameters.

Example iptables Rules
When iptables is enabled, iptables manages the IP communication on the host system based on
configuration settings (rules). The example rules are used to configure iptables for Greenplum Database
master host, standby master host, and segment hosts.

• Example Master and Standby Master iptables Rules
• Example Segment Host iptables Rules

Installing and Upgrading Greenplum Release Notes

98

The two sets of rules account for the different types of communication Greenplum Database expects on the
master (primary and standby) and segment hosts. The rules should be added to the /etc/sysconfig/
iptables file of the Greenplum Database hosts. For Greenplum Database, iptables rules should allow
the following communication:

• For customer facing communication with the Greenplum Database master, allow at least postgres
and 28080 (eth1 interface in the example).

• For Greenplum Database system interconnect, allow communication using tcp, udp, and icmp
protocols (eth4 and eth5 interfaces in the example).

The network interfaces that you specify in the iptables settings are the interfaces for the Greenplum
Database hosts that you list in the hostfile_gpinitsystem file. You specify the file when you run the
gpinitsystem command to initialize a Greenplum Database system. See Initializing a Greenplum
Database System for information about the hostfile_gpinitsystem file and the gpinitsystem
command.

• For the administration network on a Greenplum DCA, allow communication using ssh, ntp, and icmp
protocols. (eth0 interface in the example).

In the iptables file, each append rule command (lines starting with -A) is a single line.

The example rules should be adjusted for your configuration. For example:

• The append command, the -A lines and connection parameter -i should match the connectors for your
hosts.

• the CIDR network mask information for the source parameter -s should match the IP addresses for
your network.

Example Master and Standby Master iptables Rules
Example iptables rules with comments for the /etc/sysconfig/iptables file on the Greenplum
Database master host and standby master host.

*filter
Following 3 are default rules. If the packet passes through
the rule set it gets these rule.
Drop all inbound packets by default.
Drop all forwarded (routed) packets.
Let anything outbound go through.
:INPUT DROP [0:0]
:FORWARD DROP [0:0]
:OUTPUT ACCEPT [0:0]
Accept anything on the loopback interface.
-A INPUT -i lo -j ACCEPT
If a connection has already been established allow the
remote host packets for the connection to pass through.
-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
These rules let all tcp and udp through on the standard
interconnect IP addresses and on the interconnect interfaces.
NOTE: gpsyncmaster uses random tcp ports in the range 1025 to 65535
and Greenplum Database uses random udp ports in the range 1025 to 65535.
-A INPUT -i eth4 -p udp -s 192.0.2.0/22 -j ACCEPT
-A INPUT -i eth5 -p udp -s 198.51.100.0/22 -j ACCEPT
-A INPUT -i eth4 -p tcp -s 192.0.2.0/22 -j ACCEPT --syn -m state --state NEW
-A INPUT -i eth5 -p tcp -s 198.51.100.0/22 -j ACCEPT --syn -m state --state
 NEW
Allow udp/tcp ntp connections on the admin network on Greenplum DCA.
-A INPUT -i eth0 -p udp --dport ntp -s 203.0.113.0/21 -j ACCEPT
-A INPUT -i eth0 -p tcp --dport ntp -s 203.0.113.0/21 -j ACCEPT --syn -m
 state --state NEW
Allow ssh on all networks (This rule can be more strict).
-A INPUT -p tcp --dport ssh -j ACCEPT --syn -m state --state NEW
Allow Greenplum Database on all networks.

Installing and Upgrading Greenplum Release Notes

99

-A INPUT -p tcp --dport postgres -j ACCEPT --syn -m state --state NEW
Allow Greenplum Command Center on the customer facing network.
-A INPUT -i eth1 -p tcp --dport 28080 -j ACCEPT --syn -m state --state NEW
Allow ping and any other icmp traffic on the interconnect networks.
-A INPUT -i eth4 -p icmp -s 192.0.2.0/22 -j ACCEPT
-A INPUT -i eth5 -p icmp -s 198.51.100.0/22 -j ACCEPT
Allow ping only on the admin network on Greenplum DCA.
-A INPUT -i eth0 -p icmp --icmp-type echo-request -s 203.0.113.0/21 -j
 ACCEPT
Log an error if a packet passes through the rules to the default
INPUT rule (a DROP).
-A INPUT -m limit --limit 5/min -j LOG --log-prefix "iptables denied: " --
log-level 7
COMMIT

Example Segment Host iptables Rules
Example iptables rules for the /etc/sysconfig/iptables file on the Greenplum Database segment
hosts. The rules for segment hosts are similar to the master rules with fewer interfaces and fewer udp and
tcp services.

*filter
:INPUT DROP
:FORWARD DROP
:OUTPUT ACCEPT
-A INPUT -i lo -j ACCEPT
-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A INPUT -i eth2 -p udp -s 192.0.2.0/22 -j ACCEPT
-A INPUT -i eth3 -p udp -s 198.51.100.0/22 -j ACCEPT
-A INPUT -i eth2 -p tcp -s 192.0.2.0/22 -j ACCEPT --syn -m state --state NEW
-A INPUT -i eth3 -p tcp -s 198.51.100.0/22 -j ACCEPT --syn -m state --state
 NEW
-A INPUT -p tcp --dport ssh -j ACCEPT --syn -m state --state NEW
-A INPUT -i eth2 -p icmp -s 192.0.2.0/22 -j ACCEPT
-A INPUT -i eth3 -p icmp -s 198.51.100.0/22 -j ACCEPT
-A INPUT -i eth0 -p icmp --icmp-type echo-request -s 203.0.113.0/21 -j
 ACCEPT
-A INPUT -m limit --limit 5/min -j LOG --log-prefix "iptables denied: " --
log-level 7
COMMIT

Installing and Upgrading Greenplum Release Notes

100

Installation Management Utilities
References for the command-line management utilities used to install and initialize a Greenplum Database
system.

For a full reference of all Greenplum Database utilities, see the Greenplum Database Utility Guide.

The following Greenplum Database management utilities are located in $GPHOME/bin.

• gpactivatestandby

• gpaddmirrors

• gpcheckperf

• gpcopy

• gpdeletesystem

• gpinitstandby

• gpinitsystem

• gppkg

• gpscp

• gpssh

• gpssh-exkeys

• gpstart

• gpstop

Installing and Upgrading Greenplum Release Notes

101

Greenplum Environment Variables
Reference of the environment variables to set for Greenplum Database.

Set these in your user's startup shell profile (such as ~/.bashrc or ~/.bash_profile), or in /etc/
profile if you want to set them for all users.

Required Environment Variables
Note: GPHOME, PATH and LD_LIBRARY_PATH can be set by sourcing the greenplum_path.sh
file from your Greenplum Database installation directory

GPHOME
This is the installed location of your Greenplum Database software. For example:

GPHOME=/usr/local/greenplum-db-6.x.x
export GPHOME

PATH
Your PATH environment variable should point to the location of the Greenplum Database bin directory. For
example:

PATH=$GPHOME/bin:$PATH
export PATH

LD_LIBRARY_PATH
The LD_LIBRARY_PATH environment variable should point to the location of the Greenplum Database/
PostgreSQL library files. For example:

LD_LIBRARY_PATH=$GPHOME/lib
export LD_LIBRARY_PATH

MASTER_DATA_DIRECTORY
This should point to the directory created by the gpinitsystem utility in the master data directory location.
For example:

MASTER_DATA_DIRECTORY=/data/master/gpseg-1
export MASTER_DATA_DIRECTORY

Optional Environment Variables
The following are standard PostgreSQL environment variables, which are also recognized in Greenplum
Database. You may want to add the connection-related environment variables to your profile for
convenience, so you do not have to type so many options on the command line for client connections. Note
that these environment variables should be set on the Greenplum Database master host only.

Installing and Upgrading Greenplum Release Notes

102

PGAPPNAME
The name of the application that is usually set by an application when it connects to the server. This name
is displayed in the activity view and in log entries. The PGAPPNAME environmental variable behaves the
same as the application_name connection parameter. The default value for application_name is
psql. The name cannot be longer than 63 characters.

PGDATABASE
The name of the default database to use when connecting.

PGHOST
The Greenplum Database master host name.

PGHOSTADDR
The numeric IP address of the master host. This can be set instead of or in addition to PGHOST to avoid
DNS lookup overhead.

PGPASSWORD
The password used if the server demands password authentication. Use of this environment variable is
not recommended for security reasons (some operating systems allow non-root users to see process
environment variables via ps). Instead consider using the ~/.pgpass file.

PGPASSFILE
The name of the password file to use for lookups. If not set, it defaults to ~/.pgpass. See the topic about
The Password File in the PostgreSQL documentation for more information.

PGOPTIONS
Sets additional configuration parameters for the Greenplum Database master server.

PGPORT
The port number of the Greenplum Database server on the master host. The default port is 5432.

PGUSER
The Greenplum Database user name used to connect.

PGDATESTYLE
Sets the default style of date/time representation for a session. (Equivalent to SET datestyle TO...)

PGTZ
Sets the default time zone for a session. (Equivalent to SET timezone TO...)

PGCLIENTENCODING
Sets the default client character set encoding for a session. (Equivalent to SET client_encoding
TO...)

https://www.postgresql.org/docs/9.4/libpq-pgpass.html

Installing and Upgrading Greenplum Release Notes

103

Example Ansible Playbook
A sample Ansible playbook to install a Greenplum Database software release onto the hosts that will
comprise a Greenplum Database system.

This Ansible playbook shows how tasks described in Installing the Greenplum Database Software might be
automated using Ansible.

Important: This playbook is provided as an example only to illustrate how Greenplum Database
cluster configuration and software installation tasks can be automated using provisioning tools
such as Ansible, Chef, or Puppet. Pivotal does not provide support for Ansible or for the playbook
presented in this example.

The example playbook is designed for use with CentOS 7. It creates the gpadmin user, installs the
Greenplum Database software release, sets the owner and group of the installed software to gpadmin,
and sets the Pam security limits for the gpadmin user.

You can revise the script to work with your operating system platform and to perform additional host
configuration tasks.

Following are steps to use this Ansible playbook.

1. Install Ansible on the control node using your package manager. See the Ansible documentation for
help with installation.

2. Set up passwordless SSH from the control node to all hosts that will be a part of the Greenplum
Database cluster. You can use the ssh-copy-id command to install your public SSH key on each
host in the cluster. Alternatively, your provisioning software may provide more convenient ways to
securely install public keys on multiple hosts.

3. Create an Ansible inventory by creating a file called hosts with a list of the hosts that will comprise
your Greenplum Database cluster. For example:

mdw
sdw1
sdw2
...

This file can be edited and used with the Greenplum Database gpssh-exkeys and gpinitsystem
utilities later on.

4. Copy the playbook code below to a file ansible-playbook.yml on your Ansible control node.
5. Edit the playbook variables at the top of the playbook, such as the gpadmin administrative user and

password to create, and the version of Greenplum Database you are installing.
6. Run the playbook, passing the package to be installed to the package_path parameter.

ansible-playbook ansible-playbook.yml -i hosts -e package_path=./
greenplum-db-6.0.0-rhel7-x86_64.rpm

Ansible Playbook - Greenplum Database Installation for CentOS 7

- hosts: all
 vars:
 - version: "6.0.0"
 - greenplum_admin_user: "gpadmin"
 - greenplum_admin_password: "changeme"

https://docs.ansible.com
https://docs.ansible.com

Installing and Upgrading Greenplum Release Notes

104

 # - package_path: passed via the command line with: -e package_path=./
greenplum-db-6.0.0-rhel7-x86_64.rpm
 remote_user: root
 become: yes
 become_method: sudo
 connection: ssh
 gather_facts: yes
 tasks:
 - name: create greenplum admin user
 user:
 name: "{{ greenplum_admin_user }}"
 password: "{{ greenplum_admin_password | password_hash('sha512',
 'DvkPtCtNH+UdbePZfm9muQ9pU') }}"
 - name: copy package to host
 copy:
 src: "{{ package_path }}"
 dest: /tmp
 - name: install package
 yum:
 name: "/tmp/{{ package_path | basename }}"
 state: present
 - name: cleanup package file from host
 file:
 path: "/tmp/{{ package_path | basename }}"
 state: absent
 - name: find install directory
 find:
 paths: /usr/local
 patterns: 'greenplum*'
 file_type: directory
 register: installed_dir
 - name: change install directory ownership
 file:
 path: '{{ item.path }}'
 owner: "{{ greenplum_admin_user }}"
 group: "{{ greenplum_admin_user }}"
 recurse: yes
 with_items: "{{ installed_dir.files }}"
 - name: update pam_limits
 pam_limits:
 domain: "{{ greenplum_admin_user }}"
 limit_type: '-'
 limit_item: "{{ item.key }}"
 value: "{{ item.value }}"
 with_dict:
 nofile: 524288
 nproc: 131072
 - name: find installed greenplum version
 shell: . /usr/local/greenplum-db/greenplum_path.sh && /usr/local/
greenplum-db/bin/postgres --gp-version
 register: postgres_gp_version
 - name: fail if the correct greenplum version is not installed
 fail:
 msg: "Expected greenplum version {{ version }}, but found
 '{{ postgres_gp_version.stdout }}'"
 when: "version is not defined or version not in
 postgres_gp_version.stdout"

When the playbook has executed successfully, you can proceed with Creating the Data Storage Areas and
Initializing a Greenplum Database System.

105

Chapter 3

Greenplum Database Administrator Guide

Information about configuring, managing and monitoring Greenplum Database installations, and
administering, monitoring, and working with databases. The guide also contains information about
Greenplum Database architecture and concepts such as parallel processing.

Greenplum Database Administrator Guide Release Notes

106

Greenplum Database Concepts
This section provides an overview of Greenplum Database components and features such as high
availability, parallel data loading features, and management utilities.

This section contains the following topics:

• About the Greenplum Architecture
• About Management and Monitoring Utilities
• About Parallel Data Loading
• About Redundancy and Failover in Greenplum Database
• About Database Statistics in Greenplum Database

About the Greenplum Architecture
Greenplum Database is a massively parallel processing (MPP) database server with an architecture
specially designed to manage large-scale analytic data warehouses and business intelligence workloads.

MPP (also known as a shared nothing architecture) refers to systems with two or more processors that
cooperate to carry out an operation, each processor with its own memory, operating system and disks.
Greenplum uses this high-performance system architecture to distribute the load of multi-terabyte data
warehouses, and can use all of a system's resources in parallel to process a query.

Greenplum Database is based on PostgreSQL open-source technology. It is essentially several
PostgreSQL disk-oriented database instances acting together as one cohesive database management
system (DBMS). It is based on PostgreSQL 9.4, and in most cases is very similar to PostgreSQL with
regard to SQL support, features, configuration options, and end-user functionality. Database users interact
with Greenplum Database as they would with a regular PostgreSQL DBMS.

Greenplum Database can use the append-optimized (AO) storage format for bulk loading and reading
of data, and provides performance advantages over HEAP tables. Append-optimized storage provides
checksums for data protection, compression and row/column orientation. Both row-oriented or column-
oriented append-optimized tables can be compressed.

The main differences between Greenplum Database and PostgreSQL are as follows:

• GPORCA is leveraged for query planning, in addition to the Postgres Planner.
• Greenplum Database can use append-optimized storage.
• Greenplum Database has the option to use column storage, data that is logically organized as a table,

using rows and columns that are physically stored in a column-oriented format, rather than as rows.
Column storage can only be used with append-optimized tables. Column storage is compressible. It
also can provide performance improvements as you only need to return the columns of interest to you.
All compression algorithms can be used with either row or column-oriented tables, but Run-Length
Encoded (RLE) compression can only be used with column-oriented tables. Greenplum Database
provides compression on all Append-Optimized tables that use column storage.

The internals of PostgreSQL have been modified or supplemented to support the parallel structure of
Greenplum Database. For example, the system catalog, optimizer, query executor, and transaction
manager components have been modified and enhanced to be able to execute queries simultaneously
across all of the parallel PostgreSQL database instances. The Greenplum interconnect (the networking
layer) enables communication between the distinct PostgreSQL instances and allows the system to
behave as one logical database.

Greenplum Database also can use declarative partitions and sub-partitions to implicitly generate partition
constraints.

Greenplum Database also includes features designed to optimize PostgreSQL for business intelligence
(BI) workloads. For example, Greenplum has added parallel data loading (external tables), resource

Greenplum Database Administrator Guide Release Notes

107

management, query optimizations, and storage enhancements, which are not found in standard
PostgreSQL. Many features and optimizations developed by Greenplum make their way into the
PostgreSQL community. For example, table partitioning is a feature first developed by Greenplum, and it is
now in standard PostgreSQL.

Greenplum Database queries use a Volcano-style query engine model, where the execution engine takes
an execution plan and uses it to generate a tree of physical operators, evaluates tables through physical
operators, and delivers results in a query response.

Greenplum Database stores and processes large amounts of data by distributing the data and processing
workload across several servers or hosts. Greenplum Database is an array of individual databases based
upon PostgreSQL 9.4 working together to present a single database image. The master is the entry point
to the Greenplum Database system. It is the database instance to which clients connect and submit SQL
statements. The master coordinates its work with the other database instances in the system, called
segments, which store and process the data.

Figure 10: High-Level Greenplum Database Architecture

The following topics describe the components that make up a Greenplum Database system and how they
work together.

About the Greenplum Master
The Greenplum Database master is the entry to the Greenplum Database system, accepting client
connections and SQL queries, and distributing work to the segment instances.

Greenplum Database end-users interact with Greenplum Database (through the master) as they would
with a typical PostgreSQL database. They connect to the database using client programs such as psql or
application programming interfaces (APIs) such as JDBC, ODBC or libpq (the PostgreSQL C API).

The master is where the global system catalog resides. The global system catalog is the set of system
tables that contain metadata about the Greenplum Database system itself. The master does not contain

https://www.postgresql.org/docs/9.4/libpq.html

Greenplum Database Administrator Guide Release Notes

108

any user data; data resides only on the segments. The master authenticates client connections, processes
incoming SQL commands, distributes workloads among segments, coordinates the results returned by
each segment, and presents the final results to the client program.

Greenplum Database uses Write-Ahead Logging (WAL) for master/standby master mirroring. In WAL-
based logging, all modifications are written to the log before being applied, to ensure data integrity for any
in-process operations.

About the Greenplum Segments
Greenplum Database segment instances are independent PostgreSQL databases that each store a portion
of the data and perform the majority of query processing.

When a user connects to the database via the Greenplum master and issues a query, processes are
created in each segment database to handle the work of that query. For more information about query
processes, see About Greenplum Query Processing.

User-defined tables and their indexes are distributed across the available segments in a Greenplum
Database system; each segment contains a distinct portion of data. The database server processes that
serve segment data run under the corresponding segment instances. Users interact with segments in a
Greenplum Database system through the master.

Segments run on a servers called segment hosts. A segment host typically executes from two to eight
Greenplum segments, depending on the CPU cores, RAM, storage, network interfaces, and workloads.
Segment hosts are expected to be identically configured. The key to obtaining the best performance from
Greenplum Database is to distribute data and workloads evenly across a large number of equally capable
segments so that all segments begin working on a task simultaneously and complete their work at the
same time.

About the Greenplum Interconnect
The interconnect is the networking layer of the Greenplum Database architecture.

The interconnect refers to the inter-process communication between segments and the network
infrastructure on which this communication relies. The Greenplum interconnect uses a standard Ethernet
switching fabric. For performance reasons, a 10-Gigabit system, or faster, is recommended.

By default, the interconnect uses User Datagram Protocol with flow control (UDPIFC) for interconnect
traffic to send messages over the network. The Greenplum software performs packet verification beyond
what is provided by UDP. This means the reliability is equivalent to Transmission Control Protocol (TCP),
and the performance and scalability exceeds TCP. If the interconnect is changed to TCP, Greenplum
Database has a scalability limit of 1000 segment instances. With UDPIFC as the default protocol for the
interconnect, this limit is not applicable.

About Management and Monitoring Utilities
Greenplum Database provides standard command-line utilities for performing common monitoring and
administration tasks.

Greenplum command-line utilities are located in the $GPHOME/bin directory and are executed on the
master host. Greenplum provides utilities for the following administration tasks:

• Installing Greenplum Database on an array
• Initializing a Greenplum Database System
• Starting and stopping Greenplum Database
• Adding or removing a host
• Expanding the array and redistributing tables among new segments
• Managing recovery for failed segment instances
• Managing failover and recovery for a failed master instance
• Backing up and restoring a database (in parallel)

Greenplum Database Administrator Guide Release Notes

109

• Loading data in parallel
• Transferring data between Greenplum databases
• System state reporting

Greenplum Database includes an optional performance management database that contains query status
information and system metrics. The gpperfmon_install management utility creates the database,
named gpperfmon, and enables data collection agents that execute on the Greenplum Database master
and segment hosts. Data collection agents on the segment hosts collect query status from the segments,
as well as system metrics such as CPU and memory utilization. An agent on the master host periodically
(typically every 15 seconds) retrieves the data from the segment host agents and updates the gpperfmon
database. Users can query the gpperfmon database to see the query and system metrics.

Pivotal provides an optional system monitoring and management tool, Greenplum Command Center, which
administrators can install and enable with Greenplum Database. Greenplum Command Center provides
a web-based user interface for viewing system metrics and allows administrators to perform additional
system management tasks. For more information about Greenplum Command Center, see the Greenplum
Command Center documentation.

Figure 11: Greenplum Command Center Architecture

About Concurrency Control in Greenplum Database
Greenplum Database uses the PostgreSQL Multiversion Concurrency Control (MVCC) model to manage
concurrent transactions for heap tables.

Concurrency control in a database management system allows concurrent queries to complete with correct
results while ensuring the integrity of the database. Traditional databases use a two-phase locking protocol
that prevents a transaction from modifying data that has been read by another concurrent transaction and
prevents any concurrent transaction from reading or writing data that another transaction has updated.
The locks required to coordinate transactions add contention to the database, reducing overall transaction
throughput.

https://gpcc.docs.pivotal.io
https://gpcc.docs.pivotal.io

Greenplum Database Administrator Guide Release Notes

110

Greenplum Database uses the PostgreSQL Multiversion Concurrency Control (MVCC) model to manage
concurrency for heap tables. With MVCC, each query operates on a snapshot of the database when
the query starts. While it executes, a query cannot see changes made by other concurrent transactions.
This ensures that a query sees a consistent view of the database. Queries that read rows can never
block waiting for transactions that write rows. Conversely, queries that write rows cannot be blocked by
transactions that read rows. This allows much greater concurrency than traditional database systems that
employ locks to coordinate access between transactions that read and write data.

Note: Append-optimized tables are managed with a different concurrency control model than the
MVCC model discussed in this topic. They are intended for "write-once, read-many" applications
that never, or only very rarely, perform row-level updates.

Snapshots
The MVCC model depends on the system's ability to manage multiple versions of data rows. A query
operates on a snapshot of the database at the start of the query. A snapshot is the set of rows that are
visible at the beginning of a statement or transaction. The snapshot ensures the query has a consistent
and valid view of the database for the duration of its execution.

Each transaction is assigned a unique transaction ID (XID), an incrementing 32-bit value. When a new
transaction starts, it is assigned the next XID. An SQL statement that is not enclosed in a transaction is
treated as a single-statement transaction—the BEGIN and COMMIT are added implicitly. This is similar to
autocommit in some database systems.

Note: Greenplum Database assigns XID values only to transactions that involve DDL or DML
operations, which are typically the only transactions that require an XID.

When a transaction inserts a row, the XID is saved with the row in the xmin system column. When a
transaction deletes a row, the XID is saved in the xmax system column. Updating a row is treated as a
delete and an insert, so the XID is saved to the xmax of the current row and the xmin of the newly inserted
row. The xmin and xmax columns, together with the transaction completion status, specify a range of
transactions for which the version of the row is visible. A transaction can see the effects of all transactions
less than xmin, which are guaranteed to be committed, but it cannot see the effects of any transaction
greater than or equal to xmax.

Multi-statement transactions must also record which command within a transaction inserted a row (cmin)
or deleted a row (cmax) so that the transaction can see changes made by previous commands in the
transaction. The command sequence is only relevant during the transaction, so the sequence is reset to 0
at the beginning of a transaction.

XID is a property of the database. Each segment database has its own XID sequence that cannot be
compared to the XIDs of other segment databases. The master coordinates distributed transactions
with the segments using a cluster-wide session ID number, called gp_session_id. The segments
maintain a mapping of distributed transaction IDs with their local XIDs. The master coordinates distributed
transactions across all of the segment with the two-phase commit protocol. If a transaction fails on any one
segment, it is rolled back on all segments.

You can see the xmin, xmax, cmin, and cmax columns for any row with a SELECT statement:

SELECT xmin, xmax, cmin, cmax, * FROM tablename;

Because you run the SELECT command on the master, the XIDs are the distributed transactions IDs. If you
could execute the command in an individual segment database, the xmin and xmax values would be the
segment's local XIDs.

Note: Greenplum Database distributes all of a replicated table's rows to every segment, so
each row is duplicated on every segment. Each segment instance maintains its own values for
the system columns xmin, xmax, cmin, and cmax, as well as for the gp_segment_id and
ctidsystem columns. Greenplum Database does not permit user queries to access these system

Greenplum Database Administrator Guide Release Notes

111

columns for replicated tables because they have no single, unambiguous value to evaluate in a
query.

Transaction ID Wraparound
The MVCC model uses transaction IDs (XIDs) to determine which rows are visible at the beginning of a
query or transaction. The XID is a 32-bit value, so a database could theoretically execute over four billion
transactions before the value overflows and wraps to zero. However, Greenplum Database uses modulo
232 arithmetic with XIDs, which allows the transaction IDs to wrap around, much as a clock wraps at twelve
o'clock. For any given XID, there could be about two billion past XIDs and two billion future XIDs. This
works until a version of a row persists through about two billion transactions, when it suddenly appears
to be a new row. To prevent this, Greenplum has a special XID, called FrozenXID, which is always
considered older than any regular XID it is compared with. The xmin of a row must be replaced with
FrozenXID within two billion transactions, and this is one of the functions the VACUUM command performs.

Vacuuming the database at least every two billion transactions prevents XID wraparound. Greenplum
Database monitors the transaction ID and warns if a VACUUM operation is required.

A warning is issued when a significant portion of the transaction IDs are no longer available and before
transaction ID wraparound occurs:

WARNING: database "database_name" must be vacuumed
 within number_of_transactions transactions

When the warning is issued, a VACUUM operation is required. If a VACUUM operation is not performed,
Greenplum Database stops creating transactions to avoid possible data loss when it reaches a limit prior to
when transaction ID wraparound occurs and issues this error:

FATAL: database is not accepting commands to avoid wraparound data loss in
 database "database_name"

See Recovering from a Transaction ID Limit Error for the procedure to recover from this error.

The server configuration parameters xid_warn_limit and xid_stop_limit control when the warning
and error are displayed. The xid_warn_limit parameter specifies the number of transaction IDs before
the xid_stop_limit when the warning is issued. The xid_stop_limit parameter specifies the
number of transaction IDs before wraparound would occur when the error is issued and new transactions
cannot be created.

Transaction Isolation Modes
The SQL standard describes three phenomena that can occur when database transactions run
concurrently:

• Dirty read – a transaction can read uncommitted data from another concurrent transaction.
• Non-repeatable read – a row read twice in a transaction can change because another concurrent

transaction committed changes after the transaction began.
• Phantom read – a query executed twice in the same transaction can return two different sets of rows

because another concurrent transaction added rows.

The SQL standard defines four transaction isolation levels that database systems can support, with the
phenomena that are allowed when transactions execute concurrently for each level.

Table 11: SQL Transaction Isolation Modes

Level Dirty Read Non-Repeatable Phantom Read

Read Uncommitted Possible Possible Possible

Read Committed Impossible Possible Possible

Greenplum Database Administrator Guide Release Notes

112

Level Dirty Read Non-Repeatable Phantom Read

Repeatable Read Impossible Impossible Possible

Serializable Impossible Impossible Impossible

Greenplum Database READ UNCOMMITTED and READ COMMITTED isolation modes behave like the
SQL standard READ COMMITTED mode. Greenplum Database SERIALIZABLE and REPEATABLE READ
isolation modes behave like the SQL standard READ COMMITTED mode, except that Greenplum Database
also prevents phantom reads.

The difference between READ COMMITTED and REPEATABLE READ is that with READ COMMITTED,
each statement in a transaction sees only rows committed before the statement started, while in READ
COMMITTED mode, statements in a transaction see only rows committed before the transaction started.

With READ COMMITTED isolation mode the values in a row retrieved twice in a transaction can differ if
another concurrent transaction has committed changes since the transaction began. READ COMMITTED
mode also permits phantom reads, where a query executed twice in the same transaction can return two
different sets of rows.

The REPEATABLE READ isolation mode prevents non-repeatable reads and phantom reads, although
the latter is not required by the standard. A transaction that attempts to modify data modified by another
concurrent transaction is rolled back. Applications that execute transactions in REPEATABLE READ mode
must be prepared to handle transactions that fail due to serialization errors. If REPEATABLE READ isolation
mode is not required by the application, it is better to use READ COMMITTED mode.

SERIALIZABLE mode, which Greenplum Database does not fully support, guarantees that a set of
transactions executed concurrently produces the same result as if the transactions executed sequentially
one after the other. If SERIALIZABLE is specified, Greenplum Database falls back to REPEATABLE READ.
The MVCC Snapshot Isolation (SI) model prevents dirty reads, non-repeatable reads, and phantom reads
without expensive locking, but there are other interactions that can occur between some SERIALIZABLE
transactions in Greenplum Database that prevent them from being truly serializable. These anomalies can
often be attributed to the fact that Greenplum Database does not perform predicate locking, which means
that a write in one transaction can affect the result of a previous read in another concurrent transaction.

Note: The PostgreSQL 9.1 SERIALIZABLE isolation level introduces a new Serializable Snapshot
Isolation (SSI) model, which is fully compliant with the SQL standard definition of serializable
transactions. This model is not available in Greenplum Database. SSI monitors concurrent
transactions for conditions that could cause serialization anomalies. When potential serialization
problems are found, one transaction is allowed to commit and others are rolled back and must be
retried.

Greenplum Database transactions that run concurrently should be examined to identify interactions that
may update the same data concurrently. Problems identified can be prevented by using explicit table locks
or by requiring the conflicting transactions to update a dummy row introduced to represent the conflict.

The SQL SET TRANSACTION ISOLATION LEVEL statement sets the isolation mode for the current
transaction. The mode must be set before any SELECT, INSERT, DELETE, UPDATE, or COPY statements:

BEGIN;
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
...
COMMIT;

The isolation mode can also be specified as part of the BEGIN statement:

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;

The default transaction isolation mode can be changed for a session by setting the
default_transaction_isolation configuration property.

Greenplum Database Administrator Guide Release Notes

113

Removing Dead Rows from Tables
Updating or deleting a row leaves an expired version of the row in the table. When an expired row is no
longer referenced by any active transactions, it can be removed and the space it occupied can be reused.
The VACUUM command marks the space used by expired rows for reuse.

When expired rows accumulate in a table, the disk files must be extended to accommodate new rows.
Performance suffers due to the increased disk I/O required to execute queries. This condition is called
bloat and it should be managed by regularly vacuuming tables.

The VACUUM command (without FULL) can run concurrently with other queries. It marks the space
previously used by the expired rows as free, and updates the free space map. When Greenplum Database
later needs space for new rows, it first consults the table's free space map to find pages with available
space. If none are found, new pages will be appended to the file.

VACUUM (without FULL) does not consolidate pages or reduce the size of the table on disk. The space it
recovers is only available through the free space map. To prevent disk files from growing, it is important to
run VACUUM often enough. The frequency of required VACUUM runs depends on the frequency of updates
and deletes in the table (inserts only ever add new rows). Heavily updated tables might require several
VACUUM runs per day, to ensure that the available free space can be found through the free space map. It
is also important to run VACUUM after running a transaction that updates or deletes a large number of rows.

The VACUUM FULL command rewrites the table without expired rows, reducing the table to its minimum
size. Every page in the table is checked, and visible rows are moved up into pages which are not yet
fully packed. Empty pages are discarded. The table is locked until VACUUM FULL completes. This is very
expensive compared to the regular VACUUM command, and can be avoided or postponed by vacuuming
regularly. It is best to run VACUUM FULL during a maintenance period. An alternative to VACUUM FULL is
to recreate the table with a CREATE TABLE AS statement and then drop the old table.

You can run VACUUM VERBOSE tablename to get a report, by segment, of the number of dead rows
removed, the number of pages affected, and the number of pages with usable free space.

Query the pg_class system table to find out how many pages a table is using across all segments. Be
sure to ANALYZE the table first to get accurate data.

SELECT relname, relpages, reltuples FROM pg_class WHERE relname='tablename';

Another useful tool is the gp_bloat_diag view in the gp_toolkit schema, which identifies bloat
in tables by comparing the actual number of pages used by a table to the expected number. See
"The gp_toolkit Administrative Schema" in the Greenplum Database Reference Guide for more about
gp_bloat_diag.

Example of Managing Transaction IDs
For Greenplum Database, the transaction ID (XID) value an incrementing 32-bit (232) value. The maximum
unsigned 32-bit value is 4,294,967,295, or about four billion. The XID values restart at 3 after the maximum
is reached. Greenplum Database handles the limit of XID values with two features:

• Calculations on XID values using modulo-232 arithmetic that allow Greenplum Database to reuse XID
values. The modulo calculations determine the order of transactions, whether one transaction has
occurred before or after another, based on the XID.

Every XID value can have up to two billion (231) XID values that are considered previous transactions
and two billion (231 -1) XID values that are considered newer transactions. The XID values can be
considered a circular set of values with no endpoint similar to a 24 hour clock.

Using the Greenplum Database modulo calculations, as long as two XIDs are within 231 transactions of
each other, comparing them yields the correct result.

• A frozen XID value that Greenplum Database uses as the XID for current (visible) data rows. Setting a
row's XID to the frozen XID performs two functions.

Greenplum Database Administrator Guide Release Notes

114

• When Greenplum Database compares XIDs using the modulo calculations, the frozen XID is always
smaller, earlier, when compared to any other XID. If a row's XID is not set to the frozen XID and 231

new transactions are executed, the row appears to be executed in the future based on the modulo
calculation.

• When the row's XID is set to the frozen XID, the original XID can be used, without duplicating the
XID. This keeps the number of data rows on disk with assigned XIDs below (232).

Note: Greenplum Database assigns XID values only to transactions that involve DDL or DML
operations, which are typically the only transactions that require an XID.

Simple MVCC Example

This is a simple example of the concepts of a MVCC database and how it manages data and transactions
with transaction IDs. This simple MVCC database example consists of a single table:

• The table is a simple table with 2 columns and 4 rows of data.
• The valid transaction ID (XID) values are from 0 up to 9, after 9 the XID restarts at 0.
• The frozen XID is -2. This is different than the Greenplum Database frozen XID.
• Transactions are performed on a single row.
• Only insert and update operations are performed.
• All updated rows remain on disk, no operations are performed to remove obsolete rows.

The example only updates the amount values. No other changes to the table.

The example shows these concepts.

• How transaction IDs are used to manage multiple, simultaneous transactions on a table.
• How transaction IDs are managed with the frozen XID
• How the modulo calculation determines the order of transactions based on transaction IDs

Managing Simultaneous Transactions
This table is the initial table data on disk with no updates. The table contains two database columns for
transaction IDs, xmin (transaction that created the row) and xmax (transaction that updated the row). In
the table, changes are added, in order, to the bottom of the table.

Table 12: Example Table

item amount xmin xmax

widget 100 0 null

giblet 200 1 null

sprocket 300 2 null

gizmo 400 3 null

The next table shows the table data on disk after some updates on the amount values have been
performed.

xid = 4: update tbl set amount=208 where item = 'widget'
xid = 5: update tbl set amount=133 where item = 'sprocket'
xid = 6: update tbl set amount=16 where item = 'widget'

In the next table, the bold items are the current rows for the table. The other rows are obsolete rows, table
data that on disk but is no longer current. Using the xmax value, you can determine the current rows of
the table by selecting the rows with null value. Greenplum Database uses a slightly different method to
determine current table rows.

Greenplum Database Administrator Guide Release Notes

115

Table 13: Example Table with Updates

item amount xmin xmax

widget 100 0 4

giblet 200 1 null

sprocket 300 2 5

gizmo 400 3 null

widget 208 4 6

sproket 133 5 null

widget 16 6 null

The simple MVCC database works with XID values to determine the state of the table. For example, both
these independent transactions execute concurrently.

• UPDATE command changes the sprocket amount value to 133 (xmin value 5)
• SELECT command returns the value of sprocket.

During the UPDATE transaction, the database returns the value of sprocket 300, until the UPDATE
transaction completes.

Managing XIDs and the Frozen XID
For this simple example, the database is close to running out of available XID values. When Greenplum
Database is close to running out of available XID values, Greenplum Database takes these actions.

• Greenplum Database issues a warning stating that the database is running out of XID values.

WARNING: database "database_name" must be vacuumed
 within number_of_transactions transactions

• Before the last XID is assigned, Greenplum Database stops accepting transactions to prevent assigning
an XID value twice and issues this message.

FATAL: database is not accepting commands to avoid wraparound data loss in
 database "database_name"

To manage transaction IDs and table data that is stored on disk, Greenplum Database provides the
VACUUM command.

• A VACUUM operation frees up XID values so that a table can have more than 10 rows by changing the
xmin values to the frozen XID.

• A VACUUM operation manages obsolete or deleted table rows on disk. This database's VACUUM
command changes the XID values obsolete to indicate obsolete rows. A Greenplum Database
VACUUM operation, without the FULL option, deletes the data opportunistically to remove rows on disk
with minimal impact to performance and data availability.

For the example table, a VACUUM operation has been performed on the table. The command updated
table data on disk. This version of the VACUUM command performs slightly differently than the Greenplum
Database command, but the concepts are the same.

• For the widget and sprocket rows on disk that are no longer current, the rows have been marked as
obsolete.

• For the giblet and gizmo rows that are current, the xmin has been changed to the frozen XID.

Greenplum Database Administrator Guide Release Notes

116

The values are still current table values (the row's xmax value is null). However, the table row is
visible to all transactions because the xmin value is frozen XID value that is older than all other XID
values when modulo calculations are performed.

After the VACUUM operation, the XID values 0, 1, 2, and 3 available for use.

Table 14: Example Table after VACUUM

item amount xmin xmax

widget 100 obsolete obsolete

giblet 200 -2 null

sprocket 300 obsolete obsolete

gizmo 400 -2 null

widget 208 4 6

sproket 133 5 null

widget 16 6 null

When a row disk with the xmin value of -2 is updated, the xmax value is replaced with the transaction XID
as usual, and the row on disk is considered obsolete after any concurrent transactions that access the row
have completed.

Obsolete rows can be deleted from disk. For Greenplum Database, the VACUUM command, with FULL
option, does more extensive processing to reclaim disk space.

Example of XID Modulo Calculations
The next table shows the table data on disk after more UPDATE transactions. The XID values have rolled
over and start over at 0. No additional VACUUM operations have been performed.

Table 15: Example Table with Wrapping XID

item amount xmin xmax

widget 100 obsolete obsolete

giblet 200 -2 1

sprocket 300 obsolete obsolete

gizmo 400 -2 9

widget 208 4 6

sproket 133 5 null

widget 16 6 7

widget 222 7 null

giblet 233 8 0

gizmo 18 9 null

giblet 88 0 1

giblet 44 1 null

Greenplum Database Administrator Guide Release Notes

117

When performing the modulo calculations that compare XIDs, Greenplum Database, considers the XIDs of
the rows and the current range of available XIDs to determine if XID wrapping has occurred between row
XIDs.

For the example table XID wrapping has occurred. The XID 1 for giblet row is a later transaction than the
XID 7 for widget row based on the modulo calculations for XID values even though the XID value 7 is
larger than 1.

For the widget and sprocket rows, XID wrapping has not occurred and XID 7 is a later transaction than XID
5.

About Parallel Data Loading
This topic provides a short introduction to Greenplum Database data loading features.

In a large scale, multi-terabyte data warehouse, large amounts of data must be loaded within a relatively
small maintenance window. Greenplum supports fast, parallel data loading with its external tables feature.
Administrators can also load external tables in single row error isolation mode to filter bad rows into a
separate error log while continuing to load properly formatted rows. Administrators can specify an error
threshold for a load operation to control how many improperly formatted rows cause Greenplum to abort
the load operation.

By using external tables in conjunction with Greenplum Database's parallel file server (gpfdist),
administrators can achieve maximum parallelism and load bandwidth from their Greenplum Database
system.

Figure 12: External Tables Using Greenplum Parallel File Server (gpfdist)

Another Greenplum utility, gpload, runs a load task that you specify in a YAML-formatted control file.
You describe the source data locations, format, transformations required, participating hosts, database
destinations, and other particulars in the control file and gpload executes the load. This allows you to
describe a complex task and execute it in a controlled, repeatable fashion.

Greenplum Database Administrator Guide Release Notes

118

About Redundancy and Failover in Greenplum Database
This topic provides a high-level overview of Greenplum Database high availability features.

You can deploy Greenplum Database without a single point of failure by mirroring components. The
following sections describe the strategies for mirroring the main components of a Greenplum system. For
a more detailed overview of Greenplum high availability features, see Overview of Greenplum Database
High Availability.

Important: When data loss is not acceptable for a Greenplum Database cluster, Greenplum
master and segment mirroring is recommended. If mirroring is not enabled then Greenplum stores
only one copy of the data, so the underlying storage media provides the only guarantee for data
availability and correctness in the event of a hardware failure.

Kubernetes enables quick recovery from both pod and host failures, and Kubernetes storage
services provide a high level of availability for the underlying data. Furthermore, virtualized
environments make it difficult to ensure the anti-affinity guarantees required for Greenplum
mirroring solutions. For these reasons, mirrorless deployments are fully supported with Greenplum
for Kubernetes. Other deployment environments are generally not supported for production use
unless both Greenplum master and segment mirroring are enabled.

About Segment Mirroring
When you deploy your Greenplum Database system, you can configure mirror segment instances.
Mirror segments allow database queries to fail over to a backup segment if the primary segment
becomes unavailable. The mirror segment is kept current by a transaction log replication process, which
synchronizes the data between the primary and mirror instances. Mirroring is strongly recommended for
production systems and required for Pivotal support.

As a best practice, the secondary (mirror) segment instance must always reside on a different host than
its primary segment instance to protect against a single host failure. In virtualized environments, the
secondary (mirror) segment must always reside on a different storage system than the primary. Mirror
segments can be arranged over the remaining hosts in the cluster in configurations designed to maximize
availability, or minimize the performance degradation when hosts or multiple primary segments fail.

Two standard mirroring configurations are available when you initialize or expand a Greenplum system.
The default configuration, called group mirroring, places all the mirrors for a host's primary segments on
one other host in the cluster. The other standard configuration, spread mirroring, can be selected with a
command-line option. Spread mirroring spreads each host's mirrors over the remaining hosts and requires
that there are more hosts in the cluster than primary segments per host.

Figure 13: Spread Mirroring in Greenplum Database shows how table data is distributed across segments
when spread mirroring is configured.

Greenplum Database Administrator Guide Release Notes

119

Figure 13: Spread Mirroring in Greenplum Database

Segment Failover and Recovery
When segment mirroring is enabled in a Greenplum Database system, the system will automatically fail
over to the mirror segment instance if a primary segment instance becomes unavailable. A Greenplum
Database system can remain operational if a segment instance or host goes down as long as all the data is
available on the remaining active segment instances.

If the master cannot connect to a segment instance, it marks that segment instance as down in the
Greenplum Database system catalog and brings up the mirror segment in its place. A failed segment
instance will remain out of operation until an administrator takes steps to bring that segment back online.
An administrator can recover a failed segment while the system is up and running. The recovery process
copies over only the changes that were missed while the segment was out of operation.

If you do not have mirroring enabled, the system will automatically shut down if a segment instance
becomes invalid. You must recover all failed segments before operations can continue.

About Master Mirroring
You can also optionally deploy a backup or mirror of the master instance on a separate host from the
master host. The backup master instance (the standby master) serves as a warm standby in the event that
the primary master host becomes non-operational. The standby master is kept current by a transaction log
replication process, which synchronizes the data between the primary and standby master.

If the primary master fails, the log replication process stops, and the standby master can be activated in
its place. The switchover does not happen automatically, but must be triggered externally. Upon activation
of the standby master, the replicated logs are used to reconstruct the state of the master host at the time
of the last successfully committed transaction. The activated standby master effectively becomes the
Greenplum Database master, accepting client connections on the master port (which must be set to the
same port number on the master host and the backup master host).

Greenplum Database Administrator Guide Release Notes

120

Since the master does not contain any user data, only the system catalog tables need to be synchronized
between the primary and backup copies. When these tables are updated, changes are automatically
copied over to the standby master to ensure synchronization with the primary master.

Figure 14: Master Mirroring in Greenplum Database

About Interconnect Redundancy
The interconnect refers to the inter-process communication between the segments and the network
infrastructure on which this communication relies. You can achieve a highly available interconnect using
by deploying dual Gigabit Ethernet switches on your network and redundant Gigabit connections to the
Greenplum Database host (master and segment) servers. For performance reasons, 10-Gb Ethernet, or
faster, is recommended.

About Database Statistics in Greenplum Database
An overview of statistics gathered by the ANALYZE command in Greenplum Database.

Statistics are metadata that describe the data stored in the database. The query optimizer needs up-to-
date statistics to choose the best execution plan for a query. For example, if a query joins two tables and
one of them must be broadcast to all segments, the optimizer can choose the smaller of the two tables to
minimize network traffic.

The statistics used by the optimizer are calculated and saved in the system catalog by the ANALYZE
command. There are three ways to initiate an analyze operation:

• You can run the ANALYZE command directly.
• You can run the analyzedb management utility outside of the database, at the command line.
• An automatic analyze operation can be triggered when DML operations are performed on tables

that have no statistics or when a DML operation modifies a number of rows greater than a specified
threshold.

These methods are described in the following sections. The VACUUM ANALYZE command is another way
to initiate an analyze operation, but its use is discouraged because vacuum and analyze are different
operations with different purposes.

Calculating statistics consumes time and resources, so Greenplum Database produces estimates by
calculating statistics on samples of large tables. In most cases, the default settings provide the information
needed to generate correct execution plans for queries. If the statistics produced are not producing optimal
query execution plans, the administrator can tune configuration parameters to produce more accurate
stastistics by increasing the sample size or the granularity of statistics saved in the system catalog.
Producing more accurate statistics has CPU and storage costs and may not produce better plans, so it is
important to view explain plans and test query performance to ensure that the additional statistics-related
costs result in better query performance.

Greenplum Database Administrator Guide Release Notes

121

System Statistics

Table Size
The query planner seeks to minimize the disk I/O and network traffic required to execute a query, using
estimates of the number of rows that must be processed and the number of disk pages the query must
access. The data from which these estimates are derived are the pg_class system table columns
reltuples and relpages, which contain the number of rows and pages at the time a VACUUM or
ANALYZE command was last run. As rows are added or deleted, the numbers become less accurate.
However, an accurate count of disk pages is always available from the operating system, so as long as the
ratio of reltuples to relpages does not change significantly, the optimizer can produce an estimate of
the number of rows that is sufficiently accurate to choose the correct query execution plan.

When the reltuples column differs significantly from the row count returned by SELECT COUNT(*), an
analyze should be performed to update the statistics.

When a REINDEX command finishes recreating an index, the relpages and reltuples columns are set
to zero. The ANALYZE command should be run on the base table to update these columns.

The pg_statistic System Table and pg_stats View
The pg_statistic system table holds the results of the last ANALYZE operation on each database table.
There is a row for each column of every table. It has the following columns:
starelid

The object ID of the table or index the column belongs to.

staattnum

The number of the described column, beginning with 1.

stainherit

If true, the statistics include inheritance child columns, not just the values in the specified
relation.

stanullfrac

The fraction of the column's entries that are null.

stawidth

The average stored width, in bytes, of non-null entries.

stadistinct

A positive number is an estimate of the number of distinct values in the column; the
number is not expected to vary with the number of rows. A negative value is the number of
distinct values divided by the number of rows, that is, the ratio of rows with distinct values
for the column, negated. This form is used when the number of distinct values increases
with the number of rows. A unique column, for example, has an n_distinct value of
-1.0. Columns with an average width greater than 1024 are considered unique.

stakindN

A code number indicating the kind of statistics stored in the Nth slot of the pg_statistic
row.

staopN

An operator used to derive the statistics stored in the Nth slot. For example, a histogram
slot would show the < operator that defines the sort order of the data.

stanumbersN

float4 array containing numerical statistics of the appropriate kind for the Nth slot, or NULL
if the slot kind does not involve numerical values.

Greenplum Database Administrator Guide Release Notes

122

stavaluesN

Column data values of the appropriate kind for the Nth slot, or NULL if the slot kind
does not store any data values. Each array's element values are actually of the specific
column's data type, so there is no way to define these columns' types more specifically
than anyarray.

The statistics collected for a column vary for different data types, so the pg_statistic table stores
statistics that are appropriate for the data type in four slots, consisting of four columns per slot. For
example, the first slot, which normally contains the most common values for a column, consists of the
columns stakind1, staop1, stanumbers1, and stavalues1.

The stakindN columns each contain a numeric code to describe the type of statistics stored in their
slot. The stakind code numbers from 1 to 99 are reserved for core PostgreSQL data types. Greenplum
Database uses code numbers 1, 2, 3, 4, 5, and 99. A value of 0 means the slot is unused. The following
table describes the kinds of statistics stored for the three codes.

Table 16: Contents of pg_statistic "slots"

stakind
Code

Description

1 Most CommonValues (MCV) Slot

• staop contains the object ID of the "=" operator, used to decide whether values are
the same or not.

• stavalues contains an array of the K most common non-null values appearing in the
column.

• stanumbers contains the frequencies (fractions of total row count) of the values in the
stavalues array.

The values are ordered in decreasing frequency. Since the arrays are variable-size, K can
be chosen by the statistics collector. Values must occur more than once to be added to
the stavalues array; a unique column has no MCV slot.

2 Histogram Slot – describes the distribution of scalar data.

• staop is the object ID of the "<" operator, which describes the sort ordering.
• stavalues contains M (where M>=2) non-null values that divide the non-null column

data values into M-1 bins of approximately equal population. The first stavalues item
is the minimum value and the last is the maximum value.

• stanumbers is not used and should be NULL.

If a Most Common Values slot is also provided, then the histogram describes the data
distribution after removing the values listed in the MCV array. (It is a compressed
histogram in the technical parlance). This allows a more accurate representation of the
distribution of a column with some very common values. In a column with only a few
distinct values, it is possible that the MCV list describes the entire data population; in this
case the histogram reduces to empty and should be omitted.

3 Correlation Slot – describes the correlation between the physical order of table tuples and
the ordering of data values of this column.

• staop is the object ID of the "<" operator. As with the histogram, more than one entry
could theoretically appear.

• stavalues is not used and should be NULL.
• stanumbers contains a single entry, the correlation coefficient between the sequence

of data values and the sequence of their actual tuple positions. The coefficient ranges
from +1 to -1.

Greenplum Database Administrator Guide Release Notes

123

stakind
Code

Description

4 Most Common Elements Slot - is similar to a Most Common Values (MCV) Slot, except
that it stores the most common non-null elements of the column values. This is useful
when the column datatype is an array or some other type with identifiable elements (for
instance, tsvector).

• staop contains the equality operator appropriate to the element type.
• stavalues contains the most common element values.
• stanumbers contains common element frequencies.

Frequencies are measured as the fraction of non-null rows the element value appears
in, not the frequency of all rows. Also, the values are sorted into the element type's
default order (to support binary search for a particular value). Since this puts the minimum
and maximum frequencies at unpredictable spots in stanumbers, there are two extra
members of stanumbers that hold copies of the minimum and maximum frequencies.
Optionally, there can be a third extra member that holds the frequency of null elements
(the frequency is expressed in the same terms: the fraction of non-null rows that contain
at least one null element). If this member is omitted, the column is presumed to contain no
NULL elements.

Note: For tsvector columns, the stavalues elements are of type text, even
though their representation within tsvector is not exactly text.

5 Distinct Elements Count Histogram Slot - describes the distribution of the number of
distinct element values present in each row of an array-type column. Only non-null rows
are considered, and only non-null elements.

• staop contains the equality operator appropriate to the element type.
• stavalues is not used and should be NULL.
• stanumbers contains information about distinct elements. The last member of

stanumbers is the average count of distinct element values over all non-null
rows. The preceding M (where M >=2) members form a histogram that divides the
population of distinct-elements counts into M-1 bins of approximately equal population.
The first of these is the minimum observed count, and the last the maximum.

99 Hyperloglog Slot - for child leaf partitions of a partitioned table, stores the hyperloglog_
counter created for the sampled data. The hyperloglog_counter data structure is
converted into a bytea and stored in a stavalues5 slot of the pg_statistic catalog
table.

The pg_stats view presents the contents of pg_statistic in a friendlier format. The pg_stats view
has the following columns:

schemaname The name of the schema containing the table.

tablename The name of the table.

attname The name of the column this row describes.

inherited If true, the statistics include inheritance child
columns.

null_frac The fraction of column entries that are null.

avg_width The average storage width in bytes
of the column's entries, calculated as
avg(pg_column_size(column_name)).

Greenplum Database Administrator Guide Release Notes

124

n_distinct A positive number is an estimate of the number
of distinct values in the column; the number is
not expected to vary with the number of rows. A
negative value is the number of distinct values
divided by the number of rows, that is, the ratio of
rows with distinct values for the column, negated.
This form is used when the number of distinct
values increases with the number of rows. A unique
column, for example, has an n_distinct value of
-1.0. Columns with an average width greater than
1024 are considered unique.

most_common_vals An array containing the most common values
in the column, or null if no values seem to be
more common. If the n_distinct column is
-1, most_common_vals is null. The length
of the array is the lesser of the number of
actual distinct column values or the value of the
default_statistics_target configuration
parameter. The number of values can be overridden
for a column using ALTER TABLE table SET
COLUMN column SET STATISTICS N.

most_common_freqs An array containing the frequencies of the values
in the most_common_vals array. This is the
number of occurrences of the value divided by
the total number of rows. The array is the same
length as the most_common_vals array. It is null if
most_common_vals is null.

histogram_bounds An array of values that divide the column values
into groups of approximately the same size. A
histogram can be defined only if there is a max()
aggregate function for the column. The number
of groups in the histogram is the same as the
most_common_vals array size.

correlation Greenplum Database does not calculate the
correlation statistic.

most_common_elems An array that contains the most common element
values.

most_common_elem_freqs An array that contains common element
frequencies.

elem_count_histogram An array that describes the distribution of the
number of distinct element values present in each
row of an array-type column.

Newly created tables and indexes have no statistics. You can check for tables with missing statistics using
the gp_stats_missing view, which is in the gp_toolkit schema:

SELECT * from gp_toolkit.gp_stats_missing;

Sampling
When calculating statistics for large tables, Greenplum Database creates a smaller table by sampling the
base table. If the table is partitioned, samples are taken from all partitions.

Greenplum Database Administrator Guide Release Notes

125

Updating Statistics
Running ANALYZE with no arguments updates statistics for all tables in the database. This could take a
very long time, so it is better to analyze tables selectively after data has changed. You can also analyze a
subset of the columns in a table, for example columns used in joins, WHERE clauses, SORT clauses, GROUP
BY clauses, or HAVING clauses.

Analyzing a severely bloated table can generate poor statistics if the sample contains empty pages, so it is
good practice to vacuum a bloated table before analyzing it.

See the SQL Command Reference in the Greenplum Database Reference Guide for details of running the
ANALYZE command.

Refer to the Greenplum Database Management Utility Reference for details of running the analyzedb
command.

Analyzing Partitioned Tables
When the ANALYZE command is run on a partitioned table, it analyzes each child leaf partition table, one at
a time. You can run ANALYZE on just new or changed partition files to avoid analyzing partitions that have
not changed.

The analyzedb command-line utility skips unchanged partitions automatically. It also runs concurrent
sessions so it can analyze several partitions concurrently. It runs five sessions by default, but the number
of sessions can be set from 1 to 10 with the -p command-line option. Each time analyzedb runs, it saves
state information for append-optimized tables and partitions in the db_analyze directory in the master
data directory. The next time it runs, analyzedb compares the current state of each table with the saved
state and skips analyzing a table or partition if it is unchanged. Heap tables are always analyzed.

If GPORCA is enabled (the default), you also need to run ANALYZE or ANALYZE ROOTPARTITION to
refresh the root partition statistics. GPORCA requires statistics at the root level for partitioned tables. The
Postgres Planner does not use these statistics.

The time to analyze a partitioned table is similar to the time to analyze a non-partitioned table with the
same data since ANALYZE ROOTPARTITION does not collect statistics on the leaf partitions (the data is
only sampled).

The Greenplum Database server configuration parameter optimizer_analyze_root_partition
affects when statistics are collected on the root partition of a partitioned table. If the parameter is on
(the default), the ROOTPARTITION keyword is not required to collect statistics on the root partition when
you run ANALYZE. Root partition statistics are collected when you run ANALYZE on the root partition, or
when you run ANALYZE on a child leaf partition of the partitioned table and the other child leaf partitions
have statistics. If the parameter is off, you must run ANALYZE ROOTPARTITION to collect root partition
statistics.

If you do not intend to execute queries on partitioned tables with GPORCA (setting the server
configuration parameter optimizer to off), you can also set the server configuration parameter
optimizer_analyze_root_partition to off to limit when ANALYZE updates the root partition
statistics.

Configuring Statistics
There are several options for configuring Greenplum Database statistics collection.

Statistics Target
The statistics target is the size of the most_common_vals, most_common_freqs, and
histogram_bounds arrays for an individual column. By default, the target is 25. The default target can
be changed by setting a server configuration parameter and the target can be set for any column using the
ALTER TABLE command. Larger values increase the time needed to do ANALYZE, but may improve the
quality of the Postgres Planner estimates.

Greenplum Database Administrator Guide Release Notes

126

Set the system default statistics target to a different value by setting the default_statistics_target
server configuration parameter. The default value is usually sufficient, and you should only raise or lower
it if your tests demonstrate that query plans improve with the new target. For example, to raise the default
statistics target from 100 to 150 you can use the gpconfig utility:

gpconfig -c default_statistics_target -v 150

The statististics target for individual columns can be set with the ALTER TABLE command. For example,
some queries can be improved by increasing the target for certain columns, especially columns that
have irregular distributions. You can set the target to zero for columns that never contribute to query
otpimization. When the target is 0, ANALYZE ignores the column. For example, the following ALTER
TABLE command sets the statistics target for the notes column in the emp table to zero:

ALTER TABLE emp ALTER COLUMN notes SET STATISTICS 0;

The statistics target can be set in the range 0 to 1000, or set it to -1 to revert to using the system default
statistics target.

Setting the statistics target on a parent partition table affects the child partitions. If you set statistics to 0 on
some columns on the parent table, the statistics for the same columns are set to 0 for all children partitions.
However, if you later add or exchange another child partition, the new child partition will use either the
default statistics target or, in the case of an exchange, the previous statistics target. Therefore, if you add
or exchange child partitions, you should set the statistics targets on the new child table.

Automatic Statistics Collection
Greenplum Database can be set to automatically run ANALYZE on a table that either has no statistics
or has changed significantly when certain operations are performed on the table. For partitioned tables,
automatic statistics collection is only triggered when the operation is run directly on a leaf table, and then
only the leaf table is analyzed.

Automatic statistics collection has three modes:

• none disables automatic statistics collection.
• on_no_stats triggers an analyze operation for a table with no existing statistics when any of the

commands CREATE TABLE AS SELECT, INSERT, or COPY are executed on the table.
• on_change triggers an analyze operation when any of the commands CREATE TABLE AS SELECT,

UPDATE, DELETE, INSERT, or COPY are executed on the table and the number of rows affected
exceeds the threshold defined by the gp_autostats_on_change_threshold configuration
parameter.

The automatic statistics collection mode is set separately for commands that occur within a procedural
language function and commands that execute outside of a function:

• The gp_autostats_mode configuration parameter controls automatic statistics collection behavior
outside of functions and is set to on_no_stats by default.

• The gp_autostats_mode_in_functions parameter controls the behavior when table operations
are performed within a procedural language function and is set to none by default.

With the on_change mode, ANALYZE is triggered only if the number of rows affected exceeds the
threshold defined by the gp_autostats_on_change_threshold configuration parameter. The default
value for this parameter is a very high value, 2147483647, which effectively disables automatic statistics
collection; you must set the threshold to a lower number to enable it. The on_change mode could trigger
large, unexpected analyze operations that could disrupt the system, so it is not recommended to set it
globally. It could be useful in a session, for example to automatically analyze a table following a load.

Greenplum Database Administrator Guide Release Notes

127

To disable automatic statistics collection outside of functions, set the gp_autostats_mode parameter to
none:

gpconfigure -c gp_autostats_mode -v none

To enable automatic statistics collection in functions for tables that have no statistics, change
gp_autostats_mode_in_functions to on_no_stats:

gpconfigure -c gp_autostats_mode_in_functions -v on_no_stats

Set the log_autostats system configuration parameter to on if you want to log automatic statistics
collection operations.

Greenplum Database Administrator Guide Release Notes

128

Managing a Greenplum System
This section describes basic system administration tasks performed by a Greenplum Database system
administrator.

This section contains the following topics:

• About the Greenplum Database Release Version Number
• Starting and Stopping Greenplum Database
• Accessing the Database
• Configuring the Greenplum Database System
• Enabling High Availability and Data Consistency Features
• Backing Up and Restoring Databases
• Expanding a Greenplum System
• Migrating Data with gpcopy
• Defining Database Objects
• Routine System Maintenance Tasks

About the Greenplum Database Release Version Number
Greenplum Database version numbers and they way they change identify what has been modified from
one Greenplum Database release to the next.

A Greenplum Database release version number takes the format x.y.z, where:

• x identifies the Major version number
• y identifies the Minor version number
• z identifies the Patch version number

Greenplum Database releases that have the same Major release number are guaranteed to be backwards
compatible. Greenplum Database increments the Major release number when the catalog changes or
when incompatible feature changes or new features are introduced. Previously deprecated functionality
may be removed in a major release.

The Minor release number for a given Major release increments when backwards compatible new features
are introduced or when a Greenplum Database feature is deprecated. (Previously deprecated functionality
will never be removed in a minor release.)

Greenplum Database increments the Patch release number for a given Minor release for backwards-
compatible bug fixes.

Starting and Stopping Greenplum Database
In a Greenplum Database DBMS, the database server instances (the master and all segments) are started
or stopped across all of the hosts in the system in such a way that they can work together as a unified
DBMS.

Because a Greenplum Database system is distributed across many machines, the process for starting and
stopping a Greenplum Database system is different than the process for starting and stopping a regular
PostgreSQL DBMS.

Use the gpstart and gpstop utilities to start and stop Greenplum Database, respectively. These utilities
are located in the $GPHOME/bin directory on your Greenplum Database master host.

Important: Do not issue a kill command to end any Postgres process. Instead, use the
database command pg_cancel_backend().

Greenplum Database Administrator Guide Release Notes

129

Issuing a kill -9 or kill -11 can introduce database corruption and prevent root cause
analysis from being performed.

For information about gpstart and gpstop, see the Greenplum Database Utility Guide.

Starting Greenplum Database
Start an initialized Greenplum Database system by running the gpstart utility on the master instance.

Use the gpstart utility to start a Greenplum Database system that has already been initialized by the
gpinitsystem utility, but has been stopped by the gpstop utility. The gpstart utility starts Greenplum
Database by starting all the Postgres database instances on the Greenplum Database cluster. gpstart
orchestrates this process and performs the process in parallel.

• Run gpstart on the master host to start Greenplum Database:

$ gpstart

Restarting Greenplum Database
Stop the Greenplum Database system and then restart it.

The gpstop utility with the -r option can stop and then restart Greenplum Database after the shutdown
completes.

• To restart Greenplum Database, enter the following command on the master host:

$ gpstop -r

Reloading Configuration File Changes Only
Reload changes to Greenplum Database configuration files without interrupting the system.

The gpstop utility can reload changes to the pg_hba.conf configuration file and to runtime parameters
in the master postgresql.conf file and pg_hba.conf file without service interruption. Active sessions
pick up changes when they reconnect to the database. Many server configuration parameters require a full
system restart (gpstop -r) to activate. For information about server configuration parameters, see the
Greenplum Database Reference Guide.

• Reload configuration file changes without shutting down the system using the gpstop utility:

$ gpstop -u

Starting the Master in Maintenance Mode
Start only the master to perform maintenance or administrative tasks without affecting data on the
segments.

Maintenance mode should only be used with direction from Pivotal Technical Support. For example, you
could connect to a database only on the master instance in maintenance mode and edit system catalog
settings. For more information about system catalog tables, see the Greenplum Database Reference
Guide.

1. Run gpstart using the -m option:

$ gpstart -m

2. Connect to the master in maintenance mode to do catalog maintenance. For example:

$ PGOPTIONS='-c gp_session_role=utility' psql postgres

Greenplum Database Administrator Guide Release Notes

130

3. After completing your administrative tasks, stop the master in utility mode. Then, restart it in production
mode.

$ gpstop -mr

Warning:

Incorrect use of maintenance mode connections can result in an inconsistent system state. Only
Technical Support should perform this operation.

Stopping Greenplum Database
The gpstop utility stops or restarts your Greenplum Database system and always runs on the master
host. When activated, gpstop stops all postgres processes in the system, including the master and all
segment instances. The gpstop utility uses a default of up to 64 parallel worker threads to bring down
the Postgres instances that make up the Greenplum Database cluster. The system waits for any active
transactions to finish before shutting down. To stop Greenplum Database immediately, use fast mode.

• To stop Greenplum Database:

$ gpstop

• To stop Greenplum Database in fast mode:

$ gpstop -M fast

By default, you are not allowed to shut down Greenplum Database if there are any client connections
to the database. Use the -M fast option to roll back all in progress transactions and terminate any
connections before shutting down.

Stopping Client Processes
Greenplum Database launches a new backend process for each client connection. A Greenplum Database
user with SUPERUSER privileges can cancel and terminate these client backend processes.

Canceling a backend process with the pg_cancel_backend() function ends a specific queued or active
client query. Terminating a backend process with the pg_terminate_backend() function terminates a
client connection to a database.

The pg_cancel_backend() function has two signatures:

• pg_cancel_backend(pid int4)

• pg_cancel_backend(pid int4, msg text)

The pg_terminate_backend() function has two similar signatures:

• pg_terminate_backend(pid int4)

• pg_terminate_backend(pid int4, msg text)

If you provide a msg, Greenplum Database includes the text in the cancel message returned to the client.
msg is limited to 128 bytes; Greenplum Database truncates anything longer.

The pg_cancel_backend() and pg_terminate_backend() functions return true if successful, and
false otherwise.

To cancel or terminate a backend process, you must first identify the process ID of the backend. You can
obtain the process ID from the pid column of the pg_stat_activity view. For example, to view the
process information associated with all running and queued queries:

=# SELECT usename, pid, waiting, state, query, datname
 FROM pg_stat_activity;

Greenplum Database Administrator Guide Release Notes

131

Sample partial query output:

 usename | pid | waiting | state | query | datname
---------+----------+---------+--------+------------------------+---------
 sammy | 31861 | f | idle | SELECT * FROM testtbl; | testdb
 billy | 31905 | t | active | SELECT * FROM topten; | testdb

Use the output to identify the process id (pid) of the query or client connection.

For example, to cancel the waiting query identified in the sample output above and include 'Admin
canceled long-running query.' as the message returned to the client:

=# SELECT pg_cancel_backend(31905 ,'Admin canceled long-running query.');
ERROR: canceling statement due to user request: "Admin canceled long-
running query."

Accessing the Database
This topic describes the various client tools you can use to connect to Greenplum Database, and how to
establish a database session.

Establishing a Database Session
Users can connect to Greenplum Database using a PostgreSQL-compatible client program, such as psql.
Users and administrators always connect to Greenplum Database through the master; the segments
cannot accept client connections.

In order to establish a connection to the Greenplum Database master, you will need to know the following
connection information and configure your client program accordingly.

Table 17: Connection Parameters

Connection Parameter Description Environment Variable

Application name The application name that is connecting to
the database. The default value, held in the
application_name connection parameter is psql.

$PGAPPNAME

Database name The name of the database to which you want to
connect. For a newly initialized system, use the
postgres database to connect for the first time.

$PGDATABASE

Host name The host name of the Greenplum Database master.
The default host is the local host.

$PGHOST

Port The port number that the Greenplum Database
master instance is running on. The default is 5432.

$PGPORT

User name The database user (role) name to connect as. This
is not necessarily the same as your OS user name.
Check with your Greenplum administrator if you
are not sure what you database user name is. Note
that every Greenplum Database system has one
superuser account that is created automatically
at initialization time. This account has the same
name as the OS name of the user who initialized
the Greenplum system (typically gpadmin).

$PGUSER

Connecting with psql provides example commands for connecting to Greenplum Database.

Greenplum Database Administrator Guide Release Notes

132

Supported Client Applications
Users can connect to Greenplum Database using various client applications:

• A number of Greenplum Database Client Applications are provided with your Greenplum installation.
The psql client application provides an interactive command-line interface to Greenplum Database.

• Using standard Database Application Interfaces, such as ODBC and JDBC, users can create their own
client applications that interface to Greenplum Database.

• Most client tools that use standard database interfaces, such as ODBC and JDBC, can be configured to
connect to Greenplum Database.

Greenplum Database Client Applications
Greenplum Database comes installed with a number of client utility applications located in the $GPHOME/
bin directory of your Greenplum Database master host installation. The following are the most commonly
used client utility applications:

Table 18: Commonly used client applications

Name Usage

createdb create a new database

createlang define a new procedural language

createuser define a new database role

dropdb remove a database

droplang remove a procedural language

dropuser remove a role

psql PostgreSQL interactive terminal

reindexdb reindex a database

vacuumdb garbage-collect and analyze a database

Note: createlang and droplang are deprecated and might be removed in a future release.
These utilities are no longer used in Pivotal Greenplum Database, and they will display an error if
you attempt to use them to install a Greenplum procedural language. Use the CREATE EXTENSION
or DROP EXTENSION command instead.

When using these client applications, you must connect to a database through the Greenplum master
instance. You will need to know the name of your target database, the host name and port number of the
master, and what database user name to connect as. This information can be provided on the command-
line using the options -d, -h, -p, and -U respectively. If an argument is found that does not belong to any
option, it will be interpreted as the database name first.

All of these options have default values which will be used if the option is not specified. The default host
is the local host. The default port number is 5432. The default user name is your OS system user name,
as is the default database name. Note that OS user names and Greenplum Database user names are not
necessarily the same.

If the default values are not correct, you can set the environment variables PGDATABASE, PGHOST,
PGPORT, and PGUSER to the appropriate values, or use a psql ~/.pgpass file to contain frequently-used
passwords.

For information about Greenplum Database environment variables, see the Greenplum Database
Reference Guide. For information about psql, see the Greenplum Database Utility Guide.

Greenplum Database Administrator Guide Release Notes

133

Connecting with psql
Depending on the default values used or the environment variables you have set, the following examples
show how to access a database via psql:

$ psql -d gpdatabase -h master_host -p 5432 -U gpadmin

$ psql gpdatabase

$ psql

If a user-defined database has not yet been created, you can access the system by connecting to the
postgres database. For example:

$ psql postgres

After connecting to a database, psql provides a prompt with the name of the database to which psql is
currently connected, followed by the string => (or =# if you are the database superuser). For example:

gpdatabase=>

At the prompt, you may type in SQL commands. A SQL command must end with a ; (semicolon) in order
to be sent to the server and executed. For example:

=> SELECT * FROM mytable;

See the Greenplum Reference Guide for information about using the psql client application and SQL
commands and syntax.

Using the PgBouncer Connection Pooler
The PgBouncer utility manages connection pools for PostgreSQL and Greenplum Database connections.

The following topics describe how to set up and use PgBouncer with Greenplum Database. Refer to the
PgBouncer web site for information about using PgBouncer with PostgreSQL.

• Overview
• Migrating PgBouncer
• Configuring PgBouncer
• Starting PgBouncer
• Managing PgBouncer

Overview

A database connection pool is a cache of database connections. Once a pool of connections is
established, connection pooling eliminates the overhead of creating new database connections, so clients
connect much faster and the server load is reduced.

The PgBouncer connection pooler, from the PostgreSQL community, is included in your Greenplum
Database installation. PgBouncer is a light-weight connection pool manager for Greenplum and
PostgreSQL. PgBouncer maintains a pool for connections for each database and user combination.
PgBouncer either creates a new database connection for a client or reuses an existing connection for the
same user and database. When the client disconnects, PgBouncer returns the connection to the pool for
re-use.

PgBouncer shares connections in one of three pool modes:

https://pgbouncer.github.io

Greenplum Database Administrator Guide Release Notes

134

• Session pooling – When a client connects, a connection is assigned to it as long as it remains
connected. When the client disconnects, the connection is placed back into the pool.

• Transaction pooling – A connection is assigned to a client for the duration of a transaction. When
PgBouncer notices the transaction is done, the connection is placed back into the pool. This mode can
be used only with applications that do not use features that depend upon a session.

• Statement pooling – Statement pooling is like transaction pooling, but multi-statement transactions are
not allowed. This mode is intended to enforce autocommit mode on the client and is targeted for PL/
Proxy on PostgreSQL.

You can set a default pool mode for the PgBouncer instance. You can override this mode for individual
databases and users.

PgBouncer supports the standard connection interface shared by PostgreSQL and Greenplum Database.
The Greenplum Database client application (for example, psql) connects to the host and port on which
PgBouncer is running rather than the Greenplum Database master host and port.

PgBouncer includes a psql-like administration console. Authorized users can connect to a virtual
database to monitor and manage PgBouncer. You can manage a PgBouncer daemon process via the
admin console. You can also use the console to update and reload PgBouncer configuration at runtime
without stopping and restarting the process.

PgBouncer natively supports TLS.

Migrating PgBouncer

When you migrate to a new Greenplum Database version, you must migrate your PgBouncer instance to
that in the new Greenplum Database installation.

• If you are migrating to a Greenplum Database version 5.8.x or earlier, you can migrate PgBouncer
without dropping connections. Launch the new PgBouncer process with the -R option and the
configuration file that you started the process with:

$ pgbouncer -R -d pgbouncer.ini

The -R (reboot) option causes the new process to connect to the console of the old process through a
Unix socket and issue the following commands:

SUSPEND;
SHOW FDS;
SHUTDOWN;

When the new process detects that the old process is gone, it resumes the work with the old
connections. This is possible because the SHOW FDS command sends actual file descriptors to the new
process. If the transition fails for any reason, kill the new process and the old process will resume.

• If you are migrating to a Greenplum Database version 5.9.0 or later, you must shut down the
PgBouncer instance in your old installation and reconfigure and restart PgBouncer in your new
installation.

• If you used stunnel to secure PgBouncer connections in your old installation, you must configure SSL/
TLS in your new installation using the built-in TLS capabilities of PgBouncer 1.8.1 and later.

• If you used LDAP authentication in your old installation, you must configure LDAP in your new
installation using the built-in PAM integration capabilities of PgBouncer 1.8.1 and later. You must also
remove or replace any ldap://-prefixed password strings in the auth_file.

Configuring PgBouncer

You configure PgBouncer and its access to Greenplum Database via a configuration file. This configuration
file, commonly named pgbouncer.ini, provides location information for Greenplum databases. The

Greenplum Database Administrator Guide Release Notes

135

pgbouncer.ini file also specifies process, connection pool, authorized users, and authentication
configuration for PgBouncer.

Sample pgbouncer.ini file contents:

[databases]
postgres = host=127.0.0.1 port=5432 dbname=postgres
pgb_mydb = host=127.0.0.1 port=5432 dbname=mydb

[pgbouncer]
pool_mode = session
listen_port = 6543
listen_addr = 127.0.0.1
auth_type = md5
auth_file = users.txt
logfile = pgbouncer.log
pidfile = pgbouncer.pid
admin_users = gpadmin

Refer to the pgbouncer.ini reference page for the PgBouncer configuration file format and the list of
configuration properties it supports.

When a client connects to PgBouncer, the connection pooler looks up the the configuration for
the requested database (which may be an alias for the actual database) that was specified in the
pgbouncer.ini configuration file to find the host name, port, and database name for the database
connection. The configuration file also identifies the authentication mode in effect for the database.

PgBouncer requires an authentication file, a text file that contains a list of Greenplum Database
users and passwords. The contents of the file are dependent on the auth_type you configure in the
pgbouncer.ini file. Passwords may be either clear text or MD5-encoded strings. You can also configure
PgBouncer to query the destination database to obtain password information for users that are not in the
authentication file.

PgBouncer Authentication File Format
PgBouncer requires its own user authentication file. You specify the name of this file in the auth_file
property of the pgbouncer.ini configuration file. auth_file is a text file in the following format:

"username1" "password" ...
"username2" "md5abcdef012342345" ...
"username2" "SCRAM-SHA-256$<iterations>:<salt>$<storedkey>:<serverkey>"

auth_file contains one line per user. Each line must have at least two fields, both of which are enclosed
in double quotes (" "). The first field identifies the Greenplum Database user name. The second field is
either a plain-text password, an MD5-encoded password, or or a SCRAM secret. PgBouncer ignores the
remainder of the line.

(The format of auth_file is similar to that of the pg_auth text file that Greenplum Database uses for
authentication information. PgBouncer can work directly with this Greenplum Database authentication file.)

Use an MD5 encoded password. The format of an MD5 encoded password is:

"md5" + MD5_encoded(<password><username>)

You can also obtain the MD5-encoded passwords of all Greenplum Database users from the pg_shadow
view.

PostgreSQL SCRAM secret format:

SCRAM-SHA-256$<iterations>:<salt>$<storedkey>:<serverkey>

Greenplum Database Administrator Guide Release Notes

136

See the PostgreSQL documentation and RFC 5803 for details on this.

The passwords or secrets stored in the authentication file serve two purposes. First, they are used to verify
the passwords of incoming client connections, if a password-based authentication method is configured.
Second, they are used as the passwords for outgoing connections to the backend server, if the backend
server requires password-based authentication (unless the password is specified directly in the database’s
connection string). The latter works if the password is stored in plain text or MD5-hashed. SCRAM secrets
can only be used for logging into a server if the client authentication also uses SCRAM, the PgBouncer
database definition does not specify a user name, and the SCRAM secrets are identical in PgBouncer
and the PostgreSQL server (same salt and iterations, not merely the same password). This is due to an
inherent security property of SCRAM: The stored SCRAM secret cannot by itself be used for deriving login
credentials.

The authentication file can be written by hand, but it’s also useful to generate it from some other list of
users and passwords. See ./etc/mkauth.py for a sample script to generate the authentication file from
the pg_shadow system table. Alternatively, use

auth_query

instead of auth_file to avoid having to maintain a separate authentication file.\u0000

Configuring HBA-based Authentication for PgBouncer
PgBouncer supports HBA-based authentication. To configure HBA-based authentication for PgBouncer,
you set auth_type=hba in the pgbouncer.ini configuration file. You also provide the filename of the
HBA-format file in the auth_hba_file parameter of the pgbouncer.ini file.

Contents of an example PgBouncer HBA file named hba_bouncer.conf:

local all bouncer trust
host all bouncer 127.0.0.1/32 trust

Example excerpt from the related pgbouncer.ini configuration file:

[databases]
p0 = port=15432 host=127.0.0.1 dbname=p0 user=bouncer pool_size=2
p1 = port=15432 host=127.0.0.1 dbname=p1 user=bouncer
...

[pgbouncer]
...
auth_type = hba
auth_file = userlist.txt
auth_hba_file = hba_bouncer.conf
...

Refer to the HBA file format discussion in the PgBouncer documentation for information about PgBouncer
support of the HBA authentication file format.

Starting PgBouncer

You can run PgBouncer on the Greenplum Database master or on another server. If you install PgBouncer
on a separate server, you can easily switch clients to the standby master by updating the PgBouncer
configuration file and reloading the configuration using the PgBouncer Administration Console.

Follow these steps to set up PgBouncer.

1. Create a PgBouncer configuration file. For example, add the following text to a file named
pgbouncer.ini:

[databases]

https://pgbouncer.github.io/config.html#hba-file-format

Greenplum Database Administrator Guide Release Notes

137

postgres = host=127.0.0.1 port=5432 dbname=postgres
pgb_mydb = host=127.0.0.1 port=5432 dbname=mydb

[pgbouncer]
pool_mode = session
listen_port = 6543
listen_addr = 127.0.0.1
auth_type = md5
auth_file = users.txt
logfile = pgbouncer.log
pidfile = pgbouncer.pid
admin_users = gpadmin

The file lists databases and their connection details. The file also configures the PgBouncer instance.
Refer to the pgbouncer.ini reference page for information about the format and content of a PgBouncer
configuration file.

2. Create an authentication file. The filename should be the name you specified for the auth_file
parameter of the pgbouncer.ini file, users.txt. Each line contains a user name and password.
The format of the password string matches the auth_type you configured in the PgBouncer
configuration file. If the auth_type parameter is plain, the password string is a clear text password,
for example:

"gpadmin" "gpadmin1234"

If the auth_type in the following example is md5, the authentication field must be MD5-encoded. The
format for an MD5-encoded password is:

"md5" + MD5_encoded(<password><username>)

3. Launch pgbouncer:

$ $GPHOME/bin/pgbouncer -d pgbouncer.ini

The -d option runs PgBouncer as a background (daemon) process. Refer to the pgbouncer reference
page for the pgbouncer command syntax and options.

4. Update your client applications to connect to pgbouncer instead of directly to Greenplum Database
server. For example, to connect to the Greenplum database named mydb configured above, run psql
as follows:

$ psql -p 6543 -U someuser pgb_mydb

The -p option value is the listen_port that you configured for the PgBouncer instance.

Managing PgBouncer

PgBouncer provides a psql-like administration console. You log in to the PgBouncer Administration
Console by specifying the PgBouncer port number and a virtual database named pgbouncer. The
console accepts SQL-like commands that you can use to monitor, reconfigure, and manage PgBouncer.

For complete documentation of PgBouncer Administration Console commands, refer to the PgBouncer
Administration Console command reference.

Follow these steps to get started with the PgBouncer Administration Console.

1. Use psql to log in to the pgbouncer virtual database:

$ psql -p 6543 -U username pgbouncer

Greenplum Database Administrator Guide Release Notes

138

The username that you specify must be listed in the admin_users parameter in the pgbouncer.ini
configuration file. You can also log in to the PgBouncer Administration Console with the current Unix
username if the pgbouncer process is running under that user's UID.

2. To view the available PgBouncer Administration Console commands, run the SHOW help command:

pgbouncer=# SHOW help;
NOTICE: Console usage
DETAIL:
 SHOW HELP|CONFIG|DATABASES|POOLS|CLIENTS|SERVERS|VERSION
 SHOW FDS|SOCKETS|ACTIVE_SOCKETS|LISTS|MEM
 SHOW DNS_HOSTS|DNS_ZONES
 SHOW STATS|STATS_TOTALS|STATS_AVERAGES
 SET key = arg
 RELOAD
 PAUSE [<db>]
 RESUME [<db>]
 DISABLE <db>
 ENABLE <db>
 KILL <db>
 SUSPEND
 SHUTDOWN

3. If you update PgBouncer configuration by editing the pgbouncer.ini configuration file, you use the
RELOAD command to reload the file:

pgbouncer=# RELOAD;

Mapping PgBouncer Clients to Greenplum Database Server
Connections
To map a PgBouncer client to a Greenplum Database server connection, use the PgBouncer
Administration Console SHOW CLIENTS and SHOW SERVERS commands:

1. Use ptr and link to map the local client connection to the server connection.
2. Use the addr and the port of the client connection to identify the TCP connection from the client.
3. Use local_addr and local_port to identify the TCP connection to the server.

Database Application Interfaces
You may want to develop your own client applications that interface to Greenplum Database. PostgreSQL
provides a number of database drivers for the most commonly used database application programming
interfaces (APIs), which can also be used with Greenplum Database. These drivers are available as
a separate download. Each driver (except libpq, which comes with PostgreSQL) is an independent
PostgreSQL development project and must be downloaded, installed and configured to connect to
Greenplum Database. The following drivers are available:

Table 19: Greenplum Database Interfaces

API PostgreSQL
Driver

Download Link

ODBC Greenplum
DataDirect ODBC
Driver

https://network.pivotal.io/products/pivotal-gpdb.

JDBC Greenplum
DataDirect JDBC
Driver

https://network.pivotal.io/products/pivotal-gpdb

https://network.pivotal.io/products/pivotal-gpdb
https://network.pivotal.io/products/pivotal-gpdb

Greenplum Database Administrator Guide Release Notes

139

API PostgreSQL
Driver

Download Link

Perl DBI pgperl https://metacpan.org/release/DBD-Pg

Python DBI pygresql http://www.pygresql.org/

libpq C Library libpq https://www.postgresql.org/docs/9.4/libpq.html

General instructions for accessing a Greenplum Database with an API are:

1. Download your programming language platform and respective API from the appropriate source. For
example, you can get the Java Development Kit (JDK) and JDBC API from Oracle.

2. Write your client application according to the API specifications. When programming your application,
be aware of the SQL support in Greenplum Database so you do not include any unsupported SQL
syntax.

See the Greenplum Database Reference Guide for more information.

Download the appropriate driver and configure connectivity to your Greenplum Database master instance.

Troubleshooting Connection Problems
A number of things can prevent a client application from successfully connecting to Greenplum Database.
This topic explains some of the common causes of connection problems and how to correct them.

Table 20: Common connection problems

Problem Solution

No pg_hba.conf
entry for host or
user

To enable Greenplum Database to accept remote client connections, you must
configure your Greenplum Database master instance so that connections are
allowed from the client hosts and database users that will be connecting to
Greenplum Database. This is done by adding the appropriate entries to the pg_
hba.conf configuration file (located in the master instance's data directory). For
more detailed information, see Allowing Connections to Greenplum Database.

Greenplum
Database is not
running

If the Greenplum Database master instance is down, users will not be able to
connect. You can verify that the Greenplum Database system is up by running the
gpstate utility on the Greenplum master host.

Network problems

Interconnect
timeouts

If users connect to the Greenplum master host from a remote client, network
problems can prevent a connection (for example, DNS host name resolution
problems, the host system is down, and so on.). To ensure that network problems
are not the cause, connect to the Greenplum master host from the remote client
host. For example: ping hostname .

If the system cannot resolve the host names and IP addresses of the hosts involved
in Greenplum Database, queries and connections will fail. For some operations,
connections to the Greenplum Database master use localhost and others use
the actual host name, so you must be able to resolve both. If you encounter this
error, first make sure you can connect to each host in your Greenplum Database
array from the master host over the network. In the /etc/hosts file of the master
and all segments, make sure you have the correct host names and IP addresses
for all hosts involved in the Greenplum Database array. The 127.0.0.1 IP must
resolve to localhost.

https://metacpan.org/release/DBD-Pg
http://www.pygresql.org/
https://www.postgresql.org/docs/9.4/libpq.html

Greenplum Database Administrator Guide Release Notes

140

Problem Solution

Too many clients
already

By default, Greenplum Database is configured to allow a maximum of 250
concurrent user connections on the master and 750 on a segment. A connection
attempt that causes that limit to be exceeded will be refused. This limit is controlled
by the max_connections parameter in the postgresql.conf configuration file
of the Greenplum Database master. If you change this setting for the master, you
must also make appropriate changes at the segments.

Configuring the Greenplum Database System
Server configuration parameters affect the behavior of Greenplum Database. They are part of the
PostgreSQL "Grand Unified Configuration" system, so they are sometimes called "GUCs." Most of the
Greenplum Database server configuration parameters are the same as the PostgreSQL configuration
parameters, but some are Greenplum-specific.

About Greenplum Database Master and Local Parameters
Server configuration files contain parameters that configure server behavior. The Greenplum Database
configuration file, postgresql.conf, resides in the data directory of the database instance.

The master and each segment instance have their own postgresql.conf file. Some parameters are
local: each segment instance examines its postgresql.conf file to get the value of that parameter. Set
local parameters on the master and on each segment instance.

Other parameters are master parameters that you set on the master instance. The value is passed down to
(or in some cases ignored by) the segment instances at query run time.

See the Greenplum Database Reference Guide for information about local and master server configuration
parameters.

Setting Configuration Parameters
Many configuration parameters limit who can change them and where or when they can be set. For
example, to change certain parameters, you must be a Greenplum Database superuser. Other parameters
can be set only at the system level in the postgresql.conf file or require a system restart to take effect.

Many configuration parameters are session parameters. You can set session parameters at the system
level, the database level, the role level or the session level. Database users can change most session
parameters within their session, but some require superuser permissions.

See the Greenplum Database Reference Guide for information about setting server configuration
parameters.

Setting a Local Configuration Parameter

To change a local configuration parameter across multiple segments, update the parameter in the
postgresql.conf file of each targeted segment, both primary and mirror. Use the gpconfig utility to
set a parameter in all Greenplum postgresql.conf files. For example:

$ gpconfig -c gp_vmem_protect_limit -v 4096

Restart Greenplum Database to make the configuration changes effective:

$ gpstop -r

Greenplum Database Administrator Guide Release Notes

141

Setting a Master Configuration Parameter

To set a master configuration parameter, set it at the Greenplum Database master instance. If it is also a
session parameter, you can set the parameter for a particular database, role or session. If a parameter is
set at multiple levels, the most granular level takes precedence. For example, session overrides role, role
overrides database, and database overrides system.

Setting Parameters at the System Level

Master parameter settings in the master postgresql.conf file are the system-wide default. To set a
master parameter:

1. Edit the $MASTER_DATA_DIRECTORY/postgresql.conf file.
2. Find the parameter to set, uncomment it (remove the preceding # character), and type the desired

value.
3. Save and close the file.
4. For session parameters that do not require a server restart, upload the postgresql.conf changes as

follows:

$ gpstop -u

5. For parameter changes that require a server restart, restart Greenplum Database as follows:

$ gpstop -r

For details about the server configuration parameters, see the Greenplum Database Reference Guide.

Setting Parameters at the Database Level

Use ALTER DATABASE to set parameters at the database level. For example:

=# ALTER DATABASE mydatabase SET search_path TO myschema;

When you set a session parameter at the database level, every session that connects to that database
uses that parameter setting. Settings at the database level override settings at the system level.

Setting Parameters at the Role Level

Use ALTER ROLE to set a parameter at the role level. For example:

=# ALTER ROLE bob SET search_path TO bobschema;

When you set a session parameter at the role level, every session initiated by that role uses that parameter
setting. Settings at the role level override settings at the database level.

Setting Parameters in a Session

Any session parameter can be set in an active database session using the SET command. For example:

=# SET statement_mem TO '200MB';

The parameter setting is valid for the rest of that session or until you issue a RESET command. For
example:

=# RESET statement_mem;

Settings at the session level override those at the role level.

Greenplum Database Administrator Guide Release Notes

142

Viewing Server Configuration Parameter Settings
The SQL command SHOW allows you to see the current server configuration parameter settings. For
example, to see the settings for all parameters:

$ psql -c 'SHOW ALL;'

SHOW lists the settings for the master instance only. To see the value of a particular parameter across the
entire system (master and all segments), use the gpconfig utility. For example:

$ gpconfig --show max_connections

Configuration Parameter Categories
Configuration parameters affect categories of server behaviors, such as resource consumption, query
tuning, and authentication. Refer to Parameter Categories in the Greenplum Database Reference Guide
for a list of Greenplum server configuration parameter categories.

Enabling Compression
You can configure Greenplum Database to use data compression with some database features and with
some utilities. Compression reduces disk usage and improves I/O across the system, however, it adds
some performance overhead when compressing and decompressing data.

You can configure support for data compression with these features and utilities. See the specific feature
or utility for information about support for compression.

• Append-optimized tables support compressing table data. See CREATE TABLE.
• User-defined data types can be defined to compress data. See CREATE TYPE.
• The external table protocols gpfdist (gpfdists), s3, and pxf support compression when accessing

external data. For information about external tables, see CREATE EXTERNAL TABLE.
• Workfiles (temporary spill files that are created when executing a query that requires more

memory than it is allocated) can be compressed. See the server configuration parameter
gp_workfile_compression.

• The Greenplum Database utilities gpbackup, gprestore, gpcopy, gpload, and gplogfilter
support compression.

For some compression algorithms (such as zlib) Greenplum Database requires software packages
installed on the host system. For information about required software packages, see the Greenplum
Database Installation Guide.

Configuring Proxies for the Greenplum Interconnect
You can configure a Greenplum system to use proxies for interconnect communication to reduce the use of
connections and ports during query processing.

The Greenplum interconnect (the networking layer) refers to the inter-process communication between
segments and the network infrastructure on which this communication relies. For information about the
Greenplum architecture and interconnect, see About the Greenplum Architecture.

In general, when running a query, a QD (query dispatcher) on the Greenplum master creates connections
to one or more QE (query executor) processes on segments, and a QE can create connections to
other QEs. For a description of Greenplum query processing and parallel query processing, see About
Greenplum Query Processing.

By default, connections between the QD on the master and QEs on segment instances and between QEs
on different segment instances require a separate network port. You can configure a Greenplum system
to use proxies when Greenplum communicates between the QD and QEs and between QEs on different

Greenplum Database Administrator Guide Release Notes

143

segment instances. The interconnect proxies require only one network connection for Greenplum internal
communication between two segment instances, so it consumes fewer connections and ports than TCP
mode, and has better performance than UDPIFC mode in a high-latency network.

To enable interconnect proxies for the Greenplum system, set these system configuration parameters.

• List the proxy ports with the parameter gp_interconnect_proxy_addresses. You must specify a
proxy port for the master, standby master, and all segment instances.

• Set the parameter gp_interconnect_type to proxy.

Note: When expanding a Greenplum Database system, you must disable interconnect proxies
before adding new hosts and segment instances to the system, and you must update the
gp_interconnect_proxy_addresses parameter with the newly-added segment instances
before you re-enable interconnect proxies.

Example
This example sets up a Greenplum system to use proxies for the Greenplum interconnect when running
queries. The example sets the gp_interconnect_proxy_addresses parameter and tests the proxies
before setting the gp_interconnect_type parameter for the Greenplum system.

• Setting the Interconnect Proxy Addresses
• Testing the Interconnect Proxies
• Setting Interconnect Proxies for the System

Setting the Interconnect Proxy Addresses
Set the gp_interconnect_proxy_addresses parameter to specify the proxy ports for the master and
segment instances. The syntax for the value has the following format and you must specify the parameter
value as a single-quoted string.

<db_id>:<cont_id>:<seg_ip>:<port>[,<dbid>:<segid>:<ip>:<port> ...]

For the master, standby master, and segment instance, the first three fields, db_id, cont_id, and seg_ip can
be found in the gp_segment_configuration catalog table. The fourth field, port, is the proxy port for
the Greenplum master or a segment instance.

• db_id is the dbid column in the catalog table.
• cont_id is the content column in the catalog table.
• seg_ip is the IP address corresponding to the address column in the catalog table. If the address is a

hostname, use the IP address of the hostname.
• port is the TCP/IP port for the segment instance proxy that you specify.

This is an example PL/Python function that displays or sets the segment instance proxy port values for the
gp_interconnect_proxy_addresses parameter. To create and run the function, you must enable PL/
Python in the database with the CREATE EXTENSION plpythonu command.

--
-- A PL/Python function to setup the interconnect proxy addresses.
-- Requires the Python modules os and socket.
--
-- Usage:
-- select my_setup_ic_proxy(-1000, ''); -- display IC proxy
 values for segments
-- select my_setup_ic_proxy(-1000, 'update proxy'); -- update the
 gp_interconnect_proxy_addresses parameter
--
-- The first argument, "delta", is used to calculate the proxy port with
 this formula:
--

Greenplum Database Administrator Guide Release Notes

144

-- proxy_port = postmaster_port + delta
--
-- The second argument, "action", is used to update the
 gp_interconnect_proxy_addresses parameter.
-- The parameter is not updated unless "action" is 'update proxy'.
-- Note that running "gpstop -u" is required for the update to take
 effect.
-- A Greenplum system restart will also work.
--
create or replace function my_setup_ic_proxy(delta int, action text)
returns table(dbid smallint, content smallint, ip text, port int) as $$
 import os
 import socket

 results = []
 value = ''

 segs = plpy.execute('''SELECT dbid, content, port, address
 FROM gp_segment_configuration
 ORDER BY 1''')
 for seg in segs:
 dbid = seg['dbid']
 content = seg['content']
 port = seg['port']
 address = seg['address']

 # lookup ip of the address
 ip = socket.gethostbyname(address)

 # decide the proxy port
 port = port + delta

 # append to the result list
 results.append((dbid, content, ip, port))

 # build the value for the GUC
 if value:
 value += ','
 value += '{}:{}:{}:{}'.format(dbid, content, ip, port)

 if action.lower() == 'update proxy':
 os.system('''gpconfig --skipvalidation -c
 gp_interconnect_proxy_addresses -v "'{}'"'''.format(value))
 plpy.notice('''the settings are applied, please reload with 'gpstop
 -u' to take effect.''')
 else:
 plpy.notice('''if the settings are correct, re-run with 'update
 proxy' to apply.''')
 return results
$$ language plpythonu execute on master;

Note: When you run the function, you should connect to the database using the Greenplum
interconnect type UDPIFC or TCP. This example uses psql to connect to the database mytest
with the interconnect type UDPIFC.

PGOPTIONS="-c gp_interconnect_type=udpifc" psql -d mytest

Running this command lists the segment instance values for the gp_interconnect_proxy_addresses
parameter.

select my_setup_ic_proxy(-1000, '');

Greenplum Database Administrator Guide Release Notes

145

This command runs the function to set the parameter.

select my_setup_ic_proxy(-1000, 'update proxy');

As an alternative, you can run the gpconfig utility to set the gp_interconnect_proxy_addresses
parameter. To set the value as a string, the value is a single-quoted string that is enclosed in double
quotes. The example Greenplum system consists of a master and a single segment instance.

gpconfig --skipvalidation -c gp_interconnect_proxy_addresses -v
 "'1:-1:192.168.180.50:35432,2:0:192.168.180.54:35000'"

After setting the gp_interconnect_proxy_addresses parameter, reload the postgresql.conf file
with the gpstop -u command. This command does not stop and restart the Greenplum system.

Testing the Interconnect Proxies
To test the proxy ports configured for the system, you can set the PGOPTIONS environment variable when
you start a psql session in a command shell. This command sets the environment variable to enable
interconnect proxies, starts psql, and logs into the database mytest.

PGOPTIONS="-c gp_interconnect_type=proxy" psql -d mytest

You can run queries in the shell to test the system. For example, you can run a query that accesses all
the primary segment instances. This query displays the segment IDs and number of rows on the segment
instance from the table sales.

SELECT gp_segment_id, COUNT(*) FROM sales GROUP BY gp_segment_id ;

Setting Interconnect Proxies for the System
After you have tested the interconnect proxies for the system, set the server configuration parameter for
the system with the gpconfig utility.

gpconfig -c gp_interconnect_type -v proxy

Reload the postgresql.conf file with the gpstop -u command. This command does not stop and
restart the Greenplum system.

Enabling High Availability and Data Consistency Features
The fault tolerance and the high-availability features of Greenplum Database can be configured.

Important: When data loss is not acceptable for a Greenplum Database cluster, Greenplum
master and segment mirroring is recommended. If mirroring is not enabled then Greenplum stores
only one copy of the data, so the underlying storage media provides the only guarantee for data
availability and correctness in the event of a hardware failure.

Kubernetes enables quick recovery from both pod and host failures, and Kubernetes storage
services provide a high level of availability for the underlying data. Furthermore, virtualized
environments make it difficult to ensure the anti-affinity guarantees required for Greenplum
mirroring solutions. For these reasons, mirrorless deployments are fully supported with Greenplum
for Kubernetes. Other deployment environments are generally not supported for production use
unless both Greenplum master and segment mirroring are enabled.

For information about the utilities that are used to enable high availability, see the Greenplum Database
Utility Guide.

Greenplum Database Administrator Guide Release Notes

146

Overview of Greenplum Database High Availability
A Greenplum Database system can be made highly available by providing a fault-tolerant hardware
platform, by enabling Greenplum Database high-availability features, and by performing regular monitoring
and maintenance procedures to ensure the health of all system components.

Hardware components will eventually fail, whether due to normal wear or an unexpected circumstance.
Loss of power can lead to temporarily unavailable components. A system can be made highly available
by providing redundant standbys for components that can fail so that services can continue uninterrupted
when a failure does occur. In some cases, the cost of redundancy is higher than users' tolerance for
interruption in service. When this is the case, the goal is to ensure that full service is able to be restored,
and can be restored within an expected timeframe.

With Greenplum Database, fault tolerance and data availability is achieved with:

• Hardware level RAID storage protection
• Data storage checksums
• Greenplum segment mirroring
• Master mirroring
• Dual clusters
• Database backup and restore

Hardware level RAID
A best practice Greenplum Database deployment uses hardware level RAID to provide high performance
redundancy for single disk failure without having to go into the database level fault tolerance. This provides
a lower level of redundancy at the disk level.

Data storage checksums
Greenplum Database uses checksums to verify that data loaded from disk to memory has not been
corrupted on the file system.

Greenplum Database has two kinds of storage for user data: heap and append-optimized. Both storage
models use checksums to verify data read from the file system and, with the default settings, they handle
checksum verification errors in a similar way.

Greenplum Database master and segment database processes update data on pages in the memory
they manage. When a memory page is updated and flushed to disk, checksums are computed and saved
with the page. When a page is later retrieved from disk, the checksums are verified and the page is only
permitted to enter managed memory if the verification succeeds. A failed checksum verification is an
indication of corruption in the file system and causes Greenplum Database to generate an error, aborting
the transaction.

The default checksum settings provide the best level of protection from undetected disk corruption
propagating into the database and to mirror segments.

Heap checksum support is enabled by default when the Greenplum Database cluster is initialized with the
gpinitsystem management utility. Although it is strongly discouraged, a cluster can be initialized without
heap checksum support by setting the HEAP_CHECKSUM parameter to off in the gpinitsystem cluster
configuration file. See gpinitsystem.

Once initialized, it is not possible to change heap checksum support for a cluster without reinitializing the
system and reloading databases.

You can check the read-only server configuration parameter data_checksums to see if heap checksums
are enabled in a cluster:

$ gpconfig -s data_checksums

Greenplum Database Administrator Guide Release Notes

147

When a Greenplum Database cluster starts up, the gpstart utility checks that heap checksums are
consistently enabled or disabled on the master and all segments. If there are any differences, the cluster
fails to start. See gpstart.

In cases where it is necessary to ignore heap checksum verification errors so that data can be
recovered, setting the ignore_checksum_failure system configuration parameter to on causes
Greenplum Database to issue a warning when a heap checksum verification fails, but the page
is then permitted to load into managed memory. If the page is updated and saved to disk, the
corrupted data could be replicated to the mirror segment. Because this can lead to data loss, setting
ignore_checksum_failure to on should only be done to enable data recovery.

For append-optimized storage, checksum support is one of several storage options set at the time an
append-optimized table is created with the CREATE TABLE command. The default storage options are
specified in the gp_default_storage_options server configuration parameter. The checksum
storage option is enabled by default and disabling it is strongly discouraged.

If you choose to disable checksums for an append-optimized table, you can either

• change the gp_default_storage_options configuration parameter to include checksum=false
before creating the table, or

• add the checksum=false option to the WITH storage_options clause of the CREATE TABLE
statement.

Note that the CREATE TABLE statement allows you to set storage options, including checksums, for
individual partition files.

See the CREATE TABLE command reference and the gp_default_storage_options configuration
parameter reference for syntax and examples.

Segment Mirroring
Greenplum Database stores data in multiple segment instances, each of which is a Greenplum Database
PostgreSQL instance. The data for each table is spread between the segments based on the distribution
policy that is defined for the table in the DDL at the time the table is created. When segment mirroring
is enabled, for each segment instance there is a primary and mirror pair. The mirror segment is kept up
to date with the primary segment using Write-Ahead Logging (WAL)-based streaming replication. See
Overview of Segment Mirroring.

The mirror instance for each segment is usually initialized with the gpinitsystem utility or the gpexpand
utility. As a best practice, the mirror runs on a different host than the primary instance to protect from
a single machine failure. There are different strategies for assigning mirrors to hosts. When choosing
the layout of the primaries and mirrors, it is important to consider the failure scenarios to ensure that
processing skew is minimized in the case of a single machine failure.

Master Mirroring
There are two master instances in a highly available cluster, a primary and a standby. As with segments,
the master and standby should be deployed on different hosts so that the cluster can tolerate a single host
failure. Clients connect to the primary master and queries can be executed only on the primary master.
The standby master is kept up to date with the primary master using Write-Ahead Logging (WAL)-based
streaming replication. See Overview of Master Mirroring.

If the master fails, the administrator runs the gpactivatestandby utility to have the standby master take
over as the new primary master. You can configure a virtual IP address for the master and standby so that
client programs do not have to switch to a different network address when the current master changes. If
the master host fails, the virtual IP address can be swapped to the actual acting master.

Dual Clusters
An additional level of redundancy can be provided by maintaining two Greenplum Database clusters, both
storing the same data.

Greenplum Database Administrator Guide Release Notes

148

Two methods for keeping data synchronized on dual clusters are "dual ETL" and "backup/restore."

Dual ETL provides a complete standby cluster with the same data as the primary cluster. ETL (extract,
transform, and load) refers to the process of cleansing, transforming, validating, and loading incoming data
into a data warehouse. With dual ETL, this process is executed twice in parallel, once on each cluster, and
is validated each time. It also allows data to be queried on both clusters, doubling the query throughput.
Applications can take advantage of both clusters and also ensure that the ETL is successful and validated
on both clusters.

To maintain a dual cluster with the backup/restore method, create backups of the primary cluster and
restore them on the secondary cluster. This method takes longer to synchronize data on the secondary
cluster than the dual ETL strategy, but requires less application logic to be developed. Populating a second
cluster with backups is ideal in use cases where data modifications and ETL are performed daily or less
frequently.

Backup and Restore
Making regular backups of the databases is recommended except in cases where the database can be
easily regenerated from the source data. Backups should be taken to protect from operational, software,
and hardware errors.

Use the gpbackup utility to backup Greenplum databases. gpbackup performs the backup in parallel
across segments, so backup performance scales up as hardware is added to the cluster.

When designing a backup strategy, a primary concern is where to store the backup data. The data each
segment manages can be backed up on the segment's local storage, but should not be stored there
permanently—the backup reduces disk space available to the segment and, more importantly, a hardware
failure could simultaneously destroy the segment's live data and the backup. After performing a backup,
the backup files should be moved from the primary cluster to separate, safe storage. Alternatively, the
backup can be made directly to separate storage.

Using a Greenplum Database storage plugin with the gpbackup and gprestore utilities, you can send
a backup to, or retrieve a backup from a remote location or a storage appliance. Greenplum Database
storage plugins support connecting to locations including Amazon Simple Storage Service (Amazon S3)
locations and Dell EMC Data Domain storage appliances.

Using the Backup/Restore Storage Plugin API you can create a custom plugin that the gpbackup and
gprestore utilities can use to integrate a custom backup storage system with the Greenplum Database.

For information about using gpbackup and gprestore, see Parallel Backup with gpbackup and
gprestore.

Overview of Segment Mirroring

When Greenplum Database High Availability is enabled, there are two types of segment instances:
primary and mirror. Each primary segment has one corresponding mirror segment. A primary segment
instance receives requests from the master to make changes to the segment data and then replicates
those changes to the corresponding mirror. If Greenplum Database detects that a primary segment has
failed or become unavailable, it changes the role of its mirror segment to primary segment and the role of
the unavailable primary segment to mirror segment. Transactions in progress when the failure occurred
roll back and must be restarted. The administrator must then recover the mirror segment, allow the mirror
to synchronize with the current primary segment, and then exchange the primary and mirror segments so
they are in their preferred roles.

If segment mirroring is not enabled, the Greenplum Database system shuts down if a segment instance
fails. Administrators must manually recover all failed segments before Greenplum Database operations can
resume.

When segment mirroring is enabled for an existing system, the primary segment instances continue to
provide service to users while a snapshot of the primary segments are taken. While the snapshots are
taken and deployed on the mirror segment instances, changes to the primary segment are also recorded.

Greenplum Database Administrator Guide Release Notes

149

After the snapshot has been deployed on the mirror segment, the mirror segment is synchronized and
kept current using Write-Ahead Logging (WAL)-based streaming replication. Greenplum Database WAL
replication uses the walsender and walreceiver replication processes. The walsender process is a
primary segment process. The walreceiver is a mirror segment process.

When database changes occur, the logs that capture the changes are streamed to the mirror segment to
keep it current with the corresponding primary segments. During WAL replication, database changes are
written to the logs before being applied, to ensure data integrity for any in-process operations.

When Greenplum Database detects a primary segment failure, the WAL replication process stops and the
mirror segment automatically starts as the active primary segment. If a mirror segment fails or becomes
inaccessible while the primary is active, the primary segment tracks database changes in logs that are
applied to the mirror when it is recovered. For information about segment fault detection and the recovery
process, see Detecting a Failed Segment.

These Greenplum Database system catalog tables contain mirroring and replication information.

• The catalog table gp_segment_configuration contains the current configuration and state of
primary and mirror segment instances and the master and standby master instance.

• The catalog view gp_stat_replication contains replication statistics of the walsender processes
that are used for Greenplum Database master and segment mirroring.

About Segment Mirroring Configurations
Mirror segment instances can be placed on hosts in the cluster in different configurations. As a best
practice, a primary segment and the corresponding mirror are placed on different hosts. Each host must
have the same number of primary and mirror segments. When you create segment mirrors with the
Greenplum Database utilities gpinitsystem or gpaddmirrors you can specify the segment mirror
configuration, group mirroring (the default) or spread mirroring. With gpaddmirrors, you can create
custom mirroring configurations with a gpaddmirrors configuration file and specify the file on the
command line.

Group mirroring is the default mirroring configuration when you enable mirroring during system
initialization. The mirror segments for each host's primary segments are placed on one other host. If a
single host fails, the number of active primary segments doubles on the host that backs the failed host.
Figure 15: Group Segment Mirroring in Greenplum Database illustrates a group mirroring configuration.

Greenplum Database Administrator Guide Release Notes

150

Figure 15: Group Segment Mirroring in Greenplum Database

Spread mirroring can be specified during system initialization. This configuration spreads each host's
mirrors over multiple hosts so that if any single host fails, no other host will have more than one mirror
promoted to an active primary segment. Spread mirroring is possible only if there are more hosts than
segments per host. Figure 16: Spread Segment Mirroring in Greenplum Database illustrates the placement
of mirrors in a spread segment mirroring configuration.

Greenplum Database Administrator Guide Release Notes

151

Figure 16: Spread Segment Mirroring in Greenplum Database

Note: You must ensure you have the appropriate number of host systems for your mirroring
configuration when you create a system or when you expand a system. For example, to create a
system that is configured with spread mirroring requires more hosts than segment instances per
host, and a system that is configured with group mirroring requires at least two new hosts when
expanding the system. For information about segment mirroring configurations, see Segment
Mirroring Configurations. For information about expanding systems with segment mirroring enabled,
see Planning Mirror Segments.

Overview of Master Mirroring

You can deploy a backup or mirror of the master instance on a separate host machine. The backup
master instance, called the standby master, serves as a warm standby if the primary master becomes
nonoperational. You create a standby master from the primary master while the primary is online.

When you enable master mirroring for an existing system, the primary master continues to provide service
to users while a snapshot of the primary master instance is taken. While the snapshot is taken and
deployed on the standby master, changes to the primary master are also recorded. After the snapshot
has been deployed on the standby master, the standby master is synchronized and kept current using
Write-Ahead Logging (WAL)-based streaming replication. Greenplum Database WAL replication uses
the walsender and walreceiver replication processes. The walsender process is a primary master
process. The walreceiver is a standby master process.

Greenplum Database Administrator Guide Release Notes

152

Figure 17: Master Mirroring in Greenplum Database

Since the master does not house user data, only system catalog tables are synchronized between the
primary and standby masters. When these tables are updated, the replication logs that capture the
changes are streamed to the standby master to keep it current with the primary. During WAL replication, all
database modifications are written to replication logs before being applied, to ensure data integrity for any
in-process operations.

This is how Greenplum Database handles a master failure.

• If the primary master fails, the Greenplum Database system shuts down and the master replication
process stops. The administrator runs the gpactivatestandby utility to have the standby master take
over as the new primary master. Upon activation of the standby master, the replicated logs reconstruct
the state of the primary master at the time of the last successfully committed transaction. The activated
standby master then functions as the Greenplum Database master, accepting connections on the port
specified when standby master was initialized. See Recovering a Failed Master.

• If the standby master fails or becomes inaccessible while the primary master is active, the primary
master tracks database changes in logs that are applied to the standby master when it is recovered.

These Greenplum Database system catalog tables contain mirroring and replication information.

• The catalog table gp_segment_configuration contains the current configuration and state of
primary and mirror segment instances and the master and standby master instance.

• The catalog view gp_stat_replication contains replication statistics of the walsender processes
that are used for Greenplum Database master and segment mirroring.

Enabling Mirroring in Greenplum Database
You can configure your Greenplum Database system with mirroring at setup time using gpinitsystem
or enable mirroring later using gpaddmirrors and gpinitstandby. This topic assumes you are adding
mirrors to an existing system that was initialized without mirrors.

You can enable the following types of mirroring:

• Enabling Segment Mirroring
• Enabling Master Mirroring

Enabling Segment Mirroring

Mirror segments allow database queries to fail over to a backup segment if the primary segment is
unavailable. By default, mirrors are configured on the same array of hosts as the primary segments. You
may choose a completely different set of hosts for your mirror segments so they do not share machines
with any of your primary segments.

Greenplum Database Administrator Guide Release Notes

153

Important: During the online data replication process, Greenplum Database should be in a
quiescent state, workloads and other queries should not be running.

To add segment mirrors to an existing system (same hosts as
primaries)
1. Allocate the data storage area for mirror data on all segment hosts. The data storage area must be

different from your primary segments' file system location.
2. Use gpssh-exkeys to ensure that the segment hosts can SSH and SCP to each other without a

password prompt.
3. Run the gpaddmirrors utility to enable mirroring in your Greenplum Database system. For example,

to add 10000 to your primary segment port numbers to calculate the mirror segment port numbers:

$ gpaddmirrors -p 10000

Where -p specifies the number to add to your primary segment port numbers. Mirrors are added with
the default group mirroring configuration.

To add segment mirrors to an existing system (different hosts from
primaries)
1. Ensure the Greenplum Database software is installed on all hosts. See the Greenplum Database

Installation Guide for detailed installation instructions.
2. Allocate the data storage area for mirror data, and tablespaces if needed, on all segment hosts.
3. Use gpssh-exkeys to ensure the segment hosts can SSH and SCP to each other without a password

prompt.
4. Create a configuration file that lists the host names, ports, and data directories on which to create

mirrors. To create a sample configuration file to use as a starting point, run:

$ gpaddmirrors -o filename

The format of the mirror configuration file is:

row_id=contentID|address|port|data_dir

Where row_id is the row in the file, contentID is the segment instance content ID, address is the host
name or IP address of the segment host, port is the communication port, and data_dir is the segment
instance data directory.

For example, this is contents of a mirror configuration file for two segment hosts and two segment
instances per host:

0=2|sdw1-1|41000|/data/mirror1/gp2
1=3|sdw1-2|41001|/data/mirror2/gp3
2=0|sdw2-1|41000|/data/mirror1/gp0
3=1|sdw2-2|41001|/data/mirror2/gp1

5. Run the gpaddmirrors utility to enable mirroring in your Greenplum Database system:

$ gpaddmirrors -i mirror_config_file

The -i option specifies the mirror configuration file you created.

Enabling Master Mirroring

You can configure a new Greenplum Database system with a standby master using gpinitsystem or
enable it later using gpinitstandby. This topic assumes you are adding a standby master to an existing
system that was initialized without one.

Greenplum Database Administrator Guide Release Notes

154

For information about the utilities gpinitsystem and gpinitstandby, see the Greenplum Database
Utility Guide.

To add a standby master to an existing system
1. Ensure the standby master host is installed and configured: gpadmin system user created, Greenplum

Database binaries installed, environment variables set, SSH keys exchanged, and that the data
directories and tablespace directories, if needed, are created.

2. Run the gpinitstandby utility on the currently active primary master host to add a standby master
host to your Greenplum Database system. For example:

$ gpinitstandby -s smdw

Where -s specifies the standby master host name.

To switch operations to a standby master, see Recovering a Failed Master.

To check the status of the master mirroring process (optional)
You can run the gpstate utility with the -f option to display details of the standby master host.

$ gpstate -f

The standby master status should be passive, and the WAL sender state should be streaming.

For information about the gpstate utility, see the Greenplum Database Utility Guide.

Detecting a Failed Segment
With segment mirroring enabled, Greenplum Database automatically fails over to a mirror segment
instance when a primary segment instance goes down. Provided one segment instance is online per
portion of data, users may not realize a segment is down. If a transaction is in progress when a fault
occurs, the in-progress transaction rolls back and restarts automatically on the reconfigured set of
segments. The gpstate utility can be used to identify failed segments. The utility displays information
from the catalog tables including gp_segment_configuration.

If the entire Greenplum Database system becomes nonoperational due to a segment failure (for example,
if mirroring is not enabled or not enough segments are online to access all user data), users will see errors
when trying to connect to a database. The errors returned to the client program may indicate the failure.
For example:

ERROR: All segment databases are unavailable

How a Segment Failure is Detected and Managed
On the Greenplum Database master host, the Postgres postmaster process forks a fault probe process,
ftsprobe. This is also known as the FTS (Fault Tolerance Server) process. The postmaster process
restarts the FTS if it fails.

The FTS runs in a loop with a sleep interval between each cycle. On each loop, the FTS probes each
primary segment instance by making a TCP socket connection to the segment instance using the
hostname and port registered in the gp_segment_configuration table. If the connection succeeds, the
segment performs a few simple checks and reports back to the FTS. The checks include executing a stat
system call on critical segment directories and checking for internal faults in the segment instance. If no
issues are detected, a positive reply is sent to the FTS and no action is taken for that segment instance.

If the connection cannot be made, or if a reply is not received in the timeout period, then a retry is
attempted for the segment instance. If the configured maximum number of probe attempts fail, the FTS
probes the segment's mirror to ensure that it is up, and then updates the gp_segment_configuration

Greenplum Database Administrator Guide Release Notes

155

table, marking the primary segment "down" and setting the mirror to act as the primary. The FTS updates
the gp_configuration_history table with the operations performed.

When there is only an active primary segment and the corresponding mirror is down, the primary goes into
the not synchronizing state and continues logging database changes, so the mirror can be synchronized
without performing a full copy of data from the primary to the mirror.

Running the gpstate utility with the -e option displays any issues with a primary or mirror segment
instances. Other gpstate options that display information about all primary or mirror segment instances
such as -m (mirror instance information) and -c (primary and mirror configuration information) also display
information about primary and mirror issues.

You can also can see the mode: s (synchronizing) or n (not synchronizing) for each segment instance, as
well as the status u (up) or d (down), in the gp_segment_configuration table.

The gprecoverseg utility is used to bring up a mirror that is down. By default, gprecoverseg performs
an incremental recovery, placing the mirror into synchronizing mode, which starts to replay the recorded
changes from the primary onto the mirror. If the incremental recovery cannot be completed, the recovery
fails and gprecoverseg should be run again with the -F option, to perform full recovery. This causes the
primary to copy all of the data to the mirror.

After a segment instance has been recovered, the gpstate -e command might list primary and mirror
segment instances that are switched. This indicates that the system is not balanced (the primary and mirror
instances are not in their originally configured roles). If a system is not balanced, there might be skew
resulting from the number of active primary segment instances on segment host systems.

The gp_segment_configuration table has columns role and preferred_role. These can have
values of either p for primary or m for mirror. The role column shows the segment instance current role
and the preferred_role shows the original role of the segment instance.

In a balanced system, the role and preferred_role matches for all segment instances. When they
do not match the system is not balanced. To rebalance the cluster and bring all the segments into their
preferred role, run the gprecoverseg command with the -r option.

Simple Failover and Recovery Example
Consider a single primary-mirror segment instance pair where the primary segment has failed over to
the mirror. The following table shows the segment instance preferred role, role, mode, and status from
gp_segment_configuration table before beginning recovery of the failed primary segment.

You can also run gpstate -e to display any issues with a primary or mirror segment instances.

preferred_role role mode status

Primary p

(primary)

m

(mirror)

n

(not synchronizing)

d

(down)

Mirror m

(mirror)

p

(primary)

n

(not synchronizing)

u

(up)

The segment instance roles are not in their preferred roles, and the primary is down. The mirror is up, the
role is now primary, and it is not synchronizing because its mirror, the failed primary, is down. After fixing
issues with the segment host and primary segment instance, you use gprecoverseg to prepare failed
segment instances for recovery and initiate synchronization between the primary and mirror instances.

Once gprecoverseg has completed, the segments are in the states shown in the following table where
the primary-mirror segment pair is up with the primary and mirror roles reversed from their preferred roles.

Greenplum Database Administrator Guide Release Notes

156

preferred_role role mode status

Primary p

(primary)

m

(mirror)

s

(synchronizing)

u

(up)

Mirror m

(mirror)

p

(primary)

s

(synchronizing)

u

(up)

The gprecoverseg -r command rebalances the system by returning the segment roles to their
preferred roles.

preferred_role role mode status

Primary p

(primary)

p

(primary)

s

(synchronized)

u

(up)

Mirror m

(mirror)

m

(mirror)

s

(synchronized)

u

(up)

Configuring FTS Behavior
There is a set of server configuration parameters that affect FTS behavior:
gp_fts_probe_interval

How often, in seconds, to begin a new FTS loop. For example if the setting is 60 and the
probe loop takes 10 seconds, the FTS process sleeps 50 seconds. If the setting is 60 and
probe loop takes 75 seconds, the process sleeps 0 seconds. The default is 60, and the
maximum is 3600.

gp_fts_probe_timeout

Probe timeout between master and segment, in seconds. The default is 20, and the
maximum is 3600.

gp_fts_probe_retries

The number of attempts to probe a segment. For example if the setting is 5 there will be 4
retries after the first attempt fails. Default: 5

gp_log_fts

Logging level for FTS. The value may be "off", "terse", "verbose", or "debug". The
"verbose" setting can be used in production to provide useful data for troubleshooting. The
"debug" setting should not be used in production. Default: "terse"

gp_segment_connect_timeout

The maximum time (in seconds) allowed for a mirror to respond. Default: 600 (10 minutes)

In addition to the fault checking performed by the FTS, a primary segment that is unable to send data
to its mirror can change the status of the mirror to down. The primary queues up the data and after
gp_segment_connect_timeout seconds passes, indicates a mirror failure, causing the mirror to be
marked down and the primary to go into change tracking mode.

Checking for Failed Segments

With mirroring enabled, you can have failed segment instances in the system without interruption of service
or any indication that a failure has occurred. You can verify the status of your system using the gpstate
utility. gpstate provides the status of each individual component of a Greenplum Database system,
including primary segments, mirror segments, master, and standby master.

Greenplum Database Administrator Guide Release Notes

157

To check for failed segments
1. On the master host, run the gpstate utility with the -e option to show segment instances with error

conditions:

$ gpstate -e

If the utility lists Segments with Primary and Mirror Roles Switched, the segment is not in
its preferred role (the role to which it was assigned at system initialization). This means the system is in
a potentially unbalanced state, as some segment hosts may have more active segments than is optimal
for top system performance.

Segments that display the Config status as Down indicate the corresponding mirror segment is
down.

See Recovering From Segment Failures for instructions to fix this situation.
2. To get detailed information about failed segments, you can check the gp_segment_configuration

catalog table. For example:

$ psql postgres -c "SELECT * FROM gp_segment_configuration WHERE
 status='d';"

3. For failed segment instances, note the host, port, preferred role, and data directory. This information will
help determine the host and segment instances to troubleshoot.

4. To show information about mirror segment instances, run:

$ gpstate -m

Checking the Log Files for Failed Segments

Log files can provide information to help determine an error's cause. The master and segment instances
each have their own log file in pg_log of the data directory. The master log file contains the most
information and you should always check it first.

Use the gplogfilter utility to check the Greenplum Database log files for additional information. To
check the segment log files, run gplogfilter on the segment hosts using gpssh.

To check the log files
1. Use gplogfilter to check the master log file for WARNING, ERROR, FATAL or PANIC log level

messages:

$ gplogfilter -t

2. Use gpssh to check for WARNING, ERROR, FATAL, or PANIC log level messages on each segment
instance. For example:

$ gpssh -f seg_hosts_file -e 'source
/usr/local/greenplum-db/greenplum_path.sh ; gplogfilter -t
/data1/primary/*/pg_log/gpdb*.log' > seglog.out

Recovering a Failed Segment
If the master cannot connect to a segment instance, it marks that segment as down in the Greenplum
Database system catalog. The segment instance remains offline until an administrator takes steps to bring
the segment back online. The process for recovering a failed segment instance or host depends on the
failure cause and whether or not mirroring is enabled. A segment instance can be unavailable for many
reasons:

• A segment host is unavailable; for example, due to network or hardware failures.

Greenplum Database Administrator Guide Release Notes

158

• A segment instance is not running; for example, there is no postgres database listener process.
• The data directory of the segment instance is corrupt or missing; for example, data is not accessible,

the file system is corrupt, or there is a disk failure.

Figure 18: Segment Failure Troubleshooting Matrix shows the high-level steps for each of the preceding
failure scenarios.

Figure 18: Segment Failure Troubleshooting Matrix

Recovering From Segment Failures

Segment host failures usually cause multiple segment failures: all primary or mirror segment instances on
the host are marked as down and nonoperational. If mirroring is not enabled and a segment goes down,
the system automatically becomes nonoperational.

A segment instance can fail for several reasons, such as a host failure, network failure, or disk failure.
When a segment instance fails, its status is marked as down in the Greenplum Database system catalog,
and its mirror is activated in change tracking mode. In order to bring the failed segment instance back into

Greenplum Database Administrator Guide Release Notes

159

operation again, you must first correct the problem that made it fail in the first place, and then recover the
segment instance in Greenplum Database using gprecoverseg.

If a segment host is not recoverable and you have lost one or more segment instances with mirroring
enabled, you can attempt to recover a segment instance from its mirror. See When a segment host is not
recoverable. You can also recreate your Greenplum Database system from backup files. See Backing Up
and Restoring Databases.

To recover with mirroring enabled
1. Ensure you can connect to the segment host from the master host. For example:

$ ping failed_seg_host_address

2. Troubleshoot the problem that prevents the master host from connecting to the segment host. For
example, the host machine may need to be restarted or replaced.

3. After the host is online and you can connect to it, run the gprecoverseg utility from the master host
to reactivate the failed segment instances and start the process of sycnronizing the master and mirror
instances. For example:

$ gprecoverseg

4. The recovery process brings up the failed segments and identifies the changed files that need to be
synchronized. The process can take some time; wait for the process to complete.

5. After gprecoverseg completes, the system goes into Resynchronizing mode and begins copying the
changed files. This process runs in the background while the system is online and accepting database
requests.

6. When the resynchronization process completes, the system state is Synchronized. Run the gpstate
utility to verify the status of the resynchronization process:

$ gpstate -m

Note: If incremental recovery was not successful and the down segment instance data is not
corrupted, contact Pivotal Support.

To return all segments to their preferred role
When a primary segment instance goes down, the mirror activates and becomes the primary segment.
After running gprecoverseg, the currently active segment instance remains the primary and the failed
segment becomes the mirror. The segment instances are not returned to the preferred role that they were
given at system initialization time. This means that the system could be in a potentially unbalanced state
if segment hosts have more active segments than is optimal for top system performance. To check for
unbalanced segments and rebalance the system, run:

$ gpstate -e

All segments must be online and fully synchronized to rebalance the system. Database sessions remain
connected during rebalancing, but queries in progress are canceled and rolled back.

1. Run gpstate -m to ensure all mirrors are Synchronized.

$ gpstate -m

2. If any mirrors are in Resynchronizing mode, wait for them to complete.
3. Run gprecoverseg with the -r option to return the segments to their preferred roles.

$ gprecoverseg -r

Greenplum Database Administrator Guide Release Notes

160

4. After rebalancing, run gpstate -e to confirm all segments are in their preferred roles.

$ gpstate -e

To recover from a double fault
In a double fault, both a primary segment and its mirror are down. This can occur if hardware failures
on different segment hosts happen simultaneously. Greenplum Database is unavailable if a double fault
occurs.

To recover from a double fault.

1. Troubleshoot the problem that caused the double fault and ensure that the segment hosts are
operational and are accessible from the master host.

2. Restart Greenplum Database. The gpstop option -r stops and restarts the system.

$ gpstop -r

3. After the system restarts, run gprecoverseg to reactivate the failed segment instances.

$ gprecoverseg

Note: If incremental recovery was not successful and the down segment instance data is not
corrupted, contact Pivotal Support.

4. After gprecoverseg completes, use gpstate to check the status of your mirrors and ensure the
segment instances have gone from Resynchronizing mode to Synchronized mode:

$ gpstate -m

5. If you still have segment instances in change tracking mode, you can run gprecoverseg with the -F
option to perform a full segment recovery.

Warning: A full recovery deletes the data directory of the down segment instance before
copying the data from the active (current primary) segment instance. Before performing a
full recovery, ensure that the segment failure did not cause data corruption and that any host
segment disk issues have been fixed.

$ gprecoverseg -F

6. If needed, return segment instances to their preferred role. See To return all segments to their preferred
role.

To recover without mirroring enabled
1. Ensure you can connect to the segment host from the master host. For example:

$ ping failed_seg_host_address

2. Troubleshoot the problem that is preventing the master host from connecting to the segment host. For
example, the host machine may need to be restarted.

3. After the host is online, verify that you can connect to it and restart Greenplum Database. The gpstop
option -r stops and restarts the system:

$ gpstop -r

4. Run the gpstate utility to verify that all segment instances are online:

$ gpstate

Greenplum Database Administrator Guide Release Notes

161

When a segment host is not recoverable

If a host is nonoperational, for example, due to hardware failure, recover the segments onto a spare set of
hardware resources. If mirroring is enabled, you can recover a segment instance from its mirror onto an
alternate host using the gprecoverseg utility. For example:

$ gprecoverseg -i recover_config_file

Where the format of the recover_config_file file is:

<failed_host>|<port>|<data_dir>[<recovery_host>|<port>|<recovery_data_dir>]

For example, to recover to a different host than the failed host without additional tablespaces configured
(besides the default pg_system tablespace):

sdw1-1|50001|/data1/mirror/gpseg16 sdw4-1|50001|/data1/recover1/gpseg16

For information about creating a segment instance recovery file, see gprecoverseg.

The new recovery segment host must be pre-installed with the Greenplum Database software and
configured exactly as the existing segment hosts.

Recovering a Failed Master
If the primary master fails, the Greenplum Database system is not accessible and WAL replication stops.
Use gpactivatestandby to activate the standby master. Upon activation of the standby master,
Greenplum Database reconstructs the master host state at the time of the last successfully committed
transaction.

These steps assume a standby master host is configured for the system. See Enabling Master Mirroring.

To activate the standby master
1. Run the gpactivatestandby utility from the standby master host you are activating. For example:

$ gpactivatestandby -d /data/master/gpseg-1

Where -d specifies the data directory of the master host you are activating.

After you activate the standby, it becomes the active or primary master for your Greenplum Database
array.

2. After the utility completes, run gpstate with the -b option to display a summary of the system status:

$ gpstate -b

The master instance status should be Active. When a standby master is not configured, the command
displays No master standby configured for the standby master status. If you configured a new
standby master, its status is Passive.

3. Optional: If you have not already done so while activating the prior standby master, you can run
gpinitstandby on the active master host to configure a new standby master.

Important: You must initialize a new standby master to continue providing master mirroring.

For information about restoring the original master and standby master configuration, see Restoring
Master Mirroring After a Recovery.

Greenplum Database Administrator Guide Release Notes

162

Restoring Master Mirroring After a Recovery

After you activate a standby master for recovery, the standby master becomes the primary master. You
can continue running that instance as the primary master if it has the same capabilities and dependability
as the original master host.

You must initialize a new standby master to continue providing master mirroring unless you have already
done so while activating the prior standby master. Run gpinitstandby on the active master host to
configure a new standby master. See Enabling Master Mirroring.

You can restore the primary and standby master instances on the original hosts. This process swaps the
roles of the primary and standby master hosts, and it should be performed only if you strongly prefer to run
the master instances on the same hosts they occupied prior to the recovery scenario.

Important: Restoring the primary and standby master instances to their original hosts is not an
online operation. The master host must be stopped to perform the operation.

For information about the Greenplum Database utilities, see the Greenplum Database Utility Guide.

To restore the master and standby instances on original hosts
(optional)
1. Ensure the original master host is in dependable running condition; ensure the cause of the original

failure is fixed.
2. On the original master host, move or remove the data directory, gpseg-1. This example moves the

directory to backup_gpseg-1:

$ mv /data/master/gpseg-1 /data/master/backup_gpseg-1

You can remove the backup directory once the standby is successfully configured.
3. Initialize a standby master on the original master host. For example, run this command from the current

master host, smdw:

$ gpinitstandby -s mdw

4. After the initialization completes, check the status of standby master, mdw. Run gpstate with the -f
option to check the standby master status:

$ gpstate -f

The standby master status should be passive, and the WAL sender state should be streaming.
5. Stop the Greenplum Database master instance on the standby master. For example:

$ gpstop -m

6. Run the gpactivatestandby utility from the original master host, mdw, that is currently a standby
master. For example:

$ gpactivatestandby -d $MASTER_DATA_DIRECTORY

Where the -d option specifies the data directory of the host you are activating.
7. After the utility completes, run gpstate with the -b option to display a summary of the system status:

$ gpstate -b

The master instance status should be Active. When a standby master is not configured, the command
displays No master standby configured for the standby master state.

Greenplum Database Administrator Guide Release Notes

163

8. On the standby master host, move or remove the data directory, gpseg-1. This example moves the
directory:

$ mv /data/master/gpseg-1 /data/master/backup_gpseg-1

You can remove the backup directory once the standby is successfully configured.
9. After the original master host runs the primary Greenplum Database master, you can initialize a standby

master on the original standby master host. For example:

$ gpinitstandby -s smdw

After the command completes, you can run the gpstate -f command on the primary master host, to
check the standby master status.

To check the status of the master mirroring process (optional)
You can run the gpstate utility with the -f option to display details of the standby master host.

$ gpstate -f

The standby master status should be passive, and the WAL sender state should be streaming.

For information about the gpstate utility, see the Greenplum Database Utility Guide.

Backing Up and Restoring Databases
This topic describes how to use Greenplum backup and restore features.

Performing backups regularly ensures that you can restore your data or rebuild your Greenplum Database
system if data corruption or system failure occur. You can also use backups to migrate data from one
Greenplum Database system to another.

Backup and Restore Overview
Greenplum Database supports parallel and non-parallel methods for backing up and restoring databases.
Parallel operations scale regardless of the number of segments in your system, because segment hosts
each write their data to local disk storage simultaneously. With non-parallel backup and restore operations,
the data must be sent over the network from the segments to the master, which writes all of the data to
its storage. In addition to restricting I/O to one host, non-parallel backup requires that the master have
sufficient local disk storage to store the entire database.

Parallel Backup with gpbackup and gprestore
gpbackup and gprestore are the Greenplum Database backup and restore utilities. gpbackup utilizes
ACCESS SHARE locks at the individual table level, instead of EXCLUSIVE locks on the pg_class catalog
table. This enables you to execute DML statements during the backup, such as CREATE, ALTER, DROP,
and TRUNCATE operations, as long as those operations do not target the current backup set.

Backup files created with gpbackup are designed to provide future capabilities for restoring individual
database objects along with their dependencies, such as functions and required user-defined datatypes.
See Parallel Backup with gpbackup and gprestore for more information.

Non-Parallel Backup with pg_dump
The PostgreSQL pg_dump and pg_dumpall non-parallel backup utilities can be used to create a single
dump file on the master host that contains all data from all active segments.

The PostgreSQL non-parallel utilities should be used only for special cases. They are much slower than
using the Greenplum backup utilities since all of the data must pass through the master. Additionally, it is

Greenplum Database Administrator Guide Release Notes

164

often the case that the master host has insufficient disk space to save a backup of an entire distributed
Greenplum database.

The pg_restore utility requires compressed dump files created by pg_dump or pg_dumpall. Before
starting the restore, you should modify the CREATE TABLE statements in the dump files to include the
Greenplum DISTRIBUTED clause. If you do not include the DISTRIBUTED clause, Greenplum Database
assigns default values, which may not be optimal. For details, see CREATE TABLE in the Greenplum
Database Reference Guide.

To perform a non-parallel restore using parallel backup files, you can copy the backup files from each
segment host to the master host, and then load them through the master.

Figure 19: Non-parallel Restore Using Parallel Backup Files

Another non-parallel method for backing up Greenplum Database data is to use the COPY TO SQL
command to copy all or a portion of a table out of the database to a delimited text file on the master host.

Parallel Backup with gpbackup and gprestore
gpbackup and gprestore are Greenplum Database utilities that create and restore backup sets for
Greenplum Database. By default, gpbackup stores only the object metadata files and DDL files for
a backup in the Greenplum Database master data directory. Greenplum Database segments use the
COPY ... ON SEGMENT command to store their data for backed-up tables in compressed CSV data files,
located in each segment's backups directory.

The backup metadata files contain all of the information that gprestore needs to restore a full backup
set in parallel. Backup metadata also provides the framework for restoring only individual objects in the
data set, along with any dependent objects, in future versions of gprestore. (See Understanding Backup
Files for more information.) Storing the table data in CSV files also provides opportunities for using other
restore utilities, such as gpload, to load the data either in the same cluster or another cluster. By default,
one file is created for each table on the segment. You can specify the --leaf-partition-data option
with gpbackup to create one data file per leaf partition of a partitioned table, instead of a single file. This
option also enables you to filter backup sets by leaf partitions.

Each gpbackup task uses a single transaction in Greenplum Database. During this transaction, metadata
is backed up on the master host, and data for each table on each segment host is written to CSV backup
files using COPY ... ON SEGMENT commands in parallel. The backup process acquires an ACCESS
SHARE lock on each table that is backed up.

Greenplum Database Administrator Guide Release Notes

165

For information about the gpbackup and gprestore utility options, see gpbackup and gprestore.

Requirements and Limitations

The gpbackup and gprestore utilities are compatible with these Greenplum Database versions:

• Pivotal Greenplum Database 4.3.22 and later
• Pivotal Greenplum Database 5.5.0 and later
• Pivotal Greenplum Database 6.0.0 and later

gpbackup and gprestore have the following limitations:

• If you create an index on a parent partitioned table, gpbackup does not back up that same index
on child partitioned tables of the parent, as creating the same index on a child would cause an error.
However, if you exchange a partition, gpbackup does not detect that the index on the exchanged
partition is inherited from the new parent table. In this case, gpbackup backs up conflicting CREATE
INDEX statements, which causes an error when you restore the backup set.

• You can execute multiple instances of gpbackup, but each execution requires a distinct timestamp.
• Database object filtering is currently limited to schemas and tables.
• When backing up a partitioned table where some or all leaf partitions are in different schemas from the

root partition, the leaf partition table definitions, including the schemas, are backed up as metadata.
This occurs even if the backup operation specifies that schemas that contain the leaf partitions should
be excluded. To control data being backed up for this type of partitioned table in this situation, use the
--leaf-partition-data option.

• If the --leaf-partition-data option is not specified, the leaf partition data is also backed up
even if the backup operation specifies that the leaf partition schemas should excluded.

• If the --leaf-partition-data option is specified, the leaf partition data is not be backed up if
the backup operation specifies that the leaf partition schemas should excluded. Only the metadata
for leaf partition tables are backed up.

• If you use the gpbackup --single-data-file option to combine table backups into a single file
per segment, you cannot perform a parallel restore operation with gprestore (cannot set --jobs to a
value higher than 1).

• You cannot use the --exclude-table-file with --leaf-partition-data. Although you can
specify leaf partition names in a file specified with --exclude-table-file, gpbackup ignores the
partition names.

• Backing up a database with gpbackup while simultaneously running DDL commands might cause
gpbackup to fail, in order to ensure consistency within the backup set. For example, if a table is
dropped after the start of the backup operation, gpbackup exits and displays the error message
ERROR: relation <schema.table> does not exist.

gpbackup might fail when a table is dropped during a backup operation due to table locking issues.
gpbackup generates a list of tables to back up and acquires an ACCESS SHARED lock on the tables.
If an EXCLUSIVE LOCK is held on a table, gpbackup acquires the ACCESS SHARED lock after the
existing lock is released. If the table no longer exists when gpbackup attempts to acquire a lock on the
table, gpbackup exits with the error message.

For tables that might be dropped during a backup, you can exclude the tables from a backup with a
gpbackup table filtering option such as --exclude-table or --exclude-schema.

• A backup created with gpbackup can only be restored to a Greenplum Database cluster with the
same number of segment instances as the source cluster. If you run gpexpand to add segments to
the cluster, backups you made before starting the expand cannot be restored after the expansion has
completed.

Objects Included in a Backup or Restore

The following table lists the objects that are backed up and restored with gpbackup and gprestore.
Database objects are backed up for the database you specify with the --dbname option. Global objects

Greenplum Database Administrator Guide Release Notes

166

(Greenplum Database system objects) are also backed up by default, but they are restored only if you
include the --with-globals option to gprestore.

Table 21: Objects that are backed up and restored

Database (for database specified with --
dbname)

Global (requires the --with-globals option to
restore)

• Session-level configuration parameter settings
(GUCs)

• Schemas, see Note
• Procedural language extensions
• Sequences
• Comments
• Tables
• Indexes
• Owners
• Writable External Tables (DDL only)
• Readable External Tables (DDL only)
• Functions
• Aggregates
• Casts
• Types
• Views
• Materialized Views (DDL only)
• Protocols
• Triggers. (While Greenplum Database does not

support triggers, any trigger definitions that are
present are backed up and restored.)

• Rules
• Domains
• Operators, operator families, and operator

classes
• Conversions
• Extensions
• Text search parsers, dictionaries, templates,

and configurations

• Tablespaces
• Databases
• Database-wide configuration parameter settings

(GUCs)
• Resource group definitions
• Resource queue definitions
• Roles
• GRANT assignments of roles to databases

Note: These schemas are not included in a backup.

• gp_toolkit

• information_schema

• pg_aoseg

• pg_bitmapindex

• pg_catalog

• pg_toast*

• pg_temp*

When restoring to an existing database, gprestore assumes the public schema exists when
restoring objects to the public schema. When restoring to a new database (with the --create-
db option), gprestore creates the public schema automatically when creating a database with
the CREATE DATABASE command. The command uses the template0 database that contains the
public schema.

Greenplum Database Administrator Guide Release Notes

167

See also Understanding Backup Files.

Performing Basic Backup and Restore Operations

To perform a complete backup of a database, as well as Greenplum Database system metadata, use the
command:

$ gpbackup --dbname <database_name>

For example:

$ gpbackup --dbname demo
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-
Starting backup of database demo
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-Backup
 Timestamp = 20180105112754
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-Backup
 Database = demo
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-Backup
 Type = Unfiltered Compressed Full Backup
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-
Gathering list of tables for backup
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-
Acquiring ACCESS SHARE locks on tables
Locks acquired: 6 / 6
 [==] 100.00%
 0s
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-
Gathering additional table metadata
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-
Writing global database metadata
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-Global
 database metadata backup complete
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-
Writing pre-data metadata
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-Pre-
data metadata backup complete
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-
Writing post-data metadata
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-Post-
data metadata backup complete
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-
Writing data to file
Tables backed up: 3 / 3
 [==] 100.00% 0s
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-Data
 backup complete
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-Found
 neither /usr/local/greenplum-db/./bin/gp_email_contacts.yaml nor /home/
gpadmin/gp_email_contacts.yaml
20180105:11:27:54 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-Email
 containing gpbackup report /gpmaster/seg-1/backups/20180105/20180105112754/
gpbackup_20180105112754_report will not be sent
20180105:11:27:55 gpbackup:gpadmin:centos6.localdomain:002182-[INFO]:-Backup
 completed successfully

The above command creates a file that contains global and database-specific metadata on the Greenplum
Database master host in the default directory, $MASTER_DATA_DIRECTORY/backups/<YYYYMMDD>/
<YYYYMMDDHHMMSS>/. For example:

$ ls /gpmaster/gpsne-1/backups/20180105/20180105112754
gpbackup_20180105112754_config.yaml gpbackup_20180105112754_report

Greenplum Database Administrator Guide Release Notes

168

gpbackup_20180105112754_metadata.sql gpbackup_20180105112754_toc.yaml

By default, each segment stores each table's data for the backup in a separate compressed CSV file in
<seg_dir>/backups/<YYYYMMDD>/<YYYYMMDDHHMMSS>/:

$ ls /gpdata1/gpsne0/backups/20180105/20180105112754/
gpbackup_0_20180105112754_17166.gz gpbackup_0_20180105112754_26303.gz
gpbackup_0_20180105112754_21816.gz

To consolidate all backup files into a single directory, include the --backup-dir option. Note that you
must specify an absolute path with this option:

$ gpbackup --dbname demo --backup-dir /home/gpadmin/backups
20171103:15:31:56 gpbackup:gpadmin:0ee2f5fb02c9:017586-[INFO]:-Starting
 backup of database demo
...
20171103:15:31:58 gpbackup:gpadmin:0ee2f5fb02c9:017586-[INFO]:-Backup
 completed successfully
$ find /home/gpadmin/backups/ -type f
/home/gpadmin/backups/gpseg0/backups/20171103/20171103153156/
gpbackup_0_20171103153156_16543.gz
/home/gpadmin/backups/gpseg0/backups/20171103/20171103153156/
gpbackup_0_20171103153156_16524.gz
/home/gpadmin/backups/gpseg1/backups/20171103/20171103153156/
gpbackup_1_20171103153156_16543.gz
/home/gpadmin/backups/gpseg1/backups/20171103/20171103153156/
gpbackup_1_20171103153156_16524.gz
/home/gpadmin/backups/gpseg-1/backups/20171103/20171103153156/
gpbackup_20171103153156_config.yaml
/home/gpadmin/backups/gpseg-1/backups/20171103/20171103153156/
gpbackup_20171103153156_predata.sql
/home/gpadmin/backups/gpseg-1/backups/20171103/20171103153156/
gpbackup_20171103153156_global.sql
/home/gpadmin/backups/gpseg-1/backups/20171103/20171103153156/
gpbackup_20171103153156_postdata.sql
/home/gpadmin/backups/gpseg-1/backups/20171103/20171103153156/
gpbackup_20171103153156_report
/home/gpadmin/backups/gpseg-1/backups/20171103/20171103153156/
gpbackup_20171103153156_toc.yaml

When performing a backup operation, you can use the --single-data-file in situations where the
additional overhead of multiple files might be prohibitive. For example, if you use a third party storage
solution such as Data Domain with back ups.

Note: Backing up a materialized view does not back up the materialized view data. Only the
materialized view definition is backed up.

Restoring from Backup
To use gprestore to restore from a backup set, you must use the --timestamp option to specify the
exact timestamp value (YYYYMMDDHHMMSS) to restore. Include the --create-db option if the database
does not exist in the cluster. For example:

$ dropdb demo
$ gprestore --timestamp 20171103152558 --create-db
20171103:15:45:30 gprestore:gpadmin:0ee2f5fb02c9:017714-[INFO]:-Restore Key
 = 20171103152558
20171103:15:45:31 gprestore:gpadmin:0ee2f5fb02c9:017714-[INFO]:-Creating
 database
20171103:15:45:44 gprestore:gpadmin:0ee2f5fb02c9:017714-[INFO]:-Database
 creation complete

Greenplum Database Administrator Guide Release Notes

169

20171103:15:45:44 gprestore:gpadmin:0ee2f5fb02c9:017714-[INFO]:-Restoring
 pre-data metadata from /gpmaster/gpsne-1/backups/20171103/20171103152558/
gpbackup_20171103152558_predata.sql
20171103:15:45:45 gprestore:gpadmin:0ee2f5fb02c9:017714-[INFO]:-Pre-data
 metadata restore complete
20171103:15:45:45 gprestore:gpadmin:0ee2f5fb02c9:017714-[INFO]:-Restoring
 data
20171103:15:45:45 gprestore:gpadmin:0ee2f5fb02c9:017714-[INFO]:-Data restore
 complete
20171103:15:45:45 gprestore:gpadmin:0ee2f5fb02c9:017714-[INFO]:-Restoring
 post-data metadata from /gpmaster/gpsne-1/backups/20171103/20171103152558/
gpbackup_20171103152558_postdata.sql
20171103:15:45:45 gprestore:gpadmin:0ee2f5fb02c9:017714-[INFO]:-Post-data
 metadata restore complete

If you specified a custom --backup-dir to consolidate the backup files, include the same --backup-
dir option when using gprestore to locate the backup files:

$ dropdb demo
$ gprestore --backup-dir /home/gpadmin/backups/ --timestamp 20171103153156
 --create-db
20171103:15:51:02 gprestore:gpadmin:0ee2f5fb02c9:017819-[INFO]:-Restore Key
 = 20171103153156
...
20171103:15:51:17 gprestore:gpadmin:0ee2f5fb02c9:017819-[INFO]:-Post-data
 metadata restore complete

gprestore does not attempt to restore global metadata for the Greenplum System by default. If this is
required, include the --with-globals argument.

By default, gprestore uses 1 connection to restore table data and metadata. If you have a large backup
set, you can improve performance of the restore by increasing the number of parallel connections with the
--jobs option. For example:

$ gprestore --backup-dir /home/gpadmin/backups/ --timestamp 20171103153156
 --create-db --jobs 8

Test the number of parallel connections with your backup set to determine the ideal number for fast data
recovery.

Note: You cannot perform a parallel restore operation with gprestore if the backup combined
table backups into a single file per segment with the gpbackup option --single-data-file.

Restoring a materialized view does not restore materialized view data. Only the materialized view
definition is restored. To populate the materialized view with data, use REFRESH MATERIALIZED
VIEW. The tables that are referenced by the materialized view definition must be available when
you refresh the materialized view. The gprestore log file lists the materialized views that were
restored and the REFRESH MATERIALIZED VIEW commands that are used to populate the
materialized views with data.

Report Files
When performing a backup or restore operation, gpbackup and gprestore generate a report file. When
email notification is configured, the email sent contains the contents of the report file. For information about
email notification, see Configuring Email Notifications.

The report file is placed in the Greenplum Database master backup directory. The report file name contains
the timestamp of the operation. These are the formats of the gpbackup and gprestore report file names.

gpbackup_<backup_timestamp>_report
gprestore_<backup_timestamp>_<restore_timesamp>_report

Greenplum Database Administrator Guide Release Notes

170

For these example report file names, 20180213114446 is the timestamp of the backup and
20180213115426 is the timestamp of the restore operation.

gpbackup_20180213114446_report
gprestore_20180213114446_20180213115426_report

This backup directory on a Greenplum Database master host contains both a gpbackup and gprestore
report file.

$ ls -l /gpmaster/seg-1/backups/20180213/20180213114446
total 36
-r--r--r--. 1 gpadmin gpadmin 295 Feb 13 11:44
 gpbackup_20180213114446_config.yaml
-r--r--r--. 1 gpadmin gpadmin 1855 Feb 13 11:44
 gpbackup_20180213114446_metadata.sql
-r--r--r--. 1 gpadmin gpadmin 1402 Feb 13 11:44
 gpbackup_20180213114446_report
-r--r--r--. 1 gpadmin gpadmin 2199 Feb 13 11:44
 gpbackup_20180213114446_toc.yaml
-r--r--r--. 1 gpadmin gpadmin 404 Feb 13 11:54
 gprestore_20180213114446_20180213115426_report

The contents of the report files are similar. This is an example of the contents of a gprestore report file.

Greenplum Database Restore Report

Timestamp Key: 20180213114446
GPDB Version: 5.4.1+dev.8.g9f83645 build
 commit:9f836456b00f855959d52749d5790ed1c6efc042
gprestore Version: 1.0.0-alpha.3+dev.73.g0406681

Database Name: test
Command Line: gprestore --timestamp 20180213114446 --with-globals --createdb

Start Time: 2018-02-13 11:54:26
End Time: 2018-02-13 11:54:31
Duration: 0:00:05

Restore Status: Success

History File
When performing a backup operation, gpbackup appends backup information in the gpbackup history
file, gpbackup_history.yaml, in the Greenplum Database master data directory. The file contains
the backup timestamp, information about the backup options, and backup set information for incremental
backups. This file is not backed up by gpbackup.

gpbackup uses the information in the file to find a matching backup for an incremental backup when
you run gpbackup with the --incremental option and do not specify the --from-timesamp option
to indicate the backup that you want to use as the latest backup in the incremental backup set. For
information about incremental backups, see Creating and Using Incremental Backups with gpbackup and
gprestore.

Return Codes
One of these codes is returned after gpbackup or gprestore completes.

• 0 – Backup or restore completed with no problems
• 1 – Backup or restore completed with non-fatal errors. See log file for more information.
• 2 – Backup or restore failed with a fatal error. See log file for more information.

Greenplum Database Administrator Guide Release Notes

171

Filtering the Contents of a Backup or Restore

gpbackup backs up all schemas and tables in the specified database, unless you exclude or include
individual schema or table objects with schema level or table level filter options.

The schema level options are --include-schema, --include-schema-file, or --exclude-
schema, --exclude-schema-file command-line options to gpbackup. For example, if the "demo"
database includes only two schemas, "wikipedia" and "twitter," both of the following commands back up
only the "wikipedia" schema:

$ gpbackup --dbname demo --include-schema wikipedia
$ gpbackup --dbname demo --exclude-schema twitter

You can include multiple --include-schema options in a gpbackup or multiple --exclude-schema
options. For example:

$ gpbackup --dbname demo --include-schema wikipedia --include-schema twitter

If you have a large number of schemas, you can list the schemas in a text file and specify the file with
the --include-schema-file or --exclude-schema-file options in a gpbackup command. Each
line in the file must define a single schema, and the file cannot contain trailing lines. For example, this
command uses a file in the gpadmin home directory to include a set of schemas.

gpbackup --dbname demo --include-schema-file /users/home/gpadmin/backup-
schemas

To filter the individual tables that are included in a backup set, or excluded from a backup set, specify
individual tables with the --include-table option or the --exclude-table option. The table must be
schema qualified, <schema-name>.<table-name>. The individual table filtering options can be specified
multiple times. However, --include-table and --exclude-table cannot both be used in the same
command.

You can create a list of qualified table names in a text file. When listing tables in a file, each line in the
text file must define a single table using the format <schema-name>.<table-name>. The file must not
include trailing lines. For example:

wikipedia.articles
twitter.message

If a table or schema name uses any character other than a lowercase letter, number, or an underscore
character, then you must include that name in double quotes. For example:

beer."IPA"
"Wine".riesling
"Wine"."sauvignon blanc"
water.tonic

After creating the file, you can use it either to include or exclude tables with the gpbackup options --
include-table-file or --exclude-table-file. For example:

$ gpbackup --dbname demo --include-table-file /home/gpadmin/table-list.txt

Greenplum Database Administrator Guide Release Notes

172

You can combine -include schema with --exclude-table or --exclude-table-file for a
backup. This example uses --include-schema with --exclude-table to back up a schema except
for a single table.

$ gpbackup --dbname demo --include-schema mydata --exclude-table
 mydata.addresses

You cannot combine --include-schema with --include-table or --include-table-file, and
you cannot combine --exclude-schema with any table filtering option such as --exclude-table or
--include-table.

When you use --include-table or --include-table-file dependent objects are not automatically
backed up or restored, you must explicitly specify the dependent objects that are required. For example,
if you back up or restore a view or materialized view, you must also specify the tables that the view or the
materialized view uses. If you backup or restore a table that uses a sequence, you must also specify the
sequence.

Filtering by Leaf Partition
By default, gpbackup creates one file for each table on a segment. You can specify the --leaf-
partition-data option to create one data file per leaf partition of a partitioned table, instead of a single
file. You can also filter backups to specific leaf partitions by listing the leaf partition names in a text file to
include. For example, consider a table that was created using the statement:

demo=# CREATE TABLE sales (id int, date date, amt decimal(10,2))
DISTRIBUTED BY (id)
PARTITION BY RANGE (date)
(PARTITION Jan17 START (date '2017-01-01') INCLUSIVE ,
PARTITION Feb17 START (date '2017-02-01') INCLUSIVE ,
PARTITION Mar17 START (date '2017-03-01') INCLUSIVE ,
PARTITION Apr17 START (date '2017-04-01') INCLUSIVE ,
PARTITION May17 START (date '2017-05-01') INCLUSIVE ,
PARTITION Jun17 START (date '2017-06-01') INCLUSIVE ,
PARTITION Jul17 START (date '2017-07-01') INCLUSIVE ,
PARTITION Aug17 START (date '2017-08-01') INCLUSIVE ,
PARTITION Sep17 START (date '2017-09-01') INCLUSIVE ,
PARTITION Oct17 START (date '2017-10-01') INCLUSIVE ,
PARTITION Nov17 START (date '2017-11-01') INCLUSIVE ,
PARTITION Dec17 START (date '2017-12-01') INCLUSIVE
END (date '2018-01-01') EXCLUSIVE);
NOTICE: CREATE TABLE will create partition "sales_1_prt_jan17" for table
 "sales"
NOTICE: CREATE TABLE will create partition "sales_1_prt_feb17" for table
 "sales"
NOTICE: CREATE TABLE will create partition "sales_1_prt_mar17" for table
 "sales"
NOTICE: CREATE TABLE will create partition "sales_1_prt_apr17" for table
 "sales"
NOTICE: CREATE TABLE will create partition "sales_1_prt_may17" for table
 "sales"
NOTICE: CREATE TABLE will create partition "sales_1_prt_jun17" for table
 "sales"
NOTICE: CREATE TABLE will create partition "sales_1_prt_jul17" for table
 "sales"
NOTICE: CREATE TABLE will create partition "sales_1_prt_aug17" for table
 "sales"
NOTICE: CREATE TABLE will create partition "sales_1_prt_sep17" for table
 "sales"
NOTICE: CREATE TABLE will create partition "sales_1_prt_oct17" for table
 "sales"

Greenplum Database Administrator Guide Release Notes

173

NOTICE: CREATE TABLE will create partition "sales_1_prt_nov17" for table
 "sales"
NOTICE: CREATE TABLE will create partition "sales_1_prt_dec17" for table
 "sales"
CREATE TABLE

To back up only data for the last quarter of the year, first create a text file that lists those leaf partition
names instead of the full table name:

public.sales_1_prt_oct17
public.sales_1_prt_nov17
public.sales_1_prt_dec17

Then specify the file with the --include-table-file option to generate one data file per leaf partition:

$ gpbackup --dbname demo --include-table-file last-quarter.txt --leaf-
partition-data

When you specify --leaf-partition-data, gpbackup generates one data file per leaf partition when
backing up a partitioned table. For example, this command generates one data file for each leaf partition:

$ gpbackup --dbname demo --include-table public.sales --leaf-partition-data

When leaf partitions are backed up, the leaf partition data is backed up along with the metadata for the
entire partitioned table.

Note: You cannot use the --exclude-table-file option with --leaf-partition-data.
Although you can specify leaf partition names in a file specified with --exclude-table-file,
gpbackup ignores the partition names.

Filtering with gprestore
After creating a backup set with gpbackup, you can filter the schemas and tables that you want to restore
from the backup set using the gprestore --include-schema and --include-table-file options.
These options work in the same way as their gpbackup counterparts, but have the following restrictions:

• The tables that you attempt to restore must not already exist in the database.
• If you attempt to restore a schema or table that does not exist in the backup set, the gprestore does

not execute.
• If you use the --include-schema option, gprestore cannot restore objects that have dependencies

on multiple schemas.
• If you use the --include-table-file option, gprestore does not create roles or set the owner of

the tables. The utility restores table indexes and rules. Triggers are also restored but are not supported
in Greenplum Database.

• The file that you specify with --include-table-file cannot include a leaf partition name, as it can
when you specify this option with gpbackup. If you specified leaf partitions in the backup set, specify
the partitioned table to restore the leaf partition data.

When restoring a backup set that contains data from some leaf partitions of a partitioned table, the
partitioned table is restored along with the data for the leaf partitions. For example, you create a backup
with the gpbackup option --include-table-file and the text file lists some leaf partitions of a
partitioned table. Restoring the backup creates the partitioned table and restores the data only for the
leaf partitions listed in the file.

Configuring Email Notifications

gpbackup and gprestore can send email notifications after a back up or restore operation completes.

Greenplum Database Administrator Guide Release Notes

174

To have gpbackup or gprestore send out status email notifications, you must place a file named
gp_email_contacts.yaml in the home directory of the user running gpbackup or gprestore
in the same directory as the utilities ($GPHOME/bin). A utility issues a message if it cannot locate a
gp_email_contacts.yaml file in either location. If both locations contain a .yaml file, the utility uses
the file in user $HOME.

The email subject line includes the utility name, timestamp, status, and the name of the Greenplum
Database master. This is an example subject line for a gpbackup email.

gpbackup 20180202133601 on gp-master completed

The email contains summary information about the operation including options, duration, and number of
objects backed up or restored. For information about the contents of a notification email, see Report Files.

Note: The UNIX mail utility must be running on the Greenplum Database host and must be
configured to allow the Greenplum superuser (gpadmin) to send email. Also ensure that the mail
program executable is locatable via the gpadmin user's $PATH.

gpbackup and gprestore Email File Format

The gpbackup and gprestore email notification YAML file gp_email_contacts.yaml uses
indentation (spaces) to determine the document hierarchy and the relationships of the sections to one
another. The use of white space is significant. White space should not be used simply for formatting
purposes, and tabs should not be used at all.

Note: If the status parameters are not specified correctly, the utility does not issue a warning. For
example, if the success parameter is misspelled and is set to true, a warning is not issued and
an email is not sent to the email address after a successful operation. To ensure email notification
is configured correctly, run tests with email notifications configured.

This is the format of the gp_email_contacts.yaml YAML file for gpbackup email notifications:

contacts:
 gpbackup:
 - address: user@domain
 status:
 success: [true | false]
 success_with_errors: [true | false]
 failure: [true | false]
 gprestore:
 - address: user@domain
 status:
 success: [true | false]
 success_with_errors: [true | false]
 failure: [true | false]

Email YAML File Sections
contacts

Required. The section that contains the gpbackup and gprestore sections. The YAML
file can contain a gpbackup section, a gprestore section, or one of each.

gpbackup

Optional. Begins the gpbackup email section.
address

Required. At least one email address must be specified. Multiple email address
parameters can be specified. Each address requires a status section.

user@domain is a single, valid email address.

status

Greenplum Database Administrator Guide Release Notes

175

Required. Specify when the utility sends an email to the specified email address. The
default is to not send email notification.

You specify sending email notifications based on the completion status of a backup or
restore operation. At least one of these parameters must be specified and each parameter
can appear at most once.

success

Optional. Specify if an email is sent if the operation completes without errors. If the value is
true, an email is sent if the operation completes without errors. If the value is false (the
default), an email is not sent.

success_with_errors

Optional. Specify if an email is sent if the operation completes with errors. If the value is
true, an email is sent if the operation completes with errors. If the value is false (the
default), an email is not sent.

failure

Optional. Specify if an email is sent if the operation fails. If the value is true, an email is
sent if the operation fails. If the value is false (the default), an email is not sent.

gprestore

Optional. Begins the gprestore email section. This section contains the address
and status parameters that are used to send an email notification after a gprestore
operation. The syntax is the same as the gpbackup section.

Examples
This example YAML file specifies sending email to email addresses depending on the success or failure of
an operation. For a backup operation, an email is sent to a different address depending on the success or
failure of the backup operation. For a restore operation, an email is sent to gpadmin@example.com only
when the operation succeeds or completes with errors.

contacts:
 gpbackup:
 - address: gpadmin@example.com
 status:
 success:true
 - address: my_dba@example.com
 status:
 success_with_errors: true
 failure: true
 gprestore:
 - address: gpadmin@example.com
 status:
 success: true
 success_with_errors: true

Understanding Backup Files

Warning: All gpbackup metadata files are created with read-only permissions. Never delete or
modify the metadata files for a gpbackup backup set. Doing so will render the backup files non-
functional.

A complete backup set for gpbackup includes multiple metadata files, supporting files, and CSV data files,
each designated with the timestamp at which the backup was created.

By default, metadata and supporting files are stored on the Greenplum Database master host in the
directory $MASTER_DATA_DIRECTORY/backups/YYYYMMDD/YYYYMMDDHHMMSS/. If you specify a
custom backup directory, this same file path is created as a subdirectory of the backup directory. The
following table describes the names and contents of the metadata and supporting files.

Greenplum Database Administrator Guide Release Notes

176

Table 22: gpbackup Metadata Files (master)

File name Description

gpbackup_<YYYYMMDDHHMMSS>_metadata.sql Contains global and database-specific metadata:

• DDL for objects that are global to the Greenplum
Database cluster, and not owned by a specific
database within the cluster.

• DDL for objects in the backed-up database
(specified with --dbname) that must be created
before to restoring the actual data, and DDL for
objects that must be created after restoring the
data.

Global objects include:

• Tablespaces
• Databases
• Database-wide configuration parameter settings

(GUCs)
• Resource group definitions
• Resource queue definitions
• Roles
• GRANT assignments of roles to databases

Note: Global metadata is not restored by default.
You must include the --with-globals option
to the gprestore command to restore global
metadata.

Database-specific objects that must be created
before to restoring the actual data include:

• Session-level configuration parameter settings
(GUCs)

• Schemas
• Procedural language extensions
• Types
• Sequences
• Functions
• Tables
• Protocols
• Operators and operator classes
• Conversions
• Aggregates
• Casts
• Views
• Materialized Views Note: Materialized view data

is not restored, only the definition.
• Constraints

Database-specific objects that must be created
after restoring the actual data include:

• Indexes
• Rules

Greenplum Database Administrator Guide Release Notes

177

File name Description

• Triggers. (While Greenplum Database does not
support triggers, any trigger definitions that are
present are backed up and restored.)

gpbackup_<YYYYMMDDHHMMSS>_toc.yaml Contains metadata for locating object DDL in the
_predata.sql and _postdata.sql files. This
file also contains the table names and OIDs used
for locating the corresponding table data in CSV
data files that are created on each segment. See
Segment Data Files.

gpbackup_<YYYYMMDDHHMMSS>_report Contains information about the backup operation
that is used to populate the email notice (if
configured) that is sent after the backup completes.
This file contains information such as:

• Command-line options that were provided
• Database that was backed up
• Database version
• Backup type

See Configuring Email Notifications.

gpbackup_<YYYYMMDDHHMMSS>_config.yaml Contains metadata about the execution of the
particular backup task, including:

• gpbackup version
• Database name
• Greenplum Database version
• Additional option settings such as --no-

compression, --compression-level,
--metadata-only, --data-only, and --
with-stats.

gpbackup_history.yaml Contains information about options that were used
when creating a backup with gpbackup, and
information about incremental backups.

Stored on the Greenplum Database master host in
the Greenplum Database master data directory.

This file is not backed up by gpbackup.

For information about incremental backups, see
Creating and Using Incremental Backups with
gpbackup and gprestore.

Segment Data Files
By default, each segment creates one compressed CSV file for each table that is backed up on the
segment. You can optionally specify the --single-data-file option to create a single data file on each
segment. The files are stored in <seg_dir>/backups/YYYYMMDD/YYYYMMDDHHMMSS/.

If you specify a custom backup directory, segment data files are copied to this same file path as a
subdirectory of the backup directory. If you include the --leaf-partition-data option, gpbackup
creates one data file for each leaf partition of a partitioned table, instead of just one table for file.

Each data file uses the file name format gpbackup_<content_id>_<YYYYMMDDHHMMSS>_<oid>.gz
where:

Greenplum Database Administrator Guide Release Notes

178

• <content_id> is the content ID of the segment.
• <YYYYMMDDHHMMSS> is the timestamp of the gpbackup operation.
• <oid> is the object ID of the table. The metadata file gpbackup_<YYYYMMDDHHMMSS>_toc.yaml

references this <oid> to locate the data for a specific table in a schema.

You can optionally specify the gzip compression level (from 1-9) using the --compression-level
option, or disable compression entirely with --no-compression. If you do not specify a compression
level, gpbackup uses compression level 1 by default.

Creating and Using Incremental Backups with gpbackup and gprestore

The gpbackup and gprestore utilities support creating incremental backups of append-optimized tables
and restoring from incremental backups. An incremental backup backs up all specified heap tables and
backs up append-optimized tables (including append-optimized, column-oriented tables) only if the tables
have changed. For example, if a row of an append-optimized table has changed, the table is backed up.
For partitioned append-optimized tables, only the changed leaf partitions are backed up.

Incremental backups are efficient when the total amount of data in append-optimized tables or table
partitions that changed is small compared to the data that has not changed since the last backup.

An incremental backup backs up an append-optimized table only if one of the following operations was
performed on the table after the last full or incremental backup:

• ALTER TABLE

• DELETE

• INSERT

• TRUNCATE

• UPDATE

• DROP and then re-create the table

To restore data from incremental backups, you need a complete incremental backup set.

About Incremental Backup Sets

An incremental backup set includes the following backups:

• A full backup. This is the full backup that the incremental backups are based on.
• The set of incremental backups that capture the changes to the database from the time of the full

backup.

For example, you can create a full backup and then create three daily incremental backups. The full
backup and all three incremental backups are the backup set. For information about using an incremental
backup set, see Example Using Incremental Backup Sets.

When you create or add to an incremental backup set, gpbackup ensures that the backups in the set are
created with a consistent set of backup options to ensure that the backup set can be used in a restore
operation. For information about backup set consistency, see Using Incremental Backups.

When you create an incremental backup you include these options with the other gpbackup options to
create a backup:

• --leaf-partition-data - Required for all backups in the incremental backup set.

• Required when you create a full backup that will be the base backup for an incremental backup set.
• Required when you create an incremental backup.

• --incremental - Required when you create an incremental backup.

You cannot combine --data-only or --metadata-only with --incremental.
• --from-timestamp - Optional. This option can be used with --incremental. The timestamp you

specify is an existing backup. The timestamp can be either a full backup or incremental backup. The

Greenplum Database Administrator Guide Release Notes

179

backup being created must be compatible with the backup specified with the --from-timestamp
option.

If you do not specify --from-timestamp, gpbackup attempts to find a compatible backup based on
information in the gpbackup history file. See Incremental Backup Notes.

Using Incremental Backups

• Example Using Incremental Backup Sets
• Creating an Incremental Backup with gpbackup
• Restoring from an Incremental Backup with gprestore
• Incremental Backup Notes

When you add an incremental backup to a backup set, gpbackup ensures that the full backup and the
incremental backups are consistent by checking these gpbackup options:

• --dbname - The database must be the same.
• --backup-dir - The directory must be the same. The backup set, the full backup and the incremental

backups, must be in the same location.
• --single-data-file - This option must be either specified or absent for all backups in the set.
• --plugin-config - If this option is specified, it must be specified for all backups in the backup set.

The configuration must reference the same plugin binary.
• --include-table-file, --include-schema, or any other options that filter tables and schemas

must be the same.

When checking schema filters, only the schema names are checked, not the objects contained in the
schemas.

• --no-compression - If this option is specified, it must be specified for all backups in the backup set.

If compression is used on the on the full backup, compression must be used on the incremental
backups. Different compression levels are allowed for the backups in the backup set. For a backup, the
default is compression level 1.

If you try to add an incremental backup to a backup set, the backup operation fails if the gpbackup options
are not consistent.

For information about the gpbackup and gprestore utility options, see the gpbackup and gprestore
reference documentation.

Example Using Incremental Backup Sets
Each backup has a timestamp taken when the backup is created. For example, if you create a backup on
May 14, 2017, the backup file names contain 20170514hhmmss. The hhmmss represents the time: hour,
minute, and second.

This example assumes that you have created two full backups and incremental backups of the database
mytest. To create the full backups, you used this command:

gpbackup --dbname mytest --backup-dir /mybackup --leaf-partition-data

You created incremental backups with this command:

gpbackup --dbname mytest --backup-dir /mybackup --leaf-partition-data --
incremental

When you specify the --backup-dir option, the backups are created in the /mybackup directory on
each Greenplum Database host.

In the example, the full backups have the timestamp keys 20170514054532 and 20171114064330.
The other backups are incremental backups. The example consists of two backup sets, the first with two

Greenplum Database Administrator Guide Release Notes

180

incremental backups, and second with one incremental backup. The backups are listed from earliest to
most recent.

• 20170514054532 (full backup)
• 20170714095512

• 20170914081205

• 20171114064330 (full backup)
• 20180114051246

To create a new incremental backup based on the latest incremental backup, you must include the same
--backup-dir option as the incremental backup as well as the options --leaf-partition-data and
--incremental.

gpbackup --dbname mytest --backup-dir /mybackup --leaf-partition-data --
incremental

You can specify the --from-timestamp option to create an incremental backup based on an existing
incremental or full backup. Based on the example, this command adds a fourth incremental backup to the
backup set that includes 20170914081205 as an incremental backup and uses 20170514054532 as the
full backup.

gpbackup --dbname mytest --backup-dir /mybackup --leaf-partition-data --
incremental --from-timestamp 20170914081205

This command creates an incremental backup set based on the full backup 20171114064330 and is
separate from the backup set that includes the incremental backup 20180114051246.

gpbackup --dbname mytest --backup-dir /mybackup --leaf-partition-data --
incremental --from-timestamp 20171114064330

To restore a database with the incremental backup 20170914081205, you need the incremental backups
20120914081205 and 20170714095512, and the full backup 20170514054532. This would be the
gprestore command.

gprestore --backup-dir /backupdir --timestamp 20170914081205

Creating an Incremental Backup with gpbackup
The gpbackup output displays the timestamp of the backup on which the incremental backup is based.
In this example, the incremental backup is based on the backup with timestamp 20180802171642. The
backup 20180802171642 can be an incremental or full backup.

$ gpbackup --dbname test --backup-dir /backups --leaf-partition-data --
incremental
20180803:15:40:51 gpbackup:gpadmin:mdw:002907-[INFO]:-Starting backup of
 database test
20180803:15:40:52 gpbackup:gpadmin:mdw:002907-[INFO]:-Backup Timestamp =
 20180803154051
20180803:15:40:52 gpbackup:gpadmin:mdw:002907-[INFO]:-Backup Database = test
20180803:15:40:52 gpbackup:gpadmin:mdw:002907-[INFO]:-Gathering list of
 tables for backup
20180803:15:40:52 gpbackup:gpadmin:mdw:002907-[INFO]:-Acquiring ACCESS SHARE
 locks on tables
Locks acquired: 5 / 5
 [==] 100.00%
 0s
20180803:15:40:52 gpbackup:gpadmin:mdw:002907-[INFO]:-Gathering additional
 table metadata

Greenplum Database Administrator Guide Release Notes

181

20180803:15:40:52 gpbackup:gpadmin:mdw:002907-[INFO]:-Metadata will
 be written to /backups/gpseg-1/backups/20180803/20180803154051/
gpbackup_20180803154051_metadata.sql
20180803:15:40:52 gpbackup:gpadmin:mdw:002907-[INFO]:-Writing global
 database metadata
20180803:15:40:52 gpbackup:gpadmin:mdw:002907-[INFO]:-Global database
 metadata backup complete
20180803:15:40:52 gpbackup:gpadmin:mdw:002907-[INFO]:-Writing pre-data
 metadata
20180803:15:40:52 gpbackup:gpadmin:mdw:002907-[INFO]:-Pre-data metadata
 backup complete
20180803:15:40:52 gpbackup:gpadmin:mdw:002907-[INFO]:-Writing post-data
 metadata
20180803:15:40:52 gpbackup:gpadmin:mdw:002907-[INFO]:-Post-data metadata
 backup complete
20180803:15:40:52 gpbackup:gpadmin:mdw:002907-[INFO]:-Basing incremental
 backup off of backup with timestamp = 20180802171642
20180803:15:40:52 gpbackup:gpadmin:mdw:002907-[INFO]:-Writing data to file
Tables backed up: 4 / 4
 [==] 100.00% 0s
20180803:15:40:52 gpbackup:gpadmin:mdw:002907-[INFO]:-Data backup complete
20180803:15:40:53 gpbackup:gpadmin:mdw:002907-[INFO]:-Found neither /
usr/local/greenplum-db/./bin/gp_email_contacts.yaml nor /home/gpadmin/
gp_email_contacts.yaml
20180803:15:40:53 gpbackup:gpadmin:mdw:002907-[INFO]:-Email containing
 gpbackup report /backups/gpseg-1/backups/20180803/20180803154051/
gpbackup_20180803154051_report will not be sent
20180803:15:40:53 gpbackup:gpadmin:mdw:002907-[INFO]:-Backup completed
 successfully

Restoring from an Incremental Backup with gprestore
When restoring an from an incremental backup, you can specify the --verbose option to display
the backups that are used in the restore operation on the command line. For example, the following
gprestore command restores a backup using the timestamp 20180807092740, an incremental backup.
The output includes the backups that were used to restore the database data.

$ gprestore --create-db --timestamp 20180807162904 --verbose
...
20180807:16:31:56 gprestore:gpadmin:mdw:008603-[INFO]:-Pre-data metadata
 restore complete
20180807:16:31:56 gprestore:gpadmin:mdw:008603-[DEBUG]:-Verifying backup
 file count
20180807:16:31:56 gprestore:gpadmin:mdw:008603-[DEBUG]:-Restoring data from
 backup with timestamp: 20180807162654
20180807:16:31:56 gprestore:gpadmin:mdw:008603-[DEBUG]:-Reading data for
 table public.tbl_ao from file (table 1 of 1)
20180807:16:31:56 gprestore:gpadmin:mdw:008603-[DEBUG]:-Checking whether
 segment agents had errors during restore
20180807:16:31:56 gprestore:gpadmin:mdw:008603-[DEBUG]:-Restoring data from
 backup with timestamp: 20180807162819
20180807:16:31:56 gprestore:gpadmin:mdw:008603-[DEBUG]:-Reading data for
 table public.test_ao from file (table 1 of 1)
20180807:16:31:56 gprestore:gpadmin:mdw:008603-[DEBUG]:-Checking whether
 segment agents had errors during restore
20180807:16:31:56 gprestore:gpadmin:mdw:008603-[DEBUG]:-Restoring data from
 backup with timestamp: 20180807162904
20180807:16:31:56 gprestore:gpadmin:mdw:008603-[DEBUG]:-Reading data for
 table public.homes2 from file (table 1 of 4)
20180807:16:31:56 gprestore:gpadmin:mdw:008603-[DEBUG]:-Reading data for
 table public.test2 from file (table 2 of 4)

Greenplum Database Administrator Guide Release Notes

182

20180807:16:31:56 gprestore:gpadmin:mdw:008603-[DEBUG]:-Reading data for
 table public.homes2a from file (table 3 of 4)
20180807:16:31:56 gprestore:gpadmin:mdw:008603-[DEBUG]:-Reading data for
 table public.test2a from file (table 4 of 4)
20180807:16:31:56 gprestore:gpadmin:mdw:008603-[DEBUG]:-Checking whether
 segment agents had errors during restore
20180807:16:31:57 gprestore:gpadmin:mdw:008603-[INFO]:-Data restore complete
20180807:16:31:57 gprestore:gpadmin:mdw:008603-[INFO]:-Restoring post-data
 metadata
20180807:16:31:57 gprestore:gpadmin:mdw:008603-[INFO]:-Post-data metadata
 restore complete
...

The output shows that the restore operation used three backups.

When restoring an from an incremental backup, gprestore also lists the backups that are used in the
restore operation in the gprestore log file.

During the restore operation, gprestore displays an error if the full backup or other required incremental
backup is not available.

Incremental Backup Notes
To create an incremental backup, or to restore data from an incremental backup set, you need the
complete backup set. When you archive incremental backups, the complete backup set must be archived.
You must archive all the files created on the master and all segments.

Each time gpbackup runs, the utility adds backup information to the history file
gpbackup_history.yaml in the Greenplum Database master data directory. The file includes backup
options and other backup information.

If you do not specify the --from-timestamp option when you create an incremental backup, gpbackup
uses the most recent backup with a consistent set of options. The utility checks the backup history file to
find the backup with a consistent set of options. If the utility cannot find a backup with a consistent set of
options or the history file does not exist, gpbackup displays a message stating that a full backup must be
created before an incremental can be created.

If you specify the --from-timestamp option when you create an incremental backup, gpbackup
ensures that the options of the backup that is being created are consistent with the options of the specified
backup.

The gpbackup option --with-stats is not required to be the same for all backups in the backup set.
However, to perform a restore operation with the gprestore option --with-stats to restore statistics,
the backup you specify must have must have used the --with-stats when creating the backup.

You can perform a restore operation from any backup in the backup set. However, changes captured in
incremental backups later than the backup use to restore database data will not be restored.

When restoring from an incremental backup set, gprestore checks the backups and restores each
append-optimized table from the most recent version of the append-optimized table in the backup set and
restores the heap tables from the latest backup.

The incremental back up set, a full backup and associated incremental backups, must be on a single
device. For example, the backups in a backup set must all be on a file system or must all be on a Data
Domain system.

Warning: Changes to the Greenplum Database segment configuration invalidate incremental
backups. After you change the segment configuration (add or remove segment instances), you
must create a full backup before you can create an incremental backup.

Greenplum Database Administrator Guide Release Notes

183

Using gpbackup and gprestore with BoostFS

You can use the Greenplum Database gpbackup and gprestore utilities with the Data Domain DD
Boost File System Plug-In (BoostFS) to access a Data Domain system. BoostFS leverages DD Boost
technology and helps reduce bandwidth usage, can improve backup-times, offers load-balancing and in-
flight encryption, and supports the Data Domain multi-tenancy feature set.

You install the BoostFS plug-in on the Greenplum Database host systems to provide access to a Data
Domain system as a standard file system mount point. With direct access to a BoostFS mount point,
gpbackup and gprestore can leverage the storage and network efficiencies of the DD Boost protocol for
backup and recovery.

For information about configuring BoostFS, you can download the BoostFS for Linux Configuration Guide
from the Dell support site https://www.dell.com/support (requires login). After logging into the support site,
you can find the guide by searching for "BoostFS for Linux Configuration Guide". You can limit
your search results by choosing to list only Manuals & Documentation as resources.

To back up or restore with BoostFS, you include the option --backup-dir with the gpbackup or
gprestore command to access the Data Domain system.

Installing BoostFS

Download the latest BoostFS RPM from the Dell support site https://www.dell.com/support (requires login).

After logging into the support site, you can find the RPM by searching for "boostfs". You can limit your
search results by choosing to list only Downloads & Drivers as resources. To list the most recent RPM
near the top of your search results, sort your results by descending date.

The RPM supports both RHEL and SuSE.

These steps install BoostFS and create a mounted directory that accesses a Data Domain system.

Perform the steps on all Greenplum Database hosts. The mounted directory you create must be the same
on all hosts.

1. Copy the BoostFS RPM to the host and install the RPM.

After installation, the DDBoostFS package files are located under /opt/emc/boostfs.
2. Set up the BoostFS lockbox with the storage unit with the boostfs utility. Enter the Data Domain user

password at the prompts.

/opt/emc/boostfs/bin/boostfs lockbox set -d <Data_Domain_IP> -s
 <Storage_Unit> -u <Data_Domain_User>

The <Storage_Unit> is the Data Domain storage unit ID. The <Data_Domain_User> is a Data
Domain user with access to the storage unit.

3. Create the directory in the location you want to mount BoostFS.

mkdir <path_to_mount_directory>

4. Mount the Data Domain storage unit with the boostfs utility. Use the mount option -allow-
others=true to allow other users to write to the BoostFS mounted file system.

/opt/emc/boostfs/bin/boostfs mount <path_to_mount_directory> -d
 $<Data_Domain_IP> -s <Storage_Unit> -o allow-others=true

5. Confirm that the mount was successful by running this command.

mountpoint <mounted_directory>

https://www.dell.com/support
https://www.dell.com/support

Greenplum Database Administrator Guide Release Notes

184

The command lists the directory as a mount point.

<mounted_directory> is a mountpoint

You can now run gpbackup and gprestore with the --backup-dir option to back up a database to
<mounted_directory> on the Data Domain system and restore data from the Data Domain system.

Backing Up and Restoring with BoostFS

These are required gpbackup options when backing up data to a Data Domain system with BoostFS.

• --backup-dir - Specify the mounted Data Domain storage unit.
• --no-compression - Disable compression. Data compression interferes with DD Boost data de-

duplication.
• --single-data-file - Create a single data file on each segment host. A single data file avoids a

BoostFS stream limitation.

When you use gprestore to restore a backup from a Data Domain system with BoostFS, you must
specify the mounted Data Domain storage unit with the option --backup-dir.

When you use the gpbackup option --single-data-file, you cannot specify the --jobs option to
perform a parallel restore operation with gprestore.

This example gpbackup command backs up the database test. The example assumes that the directory
/boostfs-test is the mounted Data Domain storage unit.

$ gpbackup --dbname test --backup-dir /boostfs-test/ --single-data-file --
no-compression

These commands drop the database test and restore the database from the backup.

$ dropdb test
$ gprestore --backup-dir /boostfs-test/ --timestamp 20171103153156 --create-
db

The value 20171103153156 is the timestamp of the gpbackup backup set to restore. For information
about how gpbackup uses timesamps when creating backups, see Parallel Backup with gpbackup and
gprestore. For information about the -timestamp option, see gprestore.

Using gpbackup Storage Plugins

You can configure the Greenplum Database gpbackup and gprestore utilities to use a storage plugin
to process backup files during a backup or restore operation. For example, during a backup operation, the
plugin sends the backup files to a remote location. During a restore operation, the plugin retrieves the files
from the remote location.

You can also develop a custom storage plugin with the Greenplum Database Backup/Restore Storage
Plugin API (Beta). See Backup/Restore Storage Plugin API (Beta).

Note: Only the Backup/Restore Storage Plugin API is a Beta feature. The storage plugins are
supported features.

Using the S3 Storage Plugin with gpbackup and gprestore

The S3 storage plugin application lets you use an Amazon Simple Storage Service (Amazon S3) location
to store and retrieve backups when you run gpbackup and gprestore. Amazon S3 provides secure,
durable, highly-scalable object storage.

The S3 storage plugin can also connect to an Amazon S3 compatible service such as Dell EMC Elastic
Cloud Storage (ECS) and Minio.

https://www.emc.com/en-us/storage/ecs/index.htm
https://www.emc.com/en-us/storage/ecs/index.htm
https://www.minio.io/

Greenplum Database Administrator Guide Release Notes

185

To use the S3 storage plugin application, you specify the location of the plugin and the S3 login and
backup location in a configuration file. When you run gpbackup or gprestore, you specify the
configuration file with the option --plugin-config. For information about the configuration file, see S3
Storage Plugin Configuration File Format.

If you perform a backup operation with the gpbackup option --plugin-config, you must also specify
the --plugin-config option when you restore the backup with gprestore.

S3 Storage Plugin Configuration File Format
The configuration file specifies the absolute path to the Greenplum Database S3 storage plugin
executable, connection credentials, and S3 location.

The S3 storage plugin configuration file uses the YAML 1.1 document format and implements its own
schema for specifying the location of the Greenplum Database S3 storage plugin, connection credentials,
and S3 location and login information.

The configuration file must be a valid YAML document. The gpbackup and gprestore utilities process
the control file document in order and use indentation (spaces) to determine the document hierarchy and
the relationships of the sections to one another. The use of white space is significant. White space should
not be used simply for formatting purposes, and tabs should not be used at all.

This is the structure of a S3 storage plugin configuration file.

executablepath: <absolute-path-to-gpbackup_s3_plugin>
options:
 region: <aws-region>
 endpoint: <S3-endpoint>
 aws_access_key_id: <aws-user-id>
 aws_secret_access_key: <aws-user-id-key>
 bucket: <s3-bucket>
 folder: <s3-location>
 encryption: [on|off]

executablepath

Required. Absolute path to the plugin executable. For example, the Pivotal Greenplum
Database installation location is $GPHOME/bin/gpbackup_s3_plugin. The plugin must
be in the same location on every Greenplum Database host.

options

Required. Begins the S3 storage plugin options section.
region

Required for AWS S3. If connecting to an S3 compatible service, this option is not
required.

endpoint

Required for an S3 compatible service. Specify this option to connect to an S3 compatible
service such as ECS. The plugin connects to the specified S3 endpoint (hostname or IP
address) to access the S3 compatible data store.

If this option is specified, the plugin ignores the region option and does not use AWS
to resolve the endpoint. When this option is not specified, the plugin uses the region to
determine AWS S3 endpoint.

aws_access_key_id

Optional. The S3 ID to access the S3 bucket location that stores backup files.

If this parameter is not specified, S3 authentication information from the session
environment is used. See Notes.

aws_secret_access_key

http://yaml.org/spec/1.1/

Greenplum Database Administrator Guide Release Notes

186

Required only if you specify aws_access_key_id. The S3 passcode for the S3 ID to
access the S3 bucket location.

bucket

Required. The name of the S3 bucket in the AWS region or S3 compatible data store. The
bucket must exist.

folder

Required. The S3 location for backups. During a backup operation, the plugin creates the
S3 location if it does not exist in the S3 bucket.

encryption

Optional. Enable or disable use of Secure Sockets Layer (SSL) when connecting to an S3
location. Default value is on, use connections that are secured with SSL. Set this option to
off to connect to an S3 compatible service that is not configured to use SSL.

Any value other than off is treated as on.

Example
This is an example S3 storage plugin configuration file that is used in the next gpbackup example
command. The name of the file is s3-test-config.yaml.

executablepath: $GPHOME/bin/gpbackup_s3_plugin
options:
 region: us-west-2
 aws_access_key_id: test-s3-user
 aws_secret_access_key: asdf1234asdf
 bucket: gpdb-backup
 folder: test/backup3

This gpbackup example backs up the database demo using the S3 storage plugin. The absolute path to
the S3 storage plugin configuration file is /home/gpadmin/s3-test.

gpbackup --dbname demo --plugin-config /home/gpadmin/s3-test-config.yaml

The S3 storage plugin writes the backup files to this S3 location in the AWS region us-west-2.

gpdb-backup/test/backup3/backups/YYYYMMDD/YYYYMMDDHHMMSS/

Notes
The S3 storage plugin application must be in the same location on every Greenplum Database host. The
configuration file is required only on the master host.

When you perform a backup with the S3 storage plugin, the plugin stores the backup files in this location in
the S3 bucket.

<folder>/backups/<datestamp>/<timestamp>

Where folder is the location you specified in the S3 configuration file, and datestamp and timestamp are
the backup date and time stamps.

Using Amazon S3 to back up and restore data requires an Amazon AWS account with access to the
Amazon S3 bucket. These are the Amazon S3 bucket permissions required for backing up and restoring
data.

• Upload/Delete for the S3 user ID that uploads the files
• Open/Download and View for the S3 user ID that accesses the files

Greenplum Database Administrator Guide Release Notes

187

If aws_access_key_id and aws_secret_access_key are not specified in the configuration file, the S3
plugin uses S3 authentication information from the system environment of the session running the backup
operation. The S3 plugin searches for the information in these sources, using the first available source.

1. The environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.
2. The authentication information set with the AWS CLI command aws configure.
3. The credentials of the Amazon EC2 IAM role if the backup is run from an EC2 instance.

For information about Amazon S3, see Amazon S3.

• For information about Amazon S3 regions and endpoints, see http://docs.aws.amazon.com/general/
latest/gr/rande.html#s3_region.

• For information about S3 buckets and folders, see the Amazon S3 documentation https://
aws.amazon.com/documentation/s3/.

Using the DD Boost Storage Plugin with gpbackup, gprestore, and gpbackup_manager

Note: The DD Boost storage plugin is available in the commercial release of Pivotal Greenplum
Backup and Restore.

Dell EMC Data Domain Boost (DD Boost) is Dell EMC software that can be used with the gpbackup and
gprestore utilities to perform faster backups to the Dell EMC Data Domain storage appliance. You can
also replicate a backup on a separate, remote Data Domain system for disaster recovery with gpbackup or
gpbackup_manager. For information about replication, see Replicating Backups.

To use the DD Boost storage plugin application, you first create a configuration file to specify the location
of the plugin, the DD Boost login, and the backup location. When you run gpbackup or gprestore, you
specify the configuration file with the option --plugin-config. For information about the configuration
file, see DD Boost Storage Plugin Configuration File Format.

If you perform a backup operation with the gpbackup option --plugin-config, you must also specify
the --plugin-config option when you restore the backup with gprestore.

DD Boost Storage Plugin Configuration File Format
The configuration file specifies the absolute path to the Greenplum Database DD Boost storage plugin
executable, DD Boost connection credentials, and Data Domain location. The configuration file is required
only on the master host. The DD Boost storage plugin application must be in the same location on every
Greenplum Database host.

The DD Boost storage plugin configuration file uses the YAML 1.1 document format and implements its
own schema for specifying the DD Boost information.

The configuration file must be a valid YAML document. The gpbackup and gprestore utilities process
the configuration file document in order and use indentation (spaces) to determine the document hierarchy
and the relationships of the sections to one another. The use of white space is significant. White space
should not be used simply for formatting purposes, and tabs should not be used at all.

This is the structure of a DD Boost storage plugin configuration file.

executablepath: <absolute-path-to-gpbackup_ddboost_plugin>
options:
 hostname: "<data-domain-host>"
 username: "<ddboost-ID>"
 password-encryption: "on" | "off"
 password: "<ddboost-pwd>"
 storage_unit: "<data-domain-id>"
 directory: "<data-domain-dir>"
 replication: "on" | "off"
 replication-streams: integer
 remote_hostname: "<remote-dd-host>"
 remote_username: "<remote-ddboost-ID>"

https://aws.amazon.com/s3/
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://aws.amazon.com/documentation/s3/
https://aws.amazon.com/documentation/s3/
http://yaml.org/spec/1.1/

Greenplum Database Administrator Guide Release Notes

188

 remote_password_encryption "on" | "off"
 remote_password: "<remote-dd-pwd>"
 remote_storage_unit: "<remote-dd-ID>"
 remote_directory: "<remote-dd-dir>"

executablepath

Required. Absolute path to the plugin executable. For example, the Pivotal Greenplum
Database installation location is $GPHOME/bin/gpbackup_ddboost_plugin. The
plugin must be in the same location on every Greenplum Database host.

options

Required. Begins the DD Boost storage plugin options section.
hostname

Required. The IP address or hostname of the host. There is a 30-character limit.

username

Required. The Data Domain Boost user name. There is a 30-character limit.

password_encryption

Optional. Specifies whether the password option value is encrypted. Default value is off.
Use the gpbackup_manager encrypt-password command to encrypt the plain-text
password for the DD Boost user. If the replication option is on, gpbackup_manager
also encrypts the remote Data Domain user's password. Copy the encrypted password(s)
from the gpbackup_manager output to the password options in the configuration file.

password

Required. The passcode for the DD Boost user to access the Data Domain storage unit. If
the password_encryption option is on, this is an encrypted password.

storage-unit

Required. A valid storage unit name for the Data Domain system that is used for backup
and restore operations.

directory

Required. The location for the backup files, configuration files, and global objects on the
Data Domain system. The location on the system is /<data-domain-dir> in the storage unit
of the system.

During a backup operation, the plugin creates the directory location if it does not
exist in the storage unit and stores the backup in this directory /<data-domain-
dir>/YYYYMMDD/YYYYMMDDHHMMSS/.

replication

Optional. Enables or disables backup replication with DD Boost managed file replication
when gpbackup performs a backup operation. Value is either on or off. Default value is
off, backup replication is disabled. When the value is on, the DD Boost plugin replicates
the backup on the Data Domain system that you specify with the remote_* options.

The replication option and remote_* options are ignored when performing a restore
operation with gprestore. The remote_* options are ignored if replication is off.

This option is ignored when you perform replication with the gpbackup_manager
replicate-backup command. For information about replication,see Replicating
Backups.

replication-streams

Optional. Used with the gpbackup_manager replicate-backup command, ignored
otherwise. Specifies the maximum number of Data Domain I/O streams that can be used
when replicating a backup set on a remote Data Domain server from the Data Domain
server that contains the backup. Default value is 1.

Greenplum Database Administrator Guide Release Notes

189

This option is ignored when you perform replication with gpbackup. The default value is
used.

remote_hostname

Required when performing replication. The IP address or hostname of the Data Domain
system that is used for remote backup storage. There is a 30-character limit.

remote_username

Required when performing replication. The Data Domain Boost user name that accesses
the remote Data Domain system. There is a 30-character limit.

remote_password_encryption

Optional when performing replication. Specifies whether the remote_password option
value is encrypted. The default value is off. To set up password encryption use the
gpbackup_manager encrypt-password command to encrypt the plain-text passwords
for the DD Boost user. If the replication parameter is on, gpbackup_manager also
encrypts the remote Data Domain user's password. Copy the encrypted passwords from
the gpbackup_manager output to the password options in the configuration file.

remote_password

Required when performing replication. The passcode for the DD Boost user to access the
Data Domain storage unit on the remote system. If the remote_password_encryption
option is on, this is an encrypted password.

remote_storage_unit

Required when performing replication. A valid storage unit name for the remote Data
Domain system that is used for backup replication.

remote_directory

Required when performing replication. The location for the replicated backup files,
configuration files, and global objects on the remote Data Domain system. The location on
the system is /<remote-dd-dir> in the storage unit of the remote system.

During a backup operation, the plugin creates the directory location if it does not exist in
the storage unit of the remote Data Domain system and stores the replicated backup in this
directory /<remote-dd-dir>/YYYYMMDD/YYYYMMDDHHMMSS/.

Examples
This is an example DD Boost storage plugin configuration file that is used in the next gpbackup example
command. The name of the file is ddboost-test-config.yaml.

executablepath: $GPHOME/bin/gpbackup_ddboost_plugin
options:
 hostname: "192.0.2.230"
 username: "test-ddb-user"
 password: "asdf1234asdf"
 storage_unit: "gpdb-backup"
 directory: "test/backup"

This gpbackup example backs up the database demo using the DD Boost storage plugin. The absolute
path to the DD Boost storage plugin configuration file is /home/gpadmin/ddboost-test-config.yml.

gpbackup --dbname demo --single-data-file --plugin-config /home/gpadmin/
ddboost-test-config.yaml

The DD Boost storage plugin writes the backup files to this directory of the Data Domain storage unit
gpdb-backup.

/test/backup/YYYYMMDD/YYYYMMDDHHMMSS/

Greenplum Database Administrator Guide Release Notes

190

This is an example DD Boost storage plugin configuration file that enables replication.

executablepath: $GPHOME/bin/gpbackup_ddboost_plugin
options:
 hostname: "192.0.2.230"
 username: "test-ddb-user"
 password: "asdf1234asdf"
 storage_unit: "gpdb-backup"
 directory: "test/backup"
 replication: "on"
 remote_hostname: "192.0.3.20"
 remote_username: "test-dd-remote"
 remote_password: "qwer2345erty"
 remote_storage_unit: "gpdb-remote"
 remote_directory: "test/replication"

To restore from the replicated backup in the previous example, you can run gprestore with the DD Boost
storage plugin and specify a configuration file with this information.

executablepath: $GPHOME/bin/gpbackup_ddboost_plugin
options:
 hostname: "192.0.3.20"
 remote_username: "test-dd-remote"
 remote_password: "qwer2345erty"
 storage_unit: "gpdb-remote"
 directory: "test/replication"

Notes
Dell EMC DD Boost is integrated with Pivotal Greenplum Database and requires a DD Boost license. Open
source Greenplum Database cannot use the DD Boost software, but can back up to a Dell EMC Data
Domain system mounted as an NFS share on the Greenplum master and segment hosts.

When you perform a backup with the DD Boost storage plugin, the plugin stores the backup files in this
location in the Data Domain storage unit.

<directory>/backups/<datestamp>/<timestamp>

Where <directory> is the location you specified in the DD Boost configuration file, and <datestamp> and
<timestamp> are the backup date and time stamps.

Replicating Backups

You can use gpbackup or gpbackup_manager with the DD Boost storage plugin to replicate a backup
from one Data Domain system to a second, remote, Data Domain system for disaster recovery. You
can replicate a backup as part of the backup process, or replicate an existing backup set as a separate
operation. Both methods require a DD Boost configuration file that includes options that specify Data
Domain system locations and DD Boost configuration. The DD Boost storage plugin replicates the backup
set on the remote Data Domain system with DD Boost managed file replication.

When replicating a backup, the Data Domain system where the backup is stored must have access to the
remote Data Domain system where the replicated backup is stored.

To restore data from a replicated backup, use gprestore with the DD Boost storage plugin. In the
configuration file, specify the location of the backup in the DD Boost configuration file.

For example configuration files, see Examples in Using the DD Boost Storage Plugin with gpbackup,
gprestore, and gpbackup_manager.

Greenplum Database Administrator Guide Release Notes

191

Replicate a Backup as Part of the Backup Process
Use the gpbackup utility to replicate a backup set as part of the backup process.

To enable replication during a back up, add the backup replication options to the configuration file. Set the
configuration file replication option to on and add the options that the plugin uses to access the remote
Data Domain system that stores the replicated backup.

When using gpbackup, the replication option must be set to on.

The configuration file replication-streams option is ignored, the default value is used.

Performing a backup operation with replication increases the time required to perform a backup. The
backup set is copied to the local Data Domain system, and then replicated on the remote Data Domain
system using DD Boost managed file replication. The backup operation completes after the backup set is
replicated on the remote system.

Replicate an Existing Backup
Use the gpbackup_manager replicate-backup command to replicate an existing backup set that is
on a Data Domain system and was created by gpbackup.

When you run backup_manager replicate-backup, specify a DD Boost configuration file that
contains the same type of information that is in the configuration file used to replicate a backup set with
gpbackup.

When using the gpbackup_manager replicate-backup command, the configuration file
replication option is ignored. The command always attempts to replicate a back up.

Backup/Restore Storage Plugin API (Beta)

This topic describes how to develop a custom storage plugin with the Greenplum Database Backup/
Restore Storage Plugin API.

Note: Only the Backup/Restore Storage Plugin API is a Beta feature. The storage plugins are
supported features.

The Backup/Restore Storage Plugin API provides a framework that you can use to develop and integrate
a custom backup storage system with the Greenplum Database gpbackup, gpbackup_manager, and
gprestore utilities.

The Backup/Restore Storage Plugin API defines a set of interfaces that a plugin must support. The API
also specifies the format and content of a configuration file for a plugin.

When you use the Backup/Restore Storage Plugin API, you create a plugin that the Greenplum Database
administrator deploys to the Greenplum Database cluster. Once deployed, the plugin is available for use in
certain backup and restore operations.

This topic includes the following subtopics:

• Plugin Configuration File
• Plugin API
• Plugin Commands
• Implementing a Backup/Restore Storage Plugin
• Verifying a Backup/Restore Storage Plugin
• Packaging and Deploying a Backup/Restore Storage Plugin

Plugin Configuration File

Specifying the --plugin-config option to the gpbackup and gprestore commands instructs the
utilities to use the plugin specified in the configuration file for the operation.

Greenplum Database Administrator Guide Release Notes

192

The plugin configuration file provides information for both Greenplum Database and the plugin. The
Backup/Restore Storage Plugin API defines the format of, and certain keywords used in, the plugin
configuration file.

A plugin configuration file is a YAML file in the following format:

executablepath: path_to_plugin_executable
options:
 keyword1: value1
 keyword2: value2
 ...
 keywordN: valueN

gpbackup and gprestore use the executablepath value to determine the file system location of the
plugin executable program.

The plugin configuration file may also include keywords and values specific to a plugin instance. A backup/
restore storage plugin can use the options block specified in the file to obtain information from the
user that may be required to perform its tasks. This information may include location, connection, or
authentication information, for example. The plugin should both specify and consume the content of this
information in keyword:value syntax.

A sample plugin configuration file for the Greenplum Database S3 backup/restore storage plugin follows:

executablepath: $GPHOME/bin/gpbackup_s3_plugin
options:
 region: us-west-2
 aws_access_key_id: notarealID
 aws_secret_access_key: notarealkey
 bucket: gp_backup_bucket
 folder: greenplum_backups

Plugin API

The plugin that you implement when you use the Backup/Restore Storage Plugin API is an executable
program that supports specific commands invoked by gpbackup and gprestore at defined points in their
respective life cycle operations:

• The Greenplum Database Backup/Restore Storage Plugin API provides hooks into the gpbackup
lifecycle at initialization, during backup, and at cleanup/exit time.

• The API provides hooks into the gprestore lifecycle at initialization, during restore, and at cleanup/exit
time.

• The API provides arguments that specify the execution scope (master host, segment host, or segment
instance) for a plugin setup or cleanup command. The scope can be one of these values.

• master - Execute the plugin once on the master host.
• segment_host - Execute the plugin once on each of the segment hosts.
• segment - Execute the plugin once for each active segment instance on the host running the

segment instance.

The Greenplum Database hosts and segment instances are based on the Greenplum Database
configuration when the back up started. The values segment_host and segment are provided as a
segment host can host multiple segment instances. There might be some setup or cleanup required at
the segment host level as compared to each segment instance.

The Plugin API also defines the delete_backup command, which is called by the gpbackup_manager
utility. (The gpbackup_manager source code is proprietary and the utility is available only in the Pivotal
Greenplum Backup and Restore download from Pivotal Network.)

https://network.pivotal.io

Greenplum Database Administrator Guide Release Notes

193

The Backup/Restore Storage Plugin API defines the following call syntax for a backup/restore storage
plugin executable program:

plugin_executable command config_file args

where:

• plugin_executable - The absolute path of the backup/restore storage plugin executable
program. This path is determined by the executablepath property value configured in the plugin's
configuration YAML file.

• command - The name of a Backup/Restore Storage Plugin API command that identifies a specific entry
point to a gpbackup or gprestore lifecycle operation.

• config_file - The absolute path of the plugin's configuration YAML file.
• args - The command arguments; the actual arguments differ depending upon the command specified.

Plugin Commands

The Greenplum Database Backup/Restore Storage Plugin API defines the following commands:

Table 23: Backup/Restore Storage Plugin API Commands

Command Name Description

plugin_api_version Return the version of the Backup/Restore Storage
Plugin API supported by the plugin. The currently
supported version is 0.4.0.

setup_plugin_for_backup Initialize the plugin for a backup operation.

backup_file Move a backup file to the remote storage system.

backup_data Move streaming data from stdin to a file on the
remote storage system.

delete_backup Delete the directory specified by the given backup
timestamp on the remote system.

cleanup_plugin_for_backup Clean up after a backup operation.

setup_plugin_for_restore Initialize the plugin for a restore operation.

restore_file Move a backup file from the remote storage system
to a designated location on the local host.

restore_data Move a backup file from the remote storage
system, streaming the data to stdout.

cleanup_plugin_for_restore Clean up after a restore operation.

A backup/restore storage plugin must support every command identified above, even if it is a no-op.

Implementing a Backup/Restore Storage Plugin

You can implement a backup/restore storage plugin executable in any programming or scripting language.

The tasks performed by a backup/restore storage plugin will be very specific to the remote storage system.
As you design the plugin implementation, you will want to:

• Examine the connection and data transfer interface to the remote storage system.
• Identify the storage path specifics of the remote system.
• Identify configuration information required from the user.
• Define the keywords and value syntax for information required in the plugin configuration file.

Greenplum Database Administrator Guide Release Notes

194

• Determine if, and how, the plugin will modify (compress, etc.) the data en route to/from the remote
storage system.

• Define a mapping between a gpbackup file path and the remote storage system.
• Identify how gpbackup options affect the plugin, as well as which are required and/or not applicable.

For example, if the plugin performs its own compression, gpbackup must be invoked with the --no-
compression option to prevent the utility from compressing the data.

A backup/restore storage plugin that you implement must:

• Support all plugin commands identified in Plugin Commands. Each command must exit with the values
identified on the command reference page.

Refer to the gpbackup-s3-plugin github repository for an example plugin implementation.

Verifying a Backup/Restore Storage Plugin

The Backup/Restore Storage Plugin API includes a test bench that you can run to ensure that a plugin is
well integrated with gpbackup and gprestore.

The test bench is a bash script that you run in a Greenplum Database installation. The script generates a
small (<1MB) data set in a Greenplum Database table, explicitly tests each command, and runs a backup
and restore of the data (file and streaming). The test bench invokes gpbackup and gprestore, which in
turn individually call/test each Backup/Restore Storage Plugin API command implemented in the plugin.

The test bench program calling syntax is:

plugin_test_bench.sh plugin_executable plugin_config

Procedure
To run the Backup/Restore Storage Plugin API test bench against a plugin:

1. Log in to the Greenplum Database master host and set up your environment. For example:

$ ssh gpadmin@<gpmaster>
gpadmin@gpmaster$. /usr/local/greenplum-db/greenplum_path.sh

2. Obtain a copy of the test bench from the gpbackup github repository. For example:

$ git clone git@github.com:greenplum-db/gpbackup.git

The clone operation creates a directory named gpbackup/ in the current working directory.
3. Locate the test bench program in the gpbackup/master/plugins directory. For example:

$ ls gpbackup/master/plugins/plugin_test_bench.sh

4. Copy the plugin executable program and the plugin configuration YAML file from your development
system to the Greenplum Database master host. Note the file system location to which you copied the
files.

5. Copy the plugin executable program from the Greenplum Database master host to the same file system
location on each segment host.

6. If required, edit the plugin configuration YAML file to specify the absolute path of the plugin executable
program that you just copied to the Greenplum segments.

7. Run the test bench program against the plugin. For example:

$ gpbackup/master/plugins/plugin_test_bench.sh /path/to/pluginexec /path/
to/plugincfg.yaml

https://github.com/greenplum-db/gpbackup-s3-plugin

Greenplum Database Administrator Guide Release Notes

195

8. Examine the test bench output. Your plugin passed the test bench if all output messages specify
RUNNING and PASSED. For example:

--
Starting gpbackup plugin tests
--
[RUNNING] plugin_api_version
[PASSED] plugin_api_version
[RUNNING] setup_plugin_for_backup
[RUNNING] backup_file
[RUNNING] setup_plugin_for_restore
[RUNNING] restore_file
[PASSED] setup_plugin_for_backup
[PASSED] backup_file
[PASSED] setup_plugin_for_restore
[PASSED] restore_file
[RUNNING] backup_data
[RUNNING] restore_data
[PASSED] backup_data
[PASSED] restore_data
[RUNNING] cleanup_plugin_for_backup
[PASSED] cleanup_plugin_for_backup
[RUNNING] cleanup_plugin_for_restore
[PASSED] cleanup_plugin_for_restore
[RUNNING] gpbackup with test database
[RUNNING] gprestore with test database
[PASSED] gpbackup and gprestore
--
Finished gpbackup plugin tests
--

Packaging and Deploying a Backup/Restore Storage Plugin

Your backup/restore storage plugin is ready to be deployed to a Greenplum Database installation after the
plugin passes your testing and the test bench verification. When you package the backup/restore storage
plugin, consider the following:

• The backup/restore storage plugin must be installed in the same file system location on every host in
the Greenplum Database cluster. Provide installation instructions for the plugin identifying the same.

• The gpadmin user must have permission to traverse the file system path to the backup/restore plugin
executable program.

• Include a template configuration file with the plugin.
• Document the valid plugin configuration keywords, making sure to include the syntax of expected

values.
• Document required gpbackup options and how they affect plugin processing.

backup_data

Plugin command to move streaming data from stdin to the remote storage system.

Synopsis

plugin_executable backup_data plugin_config_file data_filenamekey

Description
gpbackup invokes the backup_data plugin command on each segment host during a streaming backup.

The backup_data implementation should read a potentially large stream of data from stdin and write
the data to a single file on the remote storage system. The data is sent to the command as a single

Greenplum Database Administrator Guide Release Notes

196

continuous stream per Greenplum Database segment. If backup_data modifies the data in any manner
(i.e. compresses), restore_data must perform the reverse operation.

Name or maintain a mapping from the destination file to data_filenamekey. This will be the file key
used for the restore operation.

Arguments
plugin_config_file

The absolute path to the plugin configuration YAML file.

data_filenamekey

The mapping key for a specially-named backup file for streamed data.

Exit Code
The backup_data command must exit with a value of 0 on success, non-zero if an error occurs. In the
case of a non-zero exit code, gpbackup displays the contents of stderr to the user.

backup_file

Plugin command to move a backup file to the remote storage system.

Synopsis

plugin_executable backup_file plugin_config_file file_to_backup

Description
gpbackup invokes the backup_file plugin command on the master and each segment host for the file
that gpbackup writes to a backup directory on local disk.

The backup_file implementation should process and copy the file to the remote storage system. Do not
remove the local copy of the file that you specify with file_to_backup.

Arguments
plugin_config_file

The absolute path to the plugin configuration YAML file.

file_to_backup

The absolute path to a local backup file generated by gpbackup. Do not remove the local
copy of the file that you specify with file_to_backup.

Exit Code
The backup_file command must exit with a value of 0 on success, non-zero if an error occurs. In the
case of a non-zero exit code, gpbackup displays the contents of stderr to the user.

cleanup_plugin_for_backup

Plugin command to clean up a storage plugin after backup.

Synopsis

plugin_executable cleanup_plugin_for_backup plugin_config_file local_backup_dir scope

plugin_executable cleanup_plugin_for_backup plugin_config_file local_backup_dir scope contentID

Greenplum Database Administrator Guide Release Notes

197

Description
gpbackup invokes the cleanup_plugin_for_backup plugin command when a gpbackup operation
completes, both in success and failure cases. The scope argument specifies the execution scope.
gpbackup will invoke the command with each of the scope values.

The cleanup_plugin_for_backup command should perform the actions necessary to clean up the
remote storage system after a backup. Clean up activities may include removing remote directories or
temporary files created during the backup, disconnecting from the backup service, etc.

Arguments
plugin_config_file

The absolute path to the plugin configuration YAML file.

local_backup_dir

The local directory on the Greenplum Database host (master and segments) to which
gpbackup wrote backup files.

• When scope is master, the local_backup_dir is the backup directory of the Greenplum
Database master.

• When scope is segment, the local_backup_dir is the backup directory of a segment
instance. The contentID identifies the segment instance.

• When the scope is segment_host, the local_backup_dir is an arbitrary backup
directory on the host.

scope

The execution scope value indicates the host and number of times the plugin command is
executed. scope can be one of these values:

• master - Execute the plugin command once on the master host.
• segment_host - Execute the plugin command once on each of the segment hosts.
• segment - Execute the plugin command once for each active segment instance on the

host running the segment instance. The contentID identifies the segment instance.

The Greenplum Database hosts and segment instances are based on the Greenplum
Database configuration when the back up was first initiated.

contentID

The contentID of the Greenplum Database master or segment instance corresponding to
the scope. contentID is passed only when the scope is master or segment.

• When scope is master, the contentID is -1.
• When scope is segment, the contentID is the content identifier of an active segment

instance.

Exit Code
The cleanup_plugin_for_backup command must exit with a value of 0 on success, non-zero if an
error occurs. In the case of a non-zero exit code, gpbackup displays the contents of stderr to the user.

cleanup_plugin_for_restore

Plugin command to clean up a storage plugin after restore.

Greenplum Database Administrator Guide Release Notes

198

Synopsis

plugin_executable cleanup_plugin_for_restore plugin_config_file local_backup_dir scope

plugin_executable cleanup_plugin_for_restore plugin_config_file local_backup_dir scope contentID

Description
gprestore invokes the cleanup_plugin_for_restore plugin command when a gprestore
operation completes, both in success and failure cases. The scope argument specifies the execution
scope. gprestore will invoke the command with each of the scope values.

The cleanup_plugin_for_restore implementation should perform the actions necessary to clean up
the remote storage system after a restore. Clean up activities may include removing remote directories or
temporary files created during the restore, disconnecting from the backup service, etc.

Arguments
plugin_config_file

The absolute path to the plugin configuration YAML file.

local_backup_dir

The local directory on the Greenplum Database host (master and segments) from which
gprestore reads backup files.

• When scope is master, the local_backup_dir is the backup directory of the Greenplum
Database master.

• When scope is segment, the local_backup_dir is the backup directory of a segment
instance. The contentID identifies the segment instance.

• When the scope is segment_host, the local_backup_dir is an arbitrary backup
directory on the host.

scope

The execution scope value indicates the host and number of times the plugin command is
executed. scope can be one of these values:

• master - Execute the plugin command once on the master host.
• segment_host - Execute the plugin command once on each of the segment hosts.
• segment - Execute the plugin command once for each active segment instance on the

host running the segment instance. The contentID identifies the segment instance.

The Greenplum Database hosts and segment instances are based on the Greenplum
Database configuration when the back up was first initiated.

contentID

The contentID of the Greenplum Database master or segment instance corresponding to
the scope. contentID is passed only when the scope is master or segment.

• When scope is master, the contentID is -1.
• When scope is segment, the contentID is the content identifier of an active segment

instance.

Exit Code
The cleanup_plugin_for_restore command must exit with a value of 0 on success, non-zero if an
error occurs. In the case of a non-zero exit code, gprestore displays the contents of stderr to the user.

Greenplum Database Administrator Guide Release Notes

199

delete_backup

Plugin command to delete the directory for a given backup timestamp from a remote system.

Synopsis

delete_backup plugin_config_file timestamp

Description
gpbackup_manager invokes the delete_backup plugin command to delete the directory specified by
the backup timestamp on the remote system.

Arguments
plugin_config_file

The absolute path to the plugin configuration YAML file.

timestamp

The timestamp for the backup to delete.

Exit Code
The delete_backup command must exit with a value of 0 on success, or a non-zero value if an error
occurs. In the case of a non-zero exit code, gpbackup_manager displays the contents of stderr to the
user.

Example

my_plugin delete_backup /home/my-plugin_config.yaml 20191208130802

plugin_api_version

Plugin command to display the supported Backup Storage Plugin API version.

Synopsis

plugin_executable plugin_api_version

Description
gpbackup and gprestore invoke the plugin_api_version plugin command before a backup or
restore operation to determine Backup Storage Plugin API version compatibility.

Return Value
The plugin_api_version command must return the Backup Storage Plugin API version number
supported by the storage plugin, "0.4.0".

restore_data

Plugin command to stream data from the remote storage system to stdout.

Synopsis

plugin_executable restore_data plugin_config_file data_filenamekey

Greenplum Database Administrator Guide Release Notes

200

Description
gprestore invokes the restore_data plugin command on each segment host when a restoring a
streaming backup.

The restore_data implementation should read a potentially large data file named or mapped
to data_filenamekey from the remote storage system and write the contents to stdout. If the
backup_data command modified the data in any way (i.e. compressed), restore_data should perform
the reverse operation.

Arguments
plugin_config_file

The absolute path to the plugin configuration YAML file.

data_filenamekey

The mapping key to a backup file on the remote storage system. data_filenamekey is the
same key provided to the backup_data command.

Exit Code
The restore_data command must exit with a value of 0 on success, non-zero if an error occurs. In the
case of a non-zero exit code, gprestore displays the contents of stderr to the user.

restore_file

Plugin command to move a backup file from the remote storage system.

Synopsis

plugin_executable restore_file plugin_config_file file_to_restore

Description
gprestore invokes the restore_file plugin command on the master and each segment host for the
file that gprestore will read from a backup directory on local disk.

The restore_file command should process and move the file from the remote storage system to
file_to_restore on the local host.

Arguments
plugin_config_file

The absolute path to the plugin configuration YAML file.

file_to_restore

The absolute path to which to move a backup file from the remote storage system.

Exit Code
The restore_file command must exit with a value of 0 on success, non-zero if an error occurs. In the
case of a non-zero exit code, gprestore displays the contents of stderr to the user.

setup_plugin_for_backup

Plugin command to initialize a storage plugin for the backup operation.

Greenplum Database Administrator Guide Release Notes

201

Synopsis

plugin_executable setup_plugin_for_backup plugin_config_file local_backup_dir scope

plugin_executable setup_plugin_for_backup plugin_config_file local_backup_dir scope contentID

Description
gpbackup invokes the setup_plugin_for_backup plugin command during gpbackup initialization
phase. The scope argument specifies the execution scope. gpbackup will invoke the command with each
of the scope values.

The setup_plugin_for_backup command should perform the activities necessary to initialize the
remote storage system before backup begins. Set up activities may include creating remote directories,
validating connectivity to the remote storage system, checking disks, and so forth.

Arguments
plugin_config_file

The absolute path to the plugin configuration YAML file.

local_backup_dir

The local directory on the Greenplum Database host (master and segments) to which
gpbackup will write backup files. gpbackup creates this local directory.

• When scope is master, the local_backup_dir is the backup directory of the Greenplum
Database master.

• When scope is segment, the local_backup_dir is the backup directory of a segment
instance. The contentID identifies the segment instance.

• When the scope is segment_host, the local_backup_dir is an arbitrary backup
directory on the host.

scope

The execution scope value indicates the host and number of times the plugin command is
executed. scope can be one of these values:

• master - Execute the plugin command once on the master host.
• segment_host - Execute the plugin command once on each of the segment hosts.
• segment - Execute the plugin command once for each active segment instance on the

host running the segment instance. The contentID identifies the segment instance.

The Greenplum Database hosts and segment instances are based on the Greenplum
Database configuration when the back up was first initiated.

contentID

The contentID of the Greenplum Database master or segment instance corresponding to
the scope. contentID is passed only when the scope is master or segment.

• When scope is master, the contentID is -1.
• When scope is segment, the contentID is the content identifier of an active segment

instance.

Exit Code
The setup_plugin_for_backup command must exit with a value of 0 on success, non-zero if an error
occurs. In the case of a non-zero exit code, gpbackup displays the contents of stderr to the user.

Greenplum Database Administrator Guide Release Notes

202

setup_plugin_for_restore

Plugin command to initialize a storage plugin for the restore operation.

Synopsis

plugin_executable setup_plugin_for_restore plugin_config_file local_backup_dir scope

plugin_executable setup_plugin_for_restore plugin_config_file local_backup_dir scope contentID

Description
gprestore invokes the setup_plugin_for_restore plugin command during gprestore initialization
phase. The scope argument specifies the execution scope. gprestore will invoke the command with
each of the scope values.

The setup_plugin_for_restore command should perform the activities necessary to initialize the
remote storage system before a restore operation begins. Set up activities may include creating remote
directories, validating connectivity to the remote storage system, etc.

Arguments
plugin_config_file

The absolute path to the plugin configuration YAML file.

local_backup_dir

The local directory on the Greenplum Database host (master and segments) from which
gprestore reads backup files. gprestore creates this local directory.

• When scope is master, the local_backup_dir is the backup directory of the Greenplum
Database master.

• When scope is segment, the local_backup_dir is the backup directory of a segment
instance. The contentID identifies the segment instance.

• When the scope is segment_host, the local_backup_dir is an arbitrary backup
directory on the host.

scope

The execution scope value indicates the host and number of times the plugin command is
executed. scope can be one of these values:

• master - Execute the plugin command once on the master host.
• segment_host - Execute the plugin command once on each of the segment hosts.
• segment - Execute the plugin command once for each active segment instance on the

host running the segment instance. The contentID identifies the segment instance.

The Greenplum Database hosts and segment instances are based on the Greenplum
Database configuration when the back up was first initiated.

contentID

The contentID of the Greenplum Database master or segment instance corresponding to
the scope. contentID is passed only when the scope is master or segment.

• When scope is master, the contentID is -1.
• When scope is segment, the contentID is the content identifier of an active segment

instance.

Greenplum Database Administrator Guide Release Notes

203

Exit Code
The setup_plugin_for_restore command must exit with a value of 0 on success, non-zero if an error
occurs. In the case of a non-zero exit code, gprestore displays the contents of stderr to the user.

Expanding a Greenplum System
To scale up performance and storage capacity, expand your Greenplum Database system by adding hosts
to the system. In general, adding nodes to a Greenplum cluster achieves a linear scaling of performance
and storage capacity.

Data warehouses typically grow over time as additional data is gathered and the retention periods
increase for existing data. At times, it is necessary to increase database capacity to consolidate different
data warehouses into a single database. Additional computing capacity (CPU) may also be needed to
accommodate newly added analytics projects. Although it is wise to provide capacity for growth when a
system is initially specified, it is not generally possible to invest in resources long before they are required.
Therefore, you should expect to execute a database expansion project periodically.

Because of the Greenplum MPP architecture, when you add resources to the system, the capacity and
performance are the same as if the system had been originally implemented with the added resources.
Unlike data warehouse systems that require substantial downtime in order to dump and restore the data,
expanding a Greenplum Database system is a phased process with minimal downtime. Regular and ad
hoc workloads can continue while data is redistributed and transactional consistency is maintained. The
administrator can schedule the distribution activity to fit into ongoing operations and can pause and resume
as needed. Tables can be ranked so that datasets are redistributed in a prioritized sequence, either to
ensure that critical workloads benefit from the expanded capacity sooner, or to free disk space needed to
redistribute very large tables.

The expansion process uses standard Greenplum Database operations so it is transparent and easy for
administrators to troubleshoot. Segment mirroring and any replication mechanisms in place remain active,
so fault-tolerance is uncompromised and disaster recovery measures remain effective.

System Expansion Overview
You can perform a Greenplum Database expansion to add segment instances and segment hosts
with minimal downtime. In general, adding nodes to a Greenplum cluster achieves a linear scaling of
performance and storage capacity.

Data warehouses typically grow over time, often at a continuous pace, as additional data is gathered and
the retention period increases for existing data. At times, it is necessary to increase database capacity
to consolidate disparate data warehouses into a single database. The data warehouse may also require
additional computing capacity (CPU) to accommodate added analytics projects. It is good to provide
capacity for growth when a system is initially specified, but even if you anticipate high rates of growth, it is
generally unwise to invest in capacity long before it is required. Database expansion, therefore, is a project
that you should expect to have to execute periodically.

When you expand your database, you should expect the following qualities:

• Scalable capacity and performance. When you add resources to a Greenplum Database, the capacity
and performance are the same as if the system had been originally implemented with the added
resources.

• Uninterrupted service during expansion. Regular workloads, both scheduled and ad-hoc, are not
interrupted.

• Transactional consistency.
• Fault tolerance. During the expansion, standard fault-tolerance mechanisms—such as segment

mirroring—remain active, consistent, and effective.
• Replication and disaster recovery. Any existing replication mechanisms continue to function during

expansion. Restore mechanisms needed in case of a failure or catastrophic event remain effective.
• Transparency of process. The expansion process employs standard Greenplum Database

mechanisms, so administrators can diagnose and troubleshoot any problems.

Greenplum Database Administrator Guide Release Notes

204

• Configurable process. Expansion can be a long running process, but it can be fit into a schedule of
ongoing operations. The expansion schema's tables allow administrators to prioritize the order in which
tables are redistributed, and the expansion activity can be paused and resumed.

The planning and physical aspects of an expansion project are a greater share of the work than expanding
the database itself. It will take a multi-discipline team to plan and execute the project. For on-premise
installations, space must be acquired and prepared for the new servers. The servers must be specified,
acquired, installed, cabled, configured, and tested. For cloud deployments, similar plans should also be
made. Planning New Hardware Platforms describes general considerations for deploying new hardware.

After you provision the new hardware platforms and set up their networks, configure the operating systems
and run performance tests using Greenplum utilities. The Greenplum Database software distribution
includes utilities that are helpful to test and burn-in the new servers before beginning the software phase
of the expansion. See Preparing and Adding Hosts for steps to prepare the new hosts for Greenplum
Database.

Once the new servers are installed and tested, the software phase of the Greenplum Database expansion
process begins. The software phase is designed to be minimally disruptive, transactionally consistent,
reliable, and flexible.

• The first step of the software phase of expansion process is preparing the Greenplum Database
system: adding new segment hosts and initializing new segment instances. This phase can be
scheduled to occur during a period of low activity to avoid disrupting ongoing business operations.
During the initialization process, the following tasks are performed:

• Greenplum Database software is installed.
• Databases and database objects are created in the new segment instances on the new segment

hosts.
• The gpexpand schema is created in the postgres database. You can use the tables and view in the

schema to monitor and control the expansion process.

After the system has been updated, the new segment instances on the new segment hosts are
available.

• New segments are immediately available and participate in new queries and data loads. The existing
data, however, is skewed. It is concentrated on the original segments and must be redistributed
across the new total number of primary segments.

• Because some of the table data is skewed, some queries might be less efficient because more data
motion operations might be needed.

• The last step of the software phase is redistributing table data. Using the expansion control tables in the
gpexpand schema as a guide, tables are redistributed. For each table:

• The gpexand utility redistributes the table data, across all of the servers, old and new, according to
the distribution policy.

• The table's status is updated in the expansion control tables.
• After data redistribution, the query optimizer creates more efficient execution plans when data is not

skewed.

When all tables have been redistributed, the expansion is complete.

Important: The gprestore utility cannot restore backups you made before the expansion with the
gpbackup utility, so back up your databases immediately after the system expansion is complete.

Redistributing table data is a long-running process that creates a large volume of network and disk activity.
It can take days to redistribute some very large databases. To minimize the effects of the increased activity
on business operations, system administrators can pause and resume expansion activity on an ad hoc
basis, or according to a predetermined schedule. Datasets can be prioritized so that critical applications
benefit first from the expansion.

In a typical operation, you run the gpexpand utility four times with different options during the complete
expansion process.

Greenplum Database Administrator Guide Release Notes

205

1. To create an expansion input file:

gpexpand -f hosts_file

2. To initialize segments and create the expansion schema:

gpexpand -i input_file

gpexpand creates a data directory, copies user tables from all existing databases on the new
segments, and captures metadata for each table in an expansion schema for status tracking. After this
process completes, the expansion operation is committed and irrevocable.

3. To redistribute table data:

gpexpand -d duration

During initialization, gpexpand adds and initializes new segment instances. To complete system
expansion, you must run gpexpand to redistribute data tables across the newly added segment
instances. Depending on the size and scale of your system, redistribution can be accomplished in a
single session during low-use hours, or you can divide the process into batches over an extended
period. Each table or partition is unavailable for read or write operations during redistribution. As each
table is redistributed across the new segments, database performance should incrementally improve
until it exceeds pre-expansion performance levels.

You may need to run gpexpand several times to complete the expansion in large-scale systems that
require multiple redistribution sessions. gpexpand can benefit from explicit table redistribution ranking;
see Planning Table Redistribution.

Users can access Greenplum Database during initialization, but they may experience performance
degradation on systems that rely heavily on hash distribution of tables. Normal operations such as ETL
jobs, user queries, and reporting can continue, though users might experience slower response times.

4. To remove the expansion schema:

gpexpand -c

For information about the gpexpand utility and the other utilities that are used for system expansion, see
the Greenplum Database Utility Guide.

Planning Greenplum System Expansion
Careful planning will help to ensure a successful Greenplum expansion project.

The topics in this section help to ensure that you are prepared to execute a system expansion.

• System Expansion Checklist is a checklist you can use to prepare for and execute the system
expansion process.

• Planning New Hardware Platforms covers planning for acquiring and setting up the new hardware.
• Planning New Segment Initialization provides information about planning to initialize new segment hosts

with gpexpand.
• Planning Table Redistribution provides information about planning the data redistribution after the new

segment hosts have been initialized.

Important: When expanding a Greenplum Database system, you must disable Greenplum
interconnect proxies before adding new hosts and segment instances to the system, and you must
update the gp_interconnect_proxy_addresses parameter with the newly-added segment
instances before you re-enable interconnect proxies. For example, these commands disable
Greenplum interconnect proxies by setting the interconnect to the default (UDPIFC) and reloading
the postgresql.conf file to update the Greenplum system configuration.

gpconfig -r gp_interconnect_type

Greenplum Database Administrator Guide Release Notes

206

gpstop -u

For information about Greenplum interconnect proxies, see Configuring Proxies for the Greenplum
Interconnect.

System Expansion Checklist

This checklist summarizes the tasks for a Greenplum Database system expansion.

Table 24: Greenplum Database System Expansion Checklist

Online Pre-Expansion Tasks

* System is up and available

Devise and execute a plan for ordering, building, and networking new hardware platforms, or
provisioning cloud resources.

Devise a database expansion plan. Map the number of segments per host, schedule the
downtime period for testing performance and creating the expansion schema, and schedule
the intervals for table redistribution.

Perform a complete schema dump.

Install Greenplum Database binaries on new hosts.

Copy SSH keys to the new hosts (gpssh-exkeys).

Validate disk I/O and memory bandwidth of the new hardware or cloud resources
(gpcheckperf).

Validate that the master data directory has no extremely large files in the pg_log or
gpperfmon/data directories.

Offline Pre-Expansion Tasks

* The system is unavailable to all user activity during this process.

Validate that there are no catalog issues (gpcheckcat).

Validate disk I/O and memory bandwidth of the combined existing and new hardware or cloud
resources (gpcheckperf).

Online Segment Instance Initialization

* System is up and available

Prepare an expansion input file (gpexpand).

Greenplum Database Administrator Guide Release Notes

207

Initialize new segments into the system and create an expansion schema (gpexpand -i
input_file).

Online Expansion and Table Redistribution

* System is up and available

Before you start table redistribution, stop any automated snapshot processes or other
processes that consume disk space.

Redistribute tables through the expanded system (gpexpand).

Remove expansion schema (gpexpand -c).

Important: Run analyze to update distribution statistics.

During the expansion, use gpexpand -a, and post-expansion, use analyze.

Back Up Databases

* System is up and available

Back up databases using the gpbackup utility. Backups you created before you began
the system expansion cannot be restored to the newly expanded system because the
gprestore utility can only restore backups to a Greenplum Database system with the same
number of segments.

Planning New Hardware Platforms

A deliberate, thorough approach to deploying compatible hardware greatly minimizes risk to the expansion
process.

Hardware resources and configurations for new segment hosts should match those of the existing hosts.
Work with Pivotal Support before making a hardware purchase to expand Greenplum Database.

The steps to plan and set up new hardware platforms vary for each deployment. Some considerations
include how to:

• Prepare the physical space for the new hardware; consider cooling, power supply, and other physical
factors.

• Determine the physical networking and cabling required to connect the new and existing hardware.
• Map the existing IP address spaces and developing a networking plan for the expanded system.
• Capture the system configuration (users, profiles, NICs, and so on) from existing hardware to use as a

detailed list for ordering new hardware.
• Create a custom build plan for deploying hardware with the desired configuration in the particular site

and environment.

After selecting and adding new hardware to your network environment, ensure you perform the tasks
described in Preparing and Adding Hosts.

Planning New Segment Initialization

Expanding Greenplum Database can be performed when the system is up and available. Run gpexpand
to initialize new segment instances into the system and create an expansion schema.

Greenplum Database Administrator Guide Release Notes

208

The time required depends on the number of schema objects in the Greenplum system and other factors
related to hardware performance. In most environments, the initialization of new segments requires less
than thirty minutes offline.

These utilities cannot be run while gpexpand is performing segment initialization.

• gpbackup

• gpcheckcat

• gpconfig

• gppkg

• gprestore

Important: After you begin initializing new segments, you can no longer restore the system using
backup files created for the pre-expansion system. When initialization successfully completes, the
expansion is committed and cannot be rolled back.

Planning Mirror Segments

If your existing system has mirror segments, the new segments must have mirroring configured. If there
are no mirrors configured for existing segments, you cannot add mirrors to new hosts with the gpexpand
utility. For more information about segment mirroring configurations that are available during system
initialization, see About Segment Mirroring Configurations.

For Greenplum Database systems with mirror segments, ensure you add enough new host machines
to accommodate new mirror segments. The number of new hosts required depends on your mirroring
strategy:

• Group Mirroring — Add at least two new hosts so the mirrors for the first host can reside on the
second host, and the mirrors for the second host can reside on the first. This is the default type of
mirroring if you enable segment mirroring during system initialization.

• Spread Mirroring — Add at least one more host to the system than the number of segments per host.
The number of separate hosts must be greater than the number of segment instances per host to
ensure even spreading. You can specify this type of mirroring during system initialization or when you
enable segment mirroring for an existing system.

• Block Mirroring — Adding one or more blocks of host systems. For example add a block of four or
eight hosts. Block mirroring is a custom mirroring configuration. For more information about block
mirroring, see Segment Mirroring Configurations in the Greenplum Database Best Practices Guide.

Increasing Segments Per Host

By default, new hosts are initialized with as many primary segments as existing hosts have. You can
increase the segments per host or add new segments to existing hosts.

For example, if existing hosts currently have two segments per host, you can use gpexpand to initialize
two additional segments on existing hosts for a total of four segments and initialize four new segments on
new hosts.

The interactive process for creating an expansion input file prompts for this option; you can also specify
new segment directories manually in the input configuration file. For more information, see Creating an
Input File for System Expansion.

About the Expansion Schema

At initialization, the gpexpand utility creates an expansion schema named gpexpand in the postgres
database.

The expansion schema stores metadata for each table in the system so its status can be tracked
throughout the expansion process. The expansion schema consists of two tables and a view for tracking
expansion operation progress:

• gpexpand.status

Greenplum Database Administrator Guide Release Notes

209

• gpexpand.status_detail
• gpexpand.expansion_progress

Control expansion process aspects by modifying gpexpand.status_detail. For example, removing a
record from this table prevents the system from expanding the table across new segments. Control the
order in which tables are processed for redistribution by updating the rank value for a record. For more
information, see Ranking Tables for Redistribution.

Planning Table Redistribution

Table redistribution is performed while the system is online. For many Greenplum systems, table
redistribution completes in a single gpexpand session scheduled during a low-use period. Larger systems
may require multiple sessions and setting the order of table redistribution to minimize performance impact.
Complete the table redistribution in one session if possible.

Important: To perform table redistribution, your segment hosts must have enough disk space to
temporarily hold a copy of your largest table. All tables are unavailable for read and write operations
during redistribution.

The performance impact of table redistribution depends on the size, storage type, and partitioning design
of a table. For any given table, redistributing it with gpexpand takes as much time as a CREATE TABLE
AS SELECT operation would. When redistributing a terabyte-scale fact table, the expansion utility can
use much of the available system resources, which could affect query performance or other database
workloads.

Managing Redistribution in Large-Scale Greenplum Systems

When planning the redistribution phase, consider the impact of the ACCESS EXCLUSIVE lock taken on
each table, and the table data redistribution method. User activity on a table can delay its redistribution, but
also tables are unavailable for user activity during redistribution.

You can manage the order in which tables are redistributed by adjusting their ranking. See Ranking Tables
for Redistribution. Manipulating the redistribution order can help adjust for limited disk space and restore
optimal query performance for high-priority queries sooner.

Table Redistribution Methods
There are two methods of redistributing data when performing a Greenplum Database expansion.

• rebuild - Create a new table, copy all the data from the old to the new table, and replace the old
table. This is the default. The rebuild method is similar to creating a new table with a CREATE TABLE
AS SELECT command. During data redistribution, an ACCESS EXCLUSIVE lock is acquired on the
table.

• move - Scan all the data and perform an UPDATE operation to move rows as needed to different
segment instances. During data redistribution, an ACCESS EXCLUSIVE lock is acquired on the table. In
general, this method requires less disk space, however, it creates obsolete table rows and might require
a VACUUM operation on the table after the data redistribution. Also, this method updates indexes one
row at a time, which can be much slower than rebuilding the index with the CREATE INDEX command.

Systems with Abundant Free Disk Space
In systems with abundant free disk space (required to store a copy of the largest table), you can focus
on restoring optimum query performance as soon as possible by first redistributing important tables that
queries use heavily. Assign high ranking to these tables, and schedule redistribution operations for times
of low system usage. Run one redistribution process at a time until large or critical tables have been
redistributed.

Greenplum Database Administrator Guide Release Notes

210

Systems with Limited Free Disk Space
If your existing hosts have limited disk space, you may prefer to first redistribute smaller tables (such as
dimension tables) to clear space to store a copy of the largest table. Available disk space on the original
segments increases as each table is redistributed across the expanded system. When enough free space
exists on all segments to store a copy of the largest table, you can redistribute large or critical tables.
Redistribution of large tables requires exclusive locks; schedule this procedure for off-peak hours.

Also consider the following:

• Run multiple parallel redistribution processes during off-peak hours to maximize available system
resources.

• When running multiple processes, operate within the connection limits for your Greenplum system. For
information about limiting concurrent connections, see Limiting Concurrent Connections.

Redistributing Append-Optimized and Compressed Tables

gpexpand redistributes append-optimized and compressed append-optimized tables at different rates
than heap tables. The CPU capacity required to compress and decompress data tends to increase the
impact on system performance. For similar-sized tables with similar data, you may find overall performance
differences like the following:

• Uncompressed append-optimized tables expand 10% faster than heap tables.
• Append-optimized tables that are defined to use data compression expand at a significantly slower rate

than uncompressed append-optimized tables, potentially up to 80% slower.
• Systems with data compression such as ZFS/LZJB take longer to redistribute.

Important: If your system hosts use data compression, use identical compression settings on the
new hosts to avoid disk space shortage.

Redistributing Partitioned Tables

Because the expansion utility can process each individual partition on a large table, an efficient partition
design reduces the performance impact of table redistribution. Only the child tables of a partitioned table
are set to a random distribution policy. The read/write lock for redistribution applies to only one child table
at a time.

Redistributing Indexed Tables

Because the gpexpand utility must re-index each indexed table after redistribution, a high level of indexing
has a large performance impact. Systems with intensive indexing have significantly slower rates of table
redistribution.

Preparing and Adding Hosts
Verify your new host systems are ready for integration into the existing Greenplum system.

To prepare new host systems for expansion, install the Greenplum Database software binaries, exchange
the required SSH keys, and run performance tests.

Run performance tests first on the new hosts and then all hosts. Run the tests on all hosts with the system
offline so user activity does not distort results.

Generally, you should run performance tests when an administrator modifies host networking or other
special conditions in the system. For example, if you will run the expanded system on two network clusters,
run tests on each cluster.

Note: Preparing host systems for use by a Greenplum Database system assumes that the new
hosts' operating system has been properly configured to match the existing hosts, described in
Configuring Your Systems.

Greenplum Database Administrator Guide Release Notes

211

Adding New Hosts to the Trusted Host Environment

New hosts must exchange SSH keys with the existing hosts to enable Greenplum administrative utilities
to connect to all segments without a password prompt. Perform the key exchange process twice with the
gpssh-exkeys utility.

First perform the process as root, for administration convenience, and then as the user gpadmin, for
management utilities. Perform the following tasks in order:

1. To exchange SSH keys as root
2. To create the gpadmin user
3. To exchange SSH keys as the gpadmin user

Note: The Greenplum Database segment host naming convention is sdwN where sdw is a prefix
and N is an integer (sdw1, sdw2 and so on). For hosts with multiple interfaces, the convention is to
append a dash (-) and number to the host name. For example, sdw1-1 and sdw1-2 are the two
interface names for host sdw1.

To exchange SSH keys as root
1. Create a host file with the existing host names in your array and a separate host file with the new

expansion host names. For existing hosts, you can use the same host file used to set up SSH keys in
the system. In the files, list all hosts (master, backup master, and segment hosts) with one name per
line and no extra lines or spaces. Exchange SSH keys using the configured host names for a given host
if you use a multi-NIC configuration. In this example, mdw is configured with a single NIC, and sdw1,
sdw2, and sdw3 are configured with 4 NICs:

mdw
sdw1-1
sdw1-2
sdw1-3
sdw1-4
sdw2-1
sdw2-2
sdw2-3
sdw2-4
sdw3-1
sdw3-2
sdw3-3
sdw3-4

2. Log in as root on the master host, and source the greenplum_path.sh file from your Greenplum
installation.

$ su -
source /usr/local/greenplum-db/greenplum_path.sh

3. Run the gpssh-exkeys utility referencing the host list files. For example:

gpssh-exkeys -e /home/gpadmin/existing_hosts_file -x
/home/gpadmin/new_hosts_file

4. gpssh-exkeys checks the remote hosts and performs the key exchange between all hosts. Enter the
root user password when prompted. For example:

***Enter password for root@hostname: <root_password>

Greenplum Database Administrator Guide Release Notes

212

To create the gpadmin user
1. Use gpssh to create the gpadmin user on all the new segment hosts (if it does not exist already). Use

the list of new hosts you created for the key exchange. For example:

gpssh -f new_hosts_file '/usr/sbin/useradd gpadmin -d
/home/gpadmin -s /bin/bash'

2. Set a password for the new gpadmin user. On Linux, you can do this on all segment hosts
simultaneously using gpssh. For example:

gpssh -f new_hosts_file 'echo gpadmin_password | passwd
gpadmin --stdin'

3. Verify the gpadmin user has been created by looking for its home directory:

gpssh -f new_hosts_file ls -l /home

To exchange SSH keys as the gpadmin user
1. Log in as gpadmin and run the gpssh-exkeys utility referencing the host list files. For example:

gpssh-exkeys -e /home/gpadmin/existing_hosts_file -x
/home/gpadmin/new_hosts_file

2. gpssh-exkeys will check the remote hosts and perform the key exchange between all hosts. Enter the
gpadmin user password when prompted. For example:

***Enter password for gpadmin@hostname: <gpadmin_password>

Validating Disk I/O and Memory Bandwidth

Use the gpcheckperf utility to test disk I/O and memory bandwidth.

To run gpcheckperf
1. Run the gpcheckperf utility using the host file for new hosts. Use the -d option to specify the file

systems you want to test on each host. You must have write access to these directories. For example:

$ gpcheckperf -f new_hosts_file -d /data1 -d /data2 -v

2. The utility may take a long time to perform the tests because it is copying very large files between the
hosts. When it is finished, you will see the summary results for the Disk Write, Disk Read, and Stream
tests.

For a network divided into subnets, repeat this procedure with a separate host file for each subnet.

Integrating New Hardware into the System

Before initializing the system with the new segments, shut down the system with gpstop to prevent user
activity from skewing performance test results. Then, repeat the performance tests using host files that
include all hosts, existing and new.

Initializing New Segments
Use the gpexpand utility to create and initialize the new segment instances and create the expansion
schema.

The first time you run gpexpand with a valid input file it creates and initializes segment instances and
creates the expansion schema. After these steps are completed, running gpexpand detects if the
expansion schema has been created and, if so, performs table redistribution.

Greenplum Database Administrator Guide Release Notes

213

• Creating an Input File for System Expansion
• Running gpexpand to Initialize New Segments
• Rolling Back a Failed Expansion Setup

Creating an Input File for System Expansion

To begin expansion, gpexpand requires an input file containing information about the new segments and
hosts. If you run gpexpand without specifying an input file, the utility displays an interactive interview that
collects the required information and automatically creates an input file.

If you create the input file using the interactive interview, you may specify a file with a list of expansion
hosts in the interview prompt. If your platform or command shell limits the length of the host list, specifying
the hosts with -f may be mandatory.

Creating an input file in Interactive Mode

Before you run gpexpand to create an input file in interactive mode, ensure you know:

• The number of new hosts (or a hosts file)
• The new hostnames (or a hosts file)
• The mirroring strategy used in existing hosts, if any
• The number of segments to add per host, if any

The utility automatically generates an input file based on this information, dbid, content ID, and data
directory values stored in gp_segment_configuration, and saves the file in the current directory.

To create an input file in interactive mode
1. Log in on the master host as the user who will run your Greenplum Database system; for example,

gpadmin.
2. Run gpexpand. The utility displays messages about how to prepare for an expansion operation, and it

prompts you to quit or continue.

Optionally, specify a hosts file using -f. For example:

$ gpexpand -f /home/gpadmin/new_hosts_file

3. At the prompt, select Y to continue.
4. Unless you specified a hosts file using -f, you are prompted to enter hostnames. Enter a comma

separated list of the hostnames of the new expansion hosts. Do not include interface hostnames. For
example:

> sdw4, sdw5, sdw6, sdw7

To add segments to existing hosts only, enter a blank line at this prompt. Do not specify localhost or
any existing host name.

5. Enter the mirroring strategy used in your system, if any. Options are spread|grouped|none. The
default setting is grouped.

Ensure you have enough hosts for the selected grouping strategy. For more information about
mirroring, see Planning Mirror Segments.

6. Enter the number of new primary segments to add, if any. By default, new hosts are initialized with the
same number of primary segments as existing hosts. Increase segments per host by entering a number
greater than zero. The number you enter will be the number of additional segments initialized on all
hosts. For example, if existing hosts currently have two segments each, entering a value of 2 initializes
two more segments on existing hosts, and four segments on new hosts.

7. If you are adding new primary segments, enter the new primary data directory root for the new
segments. Do not specify the actual data directory name, which is created automatically by gpexpand
based on the existing data directory names.

Greenplum Database Administrator Guide Release Notes

214

For example, if your existing data directories are as follows:

/gpdata/primary/gp0
/gpdata/primary/gp1

then enter the following (one at each prompt) to specify the data directories for two new primary
segments:

/gpdata/primary
/gpdata/primary

When the initialization runs, the utility creates the new directories gp2 and gp3 under /gpdata/
primary.

8. If you are adding new mirror segments, enter the new mirror data directory root for the new segments.
Do not specify the data directory name; it is created automatically by gpexpand based on the existing
data directory names.

For example, if your existing data directories are as follows:

/gpdata/mirror/gp0
/gpdata/mirror/gp1

enter the following (one at each prompt) to specify the data directories for two new mirror segments:

/gpdata/mirror
/gpdata/mirror

When the initialization runs, the utility will create the new directories gp2 and gp3 under /gpdata/
mirror.

These primary and mirror root directories for new segments must exist on the hosts, and the user
running gpexpand must have permissions to create directories in them.

After you have entered all required information, the utility generates an input file and saves it in the
current directory. For example:

gpexpand_inputfile_yyyymmdd_145134

Expansion Input File Format

Use the interactive interview process to create your own input file unless your expansion scenario has
atypical needs.

The format for expansion input files is:

hostname|address|port|datadir|dbid|content|preferred_role

For example:

sdw5|sdw5-1|50011|/gpdata/primary/gp9|11|9|p
sdw5|sdw5-2|50012|/gpdata/primary/gp10|12|10|p
sdw5|sdw5-2|60011|/gpdata/mirror/gp9|13|9|m
sdw5|sdw5-1|60012|/gpdata/mirror/gp10|14|10|m

For each new segment, this format of expansion input file requires the following:

Greenplum Database Administrator Guide Release Notes

215

Table 25: Data for the expansion configuration file

Parameter Valid Values Description

hostname Hostname Hostname for the segment host.

port An available port number Database listener port for the
segment, incremented on the
existing segment port base
number.

datadir Directory name The data directory location for a
segment as per the gp_segment_
configuration system catalog.

dbid Integer. Must not conflict with
existing dbid values.

Database ID for the segment.
The values you enter should be
incremented sequentially from
existing dbid values shown in the
system catalog gp_segment_
configuration. For example,
to add four segment instances
to an existing ten-segment array
with dbid values of 1-10, list new
dbid values of 11, 12, 13 and 14.

content Integer. Must not conflict with
existing content values.

The content ID of the segment.
A primary segment and its mirror
should have the same content
ID, incremented sequentially
from existing values. For more
information, see content in the
reference for gp_segment_
configuration.

preferred_role p | m Determines whether this segment
is a primary or mirror. Specify p
for primary and m for mirror.

Running gpexpand to Initialize New Segments

After you have created an input file, run gpexpand to initialize new segment instances.

To run gpexpand with an input file
1. Log in on the master host as the user who will run your Greenplum Database system; for example,

gpadmin.
2. Run the gpexpand utility, specifying the input file with -i. For example:

$ gpexpand -i input_file

The utility detects if an expansion schema exists for the Greenplum Database system. If a gpexpand
schema exists, remove it with gpexpand -c before you start a new expansion operation. See
Removing the Expansion Schema.

When the new segments are initialized and the expansion schema is created, the utility prints a success
message and exits.

Greenplum Database Administrator Guide Release Notes

216

When the initialization process completes, you can connect to Greenplum Database and view the
expansion schema. The gpexpand schema resides in the postgres database. For more information, see
About the Expansion Schema.

After segment initialization is complete, redistribute the tables to balance existing data over the new
segments.

Monitoring the Cluster Expansion State

At any time, you can check the state of cluster expansion by running the gpstate utility with the -x flag:

$ gpstate -x

If the expansion schema exists in the postgres database, gpstate -x reports on the progress of
the expansion. During the first expansion phase, gpstate reports on the progress of new segment
initialization. During the second phase, gpstate reports on the progress of table redistribution, and
whether redistribution is paused or active.

You can also query the expansion schema to see expansion status. See Monitoring Table Redistribution
for more information.

Rolling Back a Failed Expansion Setup

You can roll back an expansion setup operation (adding segment instances and segment hosts) only if the
operation fails.

If the expansion fails during the initialization step, while the database is down, you must first restart the
database in master-only mode by running the gpstart -m command.

Roll back the failed expansion with the following command:

gpexpand --rollback

Redistributing Tables
Redistribute tables to balance existing data over the newly expanded cluster.

After creating an expansion schema, you can redistribute tables across the entire system with gpexpand.
Plan to run this during low-use hours when the utility's CPU usage and table locks have minimal impact on
operations. Rank tables to redistribute the largest or most critical tables first.

Note: When redistributing data, Greenplum Database must be running in production mode.
Greenplum Database cannot be in restricted mode or in master mode. The gpstart options -R or
-m cannot be specified to start Greenplum Database.

While table redistribution is underway, any new tables or partitions created are distributed across all
segments exactly as they would be under normal operating conditions. Queries can access all segments,
even before the relevant data is redistributed to tables on the new segments. The table or partition being
redistributed is locked and unavailable for read or write operations. When its redistribution completes,
normal operations resume.

• Ranking Tables for Redistribution
• Redistributing Tables Using gpexpand
• Monitoring Table Redistribution

Ranking Tables for Redistribution

For large systems, you can control the table redistribution order. Adjust tables' rank values in the
expansion schema to prioritize heavily-used tables and minimize performance impact. Available free disk
space can affect table ranking; see Managing Redistribution in Large-Scale Greenplum Systems.

Greenplum Database Administrator Guide Release Notes

217

To rank tables for redistribution by updating rank values in gpexpand.status_detail, connect to Greenplum
Database using psql or another supported client. Update gpexpand.status_detail with commands such
as:

=> UPDATE gpexpand.status_detail SET rank=10;

=> UPDATE gpexpand.status_detail SET rank=1 WHERE fq_name =
 'public.lineitem';
=> UPDATE gpexpand.status_detail SET rank=2 WHERE fq_name = 'public.orders';

These commands lower the priority of all tables to 10 and then assign a rank of 1 to lineitem and a rank
of 2 to orders. When table redistribution begins, lineitem is redistributed first, followed by orders and
all other tables in gpexpand.status_detail. To exclude a table from redistribution, remove the table from the
gpexpand.status_detail table.

Redistributing Tables Using gpexpand

To redistribute tables with gpexpand
1. Log in on the master host as the user who will run your Greenplum Database system, for example,

gpadmin.
2. Run the gpexpand utility. You can use the -d or -e option to define the expansion session time period.

For example, to run the utility for up to 60 consecutive hours:

$ gpexpand -d 60:00:00

The utility redistributes tables until the last table in the schema completes or it reaches the specified
duration or end time. gpexpand updates the status and time in gpexpand.status when a session starts
and finishes.

Note: After completing table redistribution, run the VACUUM ANALYZE and REINDEXcommands on
the catalog tables to update table statistics, and rebuild indexes. See Routine Vacuum and Analyze
in the Administration Guide and VACUUM in the Reference Guide.

Monitoring Table Redistribution

During the table redistribution process you can query the expansion schema to view:

• a current progress summary, the estimated rate of table redistribution, and the estimated time to
completion. Use gpexpand.expansion_progress, as described in Viewing Expansion Status.

• per-table status information, using gpexpand.status_detail. See Viewing Table Status.

See also Monitoring the Cluster Expansion State for information about monitoring the overall expansion
progress with the gpstate utility.

Viewing Expansion Status

After the first table completes redistribution, gpexpand.expansion_progress calculates its estimates and
refreshes them based on all tables' redistribution rates. Calculations restart each time you start a table
redistribution session with gpexpand. To monitor progress, connect to Greenplum Database using psql
or another supported client; query gpexpand.expansion_progress with a command like the following:

=# SELECT * FROM gpexpand.expansion_progress;
 name | value
------------------------------+-----------------------
 Bytes Left | 5534842880
 Bytes Done | 142475264
 Estimated Expansion Rate | 680.75667095996092 MB/s
 Estimated Time to Completion | 00:01:01.008047
 Tables Expanded | 4

Greenplum Database Administrator Guide Release Notes

218

 Tables Left | 4
(6 rows)

Viewing Table Status

The table gpexpand.status_detail stores status, time of last update, and more facts about each table in the
schema. To see a table's status, connect to Greenplum Database using psql or another supported client
and query gpexpand.status_detail:

=> SELECT status, expansion_started, source_bytes FROM
gpexpand.status_detail WHERE fq_name = 'public.sales';
 status | expansion_started | source_bytes
-----------+----------------------------+--------------
 COMPLETED | 2017-02-20 10:54:10.043869 | 4929748992
(1 row)

Removing the Expansion Schema
To clean up after expanding the Greenplum cluster, remove the expansion schema.

You can safely remove the expansion schema after the expansion operation is complete and verified. To
run another expansion operation on a Greenplum system, first remove the existing expansion schema.

To remove the expansion schema
1. Log in on the master host as the user who will be running your Greenplum Database system (for

example, gpadmin).
2. Run the gpexpand utility with the -c option. For example:

$ gpexpand -c

Note: Some systems require you to press Enter twice.

Migrating Data with gpcopy
You can use the gpcopy utility to transfer data between databases in different Greenplum Database
clusters.

gpcopy is a high-performance utility that can copy metadata and data from one Greenplum database
to another Greenplum database. You can migrate the entire contents of a database, or just selected
tables. The clusters can have different Greenplum Database versions. For example, you can use gpcopy
to migrate data from a Greenplum Database version 4.3.26 (or later) system to a 5.9 (or later) or a 6.x
Greenplum system, or from a Greenplum Database version 5.9+ system to a Greenplum 6.x system.

Note: The gpcopy utility is available as a separate download for the commercial release of Pivotal
Greenplum Database. See the Pivotal gpcopy Documentation.

Monitoring a Greenplum System
You can monitor a Greenplum Database system using a variety of tools included with the system or
available as add-ons.

Observing the Greenplum Database system day-to-day performance helps administrators understand the
system behavior, plan workflow, and troubleshoot problems. This chapter discusses tools for monitoring
database performance and activity.

Also, be sure to review Recommended Monitoring and Maintenance Tasks for monitoring activities you can
script to quickly detect problems in the system.

https://gpdb.docs.pivotal.io/gpcopy

Greenplum Database Administrator Guide Release Notes

219

Monitoring Database Activity and Performance
Greenplum Database includes an optional system monitoring and management database, gpperfmon,
that administrators can enable. The gpperfmon_install command-line utility creates the gpperfmon
database and enables data collection agents that collect and store query and system metrics in the
database. Administrators can query metrics in the gpperfmon database. See the documentation for the
gpperfmon database in the Greenplum Database Reference Guide.

Pivotal Greenplum Command Center, an optional web-based interface, provides cluster status information,
graphical administrative tools, real-time query monitoring, and historical cluster and query data. Download
the Greenplum Command Center package from Pivotal Network and view the documentation at the
Greenplum Command Center Documentation web site.

Monitoring System State
As a Greenplum Database administrator, you must monitor the system for problem events such as a
segment going down or running out of disk space on a segment host. The following topics describe
how to monitor the health of a Greenplum Database system and examine certain state information for a
Greenplum Database system.

• Checking System State
• Checking Disk Space Usage
• Checking for Data Distribution Skew
• Viewing Metadata Information about Database Objects
• Viewing Session Memory Usage Information
• Viewing Query Workfile Usage Information

Checking System State
A Greenplum Database system is comprised of multiple PostgreSQL instances (the master and segments)
spanning multiple machines. To monitor a Greenplum Database system, you need to know information
about the system as a whole, as well as status information of the individual instances. The gpstate utility
provides status information about a Greenplum Database system.

Viewing Master and Segment Status and Configuration

The default gpstate action is to check segment instances and show a brief status of the valid and failed
segments. For example, to see a quick status of your Greenplum Database system:

$ gpstate

To see more detailed information about your Greenplum Database array configuration, use gpstate with
the -s option:

$ gpstate -s

Viewing Your Mirroring Configuration and Status

If you are using mirroring for data redundancy, you may want to see the list of mirror segment instances in
the system, their current synchronization status, and the mirror to primary mapping. For example, to see
the mirror segments in the system and their status:

$ gpstate -m

https://network.pivotal.io/products/pivotal-gpdb
http://gpcc.docs.pivotal.io

Greenplum Database Administrator Guide Release Notes

220

To see the primary to mirror segment mappings:

$ gpstate -c

To see the status of the standby master mirror:

$ gpstate -f

Checking Disk Space Usage
A database administrator's most important monitoring task is to make sure the file systems where the
master and segment data directories reside do not grow to more than 70 percent full. A filled data disk will
not result in data corruption, but it may prevent normal database activity from continuing. If the disk grows
too full, it can cause the database server to shut down.

You can use the gp_disk_free external table in the gp_toolkit administrative schema to check for
remaining free space (in kilobytes) on the segment host file systems. For example:

=# SELECT * FROM gp_toolkit.gp_disk_free
 ORDER BY dfsegment;

Checking Sizing of Distributed Databases and Tables

The gp_toolkit administrative schema contains several views that you can use to determine the disk
space usage for a distributed Greenplum Database database, schema, table, or index.

For a list of the available sizing views for checking database object sizes and disk space, see the
Greenplum Database Reference Guide.

Viewing Disk Space Usage for a Database

To see the total size of a database (in bytes), use the gp_size_of_database view in the gp_toolkit
administrative schema. For example:

=> SELECT * FROM gp_toolkit.gp_size_of_database
 ORDER BY sodddatname;

Viewing Disk Space Usage for a Table

The gp_toolkit administrative schema contains several views for checking the size of a table. The table
sizing views list the table by object ID (not by name). To check the size of a table by name, you must look
up the relation name (relname) in the pg_class table. For example:

=> SELECT relname AS name, sotdsize AS size, sotdtoastsize
 AS toast, sotdadditionalsize AS other
 FROM gp_toolkit.gp_size_of_table_disk as sotd, pg_class
 WHERE sotd.sotdoid=pg_class.oid ORDER BY relname;

For a list of the available table sizing views, see the Greenplum Database Reference Guide.

Viewing Disk Space Usage for Indexes

The gp_toolkit administrative schema contains a number of views for checking index sizes. To see the total
size of all index(es) on a table, use the gp_size_of_all_table_indexes view. To see the size of a particular
index, use the gp_size_of_index view. The index sizing views list tables and indexes by object ID (not

Greenplum Database Administrator Guide Release Notes

221

by name). To check the size of an index by name, you must look up the relation name (relname) in the
pg_class table. For example:

=> SELECT soisize, relname as indexname
 FROM pg_class, gp_toolkit.gp_size_of_index
 WHERE pg_class.oid=gp_size_of_index.soioid
 AND pg_class.relkind='i';

Checking for Data Distribution Skew
All tables in Greenplum Database are distributed, meaning their data is divided across all of the segments
in the system. Unevenly distributed data may diminish query processing performance. A table's distribution
policy, set at table creation time, determines how the table's rows are distributed. For information about
choosing the table distribution policy, see the following topics:

• Viewing a Table's Distribution Key
• Viewing Data Distribution
• Checking for Query Processing Skew

The gp_toolkit administrative schema also contains a number of views for checking data distribution skew
on a table. For information about how to check for uneven data distribution, see the Greenplum Database
Reference Guide.

Viewing a Table's Distribution Key

To see the columns used as the data distribution key for a table, you can use the \d+ meta-command in
psql to examine the definition of a table. For example:

=# \d+ sales
 Table "retail.sales"
 Column | Type | Modifiers | Description
-------------+--------------+-----------+-------------
 sale_id | integer | |
 amt | float | |
 date | date | |
Has OIDs: no
Distributed by: (sale_id)

When you create a replicated table, Greenplum Database stores all rows in the table on every segment.
Replicated tables have no distribution key. Where the \d+ meta-command reports the distribution key for a
normally distributed table, it shows Distributed Replicated for a replicated table.

Viewing Data Distribution

To see the data distribution of a table's rows (the number of rows on each segment), you can run a query
such as:

=# SELECT gp_segment_id, count(*)
 FROM table_name GROUP BY gp_segment_id;

A table is considered to have a balanced distribution if all segments have roughly the same number of
rows.

Note: If you run this query on a replicated table, it fails because Greenplum Database does not
permit user queries to reference the system column gp_segment_id (or the system columns
ctid, cmin, cmax, xmin, and xmax) in replicated tables. Because every segment has all of the
tables' rows, replicated tables are evenly distributed by definition.

Greenplum Database Administrator Guide Release Notes

222

Checking for Query Processing Skew

When a query is being processed, all segments should have equal workloads to ensure the best possible
performance. If you identify a poorly-performing query, you may need to investigate further using the
EXPLAIN command. For information about using the EXPLAIN command and query profiling, see Query
Profiling.

Query processing workload can be skewed if the table's data distribution policy and the query predicates
are not well matched. To check for processing skew, you can run a query such as:

=# SELECT gp_segment_id, count(*) FROM table_name
 WHERE column='value' GROUP BY gp_segment_id;

This will show the number of rows returned by segment for the given WHERE predicate.

As noted in Viewing Data Distribution, this query will fail if you run it on a replicated table because you
cannot reference the gp_segment_id system column in a query on a replicated table.

Avoiding an Extreme Skew Warning
You may receive the following warning message while executing a query that performs a hash join
operation:

Extreme skew in the innerside of Hashjoin

This occurs when the input to a hash join operator is skewed. It does not prevent the query from
completing successfully. You can follow these steps to avoid skew in the plan:

1. Ensure that all fact tables are analyzed.
2. Verify that any populated temporary table used by the query is analyzed.
3. View the EXPLAIN ANALYZE plan for the query and look for the following:

• If there are scans with multi-column filters that are producing more rows than estimated, then set the
gp_selectivity_damping_factor server configuration parameter to 2 or higher and retest the
query.

• If the skew occurs while joining a single fact table that is relatively small (less than 5000 rows), set
the gp_segments_for_planner server configuration parameter to 1 and retest the query.

4. Check whether the filters applied in the query match distribution keys of the base tables. If the filters
and distribution keys are the same, consider redistributing some of the base tables with different
distribution keys.

5. Check the cardinality of the join keys. If they have low cardinality, try to rewrite the query with different
joining columns or or additional filters on the tables to reduce the number of rows. These changes could
change the query semantics.

Viewing Metadata Information about Database Objects
Greenplum Database tracks various metadata information in its system catalogs about the objects stored
in a database, such as tables, views, indexes and so on, as well as global objects such as roles and
tablespaces.

Viewing the Last Operation Performed

You can use the system views pg_stat_operations and pg_stat_partition_operations to look up actions
performed on an object, such as a table. For example, to see the actions performed on a table, such as
when it was created and when it was last vacuumed and analyzed:

=> SELECT schemaname as schema, objname as table,
 usename as role, actionname as action,
 subtype as type, statime as time

Greenplum Database Administrator Guide Release Notes

223

 FROM pg_stat_operations
 WHERE objname='cust';
 schema | table | role | action | type | time
--------+-------+------+---------+-------+--------------------------
 sales | cust | main | CREATE | TABLE | 2016-02-09 18:10:07.867977-08
 sales | cust | main | VACUUM | | 2016-02-10 13:32:39.068219-08
 sales | cust | main | ANALYZE | | 2016-02-25 16:07:01.157168-08
(3 rows)

Viewing the Definition of an Object

To see the definition of an object, such as a table or view, you can use the \d+ meta-command when
working in psql. For example, to see the definition of a table:

=> \d+ mytable

Viewing Session Memory Usage Information
You can create and use the session_level_memory_consumption view that provides information about
the current memory utilization for sessions that are running queries on Greenplum Database. The view
contains session information and information such as the database that the session is connected to, the
query that the session is currently running, and memory consumed by the session processes.

Creating the session_level_memory_consumption View

To create the session_state.session_level_memory_consumption view in a Greenplum Database, run the
script CREATE EXTENSION gp_internal_tools; once for each database. For example, to install the
view in the database testdb, use this command:

$ psql -d testdb -c "CREATE EXTENSION gp_internal_tools;"

The session_level_memory_consumption View

The session_state.session_level_memory_consumption view provides information about memory
consumption and idle time for sessions that are running SQL queries.

When resource queue-based resource management is active, the column is_runaway indicates whether
Greenplum Database considers the session a runaway session based on the vmem memory consumption
of the session's queries. Under the resource queue-based resource management scheme, Greenplum
Database considers the session a runaway when the queries consume an excessive amount of memory.
The Greenplum Database server configuration parameter runaway_detector_activation_percent
governs the conditions under which Greenplum Database considers a session a runaway session.

The is_runaway, runaway_vmem_mb, and runaway_command_cnt columns are not applicable when
resource group-based resource management is active.

Table 26: session_state.session_level_memory_consumption

column type references description

datname name Name of the database
that the session is
connected to.

sess_id integer Session ID.

usename name Name of the session
user.

Greenplum Database Administrator Guide Release Notes

224

column type references description

query text Current SQL query that
the session is running.

segid integer Segment ID.

vmem_mb integer Total vmem memory
usage for the session in
MB.

is_runaway boolean Session is marked
as runaway on the
segment.

qe_count integer Number of query
processes for the
session.

active_qe_count integer Number of active query
processes for the
session.

dirty_qe_count integer Number of query
processes that have
not yet released their
memory.

The value is -1 for
sessions that are not
running.

runaway_vmem_mb integer Amount of vmem
memory that the session
was consuming when
it was marked as a
runaway session.

runaway_command_
cnt

integer Command count for the
session when it was
marked as a runaway
session.

idle_start timestamptz The last time a query
process in this session
became idle.

Viewing Query Workfile Usage Information
The Greenplum Database administrative schema gp_toolkit contains views that display information
about Greenplum Database workfiles. Greenplum Database creates workfiles on disk if it does
not have sufficient memory to execute the query in memory. This information can be used for
troubleshooting and tuning queries. The information in the views can also be used to specify the values
for the Greenplum Database configuration parameters gp_workfile_limit_per_query and
gp_workfile_limit_per_segment.

These are the views in the schema gp_toolkit:

• The gp_workfile_entries view contains one row for each operator using disk space for workfiles on a
segment at the current time.

Greenplum Database Administrator Guide Release Notes

225

• The gp_workfile_usage_per_query view contains one row for each query using disk space for workfiles
on a segment at the current time.

• The gp_workfile_usage_per_segment view contains one row for each segment. Each row displays the
total amount of disk space used for workfiles on the segment at the current time.

For information about using gp_toolkit, see Using gp_toolkit.

Viewing the Database Server Log Files
Every database instance in Greenplum Database (master and segments) runs a PostgreSQL database
server with its own server log file. Log files are created in the pg_log directory of the master and each
segment data directory.

Log File Format

The server log files are written in comma-separated values (CSV) format. Some log entries will not have
values for all log fields. For example, only log entries associated with a query worker process will have
the slice_id populated. You can identify related log entries of a particular query by the query's session
identifier (gp_session_id) and command identifier (gp_command_count).

The following fields are written to the log:

Table 27: Greenplum Database Server Log Format

Field Name Data Type Description

1 event_time timestamp with
time zone

Time that the log entry was written to the log

2 user_name varchar(100) The database user name

3 database_name varchar(100) The database name

4 process_id varchar(10) The system process ID (prefixed with "p")

5 thread_id varchar(50) The thread count (prefixed with "th")

6 remote_host varchar(100) On the master, the hostname/address of the client
machine. On the segment, the hostname/address of the
master.

7 remote_port varchar(10) The segment or master port number

8 session_start_time timestamp with
time zone

Time session connection was opened

9 transaction_id int Top-level transaction ID on the master. This ID is the
parent of any subtransactions.

10 gp_session_id text Session identifier number (prefixed with "con")

11 gp_command_
count

text The command number within a session (prefixed with
"cmd")

12 gp_segment text The segment content identifier (prefixed with "seg" for
primaries or "mir" for mirrors). The master always has a
content ID of -1.

13 slice_id text The slice ID (portion of the query plan being executed)

14 distr_tranx_id text Distributed transaction ID

15 local_tranx_id text Local transaction ID

Greenplum Database Administrator Guide Release Notes

226

Field Name Data Type Description

16 sub_tranx_id text Subtransaction ID

17 event_severity varchar(10) Values include: LOG, ERROR, FATAL, PANIC,
DEBUG1, DEBUG2

18 sql_state_code varchar(10) SQL state code associated with the log message

19 event_message text Log or error message text

20 event_detail text Detail message text associated with an error or warning
message

21 event_hint text Hint message text associated with an error or warning
message

22 internal_query text The internally-generated query text

23 internal_query_pos int The cursor index into the internally-generated query
text

24 event_context text The context in which this message gets generated

25 debug_query_
string

text User-supplied query string with full detail for debugging.
 This string can be modified for internal use.

26 error_cursor_pos int The cursor index into the query string

27 func_name text The function in which this message is generated

28 file_name text The internal code file where the message originated

29 file_line int The line of the code file where the message originated

30 stack_trace text Stack trace text associated with this message

Searching the Greenplum Server Log Files

Greenplum Database provides a utility called gplogfilter can search through a Greenplum Database
log file for entries matching the specified criteria. By default, this utility searches through the Greenplum
Database master log file in the default logging location. For example, to display the last three lines of the
master log file:

$ gplogfilter -n 3

To search through all segment log files simultaneously, run gplogfilter through the gpssh utility. For
example, to display the last three lines of each segment log file:

$ gpssh -f seg_host_file

=> source /usr/local/greenplum-db/greenplum_path.sh
=> gplogfilter -n 3 /gpdata/gp*/pg_log/gpdb*.log

Using gp_toolkit
Use the Greenplum Database administrative schema gp_toolkit to query the system catalogs, log files,
and operating environment for system status information. The gp_toolkit schema contains several
views you can access using SQL commands. The gp_toolkit schema is accessible to all database users.

Greenplum Database Administrator Guide Release Notes

227

Some objects require superuser permissions. Use a command similar to the following to add the gp_toolkit
schema to your schema search path:

=> ALTER ROLE myrole SET search_path TO myschema,gp_toolkit;

For a description of the available administrative schema views and their usages, see the Greenplum
Database Reference Guide.

SQL Standard Error Codes
The following table lists all the defined error codes. Some are not used, but are defined by the SQL
standard. The error classes are also shown. For each error class there is a standard error code having the
last three characters 000. This code is used only for error conditions that fall within the class but do not
have any more-specific code assigned.

The PL/pgSQL condition name for each error code is the same as the phrase shown in the table, with
underscores substituted for spaces. For example, code 22012, DIVISION BY ZERO, has condition name
DIVISION_BY_ZERO. Condition names can be written in either upper or lower case.

Note: PL/pgSQL does not recognize warning, as opposed to error, condition names; those are
classes 00, 01, and 02.

Table 28: SQL Codes

Error Code Meaning Constant

Class 00 — Successful Completion

00000 SUCCESSFUL COMPLETION successful_completion

Class 01 — Warning

01000 WARNING warning

0100C DYNAMIC RESULT SETS RETURNED dynamic_result_sets_returned

01008 IMPLICIT ZERO BIT PADDING implicit_zero_bit_padding

01003 NULL VALUE ELIMINATED IN SET
FUNCTION

null_value_eliminated_in_set_function

01007 PRIVILEGE NOT GRANTED privilege_not_granted

01006 PRIVILEGE NOT REVOKED privilege_not_revoked

01004 STRING DATA RIGHT TRUNCATION string_data_right_truncation

01P01 DEPRECATED FEATURE deprecated_feature

Class 02 — No Data (this is also a warning class per the SQL standard)

02000 NO DATA no_data

02001 NO ADDITIONAL DYNAMIC RESULT
SETS RETURNED

no_additional_dynamic_result_sets_returned

Class 03 — SQL Statement Not Yet Complete

03000 SQL STATEMENT NOT YET
COMPLETE

sql_statement_not_yet_complete

Class 08 — Connection Exception

08000 CONNECTION EXCEPTION connection_exception

Greenplum Database Administrator Guide Release Notes

228

Error Code Meaning Constant

08003 CONNECTION DOES NOT EXIST connection_does_not_exist

08006 CONNECTION FAILURE connection_failure

08001 SQLCLIENT UNABLE TO ESTABLISH
SQLCONNECTION

sqlclient_unable_to_establish_sqlconnection

08004 SQLSERVER REJECTED
ESTABLISHMENT OF
SQLCONNECTION

sqlserver_rejected_establishment_of_
sqlconnection

08007 TRANSACTION RESOLUTION
UNKNOWN

transaction_resolution_unknown

08P01 PROTOCOL VIOLATION protocol_violation

Class 09 — Triggered Action Exception

09000 TRIGGERED ACTION EXCEPTION triggered_action_exception

Class 0A — Feature Not Supported

0A000 FEATURE NOT SUPPORTED feature_not_supported

Class 0B — Invalid Transaction Initiation

0B000 INVALID TRANSACTION INITIATION invalid_transaction_initiation

Class 0F — Locator Exception

0F000 LOCATOR EXCEPTION locator_exception

0F001 INVALID LOCATOR SPECIFICATION invalid_locator_specification

Class 0L — Invalid Grantor

0L000 INVALID GRANTOR invalid_grantor

0LP01 INVALID GRANT OPERATION invalid_grant_operation

Class 0P — Invalid Role Specification

0P000 INVALID ROLE SPECIFICATION invalid_role_specification

Class 21 — Cardinality Violation

21000 CARDINALITY VIOLATION cardinality_violation

Class 22 — Data Exception

22000 DATA EXCEPTION data_exception

2202E ARRAY SUBSCRIPT ERROR array_subscript_error

22021 CHARACTER NOT IN REPERTOIRE character_not_in_repertoire

22008 DATETIME FIELD OVERFLOW datetime_field_overflow

22012 DIVISION BY ZERO division_by_zero

22005 ERROR IN ASSIGNMENT error_in_assignment

2200B ESCAPE CHARACTER CONFLICT escape_character_conflict

22022 INDICATOR OVERFLOW indicator_overflow

22015 INTERVAL FIELD OVERFLOW interval_field_overflow

Greenplum Database Administrator Guide Release Notes

229

Error Code Meaning Constant

2201E INVALID ARGUMENT FOR
LOGARITHM

invalid_argument_for_logarithm

2201F INVALID ARGUMENT FOR POWER
FUNCTION

invalid_argument_for_power_function

2201G INVALID ARGUMENT FOR WIDTH
BUCKET FUNCTION

invalid_argument_for_width_bucket_function

22018 INVALID CHARACTER VALUE FOR
CAST

invalid_character_value_for_cast

22007 INVALID DATETIME FORMAT invalid_datetime_format

22019 INVALID ESCAPE CHARACTER invalid_escape_character

2200D INVALID ESCAPE OCTET invalid_escape_octet

22025 INVALID ESCAPE SEQUENCE invalid_escape_sequence

22P06 NONSTANDARD USE OF ESCAPE
CHARACTER

nonstandard_use_of_escape_character

22010 INVALID INDICATOR PARAMETER
VALUE

invalid_indicator_parameter_value

22020 INVALID LIMIT VALUE invalid_limit_value

22023 INVALID PARAMETER VALUE invalid_parameter_value

2201B INVALID REGULAR EXPRESSION invalid_regular_expression

22009 INVALID TIME ZONE DISPLACEMENT
VALUE

invalid_time_zone_displacement_value

2200C INVALID USE OF ESCAPE
CHARACTER

invalid_use_of_escape_character

2200G MOST SPECIFIC TYPE MISMATCH most_specific_type_mismatch

22004 NULL VALUE NOT ALLOWED null_value_not_allowed

22002 NULL VALUE NO INDICATOR
PARAMETER

null_value_no_indicator_parameter

22003 NUMERIC VALUE OUT OF RANGE numeric_value_out_of_range

22026 STRING DATA LENGTH MISMATCH string_data_length_mismatch

22001 STRING DATA RIGHT TRUNCATION string_data_right_truncation

22011 SUBSTRING ERROR substring_error

22027 TRIM ERROR trim_error

22024 UNTERMINATED C STRING unterminated_c_string

2200F ZERO LENGTH CHARACTER STRING zero_length_character_string

22P01 FLOATING POINT EXCEPTION floating_point_exception

22P02 INVALID TEXT REPRESENTATION invalid_text_representation

22P03 INVALID BINARY REPRESENTATION invalid_binary_representation

22P04 BAD COPY FILE FORMAT bad_copy_file_format

Greenplum Database Administrator Guide Release Notes

230

Error Code Meaning Constant

22P05 UNTRANSLATABLE CHARACTER untranslatable_character

Class 23 — Integrity Constraint Violation

23000 INTEGRITY CONSTRAINT VIOLATION integrity_constraint_violation

23001 RESTRICT VIOLATION restrict_violation

23502 NOT NULL VIOLATION not_null_violation

23503 FOREIGN KEY VIOLATION foreign_key_violation

23505 UNIQUE VIOLATION unique_violation

23514 CHECK VIOLATION check_violation

Class 24 — Invalid Cursor State

24000 INVALID CURSOR STATE invalid_cursor_state

Class 25 — Invalid Transaction State

25000 INVALID TRANSACTION STATE invalid_transaction_state

25001 ACTIVE SQL TRANSACTION active_sql_transaction

25002 BRANCH TRANSACTION ALREADY
ACTIVE

branch_transaction_already_active

25008 HELD CURSOR REQUIRES SAME
ISOLATION LEVEL

held_cursor_requires_same_isolation_level

25003 INAPPROPRIATE ACCESS MODE
FOR BRANCH TRANSACTION

inappropriate_access_mode_for_branch_
transaction

25004 INAPPROPRIATE ISOLATION LEVEL
FOR BRANCH TRANSACTION

inappropriate_isolation_level_for_branch_
transaction

25005 NO ACTIVE SQL TRANSACTION FOR
BRANCH TRANSACTION

no_active_sql_transaction_for_branch_
transaction

25006 READ ONLY SQL TRANSACTION read_only_sql_transaction

25007 SCHEMA AND DATA STATEMENT
MIXING NOT SUPPORTED

schema_and_data_statement_mixing_not_
supported

25P01 NO ACTIVE SQL TRANSACTION no_active_sql_transaction

25P02 IN FAILED SQL TRANSACTION in_failed_sql_transaction

Class 26 — Invalid SQL Statement Name

26000 INVALID SQL STATEMENT NAME invalid_sql_statement_name

Class 27 — Triggered Data Change Violation

27000 TRIGGERED DATA CHANGE
VIOLATION

triggered_data_change_violation

Class 28 — Invalid Authorization Specification

28000 INVALID AUTHORIZATION
SPECIFICATION

invalid_authorization_specification

Class 2B — Dependent Privilege Descriptors Still Exist

Greenplum Database Administrator Guide Release Notes

231

Error Code Meaning Constant

2B000 DEPENDENT PRIVILEGE
DESCRIPTORS STILL EXIST

dependent_privilege_descriptors_still_exist

2BP01 DEPENDENT OBJECTS STILL EXIST dependent_objects_still_exist

Class 2D — Invalid Transaction Termination

2D000 INVALID TRANSACTION
TERMINATION

invalid_transaction_termination

Class 2F — SQL Routine Exception

2F000 SQL ROUTINE EXCEPTION sql_routine_exception

2F005 FUNCTION EXECUTED NO RETURN
STATEMENT

function_executed_no_return_statement

2F002 MODIFYING SQL DATA NOT
PERMITTED

modifying_sql_data_not_permitted

2F003 PROHIBITED SQL STATEMENT
ATTEMPTED

prohibited_sql_statement_attempted

2F004 READING SQL DATA NOT
PERMITTED

reading_sql_data_not_permitted

Class 34 — Invalid Cursor Name

34000 INVALID CURSOR NAME invalid_cursor_name

Class 38 — External Routine Exception

38000 EXTERNAL ROUTINE EXCEPTION external_routine_exception

38001 CONTAINING SQL NOT PERMITTED containing_sql_not_permitted

38002 MODIFYING SQL DATA NOT
PERMITTED

modifying_sql_data_not_permitted

38003 PROHIBITED SQL STATEMENT
ATTEMPTED

prohibited_sql_statement_attempted

38004 READING SQL DATA NOT
PERMITTED

reading_sql_data_not_permitted

Class 39 — External Routine Invocation Exception

39000 EXTERNAL ROUTINE INVOCATION
EXCEPTION

external_routine_invocation_exception

39001 INVALID SQLSTATE RETURNED invalid_sqlstate_returned

39004 NULL VALUE NOT ALLOWED null_value_not_allowed

39P01 TRIGGER PROTOCOL VIOLATED trigger_protocol_violated

39P02 SRF PROTOCOL VIOLATED srf_protocol_violated

Class 3B — Savepoint Exception

3B000 SAVEPOINT EXCEPTION savepoint_exception

3B001 INVALID SAVEPOINT SPECIFICATION invalid_savepoint_specification

Class 3D — Invalid Catalog Name

Greenplum Database Administrator Guide Release Notes

232

Error Code Meaning Constant

3D000 INVALID CATALOG NAME invalid_catalog_name

Class 3F — Invalid Schema Name

3F000 INVALID SCHEMA NAME invalid_schema_name

Class 40 — Transaction Rollback

40000 TRANSACTION ROLLBACK transaction_rollback

40002 TRANSACTION INTEGRITY
CONSTRAINT VIOLATION

transaction_integrity_constraint_violation

40001 SERIALIZATION FAILURE serialization_failure

40003 STATEMENT COMPLETION
UNKNOWN

statement_completion_unknown

40P01 DEADLOCK DETECTED deadlock_detected

Class 42 — Syntax Error or Access Rule Violation

42000 SYNTAX ERROR OR ACCESS RULE
VIOLATION

syntax_error_or_access_rule_violation

42601 SYNTAX ERROR syntax_error

42501 INSUFFICIENT PRIVILEGE insufficient_privilege

42846 CANNOT COERCE cannot_coerce

42803 GROUPING ERROR grouping_error

42830 INVALID FOREIGN KEY invalid_foreign_key

42602 INVALID NAME invalid_name

42622 NAME TOO LONG name_too_long

42939 RESERVED NAME reserved_name

42804 DATATYPE MISMATCH datatype_mismatch

42P18 INDETERMINATE DATATYPE indeterminate_datatype

42809 WRONG OBJECT TYPE wrong_object_type

42703 UNDEFINED COLUMN undefined_column

42883 UNDEFINED FUNCTION undefined_function

42P01 UNDEFINED TABLE undefined_table

42P02 UNDEFINED PARAMETER undefined_parameter

42704 UNDEFINED OBJECT undefined_object

42701 DUPLICATE COLUMN duplicate_column

42P03 DUPLICATE CURSOR duplicate_cursor

42P04 DUPLICATE DATABASE duplicate_database

42723 DUPLICATE FUNCTION duplicate_function

42P05 DUPLICATE PREPARED STATEMENT duplicate_prepared_statement

Greenplum Database Administrator Guide Release Notes

233

Error Code Meaning Constant

42P06 DUPLICATE SCHEMA duplicate_schema

42P07 DUPLICATE TABLE duplicate_table

42712 DUPLICATE ALIAS duplicate_alias

42710 DUPLICATE OBJECT duplicate_object

42702 AMBIGUOUS COLUMN ambiguous_column

42725 AMBIGUOUS FUNCTION ambiguous_function

42P08 AMBIGUOUS PARAMETER ambiguous_parameter

42P09 AMBIGUOUS ALIAS ambiguous_alias

42P10 INVALID COLUMN REFERENCE invalid_column_reference

42611 INVALID COLUMN DEFINITION invalid_column_definition

42P11 INVALID CURSOR DEFINITION invalid_cursor_definition

42P12 INVALID DATABASE DEFINITION invalid_database_definition

42P13 INVALID FUNCTION DEFINITION invalid_function_definition

42P14 INVALID PREPARED STATEMENT
DEFINITION

invalid_prepared_statement_definition

42P15 INVALID SCHEMA DEFINITION invalid_schema_definition

42P16 INVALID TABLE DEFINITION invalid_table_definition

42P17 INVALID OBJECT DEFINITION invalid_object_definition

Class 44 — WITH CHECK OPTION Violation

44000 WITH CHECK OPTION VIOLATION with_check_option_violation

Class 53 — Insufficient Resources

53000 INSUFFICIENT RESOURCES insufficient_resources

53100 DISK FULL disk_full

53200 OUT OF MEMORY out_of_memory

53300 TOO MANY CONNECTIONS too_many_connections

Class 54 — Program Limit Exceeded

54000 PROGRAM LIMIT EXCEEDED program_limit_exceeded

54001 STATEMENT TOO COMPLEX statement_too_complex

54011 TOO MANY COLUMNS too_many_columns

54023 TOO MANY ARGUMENTS too_many_arguments

Class 55 — Object Not In Prerequisite State

55000 OBJECT NOT IN PREREQUISITE
STATE

object_not_in_prerequisite_state

55006 OBJECT IN USE object_in_use

55P02 CANT CHANGE RUNTIME PARAM cant_change_runtime_param

Greenplum Database Administrator Guide Release Notes

234

Error Code Meaning Constant

55P03 LOCK NOT AVAILABLE lock_not_available

Class 57 — Operator Intervention

57000 OPERATOR INTERVENTION operator_intervention

57014 QUERY CANCELED query_canceled

57P01 ADMIN SHUTDOWN admin_shutdown

57P02 CRASH SHUTDOWN crash_shutdown

57P03 CANNOT CONNECT NOW cannot_connect_now

Class 58 — System Error (errors external to Greenplum Database)

58030 IO ERROR io_error

58P01 UNDEFINED FILE undefined_file

58P02 DUPLICATE FILE duplicate_file

Class F0 — Configuration File Error

F0000 CONFIG FILE ERROR config_file_error

F0001 LOCK FILE EXISTS lock_file_exists

Class P0 — PL/pgSQL Error

P0000 PLPGSQL ERROR plpgsql_error

P0001 RAISE EXCEPTION raise_exception

P0002 NO DATA FOUND no_data_found

P0003 TOO MANY ROWS too_many_rows

Class XX — Internal Error

XX000 INTERNAL ERROR internal_error

XX001 DATA CORRUPTED data_corrupted

XX002 INDEX CORRUPTED index_corrupted

Routine System Maintenance Tasks
To keep a Greenplum Database system running efficiently, the database must be regularly cleared of
expired data and the table statistics must be updated so that the query optimizer has accurate information.

Greenplum Database requires that certain tasks be performed regularly to achieve optimal performance.
The tasks discussed here are required, but database administrators can automate them using standard
UNIX tools such as cron scripts. An administrator sets up the appropriate scripts and checks that they
execute successfully. See Recommended Monitoring and Maintenance Tasks for additional suggested
maintenance activities you can implement to keep your Greenplum system running optimally.

Routine Vacuum and Analyze
The design of the MVCC transaction concurrency model used in Greenplum Database means that
deleted or updated data rows still occupy physical space on disk even though they are not visible to new
transactions. If your database has many updates and deletes, many expired rows exist and the space
they use must be reclaimed with the VACUUM command. The VACUUM command also collects table-level

Greenplum Database Administrator Guide Release Notes

235

statistics, such as numbers of rows and pages, so it is also necessary to vacuum append-optimized tables,
even when there is no space to reclaim from updated or deleted rows.

Vacuuming an append-optimized table follows a different process than vacuuming heap tables. On each
segment, a new segment file is created and visible rows are copied into it from the current segment. When
the segment file has been copied, the original is scheduled to be dropped and the new segment file is
made available. This requires sufficient available disk space for a copy of the visible rows until the original
segment file is dropped.

If the ratio of hidden rows to total rows in a segment file is less than a threshold value (10, by
default), the segment file is not compacted. The threshold value can be configured with the
gp_appendonly_compaction_threshold server configuration parameter. VACUUM FULL ignores
the value of gp_appendonly_compaction_threshold and rewrites the segment file regardless of the
ratio.

You can use the __gp_aovisimap_compaction_info() function in the gp_toolkit schema to
investigate the effectiveness of a VACUUM operation on append-optimized tables.

For information about the __gp_aovisimap_compaction_info() function see, "Checking Append-
Optimized Tables" in the Greenplum Database Reference Guide.

VACUUM can be disabled for append-optimized tables using the gp_appendonly_compaction server
configuration parameter.

For details about vacuuming a database, see Vacuuming the Database.

For information about the gp_appendonly_compaction_threshold server configuration parameter
and the VACUUM command, see the Greenplum Database Reference Guide.

Transaction ID Management

Greenplum's MVCC transaction semantics depend on comparing transaction ID (XID) numbers to
determine visibility to other transactions. Transaction ID numbers are compared using modulo 232

arithmetic, so a Greenplum system that runs more than about two billion transactions can experience
transaction ID wraparound, where past transactions appear to be in the future. This means past
transactions' outputs become invisible. Therefore, it is necessary to VACUUM every table in every database
at least once per two billion transactions.

Greenplum Database assigns XID values only to transactions that involve DDL or DML operations, which
are typically the only transactions that require an XID.

Important: Greenplum Database monitors transaction IDs. If you do not vacuum the database
regularly, Greenplum Database will generate a warning and error.

Greenplum Database issues the following warning when a significant portion of the transaction IDs are no
longer available and before transaction ID wraparound occurs:

WARNING: database "database_name" must be vacuumed within
number_of_transactions transactions

When the warning is issued, a VACUUM operation is required. If a VACUUM operation is not performed,
Greenplum Database stops creating transactions when it reaches a limit prior to when transaction ID
wraparound occurs. Greenplum Database issues this error when it stops creating transactions to avoid
possible data loss:

FATAL: database is not accepting commands to avoid
wraparound data loss in database "database_name"

The Greenplum Database configuration parameter xid_warn_limit controls when the warning
is displayed. The parameter xid_stop_limit controls when Greenplum Database stops creating
transactions.

Greenplum Database Administrator Guide Release Notes

236

Recovering from a Transaction ID Limit Error
When Greenplum Database reaches the xid_stop_limit transaction ID limit due to infrequent VACUUM
maintenance, it becomes unresponsive. To recover from this situation, perform the following steps as
database administrator:

1. Shut down Greenplum Database.
2. Temporarily lower the xid_stop_limit by 10,000,000.
3. Start Greenplum Database.
4. Run VACUUM FREEZE on all affected databases.
5. Reset the xid_stop_limit to its original value.
6. Restart Greenplum Database.

For information about the configuration parameters, see the Greenplum Database Reference Guide.

For information about transaction ID wraparound see the PostgreSQL documentation.

System Catalog Maintenance

Numerous database updates with CREATE and DROP commands increase the system catalog size and
affect system performance. For example, running many DROP TABLE statements degrades the overall
system performance due to excessive data scanning during metadata operations on catalog tables. The
performance loss occurs between thousands to tens of thousands of DROP TABLE statements, depending
on the system.

You should run a system catalog maintenance procedure regularly to reclaim the space occupied by
deleted objects. If a regular procedure has not been run for a long time, you may need to run a more
intensive procedure to clear the system catalog. This topic describes both procedures.

Regular System Catalog Maintenance

It is recommended that you periodically run REINDEX and VACUUM on the system catalog to clear the
space that deleted objects occupy in the system indexes and tables. If regular database operations include
numerous DROP statements, it is safe and appropriate to run a system catalog maintenance procedure with
VACUUM daily at off-peak hours. You can do this while the system is available.

These are Greenplum Database system catalog maintenance steps.

1. Perform a REINDEX on the system catalog tables to rebuild the system catalog indexes. This removes
bloat in the indexes and improves VACUUM performance.

Note: When performing REINDEX on the system catalog tables, locking will occur on the
tables and might have an impact on currently running queries. You can schedule the REINDEX
operation during a period of low activity to avoid disrupting ongoing business operations.

2. Perform a VACUUM on the system catalog tables.
3. Perform an ANALYZE on the system catalog tables to update the catalog table statistics.

This example script performs a REINDEX, VACUUM, and ANALYZE of a Greenplum Database system
catalog. In the script, replace <database-name> with a database name.

#!/bin/bash
DBNAME="<database-name>"
SYSTABLES="' pg_catalog.' || relname || ';' FROM pg_class a, pg_namespace b
WHERE a.relnamespace=b.oid AND b.nspname='pg_catalog' AND a.relkind='r'"

reindexdb --system -d $DBNAME
psql -tc "SELECT 'VACUUM' || $SYSTABLES" $DBNAME | psql -a $DBNAME
analyzedb -s pg_catalog -d $DBNAME

https://www.postgresql.org/docs/9.4/index.html

Greenplum Database Administrator Guide Release Notes

237

Note: If you are performing catalog maintenance during a maintenance period and you
need to stop a process due to time constraints, run the Greenplum Database function
pg_cancel_backend(<PID>) to safely stop the Greenplum Database process.

Intensive System Catalog Maintenance

If system catalog maintenance has not been performed in a long time, the catalog can become bloated
with dead space; this causes excessively long wait times for simple metadata operations. A wait of more
than two seconds to list user tables, such as with the \d metacommand from within psql, is an indication
of catalog bloat.

If you see indications of system catalog bloat, you must perform an intensive system catalog maintenance
procedure with VACUUM FULL during a scheduled downtime period. During this period, stop all catalog
activity on the system; the VACUUM FULL system catalog maintenance procedure takes exclusive locks
against the system catalog.

Running regular system catalog maintenance procedures can prevent the need for this more costly
procedure.

These are steps for intensive system catalog maintenance.

1. Stop all catalog activity on the Greenplum Database system.
2. Perform a REINDEX on the system catalog tables to rebuild the system catalog indexes. This removes

bloat in the indexes and improves VACUUM performance.
3. Perform a VACUUM FULL on the system catalog tables. See the following Note.
4. Perform an ANALYZE on the system catalog tables to update the catalog table statistics.

Note: The system catalog table pg_attribute is usually the largest catalog table. If the
pg_attribute table is significantly bloated, a VACUUM FULL operation on the table might require
a significant amount of time and might need to be performed separately. The presence of both of
these conditions indicate a significantly bloated pg_attribute table that might require a long
VACUUM FULL time:

• The pg_attribute table contains a large number of records.
• The diagnostic message for pg_attribute is significant amount of bloat in the

gp_toolkit.gp_bloat_diag view.

Vacuum and Analyze for Query Optimization

Greenplum Database uses a cost-based query optimizer that relies on database statistics. Accurate
statistics allow the query optimizer to better estimate selectivity and the number of rows that a query
operation retrieves. These estimates help it choose the most efficient query plan. The ANALYZE command
collects column-level statistics for the query optimizer.

You can run both VACUUM and ANALYZE operations in the same command. For example:

=# VACUUM ANALYZE mytable;

Running the VACUUM ANALYZE command might produce incorrect statistics when the command is run on
a table with a significant amount of bloat (a significant amount of table disk space is occupied by deleted
or obsolete rows). For large tables, the ANALYZE command calculates statistics from a random sample
of rows. It estimates the number rows in the table by multiplying the average number of rows per page
in the sample by the number of actual pages in the table. If the sample contains many empty pages, the
estimated row count can be inaccurate.

For a table, you can view information about the amount of unused disk space (space that is occupied by
deleted or obsolete rows) in the gp_toolkit view gp_bloat_diag. If the bdidiag column for a table contains
the value significant amount of bloat suspected, a significant amount of table disk space
consists of unused space. Entries are added to the gp_bloat_diag view after a table has been vacuumed.

Greenplum Database Administrator Guide Release Notes

238

To remove unused disk space from the table, you can run the command VACUUM FULL on the table. Due
to table lock requirements, VACUUM FULL might not be possible until a maintenance period.

As a temporary workaround, run ANALYZE to compute column statistics and then run VACUUM on the table
to generate an accurate row count. This example runs ANALYZE and then VACUUM on the cust_info table.

ANALYZE cust_info;
VACUUM cust_info;

Important: If you intend to execute queries on partitioned tables with GPORCA enabled (the
default), you must collect statistics on the partitioned table root partition with the ANALYZE
command. For information about GPORCA, see Overview of GPORCA.

Note: You can use the Greenplum Database utility analyzedb to update table statistics. Tables
can be analyzed concurrently. For append optimized tables, analyzedb updates statistics only if
the statistics are not current. See the analyzedb utility.

Routine Reindexing
For B-tree indexes, a freshly-constructed index is slightly faster to access than one that has been updated
many times because logically adjacent pages are usually also physically adjacent in a newly built index.
Reindexing older indexes periodically can improve access speed. If all but a few index keys on a page
have been deleted, there will be wasted space on the index page. A reindex will reclaim that wasted space.
In Greenplum Database it is often faster to drop an index (DROP INDEX) and then recreate it (CREATE
INDEX) than it is to use the REINDEX command.

For table columns with indexes, some operations such as bulk updates or inserts to the table might
perform more slowly because of the updates to the indexes. To enhance performance of bulk operations
on tables with indexes, you can drop the indexes, perform the bulk operation, and then re-create the index.

Managing Greenplum Database Log Files
• Database Server Log Files
• Management Utility Log Files

Database Server Log Files

Greenplum Database log output tends to be voluminous, especially at higher debug levels, and you do not
need to save it indefinitely. Administrators should purge older log files periodically.

Greenplum Database by default has log file rotation enabled for the master and segment database logs.
Log files are created in the pg_log subdirectory of the master and each segment data directory using the
following naming convention: gpdb-YYYY-MM-DD_hhmmss.csv. Administrators need to implement scripts
or programs to periodically clean up old log files in the pg_log directory of the master and each segment
instance.

Log rotation can be triggered by the size of the current log file or the age of the current log file. The
log_rotation_size configuration parameter sets the size of an individual log file that triggers log
rotation. When the log file size is equal to or greater than the specified size, the file is closed and a new log
file is created. The log_rotation_size value is specified in kilobytes. The default is 1048576 kilobytes,
or 1GB. If log_rotation_size is set to 0, size-based rotation is disabled.

The log_rotation_age configuration parameter specifies the age of a log file that triggers rotation.
When the specified amount of time has elapsed since the log file was created, the file is closed and a new
log file is created. The default log_rotation_age, 1d, creates a new log file 24 hours after the current
log file was created. If log_rotation_age is set to 0, time-based rotation is disabled.

For information about viewing the database server log files, see Viewing the Database Server Log Files.

Greenplum Database Administrator Guide Release Notes

239

Management Utility Log Files

Log files for the Greenplum Database management utilities are written to ~/gpAdminLogs by default. The
naming convention for management log files is:

script_name_date.log

The log entry format is:

timestamp:utility:host:user:[INFO|WARN|FATAL]:message

The log file for a particular utility execution is appended to its daily log file each time that utility is run.

Recommended Monitoring and Maintenance Tasks
This section lists monitoring and maintenance activities recommended to ensure high availability and
consistent performance of your Greenplum Database cluster.

The tables in the following sections suggest activities that a Greenplum System Administrator can perform
periodically to ensure that all components of the system are operating optimally. Monitoring activities help
you to detect and diagnose problems early. Maintenance activities help you to keep the system up-to-
date and avoid deteriorating performance, for example, from bloated system tables or diminishing free disk
space.

It is not necessary to implement all of these suggestions in every cluster; use the frequency and severity
recommendations as a guide to implement measures according to your service requirements.

Database State Monitoring Activities

Table 29: Database State Monitoring Activities

Activity Procedure Corrective Actions

List segments that are currently
down. If any rows are returned,
this should generate a warning or
alert.

Recommended frequency: run
every 5 to 10 minutes

Severity: IMPORTANT

Run the following query in the
postgres database:

SELECT * FROM gp_
segment_configuration
WHERE status <> 'u';

If the query returns any rows,
follow these steps to correct the
problem:

1. Verify that the hosts with down
segments are responsive.

2. If hosts are OK, check the pg_
log files for the primaries and
mirrors of the down segments
to discover the root cause of
the segments going down.

3. If no unexpected errors are
found, run the gprecoverseg
utility to bring the segments
back online.

Greenplum Database Administrator Guide Release Notes

240

Activity Procedure Corrective Actions

Check for segments that are
currently in change tracking
mode. If any rows are returned,
this should generate a warning or
alert.

Recommended frequency: run
every 5 to 10 minutes

Severity: IMPORTANT

Execute the following query in the
postgres database:

SELECT * FROM gp_
segment_configuration
WHERE mode = 'c';

If the query returns any rows,
follow these steps to correct the
problem:

1. Verify that hosts with down
segments are responsive.

2. If hosts are OK, check the pg_
log files for the primaries and
mirrors of the down segments
to determine the root cause of
the segments going down.

3. If no unexpected errors are
found, run the gprecoverseg
utility to bring the segments
back online.

Check for segments that are
currently re-syncing. If rows are
returned, this should generate a
warning or alert.

Recommended frequency: run
every 5 to 10 minutes

Severity: IMPORTANT

Execute the following query in the
postgres database:

SELECT * FROM gp_
segment_configuration
WHERE mode = 'r';

When this query returns rows, it
implies that the segments are in
the process of being re-synched.
If the state does not change
from 'r' to 's', then check the pg_
log files from the primaries and
mirrors of the affected segments
for errors.

Check for segments that are not
operating in their optimal role.
If any segments are found, the
cluster may not be balanced. If
any rows are returned this should
generate a warning or alert.

Recommended frequency: run
every 5 to 10 minutes

Severity: IMPORTANT

Execute the following query in the
postgres database:

SELECT * FROM gp_
segment_configuration
WHERE preferred_role <>
 role;

When the segments are not
running in their preferred role,
hosts have uneven numbers
of primary segments on each
host, implying that processing
is skewed. Wait for a potential
window and restart the database
to bring the segments into their
preferred roles.

Run a distributed query to test
that it runs on all segments. One
row should be returned for each
primary segment.

Recommended frequency: run
every 5 to 10 minutes

Severity: CRITICAL

Execute the following query in the
postgres database:

SELECT gp_segment_id,
 count(*)
FROM gp_dist_
random('pg_class')
GROUP BY 1;

If this query fails, there is an issue
dispatching to some segments in
the cluster. This is a rare event.
Check the hosts that are not able
to be dispatched to ensure there
is no hardware or networking
issue.

Test the state of master mirroring
on a Greenplum Database 4.2 or
earlier cluster. If the value is "Not
Synchronized", raise an alert or
warning.

Recommended frequency: run
every 5 to 10 minutes

Severity: IMPORTANT

Execute the following query in the
postgres database:

SELECT summary_state
FROM gp_master_
mirroring;

Check the pg_log from the
master and standby master for
errors. If there are no unexpected
errors and the machines are up,
run the gpinitstandby utility
to bring the standby online. This
requires a database restart on
GPDB 4.2 and earlier.

Greenplum Database Administrator Guide Release Notes

241

Activity Procedure Corrective Actions

Test the state of master mirroring
on Greenplum Database. If the
value is not "STREAMING", raise
an alert or warning.

Recommended frequency: run
every 5 to 10 minutes

Severity: IMPORTANT

Run the following psql
command:

psql dbname -c 'SELECT
 pid, state FROM pg_
stat_replication;'

Check the pg_log file from the
master and standby master for
errors. If there are no unexpected
errors and the machines are up,
run the gpinitstandby utility to
bring the standby online.

Perform a basic check to see if
the master is up and functioning.

Recommended frequency: run
every 5 to 10 minutes

Severity: CRITICAL

Run the following query in the
postgres database:

SELECT count(*)
 FROM gp_segment_
configuration;

If this query fails the active
master may be down. Try again
several times and then inspect
the active master manually. If the
active master is down, reboot or
power cycle the active master to
ensure no processes remain on
the active master and then trigger
the activation of the standby
master.

Database Alert Log Monitoring

Table 30: Database Alert Log Monitoring Activities

Activity Procedure Corrective Actions

Check for FATAL and ERROR
log messages from the system.

Recommended frequency: run
every 15 minutes

Severity: WARNING

This activity and the next are two
methods for monitoring messages
in the log_alert_history table. It is
only necessary to set up one or
the other.

Run the following query in the
gpperfmon database:

SELECT * FROM log_
alert_history
WHERE logseverity in
 ('FATAL', 'ERROR')
 AND logtime >
 (now() - interval '15
 minutes');

Send an alert to the DBA to
analyze the alert. You may want
to add additional filters to the
query to ignore certain messages
of low interest.

Greenplum Database Administrator Guide Release Notes

242

Hardware and Operating System Monitoring

Table 31: Hardware and Operating System Monitoring Activities

Activity Procedure Corrective Actions

Check disk space usage on
volumes used for Greenplum
Database data storage and the
OS.

Recommended frequency: every
5 to 30 minutes

Severity: CRITICAL

Set up a disk space check.

• Set a threshold to raise an
alert when a disk reaches a
percentage of capacity. The
recommended threshold is
75% full.

• It is not recommended to run
the system with capacities
approaching 100%.

Free space on the system by
removing some data or files.

Check for errors or dropped
packets on the network
interfaces.

Recommended frequency: hourly

Severity: IMPORTANT

Set up a network interface
checks.

Work with network and OS teams
to resolve errors.

Check for RAID errors or
degraded RAID performance.

Recommended frequency: every
5 minutes

Severity: CRITICAL

Set up a RAID check. • Replace failed disks as soon
as possible.

• Work with system
administration team to resolve
other RAID or controller errors
as soon as possible.

Check for adequate I/O
bandwidth and I/O skew.

Recommended frequency:
when create a cluster or when
hardware issues are suspected.

Run the Greenplum
gpcheckperf utility.

The cluster may be under-
specified if data transfer rates are
not similar to the following:

• 2GB per second disk read
• 1 GB per second disk write
• 10 Gigabit per second network

read and write

If transfer rates are lower than
expected, consult with your data
architect regarding performance
expectations.

If the machines on the cluster
display an uneven performance
profile, work with the system
administration team to fix faulty
machines.

Greenplum Database Administrator Guide Release Notes

243

Catalog Monitoring

Table 32: Catalog Monitoring Activities

Activity Procedure Corrective Actions

Run catalog consistency checks
to ensure the catalog on each
host in the cluster is consistent
and in a good state.

Recommended frequency: weekly

Severity: IMPORTANT

Run the Greenplum gpcheckcat
utility in each database:

gpcheckcat -O

Run repair scripts for any issues
detected.

Check for pg_class entries
that have no corresponding
pg_attribute entry.

Recommended frequency:
monthly

Severity: IMPORTANT

During a downtime, with no
users on the system, run the
Greenplum gpcheckcat utility in
each database:

gpcheckcat -R pgclass

Run the repair scripts for any
issues identified.

Check for leaked temporary
schema and missing schema
definition.

Recommended frequency:
monthly

Severity: IMPORTANT

During a downtime, with no
users on the system, run the
Greenplum gpcheckcat utility in
each database:

gpcheckcat -R namespace

Run the repair scripts for any
issues identified.

Check constraints on randomly
distributed tables.

Recommended frequency:
monthly

Severity: IMPORTANT

During a downtime, with no
users on the system, run the
Greenplum gpcheckcat utility in
each database:

gpcheckcat -R
 distribution_policy

Run the repair scripts for any
issues identified.

Check for dependencies on non-
existent objects.

Recommended frequency:
monthly

Severity: IMPORTANT

During a downtime, with no
users on the system, run the
Greenplum gpcheckcat utility in
each database:

gpcheckcat -R
 dependency

Run the repair scripts for any
issues identified.

Greenplum Database Administrator Guide Release Notes

244

Data Maintenance

Table 33: Data Maintenance Activities

Activity Procedure Corrective Actions

Check for missing statistics on
tables.

Check the gp_stats_missing
view in each database:

SELECT * FROM gp_
toolkit.gp_stats_
missing;

Run ANALYZE on tables that are
missing statistics.

Check for tables that have bloat
(dead space) in data files that
cannot be recovered by a regular
VACUUM command.

Recommended frequency: weekly
or monthly

Severity: WARNING

Check the gp_bloat_diag view
in each database:

SELECT * FROM gp_
toolkit.gp_bloat_diag;

VACUUM FULL acquires an
ACCESS EXCLUSIVE lock on
tables. Run VACUUM FULL
during a time when users and
applications do not require
access to the tables, such as
during a time of low activity, or
during a maintenance window.

Database Maintenance

Table 34: Database Maintenance Activities

Activity Procedure Corrective Actions

Mark deleted rows in heap tables
so that the space they occupy
can be reused.

Recommended frequency: daily

Severity: CRITICAL

Vacuum user tables:

VACUUM <table>;

Vacuum updated tables regularly
to prevent bloating.

Update table statistics.

Recommended frequency: after
loading data and before executing
queries

Severity: CRITICAL

Analyze user tables. You can use
the analyzedb management
utility:

analyzedb -d <database>
 -a

Analyze updated tables regularly
so that the optimizer can produce
efficient query execution plans.

Backup the database data.

Recommended frequency: daily,
or as required by your backup
plan

Severity: CRITICAL

Run the gpbackup utility to
create a backup of the master
and segment databases in
parallel.

Best practice is to have a
current backup ready in case the
database must be restored.

Greenplum Database Administrator Guide Release Notes

245

Activity Procedure Corrective Actions

Vacuum, reindex, and analyze
system catalogs to maintain an
efficient catalog.

Recommended frequency:
weekly, or more often if database
objects are created and dropped
frequently

1. VACUUM the system tables in
each database.

2. Run REINDEX SYSTEM in
each database, or use the
reindexdb command-line
utility with the -s option:

reindexdb -
s <database>

3. ANALYZE each of the system
tables:

analyzedb -s
 pg_catalog -
d <database>

The optimizer retrieves
information from the system
tables to create query plans. If
system tables and indexes are
allowed to become bloated over
time, scanning the system tables
increases query execution time. It
is important to run ANALYZE after
reindexing, because REINDEX
leaves indexes with no statistics.

Patching and Upgrading

Table 35: Patch and Upgrade Activities

Activity Procedure Corrective Actions

Ensure any bug fixes or
enhancements are applied to the
kernel.

Recommended frequency: at
least every 6 months

Severity: IMPORTANT

Follow the vendor's instructions to
update the Linux kernel.

Keep the kernel current to include
bug fixes and security fixes, and
to avoid difficult future upgrades.

Install Greenplum Database
minor releases, for example 5.
0.x.

Recommended frequency:
quarterly

Severity: IMPORTANT

Follow upgrade instructions in the
Greenplum Database Release
Notes. Always upgrade to the
latest in the series.

Keep the Greenplum Database
software current to incorporate
bug fixes, performance
enhancements, and feature
enhancements into your
Greenplum cluster.

Greenplum Database Administrator Guide Release Notes

246

Managing Greenplum Database Access
Securing Greenplum Database includes protecting access to the database through network configuration,
database user authentication, and encryption.

This section contains the following topics:

• Configuring Client Authentication

• Using LDAP Authentication with TLS/SSL
• Using Kerberos Authentication

• Managing Roles and Privileges

Configuring Client Authentication
This topic explains how to configure client connections and authentication for Greenplum Database.

When a Greenplum Database system is first initialized, the system contains one predefined superuser
role. This role will have the same name as the operating system user who initialized the Greenplum
Database system. This role is referred to as gpadmin. By default, the system is configured to only allow
local connections to the database from the gpadmin role. If you want to allow any other roles to connect,
or if you want to allow connections from remote hosts, you have to configure Greenplum Database to
allow such connections. This section explains how to configure client connections and authentication to
Greenplum Database.

Allowing Connections to Greenplum Database
Client access and authentication is controlled by the standard PostgreSQL host-based authentication
file, pg_hba.conf. For detailed information about this file, see The pg_hba.conf File in the PostgreSQL
documentation.

In Greenplum Database, the pg_hba.conf file of the master instance controls client access and
authentication to your Greenplum Database system. The Greenplum Database segments also have
pg_hba.conf files, but these are already correctly configured to allow only client connections from the
master host. The segments never accept outside client connections, so there is no need to alter the
pg_hba.conf file on segments.

The general format of the pg_hba.conf file is a set of records, one per line. Greenplum Database ignores
blank lines and any text after the # comment character. A record consists of a number of fields that are
separated by spaces or tabs. Fields can contain white space if the field value is quoted. Records cannot be
continued across lines. Each remote client access record has the following format:

host database role address authentication-method

Each UNIX-domain socket access record is in this format:

local database role authentication-method

The following table describes meaning of each field.

Table 36: pg_hba.conf Fields

Field Description

local Matches connection attempts using UNIX-domain sockets. Without a record of
this type, UNIX-domain socket connections are disallowed.

https://www.postgresql.org/docs/9.4/auth-pg-hba-conf.html

Greenplum Database Administrator Guide Release Notes

247

Field Description

host Matches connection attempts made using TCP/IP. Remote TCP/IP
connections will not be possible unless the server is started with an
appropriate value for the listen_addresses server configuration
parameter.

hostssl Matches connection attempts made using TCP/IP, but only when the
connection is made with SSL encryption. SSL must be enabled at server start
time by setting the ssl server configuration parameter.

hostnossl Matches connection attempts made over TCP/IP that do not use SSL.

database Specifies which database names this record matches. The value all specifies
that it matches all databases. Multiple database names can be supplied by
separating them with commas. A separate file containing database names can
be specified by preceding the file name with a @.

role Specifies which database role names this record matches. The value all
specifies that it matches all roles. If the specified role is a group and you
want all members of that group to be included, precede the role name with
a +. Multiple role names can be supplied by separating them with commas.
A separate file containing role names can be specified by preceding the file
name with a @.

Greenplum Database Administrator Guide Release Notes

248

Field Description

address Specifies the client machine addresses that this record matches. This field can
contain an IP address, an IP address range, or a host name.

An IP address range is specified using standard numeric notation for the
range's starting address, then a slash (/) and a CIDR mask length. The mask
length indicates the number of high-order bits of the client IP address that
must match. Bits to the right of this should be zero in the given IP address.
 There must not be any white space between the IP address, the /, and the
CIDR mask length.

Typical examples of an IPv4 address range specified this way are 172.20.
143.89/32 for a single host, or 172.20.143.0/24 for a small network,
or 10.6.0.0/16 for a larger one. An IPv6 address range might look like
::1/128 for a single host (in this case the IPv6 loopback address) or
fe80::7a31:c1ff:0000:0000/96 for a small network. 0.0.0.0/0
represents all IPv4 addresses, and ::0/0 represents all IPv6 addresses. To
specify a single host, use a mask length of 32 for IPv4 or 128 for IPv6. In a
network address, do not omit trailing zeroes.

An entry given in IPv4 format will match only IPv4 connections, and an entry
given in IPv6 format will match only IPv6 connections, even if the represented
address is in the IPv4-in-IPv6 range.

Note: Entries in IPv6 format will be rejected if the host system C
library does not have support for IPv6 addresses.

If a host name is specified (an address that is not an IP address or IP range
is treated as a host name), that name is compared with the result of a reverse
name resolution of the client IP address (for example, reverse DNS lookup,
if DNS is used). Host name comparisons are case insensitive. If there is a
match, then a forward name resolution (for example, forward DNS lookup) is
performed on the host name to check whether any of the addresses it resolves
to are equal to the client IP address. If both directions match, then the entry is
considered to match.

Some host name databases allow associating an IP address with multiple host
names, but the operating system only returns one host name when asked to
resolve an IP address. The host name that is used in pg_hba.conf must be
the one that the address-to-name resolution of the client IP address returns,
otherwise the line will not be considered a match.

When host names are specified in pg_hba.conf, you should ensure that
name resolution is reasonably fast. It can be of advantage to set up a local
name resolution cache such as nscd. Also, you can enable the server
configuration parameter log_hostname to see the client host name instead
of the IP address in the log.

IP-address

IP-mask

These fields can be used as an alternative to the CIDR address notation.
Instead of specifying the mask length, the actual mask is specified in a
separate column. For example, 255.0.0.0 represents an IPv4 CIDR mask
length of 8, and 255.255.255.255 represents a CIDR mask length of 32.

authentication-method Specifies the authentication method to use when connecting. Greenplum
supports the authentication methods supported by PostgreSQL 9.4.

Caution: For a more secure system, consider removing records for remote connections that use
trust authentication from the pg_hba.conf file. Trust authentication grants any user who can
connect to the server access to the database using any role they specify. You can safely replace

https://www.postgresql.org/docs/9.4/auth-methods.html

Greenplum Database Administrator Guide Release Notes

249

trust authentication with ident authentication for local UNIX-socket connections. You can also use
ident authentication for local and remote TCP clients, but the client host must be running an ident
service and you must trust the integrity of that machine.

Editing the pg_hba.conf File

Initially, the pg_hba.conf file is set up with generous permissions for the gpadmin user and no database
access for other Greenplum Database roles. You will need to edit the pg_hba.conf file to enable
users' access to databases and to secure the gpadmin user. Consider removing entries that have trust
authentication, since they allow anyone with access to the server to connect with any role they choose.
For local (UNIX socket) connections, use ident authentication, which requires the operating system user
to match the role specified. For local and remote TCP connections, ident authentication requires the
client's host to run an indent service. You can install an ident service on the master host and then use
ident authentication for local TCP connections, for example 127.0.0.1/28. Using ident authentication for
remote TCP connections is less secure because it requires you to trust the integrity of the ident service on
the client's host.

This example shows how to edit the pg_hba.conf file of the master to allow remote client access to all
databases from all roles using encrypted password authentication.

Editing pg_hba.conf
1. Open the file $MASTER_DATA_DIRECTORY/pg_hba.conf in a text editor.
2. Add a line to the file for each type of connection you want to allow. Records are read sequentially,

so the order of the records is significant. Typically, earlier records will have tight connection match
parameters and weaker authentication methods, while later records will have looser match parameters
and stronger authentication methods. For example:

allow the gpadmin user local access to all databases
using ident authentication
local all gpadmin ident sameuser
host all gpadmin 127.0.0.1/32 ident
host all gpadmin ::1/128 ident
allow the 'dba' role access to any database from any
host with IP address 192.168.x.x and use md5 encrypted
passwords to authenticate the user
Note that to use SHA-256 encryption, replace md5 with
password in the line below
host all dba 192.168.0.0/32 md5
allow all roles access to any database from any
host and use ldap to authenticate the user. Greenplum role
names must match the LDAP common name.
host all all 192.168.0.0/32 ldap ldapserver=usldap1 ldapport=1389
 ldapprefix="cn=" ldapsuffix=",ou=People,dc=company,dc=com"

3. Save and close the file.
4. Reload the pg_hba.conf configuration file for your changes to take effect:

$ gpstop -u

Note: Note that you can also control database access by setting object privileges as described
in Managing Object Privileges. The pg_hba.conf file just controls who can initiate a database
session and how those connections are authenticated.

Greenplum Database Administrator Guide Release Notes

250

Limiting Concurrent Connections
Greenplum Database allocates some resources on a per-connection basis, so setting the maximum
number of connections allowed is recommended.

To limit the number of active concurrent sessions to your Greenplum Database system, you can configure
the max_connections server configuration parameter. This is a local parameter, meaning that you
must set it in the postgresql.conf file of the master, the standby master, and each segment instance
(primary and mirror). The recommended value of max_connections on segments is 5-10 times the value
on the master.

When you set max_connections, you must also set the dependent parameter
max_prepared_transactions. This value must be at least as large as the value of max_connections
on the master, and segment instances should be set to the same value as the master.

For example:

• In $MASTER_DATA_DIRECTORY/postgresql.conf (including standby master):

max_connections=100
max_prepared_transactions=100

• In SEGMENT_DATA_DIRECTORY/postgresql.conf for all segment instances:

max_connections=500
max_prepared_transactions=100

The following steps set the parameter values with the Greenplum Database utility gpconfig.

For information about gpconfig, see the Greenplum Database Utility Guide.

To change the number of allowed connections
1. Log into the Greenplum Database master host as the Greenplum Database administrator and source

the file $GPHOME/greenplum_path.sh.
2. Set the value of the max_connections parameter. This gpconfig command sets the value on the

segments to 1000 and the value on the master to 200.

$ gpconfig -c max_connections -v 1000 -m 200

The value on the segments must be greater than the value on the master. The recommended value of
max_connections on segments is 5-10 times the value on the master.

3. Set the value of the max_prepared_transactions parameter. This gpconfig command sets the
value to 200 on the master and all segments.

$ gpconfig -c max_prepared_transactions -v 200

The value of max_prepared_transactions must be greater than or equal to max_connections
on the master.

4. Stop and restart your Greenplum Database system.

$ gpstop -r

5. You can check the value of parameters on the master and segments with the gpconfig -s option.
This gpconfig command displays the values of the max_connections parameter.

$ gpconfig -s max_connections

Greenplum Database Administrator Guide Release Notes

251

Note: Raising the values of these parameters may cause Greenplum Database to request more
shared memory. To mitigate this effect, consider decreasing other memory-related parameters such
as gp_cached_segworkers_threshold.

Encrypting Client/Server Connections
Enable SSL for client connections to Greenplum Database to encrypt the data passed over the network
between the client and the database.

Greenplum Database has native support for SSL connections between the client and the master server.
SSL connections prevent third parties from snooping on the packets, and also prevent man-in-the-middle
attacks. SSL should be used whenever the client connection goes through an insecure link, and must be
used whenever client certificate authentication is used.

Enabling Greenplum Database in SSL mode requires the following items.

• OpenSSL installed on both the client and the master server hosts (master and standby master).
• The SSL files server.key (server private key) and server.crt (server certificate) should be

correctly generated for the master host and standby master host.

• The private key should not be protected with a passphrase. The server does not prompt for a
passphrase for the private key, and Greenplum Database start up fails with an error if one is
required.

• On a production system, there should be a key and certificate pair for the master host and a pair for
the standby master host with a subject CN (Common Name) for the master host and standby master
host.

A self-signed certificate can be used for testing, but a certificate signed by a certificate authority (CA)
should be used in production, so the client can verify the identity of the server. Either a global or local
CA can be used. If all the clients are local to the organization, a local CA is recommended.

• Ensure that Greenplum Database can access server.key and server.crt, and any additional
authentication files such as root.crt (for trusted certificate authorities). When starting in SSL mode,
the Greenplum Database master looks for server.key and server.crt. As the default, Greenplum
Database does not start if the files are not in the master data directory ($MASTER_DATA_DIRECTORY).
Also, if you use other SSL authentication files such as root.crt (trusted certificate authorities), the
files must be on the master host.

If Greenplum Database master mirroring is enabled with SSL client authentication, SSL authentication
files must be on both the master host and standby master host and should not be placed in the default
directory $MASTER_DATA_DIRECTORY. When master mirroring is enabled, an initstandby operation
copies the contents of the $MASTER_DATA_DIRECTORY from the master to the standby master and the
incorrect SSL key, and cert files (the master files, and not the standby master files) will prevent standby
master start up.

You can specify a different directory for the location of the SSL server files with the postgresql.conf
parameters sslcert, sslkey, sslrootcert, and sslcrl. For more information about the
parameters, see SSL Client Authentication in the Security Configuration Guide.

Greenplum Database can be started with SSL enabled by setting the server configuration parameter
ssl=on in the postgresql.conf file on the master and standby master hosts. This gpconfig
command sets the parameter:

gpconfig -c ssl -m on -v off

Setting the parameter requires a server restart. This command restarts the system: gpstop -ra.

Greenplum Database Administrator Guide Release Notes

252

Creating a Self-signed Certificate without a Passphrase for Testing Only

To create a quick self-signed certificate for the server for testing, use the following OpenSSL command:

openssl req -new -text -out server.req

Enter the information requested by the prompts. Be sure to enter the local host name as Common Name.
The challenge password can be left blank.

The program will generate a key that is passphrase protected, and does not accept a passphrase that is
less than four characters long.

To use this certificate with Greenplum Database, remove the passphrase with the following commands:

openssl rsa -in privkey.pem -out server.key
rm privkey.pem

Enter the old passphrase when prompted to unlock the existing key.

Then, enter the following command to turn the certificate into a self-signed certificate and to copy the key
and certificate to a location where the server will look for them.

openssl req -x509 -in server.req -text -key server.key -out server.crt

Finally, change the permissions on the key with the following command. The server will reject the file if the
permissions are less restrictive than these.

chmod og-rwx server.key

For more details on how to create your server private key and certificate, refer to the OpenSSL
documentation.

Using LDAP Authentication with TLS/SSL
You can control access to Greenplum Database with an LDAP server and, optionally, secure the
connection with encryption by adding parameters to pg_hba.conf file entries.

Greenplum Database supports LDAP authentication with the TLS/SSL protocol to encrypt communication
with an LDAP server:

• LDAP authentication with STARTTLS and TLS protocol – STARTTLS starts with a clear text connection
(no encryption) and upgrades it to a secure connection (with encryption).

• LDAP authentication with a secure connection and TLS/SSL (LDAPS) – Greenplum Database uses the
TLS or SSL protocol based on the protocol that is used by the LDAP server.

If no protocol is specified, Greenplum Database communicates with the LDAP server with a clear text
connection.

To use LDAP authentication, the Greenplum Database master host must be configured as an LDAP client.
See your LDAP documentation for information about configuring LDAP clients.

Enabing LDAP Authentication with STARTTLS and TLS
To enable STARTTLS with the TLS protocol, in the pg_hba.conf file, add an ldap line and specify the
ldaptls parameter with the value 1. The default port is 389. In this example, the authentication method
parameters include the ldaptls parameter.

ldap ldapserver=myldap.com ldaptls=1 ldapprefix="uid="
 ldapsuffix=",ou=People,dc=example,dc=com"

https://www.openssl.org/docs/
https://www.openssl.org/docs/

Greenplum Database Administrator Guide Release Notes

253

Specify a non-default port with the ldapport parameter. In this example, the authentication method
includes the ldaptls parameter and the ldapport parameter to specify the port 550.

ldap ldapserver=myldap.com ldaptls=1 ldapport=500 ldapprefix="uid="
 ldapsuffix=",ou=People,dc=example,dc=com"

Enabing LDAP Authentication with a Secure Connection and TLS/SSL
To enable a secure connection with TLS/SSL, add ldaps:// as the prefix to the LDAP server name
specified in the ldapserver parameter. The default port is 636.

This example ldapserver parameter specifies a secure connection and the TLS/SSL protocol for the
LDAP server myldap.com.

ldapserver=ldaps://myldap.com

To specify a non-default port, add a colon (:) and the port number after the LDAP server name. This
example ldapserver parameter includes the ldaps:// prefix and the non-default port 550.

ldapserver=ldaps://myldap.com:550

Configuring Authentication with a System-wide OpenLDAP System
If you have a system-wide OpenLDAP system and logins are configured to use LDAP with TLS or SSL in
the pg_hba.conf file, logins may fail with the following message:

could not start LDAP TLS session: error code '-11'

To use an existing OpenLDAP system for authentication, Greenplum Database must be set up to use
the LDAP server's CA certificate to validate user certificates. Follow these steps on both the master and
standby hosts to configure Greenplum Database:

1. Copy the base64-encoded root CA chain file from the Active Directory or LDAP server to the
Greenplum Database master and standby master hosts. This example uses the directory /etc/pki/
tls/certs.

2. Change to the directory where you copied the CA certificate file and, as the root user, generate the
hash for OpenLDAP:

cd /etc/pki/tls/certs
openssl x509 -noout -hash -in <ca-certificate-file>
ln -s <ca-certificate-file> <ca-certificate-file>.0

3. Configure an OpenLDAP configuration file for Greenplum Database with the CA certificate directory and
certificate file specified.

As the root user, edit the OpenLDAP configuration file /etc/openldap/ldap.conf:

SASL_NOCANON on
 URI ldaps://ldapA.example.priv ldaps://ldapB.example.priv ldaps://
ldapC.example.priv
 BASE dc=example,dc=priv
 TLS_CACERTDIR /etc/pki/tls/certs
 TLS_CACERT /etc/pki/tls/certs/<ca-certificate-file>

Note: For certificate validation to succeed, the hostname in the certificate must match a
hostname in the URI property. Otherwise, you must also add TLS_REQCERT allow to the file.

Greenplum Database Administrator Guide Release Notes

254

4. As the gpadmin user, edit /usr/local/greenplum-db/greenplum_path.sh and add the
following line.

export LDAPCONF=/etc/openldap/ldap.conf

Notes
Greenplum Database logs an error if the following are specified in an pg_hba.conf file entry:

• If both the ldaps:// prefix and the ldaptls=1 parameter are specified.
• If both the ldaps:// prefix and the ldapport parameter are specified.

Enabling encrypted communication for LDAP authentication only encrypts the communication between
Greenplum Database and the LDAP server.

See Encrypting Client/Server Connections for information about encrypting client connections.

Examples
These are example entries from an pg_hba.conf file.

This example specifies LDAP authentication with no encryption between Greenplum Database and the
LDAP server.

host all plainuser 0.0.0.0/0 ldap ldapserver=myldap.com ldapprefix="uid="
 ldapsuffix=",ou=People,dc=example,dc=com"

This example specifies LDAP authentication with the STARTTLS and TLS protocol between Greenplum
Database and the LDAP server.

host all tlsuser 0.0.0.0/0 ldap ldapserver=myldap.com ldaptls=1
 ldapprefix="uid=" ldapsuffix=",ou=People,dc=example,dc=com"

This example specifies LDAP authentication with a secure connection and TLS/SSL protocol between
Greenplum Database and the LDAP server.

host all ldapsuser 0.0.0.0/0 ldap ldapserver=ldaps://myldap.com
 ldapprefix="uid=" ldapsuffix=",ou=People,dc=example,dc=com"

Using Kerberos Authentication
You can control access to Greenplum Database with a Kerberos authentication server.

Greenplum Database supports the Generic Security Service Application Program Interface (GSSAPI)
with Kerberos authentication. GSSAPI provides automatic authentication (single sign-on) for systems that
support it. You specify the Greenplum Database users (roles) that require Kerberos authentication in the
Greenplum Database configuration file pg_hba.conf. The login fails if Kerberos authentication is not
available when a role attempts to log in to Greenplum Database.

Kerberos provides a secure, encrypted authentication service. It does not encrypt data exchanged between
the client and database and provides no authorization services. To encrypt data exchanged over the
network, you must use an SSL connection. To manage authorization for access to Greenplum databases
and objects such as schemas and tables, you use settings in the pg_hba.conf file and privileges given to
Greenplum Database users and roles within the database. For information about managing authorization
privileges, see Managing Roles and Privileges.

For more information about Kerberos, see http://web.mit.edu/kerberos/.

http://web.mit.edu/kerberos/

Greenplum Database Administrator Guide Release Notes

255

Prerequisites
Before configuring Kerberos authentication for Greenplum Database, ensure that:

• You can identify the KDC server you use for Kerberos authentication and the Kerberos realm for your
Greenplum Database system. If you have not yet configured your MIT Kerberos KDC server, see
Installing and Configuring a Kerberos KDC Server for example instructions.

• System time on the Kerberos Key Distribution Center (KDC) server and Greenplum Database master is
synchronized. (For example, install the ntp package on both servers.)

• Network connectivity exists between the KDC server and the Greenplum Database master host.
• Java 1.7.0_17 or later is installed on all Greenplum Database hosts. Java 1.7.0_17 is required to use

Kerberos-authenticated JDBC on Red Hat Enterprise Linux 6.x or 7.x.

Procedure
Following are the tasks to complete to set up Kerberos authentication for Greenplum Database.

• Creating Greenplum Database Principals in the KDC Database
• Installing the Kerberos Client on the Master Host
• Configuring Greenplum Database to use Kerberos Authentication
• Mapping Kerberos Principals to Greenplum Database Roles
• Configuring JDBC Kerberos Authentication for Greenplum Database
• Configuring Kerberos for Linux Clients
• Configuring Kerberos For Windows Clients

Creating Greenplum Database Principals in the KDC Database

Create a service principal for the Greenplum Database service and a Kerberos admin principal that allows
managing the KDC database as the gpadmin user.

1. Log in to the Kerberos KDC server as the root user.

$ ssh root@<kdc-server>

2. Create a principal for the Greenplum Database service.

kadmin.local -q "addprinc -randkey postgres/mdw@GPDB.KRB"

The -randkey option prevents the command from prompting for a password.

The postgres part of the principal names matches the value of the Greenplum Database
krb_srvname server configuration parameter, which is postgres by default.

The host name part of the principal name must match the output of the hostname command on the
Greenplum Database master host. If the hostname command shows the fully qualified domain name
(FQDN), use it in the principal name, for example postgres/mdw.example.com@GPDB.KRB.

The GPDB.KRB part of the principal name is the Kerberos realm name.
3. Create a principal for the gpadmin/admin role.

kadmin.local -q "addprinc gpadmin/admin@GPDB.KRB"

This principal allows you to manage the KDC database when you are logged in as gpadmin. Make sure
that the Kerberos kadm.acl configuration file contains an ACL to grant permissions to this principal.
For example, this ACL grants all permissions to any admin user in the GPDB.KRB realm.

*/admin@GPDB.KRB *

Greenplum Database Administrator Guide Release Notes

256

4. Create a keytab file with kadmin.local. The following example creates a keytab file gpdb-
kerberos.keytab in the current directory with authentication information for the Greenplum Database
service principal and the gpadmin/admin principal.

kadmin.local -q "ktadd -k gpdb-kerberos.keytab postgres/mdw@GPDB.KRB
 gadmin/admin@GPDB.KRB"

5. Copy the keytab file to the master host.

scp gpdb-kerberos.keytab gpadmin@mdw:~

Installing the Kerberos Client on the Master Host

Install the Kerberos client utilities and libraries on the Greenplum Database master.

1. Install the Kerberos packages on the Greenplum Database master.

$ sudo yum install krb5-libs krb5-workstation

2. Copy the /etc/krb5.conf file from the KDC server to /etc/krb5.conf on the Greenplum Master
host.

Configuring Greenplum Database to use Kerberos Authentication

Configure Greenplum Database to use Kerberos.

1. Log in to the Greenplum Database master host as the gpadmin user.

$ ssh gpadmin@<master>
$ source /usr/local/greenplum-db/greenplum_path.sh

2. Set the ownership and permissions of the keytab file you copied from the KDC server.

$ chown gpadmin:gpadmin /home/gpadmin/gpdb-kerberos.keytab
$ chmod 400 /home/gpadmin/gpdb-kerberos.keytab

3. Configure the location of the keytab file by setting the Greenplum Database krb_server_keyfile
server configuration parameter. This gpconfig command specifies the folder /home/gpadmin as the
location of the keytab file gpdb-kerberos.keytab.

$ gpconfig -c krb_server_keyfile -v '/home/gpadmin/gpdb-kerberos.keytab'

4. Modify the Greenplum Database file pg_hba.conf to enable Kerberos support. For example, adding
the following line to pg_hba.conf adds GSSAPI and Kerberos authentication support for connection
requests from all users and hosts on the same network to all Greenplum Database databases.

host all all 0.0.0.0/0 gss include_realm=0 krb_realm=GPDB.KRB

Setting the krb_realm option to a realm name ensures that only users from that realm can
successfully authenticate with Kerberos. Setting the include_realm option to 0 excludes the realm
name from the authenticated user name. For information about the pg_hba.conf file, see The
pg_hba.conf file in the PostgreSQL documentation.

5. Restart Greenplum Database after updating the krb_server_keyfile parameter and the
pg_hba.conf file.

$ gpstop -ar

6. Create the gpadmin/admin Greenplum Database superuser role.

$ createuser gpadmin/admin

https://www.postgresql.org/docs/9.4/auth-pg-hba-conf.html
https://www.postgresql.org/docs/9.4/auth-pg-hba-conf.html

Greenplum Database Administrator Guide Release Notes

257

Shall the new role be a superuser? (y/n) y

The Kerberos keys for this database role are in the keyfile you copied from the KDC server.
7. Create a ticket using kinit and show the tickets in the Kerberos ticket cache with klist.

$ LD_LIBRARY_PATH= kinit -k -t /home/gpadmin/gpdb-kerberos.keytab gpadmin/
admin@GPDB.KRB
$ LD_LIBRARY_PATH= klist
Ticket cache: FILE:/tmp/krb5cc_1000
Default principal: gpadmin/admin@GPDB.KRB

Valid starting Expires Service principal
06/13/2018 17:37:35 06/14/2018 17:37:35 krbtgt/GPDB.KRB@GPDB.KRB

Note: When you set up the Greenplum Database environment by sourcing the greenplum-
db_path.sh script, the LD_LIBRARY_PATH environment variable is set to include the
Greenplum Database lib directory, which includes Kerberos libraries. This may cause
Kerberos utility commands such as kinit and klist to fail due to version conflicts. The
solution is to run Kerberos utilities before you source the greenplum-db_path.sh file or
temporarily unset the LD_LIBRARY_PATH variable when you execute Kerberos utilities, as
shown in the example.

8. As a test, log in to the postgres database with the gpadmin/admin role:

$ psql -U "gpadmin/admin" -h mdw postgres
psql (9.4.20)
Type "help" for help.

postgres=# select current_user;
 current_user

 gpadmin/admin
(1 row)

Note: When you start psql on the master host, you must include the -h <master-
hostname> option to force a TCP connection because Kerberos authentication does not work
with local connections.

If a Kerberos principal is not a Greenplum Database user, a message similar to the following is displayed
from the psql command line when the user attempts to log in to the database:

psql: krb5_sendauth: Bad response

The principal must be added as a Greenplum Database user.

Mapping Kerberos Principals to Greenplum Database Roles

To connect to a Greenplum Database system with Kerberos authentication enabled, a user first requests
a ticket-granting ticket from the KDC server using the kinit utility with a password or a keytab file
provided by the Kerberos admin. When the user then connects to the Kerberos-enabled Greenplum
Database system, the user's Kerberos principle name will be the Greenplum Database role name, subject
to transformations specified in the options field of the gss entry in the Greenplum Database pg_hba.conf
file:

• If the krb_realm=<realm> option is present, Greenplum Database only accepts Kerberos principals
who are members pf the specified realm.

• If the include_realm=0 option is specified, the Greenplum Database role name is the Kerberos
principal name without the Kerberos realm. If the include_realm=1 option is instead specified, the
Kerberos realm is not stripped from the Greenplum Database rolename. The role must have been
created with the Greenplum Database CREATE ROLE command.

Greenplum Database Administrator Guide Release Notes

258

• If the map=<map-name> option is specified, the Kerberos principal name is compared to entries
labeled with the specified <map-name> in the $MASTER_DATA_DIRECTORY/pg_ident.conf file and
replaced with the Greenplum Database role name specified in the first matching entry.

A user name map is defined in the $MASTER_DATA_DIRECTORY/pg_ident.conf configuration file. This
example defines a map named mymap with two entries.

MAPNAME SYSTEM-USERNAME GP-USERNAME
mymap /^admin@GPDB.KRB$ gpadmin
mymap /^(.*)_gp)@GPDB.KRB$ \1

The map name is specified in the pg_hba.conf Kerberos entry in the options field:

host all all 0.0.0.0/0 gss include_realm=0 krb_realm=GPDB.KRB map=mymap

The first map entry matches the Kerberos principal admin@GPDB.KRB and replaces it with the Greenplum
Database gpadmin role name. The second entry uses a wildcard to match any Kerberos principal in the
GPDB-KRB realm with a name ending with the characters _gp and replaces it with the initial portion of the
principal name. Greenplum Database applies the first matching map entry in the pg_ident.conf file, so
the order of entries is significant.

For more information about using username maps see Username maps in the PostgreSQL documentation.

Configuring JDBC Kerberos Authentication for Greenplum Database
Enable Kerberos-authenticated JDBC access to Greenplum Database.

You can configure Greenplum Database to use Kerberos to run user-defined Java functions.

1. Ensure that Kerberos is installed and configured on the Greenplum Database master. See Installing the
Kerberos Client on the Master Host.

2. Create the file .java.login.config in the folder /home/gpadmin and add the following text to the
file:

pgjdbc {
 com.sun.security.auth.module.Krb5LoginModule required
 doNotPrompt=true
 useTicketCache=true
 debug=true
 client=true;
};

3. Create a Java application that connects to Greenplum Database using Kerberos authentication. The
following example database connection URL uses a PostgreSQL JDBC driver and specifies parameters
for Kerberos authentication:

jdbc:postgresql://mdw:5432/mytest?kerberosServerName=postgres
&jaasApplicationName=pgjdbc&user=gpadmin/gpdb-kdc

The parameter names and values specified depend on how the Java application performs Kerberos
authentication.

4. Test the Kerberos login by running a sample Java application from Greenplum Database.

Installing and Configuring a Kerberos KDC Server
Steps to set up a Kerberos Key Distribution Center (KDC) server on a Red Hat Enterprise Linux host for
use with Greenplum Database.

If you do not already have a KDC, follow these steps to install and configure a KDC server on a Red Hat
Enterprise Linux host with a GPDB.KRB realm. The host name of the KDC server in this example is gpdb-
kdc.

https://www.postgresql.org/docs/9.4/auth-username-maps.html

Greenplum Database Administrator Guide Release Notes

259

1. Install the Kerberos server and client packages:

$ sudo yum install krb5-libs krb5-server krb5-workstation

2. Edit the /etc/krb5.conf configuration file. The following example shows a Kerberos server
configured with a default GPDB.KRB realm.

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 default_realm = GPDB.KRB
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true
 default_tgs_enctypes = aes128-cts des3-hmac-sha1 des-cbc-crc des-cbc-md5
 default_tkt_enctypes = aes128-cts des3-hmac-sha1 des-cbc-crc des-cbc-md5
 permitted_enctypes = aes128-cts des3-hmac-sha1 des-cbc-crc des-cbc-md5

[realms]
 GPDB.KRB = {
 kdc = gpdb-kdc:88
 admin_server = gpdb-kdc:749
 default_domain = gpdb.krb
 }

[domain_realm]
 .gpdb.krb = GPDB.KRB
 gpdb.krb = GPDB.KRB

[appdefaults]
 pam = {
 debug = false
 ticket_lifetime = 36000
 renew_lifetime = 36000
 forwardable = true
 krb4_convert = false
 }

The kdc and admin_server keys in the [realms] section specify the host (gpdb-kdc) and port
where the Kerberos server is running. IP numbers can be used in place of host names.

If your Kerberos server manages authentication for other realms, you would instead add the GPDB.KRB
realm in the [realms] and [domain_realm] section of the kdc.conf file. See the Kerberos
documentation for information about the kdc.conf file.

3. To create the Kerberos database, run the kdb5_util.

kdb5_util create -s

The kdb5_util create command creates the database to store keys for the Kerberos realms that are
managed by this KDC server. The -s option creates a stash file. Without the stash file, every time the
KDC server starts it requests a password.

4. Add an administrative user to the KDC database with the kadmin.local utility. Because it does
not itself depend on Kerberos authentication, the kadmin.local utility allows you to add an initial

http://web.mit.edu/kerberos/krb5-latest/doc/
http://web.mit.edu/kerberos/krb5-latest/doc/

Greenplum Database Administrator Guide Release Notes

260

administrative user to the local Kerberos server. To add the user gpadmin as an administrative user to
the KDC database, run the following command:

kadmin.local -q "addprinc gpadmin/admin"

Most users do not need administrative access to the Kerberos server. They can use kadmin to manage
their own principals (for example, to change their own password). For information about kadmin, see
the Kerberos documentation.

5. If needed, edit the /var/kerberos/krb5kdc/kadm5.acl file to grant the appropriate permissions to
gpadmin.

6. Start the Kerberos daemons:

/sbin/service krb5kdc start#
/sbin/service kadmin start

7. To start Kerberos automatically upon restart:

/sbin/chkconfig krb5kdc on
/sbin/chkconfig kadmin on

Configuring Kerberos for Linux Clients
You can configure Linux client applications to connect to a Greenplum Database system that is configured
to authenticate with Kerberos.

If your JDBC application on Red Hat Enterprise Linux uses Kerberos authentication when it connects to
your Greenplum Database, your client system must be configured to use Kerberos authentication. If you
are not using Kerberos authentication to connect to a Greenplum Database, Kerberos is not needed on
your client system.

• Requirements
• Setting Up Client System with Kerberos Authentication
• Running a Java Application

For information about enabling Kerberos authentication with Greenplum Database, see the chapter
"Setting Up Kerberos Authentication" in the Greenplum Database Administrator Guide.

Requirements

The following are requirements to connect to a Greenplum Database that is enabled with Kerberos
authentication from a client system with a JDBC application.

• Prerequisites
• Required Software on the Client Machine

Prerequisites

• Kerberos must be installed and configured on the Greenplum Database master host.

Important: Greenplum Database must be configured so that a remote user can connect
to Greenplum Database with Kerberos authentication. Authorization to access Greenplum
Database is controlled by the pg_hba.conf file. For details, see "Editing the pg_hba.conf
File" in the Greenplum Database Administration Guide, and also see the Greenplum Database
Security Configuration Guide.

• The client system requires the Kerberos configuration file krb5.conf from the Greenplum Database
master.

• The client system requires a Kerberos keytab file that contains the authentication credentials for the
Greenplum Database user that is used to log into the database.

• The client machine must be able to connect to Greenplum Database master host.

http://web.mit.edu/kerberos/krb5-latest/doc/

Greenplum Database Administrator Guide Release Notes

261

If necessary, add the Greenplum Database master host name and IP address to the system hosts file.
On Linux systems, the hosts file is in /etc.

Required Software on the Client Machine

• The Kerberos kinit utility is required on the client machine. The kinit utility is available when you
install the Kerberos packages:

• krb5-libs
• krb5-workstation

Note: When you install the Kerberos packages, you can use other Kerberos utilities such as
klist to display Kerberos ticket information.

Java applications require this additional software:

• Java JDK

Java JDK 1.7.0_17 is supported on Red Hat Enterprise Linux 6.x.
• Ensure that JAVA_HOME is set to the installation directory of the supported Java JDK.

Setting Up Client System with Kerberos Authentication

To connect to Greenplum Database with Kerberos authentication requires a Kerberos ticket. On client
systems, tickets are generated from Kerberos keytab files with the kinit utility and are stored in a cache
file.

1. Install a copy of the Kerberos configuration file krb5.conf from the Greenplum Database master. The
file is used by the Greenplum Database client software and the Kerberos utilities.

Install krb5.conf in the directory /etc.

If needed, add the parameter default_ccache_name to the [libdefaults] section of the
krb5.ini file and specify location of the Kerberos ticket cache file on the client system.

2. Obtain a Kerberos keytab file that contains the authentication credentials for the Greenplum Database
user.

3. Run kinit specifying the keytab file to create a ticket on the client machine. For this example, the
keytab file gpdb-kerberos.keytab is in the current directory. The ticket cache file is in the gpadmin
user home directory.

> kinit -k -t gpdb-kerberos.keytab -c /home/gpadmin/cache.txt
 gpadmin/kerberos-gpdb@KRB.EXAMPLE.COM

Running psql

From a remote system, you can access a Greenplum Database that has Kerberos authentication enabled.

To connect to Greenplum Database with psql
1. As the gpadmin user, open a command window.
2. Start psql from the command window and specify a connection to the Greenplum Database specifying

the user that is configured with Kerberos authentication.

The following example logs into the Greenplum Database on the machine kerberos-gpdb as the
gpadmin user with the Kerberos credentials gpadmin/kerberos-gpdb:

$ psql -U "gpadmin/kerberos-gpdb" -h kerberos-gpdb postgres

Greenplum Database Administrator Guide Release Notes

262

Running a Java Application

Accessing Greenplum Database from a Java application with Kerberos authentication uses the Java
Authentication and Authorization Service (JAAS)

1. Create the file .java.login.config in the user home folder.

For example, on a Linux system, the home folder is similar to /home/gpadmin.

Add the following text to the file:

pgjdbc {
 com.sun.security.auth.module.Krb5LoginModule required
 doNotPrompt=true
 useTicketCache=true
 ticketCache = "/home/gpadmin/cache.txt"
 debug=true
 client=true;
};

2. Create a Java application that connects to Greenplum Database using Kerberos authentication and run
the application as the user.

This example database connection URL uses a PostgreSQL JDBC driver and specifies parameters for
Kerberos authentication.

jdbc:postgresql://kerberos-gpdb:5432/mytest?
 kerberosServerName=postgres&jaasApplicationName=pgjdbc&
 user=gpadmin/kerberos-gpdb

The parameter names and values specified depend on how the Java application performs Kerberos
authentication.

Configuring Kerberos For Windows Clients
You can configure Microsoft Windows client applications to connect to a Greenplum Database system that
is configured to authenticate with Kerberos.

When a Greenplum Database system is configured to authenticate with Kerberos, you can configure
Kerberos authentication for the Greenplum Database client utilities gpload and psql on a Microsoft
Windows system. The Greenplum Database clients authenticate with Kerberos directly.

This section contains the following information.

• Installing and Configuring Kerberos on a Windows System
• Running the psql Utility
• Example gpload YAML File
• Creating a Kerberos Keytab File
• Issues and Possible Solutions

These topics assume that the Greenplum Database system is configured to authenticate with Kerberos.
For information about configuring Greenplum Database with Kerberos authentication, refer to Using
Kerberos Authentication.

Installing and Configuring Kerberos on a Windows System

The kinit, kdestroy, and klist MIT Kerberos Windows client programs and supporting libraries are
installed on your system when you install the Greenplum Database Client and Load Tools package:

• kinit - generate a Kerberos ticket
• kdestroy - destroy active Kerberos tickets

Greenplum Database Administrator Guide Release Notes

263

• klist - list Kerberos tickets

You must configure Kerberos on the Windows client to authenticate with Greenplum Database:

1. Copy the Kerberos configuration file /etc/krb5.conf from the Greenplum Database master to the
Windows system, rename it to krb5.ini, and place it in the default Kerberos location on the Windows
system, C:\ProgramData\MIT\Kerberos5\krb5.ini. This directory may be hidden. This step
requires administrative privileges on the Windows client system. You may also choose to place the /
etc/krb5.ini file in a custom location. If you choose to do this, you must configure and set a system
environment variable named KRB5_CONFIG to the custom location.

2. Locate the [libdefaults] section of the krb5.ini file, and remove the entry identifying the location
of the Kerberos credentials cache file, default_ccache_name. This step requires administrative
privileges on the Windows client system.

This is an example configuration file with default_ccache_name removed. The [logging] section
is also removed.

[libdefaults]
 debug = true
 default_etypes = aes256-cts-hmac-sha1-96
 default_realm = EXAMPLE.LOCAL
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true

[realms]
 EXAMPLE.LOCAL = {
 kdc =bocdc.example.local
 admin_server = bocdc.example.local
 }

[domain_realm]
 .example.local = EXAMPLE.LOCAL
 example.local = EXAMPLE.LOCAL

3. Set up the Kerberos credential cache file. On the Windows system, set the environment variable
KRB5CCNAME to specify the file system location of the cache file. The file must be named krb5cache.
This location identifies a file, not a directory, and should be unique to each login on the server. When
you set KRB5CCNAME, you can specify the value in either a local user environment or within a session.
For example, the following command sets KRB5CCNAME in the session:

set KRB5CCNAME=%USERPROFILE%\krb5cache

4. Obtain your Kerberos principal and password or keytab file from your system administrator.
5. Generate a Kerberos ticket using a password or a keytab. For example, to generate a ticket using a

password:

kinit [<principal>]

To generate a ticket using a keytab (as described in Creating a Kerberos Keytab File):

kinit -k -t <keytab_filepath> [<principal>]

6. Set up the Greenplum clients environment:

set PGGSSLIB=gssapi
"c:\Program Files\Greenplum\greenplum-clients\greenplum_clients_path.bat"

Greenplum Database Administrator Guide Release Notes

264

Running the psql Utility

After you configure Kerberos and generate the Kerberos ticket on a Windows system, you can run the
Greenplum Database command line client psql.

If you get warnings indicating that the Console code page differs from Windows code page, you can run
the Windows utility chcp to change the code page. This is an example of the warning and fix:

psql -h prod1.example.local warehouse
psql (9.4.20)
WARNING: Console code page (850) differs from Windows code page (1252)
 8-bit characters might not work correctly. See psql reference
 page "Notes for Windows users" for details.
Type "help" for help.

warehouse=# \q

chcp 1252
Active code page: 1252

psql -h prod1.example.local warehouse
psql (9.4.20)
Type "help" for help.

Creating a Kerberos Keytab File

You can create and use a Kerberos keytab file to avoid entering a password at the command line or
listing a password in a script file when you connect to a Greenplum Database system, perhaps when
automating a scheduled Greenplum task such as gpload. You can create a keytab file with the Java JRE
keytab utility ktab. If you use AES256-CTS-HMAC-SHA1-96 encryption, you need to download and install
the Java extension Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files for
JDK/JRE from Oracle.

Note: You must enter the password to create a keytab file. The password is visible onscreen as
you enter it.

This example runs the Java ktab.exe program to create a keytab file (-a option) and list the keytab name
and entries (-l -e -t options).

C:\Users\dev1>"\Program Files\Java\jre1.8.0_77\bin"\ktab -a dev1
Password for dev1@EXAMPLE.LOCAL:your_password
Done!
Service key for dev1 is saved in C:\Users\dev1\krb5.keytab

C:\Users\dev1>"\Program Files\Java\jre1.8.0_77\bin"\ktab -l -e -t
Keytab name: C:\Users\dev1\krb5.keytab
KVNO Timestamp Principal
---- -------------- --
 4 13/04/16 19:14 dev1@EXAMPLE.LOCAL (18:AES256 CTS mode with HMAC SHA1-96)
 4 13/04/16 19:14 dev1@EXAMPLE.LOCAL (17:AES128 CTS mode with HMAC SHA1-96)
 4 13/04/16 19:14 dev1@EXAMPLE.LOCAL (16:DES3 CBC mode with SHA1-KD)
 4 13/04/16 19:14 dev1@EXAMPLE.LOCAL (23:RC4 with HMAC)

You can then generate a Kerberos ticket using a keytab with the following command:

kinit -kt dev1.keytab dev1

or

kinit -kt %USERPROFILE%\krb5.keytab dev1

Greenplum Database Administrator Guide Release Notes

265

Example gpload YAML File

When you initiate a gpload job to a Greenplum Database system using Kerberos authentication, you omit
the USER: property and value from the YAML control file.

This example gpload YAML control file named test.yaml does not include a USER: entry:

VERSION: 1.0.0.1
DATABASE: warehouse
HOST: prod1.example.local
PORT: 5432

GPLOAD:
 INPUT:
 - SOURCE:
 PORT_RANGE: [18080,18080]
 FILE:
 - /Users/dev1/Downloads/test.csv
 - FORMAT: text
 - DELIMITER: ','
 - QUOTE: '"'
 - ERROR_LIMIT: 25
 - LOG_ERRORS: true
 OUTPUT:
 - TABLE: public.test
 - MODE: INSERT
 PRELOAD:
 - REUSE_TABLES: true

These commands run kinit using a keytab file, run gpload.bat with the test.yaml file, and then
display successful gpload output.

kinit -kt %USERPROFILE%\krb5.keytab dev1

gpload.bat -f test.yaml
2016-04-10 16:54:12|INFO|gpload session started 2016-04-10 16:54:12
2016-04-10 16:54:12|INFO|started gpfdist -p 18080 -P 18080 -f "/Users/dev1/
Downloads/test.csv" -t 30
2016-04-10 16:54:13|INFO|running time: 0.23 seconds
2016-04-10 16:54:13|INFO|rows Inserted = 3
2016-04-10 16:54:13|INFO|rows Updated = 0
2016-04-10 16:54:13|INFO|data formatting errors = 0
2016-04-10 16:54:13|INFO|gpload succeeded

Issues and Possible Solutions

• This message indicates that Kerberos cannot find your Kerberos credentials cache file:

Credentials cache I/O operation failed XXX
(Kerberos error 193)
krb5_cc_default() failed

To ensure that Kerberos can find the file, set the environment variable KRB5CCNAME and run kinit.

set KRB5CCNAME=%USERPROFILE%\krb5cache
kinit

Greenplum Database Administrator Guide Release Notes

266

• This kinit message indicates that the kinit -k -t command could not find the keytab.

kinit: Generic preauthentication failure while getting initial credentials

Confirm that the full path and filename for the Kerberos keytab file is correct.

Managing Roles and Privileges
The Greenplum Database authorization mechanism stores roles and permissions to access database
objects in the database and is administered using SQL statements or command-line utilities.

Greenplum Database manages database access permissions using roles. The concept of roles subsumes
the concepts of users and groups. A role can be a database user, a group, or both. Roles can own
database objects (for example, tables) and can assign privileges on those objects to other roles to control
access to the objects. Roles can be members of other roles, thus a member role can inherit the object
privileges of its parent role.

Every Greenplum Database system contains a set of database roles (users and groups). Those roles are
separate from the users and groups managed by the operating system on which the server runs. However,
for convenience you may want to maintain a relationship between operating system user names and
Greenplum Database role names, since many of the client applications use the current operating system
user name as the default.

In Greenplum Database, users log in and connect through the master instance, which then verifies their
role and access privileges. The master then issues commands to the segment instances behind the
scenes as the currently logged in role.

Roles are defined at the system level, meaning they are valid for all databases in the system.

In order to bootstrap the Greenplum Database system, a freshly initialized system always contains one
predefined superuser role (also referred to as the system user). This role will have the same name as the
operating system user that initialized the Greenplum Database system. Customarily, this role is named
gpadmin. In order to create more roles you first have to connect as this initial role.

Security Best Practices for Roles and Privileges
• Secure the gpadmin system user. Greenplum requires a UNIX user id to install and initialize

the Greenplum Database system. This system user is referred to as gpadmin in the Greenplum
documentation. This gpadmin user is the default database superuser in Greenplum Database, as
well as the file system owner of the Greenplum installation and its underlying data files. This default
administrator account is fundamental to the design of Greenplum Database. The system cannot run
without it, and there is no way to limit the access of this gpadmin user id. Use roles to manage who has
access to the database for specific purposes. You should only use the gpadmin account for system
maintenance tasks such as expansion and upgrade. Anyone who logs on to a Greenplum host as this
user id can read, alter or delete any data; including system catalog data and database access rights.
Therefore, it is very important to secure the gpadmin user id and only provide access to essential
system administrators. Administrators should only log in to Greenplum as gpadmin when performing
certain system maintenance tasks (such as upgrade or expansion). Database users should never log
on as gpadmin, and ETL or production workloads should never run as gpadmin.

• Assign a distinct role to each user that logs in. For logging and auditing purposes, each user that is
allowed to log in to Greenplum Database should be given their own database role. For applications or
web services, consider creating a distinct role for each application or service. See Creating New Roles
(Users).

• Use groups to manage access privileges. See Role Membership.
• Limit users who have the SUPERUSER role attribute. Roles that are superusers bypass all access

privilege checks in Greenplum Database, as well as resource queuing. Only system administrators
should be given superuser rights. See Altering Role Attributes.

Greenplum Database Administrator Guide Release Notes

267

Creating New Roles (Users)
A user-level role is considered to be a database role that can log in to the database and initiate a database
session. Therefore, when you create a new user-level role using the CREATE ROLE command, you must
specify the LOGIN privilege. For example:

=# CREATE ROLE jsmith WITH LOGIN;

A database role may have a number of attributes that define what sort of tasks that role can perform in
the database. You can set these attributes when you create the role, or later using the ALTER ROLE
command. See Table 37: Role Attributes for a description of the role attributes you can set.

Altering Role Attributes

A database role may have a number of attributes that define what sort of tasks that role can perform in the
database.

Table 37: Role Attributes

Attributes Description

SUPERUSER | NOSUPERUSER Determines if the role is a superuser. You must yourself be a
superuser to create a new superuser. NOSUPERUSER is the default.

CREATEDB | NOCREATEDB Determines if the role is allowed to create databases. NOCREATEDB is
the default.

CREATEROLE | NOCREATEROLE Determines if the role is allowed to create and manage other roles.
NOCREATEROLE is the default.

INHERIT | NOINHERIT Determines whether a role inherits the privileges of roles it is a
member of. A role with the INHERIT attribute can automatically use
whatever database privileges have been granted to all roles it is
directly or indirectly a member of. INHERIT is the default.

LOGIN | NOLOGIN Determines whether a role is allowed to log in. A role having the
LOGIN attribute can be thought of as a user. Roles without this
attribute are useful for managing database privileges (groups).
 NOLOGIN is the default.

CONNECTION LIMIT
connlimit

If role can log in, this specifies how many concurrent connections the
role can make. -1 (the default) means no limit.

CREATEEXTTABLE |
NOCREATEEXTTABLE

Determines whether a role is allowed to create external
tables. NOCREATEEXTTABLE is the default. For a role with the
CREATEEXTTABLE attribute, the default external table type is
readable and the default protocol is gpfdist. Note that external
tables that use the file or execute protocols can only be created
by superusers.

PASSWORD 'password' Sets the role's password. If you do not plan to use password
authentication you can omit this option. If no password is specified,
the password will be set to null and password authentication will
always fail for that user. A null password can optionally be written
explicitly as PASSWORD NULL.

Greenplum Database Administrator Guide Release Notes

268

Attributes Description

ENCRYPTED | UNENCRYPTED Controls whether a new password is stored as a hash string
in the pg_authid system catalog. If neither ENCRYPTED nor
UNENCRYPTED is specified, the default behavior is determined by the
password_encryption configuration parameter, which is on by
default.

If the supplied password string is already in hashed format, it is
stored as-is, regardless of whether ENCRYPTED or UNENCRYPTED is
specified.

See Protecting Passwords in Greenplum Database for additional
information about protecting login passwords.

VALID UNTIL 'timestamp' Sets a date and time after which the role's password is no longer
valid. If omitted the password will be valid for all time.

RESOURCE QUEUE queue_name Assigns the role to the named resource queue for workload
management. Any statement that role issues is then subject to the
resource queue's limits. Note that the RESOURCE QUEUE attribute is
not inherited; it must be set on each user-level (LOGIN) role.

DENY {deny_interval |
deny_point}

Restricts access during an interval, specified by day or day and time.
For more information see Time-based Authentication.

You can set these attributes when you create the role, or later using the ALTER ROLE command. For
example:

=# ALTER ROLE jsmith WITH PASSWORD 'passwd123';
=# ALTER ROLE admin VALID UNTIL 'infinity';
=# ALTER ROLE jsmith LOGIN;
=# ALTER ROLE jsmith RESOURCE QUEUE adhoc;
=# ALTER ROLE jsmith DENY DAY 'Sunday';

A role can also have role-specific defaults for many of the server configuration settings. For example, to set
the default schema search path for a role:

=# ALTER ROLE admin SET search_path TO myschema, public;

Role Membership
It is frequently convenient to group users together to ease management of object privileges: that way,
privileges can be granted to, or revoked from, a group as a whole. In Greenplum Database this is done by
creating a role that represents the group, and then granting membership in the group role to individual user
roles.

Use the CREATE ROLE SQL command to create a new group role. For example:

=# CREATE ROLE admin CREATEROLE CREATEDB;

Once the group role exists, you can add and remove members (user roles) using the GRANT and REVOKE
commands. For example:

=# GRANT admin TO john, sally;
=# REVOKE admin FROM bob;

Greenplum Database Administrator Guide Release Notes

269

For managing object privileges, you would then grant the appropriate permissions to the group-level role
only (see Table 38: Object Privileges). The member user roles then inherit the object privileges of the
group role. For example:

=# GRANT ALL ON TABLE mytable TO admin;
=# GRANT ALL ON SCHEMA myschema TO admin;
=# GRANT ALL ON DATABASE mydb TO admin;

The role attributes LOGIN, SUPERUSER, CREATEDB, CREATEROLE, CREATEEXTTABLE, and RESOURCE
QUEUE are never inherited as ordinary privileges on database objects are. User members must actually
SET ROLE to a specific role having one of these attributes in order to make use of the attribute. In the
above example, we gave CREATEDB and CREATEROLE to the admin role. If sally is a member of admin,
she could issue the following command to assume the role attributes of the parent role:

=> SET ROLE admin;

Managing Object Privileges
When an object (table, view, sequence, database, function, language, schema, or tablespace) is created, it
is assigned an owner. The owner is normally the role that executed the creation statement. For most kinds
of objects, the initial state is that only the owner (or a superuser) can do anything with the object. To allow
other roles to use it, privileges must be granted. Greenplum Database supports the following privileges for
each object type:

Table 38: Object Privileges

Object Type Privileges

Tables, Views, Sequences SELECT

INSERT

UPDATE

DELETE

RULE

ALL

External Tables SELECT

RULE

ALL

Databases CONNECT

CREATE

TEMPORARY | TEMP

ALL

Functions EXECUTE

Procedural Languages USAGE

Schemas CREATE

USAGE

ALL

Greenplum Database Administrator Guide Release Notes

270

Object Type Privileges

Custom Protocol SELECT

INSERT

UPDATE

DELETE

RULE

ALL

Note: You must grant privileges for each object individually. For example, granting ALL on a
database does not grant full access to the objects within that database. It only grants all of the
database-level privileges (CONNECT, CREATE, TEMPORARY) to the database itself.

Use the GRANT SQL command to give a specified role privileges on an object. For example, to grant the
role named jsmith insert privileges on the table named mytable:

=# GRANT INSERT ON mytable TO jsmith;

Similarly, to grant jsmith select privileges only to the column named col1 in the table named table2:

=# GRANT SELECT (col1) on TABLE table2 TO jsmith;

To revoke privileges, use the REVOKE command. For example:

=# REVOKE ALL PRIVILEGES ON mytable FROM jsmith;

You can also use the DROP OWNED and REASSIGN OWNED commands for managing objects owned by
deprecated roles (Note: only an object's owner or a superuser can drop an object or reassign ownership).
For example:

=# REASSIGN OWNED BY sally TO bob;
=# DROP OWNED BY visitor;

Simulating Row Level Access Control

Greenplum Database does not support row-level access or row-level, labeled security. You can simulate
row-level access by using views to restrict the rows that are selected. You can simulate row-level labels
by adding an extra column to the table to store sensitivity information, and then using views to control row-
level access based on this column. You can then grant roles access to the views rather than to the base
table.

Encrypting Data
Greenplum Database is installed with an optional module of encryption/decryption functions called
pgcrypto. The pgcrypto functions allow database administrators to store certain columns of data in
encrypted form. This adds an extra layer of protection for sensitive data, as data stored in Greenplum
Database in encrypted form cannot be read by anyone who does not have the encryption key, nor can it be
read directly from the disks.

Note: The pgcrypto functions run inside the database server, which means that all the data and
passwords move between pgcrypto and the client application in clear-text. For optimal security,
consider also using SSL connections between the client and the Greenplum master server.

Greenplum Database Administrator Guide Release Notes

271

To use pgcrypto functions, register the pgcrypto extension in each database in which you want to use
the functions. For example:

$ psql -d testdb -c "CREATE EXTENSION pgcrypto"

See pgcrypto in the PostgreSQL documentation for more information about individual functions.

Protecting Passwords in Greenplum Database
In its default configuration, Greenplum Database saves MD5 hashes of login users' passwords in the
pg_authid system catalog rather than saving clear text passwords. Anyone who is able to view the
pg_authid table can see hash strings, but no passwords. This also ensures that passwords are obscured
when the database is dumped to backup files.

The hash function executes when the password is set by using any of the following commands:

• CREATE USER name WITH ENCRYPTED PASSWORD 'password'

• CREATE ROLE name WITH LOGIN ENCRYPTED PASSWORD 'password'

• ALTER USER name WITH ENCRYPTED PASSWORD 'password'

• ALTER ROLE name WITH ENCRYPTED PASSWORD 'password'

The ENCRYPTED keyword may be omitted when the password_encryption system configuration
parameter is on, which is the default value. The password_encryption configuration parameter
determines whether clear text or hashed passwords are saved when the ENCRYPTED or UNENCRYPTED
keyword is not present in the command.

Note: The SQL command syntax and password_encryption configuration variable include
the term encrypt, but the passwords are not technically encrypted. They are hashed and therefore
cannot be decrypted.

The hash is calculated on the concatenated clear text password and role name. The MD5 hash produces
a 32-byte hexadecimal string prefixed with the characters md5. The hashed password is saved in the
rolpassword column of the pg_authid system table.

Although it is not recommended, passwords may be saved in clear text in the database by including the
UNENCRYPTED keyword in the command or by setting the password_encryption configuration variable
to off. Note that changing the configuration value has no effect on existing passwords, only newly created
or updated passwords.

To set password_encryption globally, execute these commands in a shell as the gpadmin user:

$ gpconfig -c password_encryption -v 'off'
$ gpstop -u

To set password_encryption in a session, use the SQL SET command:

=# SET password_encryption = 'on';

Passwords may be hashed using the SHA-256 hash algorithm instead of the default MD5 hash algorithm.
The algorithm produces a 64-byte hexadecimal string prefixed with the characters sha256.

Note:

Although SHA-256 uses a stronger cryptographic algorithm and produces a longer hash string,
it cannot be used with the MD5 authentication method. To use SHA-256 password hashing the
authentication method must be set to password in the pg_hba.conf configuration file so that
clear text passwords are sent to Greenplum Database. Because clear text passwords are sent over
the network, it is very important to use SSL for client connections when you use SHA-256. The
default md5 authentication method, on the other hand, hashes the password twice before sending
it to Greenplum Database, once on the password and role name and then again with a salt value
shared between the client and server, so the clear text password is never sent on the network.

https://www.postgresql.org/docs/9.4/pgcrypto.html

Greenplum Database Administrator Guide Release Notes

272

To enable SHA-256 hashing, change the password_hash_algorithm configuration parameter from its
default value, md5, to sha-256. The parameter can be set either globally or at the session level. To set
password_hash_algorithm globally, execute these commands in a shell as the gpadmin user:

$ gpconfig -c password_hash_algorithm -v 'sha-256'
$ gpstop -u

To set password_hash_algorithm in a session, use the SQL SET command:

=# SET password_hash_algorithm = 'sha-256';

Time-based Authentication
Greenplum Database enables the administrator to restrict access to certain times by role. Use the CREATE
ROLE or ALTER ROLE commands to specify time-based constraints.

For details, refer to the Greenplum Database Security Configuration Guide.

Greenplum Database Administrator Guide Release Notes

273

Defining Database Objects
This section covers data definition language (DDL) in Greenplum Database and how to create and manage
database objects.

Creating objects in a Greenplum Database includes making up-front choices about data distribution,
storage options, data loading, and other Greenplum features that will affect the ongoing performance of
your database system. Understanding the options that are available and how the database will be used will
help you make the right decisions.

Most of the advanced Greenplum features are enabled with extensions to the SQL CREATE DDL
statements.

Creating and Managing Databases
A Greenplum Database system is a single instance of Greenplum Database. There can be several
separate Greenplum Database systems installed, but usually just one is selected by environment variable
settings. See your Greenplum administrator for details.

There can be multiple databases in a Greenplum Database system. This is different from some database
management systems (such as Oracle) where the database instance is the database. Although you can
create many databases in a Greenplum system, client programs can connect to and access only one
database at a time — you cannot cross-query between databases.

About Template and Default Databases
Greenplum Database provides some template databases and a default database, template1, template0,
and postgres.

By default, each new database you create is based on a template database. Greenplum Database uses
template1 to create databases unless you specify another template. Creating objects in template1 is not
recommended. The objects will be in every database you create using the default template database.

Greenplum Database uses another database template, template0, internally. Do not drop or modify
template0. You can use template0 to create a completely clean database containing only the standard
objects predefined by Greenplum Database at initialization.

You can use the postgres database to connect to Greenplum Database for the first time. Greenplum
Database uses postgres as the default database for administrative connections. For example, postgres is
used by startup processes, the Global Deadlock Detector process, and the FTS (Fault Tolerance Server)
process for catalog access.

Creating a Database
The CREATE DATABASE command creates a new database. For example:

=> CREATE DATABASE new_dbname;

To create a database, you must have privileges to create a database or be a Greenplum Database
superuser. If you do not have the correct privileges, you cannot create a database. Contact your
Greenplum Database administrator to either give you the necessary privilege or to create a database for
you.

Greenplum Database Administrator Guide Release Notes

274

You can also use the client program createdb to create a database. For example, running the following
command in a command line terminal connects to Greenplum Database using the provided host name and
port and creates a database named mydatabase:

$ createdb -h masterhost -p 5432 mydatabase

The host name and port must match the host name and port of the installed Greenplum Database system.

Some objects, such as roles, are shared by all the databases in a Greenplum Database system. Other
objects, such as tables that you create, are known only in the database in which you create them.

Warning: The CREATE DATABASE command is not transactional.

Cloning a Database

By default, a new database is created by cloning the standard system database template, template1. Any
database can be used as a template when creating a new database, thereby providing the capability to
'clone' or copy an existing database and all objects and data within that database. For example:

=> CREATE DATABASE new_dbname TEMPLATE old_dbname;

Creating a Database with a Different Owner

Another database owner can be assigned when a database is created:

=> CREATE DATABASE new_dbname WITH owner=new_user;

Viewing the List of Databases
If you are working in the psql client program, you can use the \l meta-command to show the list of
databases and templates in your Greenplum Database system. If using another client program and you
are a superuser, you can query the list of databases from the pg_database system catalog table. For
example:

=> SELECT datname from pg_database;

Altering a Database
The ALTER DATABASE command changes database attributes such as owner, name, or default
configuration attributes. For example, the following command alters a database by setting its default
schema search path (the search_path configuration parameter):

=> ALTER DATABASE mydatabase SET search_path TO myschema, public,
 pg_catalog;

To alter a database, you must be the owner of the database or a superuser.

Dropping a Database
The DROP DATABASE command drops (or deletes) a database. It removes the system catalog entries for
the database and deletes the database directory on disk that contains the data. You must be the database
owner or a superuser to drop a database, and you cannot drop a database while you or anyone else is
connected to it. Connect to postgres (or another database) before dropping a database. For example:

=> \c postgres
=> DROP DATABASE mydatabase;

Greenplum Database Administrator Guide Release Notes

275

You can also use the client program dropdb to drop a database. For example, the following command
connects to Greenplum Database using the provided host name and port and drops the database
mydatabase:

$ dropdb -h masterhost -p 5432 mydatabase

Warning: Dropping a database cannot be undone.

The DROP DATABASE command is not transactional.

Creating and Managing Tablespaces
Tablespaces allow database administrators to have multiple file systems per machine and decide how to
best use physical storage to store database objects. Tablespaces allow you to assign different storage for
frequently and infrequently used database objects or to control the I/O performance on certain database
objects. For example, place frequently-used tables on file systems that use high performance solid-state
drives (SSD), and place other tables on standard hard drives.

A tablespace requires a host file system location to store its database files. In Greenplum Database, the
file system location must exist on all hosts including the hosts running the master, standby master, each
primary segment, and each mirror segment.

A tablespace is Greenplum Database system object (a global object), you can use a tablespace from any
database if you have appropriate privileges.

Creating a Tablespace
The CREATE TABLESPACE command defines a tablespace. For example:

CREATE TABLESPACE fastspace LOCATION '/fastdisk/gpdb';

Database superusers define tablespaces and grant access to database users with the GRANTCREATE
command. For example:

GRANT CREATE ON TABLESPACE fastspace TO admin;

Using a Tablespace to Store Database Objects
Users with the CREATE privilege on a tablespace can create database objects in that tablespace, such as
tables, indexes, and databases. The command is:

CREATE TABLE tablename(options) TABLESPACE spacename

For example, the following command creates a table in the tablespace space1:

CREATE TABLE foo(i int) TABLESPACE space1;

You can also use the default_tablespace parameter to specify the default tablespace for CREATE
TABLE and CREATE INDEX commands that do not specify a tablespace:

SET default_tablespace = space1;
CREATE TABLE foo(i int);

There is also the temp_tablespaces configuration parameter, which determines the placement of
temporary tables and indexes, as well as temporary files that are used for purposes such as sorting large
data sets. This can be a comma-separate list of tablespace names, rather than only one, so that the load
associated with temporary objects can be spread over multiple tablespaces. A random member of the list is
picked each time a temporary object is to be created.

Greenplum Database Administrator Guide Release Notes

276

The tablespace associated with a database stores that database's system catalogs, temporary files
created by server processes using that database, and is the default tablespace selected for tables and
indexes created within the database, if no TABLESPACE is specified when the objects are created. If you
do not specify a tablespace when you create a database, the database uses the same tablespace used by
its template database.

You can use a tablespace from any database in the Greenplum Database system if you have appropriate
privileges.

Viewing Existing Tablespaces
Every Greenplum Database system has the following default tablespaces.

• pg_global for shared system catalogs.
• pg_default, the default tablespace. Used by the template1 and template0 databases.

These tablespaces use the default system location, the data directory locations created at system
initialization.

To see tablespace information, use the pg_tablespace catalog table to get the objecct ID (OID) of the
tablespace and then use gp_tablespace_location() function to display the tablespace directories.
This is an example that lists one user-defined tablespace, myspace:

SELECT oid, * FROM pg_tablespace ;

 oid | spcname | spcowner | spcacl | spcoptions
-------+------------+----------+--------+------------
 1663 | pg_default | 10 | |
 1664 | pg_global | 10 | |
 16391 | myspace | 10 | |
(3 rows)

The OID for the tablespace myspace is 16391. Run gp_tablespace_location() to display the
tablespace locations for a system that consists of two segment instances and the master.

SELECT * FROM gp_tablespace_location(16391);
 gp_segment_id | tblspc_loc
---------------+------------------
 0 | /data/mytblspace
 1 | /data/mytblspace
 -1 | /data/mytblspace
(3 rows)

This query uses gp_tablespace_location() the gp_segment_configuration catalog table to
display segment instance information with the file system location for the myspace tablespace.

WITH spc AS (SELECT * FROM gp_tablespace_location(16391))
 SELECT seg.role, spc.gp_segment_id as seg_id, seg.hostname, seg.datadir,
 tblspc_loc
 FROM spc, gp_segment_configuration AS seg
 WHERE spc.gp_segment_id = seg.content ORDER BY seg_id;

This is information for a test system that consists of two segment instances and the master on a single
host.

 role | seg_id | hostname | datadir | tblspc_loc
------+--------+----------+----------------------+------------------
 p | -1 | testhost | /data/master/gpseg-1 | /data/mytblspace
 p | 0 | testhost | /data/data1/gpseg0 | /data/mytblspace
 p | 1 | testhost | /data/data2/gpseg1 | /data/mytblspace
(3 rows)

Greenplum Database Administrator Guide Release Notes

277

Dropping Tablespaces
To drop a tablespace, you must be the tablespace owner or a superuser. You cannot drop a tablespace
until all objects in all databases using the tablespace are removed.

The DROP TABLESPACE command removes an empty tablespace.

Note: You cannot drop a tablespace if it is not empty or if it stores temporary or transaction files.

Moving the Location of Temporary or Transaction Files
You can move temporary or transaction files to a specific tablespace to improve database performance
when running queries, creating backups, and to store data more sequentially.

The Greenplum Database server configuration parameter temp_tablespaces controls the location for
both temporary tables and temporary spill files for hash aggregate and hash join queries. (Temporary
files for purposes such as sorting large data sets are stored with general segment data in <data_dir>/
<seg_ID>/base/pgsql_tmp.)

temp_tablespaces specifies tablespaces in which to create temporary objects (temp tables and indexes
on temp tables) when a CREATE command does not explicitly specify a tablespace.

Also note the following information about temporary or transaction files:

• You can dedicate only one tablespace for temporary or transaction files, although you can use the
same tablespace to store other types of files.

• You cannot drop a tablespace if it used by temporary files.

Creating and Managing Schemas
Schemas logically organize objects and data in a database. Schemas allow you to have more than one
object (such as tables) with the same name in the database without conflict if the objects are in different
schemas.

The Default "Public" Schema
Every database has a default schema named public. If you do not create any schemas, objects are created
in the public schema. All database roles (users) have CREATE and USAGE privileges in the public schema.
When you create a schema, you grant privileges to your users to allow access to the schema.

Creating a Schema
Use the CREATE SCHEMA command to create a new schema. For example:

=> CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a period. For example:

myschema.table

See Schema Search Paths for information about accessing a schema.

You can create a schema owned by someone else, for example, to restrict the activities of your users to
well-defined namespaces. The syntax is:

=> CREATE SCHEMA schemaname AUTHORIZATION username;

Greenplum Database Administrator Guide Release Notes

278

Schema Search Paths
To specify an object's location in a database, use the schema-qualified name. For example:

=> SELECT * FROM myschema.mytable;

You can set the search_path configuration parameter to specify the order in which to search the
available schemas for objects. The schema listed first in the search path becomes the default schema. If a
schema is not specified, objects are created in the default schema.

Setting the Schema Search Path

The search_path configuration parameter sets the schema search order. The ALTER DATABASE
command sets the search path. For example:

=> ALTER DATABASE mydatabase SET search_path TO myschema,
public, pg_catalog;

You can also set search_path for a particular role (user) using the ALTER ROLE command. For
example:

=> ALTER ROLE sally SET search_path TO myschema, public,
pg_catalog;

Viewing the Current Schema

Use the current_schema() function to view the current schema. For example:

=> SELECT current_schema();

Use the SHOW command to view the current search path. For example:

=> SHOW search_path;

Dropping a Schema
Use the DROP SCHEMA command to drop (delete) a schema. For example:

=> DROP SCHEMA myschema;

By default, the schema must be empty before you can drop it. To drop a schema and all of its objects
(tables, data, functions, and so on) use:

=> DROP SCHEMA myschema CASCADE;

System Schemas
The following system-level schemas exist in every database:

• pg_catalog contains the system catalog tables, built-in data types, functions, and operators. It is
always part of the schema search path, even if it is not explicitly named in the search path.

• information_schema consists of a standardized set of views that contain information about the
objects in the database. These views get system information from the system catalog tables in a
standardized way.

• pg_toast stores large objects such as records that exceed the page size. This schema is used
internally by the Greenplum Database system.

Greenplum Database Administrator Guide Release Notes

279

• pg_bitmapindex stores bitmap index objects such as lists of values. This schema is used internally
by the Greenplum Database system.

• pg_aoseg stores append-optimized table objects. This schema is used internally by the Greenplum
Database system.

• gp_toolkit is an administrative schema that contains external tables, views, and functions that you
can access with SQL commands. All database users can access gp_toolkit to view and query the
system log files and other system metrics.

Creating and Managing Tables
Greenplum Database tables are similar to tables in any relational database, except that table rows are
distributed across the different segments in the system. When you create a table, you specify the table's
distribution policy.

Creating a Table
The CREATE TABLE command creates a table and defines its structure. When you create a table, you
define:

• The columns of the table and their associated data types. See Choosing Column Data Types.
• Any table or column constraints to limit the data that a column or table can contain. See Setting Table

and Column Constraints.
• The distribution policy of the table, which determines how Greenplum Database divides data across the

segments. See Choosing the Table Distribution Policy.
• The way the table is stored on disk. See Choosing the Table Storage Model.
• The table partitioning strategy for large tables. See Creating and Managing Databases.

Choosing Column Data Types

The data type of a column determines the types of data values the column can contain. Choose the data
type that uses the least possible space but can still accommodate your data and that best constrains
the data. For example, use character data types for strings, date or timestamp data types for dates, and
numeric data types for numbers.

For table columns that contain textual data, specify the data type VARCHAR or TEXT. Specifying the
data type CHAR is not recommended. In Greenplum Database, the data types VARCHAR or TEXT handle
padding added to the data (space characters added after the last non-space character) as significant
characters, the data type CHAR does not. For information on the character data types, see the CREATE
TABLE command in the Greenplum Database Reference Guide.

Use the smallest numeric data type that will accommodate your numeric data and allow for future
expansion. For example, using BIGINT for data that fits in INT or SMALLINT wastes storage space. If you
expect that your data values will expand over time, consider that changing from a smaller datatype to a
larger datatype after loading large amounts of data is costly. For example, if your current data values fit in a
SMALLINT but it is likely that the values will expand, INT is the better long-term choice.

Use the same data types for columns that you plan to use in cross-table joins. Cross-table joins usually
use the primary key in one table and a foreign key in the other table. When the data types are different,
the database must convert one of them so that the data values can be compared correctly, which adds
unnecessary overhead.

Greenplum Database has a rich set of native data types available to users. See the Greenplum Database
Reference Guide for information about the built-in data types.

Setting Table and Column Constraints

You can define constraints on columns and tables to restrict the data in your tables. Greenplum Database
support for constraints is the same as PostgreSQL with some limitations, including:

Greenplum Database Administrator Guide Release Notes

280

• CHECK constraints can refer only to the table on which they are defined.
• UNIQUE and PRIMARY KEY constraints must be compatible with their table#s distribution key and

partitioning key, if any.

Note: UNIQUE and PRIMARY KEY constraints are not allowed on append-optimized tables
because the UNIQUE indexes that are created by the constraints are not allowed on append-
optimized tables.

• FOREIGN KEY constraints are allowed, but not enforced.
• Constraints that you define on partitioned tables apply to the partitioned table as a whole. You cannot

define constraints on the individual parts of the table.

Check Constraints

Check constraints allow you to specify that the value in a certain column must satisfy a Boolean (truth-
value) expression. For example, to require positive product prices:

=> CREATE TABLE products
 (product_no integer,
 name text,
 price numeric CHECK (price > 0));

Not-Null Constraints

Not-null constraints specify that a column must not assume the null value. A not-null constraint is always
written as a column constraint. For example:

=> CREATE TABLE products
 (product_no integer NOT NULL,
 name text NOT NULL,
 price numeric);

Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with
respect to all the rows in the table. The table must be hash-distributed or replicated (not DISTRIBUTED
RANDOMLY). If the table is hash-distributed, the constraint columns must be the same as (or a superset of)
the table's distribution key columns. For example:

=> CREATE TABLE products
 (product_no integer UNIQUE,
 name text,
 price numeric)
 DISTRIBUTED BY (product_no);

Primary Keys

A primary key constraint is a combination of a UNIQUE constraint and a NOT NULL constraint. The table
must be hash-distributed (not DISTRIBUTED RANDOMLY), and the primary key columns must be the same
as (or a superset of) the table's distribution key columns. If a table has a primary key, this column (or group
of columns) is chosen as the distribution key for the table by default. For example:

=> CREATE TABLE products
 (product_no integer PRIMARY KEY,
 name text,
 price numeric)
 DISTRIBUTED BY (product_no);

Greenplum Database Administrator Guide Release Notes

281

Foreign Keys

Foreign keys are not supported. You can declare them, but referential integrity is not enforced.

Foreign key constraints specify that the values in a column or a group of columns must match the values
appearing in some row of another table to maintain referential integrity between two related tables.
Referential integrity checks cannot be enforced between the distributed table segments of a Greenplum
database.

Choosing the Table Distribution Policy

All Greenplum Database tables are distributed. When you create or alter a table, you optionally
specify DISTRIBUTED BY (hash distribution), DISTRIBUTED RANDOMLY (round-robin distribution), or
DISTRIBUTED REPLICATED (fully distributed) to determine the table row distribution.

Note: The Greenplum Database server configuration parameter
gp_create_table_random_default_distribution controls the table distribution policy if the
DISTRIBUTED BY clause is not specified when you create a table.

For information about the parameter, see "Server Configuration Parameters" of the Greenplum
Database Reference Guide.

Consider the following points when deciding on a table distribution policy.

• Even Data Distribution — For the best possible performance, all segments should contain equal
portions of data. If the data is unbalanced or skewed, the segments with more data must work harder to
perform their portion of the query processing. Choose a distribution key that is unique for each record,
such as the primary key.

• Local and Distributed Operations — Local operations are faster than distributed operations. Query
processing is fastest if the work associated with join, sort, or aggregation operations is done locally,
at the segment level. Work done at the system level requires distributing tuples across the segments,
which is less efficient. When tables share a common distribution key, the work of joining or sorting
on their shared distribution key columns is done locally. With a random distribution policy, local join
operations are not an option.

• Even Query Processing — For best performance, all segments should handle an equal share of
the query workload. Query workload can be skewed if a table's data distribution policy and the query
predicates are not well matched. For example, suppose that a sales transactions table is distributed on
the customer ID column (the distribution key). If a predicate in a query references a single customer ID,
the query processing work is concentrated on just one segment.

The replicated table distribution policy (DISTRIBUTED REPLICATED) should be used only for small tables.
Replicating data to every segment is costly in both storage and maintenance, and prohibitive for large fact
tables. The primary use cases for replicated tables are to:

• remove restrictions on operations that user-defined functions can perform on segments, and
• improve query performance by making it unnecessary to broadcast frequently used tables to all

segments.

Note: The hidden system columns (ctid, cmin, cmax, xmin, xmax, and gp_segment_id)
cannot be referenced in user queries on replicated tables because they have no single,
unambiguous value. Greenplum Database returns a column does not exist error for the
query.

Declaring Distribution Keys

CREATE TABLE's optional clauses DISTRIBUTED BY, DISTRIBUTED RANDOMLY, and DISTRIBUTED
REPLICATED specify the distribution policy for a table. The default is a hash distribution policy that uses
either the PRIMARY KEY (if the table has one) or the first column of the table as the distribution key.
Columns with geometric or user-defined data types are not eligible as Greenplum Database distribution

Greenplum Database Administrator Guide Release Notes

282

key columns. If a table does not have an eligible column, Greenplum Database distributes the rows
randomly or in round-robin fashion.

Replicated tables have no distribution key because every row is distributed to every Greenplum Database
segment instance.

To ensure even distribution of hash-distributed data, choose a distribution key that is unique for each
record. If that is not possible, choose DISTRIBUTED RANDOMLY. For example:

=> CREATE TABLE products
 (name varchar(40),
 prod_id integer,
 supplier_id integer)
 DISTRIBUTED BY (prod_id);

=> CREATE TABLE random_stuff
 (things text,
 doodads text,
 etc text)
 DISTRIBUTED RANDOMLY;

Important: If a primary key exists, it is the default distribution key for the table. If no primary key
exists, but a unique key exists, this is the default distribution key for the table.

Custom Distribution Key Hash Functions

The hash function used for hash distribution policy is defined by the hash operator class for the column's
data type. As the default Greenplum Database uses the data type's default hash operator class, the same
operator class used for hash joins and hash aggregates, which is suitable for most use cases. However,
you can declare a non-default hash operator class in the DISTRIBUTED BY clause.

Using a custom hash operator class can be useful to support co-located joins on a different operator than
the default equality operator (=).

Example Custom Hash Operator Class
This example creates a custom hash operator class for the integer data type that is used to improve query
performance. The operator class compares the absolute values of integers.

Create a function and an equality operator that returns true if the absolute values of two integers are equal.

CREATE FUNCTION abseq(int, int) RETURNS BOOL AS
$$
 begin return abs($1) = abs($2); end;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE OPERATOR |=| (
 PROCEDURE = abseq,
 LEFTARG = int,
 RIGHTARG = int,
 COMMUTATOR = |=|,
 hashes, merges);

Now, create a hash function and operator class that uses the operator.

CREATE FUNCTION abshashfunc(int) RETURNS int AS
$$
 begin return hashint4(abs($1)); end;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE OPERATOR CLASS abs_int_hash_ops FOR TYPE int4

Greenplum Database Administrator Guide Release Notes

283

 USING hash AS
 OPERATOR 1 |=|,
 FUNCTION 1 abshashfunc(int);

Also, create less than and greater than operators, and a btree operator class for them. We don't need them
for our queries, but the Postgres Planner will not consider co-location of joins without them.

CREATE FUNCTION abslt(int, int) RETURNS BOOL AS
$$
 begin return abs($1) < abs($2); end;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE OPERATOR |<| (
 PROCEDURE = abslt,
 LEFTARG = int,
 RIGHTARG = int);

CREATE FUNCTION absgt(int, int) RETURNS BOOL AS
$$
 begin return abs($1) > abs($2); end;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE OPERATOR |>| (
 PROCEDURE = absgt,
 LEFTARG = int,
 RIGHTARG = int);

CREATE FUNCTION abscmp(int, int) RETURNS int AS
$$
 begin return btint4cmp(abs($1),abs($2)); end;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE OPERATOR CLASS abs_int_btree_ops FOR TYPE int4
 USING btree AS
 OPERATOR 1 |<|,
 OPERATOR 3 |=|,
 OPERATOR 5 |>|,
 FUNCTION 1 abscmp(int, int);

Now, you can use the custom hash operator class in tables.

CREATE TABLE atab (a int) DISTRIBUTED BY (a abs_int_hash_ops);
CREATE TABLE btab (b int) DISTRIBUTED BY (b abs_int_hash_ops);

INSERT INTO atab VALUES (-1), (0), (1);
INSERT INTO btab VALUES (-1), (0), (1), (2);

Queries that perform a join that use the custom equality operator |=| can take advantage of the co-
location.

With the default integer opclass, this query requires Redistribute Motion nodes.

EXPLAIN (COSTS OFF) SELECT a, b FROM atab, btab WHERE a = b;
 QUERY PLAN
--
 Gather Motion 4:1 (slice3; segments: 4)
 -> Hash Join
 Hash Cond: (atab.a = btab.b)
 -> Redistribute Motion 4:4 (slice1; segments: 4)
 Hash Key: atab.a
 -> Seq Scan on atab
 -> Hash

Greenplum Database Administrator Guide Release Notes

284

 -> Redistribute Motion 4:4 (slice2; segments: 4)
 Hash Key: btab.b
 -> Seq Scan on btab
 Optimizer: Postgres query optimizer
(11 rows)

With the custom opclass, a more efficient plan is possible.

EXPLAIN (COSTS OFF) SELECT a, b FROM atab, btab WHERE a |=| b;
 QUERY PLAN
--
 Gather Motion 4:1 (slice1; segments: 4)
 -> Hash Join
 Hash Cond: (atab.a |=| btab.b)
 -> Seq Scan on atab
 -> Hash
 -> Seq Scan on btab
 Optimizer: Postgres query optimizer
(7 rows)

Choosing the Table Storage Model
Greenplum Database supports several storage models and a mix of storage models. When you create a
table, you choose how to store its data. This topic explains the options for table storage and how to choose
the best storage model for your workload.

• Heap Storage
• Append-Optimized Storage
• Choosing Row or Column-Oriented Storage
• Using Compression (Append-Optimized Tables Only)
• Checking the Compression and Distribution of an Append-Optimized Table
• Altering a Table
• Dropping a Table

Note: To simplify the creation of database tables, you can specify the default values for
some table storage options with the Greenplum Database server configuration parameter
gp_default_storage_options.

For information about the parameter, see "Server Configuration Parameters" in the Greenplum
Database Reference Guide.

Heap Storage
By default, Greenplum Database uses the same heap storage model as PostgreSQL. Heap table storage
works best with OLTP-type workloads where the data is often modified after it is initially loaded. UPDATE
and DELETE operations require storing row-level versioning information to ensure reliable database
transaction processing. Heap tables are best suited for smaller tables, such as dimension tables, that are
often updated after they are initially loaded.

Append-Optimized Storage
Append-optimized table storage works best with denormalized fact tables in a data warehouse
environment. Denormalized fact tables are typically the largest tables in the system. Fact tables are usually
loaded in batches and accessed by read-only queries. Moving large fact tables to an append-optimized
storage model eliminates the storage overhead of the per-row update visibility information, saving about
20 bytes per row. This allows for a leaner and easier-to-optimize page structure. The storage model
of append-optimized tables is optimized for bulk data loading. Single row INSERT statements are not
recommended.

Greenplum Database Administrator Guide Release Notes

285

To create a heap table
Row-oriented heap tables are the default storage type.

=> CREATE TABLE foo (a int, b text) DISTRIBUTED BY (a);

To create an append-optimized table
Use the WITH clause of the CREATE TABLE command to declare the table storage options. The default
is to create the table as a regular row-oriented heap-storage table. For example, to create an append-
optimized table with no compression:

=> CREATE TABLE bar (a int, b text)
 WITH (appendoptimized=true)
 DISTRIBUTED BY (a);

Note: You use the appendoptimized=value syntax to specify the append-optimized table
storage type. appendoptimized is a thin alias for the appendonly legacy storage option.
Greenplum Database stores appendonly in the catalog, and displays the same when listing
storage options for append-optimized tables.

UPDATE and DELETE are not allowed on append-optimized tables in a repeatable read or serizalizable
transaction and will cause the transaction to abort. CLUSTER, DECLARE...FOR UPDATE, and triggers are
not supported with append-optimized tables.

Choosing Row or Column-Oriented Storage
Greenplum provides a choice of storage orientation models: row, column, or a combination of both. This
topic provides general guidelines for choosing the optimum storage orientation for a table. Evaluate
performance using your own data and query workloads.

• Row-oriented storage: good for OLTP types of workloads with many iterative transactions and many
columns of a single row needed all at once, so retrieving is efficient.

• Column-oriented storage: good for data warehouse workloads with aggregations of data computed over
a small number of columns, or for single columns that require regular updates without modifying other
column data.

For most general purpose or mixed workloads, row-oriented storage offers the best combination of
flexibility and performance. However, there are use cases where a column-oriented storage model
provides more efficient I/O and storage. Consider the following requirements when deciding on the storage
orientation model for a table:

• Updates of table data. If you load and update the table data frequently, choose a row-oriented heap
table. Column-oriented table storage is only available on append-optimized tables.

See Heap Storage for more information.
• Frequent INSERTs. If rows are frequently inserted into the table, consider a row-oriented model.

Column-oriented tables are not optimized for write operations, as column values for a row must be
written to different places on disk.

• Number of columns requested in queries. If you typically request all or the majority of columns in the
SELECT list or WHERE clause of your queries, consider a row-oriented model. Column-oriented tables
are best suited to queries that aggregate many values of a single column where the WHERE or HAVING
predicate is also on the aggregate column. For example:

SELECT SUM(salary)...

SELECT AVG(salary)... WHERE salary > 10000

Greenplum Database Administrator Guide Release Notes

286

Or where the WHERE predicate is on a single column and returns a relatively small number of rows. For
example:

SELECT salary, dept ... WHERE state='CA'

• Number of columns in the table. Row-oriented storage is more efficient when many columns are
required at the same time, or when the row-size of a table is relatively small. Column-oriented tables
can offer better query performance on tables with many columns where you access a small subset of
columns in your queries.

• Compression. Column data has the same data type, so storage size optimizations are available in
column-oriented data that are not available in row-oriented data. For example, many compression
schemes use the similarity of adjacent data to compress. However, the greater adjacent compression
achieved, the more difficult random access can become, as data must be uncompressed to be read.

To create a column-oriented table
The WITH clause of the CREATE TABLE command specifies the table's storage options. The default is a
row-oriented heap table. Tables that use column-oriented storage must be append-optimized tables. For
example, to create a column-oriented table:

=> CREATE TABLE bar (a int, b text)
 WITH (appendoptimized=true, orientation=column)
 DISTRIBUTED BY (a);

Using Compression (Append-Optimized Tables Only)
There are two types of in-database compression available in the Greenplum Database for append-
optimized tables:

• Table-level compression is applied to an entire table.
• Column-level compression is applied to a specific column. You can apply different column-level

compression algorithms to different columns.

The following table summarizes the available compression algorithms.

Table 39: Compression Algorithms for Append-Optimized Tables

Table Orientation Available Compression Types Supported Algorithms

Row Table ZLIB, ZSTD, and QUICKLZ1

Column Column and Table RLE_TYPE, ZLIB, ZSTD, and
QUICKLZ1

Note: 1QuickLZ compression is not available in the open source version of Greenplum Database.

When choosing a compression type and level for append-optimized tables, consider these factors:

• CPU usage. Your segment systems must have the available CPU power to compress and uncompress
the data.

• Compression ratio/disk size. Minimizing disk size is one factor, but also consider the time and CPU
capacity required to compress and scan data. Find the optimal settings for efficiently compressing data
without causing excessively long compression times or slow scan rates.

• Speed of compression. QuickLZ compression generally uses less CPU capacity and compresses data
faster at a lower compression ratio than zlib. zlib provides higher compression ratios at lower speeds.

For example, at compression level 1 (compresslevel=1), QuickLZ and zlib have comparable
compression ratios, though at different speeds. Using zlib with compresslevel=6 can significantly
increase the compression ratio compared to QuickLZ, though with lower compression speed. Zstandard

Greenplum Database Administrator Guide Release Notes

287

compression can provide for either good compression ratio or speed, depending on compression level,
or a good compromise on both.

• Speed of decompression/scan rate. Performance with compressed append-optimized tables depends
on hardware, query tuning settings, and other factors. Perform comparison testing to determine the
actual performance in your environment.

Note: Do not create compressed append-optimized tables on file systems that use
compression. If the file system on which your segment data directory resides is a compressed
file system, your append-optimized table must not use compression.

Performance with compressed append-optimized tables depends on hardware, query tuning settings,
and other factors. You should perform comparison testing to determine the actual performance in your
environment.

Note: Zstd compression level can be set to values between 1 and 19. QuickLZ compression level
can only be set to level 1; no other values are available. Compression level with zlib can be set to
values from 1 - 9. Compression level with RLE can be set to values from 1 - 4.

An ENCODING clause specifies compression type and level for individual columns. When an
ENCODING clause conflicts with a WITH clause, the ENCODING clause has higher precedence than
the WITH clause.

To create a compressed table
The WITH clause of the CREATE TABLE command declares the table storage options. Tables that use
compression must be append-optimized tables. For example, to create an append-optimized table with zlib
compression at a compression level of 5:

=> CREATE TABLE foo (a int, b text)
 WITH (appendoptimized=true, compresstype=zlib, compresslevel=5);

Checking the Compression and Distribution of an Append-Optimized
Table
Greenplum provides built-in functions to check the compression ratio and the distribution of an append-
optimized table. The functions take either the object ID or a table name. You can qualify the table name
with a schema name.

Table 40: Functions for compressed append-optimized table metadata

Function Return Type Description

get_ao_distribution(name)

get_ao_distribution(oid)

Set of (dbid, tuplecount) rows Shows the distribution of an
append-optimized table's rows
across the array. Returns a set
of rows, each of which includes a
segment dbid and the number of
tuples stored on the segment.

get_ao_compression_ratio(name)

get_ao_compression_ratio(oid)

float8 Calculates the compression
ratio for a compressed append-
optimized table. If information is
not available, this function returns
a value of -1.

The compression ratio is returned as a common ratio. For example, a returned value of 3.19, or 3.19:1,
means that the uncompressed table is slightly larger than three times the size of the compressed table.

Greenplum Database Administrator Guide Release Notes

288

The distribution of the table is returned as a set of rows that indicate how many tuples are stored on each
segment. For example, in a system with four primary segments with dbid values ranging from 0 - 3, the
function returns four rows similar to the following:

=# SELECT get_ao_distribution('lineitem_comp');
 get_ao_distribution

(0,7500721)
(1,7501365)
(2,7499978)
(3,7497731)
(4 rows)

Support for Run-length Encoding
Greenplum Database supports Run-length Encoding (RLE) for column-level compression. RLE data
compression stores repeated data as a single data value and a count. For example, in a table with
two columns, a date and a description, that contains 200,000 entries containing the value date1
and 400,000 entries containing the value date2, RLE compression for the date field is similar to
date1 200000 date2 400000. RLE is not useful with files that do not have large sets of repeated data
as it can greatly increase the file size.

There are four levels of RLE compression available. The levels progressively increase the compression
ratio, but decrease the compression speed.

Greenplum Database versions 4.2.1 and later support column-oriented RLE compression. To backup
a table with RLE compression that you intend to restore to an earlier version of Greenplum Database,
alter the table to have no compression or a compression type supported in the earlier version (ZLIB or
QUICKLZ) before you start the backup operation.

Greenplum Database combines delta compression with RLE compression for data in columns of type
BIGINT, INTEGER, DATE, TIME, or TIMESTAMP. The delta compression algorithm is based on the change
between consecutive column values and is designed to improve compression when data is loaded in
sorted order or when the compression is applied to data in sorted order.

Adding Column-level Compression
You can add the following storage directives to a column for append-optimized tables with column
orientation:

• Compression type
• Compression level
• Block size for a column

Add storage directives using the CREATE TABLE, ALTER TABLE, and CREATE TYPE commands.

The following table details the types of storage directives and possible values for each.

Greenplum Database Administrator Guide Release Notes

289

Table 41: Storage Directives for Column-level Compression

Name Definition Values Comment

compresstype Type of compression. zstd: Zstandard
algorithm

zlib: deflate algorithm

quicklz: fast
compression

RLE_TYPE: run-length
encoding

none: no compression

Values are not case-
sensitive.

zlib compression: 1-9 1 is the fastest
method with the least
compression. 1 is the
default.

9 is the slowest
method with the most
compression.

zstd compression: 1-19 1 is the fastest
method with the least
compression. 1 is the
default.

19 is the slowest
method with the most
compression.

QuickLZ compression:

1 – use compression

1 is the default.

compresslevel Compression level.

RLE_TYPE compression:
1 – 4

1 - apply RLE only

2 - apply RLE then apply
zlib compression level 1

3 - apply RLE then apply
zlib compression level 5

4 - apply RLE then apply
zlib compression level 9

1 is the fastest
method with the least
compression.

4 is the slowest
method with the most
compression. 1 is the
default.

blocksize The size in bytes for
each block in the table

8192 – 2097152 The value must be a
multiple of 8192.

The following is the format for adding storage directives.

[ENCODING (storage_directive [,…])]

where the word ENCODING is required and the storage directive has three parts:

• The name of the directive

Greenplum Database Administrator Guide Release Notes

290

• An equals sign
• The specification

Separate multiple storage directives with a comma. Apply a storage directive to a single column or
designate it as the default for all columns, as shown in the following CREATE TABLE clauses.

General Usage:

column_name data_type ENCODING (storage_directive [, …]), …

COLUMN column_name ENCODING (storage_directive [, …]), …

DEFAULT COLUMN ENCODING (storage_directive [, …])

Example:

C1 char ENCODING (compresstype=quicklz, blocksize=65536)

COLUMN C1 ENCODING (compresstype=zlib, compresslevel=6, blocksize=65536)

DEFAULT COLUMN ENCODING (compresstype=quicklz)

 Default Compression Values

If the compression type, compression level and block size are not defined, the default is no compression,
and the block size is set to the Server Configuration Parameter block_size.

 Precedence of Compression Settings

Column compression settings are inherited from the type level to the table level to the partition level to the
subpartition level. The lowest-level settings have priority.

• Column compression settings defined at the table level override any compression settings for the type.
• Column compression settings specified at the table level override any compression settings for the

entire table.
• Column compression settings specified for partitions override any compression settings at the column

or table levels.
• Column compression settings specified for subpartitions override any compression settings at the

partition, column or table levels.
• When an ENCODING clause conflicts with a WITH clause, the ENCODING clause has higher precedence

than the WITH clause.

Note: The INHERITS clause is not allowed in a table that contains a storage directive or a column
reference storage directive.

Tables created using the LIKE clause ignore storage directive and column reference storage
directives.

 Optimal Location for Column Compression Settings

The best practice is to set the column compression settings at the level where the data resides. See
Example 5, which shows a table with a partition depth of 2. RLE_TYPE compression is added to a column
at the subpartition level.

 Storage Directives Examples

The following examples show the use of storage directives in CREATE TABLE statements.

Greenplum Database Administrator Guide Release Notes

291

Example 1

In this example, column c1 is compressed using zstd and uses the block size defined by the system.
Column c2 is compressed with quicklz, and uses a block size of 65536. Column c3 is not compressed
and uses the block size defined by the system.

CREATE TABLE T1 (c1 int ENCODING (compresstype=zstd),
 c2 char ENCODING (compresstype=quicklz, blocksize=65536),
 c3 char) WITH (appendoptimized=true,
 orientation=column);

Example 2

In this example, column c1 is compressed using zlib and uses the block size defined by the system.
Column c2 is compressed with quicklz, and uses a block size of 65536. Column c3 is compressed
using RLE_TYPE and uses the block size defined by the system.

CREATE TABLE T2 (c1 int ENCODING (compresstype=zlib),
 c2 char ENCODING (compresstype=quicklz, blocksize=65536),
 c3 char,
 COLUMN c3 ENCODING (compresstype=RLE_TYPE)
)
 WITH (appendoptimized=true, orientation=column);

Example 3

In this example, column c1 is compressed using zlib and uses the block size defined by the system.
Column c2 is compressed with quicklz, and uses a block size of 65536. Column c3 is compressed
using zlib and uses the block size defined by the system. Note that column c3 uses zlib (not
RLE_TYPE) in the partitions, because the column storage in the partition clause has precedence over the
storage directive in the column definition for the table.

CREATE TABLE T3 (c1 int ENCODING (compresstype=zlib),
 c2 char ENCODING (compresstype=quicklz, blocksize=65536),
 c3 text, COLUMN c3 ENCODING (compresstype=RLE_TYPE))
 WITH (appendoptimized=true, orientation=column)
 PARTITION BY RANGE (c3) (START ('1900-01-01'::DATE)
 END ('2100-12-31'::DATE),
 COLUMN c3 ENCODING (compresstype=zlib));

Example 4

In this example, CREATE TABLE assigns the zlib compresstype storage directive to c1. Column c2
has no storage directive and inherits the compression type (quicklz) and block size (65536) from the
DEFAULT COLUMN ENCODING clause.

Column c3's ENCODING clause defines its compression type, RLE_TYPE. The ENCODING clause defined
for a specific column overrides the DEFAULT ENCODING clause, so column c3 uses the default block size,
32768.

Column c4 has a compress type of none and uses the default block size.

CREATE TABLE T4 (c1 int ENCODING (compresstype=zlib),
 c2 char,
 c3 text,
 c4 smallint ENCODING (compresstype=none),
 DEFAULT COLUMN ENCODING (compresstype=quicklz,
 blocksize=65536),
 COLUMN c3 ENCODING (compresstype=RLE_TYPE)

Greenplum Database Administrator Guide Release Notes

292

)
 WITH (appendoptimized=true, orientation=column);

Example 5

This example creates an append-optimized, column-oriented table, T5. T5 has two partitions, p1 and p2,
each of which has subpartitions. Each subpartition has ENCODING clauses:

• The ENCODING clause for partition p1's subpartition sp1 defines column i's compression type as zlib
and block size as 65536.

• The ENCODING clauses for partition p2's subpartition sp1 defines column i's compression type as
rle_type and block size is the default value. Column k uses the default compression and its block
size is 8192.

CREATE TABLE T5(i int, j int, k int, l int)
 WITH (appendoptimized=true, orientation=column)
 PARTITION BY range(i) SUBPARTITION BY range(j)
 (
 partition p1 start(1) end(2)
 (subpartition sp1 start(1) end(2)
 column i encoding(compresstype=zlib, blocksize=65536)
),
 partition p2 start(2) end(3)
 (subpartition sp1 start(1) end(2)
 column i encoding(compresstype=rle_type)
 column k encoding(blocksize=8192)
)
);

For an example showing how to add a compressed column to an existing table with the ALTER TABLE
command, see Adding a Compressed Column to Table .

 Adding Compression in a TYPE Command

When you create a new type, you can define default compression attributes for the type. For example, the
following CREATE TYPE command defines a type named int33 that specifies quicklz compression:

CREATE TYPE int33 (
 internallength = 4,
 input = int33_in,
 output = int33_out,
 alignment = int4,
 default = 123,
 passedbyvalue,
 compresstype="quicklz",
 blocksize=65536,
 compresslevel=1
);

When you specify int33 as a column type in a CREATE TABLE command, the column is created with the
storage directives you specified for the type:

CREATE TABLE t2 (c1 int33)
 WITH (appendoptimized=true, orientation=column);

Table- or column- level storage attributes that you specify in a table definition override type-level storage
attributes. For information about creating and adding compression attributes to a type, see CREATE TYPE.
For information about changing compression specifications in a type, see ALTER TYPE.

Greenplum Database Administrator Guide Release Notes

293

Choosing Block Size

The blocksize is the size, in bytes, for each block in a table. Block sizes must be between 8192 and
2097152 bytes, and be a multiple of 8192. The default is 32768.

Specifying large block sizes can consume large amounts of memory. Block size determines buffering in
the storage layer. Greenplum maintains a buffer per partition, and per column in column-oriented tables.
Tables with many partitions or columns consume large amounts of memory.

Altering a Table
The ALTER TABLE command changes the definition of a table. Use ALTER TABLE to change table
attributes such as column definitions, distribution policy, storage model, and partition structure (see also
Maintaining Partitioned Tables). For example, to add a not-null constraint to a table column:

=> ALTER TABLE address ALTER COLUMN street SET NOT NULL;

Altering Table Distribution

ALTER TABLE provides options to change a table's distribution policy. When the table distribution options
change, the table data may be redistributed on disk, which can be resource intensive. You can also
redistribute table data using the existing distribution policy.

Changing the Distribution Policy

For partitioned tables, changes to the distribution policy apply recursively to the child partitions. This
operation preserves the ownership and all other attributes of the table. For example, the following
command redistributes the table sales across all segments using the customer_id column as the
distribution key:

ALTER TABLE sales SET DISTRIBUTED BY (customer_id);

When you change the hash distribution of a table, table data is automatically redistributed. Changing the
distribution policy to a random distribution does not cause the data to be redistributed. For example, the
following ALTER TABLE command has no immediate effect:

ALTER TABLE sales SET DISTRIBUTED RANDOMLY;

Changing the distribution policy of a table to DISTRIBUTED REPLICATED or from DISTRIBUTED
REPLICATED automatically redistributes the table data.

Redistributing Table Data

To redistribute table data for tables with a random distribution policy (or when the hash distribution policy
has not changed) use REORGANIZE=TRUE. Reorganizing data may be necessary to correct a data skew
problem, or when segment resources are added to the system. For example, the following command
redistributes table data across all segments using the current distribution policy, including random
distribution.

ALTER TABLE sales SET WITH (REORGANIZE=TRUE);

Changing the distribution policy of a table to DISTRIBUTED REPLICATED or from DISTRIBUTED
REPLICATED always redistributes the table data, even when you use REORGANIZE=FALSE.

Greenplum Database Administrator Guide Release Notes

294

Altering the Table Storage Model

Table storage, compression, and orientation can be declared only at creation. To change the storage
model, you must create a table with the correct storage options, load the original table data into the new
table, drop the original table, and rename the new table with the original table's name. You must also re-
grant any table permissions. For example:

CREATE TABLE sales2 (LIKE sales)
WITH (appendoptimized=true, compresstype=quicklz,
 compresslevel=1, orientation=column);
INSERT INTO sales2 SELECT * FROM sales;
DROP TABLE sales;
ALTER TABLE sales2 RENAME TO sales;
GRANT ALL PRIVILEGES ON sales TO admin;
GRANT SELECT ON sales TO guest;

See Splitting a Partition to learn how to change the storage model of a partitioned table.

 Adding a Compressed Column to Table

Use ALTER TABLE command to add a compressed column to a table. All of the options and constraints
for compressed columns described in Adding Column-level Compression apply to columns added with the
ALTER TABLE command.

The following example shows how to add a column with zlib compression to a table, T1.

ALTER TABLE T1
 ADD COLUMN c4 int DEFAULT 0
 ENCODING (compresstype=zlib);

 Inheritance of Compression Settings

A partition added to a table that has subpartitions defined with compression settings inherits the
compression settings from the subpartition. The following example shows how to create a table with
subpartition encodings, then alter it to add a partition.

CREATE TABLE ccddl (i int, j int, k int, l int)
 WITH
 (appendoptimized = TRUE, orientation=COLUMN)
 PARTITION BY range(j)
 SUBPARTITION BY list (k)
 SUBPARTITION template(
 SUBPARTITION sp1 values(1, 2, 3, 4, 5),
 COLUMN i ENCODING(compresstype=ZLIB),
 COLUMN j ENCODING(compresstype=QUICKLZ),
 COLUMN k ENCODING(compresstype=ZLIB),
 COLUMN l ENCODING(compresstype=ZLIB))
 (PARTITION p1 START(1) END(10),
 PARTITION p2 START(10) END(20))
;

ALTER TABLE ccddl
 ADD PARTITION p3 START(20) END(30)
;

Running the ALTER TABLE command creates partitions of table ccddl named ccddl_1_prt_p3 and
ccddl_1_prt_p3_2_prt_sp1. Partition ccddl_1_prt_p3 inherits the different compression encodings
of subpartition sp1.

Greenplum Database Administrator Guide Release Notes

295

Dropping a Table
The DROP TABLE command removes tables from the database. For example:

DROP TABLE mytable;

To empty a table of rows without removing the table definition, use DELETE or TRUNCATE. For example:

DELETE FROM mytable;

TRUNCATE mytable;

DROP TABLE always removes any indexes, rules, triggers, and constraints that exist for the target table.
Specify CASCADE to drop a table that is referenced by a view. CASCADE removes dependent views.

Partitioning Large Tables
Table partitioning enables supporting very large tables, such as fact tables, by logically dividing them into
smaller, more manageable pieces. Partitioned tables can improve query performance by allowing the
Greenplum Database query optimizer to scan only the data needed to satisfy a given query instead of
scanning all the contents of a large table.

• About Table Partitioning
• Deciding on a Table Partitioning Strategy
• Creating Partitioned Tables
• Loading Partitioned Tables
• Verifying Your Partition Strategy
• Viewing Your Partition Design
• Maintaining Partitioned Tables

About Table Partitioning
Partitioning does not change the physical distribution of table data across the segments. Table distribution
is physical: Greenplum Database physically divides partitioned tables and non-partitioned tables across
segments to enable parallel query processing. Table partitioning is logical: Greenplum Database logically
divides big tables to improve query performance and facilitate data warehouse maintenance tasks, such as
rolling old data out of the data warehouse.

Greenplum Database supports:

• range partitioning: division of data based on a numerical range, such as date or price.
• list partitioning: division of data based on a list of values, such as sales territory or product line.
• A combination of both types.

Greenplum Database Administrator Guide Release Notes

296

Figure 20: Example Multi-level Partition Design

Table Partitioning in Greenplum Database
Greenplum Database divides tables into parts (also known as partitions) to enable massively parallel
processing. Tables are partitioned during CREATE TABLE using the PARTITION BY (and optionally the
SUBPARTITION BY) clause. Partitioning creates a top-level (or parent) table with one or more levels of
sub-tables (or child tables). Internally, Greenplum Database creates an inheritance relationship between
the top-level table and its underlying partitions, similar to the functionality of the INHERITS clause of
PostgreSQL.

Greenplum uses the partition criteria defined during table creation to create each partition with a distinct
CHECK constraint, which limits the data that table can contain. The query optimizer uses CHECK constraints
to determine which table partitions to scan to satisfy a given query predicate.

The Greenplum system catalog stores partition hierarchy information so that rows inserted into the top-
level parent table propagate correctly to the child table partitions. To change the partition design or table
structure, alter the parent table using ALTER TABLE with the PARTITION clause.

To insert data into a partitioned table, you specify the root partitioned table, the table created with the
CREATE TABLE command. You also can specify a leaf child table of the partitioned table in an INSERT
command. An error is returned if the data is not valid for the specified leaf child table. Specifying a non-leaf
or a non-root partition table in the DML command is not supported.

Deciding on a Table Partitioning Strategy
Greenplum Database does not support partitioning replicated tables (DISTRIBUTED REPLICATED). Not
all hash-distributed or randomly distributed tables are good candidates for partitioning. If the answer is yes
to all or most of the following questions, table partitioning is a viable database design strategy for improving
query performance. If the answer is no to most of the following questions, table partitioning is not the right
solution for that table. Test your design strategy to ensure that query performance improves as expected.

• Is the table large enough? Large fact tables are good candidates for table partitioning. If you have
millions or billions of records in a table, you may see performance benefits from logically breaking that
data up into smaller chunks. For smaller tables with only a few thousand rows or less, the administrative
overhead of maintaining the partitions will outweigh any performance benefits you might see.

• Are you experiencing unsatisfactory performance? As with any performance tuning initiative, a
table should be partitioned only if queries against that table are producing slower response times than
desired.

Greenplum Database Administrator Guide Release Notes

297

• Do your query predicates have identifiable access patterns? Examine the WHERE clauses of your
query workload and look for table columns that are consistently used to access data. For example, if
most of your queries tend to look up records by date, then a monthly or weekly date-partitioning design
might be beneficial. Or if you tend to access records by region, consider a list-partitioning design to
divide the table by region.

• Does your data warehouse maintain a window of historical data? Another consideration for
partition design is your organization's business requirements for maintaining historical data. For
example, your data warehouse may require that you keep data for the past twelve months. If the data
is partitioned by month, you can easily drop the oldest monthly partition from the warehouse and load
current data into the most recent monthly partition.

• Can the data be divided into somewhat equal parts based on some defining criteria? Choose
partitioning criteria that will divide your data as evenly as possible. If the partitions contain a relatively
equal number of records, query performance improves based on the number of partitions created. For
example, by dividing a large table into 10 partitions, a query will execute 10 times faster than it would
against the unpartitioned table, provided that the partitions are designed to support the query's criteria.

Do not create more partitions than are needed. Creating too many partitions can slow down management
and maintenance jobs, such as vacuuming, recovering segments, expanding the cluster, checking disk
usage, and others.

Partitioning does not improve query performance unless the query optimizer can eliminate partitions based
on the query predicates. Queries that scan every partition run slower than if the table were not partitioned,
so avoid partitioning if few of your queries achieve partition elimination. Check the explain plan for queries
to make sure that partitions are eliminated. See Query Profiling for more about partition elimination.

Warning: Be very careful with multi-level partitioning because the number of partition files can
grow very quickly. For example, if a table is partitioned by both day and city, and there are 1,000
days of data and 1,000 cities, the total number of partitions is one million. Column-oriented tables
store each column in a physical table, so if this table has 100 columns, the system would be
required to manage 100 million files for the table, for each segment.

Before settling on a multi-level partitioning strategy, consider a single level partition with bitmap indexes.
Indexes slow down data loads, so performance testing with your data and schema is recommended to
decide on the best strategy.

Creating Partitioned Tables
You partition tables when you create them with CREATE TABLE. This topic provides examples of SQL
syntax for creating a table with various partition designs.

To partition a table:

1. Decide on the partition design: date range, numeric range, or list of values.
2. Choose the column(s) on which to partition the table.
3. Decide how many levels of partitions you want. For example, you can create a date range partition table

by month and then subpartition the monthly partitions by sales region.

• Defining Date Range Table Partitions
• Defining Numeric Range Table Partitions
• Defining List Table Partitions
• Defining Multi-level Partitions
• Partitioning an Existing Table

Defining Date Range Table Partitions

A date range partitioned table uses a single date or timestamp column as the partition key column. You
can use the same partition key column to create subpartitions if necessary, for example, to partition by
month and then subpartition by day. Consider partitioning by the most granular level. For example, for a
table partitioned by date, you can partition by day and have 365 daily partitions, rather than partition by

Greenplum Database Administrator Guide Release Notes

298

year then subpartition by month then subpartition by day. A multi-level design can reduce query planning
time, but a flat partition design runs faster.

You can have Greenplum Database automatically generate partitions by giving a START value, an END
value, and an EVERY clause that defines the partition increment value. By default, START values are
always inclusive and END values are always exclusive. For example:

CREATE TABLE sales (id int, date date, amt decimal(10,2))
DISTRIBUTED BY (id)
PARTITION BY RANGE (date)
(START (date '2016-01-01') INCLUSIVE
 END (date '2017-01-01') EXCLUSIVE
 EVERY (INTERVAL '1 day'));

You can also declare and name each partition individually. For example:

CREATE TABLE sales (id int, date date, amt decimal(10,2))
DISTRIBUTED BY (id)
PARTITION BY RANGE (date)
(PARTITION Jan16 START (date '2016-01-01') INCLUSIVE ,
 PARTITION Feb16 START (date '2016-02-01') INCLUSIVE ,
 PARTITION Mar16 START (date '2016-03-01') INCLUSIVE ,
 PARTITION Apr16 START (date '2016-04-01') INCLUSIVE ,
 PARTITION May16 START (date '2016-05-01') INCLUSIVE ,
 PARTITION Jun16 START (date '2016-06-01') INCLUSIVE ,
 PARTITION Jul16 START (date '2016-07-01') INCLUSIVE ,
 PARTITION Aug16 START (date '2016-08-01') INCLUSIVE ,
 PARTITION Sep16 START (date '2016-09-01') INCLUSIVE ,
 PARTITION Oct16 START (date '2016-10-01') INCLUSIVE ,
 PARTITION Nov16 START (date '2016-11-01') INCLUSIVE ,
 PARTITION Dec16 START (date '2016-12-01') INCLUSIVE
 END (date '2017-01-01') EXCLUSIVE);

You do not have to declare an END value for each partition, only the last one. In this example, Jan16 ends
where Feb16 starts.

Defining Numeric Range Table Partitions

A numeric range partitioned table uses a single numeric data type column as the partition key column. For
example:

CREATE TABLE rank (id int, rank int, year int, gender
char(1), count int)
DISTRIBUTED BY (id)
PARTITION BY RANGE (year)
(START (2006) END (2016) EVERY (1),
 DEFAULT PARTITION extra);

For more information about default partitions, see Adding a Default Partition.

Defining List Table Partitions

A list partitioned table can use any data type column that allows equality comparisons as its partition key
column. A list partition can also have a multi-column (composite) partition key, whereas a range partition
only allows a single column as the partition key. For list partitions, you must declare a partition specification
for every partition (list value) you want to create. For example:

CREATE TABLE rank (id int, rank int, year int, gender
char(1), count int)
DISTRIBUTED BY (id)
PARTITION BY LIST (gender)

Greenplum Database Administrator Guide Release Notes

299

(PARTITION girls VALUES ('F'),
 PARTITION boys VALUES ('M'),
 DEFAULT PARTITION other);

Note: The current Postgres Planner allows list partitions with multi-column (composite) partition
keys. A range partition only allows a single column as the partition key. The Greenplum Query
Optimizer does not support composite keys, so you should not use composite partition keys.

For more information about default partitions, see Adding a Default Partition.

Defining Multi-level Partitions

You can create a multi-level partition design with subpartitions of partitions. Using a subpartition template
ensures that every partition has the same subpartition design, including partitions that you add later. For
example, the following SQL creates the two-level partition design shown in Figure 20: Example Multi-level
Partition Design:

CREATE TABLE sales (trans_id int, date date, amount
decimal(9,2), region text)
DISTRIBUTED BY (trans_id)
PARTITION BY RANGE (date)
SUBPARTITION BY LIST (region)
SUBPARTITION TEMPLATE
(SUBPARTITION usa VALUES ('usa'),
 SUBPARTITION asia VALUES ('asia'),
 SUBPARTITION europe VALUES ('europe'),
 DEFAULT SUBPARTITION other_regions)
 (START (date '2011-01-01') INCLUSIVE
 END (date '2012-01-01') EXCLUSIVE
 EVERY (INTERVAL '1 month'),
 DEFAULT PARTITION outlying_dates);

The following example shows a three-level partition design where the sales table is partitioned by year,
then month, then region. The SUBPARTITION TEMPLATE clauses ensure that each yearly partition has
the same subpartition structure. The example declares a DEFAULT partition at each level of the hierarchy.

CREATE TABLE p3_sales (id int, year int, month int, day int,
region text)
DISTRIBUTED BY (id)
PARTITION BY RANGE (year)
 SUBPARTITION BY RANGE (month)
 SUBPARTITION TEMPLATE (
 START (1) END (13) EVERY (1),
 DEFAULT SUBPARTITION other_months)
 SUBPARTITION BY LIST (region)
 SUBPARTITION TEMPLATE (
 SUBPARTITION usa VALUES ('usa'),
 SUBPARTITION europe VALUES ('europe'),
 SUBPARTITION asia VALUES ('asia'),
 DEFAULT SUBPARTITION other_regions)
(START (2002) END (2012) EVERY (1),
 DEFAULT PARTITION outlying_years);

Caution: When you create multi-level partitions on ranges, it is easy to create a large number of
subpartitions, some containing little or no data. This can add many entries to the system tables,
which increases the time and memory required to optimize and execute queries. Increase the range
interval or choose a different partitioning strategy to reduce the number of subpartitions created.

Greenplum Database Administrator Guide Release Notes

300

Partitioning an Existing Table

Tables can be partitioned only at creation. If you have a table that you want to partition, you must create
a partitioned table, load the data from the original table into the new table, drop the original table, and
rename the partitioned table with the original table's name. You must also re-grant any table permissions.
For example:

CREATE TABLE sales2 (LIKE sales)
PARTITION BY RANGE (date)
(START (date 2016-01-01') INCLUSIVE
 END (date '2017-01-01') EXCLUSIVE
 EVERY (INTERVAL '1 month'));
INSERT INTO sales2 SELECT * FROM sales;
DROP TABLE sales;
ALTER TABLE sales2 RENAME TO sales;
GRANT ALL PRIVILEGES ON sales TO admin;
GRANT SELECT ON sales TO guest;

Limitations of Partitioned Tables

For each partition level, a partitioned table can have a maximum of 32,767 partitions.

A primary key or unique constraint on a partitioned table must contain all the partitioning columns. A unique
index can omit the partitioning columns; however, it is enforced only on the parts of the partitioned table,
not on the partitioned table as a whole.

Tables created with the DISTRIBUTED REPLICATED distribution policy cannot be partitioned.

GPORCA, the Greenplum next generation query optimizer, supports uniform multi-level partitioned
tables. If GPORCA is enabled (the default) and the multi-level partitioned table is not uniform, Greenplum
Database executes queries against the table with the Postgres Planner. For information about uniform
multi-level partitioned tables, see About Uniform Multi-level Partitioned Tables.

For information about exchanging a leaf child partition with an external table, see Exchanging a Leaf Child
Partition with an External Table.

These are limitations for partitioned tables when a leaf child partition of the table is an external table:

• Queries that run against partitioned tables that contain external table partitions are executed with the
Postgres Planner.

• The external table partition is a read only external table. Commands that attempt to access or modify
data in the external table partition return an error. For example:

• INSERT, DELETE, and UPDATE commands that attempt to change data in the external table partition
return an error.

• TRUNCATE commands return an error.
• COPY commands cannot copy data to a partitioned table that updates an external table partition.
• COPY commands that attempt to copy from an external table partition return an error unless you

specify the IGNORE EXTERNAL PARTITIONS clause with COPY command. If you specify the
clause, data is not copied from external table partitions.

To use the COPY command against a partitioned table with a leaf child table that is an external table,
use an SQL query to copy the data. For example, if the table my_sales contains a with a leaf child
table that is an external table, this command sends the data to stdout:

COPY (SELECT * from my_sales) TO stdout

• VACUUM commands skip external table partitions.
• The following operations are supported if no data is changed on the external table partition. Otherwise,

an error is returned.

Greenplum Database Administrator Guide Release Notes

301

• Adding or dropping a column.
• Changing the data type of column.

• These ALTER PARTITION operations are not supported if the partitioned table contains an external
table partition:

• Setting a subpartition template.
• Altering the partition properties.
• Creating a default partition.
• Setting a distribution policy.
• Setting or dropping a NOT NULL constraint of column.
• Adding or dropping constraints.
• Splitting an external partition.

• The Greenplum Database gpbackup utility does not back up data from a leaf child partition of a
partitioned table if the leaf child partition is a readable external table.

Loading Partitioned Tables
After you create the partitioned table structure, top-level parent tables are empty. Data is routed to the
bottom-level child table partitions. In a multi-level partition design, only the subpartitions at the bottom of
the hierarchy can contain data.

Rows that cannot be mapped to a child table partition are rejected and the load fails. To avoid unmapped
rows being rejected at load time, define your partition hierarchy with a DEFAULT partition. Any rows that do
not match a partition's CHECK constraints load into the DEFAULT partition. See Adding a Default Partition.

At runtime, the query optimizer scans the entire table inheritance hierarchy and uses the CHECK table
constraints to determine which of the child table partitions to scan to satisfy the query's conditions. The
DEFAULT partition (if your hierarchy has one) is always scanned. DEFAULT partitions that contain data slow
down the overall scan time.

When you use COPY or INSERT to load data into a parent table, the data is automatically rerouted to the
correct partition, just like a regular table.

Best practice for loading data into partitioned tables is to create an intermediate staging table, load it, and
then exchange it into your partition design. See Exchanging a Partition.

Verifying Your Partition Strategy
When a table is partitioned based on the query predicate, you can use EXPLAIN to verify that the query
optimizer scans only the relevant data to examine the query plan.

For example, suppose a sales table is date-range partitioned by month and subpartitioned by region as
shown in Figure 20: Example Multi-level Partition Design. For the following query:

EXPLAIN SELECT * FROM sales WHERE date='01-07-12' AND
region='usa';

The query plan for this query should show a table scan of only the following tables:

• the default partition returning 0-1 rows (if your partition design has one)
• the January 2012 partition (sales_1_prt_1) returning 0-1 rows
• the USA region subpartition (sales_1_2_prt_usa) returning some number of rows.

The following example shows the relevant portion of the query plan.

-> Seq Scan onsales_1_prt_1 sales (cost=0.00..0.00 rows=0
 width=0)
Filter: "date"=01-07-12::date AND region='USA'::text
-> Seq Scan onsales_1_2_prt_usa sales (cost=0.00..9.87

Greenplum Database Administrator Guide Release Notes

302

rows=20
 width=40)

Ensure that the query optimizer does not scan unnecessary partitions or subpartitions (for example, scans
of months or regions not specified in the query predicate), and that scans of the top-level tables return 0-1
rows.

Troubleshooting Selective Partition Scanning

The following limitations can result in a query plan that shows a non-selective scan of your partition
hierarchy.

• The query optimizer can selectively scan partitioned tables only when the query contains a direct and
simple restriction of the table using immutable operators such as:

=, < , <= , >, >= , and <>
• Selective scanning recognizes STABLE and IMMUTABLE functions, but does not recognize VOLATILE

functions within a query. For example, WHERE clauses such as date > CURRENT_DATE cause the
query optimizer to selectively scan partitioned tables, but time > TIMEOFDAY does not.

Viewing Your Partition Design
You can look up information about your partition design using the pg_partitions system view. For example,
to see the partition design of the sales table:

SELECT partitionboundary, partitiontablename, partitionname,
partitionlevel, partitionrank
FROM pg_partitions
WHERE tablename='sales';

The following table and views also show information about partitioned tables.

• pg_partition- Tracks partitioned tables and their inheritance level relationships.
• pg_partition_templates- Shows the subpartitions created using a subpartition template.
• pg_partition_columns - Shows the partition key columns used in a partition design.

For information about Greenplum Database system catalog tables and views, see the Greenplum
Database Reference Guide.

Maintaining Partitioned Tables
To maintain a partitioned table, use the ALTER TABLE command against the top-level parent table. The
most common scenario is to drop old partitions and add new ones to maintain a rolling window of data in a
range partition design. You can convert (exchange) older partitions to the append-optimized compressed
storage format to save space. If you have a default partition in your partition design, you add a partition by
splitting the default partition.

• Adding a Partition
• Renaming a Partition
• Adding a Default Partition
• Dropping a Partition
• Truncating a Partition
• Exchanging a Partition
• Splitting a Partition
• Modifying a Subpartition Template
• Exchanging a Leaf Child Partition with an External Table

Important: When defining and altering partition designs, use the given partition name, not the table
object name. The given partition name is the partitionname column value in the pg_partitions

Greenplum Database Administrator Guide Release Notes

303

system view. Although you can query and load any table (including partitioned tables) directly
using SQL commands, you can only modify the structure of a partitioned table using the ALTER
TABLE...PARTITION clauses.

Partitions are not required to have names. If a partition does not have a name, use one of the
following expressions to specify a partition: PARTITION FOR (value) or PARTITION FOR
(RANK(number)).

For a multi-level partitioned table, you identify a specific partition to change with ALTER PARTITION
clauses. For each partition level in the table hierarchy that is above the target partition, specify the
partition that is related to the target partition in an ALTER PARTITION clause. For example, if you have
a partitioned table that consists of three levels, year, quarter, and region, this ALTER TABLE command
exchanges a leaf partition region with the table region_new.

ALTER TABLE sales ALTER PARTITION year_1 ALTER PARTITION quarter_4 EXCHANGE
 PARTITION region WITH TABLE region_new ;

The two ALTER PARTITION clauses identify which region partition to exchange. Both clauses are
required to identify the specific leaf partition to exchange.

Adding a Partition

You can add a partition to a partition design with the ALTER TABLE command. If the original partition
design included subpartitions defined by a subpartition template, the newly added partition is
subpartitioned according to that template. For example:

ALTER TABLE sales ADD PARTITION
 START (date '2017-02-01') INCLUSIVE
 END (date '2017-03-01') EXCLUSIVE;

If you did not use a subpartition template when you created the table, you define subpartitions when adding
a partition:

ALTER TABLE sales ADD PARTITION
 START (date '2017-02-01') INCLUSIVE
 END (date '2017-03-01') EXCLUSIVE
 (SUBPARTITION usa VALUES ('usa'),
 SUBPARTITION asia VALUES ('asia'),
 SUBPARTITION europe VALUES ('europe'));

When you add a subpartition to an existing partition, you can specify the partition to alter. For example:

ALTER TABLE sales ALTER PARTITION FOR (RANK(12))
 ADD PARTITION africa VALUES ('africa');

Note: You cannot add a partition to a partition design that has a default partition. You must split the
default partition to add a partition. See Splitting a Partition.

Renaming a Partition

Partitioned tables use the following naming convention. Partitioned subtable names are subject to
uniqueness requirements and length limitations.

<parentname>_<level>_prt_<partition_name>

For example:

sales_1_prt_jan16

Greenplum Database Administrator Guide Release Notes

304

For auto-generated range partitions, where a number is assigned when no name is given):

sales_1_prt_1

To rename a partitioned child table, rename the top-level parent table. The <parentname> changes in the
table names of all associated child table partitions. For example, the following command:

ALTER TABLE sales RENAME TO globalsales;

Changes the associated table names:

globalsales_1_prt_1

You can change the name of a partition to make it easier to identify. For example:

ALTER TABLE sales RENAME PARTITION FOR ('2016-01-01') TO jan16;

Changes the associated table name as follows:

sales_1_prt_jan16

When altering partitioned tables with the ALTER TABLE command, always refer to the tables by their
partition name (jan16) and not their full table name (sales_1_prt_jan16).

Note: The table name cannot be a partition name in an ALTER TABLE statement. For example,
ALTER TABLE sales... is correct, ALTER TABLE sales_1_part_jan16... is not allowed.

Adding a Default Partition

You can add a default partition to a partition design with the ALTER TABLE command.

ALTER TABLE sales ADD DEFAULT PARTITION other;

If your partition design is multi-level, each level in the hierarchy must have a default partition. For example:

ALTER TABLE sales ALTER PARTITION FOR (RANK(1)) ADD DEFAULT
PARTITION other;

ALTER TABLE sales ALTER PARTITION FOR (RANK(2)) ADD DEFAULT
PARTITION other;

ALTER TABLE sales ALTER PARTITION FOR (RANK(3)) ADD DEFAULT
PARTITION other;

If incoming data does not match a partition's CHECK constraint and there is no default partition, the data
is rejected. Default partitions ensure that incoming data that does not match a partition is inserted into the
default partition.

Dropping a Partition

You can drop a partition from your partition design using the ALTER TABLE command. When you drop a
partition that has subpartitions, the subpartitions (and all data in them) are automatically dropped as well.
For range partitions, it is common to drop the older partitions from the range as old data is rolled out of the
data warehouse. For example:

ALTER TABLE sales DROP PARTITION FOR (RANK(1));

Greenplum Database Administrator Guide Release Notes

305

Truncating a Partition

You can truncate a partition using the ALTER TABLE command. When you truncate a partition that has
subpartitions, the subpartitions are automatically truncated as well.

ALTER TABLE sales TRUNCATE PARTITION FOR (RANK(1));

Exchanging a Partition

You can exchange a partition using the ALTER TABLE command. Exchanging a partition swaps one
table in place of an existing partition. You can exchange partitions only at the lowest level of your partition
hierarchy (only partitions that contain data can be exchanged).

You cannot exchange a partition with a replicated table. Exchanging a partition with a partitioned table or a
child partition of a partitioned table is not supported.

Partition exchange can be useful for data loading. For example, load a staging table and swap the loaded
table into your partition design. You can use partition exchange to change the storage type of older
partitions to append-optimized tables. For example:

CREATE TABLE jan12 (LIKE sales) WITH (appendoptimized=true);
INSERT INTO jan12 SELECT * FROM sales_1_prt_1 ;
ALTER TABLE sales EXCHANGE PARTITION FOR (DATE '2012-01-01')
WITH TABLE jan12;

Note: This example refers to the single-level definition of the table sales, before partitions were
added and altered in the previous examples.

Warning: If you specify the WITHOUT VALIDATION clause, you must ensure that the data in table
that you are exchanging for an existing partition is valid against the constraints on the partition.
Otherwise, queries against the partitioned table might return incorrect results.

The Greenplum Database server configuration parameter gp_enable_exchange_default_partition
controls availability of the EXCHANGE DEFAULT PARTITION clause. The default value for the parameter
is off, the clause is not available and Greenplum Database returns an error if the clause is specified in an
ALTER TABLE command.

For information about the parameter, see "Server Configuration Parameters" in the Greenplum Database
Reference Guide.

Warning: Before you exchange the default partition, you must ensure the data in the table to
be exchanged, the new default partition, is valid for the default partition. For example, the data in
the new default partition must not contain data that would be valid in other leaf child partitions of
the partitioned table. Otherwise, queries against the partitioned table with the exchanged default
partition that are executed by GPORCA might return incorrect results.

Splitting a Partition

Splitting a partition divides a partition into two partitions. You can split a partition using the ALTER TABLE
command. You can split partitions only at the lowest level of your partition hierarchy (partitions that contain
data). For a multi-level partition, only range partitions can be split, not list partitions. The split value you
specify goes into the latter partition.

For example, to split a monthly partition into two with the first partition containing dates January 1-15 and
the second partition containing dates January 16-31:

ALTER TABLE sales SPLIT PARTITION FOR ('2017-01-01')
AT ('2017-01-16')
INTO (PARTITION jan171to15, PARTITION jan1716to31);

Greenplum Database Administrator Guide Release Notes

306

If your partition design has a default partition, you must split the default partition to add a partition.

When using the INTO clause, specify the current default partition as the second partition name. For
example, to split a default range partition to add a new monthly partition for January 2017:

ALTER TABLE sales SPLIT DEFAULT PARTITION
START ('2017-01-01') INCLUSIVE
END ('2017-02-01') EXCLUSIVE
INTO (PARTITION jan17, default partition);

Modifying a Subpartition Template

Use ALTER TABLE SET SUBPARTITION TEMPLATE to modify the subpartition template of a partitioned
table. Partitions added after you set a new subpartition template have the new partition design. Existing
partitions are not modified.

The following example alters the subpartition template of this partitioned table:

CREATE TABLE sales (trans_id int, date date, amount decimal(9,2), region
 text)
 DISTRIBUTED BY (trans_id)
 PARTITION BY RANGE (date)
 SUBPARTITION BY LIST (region)
 SUBPARTITION TEMPLATE
 (SUBPARTITION usa VALUES ('usa'),
 SUBPARTITION asia VALUES ('asia'),
 SUBPARTITION europe VALUES ('europe'),
 DEFAULT SUBPARTITION other_regions)
 (START (date '2014-01-01') INCLUSIVE
 END (date '2014-04-01') EXCLUSIVE
 EVERY (INTERVAL '1 month'));

This ALTER TABLE command, modifies the subpartition template.

ALTER TABLE sales SET SUBPARTITION TEMPLATE
(SUBPARTITION usa VALUES ('usa'),
 SUBPARTITION asia VALUES ('asia'),
 SUBPARTITION europe VALUES ('europe'),
 SUBPARTITION africa VALUES ('africa'),
 DEFAULT SUBPARTITION regions);

When you add a date-range partition of the table sales, it includes the new regional list subpartition for
Africa. For example, the following command creates the subpartitions usa, asia, europe, africa, and a
default partition named other:

ALTER TABLE sales ADD PARTITION "4"
 START ('2014-04-01') INCLUSIVE
 END ('2014-05-01') EXCLUSIVE ;

To view the tables created for the partitioned table sales, you can use the command \dt sales* from
the psql command line.

To remove a subpartition template, use SET SUBPARTITION TEMPLATE with empty parentheses. For
example, to clear the sales table subpartition template:

ALTER TABLE sales SET SUBPARTITION TEMPLATE ();

Greenplum Database Administrator Guide Release Notes

307

Exchanging a Leaf Child Partition with an External Table

You can exchange a leaf child partition of a partitioned table with a readable external table. The external
table data can reside on a host file system, an NFS mount, or a Hadoop file system (HDFS).

For example, if you have a partitioned table that is created with monthly partitions and most of the queries
against the table only access the newer data, you can copy the older, less accessed data to external tables
and exchange older partitions with the external tables. For queries that only access the newer data, you
could create queries that use partition elimination to prevent scanning the older, unneeded partitions.

Exchanging a leaf child partition with an external table is not supported if the partitioned table contains a
column with a check constraint or a NOT NULL constraint.

For information about exchanging and altering a leaf child partition, see the ALTER TABLE command in
the Greenplum Database Command Reference.

For information about limitations of partitioned tables that contain a external table partition, see Limitations
of Partitioned Tables.

Example Exchanging a Partition with an External Table

This is a simple example that exchanges a leaf child partition of this partitioned table for an external table.
The partitioned table contains data for the years 2010 through 2013.

CREATE TABLE sales (id int, year int, qtr int, day int, region text)
 DISTRIBUTED BY (id)
 PARTITION BY RANGE (year)
 (PARTITION yr START (2010) END (2014) EVERY (1)) ;

There are four leaf child partitions for the partitioned table. Each leaf child partition contains the data for a
single year. The leaf child partition table sales_1_prt_yr_1 contains the data for the year 2010. These
steps exchange the table sales_1_prt_yr_1 with an external table the uses the gpfdist protocol:

1. Ensure that the external table protocol is enabled for the Greenplum Database system.

This example uses the gpfdist protocol. This command starts the gpfdist protocol.

 $ gpfdist

2. Create a writable external table.

This CREATE WRITABLE EXTERNAL TABLE command creates a writable external table with the same
columns as the partitioned table.

CREATE WRITABLE EXTERNAL TABLE my_sales_ext (LIKE sales_1_prt_yr_1)
 LOCATION ('gpfdist://gpdb_test/sales_2010')
 FORMAT 'csv'
 DISTRIBUTED BY (id) ;

3. Create a readable external table that reads the data from that destination of the writable external table
created in the previous step.

This CREATE EXTERNAL TABLE create a readable external that uses the same external data as the
writable external data.

CREATE EXTERNAL TABLE sales_2010_ext (LIKE sales_1_prt_yr_1)
 LOCATION ('gpfdist://gpdb_test/sales_2010')
 FORMAT 'csv' ;

4. Copy the data from the leaf child partition into the writable external table.

Greenplum Database Administrator Guide Release Notes

308

This INSERT command copies the data from the child leaf partition table of the partitioned table into the
external table.

INSERT INTO my_sales_ext SELECT * FROM sales_1_prt_yr_1 ;

5. Exchange the existing leaf child partition with the external table.

This ALTER TABLE command specifies the EXCHANGE PARTITION clause to switch the readable
external table and the leaf child partition.

ALTER TABLE sales ALTER PARTITION yr_1
 EXCHANGE PARTITION yr_1
 WITH TABLE sales_2010_ext WITHOUT VALIDATION;

The external table becomes the leaf child partition with the table name sales_1_prt_yr_1 and the
old leaf child partition becomes the table sales_2010_ext.

Warning: In order to ensure queries against the partitioned table return the correct results, the
external table data must be valid against the CHECK constraints on the leaf child partition. In this
case, the data was taken from the child leaf partition table on which the CHECK constraints were
defined.

6. Drop the table that was rolled out of the partitioned table.

DROP TABLE sales_2010_ext ;

You can rename the name of the leaf child partition to indicate that sales_1_prt_yr_1 is an external
table.

This example command changes the partitionname to yr_1_ext and the name of the child leaf
partition table to sales_1_prt_yr_1_ext.

ALTER TABLE sales RENAME PARTITION yr_1 TO yr_1_ext ;

Creating and Using Sequences
A Greenplum Database sequence object is a special single row table that functions as a number generator.
You can use a sequence to generate unique integer identifiers for a row that you add to a table. Declaring
a column of type SERIAL implicitly creates a sequence counter for use in that table column.

Greenplum Database provides commands to create, alter, and drop a sequence. Greenplum Database
also provides built-in functions to return the next value in the sequence (nextval()) or to set the
sequence to a specific start value (setval()).

Note: The PostgreSQL currval() and lastval() sequence functions are not supported in
Greenplum Database.

Attributes of a sequence object include the name of the sequence, its increment value, and the last,
minimum, and maximum values of the sequence counter. Sequences also have a special boolean attribute
named is_called that governs the auto-increment behavior of a nextval() operation on the sequence
counter. When a sequence's is_called attribute is true, nextval() increments the sequence counter
before returning the value. When the is_called attribute value of a sequence is false, nextval()
does not increment the counter before returning the value.

Greenplum Database Administrator Guide Release Notes

309

Creating a Sequence
The CREATE SEQUENCE command creates and initializes a sequence with the given sequence name and
optional start value. The sequence name must be distinct from the name of any other sequence, table,
index, or view in the same schema. For example:

CREATE SEQUENCE myserial START 101;

When you create a new sequence, Greenplum Database sets the sequence is_called attribute to
false. Invoking nextval() on a newly-created sequence does not increment the sequence counter, but
returns the sequence start value and sets is_called to true.

Using a Sequence
After you create a sequence with the CREATE SEQUENCE command, you can examine the sequence and
use the sequence built-in functions.

Examining Sequence Attributes
To examine the current attributes of a sequence, query the sequence directly. For example, to examine a
sequence named myserial:

SELECT * FROM myserial;

Returning the Next Sequence Counter Value
You can invoke the nextval() built-in function to return and use the next value in a sequence. The
following command inserts the next value of the sequence named myserial into the first column of a
table named vendors:

INSERT INTO vendors VALUES (nextval('myserial'), 'acme');

nextval() uses the sequence's is_called attribute value to determine whether or not to increment
the sequence counter before returning the value. nextval() advances the counter when is_called is
true. nextval() sets the sequence is_called attribute to true before returning.

A nextval() operation is never rolled back. A fetched value is considered used, even if the transaction
that performed the nextval() fails. This means that failed transactions can leave unused holes in the
sequence of assigned values.

Note: You cannot use the nextval() function in UPDATE or DELETE statements if mirroring is
enabled in Greenplum Database.

Setting the Sequence Counter Value
You can use the Greenplum Database setval() built-in function to set the counter value for a sequence.
For example, the following command sets the counter value of the sequence named myserial to 201:

SELECT setval('myserial', 201);

setval() has two function signatures: setval(sequence, start_val) and setval(sequence,
start_val, is_called). The default behaviour of setval(sequence, start_val) sets the
sequence is_called attribute value to true.

Greenplum Database Administrator Guide Release Notes

310

If you do not want the sequence counter advanced on the next nextval() call, use the
setval(sequence, start_val, is_called) function signature, passing a false argument:

SELECT setval('myserial', 201, false);

setval() operations are never rolled back.

Altering a Sequence
The ALTER SEQUENCE command changes the attributes of an existing sequence. You can alter the
sequence start, minimum, maximum, and increment values. You can also restart the sequence at the start
value or at a specified value.

Any parameters not set in the ALTER SEQUENCE command retain their prior settings.

ALTER SEQUENCE sequence START WITH start_value sets the sequence's start_value
attribute to the new starting value. It has no effect on the last_value attribute or the value returned by
the nextval(sequence) function.

ALTER SEQUENCE sequence RESTART resets the sequence's last_value attribute to the current
value of the start_value attribute and the is_called attribute to false. The next call to the
nextval(sequence) function returns start_value.

ALTER SEQUENCE sequence RESTART WITH restart_value sets the sequence's
last_value attribute to the new value and the is_called attribute to false. The next call to the
nextval(sequence) returns restart_value. This is the equivalent of calling setval(sequence,
restart_value, false).

The following command restarts the sequence named myserial at value 105:

ALTER SEQUENCE myserial RESTART WITH 105;

Dropping a Sequence
The DROP SEQUENCE command removes a sequence. For example, the following command removes the
sequence named myserial:

DROP SEQUENCE myserial;

Specifying a Sequence as the Default Value for a Column
You can reference a sequence directly in the CREATE TABLE command in addition to using the SERIAL or
BIGSERIAL types. For example:

CREATE TABLE tablename (id INT4 DEFAULT nextval('myserial'), name text);

You can also alter a table column to set its default value to a sequence counter:

ALTER TABLE tablename ALTER COLUMN id SET DEFAULT nextval('myserial');

Sequence Wraparound
By default, a sequence does not wrap around. That is, when a sequence reaches the max value (+32767
for SMALLSERIAL, +2147483647 for SERIAL, +9223372036854775807 for BIGSERIAL), every
subsequent nextval() call produces an error. You can alter a sequence to make it cycle around and
start at 1 again:

ALTER SEQUENCE myserial CYCLE;

Greenplum Database Administrator Guide Release Notes

311

You can also specify the wraparound behaviour when you create the sequence:

CREATE SEQUENCE myserial CYCLE;

Using Indexes in Greenplum Database
In most traditional databases, indexes can greatly improve data access times. However, in a distributed
database such as Greenplum, indexes should be used more sparingly. Greenplum Database performs
very fast sequential scans; indexes use a random seek pattern to locate records on disk. Greenplum data
is distributed across the segments, so each segment scans a smaller portion of the overall data to get the
result. With table partitioning, the total data to scan may be even smaller. Because business intelligence
(BI) query workloads generally return very large data sets, using indexes is not efficient.

First try your query workload without adding indexes. Indexes are more likely to improve performance for
OLTP workloads, where the query is returning a single record or a small subset of data. Indexes can also
improve performance on compressed append-optimized tables for queries that return a targeted set of
rows, as the optimizer can use an index access method rather than a full table scan when appropriate. For
compressed data, an index access method means only the necessary rows are uncompressed.

Greenplum Database automatically creates PRIMARY KEY constraints for tables with primary keys. To
create an index on a partitioned table, create an index on the partitioned table that you created. The index
is propagated to all the child tables created by Greenplum Database. Creating an index on a table that is
created by Greenplum Database for use by a partitioned table is not supported.

Note that a UNIQUE CONSTRAINT (such as a PRIMARY KEY CONSTRAINT) implicitly creates a UNIQUE
INDEX that must include all the columns of the distribution key and any partitioning key. The UNIQUE
CONSTRAINT is enforced across the entire table, including all table partitions (if any).

Indexes add some database overhead — they use storage space and must be maintained when the
table is updated. Ensure that the query workload uses the indexes that you create, and check that the
indexes you add improve query performance (as compared to a sequential scan of the table). To determine
whether indexes are being used, examine the query EXPLAIN plans. See Query Profiling.

Consider the following points when you create indexes.

• Your Query Workload. Indexes improve performance for workloads where queries return a single
record or a very small data set, such as OLTP workloads.

• Compressed Tables. Indexes can improve performance on compressed append-optimized tables for
queries that return a targeted set of rows. For compressed data, an index access method means only
the necessary rows are uncompressed.

• Avoid indexes on frequently updated columns. Creating an index on a column that is frequently
updated increases the number of writes required when the column is updated.

• Create selective B-tree indexes. Index selectivity is a ratio of the number of distinct values a column
has divided by the number of rows in a table. For example, if a table has 1000 rows and a column has
800 distinct values, the selectivity of the index is 0.8, which is considered good. Unique indexes always
have a selectivity ratio of 1.0, which is the best possible. Greenplum Database allows unique indexes
only on distribution key columns.

• Use Bitmap indexes for low selectivity columns. The Greenplum Database Bitmap index type is not
available in regular PostgreSQL. See About Bitmap Indexes.

• Index columns used in joins. An index on a column used for frequent joins (such as a foreign key
column) can improve join performance by enabling more join methods for the query optimizer to use.

• Index columns frequently used in predicates. Columns that are frequently referenced in WHERE
clauses are good candidates for indexes.

• Avoid overlapping indexes. Indexes that have the same leading column are redundant.
• Drop indexes for bulk loads. For mass loads of data into a table, consider dropping the indexes and

re-creating them after the load completes. This is often faster than updating the indexes.

Greenplum Database Administrator Guide Release Notes

312

• Consider a clustered index. Clustering an index means that the records are physically ordered on
disk according to the index. If the records you need are distributed randomly on disk, the database
has to seek across the disk to fetch the records requested. If the records are stored close together, the
fetching operation is more efficient. For example, a clustered index on a date column where the data is
ordered sequentially by date. A query against a specific date range results in an ordered fetch from the
disk, which leverages fast sequential access.

To cluster an index in Greenplum Database
Using the CLUSTER command to physically reorder a table based on an index can take a long time with
very large tables. To achieve the same results much faster, you can manually reorder the data on disk by
creating an intermediate table and loading the data in the desired order. For example:

CREATE TABLE new_table (LIKE old_table)
 AS SELECT * FROM old_table ORDER BY myixcolumn;
DROP old_table;
ALTER TABLE new_table RENAME TO old_table;
CREATE INDEX myixcolumn_ix ON old_table;
VACUUM ANALYZE old_table;

Index Types
Greenplum Database supports the Postgres index types B-tree, GiST, SP-GiST, and GIN. Hash indexes
are not supported. Each index type uses a different algorithm that is best suited to different types of
queries. B-tree indexes fit the most common situations and are the default index type. See Index Types in
the PostgreSQL documentation for a description of these types.

Note: Greenplum Database allows unique indexes only if the columns of the index key are the
same as (or a superset of) the Greenplum distribution key. Unique indexes are not supported on
append-optimized tables. On partitioned tables, a unique index cannot be enforced across all child
table partitions of a partitioned table. A unique index is supported only within a partition.

About Bitmap Indexes

Greenplum Database provides the Bitmap index type. Bitmap indexes are best suited to data warehousing
applications and decision support systems with large amounts of data, many ad hoc queries, and few data
modification (DML) transactions.

An index provides pointers to the rows in a table that contain a given key value. A regular index stores a list
of tuple IDs for each key corresponding to the rows with that key value. Bitmap indexes store a bitmap for
each key value. Regular indexes can be several times larger than the data in the table, but bitmap indexes
provide the same functionality as a regular index and use a fraction of the size of the indexed data.

Each bit in the bitmap corresponds to a possible tuple ID. If the bit is set, the row with the corresponding
tuple ID contains the key value. A mapping function converts the bit position to a tuple ID. Bitmaps are
compressed for storage. If the number of distinct key values is small, bitmap indexes are much smaller,
compress better, and save considerable space compared with a regular index. The size of a bitmap index
is proportional to the number of rows in the table times the number of distinct values in the indexed column.

Bitmap indexes are most effective for queries that contain multiple conditions in the WHERE clause. Rows
that satisfy some, but not all, conditions are filtered out before the table is accessed. This improves
response time, often dramatically.

When to Use Bitmap Indexes

Bitmap indexes are best suited to data warehousing applications where users query the data rather than
update it. Bitmap indexes perform best for columns that have between 100 and 100,000 distinct values
and when the indexed column is often queried in conjunction with other indexed columns. Columns with
fewer than 100 distinct values, such as a gender column with two distinct values (male and female), usually

https://www.postgresql.org/docs/9.4/indexes-types.html

Greenplum Database Administrator Guide Release Notes

313

do not benefit much from any type of index. On a column with more than 100,000 distinct values, the
performance and space efficiency of a bitmap index decline.

Bitmap indexes can improve query performance for ad hoc queries. AND and OR conditions in the WHERE
clause of a query can be resolved quickly by performing the corresponding Boolean operations directly on
the bitmaps before converting the resulting bitmap to tuple ids. If the resulting number of rows is small, the
query can be answered quickly without resorting to a full table scan.

When Not to Use Bitmap Indexes

Do not use bitmap indexes for unique columns or columns with high cardinality data, such as customer
names or phone numbers. The performance gains and disk space advantages of bitmap indexes start to
diminish on columns with 100,000 or more unique values, regardless of the number of rows in the table.

Bitmap indexes are not suitable for OLTP applications with large numbers of concurrent transactions
modifying the data.

Use bitmap indexes sparingly. Test and compare query performance with and without an index. Add an
index only if query performance improves with indexed columns.

Creating an Index
The CREATE INDEX command defines an index on a table. A B-tree index is the default index type. For
example, to create a B-tree index on the column gender in the table employee:

CREATE INDEX gender_idx ON employee (gender);

To create a bitmap index on the column title in the table films:

CREATE INDEX title_bmp_idx ON films USING bitmap (title);

Indexes on Expressions

An index column need not be just a column of the underlying table, but can be a function or scalar
expression computed from one or more columns of the table. This feature is useful to obtain fast access to
tables based on the results of computations.

Index expressions are relatively expensive to maintain, because the derived expressions must be
computed for each row upon insertion and whenever it is updated. However, the index expressions are not
recomputed during an indexed search, since they are already stored in the index. In both of the following
examples, the system sees the query as just WHERE indexedcolumn = 'constant' and so the speed
of the search is equivalent to any other simple index query. Thus, indexes on expressions are useful when
retrieval speed is more important than insertion and update speed.

The first example is a common way to do case-insensitive comparisons with the lower function:

SELECT * FROM test1 WHERE lower(col1) = 'value';

This query can use an index if one has been defined on the result of the lower(col1) function:

CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));

This example assumes the following type of query is performed often.

SELECT * FROM people WHERE (first_name || ' ' || last_name) = 'John Smith';

The query might benefit from the following index.

CREATE INDEX people_names ON people ((first_name || ' ' || last_name));

Greenplum Database Administrator Guide Release Notes

314

The syntax of the CREATE INDEX command normally requires writing parentheses around index
expressions, as shown in the second example. The parentheses can be omitted when the expression is
just a function call, as in the first example.

Examining Index Usage
Greenplum Database indexes do not require maintenance and tuning. You can check which indexes are
used by the real-life query workload. Use the EXPLAIN command to examine index usage for a query.

The query plan shows the steps or plan nodes that the database will take to answer a query and time
estimates for each plan node. To examine the use of indexes, look for the following query plan node types
in your EXPLAIN output:

• Index Scan - A scan of an index.
• Bitmap Heap Scan - Retrieves all
• from the bitmap generated by BitmapAnd, BitmapOr, or BitmapIndexScan and accesses the heap to

retrieve the relevant rows.
• Bitmap Index Scan - Compute a bitmap by OR-ing all bitmaps that satisfy the query predicates from

the underlying index.
• BitmapAnd or BitmapOr - Takes the bitmaps generated from multiple BitmapIndexScan nodes, ANDs

or ORs them together, and generates a new bitmap as its output.

You have to experiment to determine the indexes to create. Consider the following points.

• Run ANALYZE after you create or update an index. ANALYZE collects table statistics. The query
optimizer uses table statistics to estimate the number of rows returned by a query and to assign realistic
costs to each possible query plan.

• Use real data for experimentation. Using test data for setting up indexes tells you what indexes you
need for the test data, but that is all.

• Do not use very small test data sets as the results can be unrealistic or skewed.
• Be careful when developing test data. Values that are similar, completely random, or inserted in sorted

order will skew the statistics away from the distribution that real data would have.
• You can force the use of indexes for testing purposes by using run-time parameters to turn off

specific plan types. For example, turn off sequential scans (enable_seqscan) and nested-loop joins
(enable_nestloop), the most basic plans, to force the system to use a different plan. Time your
query with and without indexes and use the EXPLAIN ANALYZE command to compare the results.

Managing Indexes
Use the REINDEX command to rebuild a poorly-performing index. REINDEX rebuilds an index using the
data stored in the index's table, replacing the old copy of the index.

To rebuild all indexes on a table

REINDEX my_table;

To rebuild a particular index

REINDEX my_index;

Dropping an Index
The DROP INDEX command removes an index. For example:

DROP INDEX title_idx;

Greenplum Database Administrator Guide Release Notes

315

When loading data, it can be faster to drop all indexes, load, then recreate the indexes.

Creating and Managing Views
Views enable you to save frequently used or complex queries, then access them in a SELECT statement as
if they were a table. A view is not physically materialized on disk: the query runs as a subquery when you
access the view.

These topics describe various aspects of creating and managing views:

• Best Practices when Creating Views outlines best practices when creating views.
• Working with View Dependencies contains examples of listing view information and determining what

views depend on a certain object.
• About View Storage in Greenplum Database describes the mechanics behind view dependencies.

Creating Views
The CREATE VIEW command defines a view of a query. For example:

CREATE VIEW comedies AS SELECT * FROM films WHERE kind = 'comedy';

Views ignore ORDER BY and SORT operations stored in the view.

Dropping Views
The DROP VIEW command removes a view. For example:

DROP VIEW topten;

The DROP VIEW...CASCADE command also removes all dependent objects. As an example, if another
view depends on the view which is about to be dropped, the other view will be dropped as well. Without the
CASCADE option, the DROP VIEW command will fail.

Best Practices when Creating Views
When defining and using a view, remember that a view is just an SQL statement and is replaced by its
definition when the query is executed.

These are some common uses of views.

• They allow you to have a recurring SQL query or expression in one place for easy reuse.
• They can be used as an interface to abstract from the actual table definitions, so that you can

reorganize the tables without having to modify the interface.

If a subquery is associated with a single query, consider using the WITH clause of the SELECT command
instead of creating a seldom-used view.

In general, these uses do not require nesting views, that is, defining views based on other views.

These are two patterns of creating views that tend to be problematic because the view's SQL is used
during query execution.

• Defining many layers of views so that your final queries look deceptively simple.

Problems arise when you try to enhance or troubleshoot queries that use the views, for example by
examining the execution plan. The query's execution plan tends to be complicated and it is difficult to
understand and how to improve it.

• Defining a denormalized "world" view. A view that joins a large number of database tables that is used
for a wide variety of queries.

Greenplum Database Administrator Guide Release Notes

316

Performance issues can occur for some queries that use the view for some WHERE conditions while
other WHERE conditions work well.

Working with View Dependencies
If there are view dependencies on a table you must use the CASCADE keyword to drop it. Also, you cannot
alter the table if there are view dependencies on it. This example shows a view dependency on a table.

CREATE TABLE t (id integer PRIMARY KEY);
CREATE VIEW v AS SELECT * FROM t;

DROP TABLE t;
ERROR: cannot drop table t because other objects depend on it
DETAIL: view v depends on table t
HINT: Use DROP ... CASCADE to drop the dependent objects too.

ALTER TABLE t DROP id;
ERROR: cannot drop column id of table t because other objects depend on it
DETAIL: view v depends on column id of table t
HINT: Use DROP ... CASCADE to drop the dependent objects too.

As the previous example shows, altering a table can be quite a challenge if there is a deep hierarchy of
views, because you have to create the views in the correct order. You cannot create a view unless all the
objects it requires are present.

You can use view dependency information when you want to alter a table that is referenced by a view.
For example, you might want to change a table's column data type from integer to bigint because
you realize you need to store larger numbers. However, you cannot do that if there are views that use the
column. You first have to drop those views, then change the column and then run all the CREATE VIEW
statements to create the views again.

Finding View Dependencies

The following example queries list view information on dependencies on tables and columns.

• Finding Direct View Dependencies on a Table
• Finding Direct Dependencies on a Table Column
• Listing View Schemas
• Listing View Definitions
• Listing Nested Views

The example output is based on the Example Data at the end of this topic.

Also, you can use the first example query Finding Direct View Dependencies on a Table to find
dependencies on user-defined functions (or procedures). The query uses the catalog table pg_class that
contains information about tables and views. For functions, you can use the catalog table pg_proc to get
information about functions.

For detailed information about the system catalog tables that store view information, see About View
Storage in Greenplum Database.

Finding Direct View Dependencies on a Table
To find out which views directly depend on table t1, create a query that performs a join among the catalog
tables that contain the dependency information, and qualify the query to return only view dependencies.

SELECT v.oid::regclass AS view,
 d.refobjid::regclass AS ref_object -- name of table
 -- d.refobjid::regproc AS ref_object -- name of function
FROM pg_depend AS d -- objects that depend on a table

Greenplum Database Administrator Guide Release Notes

317

 JOIN pg_rewrite AS r -- rules depending on a table
 ON r.oid = d.objid
 JOIN pg_class AS v -- views for the rules
 ON v.oid = r.ev_class
WHERE v.relkind = 'v' -- filter views only
 -- dependency must be a rule depending on a relation
 AND d.classid = 'pg_rewrite'::regclass
 AND d.deptype = 'n' -- normal dependency
 -- qualify object
 AND d.refclassid = 'pg_class'::regclass -- dependent table
 AND d.refobjid = 't1'::regclass
 -- AND d.refclassid = 'pg_proc'::regclass -- dependent function
 -- AND d.refobjid = 'f'::regproc
;
 view | ref_object
------------+------------
 v1 | t1
 v2 | t1
 v2 | t1
 v3 | t1
 mytest.vt1 | t1
 mytest.v2a | t1
 mytest.v2a | t1
(7 rows)

The query performs casts to the regclass object identifier type. For information about object identifier
types, see the PostgeSQL documentation on Object Identifier Types.

In some cases, the views are listed multiple times because the view references multiple table columns.
You can remove those duplicates using DISTINCT.

You can alter the query to find views with direct dependencies on the function f.

• In the SELECT clause replace the name of the table d.refobjid::regclass as ref_object with
the name of the function d.refobjid::regproc as ref_object

• In the WHERE clause replace the catalog of the referenced object from d.refclassid =
'pg_class'::regclass for tables, to d.refclassid = 'pg_proc'::regclass for procedures
(functions). Also change the object name from d.refobjid = 't1'::regclass to d.refobjid =
'f'::regproc

• In the WHERE clause, replace the name of the table refobjid = 't1'::regclass with the name of
the function refobjid = 'f'::regproc.

In the example query, the changes have been commented out (prefixed with --). You can comment out
the lines for the table and enable the lines for the function.

Finding Direct Dependencies on a Table Column
You can modify the previous query to find those views that depend on a certain table column, which can
be useful if you are planning to drop a column (adding a column to the base table is never a problem). The
query uses the table column information in the pg_attribute catalog table.

This query finds the views that depend on the column id of table t1:

SELECT v.oid::regclass AS view,
 d.refobjid::regclass AS ref_object, -- name of table
 a.attname AS col_name -- column name
FROM pg_attribute AS a -- columns for a table
 JOIN pg_depend AS d -- objects that depend on a column
 ON d.refobjsubid = a.attnum AND d.refobjid = a.attrelid
 JOIN pg_rewrite AS r -- rules depending on the column
 ON r.oid = d.objid
 JOIN pg_class AS v -- views for the rules
 ON v.oid = r.ev_class

https://www.postgresql.org/docs/9.4/datatype-oid.html

Greenplum Database Administrator Guide Release Notes

318

WHERE v.relkind = 'v' -- filter views only
 -- dependency must be a rule depending on a relation
 AND d.classid = 'pg_rewrite'::regclass
 AND d.refclassid = 'pg_class'::regclass
 AND d.deptype = 'n' -- normal dependency
 AND a.attrelid = 't1'::regclass
 AND a.attname = 'id'
;
 view | ref_object | col_name
------------+------------+----------
 v1 | t1 | id
 v2 | t1 | id
 mytest.vt1 | t1 | id
 mytest.v2a | t1 | id
(4 rows)

Listing View Schemas
If you have created views in multiple schemas, you can also list views, each view's schema, and the
table referenced by the view. The query retrieves the schema from the catalog table pg_namespace and
excludes the system schemas pg_catalog, information_schema, and gp_toolkit. Also, the query
does not list a view if the view refers to itself.

SELECT v.oid::regclass AS view,
 ns.nspname AS schema, -- view schema,
 d.refobjid::regclass AS ref_object -- name of table
FROM pg_depend AS d -- objects that depend on a table
 JOIN pg_rewrite AS r -- rules depending on a table
 ON r.oid = d.objid
 JOIN pg_class AS v -- views for the rules
 ON v.oid = r.ev_class
 JOIN pg_namespace AS ns -- schema information
 ON ns.oid = v.relnamespace
WHERE v.relkind = 'v' -- filter views only
 -- dependency must be a rule depending on a relation
 AND d.classid = 'pg_rewrite'::regclass
 AND d.refclassid = 'pg_class'::regclass -- referenced objects in pg_class
 (tables and views)
 AND d.deptype = 'n' -- normal dependency
 -- qualify object
 AND ns.nspname NOT IN ('pg_catalog', 'information_schema', 'gp_toolkit')
 -- system schemas
 AND NOT (v.oid = d.refobjid) -- not self-referencing dependency
;
 view | schema | ref_object
------------+--------+------------
 v1 | public | t1
 v2 | public | t1
 v2 | public | t1
 v2 | public | v1
 v3 | public | t1
 vm1 | public | mytest.tm1
 mytest.vm1 | mytest | t1
 vm2 | public | mytest.tm1
 mytest.v2a | mytest | t1
 mytest.v2a | mytest | t1
 mytest.v2a | mytest | v1
(11 rows)

Greenplum Database Administrator Guide Release Notes

319

Listing View Definitions
This query lists the views that depend on t1, the column referenced, and the view definition. The CREATE
VIEW command is created by adding the appropriate text to the view definition.

SELECT v.relname AS view,
 d.refobjid::regclass as ref_object,
 d.refobjsubid as ref_col,
 'CREATE VIEW ' || v.relname || ' AS ' || pg_get_viewdef(v.oid) AS view_def
FROM pg_depend AS d
 JOIN pg_rewrite AS r
 ON r.oid = d.objid
 JOIN pg_class AS v
 ON v.oid = r.ev_class
WHERE NOT (v.oid = d.refobjid)
 AND d.refobjid = 't1'::regclass
 ORDER BY d.refobjsubid
;
 view | ref_object | ref_col | view_def
------+------------+---------+--
 v1 | t1 | 1 | CREATE VIEW v1 AS SELECT max(t1.id) AS id+
 | | | FROM t1;
 v2a | t1 | 1 | CREATE VIEW v2a AS SELECT t1.val +
 | | | FROM (t1 +
 | | | JOIN v1 USING (id));
 vt1 | t1 | 1 | CREATE VIEW vt1 AS SELECT t1.id +
 | | | FROM t1 +
 | | | WHERE (t1.id < 3);
 v2 | t1 | 1 | CREATE VIEW v2 AS SELECT t1.val +
 | | | FROM (t1 +
 | | | JOIN v1 USING (id));
 v2a | t1 | 2 | CREATE VIEW v2a AS SELECT t1.val +
 | | | FROM (t1 +
 | | | JOIN v1 USING (id));
 v3 | t1 | 2 | CREATE VIEW v3 AS SELECT (t1.val || f()) +
 | | | FROM t1;
 v2 | t1 | 2 | CREATE VIEW v2 AS SELECT t1.val +
 | | | FROM (t1 +
 | | | JOIN v1 USING (id));
(7 rows)

Listing Nested Views
This CTE query lists information about views that reference another view.

The WITH clause in this CTE query selects all the views in the user schemas. The main SELECT statement
finds all views that reference another view.

WITH views AS (SELECT v.relname AS view,
 d.refobjid AS ref_object,
 v.oid AS view_oid,
 ns.nspname AS namespace
FROM pg_depend AS d
 JOIN pg_rewrite AS r
 ON r.oid = d.objid
 JOIN pg_class AS v
 ON v.oid = r.ev_class
 JOIN pg_namespace AS ns
 ON ns.oid = v.relnamespace
WHERE v.relkind = 'v'
 AND ns.nspname NOT IN ('pg_catalog', 'information_schema', 'gp_toolkit')
 -- exclude system schemas
 AND d.deptype = 'n' -- normal dependency

Greenplum Database Administrator Guide Release Notes

320

 AND NOT (v.oid = d.refobjid) -- not a self-referencing dependency
)
SELECT views.view, views.namespace AS schema,
 views.ref_object::regclass AS ref_view,
 ref_nspace.nspname AS ref_schema
FROM views
 JOIN pg_depend as dep
 ON dep.refobjid = views.view_oid
 JOIN pg_class AS class
 ON views.ref_object = class.oid
 JOIN pg_namespace AS ref_nspace
 ON class.relnamespace = ref_nspace.oid
 WHERE class.relkind = 'v'
 AND dep.deptype = 'n'
;
 view | schema | ref_view | ref_schema
------+--------+----------+------------
 v2 | public | v1 | public
 v2a | mytest | v1 | public

Example Data
The output for the example queries is based on these database objects and data.

CREATE TABLE t1 (
 id integer PRIMARY KEY,
 val text NOT NULL
);

INSERT INTO t1 VALUES
 (1, 'one'), (2, 'two'), (3, 'three');

CREATE FUNCTION f() RETURNS text
 LANGUAGE sql AS 'SELECT ''suffix''::text';

CREATE VIEW v1 AS
 SELECT max(id) AS id
 FROM t1;

CREATE VIEW v2 AS
 SELECT t1.val
 FROM t1 JOIN v1 USING (id);

CREATE VIEW v3 AS
 SELECT val || f()
 FROM t1;

CREATE VIEW v5 AS
 SELECT f() ;

CREATE SCHEMA mytest ;

CREATE TABLE mytest.tm1 (
 id integer PRIMARY KEY,
 val text NOT NULL
);

INSERT INTO mytest.tm1 VALUES
 (1, 'one'), (2, 'two'), (3, 'three');

CREATE VIEW vm1 AS
 SELECT id FROM mytest.tm1 WHERE id < 3 ;

Greenplum Database Administrator Guide Release Notes

321

CREATE VIEW mytest.vm1 AS
 SELECT id FROM public.t1 WHERE id < 3 ;

CREATE VIEW vm2 AS
 SELECT max(id) AS id
 FROM mytest.tm1;

CREATE VIEW mytest.v2a AS
 SELECT t1.val
 FROM public.t1 JOIN public.v1 USING (id);

About View Storage in Greenplum Database
A view is similar to a table, both are relations - that is "something with columns". All such objects are stored
in the catalog table pg_class. These are the general differences:

• A view has no data files (because it holds no data).
• The value of pg_class.relkind for a view is v rather than r.
• A view has an ON SELECT query rewrite rule called _RETURN.

The rewrite rule contains the definition of the view and is stored in the ev_action column of the
pg_rewrite catalog table.

For more technical information about views, see the PostgreSQL documentation about Views and the Rule
System.

Also, a view definition is not stored as a string, but in the form of a query parse tree. Views are parsed
when they are created, which has several consequences:

• Object names are resolved during CREATE VIEW, so the current setting of search_path affects the
view definition.

• Objects are referred to by their internal immutable object ID rather than by their name. Consequently,
renaming an object or column referenced in a view definition can be performed without dropping the
view.

• Greenplum Database can determine exactly which objects are used in the view definition, so it can add
dependencies on them.

Note that the way Greenplum Database handles views is quite different from the way Greenplum Database
handles functions: function bodies are stored as strings and are not parsed when they are created.
Consequently, Greenplum Database does not know on which objects a given function depends.

Where View Dependency Information is Stored
These system catalog tables contain the information used to determine the tables on which a view
depends.

• pg_class - object information including tables and views. The relkind column describes the type of
object.

• pg_depend - object dependency information for database-specific (non-shared) objects.
• pg_rewrite - rewrite rules for tables and views.
• pg_attribute - information about table columns.
• pg_namespace - information about schemas (namespaces).

It is important to note that there is no direct dependency of a view on the objects it uses: the dependent
object is actually the view's rewrite rule. That adds another layer of indirection to view dependency
information.

https://www.postgresql.org/docs/9.4/rules-views.html
https://www.postgresql.org/docs/9.4/rules-views.html

Greenplum Database Administrator Guide Release Notes

322

Creating and Managing Materialized Views
Materialized views are similar to views. A materialized view enables you to save a frequently used or
complex query, then access the query results in a SELECT statement as if they were a table. Materialized
views persist the query results in a table-like form. While access to the data stored in a materialized view
can be much faster than accessing the underlying tables directly or through a view, the data is not always
current.

The materialized view data cannot be directly updated. To refresh the materialized view data, use the
REFRESH MATERIALIZED VIEW command. The query used to create the materialized view is stored in
exactly the same way that a view's query is stored. For example, you can create a materialized view that
quickly displays a summary of historical sales data for situations where having incomplete data for the
current date would be acceptable.

CREATE MATERIALIZED VIEW sales_summary AS
 SELECT seller_no, invoice_date, sum(invoice_amt)::numeric(13,2) as
 sales_amt
 FROM invoice
 WHERE invoice_date < CURRENT_DATE
 GROUP BY seller_no, invoice_date
 ORDER BY seller_no, invoice_date;

CREATE UNIQUE INDEX sales_summary_seller
 ON sales_summary (seller_no, invoice_date);

The materialized view might be useful for displaying a graph in the dashboard created for sales people.
You could schedule a job to update the summary information each night using this command.

REFRESH MATERIALIZED VIEW sales_summary;

The information about a materialized view in the Greenplum Database system catalogs is exactly the same
as it is for a table or view. A materialized view is a relation, just like a table or a view. When a materialized
view is referenced in a query, the data is returned directly from the materialized view, just like from a table.
The query in the materialized view definition is only used for populating the materialized view.

If you can tolerate periodic updates of materialized view data, the performance benefit can be substantial.

One use of a materialized view is to allow faster access to data brought in from an external data source
such as external table or a foreign data wrapper. Also, you can define indexes on a materialized view,
whereas foreign data wrappers do not support indexes; this advantage might not apply for other types of
external data access.

If a subquery is associated with a single query, consider using the WITH clause of the SELECT command
instead of creating a seldom-used materialized view.

Creating Materialized Views
The CREATE MATERIALIZED VIEW command defines a materialized view based on a query.

CREATE MATERIALIZED VIEW us_users AS SELECT u.id, u.name, a.zone FROM users
 u, address a WHERE a.country = 'USA';

If a materialized view query contains an ORDER BY or SORT clause, the clause is ignored when a SELECT
is performed on the materialized query.

Greenplum Database Administrator Guide Release Notes

323

Refreshing or Disabling Materialized Views
The REFRESH MATERIALIZED VIEW command updates the materialized view data.

REFRESH MATERIALIZED VIEW us_users;

With the WITH NO DATA clause, the current data is removed, no new data is generated, and the
materialized view is left in an unscannable state. An error is returned if a query attempts to access an
unscannable materialized view.

REFRESH MATERIALIZED VIEW us_users WITH NO DATA;

Dropping Materialized Views
The DROP MATERIALIZED VIEW command removes a materialized view definition and data. For
example:

DROP MATERIALIZED VIEW us_users;

The DROP MATERIALIZED VIEW ... CASCADE command also removes all dependent objects. For
example, if another materialized view depends on the materialized view which is about to be dropped, the
other materialized view will be dropped as well. Without the CASCADE option, the DROP MATERIALIZED
VIEW command fails.

Greenplum Database Administrator Guide Release Notes

324

Distribution and Skew
Greenplum Database relies on even distribution of data across segments.

In an MPP shared nothing environment, overall response time for a query is measured by the completion
time for all segments. The system is only as fast as the slowest segment. If the data is skewed, segments
with more data will take more time to complete, so every segment must have an approximately equal
number of rows and perform approximately the same amount of processing. Poor performance and out of
memory conditions may result if one segment has significantly more data to process than other segments.

Optimal distributions are critical when joining large tables together. To perform a join, matching rows
must be located together on the same segment. If data is not distributed on the same join column, the
rows needed from one of the tables are dynamically redistributed to the other segments. In some cases
a broadcast motion, in which each segment sends its individual rows to all other segments, is performed
rather than a redistribution motion, where each segment rehashes the data and sends the rows to the
appropriate segments according to the hash key.

Local (Co-located) Joins
Using a hash distribution that evenly distributes table rows across all segments and results in local joins
can provide substantial performance gains. When joined rows are on the same segment, much of the
processing can be accomplished within the segment instance. These are called local or co-located joins.
Local joins minimize data movement; each segment operates independently of the other segments, without
network traffic or communications between segments.

To achieve local joins for large tables commonly joined together, distribute the tables on the same column.
Local joins require that both sides of a join be distributed on the same columns (and in the same order)
and that all columns in the distribution clause are used when joining tables. The distribution columns must
also be the same data type—although some values with different data types may appear to have the same
representation, they are stored differently and hash to different values, so they are stored on different
segments.

Data Skew
Data skew may be caused by uneven data distribution due to the wrong choice of distribution keys or
single tuple table insert or copy operations. Present at the table level, data skew, is often the root cause of
poor query performance and out of memory conditions. Skewed data affects scan (read) performance, but
it also affects all other query execution operations, for instance, joins and group by operations.

It is very important to validate distributions to ensure that data is evenly distributed after the initial load. It is
equally important to continue to validate distributions after incremental loads.

The following query shows the number of rows per segment as well as the variance from the minimum and
maximum numbers of rows:

SELECT 'Example Table' AS "Table Name",
 max(c) AS "Max Seg Rows", min(c) AS "Min Seg Rows",
 (max(c)-min(c))*100.0/max(c) AS "Percentage Difference Between Max &
 Min"
FROM (SELECT count(*) c, gp_segment_id FROM facts GROUP BY 2) AS a;

The gp_toolkit schema has two views that you can use to check for skew.

• The gp_toolkit.gp_skew_coefficients view shows data distribution skew by calculating the
coefficient of variation (CV) for the data stored on each segment. The skccoeff column shows the
coefficient of variation (CV), which is calculated as the standard deviation divided by the average. It

Greenplum Database Administrator Guide Release Notes

325

takes into account both the average and variability around the average of a data series. The lower the
value, the better. Higher values indicate greater data skew.

• The gp_toolkit.gp_skew_idle_fractions view shows data distribution skew by calculating the
percentage of the system that is idle during a table scan, which is an indicator of computational skew.
The siffraction column shows the percentage of the system that is idle during a table scan. This is
an indicator of uneven data distribution or query processing skew. For example, a value of 0.1 indicates
10% skew, a value of 0.5 indicates 50% skew, and so on. Tables that have more than10% skew should
have their distribution policies evaluated.

Considerations for Replicated Tables
When you create a replicated table (with the CREATE TABLE clause DISTRIBUTED REPLICATED),
Greenplum Database distributes every table row to every segment instance. Replicated table data is
evenly distributed because every segment has the same rows. A query that uses the gp_segment_id
system column on a replicated table to verify evenly distributed data, will fail because Greenplum Database
does not allow queries to reference replicated tables' system columns.

Processing Skew
Processing skew results when a disproportionate amount of data flows to, and is processed by, one or
a few segments. It is often the culprit behind Greenplum Database performance and stability issues. It
can happen with operations such join, sort, aggregation, and various OLAP operations. Processing skew
happens in flight while a query is executing and is not as easy to detect as data skew.

If single segments are failing, that is, not all segments on a host, it may be a processing skew issue.
Identifying processing skew is currently a manual process. First look for spill files. If there is skew, but not
enough to cause spill, it will not become a performance issue. If you determine skew exists, then find the
query responsible for the skew. Following are the steps and commands to use. (Change names like the
host file name passed to gpssh accordingly):

1. Find the OID for the database that is to be monitored for skew processing:

SELECT oid, datname FROM pg_database;

Example output:

 oid | datname
-------+-----------
 17088 | gpadmin
 10899 | postgres
 1 | template1
 10898 | template0
 38817 | pws
 39682 | gpperfmon
(6 rows)

2. Run a gpssh command to check file sizes across all of the segment nodes in the system. Replace
<OID> with the OID of the database from the prior command:

[gpadmin@mdw kend]$ gpssh -f ~/hosts -e \
 "du -b /data[1-2]/primary/gpseg*/base/<OID>/pgsql_tmp/*" | \
 grep -v "du -b" | sort | awk -F" " '{ arr[$1] = arr[$1] + $2 ; tot =
 tot + $2 }; END \
 { for (i in arr) print "Segment node" i, arr[i], "bytes (" arr[i]/
(1024**3)" GB)"; \
 print "Total", tot, "bytes (" tot/(1024**3)" GB)" }' -

Example output:

Segment node[sdw1] 2443370457 bytes (2.27557 GB)

Greenplum Database Administrator Guide Release Notes

326

Segment node[sdw2] 1766575328 bytes (1.64525 GB)
Segment node[sdw3] 1761686551 bytes (1.6407 GB)
Segment node[sdw4] 1780301617 bytes (1.65804 GB)
Segment node[sdw5] 1742543599 bytes (1.62287 GB)
Segment node[sdw6] 1830073754 bytes (1.70439 GB)
Segment node[sdw7] 1767310099 bytes (1.64594 GB)
Segment node[sdw8] 1765105802 bytes (1.64388 GB)
Total 14856967207 bytes (13.8366 GB)

If there is a significant and sustained difference in disk usage, then the queries being executed should
be investigated for possible skew (the example output above does not reveal significant skew). In
monitoring systems, there will always be some skew, but often it is transient and will be short in
duration.

3. If significant and sustained skew appears, the next task is to identify the offending query.

The command in the previous step sums up the entire node. This time, find the actual segment
directory. You can do this from the master or by logging into the specific node identified in the previous
step. Following is an example run from the master.

This example looks specifically for sort files. Not all spill files or skew situations are caused by sort files,
so you will need to customize the command:

$ gpssh -f ~/hosts -e
 "ls -l /data[1-2]/primary/gpseg*/base/19979/pgsql_tmp/*"
 | grep -i sort | awk '{sub(/base.*tmp\//, ".../", $10); print $1,$6,
$10}' | sort -k2 -n

Here is output from this command:

[sdw1] 288718848
 /data1/primary/gpseg2/.../pgsql_tmp_slice0_sort_17758_0001.0[sdw1]
 291176448
 /data2/primary/gpseg5/.../pgsql_tmp_slice0_sort_17764_0001.0[sdw8]
 924581888
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0010.9[sdw4]
 980582400
 /data1/primary/gpseg18/.../pgsql_tmp_slice10_sort_29425_0001.0[sdw6]
 986447872
 /data2/primary/gpseg35/.../pgsql_tmp_slice10_sort_29602_0001.0...
[sdw5] 999620608
 /data1/primary/gpseg26/.../pgsql_tmp_slice10_sort_28637_0001.0[sdw2]
 999751680
 /data2/primary/gpseg9/.../pgsql_tmp_slice10_sort_3969_0001.0[sdw3]
 1000112128
 /data1/primary/gpseg13/.../pgsql_tmp_slice10_sort_24723_0001.0[sdw5]
 1000898560
 /data2/primary/gpseg28/.../pgsql_tmp_slice10_sort_28641_0001.0...
[sdw8] 1008009216
 /data1/primary/gpseg44/.../pgsql_tmp_slice10_sort_15671_0001.0[sdw5]
 1008566272
 /data1/primary/gpseg24/.../pgsql_tmp_slice10_sort_28633_0001.0[sdw4]
 1009451008
 /data1/primary/gpseg19/.../pgsql_tmp_slice10_sort_29427_0001.0[sdw7]
 1011187712
 /data1/primary/gpseg37/.../pgsql_tmp_slice10_sort_18526_0001.0[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0001.0[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0002.1[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0003.2[sdw8]
 1573741824

Greenplum Database Administrator Guide Release Notes

327

 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0004.3[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0005.4[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0006.5[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0007.6[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0008.7[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0009.8

Scanning this output reveals that segment gpseg45 on host sdw8 is the culprit, as its sort files are
larger than the others in the output.

4. Log in to the offending node with ssh and become root. Use the lsof command to find the PID for the
process that owns one of the sort files:

[root@sdw8 ~]# lsof /data2/primary/gpseg45/base/19979/pgsql_tmp/
pgsql_tmp_slice10_sort_15673_0002.1
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
postgres 15673 gpadmin 11u REG 8,48 1073741824 64424546751 /data2/
primary/gpseg45/base/19979/pgsql_tmp/pgsql_tmp_slice10_sort_15673_0002.1

The PID, 15673, is also part of the file name, but this may not always be the case.
5. Use the ps command with the PID to identify the database and connection information:

[root@sdw8 ~]# ps -eaf | grep 15673
gpadmin 15673 27471 28 12:05 ? 00:12:59 postgres: port 40003,
 sbaskin bdw
 172.28.12.250(21813) con699238 seg45 cmd32 slice10 MPPEXEC SELECT
root 29622 29566 0 12:50 pts/16 00:00:00 grep 15673

6. On the master, check the pg_log log file for the user in the previous command (sbaskin), connection
(con699238, and command (cmd32). The line in the log file with these three values should be the line
that contains the query, but occasionally, the command number may differ slightly. For example, the ps
output may show cmd32, but in the log file it is cmd34. If the query is still running, the last query for the
user and connection is the offending query.

The remedy for processing skew in almost all cases is to rewrite the query. Creating temporary tables can
eliminate skew. Temporary tables can be randomly distributed to force a two-stage aggregation.

Greenplum Database Administrator Guide Release Notes

328

Inserting, Updating, and Deleting Data
This section provides information about manipulating data and concurrent access in Greenplum Database.

This topic includes the following subtopics:

• About Concurrency Control in Greenplum Database
• Inserting Rows
• Updating Existing Rows
• Deleting Rows
• Working With Transactions
• Global Deadlock Detector
• Vacuuming the Database
• Running Out of Locks

About Concurrency Control in Greenplum Database
Greenplum Database and PostgreSQL do not use locks for concurrency control. They maintain data
consistency using a multiversion model, Multiversion Concurrency Control (MVCC). MVCC achieves
transaction isolation for each database session, and each query transaction sees a snapshot of data. This
ensures the transaction sees consistent data that is not affected by other concurrent transactions.

Because MVCC does not use explicit locks for concurrency control, lock contention is minimized and
Greenplum Database maintains reasonable performance in multiuser environments. Locks acquired for
querying (reading) data do not conflict with locks acquired for writing data.

Greenplum Database provides multiple lock modes to control concurrent access to data in tables.
Most Greenplum Database SQL commands automatically acquire the appropriate locks to ensure that
referenced tables are not dropped or modified in incompatible ways while a command executes. For
applications that cannot adapt easily to MVCC behavior, you can use the LOCK command to acquire
explicit locks. However, proper use of MVCC generally provides better performance.

Table 42: Lock Modes in Greenplum Database

Lock Mode Associated SQL Commands Conflicts With

ACCESS SHARE SELECT ACCESS EXCLUSIVE

ROW SHARE SELECT FOR SHARE, SELECT...
FOR UPDATE

EXCLUSIVE, ACCESS EXCLUSIVE

ROW EXCLUSIVE INSERT, COPY

See Note.

SHARE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, ACCESS EXCLUSIVE

SHARE UPDATE
EXCLUSIVE

VACUUM (without FULL), ANALYZE SHARE UPDATE EXCLUSIVE,
SHARE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, ACCESS EXCLUSIVE

SHARE CREATE INDEX ROW EXCLUSIVE, SHARE UPDATE
EXCLUSIVE, SHARE ROW
EXCLUSIVE, EXCLUSIVE, ACCESS
EXCLUSIVE

Greenplum Database Administrator Guide Release Notes

329

Lock Mode Associated SQL Commands Conflicts With

SHARE ROW
EXCLUSIVE

ROW EXCLUSIVE, SHARE UPDATE
EXCLUSIVE, SHARE, SHARE ROW
EXCLUSIVE, EXCLUSIVE, ACCESS
EXCLUSIVE

EXCLUSIVE DELETE, UPDATE, SELECT...FOR
UPDATE, REFRESH MATERIALIZED
VIEW CONCURRENTLY

See Note.

ROW SHARE, ROW EXCLUSIVE,
SHARE UPDATE EXCLUSIVE,
SHARE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, ACCESS EXCLUSIVE

ACCESS EXCLUSIVE ALTER TABLE, DROP TABLE,
TRUNCATE, REINDEX, CLUSTER,
REFRESH MATERIALIZED VIEW
(without CONCURRENTLY), VACUUM
FULL

ACCESS SHARE, ROW SHARE,
ROW EXCLUSIVE, SHARE UPDATE
EXCLUSIVE, SHARE, SHARE ROW
EXCLUSIVE, EXCLUSIVE, ACCESS
EXCLUSIVE

Note: By default Greenplum Database acquires the more restrictive EXCLUSIVE lock (rather than
ROW EXCLUSIVE in PostgreSQL) for UPDATE, DELETE, and SELECT...FOR UPDATE operations
on heap tables. When the Global Deadlock Detector is enabled the lock mode for UPDATE and
DELETE operations on heap tables is ROW EXCLUSIVE. See Global Deadlock Detector. Greenplum
always holds a table-level lock with SELECT...FOR UPDATE statements.

Inserting Rows
Use the INSERT command to create rows in a table. This command requires the table name and a value
for each column in the table; you may optionally specify the column names in any order. If you do not
specify column names, list the data values in the order of the columns in the table, separated by commas.

For example, to specify the column names and the values to insert:

INSERT INTO products (name, price, product_no) VALUES ('Cheese', 9.99, 1);

To specify only the values to insert:

INSERT INTO products VALUES (1, 'Cheese', 9.99);

Usually, the data values are literals (constants), but you can also use scalar expressions. For example:

INSERT INTO films SELECT * FROM tmp_films WHERE date_prod <
'2016-05-07';

You can insert multiple rows in a single command. For example:

INSERT INTO products (product_no, name, price) VALUES
 (1, 'Cheese', 9.99),
 (2, 'Bread', 1.99),
 (3, 'Milk', 2.99);

To insert data into a partitioned table, you specify the root partitioned table, the table created with the
CREATE TABLE command. You also can specify a leaf child table of the partitioned table in an INSERT
command. An error is returned if the data is not valid for the specified leaf child table. Specifying a child
table that is not a leaf child table in the INSERT command is not supported.

To insert large amounts of data, use external tables or the COPY command. These load mechanisms are
more efficient than INSERT for inserting large quantities of rows. See Loading and Unloading Data for
more information about bulk data loading.

Greenplum Database Administrator Guide Release Notes

330

The storage model of append-optimized tables is optimized for bulk data loading. Greenplum does not
recommend single row INSERT statements for append-optimized tables. For append-optimized tables,
Greenplum Database supports a maximum of 127 concurrent INSERT transactions into a single append-
optimized table.

Updating Existing Rows
The UPDATE command updates rows in a table. You can update all rows, a subset of all rows, or individual
rows in a table. You can update each column separately without affecting other columns.

To perform an update, you need:

• The name of the table and columns to update
• The new values of the columns
• One or more conditions specifying the row or rows to be updated.

For example, the following command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

Using UPDATE in Greenplum Database has the following restrictions:

• While GPORCA supports updates to Greenplum distribution key columns, the Postgres Planner does
not.

• If mirrors are enabled, you cannot use STABLE or VOLATILE functions in an UPDATE statement.
• Greenplum Database partitioning columns cannot be updated.

Deleting Rows
The DELETE command deletes rows from a table. Specify a WHERE clause to delete rows that match
certain criteria. If you do not specify a WHERE clause, all rows in the table are deleted. The result is a valid,
but empty, table. For example, to remove all rows from the products table that have a price of 10:

DELETE FROM products WHERE price = 10;

To delete all rows from a table:

DELETE FROM products;

Using DELETE in Greenplum Database has similar restrictions to using UPDATE:

• If mirrors are enabled, you cannot use STABLE or VOLATILE functions in an UPDATE statement.

Truncating a Table
Use the TRUNCATE command to quickly remove all rows in a table. For example:

TRUNCATE mytable;

This command empties a table of all rows in one operation. Note that TRUNCATE does not scan the table,
therefore it does not process inherited child tables or ON DELETE rewrite rules. The command truncates
only rows in the named table.

Working With Transactions
Transactions allow you to bundle multiple SQL statements in one all-or-nothing operation.

The following are the Greenplum Database SQL transaction commands:

Greenplum Database Administrator Guide Release Notes

331

• BEGIN or START TRANSACTION starts a transaction block.
• END or COMMIT commits the results of a transaction.
• ROLLBACK abandons a transaction without making any changes.
• SAVEPOINT marks a place in a transaction and enables partial rollback. You can roll back commands

executed after a savepoint while maintaining commands executed before the savepoint.
• ROLLBACK TO SAVEPOINT rolls back a transaction to a savepoint.
• RELEASE SAVEPOINT destroys a savepoint within a transaction.

Transaction Isolation Levels
Greenplum Database accepts the standard SQL transaction levels as follows:

• READ UNCOMMITTED and READ COMMITTED behave like the standard READ COMMITTED.
• REPEATABLE READ and SERIALIZABLE behave like REPEATABLE READ.

The following information describes the behavior of the Greenplum transaction levels.

Read Uncommitted and Read Committed
Greenplum Database does not allow any command to see an uncommitted update in another concurrent
transaction, so READ UNCOMMITTED behaves the same as READ COMMITTED. READ COMMITTED
provides fast, simple, partial transaction isolation. SELECT, UPDATE, and DELETE commands operate on a
snapshot of the database taken when the query started.

A SELECT query:

• Sees data committed before the query starts.
• Sees updates executed within the transaction.
• Does not see uncommitted data outside the transaction.
• Can possibly see changes that concurrent transactions made if the concurrent transaction is committed

after the initial read in its own transaction.

Successive SELECT queries in the same transaction can see different data if other concurrent transactions
commit changes between the successive queries. UPDATE and DELETE commands find only rows
committed before the commands started.

READ COMMITTED transaction isolation allows concurrent transactions to modify or lock a row before
UPDATE or DELETE find the row. READ COMMITTED transaction isolation may be inadequate for
applications that perform complex queries and updates and require a consistent view of the database.

Repeatable Read and Serializable
SERIALIZABLE transaction isolation, as defined by the SQL standard, ensures that transactions that run
concurrently produce the same results as if they were run one after another. If you specify SERIALIZABLE
Greenplum Database falls back to REPEATABLE READ. REPEATABLE READ transactions prevent dirty
reads, non-repeatable reads, and phantom reads without expensive locking, but Greenplum Database
does not detect all serializability interactions that can occur during concurrent transaction execution.
Concurrent transactions should be examined to identify interactions that are not prevented by disallowing
concurrent updates of the same data. You can prevent these interactions by using explicit table locks or by
requiring the conflicting transactions to update a dummy row introduced to represent the conflict.

With REPEATABLE READ transactions, a SELECT query:

• Sees a snapshot of the data as of the start of the transaction (not as of the start of the current query
within the transaction).

• Sees only data committed before the query starts.
• Sees updates executed within the transaction.
• Does not see uncommitted data outside the transaction.
• Does not see changes that concurrent transactions make.

Greenplum Database Administrator Guide Release Notes

332

• Successive SELECT commands within a single transaction always see the same data.
• UPDATE, DELETE, SELECT FOR UPDATE, and SELECT FOR SHARE commands find only rows

committed before the command started. If a concurrent transaction has updated, deleted, or locked a
target row, the REPEATABLE READ transaction waits for the concurrent transaction to commit or roll
back the change. If the concurrent transaction commits the change, the REPEATABLE READ transaction
rolls back. If the concurrent transaction rolls back its change, theREPEATABLE READ transaction can
commit its changes.

The default transaction isolation level in Greenplum Database is READ COMMITTED. To change the
isolation level for a transaction, declare the isolation level when you BEGIN the transaction or use the SET
TRANSACTION command after the transaction starts.

Global Deadlock Detector
The Greenplum Database Global Deadlock Detector background worker process collects lock information
on all segments and uses a directed algorithm to detect the existence of local and global deadlocks. This
algorithm allows Greenplum Database to relax concurrent update and delete restrictions on heap tables.
(Greenplum Database still employs table-level locking on AO/CO tables, restricting concurrent UPDATE,
DELETE, and SELECT...FOR UPDATE operations.)

By default, the Global Deadlock Detector is disabled and Greenplum Database executes the concurrent
update and delete operations on a heap table serially. You can enable these concurrent updates and
have the Global Deadlock Detector determine when a deadlock exists by setting the server configuration
parameter gp_enable_global_deadlock_detector.

When the Global Deadlock Detector is enabled, the background worker process is automatically
started on the master host when you start Greenplum Database. You configure the interval
at which the Global Deadlock Detector collects and analyzes lock waiting data via the
gp_global_deadlock_detector_period server configuration parameter.

If the Global Deadlock Detector determines that deadlock exists, it breaks the deadlock by cancelling one
or more backend processes associated with the youngest transaction(s) involved.

When the Global Deadlock Detector determines a deadlock exists for the following types of transactions,
only one of the transactions will succeed. The other transactions will fail with an error indicating that
concurrent updates to the same row is not allowed.

• Concurrent transactions on the same row of a heap table where the first transaction is an update
operation and a later transaction executes an update or delete and the query plan contains a motion
operator.

• Concurrent update transactions on the same distribution key of a heap table that are executed by the
Postgres Planner.

• Concurrent update transactions on the same row of a hash table that are executed by the GPORCA
optimizer.

Note: Greenplum Database uses the interval specified in the deadlock_timeout server
configuration parameter for local deadlock detection. Because the local and global deadlock
detection algorithms differ, the cancelled process(es) may differ depending upon which detector
(local or global) Greenplum Database triggers first.

Note: If the lock_timeout server configuration parameter is turned on and set to a value
smaller than deadlock_timeout and gp_global_deadlock_detector_period, Greenplum
Database will abort a statement before it would ever trigger a deadlock check in that session.

To view lock waiting information for all segments, run the gp_dist_wait_status() user-defined
function. You can use the output of this function to determine which transactions are waiting on locks,
which transactions are holding locks, the lock types and mode, the waiter and holder session identifiers,

Greenplum Database Administrator Guide Release Notes

333

and which segments are executing the transactions. Sample output of the gp_dist_wait_status()
function follows:

SELECT * FROM pg_catalog.gp_dist_wait_status();
-[RECORD 1]----+--------------
segid | 0
waiter_dxid | 11
holder_dxid | 12
holdTillEndXact | t
waiter_lpid | 31249
holder_lpid | 31458
waiter_lockmode | ShareLock
waiter_locktype | transactionid
waiter_sessionid | 8
holder_sessionid | 9
-[RECORD 2]----+--------------
segid | 1
waiter_dxid | 12
holder_dxid | 11
holdTillEndXact | t
waiter_lpid | 31467
holder_lpid | 31250
waiter_lockmode | ShareLock
waiter_locktype | transactionid
waiter_sessionid | 9
holder_sessionid | 8

When it cancels a transaction to break a deadlock, the Global Deadlock Detector reports the following error
message:

ERROR: canceling statement due to user request: "cancelled by global
 deadlock detector"

Global Deadlock Detector UPDATE and DELETE Compatibility
The Global Deadlock Detector can manage concurrent updates for these types of UPDATE and DELETE
commands on heap tables:

• Simple UPDATE of a single table. Update a non-distribution key with the Postgres Planner. The
command does not contain a FROM clause, or a sub-query in the WHERE clause.

UPDATE t SET c2 = c2 + 1 WHERE c1 > 10;

• Simple DELETE of a single table. The command does not contain a sub-query in the FROM or WHERE
clauses.

DELETE FROM t WHERE c1 > 10;

• Split UPDATE. For the Postgres Planner, the UPDATE command updates a distribution key.

UPDATE t SET c = c + 1; -- c is a distribution key

For GPORCA, the UPDATE command updates a distribution key or references a distribution key.

UPDATE t SET b = b + 1 WHERE c = 10; -- c is a distribution key

• Complex UPDATE. The UPDATE command includes multiple table joins.

UPDATE t1 SET c = t1.c+1 FROM t2 WHERE t1.c = t2.c;

Greenplum Database Administrator Guide Release Notes

334

Or the command contains a sub-query in the WHERE clause.

UPDATE t SET c = c + 1 WHERE c > ALL(SELECT * FROM t1);

• Complex DELETE. A complex DELETE command is similar to a complex UPDATE, and involves multiple
table joins or a sub-query.

DELETE FROM t USING t1 WHERE t.c > t1.c;

The following table shows the concurrent UPDATE or DELETE commands that are manged by the Global
Deadlock Detector. For example, concurrent simple UPDATE commands on the same table row are
managed by the Global Deadlock Detector. For a concurrent complex UPDATE and a simple UPDATE, only
one UPDATE is performed, and an error is returned for the other UPDATE.

Table 43: Concurrent Updates and Deletes Managed by Global Deadlock Detector

Simple UPDATE Simple DELETE Split UPDATE Complex
UPDATE

Complex
DELETE

Simple UPDATE YES YES NO NO NO

Simple DELETE YES YES NO YES YES

Split UPDATE NO NO NO NO NO

Complex
UPDATE

NO YES NO NO NO

Complex
DELETE

NO YES NO NO YES

Vacuuming the Database
Deleted or updated data rows occupy physical space on disk even though new transactions cannot see
them. Periodically running the VACUUM command removes these expired rows. For example:

VACUUM mytable;

The VACUUM command collects table-level statistics such as the number of rows and pages. Vacuum all
tables after loading data, including append-optimized tables. For information about recommended routine
vacuum operations, see Routine Vacuum and Analyze.

Important: The VACUUM, VACUUM FULL, and VACUUM ANALYZE commands should be used
to maintain the data in a Greenplum database especially if updates and deletes are frequently
performed on your database data. See the VACUUM command in the Greenplum Database
Reference Guide for information about using the command.

Running Out of Locks
Greenplum Database can potentially run out of locks when a database operation accesses multiple tables
in a single transaction. Backup and restore are examples of such operations.

When Greenplum Database runs out of locks, the error message that you may observe references a
shared memory error:

... "WARNING","53200","out of shared memory",,,,,,"LOCK TABLE ...

... "ERROR","53200","out of shared memory",,"You might need to increase
 max_locks_per_transaction.",,,,"LOCK TABLE ...

Greenplum Database Administrator Guide Release Notes

335

Note: "shared memory" in this context refers to the shared memory of the internal object: the lock
slots. "Out of shared memory" does not refer to exhaustion of system- or Greenplum-level memory
resources.

As the hint describes, consider increasing the max_locks_per_transaction server configuration
parameter when you encounter this error.

Greenplum Database Administrator Guide Release Notes

336

Querying Data
This topic provides information about using SQL in Greenplum databases.

You enter SQL statements called queries to view, change, and analyze data in a database using the psql
interactive SQL client and other client tools.

About Greenplum Query Processing
This topic provides an overview of how Greenplum Database processes queries. Understanding this
process can be useful when writing and tuning queries.

Users issue queries to Greenplum Database as they would to any database management system. They
connect to the database instance on the Greenplum master host using a client application such as psql
and submit SQL statements.

Understanding Query Planning and Dispatch
The master receives, parses, and optimizes the query. The resulting query plan is either parallel or
targeted. The master dispatches parallel query plans to all segments, as shown in Figure 21: Dispatching
the Parallel Query Plan. The master dispatches targeted query plans to a single segment, as shown in
Figure 22: Dispatching a Targeted Query Plan. Each segment is responsible for executing local database
operations on its own set of data.

Most database operations—such as table scans, joins, aggregations, and sorts—execute across all
segments in parallel. Each operation is performed on a segment database independent of the data stored
in the other segment databases.

Figure 21: Dispatching the Parallel Query Plan

Greenplum Database Administrator Guide Release Notes

337

Certain queries may access only data on a single segment, such as single-row INSERT, UPDATE, DELETE,
or SELECT operations or queries that filter on the table distribution key column(s). In queries such as these,
the query plan is not dispatched to all segments, but is targeted at the segment that contains the affected
or relevant row(s).

Figure 22: Dispatching a Targeted Query Plan

Understanding Greenplum Query Plans
A query plan is the set of operations Greenplum Database will perform to produce the answer to a query.
Each node or step in the plan represents a database operation such as a table scan, join, aggregation, or
sort. Plans are read and executed from bottom to top.

In addition to common database operations such as table scans, joins, and so on, Greenplum Database
has an additional operation type called motion. A motion operation involves moving tuples between the
segments during query processing. Note that not every query requires a motion. For example, a targeted
query plan does not require data to move across the interconnect.

To achieve maximum parallelism during query execution, Greenplum divides the work of the query plan
into slices. A slice is a portion of the plan that segments can work on independently. A query plan is sliced
wherever a motion operation occurs in the plan, with one slice on each side of the motion.

For example, consider the following simple query involving a join between two tables:

SELECT customer, amount
FROM sales JOIN customer USING (cust_id)
WHERE dateCol = '04-30-2016';

Figure 23: Query Slice Plan shows the query plan. Each segment receives a copy of the query plan and
works on it in parallel.

The query plan for this example has a redistribute motion that moves tuples between the segments to
complete the join. The redistribute motion is necessary because the customer table is distributed across
the segments by cust_id, but the sales table is distributed across the segments by sale_id. To perform

Greenplum Database Administrator Guide Release Notes

338

the join, the sales tuples must be redistributed by cust_id. The plan is sliced on either side of the
redistribute motion, creating slice 1 and slice 2.

This query plan has another type of motion operation called a gather motion. A gather motion is when the
segments send results back up to the master for presentation to the client. Because a query plan is always
sliced wherever a motion occurs, this plan also has an implicit slice at the very top of the plan (slice 3). Not
all query plans involve a gather motion. For example, a CREATE TABLE x AS SELECT... statement
would not have a gather motion because tuples are sent to the newly created table, not to the master.

Figure 23: Query Slice Plan

Understanding Parallel Query Execution
Greenplum creates a number of database processes to handle the work of a query. On the master,
the query worker process is called the query dispatcher (QD). The QD is responsible for creating and
dispatching the query plan. It also accumulates and presents the final results. On the segments, a query
worker process is called a query executor (QE). A QE is responsible for completing its portion of work and
communicating its intermediate results to the other worker processes.

There is at least one worker process assigned to each slice of the query plan. A worker process works on
its assigned portion of the query plan independently. During query execution, each segment will have a
number of processes working on the query in parallel.

Related processes that are working on the same slice of the query plan but on different segments are
called gangs. As a portion of work is completed, tuples flow up the query plan from one gang of processes

Greenplum Database Administrator Guide Release Notes

339

to the next. This inter-process communication between the segments is referred to as the interconnect
component of Greenplum Database.

Figure 24: Query Worker Processes shows the query worker processes on the master and two segment
instances for the query plan illustrated in Figure 23: Query Slice Plan.

Figure 24: Query Worker Processes

About GPORCA
In Greenplum Database, the default GPORCA optmizer co-exists with the Postgres Planner.

These sections describe GPORCA functionality and usage:

• Overview of GPORCA
• Enabling and Disabling GPORCA
• Considerations when Using GPORCA
• GPORCA Features and Enhancements
• Changed Behavior with the GPORCA
• GPORCA Limitations
• Determining the Query Optimizer that is Used
• About Uniform Multi-level Partitioned Tables

Overview of GPORCA
GPORCA extends the planning and optimization capabilities of the Postgres Planner. GPORCA is
extensible and achieves better optimization in multi-core architecture environments. Greenplum Database
uses GPORCA by default to generate an execution plan for a query when possible.

GPORCA also enhances Greenplum Database query performance tuning in the following areas:

• Queries against partitioned tables
• Queries that contain a common table expression (CTE)
• Queries that contain subqueries

Greenplum Database Administrator Guide Release Notes

340

In Greenplum Database, GPORCA co-exists with the Postgres Planner. By default, Greenplum Database
uses GPORCA. If GPORCA cannot be used, then the Postgres Planner is used.

The following figure shows how GPORCA fits into the query planning architecture.

Note: All Postgres Planner server configuration parameters are ignored by GPORCA. However,
if Greenplum Database falls back to the Postgres Planner, the planner server configuration
parameters will impact the query plan generation. For a list of Postgres Planner server configuration
parameters, see Query Tuning Parameters.

Enabling and Disabling GPORCA
By default, Greenplum Database uses GPORCA instead of the Postgres Planner. Server configuration
parameters enable or disable GPORCA.

Although GPORCA is on by default, you can configure GPORCA usage at the system, database, session,
or query level using the optimizer parameter. Refer to one of the following sections if you want to
change the default behavior:

• Enabling GPORCA for a System
• Enabling GPORCA for a Database
• Enabling GPORCA for a Session or a Query

Note: You can disable the ability to enable or disable GPORCA with the server configuration
parameter optimizer_control. For information about the server configuration parameters, see
the Greenplum Database Reference Guide.

Enabling GPORCA for a System

Set the server configuration parameter optimizer for the Greenplum Database system.

1. Log into the Greenplum Database master host as gpadmin, the Greenplum Database administrator.
2. Set the values of the server configuration parameters. These Greenplum Database gpconfig utility

commands sets the value of the parameters to on:

$ gpconfig -c optimizer -v on --masteronly

Greenplum Database Administrator Guide Release Notes

341

3. Restart Greenplum Database. This Greenplum Database gpstop utility command reloads the
postgresql.conf files of the master and segments without shutting down Greenplum Database.

gpstop -u

Enabling GPORCA for a Database

Set the server configuration parameter optimizer for individual Greenplum databases with the ALTER
DATABASE command. For example, this command enables GPORCA for the database test_db.

> ALTER DATABASE test_db SET OPTIMIZER = ON ;

Enabling GPORCA for a Session or a Query

You can use the SET command to set optimizer server configuration parameter for a session. For
example, after you use the psql utility to connect to Greenplum Database, this SET command enables
GPORCA:

> set optimizer = on ;

To set the parameter for a specific query, include the SET command prior to running the query.

Collecting Root Partition Statistics
For a partitioned table, GPORCA uses statistics of the table root partition to generate query plans. These
statistics are used for determining the join order, for splitting and joining aggregate nodes, and for costing
the query steps. In contrast, the Postgres Planner uses the statistics of each leaf partition.

If you execute queries on partitioned tables, you should collect statistics on the root partition and
periodically update those statistics to ensure that GPORCA can generate optimal query plans. If the root
partition statistics are not up-to-date or do not exist, GPORCA still performs dynamic partition elimination
for queries against the table. However, the query plan might not be optimal.

Running ANALYZE

By default, running the ANALYZE command on the root partition of a partitioned table samples the leaf
partition data in the table, and stores the statistics for the root partition. ANALYZE collects statistics
on the root and leaf partitions, including HyperLogLog (HLL) statistics on the leaf partitions. ANALYZE
ROOTPARTITION collects statistics only on the root partition. The server configuration parameter
optimizer_analyze_root_partition controls whether the ROOTPARTITION keyword is required to
collect root statistics for the root partition of a partitioned table. See the ANALYZE command for information
about collecting statistics on partitioned tables.

Keep in mind that ANALYZE always scans the entire table before updating the root partition statistics. If
your table is very large, this operation can take a significant amount of time. ANALYZE ROOTPARTITION
also uses an ACCESS SHARE lock that prevents certain operations, such as TRUNCATE and VACUUM
operations, during execution. For these reasons, you should schedule ANALYZE operations periodically, or
when there are significant changes to leaf partition data.

Follow these best practices for running ANALYZE or ANALYZE ROOTPARTITION on partitioned tables in
your system:

• Run ANALYZE <root_partition> on a new partitioned table after adding initial data. Run ANALYZE
<leaf_partition> on a new leaf partition or a leaf partition where data has changed. By default,
running the command on a leaf partition updates the root partition statistics if the other leaf partitions
have statistics.

• Update root partition statistics when you observe query performance regression in EXPLAIN plans
against the table, or after significant changes to leaf partition data. For example, if you add a new leaf
partition at some point after generating root partition statistics, consider running ANALYZE or ANALYZE

Greenplum Database Administrator Guide Release Notes

342

ROOTPARTITION to update root partition statistics with the new tuples inserted from the new leaf
partition.

• For very large tables, run ANALYZE or ANALYZE ROOTPARTITION only weekly, or at some interval
longer than daily.

• Avoid running ANALYZE with no arguments, because doing so executes the command on all database
tables including partitioned tables. With large databases, these global ANALYZE operations are difficult
to monitor, and it can be difficult to predict the time needed for completion.

• Consider running multiple ANALYZE <table_name> or ANALYZE ROOTPARTITION <table_name>
operations in parallel to speed the operation of statistics collection, if your I/O throughput can support
the load.

• You can also use the Greenplum Database utility analyzedb to update table statistics. Using
analyzedb ensures that tables that were previously analzyed are not re-analyzed if no modifications
were made to the leaf partition.

GPORCA and Leaf Partition Statistics

Although creating and maintaining root partition statistics is crucial for GPORCA query performance with
partitioned tables, maintaining leaf partition statistics is also important. If GPORCA cannot generate a plan
for a query against a partitioned table, then the Postgres Planner is used and leaf partition statistics are
needed to produce the optimal plan for that query.

GPORCA itself also uses leaf partition statistics for any queries that access leaf partitions directly, instead
of using the root partition with predicates to eliminate partitions. For example, if you know which partitions
hold necessary tuples for a query, you can directly query the leaf partition table itself; in this case GPORCA
uses the leaf partition statistics.

Disabling Automatic Root Partition Statistics Collection

If you do not intend to execute queries on partitioned tables with GPORCA (setting the server
configuration parameter optimizer to off), then you can disable the automatic collection
of statistics on the root partition of the partitioned table. The server configuration parameter
optimizer_analyze_root_partition controls whether the ROOTPARTITION keyword is required to
collect root statistics for the root partition of a partitioned table. The default setting for the parameter is on,
the ANALYZE command can collect root partition statistics without the ROOTPARTITION keyword. You can
disable automatic collection of root partition statistics by setting the parameter to off. When the value is
off, you must run ANALZYE ROOTPARTITION to collect root partition statistics.

1. Log into the Greenplum Database master host as gpadmin, the Greenplum Database administrator.
2. Set the values of the server configuration parameters. These Greenplum Database gpconfig utility

commands sets the value of the parameters to off:

$ gpconfig -c optimizer_analyze_root_partition -v off --masteronly

3. Restart Greenplum Database. This Greenplum Database gpstop utility command reloads the
postgresql.conf files of the master and segments without shutting down Greenplum Database.

gpstop -u

Considerations when Using GPORCA
To execute queries optimally with GPORCA, query criteria to consider.

Ensure the following criteria are met:

• The table does not contain multi-column partition keys.
• The multi-level partitioned table is a uniform multi-level partitioned table. See About Uniform Multi-level

Partitioned Tables.

Greenplum Database Administrator Guide Release Notes

343

• The server configuration parameter optimizer_enable_master_only_queries is set to on when
running against master only tables such as the system table pg_attribute. For information about the
parameter, see the Greenplum Database Reference Guide.

Note: Enabling this parameter decreases performance of short running catalog queries. To
avoid this issue, set this parameter only for a session or a query.

• Statistics have been collected on the root partition of a partitioned table.

If the partitioned table contains more than 20,000 partitions, consider a redesign of the table schema.

These server configuration parameters affect GPORCA query processing.

• optimizer_cte_inlining_bound controls the amount of inlining performed for common table
expression (CTE) queries (queries that contain a WHERE clause).

• optimizer_force_multistage_agg forces GPORCA to choose a multi-stage aggregate plan for a
scalar distinct qualified aggregate. When the value is off (the default), GPORCA chooses between a
one-stage and two-stage aggregate plan based on cost.

• optimizer_force_three_stage_scalar_dqa forces GPORCA to choose a plan with multistage
aggregates when such a plan alternative is generated.

• optimizer_join_order sets the query optimization level for join ordering by specifying which types
of join ordering alternatives to evaluate.

• optimizer_join_order_threshold specifies the maximum number of join children for which
GPORCA uses the dynamic programming-based join ordering algorithm.

• optimizer_nestloop_factor controls nested loop join cost factor to apply to during query
optimization.

• optimizer_parallel_union controls the amount of parallelization that occurs for queries that
contain a UNION or UNION ALL clause. When the value is on, GPORCA can generate a query plan the
child operations of a UNION or UNION ALL operation execute in parallel on segment instances.

• optimizer_sort_factor controls the cost factor that GPORCA applies to sorting operations during
query optimization. The cost factor can be adjusted for queries when data skew is present.

• gp_enable_relsize_collection controls how GPORCA (and the Postgres Planner) handle a
table without statistics. By default, GPORCA uses a default value to estimate the number of rows if
statistics are not available. When this value is on, GPORCA uses the estimated size of a table if there
are no statistics for the table.

This parameter is ignored for a root partition of a partitioned table. If the root partition does not have
statistics, GPORCA always uses the default value. You can use ANALZYE ROOTPARTITION to collect
statistics on the root partition. See ANALYZE.

These server configuration parameters control the display and logging of information.

• optimizer_print_missing_stats controls the display of column information about columns with
missing statistics for a query (default is true)

• optimizer_print_optimization_stats controls the logging of GPORCA query optimization
metrics for a query (default is off)

For information about the parameters, see the Greenplum Database Reference Guide.

GPORCA generates minidumps to describe the optimization context for a given query. The minidump files
are used by Pivotal support to analyze Greenplum Database issues. The information in the file is not in a
format that can be easily used for debugging or troubleshooting. The minidump file is located under the
master data directory and uses the following naming format:

Minidump_date_time.mdp

For information about the minidump file, see the server configuration parameter optimizer_minidump in
the Greenplum Database Reference Guide.

When the EXPLAIN ANALYZE command uses GPORCA, the EXPLAIN plan shows only the
number of partitions that are being eliminated. The scanned partitions are not shown. To show

Greenplum Database Administrator Guide Release Notes

344

the name of the scanned partitions in the segment logs set the server configuration parameter
gp_log_dynamic_partition_pruning to on. This example SET command enables the parameter.

SET gp_log_dynamic_partition_pruning = on;

GPORCA Features and Enhancements
GPORCA, the Greenplum next generation query optimizer, includes enhancements for specific types of
queries and operations:

• Queries Against Partitioned Tables
• Queries that Contain Subqueries
• Queries that Contain Common Table Expressions
• DML Operation Enhancements with GPORCA

GPORCA also includes these optimization enhancements:

• Improved join ordering
• Join-Aggregate reordering
• Sort order optimization
• Data skew estimates included in query optimization

Queries Against Partitioned Tables

GPORCA includes these enhancements for queries against partitioned tables:

• Partition elimination is improved.
• Uniform multi-level partitioned tables are supported. For information about uniform multi-level

partitioned tables, see About Uniform Multi-level Partitioned Tables
• Query plan can contain the Partition selector operator.
• Partitions are not enumerated in EXPLAIN plans.

For queries that involve static partition selection where the partitioning key is compared to a constant,
GPORCA lists the number of partitions to be scanned in the EXPLAIN output under the Partition
Selector operator. This example Partition Selector operator shows the filter and number of partitions
selected:

Partition Selector for Part_Table (dynamic scan id: 1)
 Filter: a > 10
 Partitions selected: 1 (out of 3)

For queries that involve dynamic partition selection where the partitioning key is compared to a variable,
the number of partitions that are scanned will be known only during query execution. The partitions
selected are not shown in the EXPLAIN output.

• Plan size is independent of number of partitions.
• Out of memory errors caused by number of partitions are reduced.

This example CREATE TABLE command creates a range partitioned table.

CREATE TABLE sales(order_id int, item_id int, amount numeric(15,2),
 date date, yr_qtr int)
 range partitioned by yr_qtr;

GPORCA improves on these types of queries against partitioned tables:

• Full table scan. Partitions are not enumerated in plans.

SELECT * FROM sales;

Greenplum Database Administrator Guide Release Notes

345

• Query with a constant filter predicate. Partition elimination is performed.

SELECT * FROM sales WHERE yr_qtr = 201501;

• Range selection. Partition elimination is performed.

SELECT * FROM sales WHERE yr_qtr BETWEEN 201601 AND 201704 ;

• Joins involving partitioned tables. In this example, the partitioned dimension table date_dim is joined
with fact table catalog_sales:

SELECT * FROM catalog_sales
 WHERE date_id IN (SELECT id FROM date_dim WHERE month=12);

Queries that Contain Subqueries

GPORCA handles subqueries more efficiently. A subquery is query that is nested inside an outer query
block. In the following query, the SELECT in the WHERE clause is a subquery.

SELECT * FROM part
 WHERE price > (SELECT avg(price) FROM part);

GPORCA also handles queries that contain a correlated subquery (CSQ) more efficiently. A correlated
subquery is a subquery that uses values from the outer query. In the following query, the price column is
used in both the outer query and the subquery.

SELECT * FROM part p1
 WHERE price > (SELECT avg(price) FROM part p2
 WHERE p2.brand = p1.brand);

GPORCA generates more efficient plans for the following types of subqueries:

• CSQ in the SELECT list.

SELECT *,
 (SELECT min(price) FROM part p2 WHERE p1.brand = p2.brand)
 AS foo
FROM part p1;

• CSQ in disjunctive (OR) filters.

SELECT FROM part p1 WHERE p_size > 40 OR
 p_retailprice >
 (SELECT avg(p_retailprice)
 FROM part p2
 WHERE p2.p_brand = p1.p_brand)

• Nested CSQ with skip level correlations

SELECT * FROM part p1 WHERE p1.p_partkey
IN (SELECT p_partkey FROM part p2 WHERE p2.p_retailprice =
 (SELECT min(p_retailprice)
 FROM part p3
 WHERE p3.p_brand = p1.p_brand)
);

Note: Nested CSQ with skip level correlations are not supported by the Postgres Planner.
• CSQ with aggregate and inequality. This example contains a CSQ with an inequality.

SELECT * FROM part p1 WHERE p1.p_retailprice =

Greenplum Database Administrator Guide Release Notes

346

 (SELECT min(p_retailprice) FROM part p2 WHERE p2.p_brand <> p1.p_brand);

• CSQ that must return one row.

SELECT p_partkey,
 (SELECT p_retailprice FROM part p2 WHERE p2.p_brand = p1.p_brand)
FROM part p1;

Queries that Contain Common Table Expressions

GPORCA handles queries that contain the WITH clause. The WITH clause, also known as a common table
expression (CTE), generates temporary tables that exist only for the query. This example query contains a
CTE.

WITH v AS (SELECT a, sum(b) as s FROM T where c < 10 GROUP BY a)
 SELECT *FROM v AS v1 , v AS v2
 WHERE v1.a <> v2.a AND v1.s < v2.s;

As part of query optimization, GPORCA can push down predicates into a CTE. For example query,
GPORCA pushes the equality predicates to the CTE.

WITH v AS (SELECT a, sum(b) as s FROM T GROUP BY a)
 SELECT *
 FROM v as v1, v as v2, v as v3
 WHERE v1.a < v2.a
 AND v1.s < v3.s
 AND v1.a = 10
 AND v2.a = 20
 AND v3.a = 30;

GPORCA can handle these types of CTEs:

• CTE that defines one or multiple tables. In this query, the CTE defines two tables.

WITH cte1 AS (SELECT a, sum(b) as s FROM T
 where c < 10 GROUP BY a),
 cte2 AS (SELECT a, s FROM cte1 where s > 1000)
 SELECT *
 FROM cte1 as v1, cte2 as v2, cte2 as v3
 WHERE v1.a < v2.a AND v1.s < v3.s;

• Nested CTEs.

WITH v AS (WITH w AS (SELECT a, b FROM foo
 WHERE b < 5)
 SELECT w1.a, w2.b
 FROM w AS w1, w AS w2
 WHERE w1.a = w2.a AND w1.a > 2)
 SELECT v1.a, v2.a, v2.b
 FROM v as v1, v as v2
 WHERE v1.a < v2.a;

DML Operation Enhancements with GPORCA

GPORCA contains enhancements for DML operations such as INSERT, UPDATE, and DELETE.

• A DML node in a query plan is a query plan operator.

• Can appear anywhere in the plan, as a regular node (top slice only for now)
• Can have consumers

• UPDATE operations use the query plan operator Split and supports these operations:

Greenplum Database Administrator Guide Release Notes

347

• UPDATE operations on the table distribution key columns.
• UPDATE operations on the table on the partition key column.

This example plan shows the Split operator.

QUERY PLAN
--
Update (cost=0.00..5.46 rows=1 width=1)
 -> Redistribute Motion 2:2 (slice1; segments: 2)
 Hash Key: a
 -> Result (cost=0.00..3.23 rows=1 width=48)
 -> Split (cost=0.00..2.13 rows=1 width=40)
 -> Result (cost=0.00..1.05 rows=1 width=40)
 -> Seq Scan on dmltest

• New query plan operator Assert is used for constraints checking.

This example plan shows the Assert operator.

QUERY PLAN
--
 Insert (cost=0.00..4.61 rows=3 width=8)
 -> Assert (cost=0.00..3.37 rows=3 width=24)
 Assert Cond: (dmlsource.a > 2) IS DISTINCT FROM
false
 -> Assert (cost=0.00..2.25 rows=3 width=24)
 Assert Cond: NOT dmlsource.b IS NULL
 -> Result (cost=0.00..1.14 rows=3 width=24)
 -> Seq Scan on dmlsource

Changed Behavior with the GPORCA
There are changes to Greenplum Database behavior with the GPORCA optimizer enabled (the default) as
compared to the Postgres Planner.

• UPDATE operations on distribution keys are allowed.
• UPDATE operations on partitioned keys are allowed.
• Queries against uniform partitioned tables are supported.
• Queries against partitioned tables that are altered to use an external table as a leaf child partition fall

back to the Postgres Planner.
• Except for INSERT, DML operations directly on partition (child table) of a partitioned table are not

supported.

For the INSERT command, you can specify a leaf child table of the partitioned table to insert data into a
partitioned table. An error is returned if the data is not valid for the specified leaf child table. Specifying
a child table that is not a leaf child table is not supported.

• The command CREATE TABLE AS distributes table data randomly if the DISTRIBUTED BY clause is
not specified and no primary or unique keys are specified.

• Non-deterministic updates not allowed. The following UPDATE command returns an error.

update r set b = r.b + 1 from s where r.a in (select a from s);

• Statistics are required on the root table of a partitioned table. The ANALYZE command generates
statistics on both root and individual partition tables (leaf child tables). See the ROOTPARTITION clause
for ANALYZE command.

• Additional Result nodes in the query plan:

• Query plan Assert operator.
• Query plan Partition selector operator.
• Query plan Split operator.

Greenplum Database Administrator Guide Release Notes

348

• When running EXPLAIN, the query plan generated by GPORCA is different than the plan generated by
the Postgres Planner.

• Greenplum Database adds the log file message Planner produced plan when GPORCA is
enabled and Greenplum Database falls back to the Postgres Planner to generate the query plan.

• Greenplum Database issues a warning when statistics are missing from one or more table columns.
When executing an SQL command with GPORCA, Greenplum Database issues a warning if the
command performance could be improved by collecting statistics on a column or set of columns
referenced by the command. The warning is issued on the command line and information is added to
the Greenplum Database log file. For information about collecting statistics on table columns, see the
ANALYZE command in the Greenplum Database Reference Guide.

GPORCA Limitations
There are limitations in Greenplum Database when using the default GPORCA optimizer. GPORCA and
the Postgres Planner currently coexist in Greenplum Database because GPORCA does not support all
Greenplum Database features.

This section describes the limitations.

• Unsupported SQL Query Features
• Performance Regressions

Unsupported SQL Query Features

Certain query features are not supported with the default GPORCA optimizer. When an unsupported query
is executed, Greenplum logs this notice along with the query text:

Feature not supported by the Pivotal Query Optimizer: UTILITY command

These features are unsupported when GPORCA is enabled (the default):

• Prepared statements that have parameterized values.
• Indexed expressions (an index defined as expression based on one or more columns of the table)
• SP-GiST indexing method. GPORCA supports only B-tree, bitmap, GIN, and GiST indexes. GPORCA

ignores indexes created with unsupported methods.
• External parameters
• These types of partitioned tables:

• Non-uniform partitioned tables.
• Partitioned tables that have been altered to use an external table as a leaf child partition.

• SortMergeJoin (SMJ).
• Ordered aggregations.
• These analytics extensions:

• CUBE
• Multiple grouping sets

• These scalar operators:

• ROW

• ROWCOMPARE

• FIELDSELECT

• Aggregate functions that take set operators as input arguments.
• percentile_* window functions (ordered-set aggregate functions).
• Inverse distribution functions.
• Queries that execute functions that are defined with the ON MASTER or ON ALL SEGMENTS attribute.
• Queries that contain UNICODE characters in metadata names, such as table names, and the

characters are not compatible with the host system locale.

Greenplum Database Administrator Guide Release Notes

349

• SELECT, UPDATE, and DELETE commands where a table name is qualified by the ONLY keyword.
• Per-column collation. GPORCA supports collation only when all columns in the query use the same

collation. If columns in the query use different collations, then Greenplum uses the Postgres Planner.

Performance Regressions

The following features are known performance regressions that occur with GPORCA enabled:

• Short running queries - For GPORCA, short running queries might encounter additional overhead due
to GPORCA enhancements for determining an optimal query execution plan.

• ANALYZE - For GPORCA, the ANALYZE command generates root partition statistics for partitioned
tables. For the Postgres Planner, these statistics are not generated.

• DML operations - For GPORCA, DML enhancements including the support of updates on partition and
distribution keys might require additional overhead.

Also, enhanced functionality of the features from previous versions could result in additional time required
when GPORCA executes SQL statements with the features.

Determining the Query Optimizer that is Used
When GPORCA is enabled (the default), you can determine if Greenplum Database is using GPORCA or
is falling back to the Postgres Planner.

You can examine the EXPLAIN query plan for the query determine which query optimizer was used by
Greenplum Database to execute the query:

• When GPORCA generates the query plan, the setting optimizer=on and GPORCA version are
displayed at the end of the query plan. For example.

 Settings: optimizer=on
 Optimizer status: Pivotal Optimizer (GPORCA) version 1.584

When Greenplum Database falls back to the Postgres Planner to generate the plan, the setting
optimizer=on and Postgres query optimizer are displayed at the end of the query plan. For
example.

 Settings: optimizer=on
 Optimizer status: Postgres query optimizer

When the server configuration parameter OPTIMIZER is off, these lines are displayed at the end of a
query plan.

 Settings: optimizer=off
 Optimizer status: Postgres query optimizer

• These plan items appear only in the EXPLAIN plan output generated by GPORCA. The items are not
supported in a Postgres Planner query plan.

• Assert operator
• Sequence operator
• DynamicIndexScan
• DynamicSeqScan

• When a query against a partitioned table is generated by GPORCA, the EXPLAIN plan displays only
the number of partitions that are being eliminated is listed. The scanned partitions are not shown. The
EXPLAIN plan generated by the Postgres Planner lists the scanned partitions.

The log file contains messages that indicate which query optimizer was used. If Greenplum Database falls
back to the Postgres Planner, a message with NOTICE information is added to the log file that indicates the
unsupported feature. Also, the label Planner produced plan: appears before the query in the query
execution log message when Greenplum Database falls back to the Postgres optimizer.

Greenplum Database Administrator Guide Release Notes

350

Note: You can configure Greenplum Database to display log messages on the psql command line
by setting the Greenplum Database server configuration parameter client_min_messages to
LOG. See the Greenplum Database Reference Guide for information about the parameter.

Examples

This example shows the differences for a query that is run against partitioned tables when GPORCA is
enabled.

This CREATE TABLE statement creates a table with single level partitions:

CREATE TABLE sales (trans_id int, date date,
 amount decimal(9,2), region text)
 DISTRIBUTED BY (trans_id)
 PARTITION BY RANGE (date)
 (START (date '20160101')
 INCLUSIVE END (date '20170101')
 EXCLUSIVE EVERY (INTERVAL '1 month'),
 DEFAULT PARTITION outlying_dates)#

This query against the table is supported by GPORCA and does not generate errors in the log file:

select * from sales ;

The EXPLAIN plan output lists only the number of selected partitions.

 -> Partition Selector for sales (dynamic scan id: 1) (cost=10.00..100.00
 rows=50 width=4)
 Partitions selected: 13 (out of 13)

If a query against a partitioned table is not supported by GPORCA. Greenplum Database falls back to the
Postgres Planner. The EXPLAIN plan generated by the Postgres Planner lists the selected partitions. This
example shows a part of the explain plan that lists some selected partitions.

 -> Append (cost=0.00..0.00 rows=26 width=53)
 -> Seq Scan on sales2_1_prt_7_2_prt_usa sales2 (cost=0.00..0.00
 rows=1 width=53)
 -> Seq Scan on sales2_1_prt_7_2_prt_asia sales2 (cost=0.00..0.00
 rows=1 width=53)
 ...

This example shows the log output when the Greenplum Database falls back to the Postgres Planner from
GPORCA.

When this query is run, Greenplum Database falls back to the Postgres Planner.

explain select * from pg_class;

A message is added to the log file. The message contains this NOTICE information that indicates the
reason GPORCA did not execute the query:

NOTICE,""Feature not supported: Queries on master-only tables"

About Uniform Multi-level Partitioned Tables
GPORCA supports queries on a multi-level partitioned (MLP) table if the MLP table is a uniform partitioned
table. A multi-level partitioned table is a partitioned table that was created with the SUBPARTITION clause.
A uniform partitioned table must meet these requirements.

Greenplum Database Administrator Guide Release Notes

351

• The partitioned table structure is uniform. Each partition node at the same level must have the same
hierarchical structure.

• The partition key constraints must be consistent and uniform. At each subpartition level, the sets of
constraints on the child tables created for each branch must match.

You can display information about partitioned tables in several ways, including displaying information from
these sources:

• The pg_partitions system view contains information on the structure of a partitioned table.
• The pg_constraint system catalog table contains information on table constraints.
• The psql meta command \d+ tablename displays the table constraints for child leaf tables of a

partitioned table.

Example

This CREATE TABLE command creates a uniform partitioned table.

CREATE TABLE mlp (id int, year int, month int, day int,
 region text)
 DISTRIBUTED BY (id)
 PARTITION BY RANGE (year)
 SUBPARTITION BY LIST (region)
 SUBPARTITION TEMPLATE (
 SUBPARTITION usa VALUES ('usa'),
 SUBPARTITION europe VALUES ('europe'),
 SUBPARTITION asia VALUES ('asia'))
 (START (2006) END (2016) EVERY (5));

These are child tables and the partition hierarchy that are created for the table mlp. This hierarchy consists
of one subpartition level that contains two branches.

mlp_1_prt_11
 mlp_1_prt_11_2_prt_usa
 mlp_1_prt_11_2_prt_europe
 mlp_1_prt_11_2_prt_asia

mlp_1_prt_21
 mlp_1_prt_21_2_prt_usa
 mlp_1_prt_21_2_prt_europe
 mlp_1_prt_21_2_prt_asia

The hierarchy of the table is uniform, each partition contains a set of three child tables (subpartitions).
The constraints for the region subpartitions are uniform, the set of constraints on the child tables for the
branch table mlp_1_prt_11 are the same as the constraints on the child tables for the branch table
mlp_1_prt_21.

As a quick check, this query displays the constraints for the partitions.

WITH tbl AS (SELECT oid, partitionlevel AS level,
 partitiontablename AS part
 FROM pg_partitions, pg_class
 WHERE tablename = 'mlp' AND partitiontablename=relname
 AND partitionlevel=1)
 SELECT tbl.part, consrc
 FROM tbl, pg_constraint
 WHERE tbl.oid = conrelid ORDER BY consrc;

Note: You will need modify the query for more complex partitioned tables. For example, the query
does not account for table names in different schemas.

Greenplum Database Administrator Guide Release Notes

352

The consrc column displays constraints on the subpartitions. The set of region constraints for the
subpartitions in mlp_1_prt_1 match the constraints for the subpartitions in mlp_1_prt_2. The
constraints for year are inherited from the parent branch tables.

 part | consrc
--------------------------+------------------------------------
 mlp_1_prt_2_2_prt_asia | (region = 'asia'::text)
 mlp_1_prt_1_2_prt_asia | (region = 'asia'::text)
 mlp_1_prt_2_2_prt_europe | (region = 'europe'::text)
 mlp_1_prt_1_2_prt_europe | (region = 'europe'::text)
 mlp_1_prt_1_2_prt_usa | (region = 'usa'::text)
 mlp_1_prt_2_2_prt_usa | (region = 'usa'::text)
 mlp_1_prt_1_2_prt_asia | ((year >= 2006) AND (year < 2011))
 mlp_1_prt_1_2_prt_usa | ((year >= 2006) AND (year < 2011))
 mlp_1_prt_1_2_prt_europe | ((year >= 2006) AND (year < 2011))
 mlp_1_prt_2_2_prt_usa | ((year >= 2011) AND (year < 2016))
 mlp_1_prt_2_2_prt_asia | ((year >= 2011) AND (year < 2016))
 mlp_1_prt_2_2_prt_europe | ((year >= 2011) AND (year < 2016))
(12 rows)

If you add a default partition to the example partitioned table with this command:

ALTER TABLE mlp ADD DEFAULT PARTITION def

The partitioned table remains a uniform partitioned table. The branch created for default partition contains
three child tables and the set of constraints on the child tables match the existing sets of child table
constraints.

In the above example, if you drop the subpartition mlp_1_prt_21_2_prt_asia and add another
subpartition for the region canada, the constraints are no longer uniform.

ALTER TABLE mlp ALTER PARTITION FOR (RANK(2))
 DROP PARTITION asia ;

ALTER TABLE mlp ALTER PARTITION FOR (RANK(2))
 ADD PARTITION canada VALUES ('canada');

Also, if you add a partition canada under mlp_1_prt_21, the partitioning hierarchy is not uniform.

However, if you add the subpartition canada to both mlp_1_prt_21 and mlp_1_prt_11 the of the
original partitioned table, it remains a uniform partitioned table.

Note: Only the constraints on the sets of partitions at a partition level must be the same. The
names of the partitions can be different.

Defining Queries
Greenplum Database is based on the PostgreSQL implementation of the SQL standard.

This topic describes how to construct SQL queries in Greenplum Database.

• SQL Lexicon
• SQL Value Expressions

SQL Lexicon
SQL is a standard language for accessing databases. The language consists of elements that enable data
storage, retrieval, analysis, viewing, manipulation, and so on. You use SQL commands to construct queries
and commands that the Greenplum Database engine understands. SQL queries consist of a sequence
of commands. Commands consist of a sequence of valid tokens in correct syntax order, terminated by a
semicolon (;).

Greenplum Database Administrator Guide Release Notes

353

For more information about SQL commands, see SQL Command Reference in the Greenplum Database
Reference Guide.

Greenplum Database uses PostgreSQL's structure and syntax, with some exceptions. For more
information about SQL rules and concepts in PostgreSQL, see "SQL Syntax" in the PostgreSQL
documentation.

SQL Value Expressions
SQL value expressions consist of one or more values, symbols, operators, SQL functions, and data. The
expressions compare data or perform calculations and return a value as the result. Calculations include
logical, arithmetic, and set operations.

The following are value expressions:

• An aggregate expression
• An array constructor
• A column reference
• A constant or literal value
• A correlated subquery
• A field selection expression
• A function call
• A new column value in an INSERT or UPDATE
• An operator invocation column reference
• A positional parameter reference, in the body of a function definition or prepared statement
• A row constructor
• A scalar subquery
• A search condition in a WHERE clause
• A target list of a SELECT command
• A type cast
• A value expression in parentheses, useful to group sub-expressions and override precedence
• A window expression

SQL constructs such as functions and operators are expressions but do not follow any general syntax
rules. For more information about these constructs, see Using Functions and Operators.

Column References

A column reference has the form:

correlation.columnname

Here, correlation is the name of a table (possibly qualified with a schema name) or an alias for a table
defined with a FROM clause or one of the keywords NEW or OLD. NEW and OLD can appear only in rewrite
rules, but you can use other correlation names in any SQL statement. If the column name is unique across
all tables in the query, you can omit the "correlation." part of the column reference.

Positional Parameters

Positional parameters are arguments to SQL statements or functions that you reference by their positions
in a series of arguments. For example, $1 refers to the first argument, $2 to the second argument, and so
on. The values of positional parameters are set from arguments external to the SQL statement or supplied
when SQL functions are invoked. Some client libraries support specifying data values separately from the

Greenplum Database Administrator Guide Release Notes

354

SQL command, in which case parameters refer to the out-of-line data values. A parameter reference has
the form:

$number

For example:

CREATE FUNCTION dept(text) RETURNS dept
 AS $$ SELECT * FROM dept WHERE name = $1 $$
 LANGUAGE SQL;

Here, the $1 references the value of the first function argument whenever the function is invoked.

Subscripts

If an expression yields a value of an array type, you can extract a specific element of the array value as
follows:

expression[subscript]

You can extract multiple adjacent elements, called an array slice, as follows (including the brackets):

expression[lower_subscript:upper_subscript]

Each subscript is an expression and yields an integer value.

Array expressions usually must be in parentheses, but you can omit the parentheses when the expression
to be subscripted is a column reference or positional parameter. You can concatenate multiple subscripts
when the original array is multidimensional. For example (including the parentheses):

mytable.arraycolumn[4]

mytable.two_d_column[17][34]

$1[10:42]

(arrayfunction(a,b))[42]

Field Selection

If an expression yields a value of a composite type (row type), you can extract a specific field of the row as
follows:

expression.fieldname

The row expression usually must be in parentheses, but you can omit these parentheses when the
expression to be selected from is a table reference or positional parameter. For example:

mytable.mycolumn

$1.somecolumn

(rowfunction(a,b)).col3

A qualified column reference is a special case of field selection syntax.

Greenplum Database Administrator Guide Release Notes

355

Operator Invocations

Operator invocations have the following possible syntaxes:

expression operator expression(binary infix operator)

operator expression(unary prefix operator)

expression operator(unary postfix operator)

Where operator is an operator token, one of the key words AND, OR, or NOT, or qualified operator name in
the form:

OPERATOR(schema.operatorname)

Available operators and whether they are unary or binary depends on the operators that the system or user
defines. For more information about built-in operators, see Built-in Functions and Operators.

Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function ([expression [, expression ...]])

For example, the following function call computes the square root of 2:

sqrt(2)

See Summary of Built-in Functions in the Greenplum Database Reference Guide for lists of the built-in
functions by category. You can add custom functions, too.

Aggregate Expressions

An aggregate expression applies an aggregate function across the rows that a query selects. An aggregate
function performs a calculation on a set of values and returns a single value, such as the sum or average
of the set of values. The syntax of an aggregate expression is one of the following:

• aggregate_name(expression [, ...]) [FILTER (WHERE filter_clause)] —
operates across all input rows for which the expected result value is non-null. ALL is the default.

• aggregate_name(ALL expression [, ...]) [FILTER (WHERE filter_clause)]
— operates identically to the first form because ALL is the default.

• aggregate_name(DISTINCT expression [, ...]) [FILTER (WHERE
filter_clause)] — operates across all distinct non-null values of input rows.

• aggregate_name(*) [FILTER (WHERE filter_clause)] — operates on all rows with
values both null and non-null. Generally, this form is most useful for the count(*) aggregate function.

Where aggregate_name is a previously defined aggregate (possibly schema-qualified) and expression is
any value expression that does not contain an aggregate expression.

For example, count(*) yields the total number of input rows, count(f1) yields the number of input rows
in which f1 is non-null, and count(distinct f1) yields the number of distinct non-null values of f1.

If FILTER is specified, then only the input rows for which the filter_clause evaluates to true are fed to the
aggregate function; other rows are discarded. For example:

SELECT
 count(*) AS unfiltered,

Greenplum Database Administrator Guide Release Notes

356

 count(*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
 unfiltered | filtered
------------+----------
 10 | 4
(1 row)

For predefined aggregate functions, see Built-in Functions and Operators. You can also add custom
aggregate functions.

Greenplum Database provides the MEDIAN aggregate function, which returns the fiftieth percentile of the
PERCENTILE_CONT result and special aggregate expressions for inverse distribution functions as follows:

PERCENTILE_CONT(_percentage_) WITHIN GROUP (ORDER BY _expression_)

PERCENTILE_DISC(_percentage_) WITHIN GROUP (ORDER BY _expression_)

Currently you can use only these two expressions with the keyword WITHIN GROUP.

Limitations of Aggregate Expressions

The following are current limitations of the aggregate expressions:

• Greenplum Database does not support the following keywords: ALL, DISTINCT, and OVER. See Table
48: Advanced Aggregate Functions for more details.

• An aggregate expression can appear only in the result list or HAVING clause of a SELECT command. It
is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates form. This restriction applies to the query level to which the aggregate belongs.

• When an aggregate expression appears in a subquery, the aggregate is normally evaluated over the
rows of the subquery. If the aggregate's arguments (and filter_clause if any) contain only outer-level
variables, the aggregate belongs to the nearest such outer level and evaluates over the rows of that
query. The aggregate expression as a whole is then an outer reference for the subquery in which it
appears, and the aggregate expression acts as a constant over any one evaluation of that subquery.
The restriction about appearing only in the result list or HAVING clause applies with respect to the query
level at which the aggregate appears. See Scalar Subqueries and Table 46: Built-in functions and
operators.

• Greenplum Database does not support specifying an aggregate function as an argument to another
aggregate function.

• Greenplum Database does not support specifying a window function as an argument to an aggregate
function.

Window Expressions

Window expressions allow application developers to more easily compose complex online analytical
processing (OLAP) queries using standard SQL commands. For example, with window expressions, users
can calculate moving averages or sums over various intervals, reset aggregations and ranks as selected
column values change, and express complex ratios in simple terms.

A window expression represents the application of a window function to a window frame, which is defined
with an OVER() clause. This is comparable to the type of calculation that can be done with an aggregate
function and a GROUP BY clause. Unlike aggregate functions, which return a single result value for each
group of rows, window functions return a result value for every row, but that value is calculated with respect
to the set of rows in the window frame to which the row belongs. The OVER() clause allows dividing the
rows into partitions and then further restricting the window frame by specifying which rows preceding or
following the current row within its partition to include in the calculation.

Greenplum Database does not support specifying a window function as an argument to another window
function.

Greenplum Database Administrator Guide Release Notes

357

The syntax of a window expression is:

window_function ([expression [, ...]]) [FILTER (WHERE filter_clause)]
 OVER (window_specification)

Where window_function is one of the functions listed in Table 47: Window functions or a user-defined
window function, expression is any value expression that does not contain a window expression, and
window_specification is:

[window_name]
[PARTITION BY expression [, ...]]
[[ORDER BY expression [ASC | DESC | USING operator] [NULLS {FIRST | LAST}]
 [, ...]
 [{RANGE | ROWS}
 { UNBOUNDED PRECEDING
 | expression PRECEDING
 | CURRENT ROW
 | BETWEEN window_frame_bound AND window_frame_bound }]]

 and where window_frame_bound can be one of:

 UNBOUNDED PRECEDING
 expression PRECEDING
 CURRENT ROW
 expression FOLLOWING
 UNBOUNDED FOLLOWING

A window expression can appear only in the select list of a SELECT command. For example:

SELECT count(*) OVER(PARTITION BY customer_id), * FROM sales;

If FILTER is specified, then only the input rows for which the filter_clause evaluates to true are fed to the
window function; other rows are discarded. In a window expression, a FILTER clause can be used only
with a window_function that is an aggregate function.

In a window expression, the expression must contain an OVER clause. The OVER clause specifies the
window frame—the rows to be processed by the window function. This syntactically distinguishes the
function from a regular or aggregate function.

In a window aggregate function that is used in a window expression, Greenplum Database does not
support a DISTINCT clause with multiple input expressions.

A window specification has the following characteristics:

• The PARTITION BY clause defines the window partitions to which the window function is applied. If
omitted, the entire result set is treated as one partition.

• The ORDER BY clause defines the expression(s) for sorting rows within a window partition. The ORDER
BY clause of a window specification is separate and distinct from the ORDER BY clause of a regular
query expression. The ORDER BY clause is required for the window functions that calculate rankings,
as it identifies the measure(s) for the ranking values. For OLAP aggregations, the ORDER BY clause is
required to use window frames (the ROWS or RANGE clause).

Note: Columns of data types without a coherent ordering, such as time, are not good candidates
for use in the ORDER BY clause of a window specification. Time, with or without a specified time
zone, lacks a coherent ordering because addition and subtraction do not have the expected effects.
For example, the following is not generally true: x::time < x::time + '2 hour'::interval

• The ROWS or RANGE clause defines a window frame for aggregate (non-ranking) window functions. A
window frame defines a set of rows within a window partition. When a window frame is defined, the
window function computes on the contents of this moving frame rather than the fixed contents of the
entire window partition. Window frames are row-based (ROWS) or value-based (RANGE).

Greenplum Database Administrator Guide Release Notes

358

Window Examples

The following examples demonstrate using window functions with partitions and window frames.

Example 1 – Aggregate Window Function Over a Partition
The PARTITION BY list in the OVER clause divides the rows into groups, or partitions, that have the same
values as the specified expressions.

This example compares employees' salaries with the average salaries for their departments:

SELECT depname, empno, salary, avg(salary) OVER(PARTITION BY depname)
FROM empsalary;
 depname | empno | salary | avg
-----------+-------+--------+-----------------------
 develop | 9 | 4500 | 5020.0000000000000000
 develop | 10 | 5200 | 5020.0000000000000000
 develop | 11 | 5200 | 5020.0000000000000000
 develop | 7 | 4200 | 5020.0000000000000000
 develop | 8 | 6000 | 5020.0000000000000000
 personnel | 5 | 3500 | 3700.0000000000000000
 personnel | 2 | 3900 | 3700.0000000000000000
 sales | 1 | 5000 | 4866.6666666666666667
 sales | 3 | 4800 | 4866.6666666666666667
 sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come from the table empsalary, and there is one output row for each row
in the table. The fourth column is the average calculated on all rows that have the same depname value
as the current row. Rows that share the same depname value constitute a partition, and there are three
partitions in this example. The avg function is the same as the regular avg aggregate function, but the
OVER clause causes it to be applied as a window function.

You can also put the window specification in a WINDOW clause and reference it in the select list. This
example is equivalent to the previous query:

SELECT depname, empno, salary, avg(salary) OVER(mywindow)
FROM empsalary
WINDOW mywindow AS (PARTITION BY depname);

Defining a named window is useful when the select list has multiple window functions using the same
window specification.

Example 2 – Ranking Window Function With an ORDER BY Clause
An ORDER BY clause within the OVER clause controls the order in which rows are processed by window
functions. The ORDER BY list for the window function does not have to match the output order of the query.
This example uses the rank() window function to rank employees' salaries within their departments:

SELECT depname, empno, salary,
 rank() OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;
 depname | empno | salary | rank
-----------+-------+--------+------
 develop | 8 | 6000 | 1
 develop | 11 | 5200 | 2
 develop | 10 | 5200 | 2
 develop | 9 | 4500 | 4
 develop | 7 | 4200 | 5
 personnel | 2 | 3900 | 1

Greenplum Database Administrator Guide Release Notes

359

 personnel | 5 | 3500 | 2
 sales | 1 | 5000 | 1
 sales | 4 | 4800 | 2
 sales | 3 | 4800 | 2
(10 rows)

Example 3 – Aggregate Function over a Row Window Frame
A RANGE or ROWS clause defines the window frame—a set of rows within a partition—that the window
function includes in the calculation. ROWS specifies a physical set of rows to process, for example all rows
from the beginning of the partition to the current row.

This example calculates a running total of employee's salaries by department using the sum() function to
total rows from the start of the partition to the current row:

SELECT depname, empno, salary,
 sum(salary) OVER (PARTITION BY depname ORDER BY salary
 ROWS between UNBOUNDED PRECEDING AND CURRENT ROW)
FROM empsalary ORDER BY depname, sum;
 depname | empno | salary | sum
-----------+-------+--------+-------
 develop | 7 | 4200 | 4200
 develop | 9 | 4500 | 8700
 develop | 11 | 5200 | 13900
 develop | 10 | 5200 | 19100
 develop | 8 | 6000 | 25100
 personnel | 5 | 3500 | 3500
 personnel | 2 | 3900 | 7400
 sales | 4 | 4800 | 4800
 sales | 3 | 4800 | 9600
 sales | 1 | 5000 | 14600
(10 rows)

Example 4 – Aggregate Function for a Range Window Frame
RANGE specifies logical values based on values of the ORDER BY expression in the OVER clause. This
example demonstrates the difference between ROWS and RANGE. The frame contains all rows with salary
values less than or equal to the current row. Unlike the previous example, for employees with the same
salary, the sum is the same and includes the salaries of all of those employees.

SELECT depname, empno, salary,
 sum(salary) OVER (PARTITION BY depname ORDER BY salary
 RANGE between UNBOUNDED PRECEDING AND CURRENT ROW)
FROM empsalary ORDER BY depname, sum;
 depname | empno | salary | sum
-----------+-------+--------+-------
 develop | 7 | 4200 | 4200
 develop | 9 | 4500 | 8700
 develop | 11 | 5200 | 19100
 develop | 10 | 5200 | 19100
 develop | 8 | 6000 | 25100
 personnel | 5 | 3500 | 3500
 personnel | 2 | 3900 | 7400
 sales | 4 | 4800 | 9600
 sales | 3 | 4800 | 9600
 sales | 1 | 5000 | 14600
(10 rows)

Greenplum Database Administrator Guide Release Notes

360

Type Casts

A type cast specifies a conversion from one data type to another. A cast applied to a value expression of a
known type is a run-time type conversion. The cast succeeds only if a suitable type conversion is defined.
This differs from the use of casts with constants. A cast applied to a string literal represents the initial
assignment of a type to a literal constant value, so it succeeds for any type if the contents of the string
literal are acceptable input syntax for the data type.

Greenplum Database supports three types of casts applied to a value expression:

• Explicit cast - Greenplum Database applies a cast when you explicitly specify a cast between two data
types. Greenplum Database accepts two equivalent syntaxes for explicit type casts:

CAST (expression AS type)
expression::type

The CAST syntax conforms to SQL; the syntax using :: is historical PostgreSQL usage.
• Assignment cast - Greenplum Database implicitly invokes a cast in assignment contexts, when

assigning a value to a column of the target data type. For example, a CREATE CAST command with
the AS ASSIGNMENT clause creates a cast that is applied implicitly in the assignment context. This
example assignment cast assumes that tbl1.f1 is a column of type text. The INSERT command is
allowed because the value is implicitly cast from the integer to text type.

INSERT INTO tbl1 (f1) VALUES (42);

• Implicit cast - Greenplum Database implicitly invokes a cast in assignment or expression contexts. For
example, a CREATE CAST command with the AS IMPLICIT clause creates an implicit cast, a cast that
is applied implicitly in both the assignment and expression context. This example implicit cast assumes
that tbl1.c1 is a column of type int. For the calculation in the predicate, the value of c1 is implicitly
cast from int to a decimal type.

SELECT * FROM tbl1 WHERE tbl1.c2 = (4.3 + tbl1.c1) ;

You can usually omit an explicit type cast if there is no ambiguity about the type a value expression must
produce (for example, when it is assigned to a table column); the system automatically applies a type
cast. Greenplum Database implicitly applies casts only to casts defined with a cast context of assignment
or explicit in the system catalogs. Other casts must be invoked with explicit casting syntax to prevent
unexpected conversions from being applied without the user's knowledge.

You can display cast information with the psql meta-command \dC. Cast information is stored in the
catalog table pg_cast, and type information is stored in the catalog table pg_type.

Scalar Subqueries

A scalar subquery is a SELECT query in parentheses that returns exactly one row with one column. Do not
use a SELECT query that returns multiple rows or columns as a scalar subquery. The query runs and uses
the returned value in the surrounding value expression. A correlated scalar subquery contains references
to the outer query block.

Correlated Subqueries

A correlated subquery (CSQ) is a SELECT query with a WHERE clause or target list that contains references
to the parent outer clause. CSQs efficiently express results in terms of results of another query. Greenplum
Database supports correlated subqueries that provide compatibility with many existing applications. A CSQ
is a scalar or table subquery, depending on whether it returns one or multiple rows. Greenplum Database
does not support correlated subqueries with skip-level correlations.

Greenplum Database Administrator Guide Release Notes

361

Correlated Subquery Examples

Example 1 – Scalar correlated subquery

SELECT * FROM t1 WHERE t1.x
 > (SELECT MAX(t2.x) FROM t2 WHERE t2.y = t1.y);

Example 2 – Correlated EXISTS subquery

SELECT * FROM t1 WHERE
EXISTS (SELECT 1 FROM t2 WHERE t2.x = t1.x);

Greenplum Database uses one of the following methods to run CSQs:

• Unnest the CSQ into join operations – This method is most efficient, and it is how Greenplum Database
runs most CSQs, including queries from the TPC-H benchmark.

• Run the CSQ on every row of the outer query – This method is relatively inefficient, and it is how
Greenplum Database runs queries that contain CSQs in the SELECT list or are connected by OR
conditions.

The following examples illustrate how to rewrite some of these types of queries to improve performance.

Example 3 - CSQ in the Select List

Original Query

SELECT T1.a,
 (SELECT COUNT(DISTINCT T2.z) FROM t2 WHERE t1.x = t2.y) dt2
FROM t1;

Rewrite this query to perform an inner join with t1 first and then perform a left join with t1 again. The
rewrite applies for only an equijoin in the correlated condition.

Rewritten Query

SELECT t1.a, dt2 FROM t1
 LEFT JOIN
 (SELECT t2.y AS csq_y, COUNT(DISTINCT t2.z) AS dt2
 FROM t1, t2 WHERE t1.x = t2.y
 GROUP BY t1.x)
 ON (t1.x = csq_y);

Example 4 - CSQs connected by OR Clauses

Original Query

SELECT * FROM t1
WHERE
x > (SELECT COUNT(*) FROM t2 WHERE t1.x = t2.x)
OR x < (SELECT COUNT(*) FROM t3 WHERE t1.y = t3.y)

Rewrite this query to separate it into two parts with a union on the OR conditions.

Rewritten Query

SELECT * FROM t1
WHERE x > (SELECT count(*) FROM t2 WHERE t1.x = t2.x)
UNION
SELECT * FROM t1

Greenplum Database Administrator Guide Release Notes

362

WHERE x < (SELECT count(*) FROM t3 WHERE t1.y = t3.y)

To view the query plan, use EXPLAIN SELECT or EXPLAIN ANALYZE SELECT. Subplan nodes in the
query plan indicate that the query will run on every row of the outer query, and the query is a candidate for
rewriting. For more information about these statements, see Query Profiling.

Array Constructors

An array constructor is an expression that builds an array value from values for its member elements. A
simple array constructor consists of the key word ARRAY, a left square bracket [, one or more expressions
separated by commas for the array element values, and a right square bracket]. For example,

SELECT ARRAY[1,2,3+4];
 array

 {1,2,7}

The array element type is the common type of its member expressions, determined using the same rules
as for UNION or CASE constructs.

You can build multidimensional array values by nesting array constructors. In the inner constructors, you
can omit the keyword ARRAY. For example, the following two SELECT statements produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];
SELECT ARRAY[[1,2],[3,4]];
 array

 {{1,2},{3,4}}

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce sub-
arrays of identical dimensions.

Multidimensional array constructor elements are not limited to a sub-ARRAY construct; they are anything
that produces an array of the proper kind. For example:

CREATE TABLE arr(f1 int[], f2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]],
ARRAY[[5,6],[7,8]]);
SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr;
 array
--
 {{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}

You can construct an array from the results of a subquery. Write the array constructor with the keyword
ARRAY followed by a subquery in parentheses. For example:

SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE 'bytea%');
 ?column?

 {2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}

The subquery must return a single column. The resulting one-dimensional array has an element for each
row in the subquery result, with an element type matching that of the subquery's output column. The
subscripts of an array value built with ARRAY always begin with 1.

Greenplum Database Administrator Guide Release Notes

363

Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) from values for
its member fields. For example,

SELECT ROW(1,2.5,'this is a test');

Row constructors have the syntax rowvalue.*, which expands to a list of the elements of the row value,
as when you use the syntax .* at the top level of a SELECT list. For example, if table t has columns f1
and f2, the following queries are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.f1, t.f2, 42) FROM t;

By default, the value created by a ROW expression has an anonymous record type. If necessary, it can be
cast to a named composite type — either the row type of a table, or a composite type created with CREATE
TYPE AS. To avoid ambiguity, you can explicitly cast the value if necessary. For example:

CREATE TABLE mytable(f1 int, f2 float, f3 text);
CREATE FUNCTION getf1(mytable) RETURNS int AS 'SELECT $1.f1'
LANGUAGE SQL;

In the following query, you do not need to cast the value because there is only one getf1() function and
therefore no ambiguity:

SELECT getf1(ROW(1,2.5,'this is a test'));
 getf1

 1
CREATE TYPE myrowtype AS (f1 int, f2 text, f3 numeric);
CREATE FUNCTION getf1(myrowtype) RETURNS int AS 'SELECT
$1.f1' LANGUAGE SQL;

Now we need a cast to indicate which function to call:

SELECT getf1(ROW(1,2.5,'this is a test'));
ERROR: function getf1(record) is not unique

SELECT getf1(ROW(1,2.5,'this is a test')::mytable);
 getf1

 1
SELECT getf1(CAST(ROW(11,'this is a test',2.5) AS
myrowtype));
 getf1

 11

You can use row constructors to build composite values to be stored in a composite-type table column or
to be passed to a function that accepts a composite parameter.

Expression Evaluation Rules

The order of evaluation of subexpressions is undefined. The inputs of an operator or function are not
necessarily evaluated left-to-right or in any other fixed order.

Greenplum Database Administrator Guide Release Notes

364

If you can determine the result of an expression by evaluating only some parts of the expression, then
other subexpressions might not be evaluated at all. For example, in the following expression:

SELECT true OR somefunc();

somefunc() would probably not be called at all. The same is true in the following expression:

SELECT somefunc() OR true;

This is not the same as the left-to-right evaluation order that Boolean operators enforce in some
programming languages.

Do not use functions with side effects as part of complex expressions, especially in WHERE and HAVING
clauses, because those clauses are extensively reprocessed when developing an execution plan. Boolean
expressions (AND/OR/NOT combinations) in those clauses can be reorganized in any manner that Boolean
algebra laws allow.

Use a CASE construct to force evaluation order. The following example is an untrustworthy way to avoid
division by zero in a WHERE clause:

SELECT ... WHERE x <> 0 AND y/x > 1.5;

The following example shows a trustworthy evaluation order:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false
END;

This CASE construct usage defeats optimization attempts; use it only when necessary.

WITH Queries (Common Table Expressions)
The WITH clause provides a way to use subqueries or perform a data modifying operation in a larger
SELECT query. You can also use the WITH clause in an INSERT, UPDATE, or DELETE command.

See SELECT in a WITH Clause for information about using SELECT in a WITH clause.

See Data-Modifying Statements in a WITH clause, for information about using INSERT, UPDATE, or
DELETE in a WITH clause.

Note: These are limitations for using a WITH clause.

• For a SELECT command that includes a WITH clause, the clause can contain at most a single
clause that modifies table data (INSERT, UPDATE, or DELETE command).

• For a data-modifying command (INSERT, UPDATE, or DELETE) that includes a WITH clause, the
clause can only contain a SELECT command, the WITH clause cannot contain a data-modifying
command.

By default, the RECURSIVE keyword for the WITH clause is enabled. RECURSIVE can be disabled by
setting the server configuration parameter gp_recursive_cte to false.

SELECT in a WITH Clause
The subqueries, which are often referred to as Common Table Expressions or CTEs, can be thought of as
defining temporary tables that exist just for the query. These examples show the WITH clause being used
with a SELECT command. The example WITH clauses can be used the same way with INSERT, UPDATE,
or DELETE. In each case, the WITH clause effectively provides temporary tables that can be referred to in
the main command.

A SELECT command in the WITH clause is evaluated only once per execution of the parent query, even if
it is referred to more than once by the parent query or sibling WITH clauses. Thus, expensive calculations
that are needed in multiple places can be placed within a WITH clause to avoid redundant work. Another

Greenplum Database Administrator Guide Release Notes

365

possible application is to prevent unwanted multiple evaluations of functions with side-effects. However,
the other side of this coin is that the optimizer is less able to push restrictions from the parent query down
into a WITH query than an ordinary sub-query. The WITH query will generally be evaluated as written,
without suppression of rows that the parent query might discard afterwards. However, evaluation might
stop early if the references to the query demand only a limited number of rows.

One use of this feature is to break down complicated queries into simpler parts. This example query
displays per-product sales totals in only the top sales regions:

WITH regional_sales AS (
 SELECT region, SUM(amount) AS total_sales
 FROM orders
 GROUP BY region
), top_regions AS (
 SELECT region
 FROM regional_sales
 WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
 product,
 SUM(quantity) AS product_units,
 SUM(amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

The query could have been written without the WITH clause, but would have required two levels of nested
sub-SELECTs. It is easier to follow with the WITH clause.

When the optional RECURSIVE keyword is enabled, the WITH clause can accomplish things not otherwise
possible in standard SQL. Using RECURSIVE, a query in the WITH clause can refer to its own output. This
is a simple example that computes the sum of integers from 1 through 100:

WITH RECURSIVE t(n) AS (
 VALUES (1)
 UNION ALL
 SELECT n+1 FROM t WHERE n < 100
)
SELECT sum(n) FROM t;

The general form of a recursive WITH clause (a WITH clause that uses a the RECURSIVE keyword) is
a non-recursive term, followed by a UNION (or UNION ALL), and then a recursive term, where only the
recursive term can contain a reference to the query output.

non_recursive_term UNION [ALL] recursive_term

A recursive WITH query that contains a UNION [ALL] is executed as follows:

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. Include all
remaining rows in the result of the recursive query, and also place them in a temporary working table.

2. As long as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the recursive
self-reference. For UNION (but not UNION ALL), discard duplicate rows and rows that duplicate any
previous result row. Include all remaining rows in the result of the recursive query, and also place
them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then empty the
intermediate table.

Note: Strictly speaking, the process is iteration not recursion, but RECURSIVE is the terminology
chosen by the SQL standards committee.

Greenplum Database Administrator Guide Release Notes

366

Recursive WITH queries are typically used to deal with hierarchical or tree-structured data. An example is
this query to find all the direct and indirect sub-parts of a product, given only a table that shows immediate
inclusions:

WITH RECURSIVE included_parts(sub_part, part, quantity) AS (
 SELECT sub_part, part, quantity FROM parts WHERE part = 'our_product'
 UNION ALL
 SELECT p.sub_part, p.part, p.quantity
 FROM included_parts pr, parts p
 WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part ;

When working with recursive WITH queries, you must ensure that the recursive part of the query eventually
returns no tuples, or else the query loops indefinitely. In the example that computes the sum of integers,
the working table contains a single row in each step, and it takes on the values from 1 through 100 in
successive steps. In the 100th step, there is no output because of the WHERE clause, and the query
terminates.

For some queries, using UNION instead of UNION ALL can ensure that the recursive part of the query
eventually returns no tuples by discarding rows that duplicate previous output rows. However, often a cycle
does not involve output rows that are complete duplicates: it might be sufficient to check just one or a few
fields to see if the same point has been reached before. The standard method for handling such situations
is to compute an array of the visited values. For example, consider the following query that searches a
table graph using a link field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
 SELECT g.id, g.link, g.data, 1
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1
 FROM graph g, search_graph sg
 WHERE g.id = sg.link
)
SELECT * FROM search_graph;

This query loops if the link relationships contain cycles. Because the query requires a depth output,
changing UNION ALL to UNION does not eliminate the looping. Instead the query needs to recognize
whether it has reached the same row again while following a particular path of links. This modified query
adds two columns, path and cycle, to the loop-prone query:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
 SELECT g.id, g.link, g.data, 1,
 ARRAY[g.id],
 false
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1,
 path || g.id,
 g.id = ANY(path)
 FROM graph g, search_graph sg
 WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM search_graph;

Aside from detecting cycles, the array value of path is useful in its own right since it represents the path
taken to reach any particular row.

Greenplum Database Administrator Guide Release Notes

367

In the general case where more than one field needs to be checked to recognize a cycle, an array of rows
can be used. For example, if we needed to compare fields f1 and f2:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
 SELECT g.id, g.link, g.data, 1,
 ARRAY[ROW(g.f1, g.f2)],
 false
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1,
 path || ROW(g.f1, g.f2),
 ROW(g.f1, g.f2) = ANY(path)
 FROM graph g, search_graph sg
 WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM search_graph;

Tip: Omit the ROW() syntax in the case where only one field needs to be checked to recognize a
cycle. This uses a simple array rather than a composite-type array, gaining efficiency.

Tip: The recursive query evaluation algorithm produces its output in breadth-first search order.
You can display the results in depth-first search order by making the outer query ORDER BY a path
column constructed in this way.

A helpful technique for testing a query when you are not certain if it might loop indefinitely is to place a
LIMIT in the parent query. For example, this query would loop forever without the LIMIT clause:

WITH RECURSIVE t(n) AS (
 SELECT 1
 UNION ALL
 SELECT n+1 FROM t
)
SELECT n FROM t LIMIT 100;

The technique works because the recursive WITH implementation evaluates only as many rows of a WITH
query as are actually fetched by the parent query. Using this technique in production is not recommended,
because other systems might work differently. Also, the technique might not work if the outer query sorts
the recursive WITH results or join the results to another table.

Data-Modifying Statements in a WITH clause
For a SELECT command, you can use the data-modifying commands INSERT, UPDATE, or DELETE in a
WITH clause. This allows you to perform several different operations in the same query.

A data-modifying statement in a WITH clause is executed exactly once, and always to completion,
independently of whether the primary query reads all (or indeed any) of the output. This is different from
the rule when using SELECT in a WITH clause, the execution of a SELECT continues only as long as the
primary query demands its output.

This simple CTE query deletes rows from products. The DELETE in the WITH clause deletes the
specified rows from products, returning their contents by means of its RETURNING clause.

WITH deleted_rows AS (
 DELETE FROM products
 WHERE
 "date" >= '2010-10-01' AND
 "date" < '2010-11-01'
 RETURNING *
)
SELECT * FROM deleted_rows;

Greenplum Database Administrator Guide Release Notes

368

Data-modifying statements in a WITH clause must have RETURNING clauses, as shown in the previous
example. It is the output of the RETURNING clause, not the target table of the data-modifying statement,
that forms the temporary table that can be referred to by the rest of the query. If a data-modifying
statement in a WITH lacks a RETURNING clause, an error is returned.

If the optional RECURSIVE keyword is enabled, recursive self-references in data-modifying statements
are not allowed. In some cases it is possible to work around this limitation by referring to the output of a
recursive WITH. For example, this query would remove all direct and indirect subparts of a product.

WITH RECURSIVE included_parts(sub_part, part) AS (
 SELECT sub_part, part FROM parts WHERE part = 'our_product'
 UNION ALL
 SELECT p.sub_part, p.part
 FROM included_parts pr, parts p
 WHERE p.part = pr.sub_part
)
DELETE FROM parts
 WHERE part IN (SELECT part FROM included_parts);

The sub-statements in a WITH clause are executed concurrently with each other and with the main query.
Therefore, when using a data-modifying statement in a WITH, the statement is executed in a snapshot.
The effects of the statement are not visible on the target tables. The RETURNING data is the only way to
communicate changes between different WITH sub-statements and the main query. In this example, the
outer SELECT returns the original prices before the action of the UPDATE in the WITH clause.

WITH t AS (
 UPDATE products SET price = price * 1.05
 RETURNING *
)
SELECT * FROM products;

In this example the outer SELECT returns the updated data.

WITH t AS (
 UPDATE products SET price = price * 1.05
 RETURNING *
)
SELECT * FROM t;

Updating the same row twice in a single statement is not supported. The effects of such a statement
will not be predictable. Only one of the modifications takes place, but it is not easy (and sometimes not
possible) to predict which modification occurs.

Any table used as the target of a data-modifying statement in a WITH clause must not have a conditional
rule, or an ALSO rule, or an INSTEAD rule that expands to multiple statements.

Using Functions and Operators
Description of user-defined and built-in functions and operators in Greenplum Database.

• Using Functions in Greenplum Database
• User-Defined Functions
• Built-in Functions and Operators
• Window Functions
• Advanced Aggregate Functions

Using Functions in Greenplum Database
When you invoke a function in Greenplum Database, function attributes control the execution of the
function. The volatility attributes (IMMUTABLE, STABLE, VOLATILE) and the EXECUTE ON attributes

Greenplum Database Administrator Guide Release Notes

369

control two different aspects of function execution. In general, volatility indicates when the function is
executed, and EXECUTE ON indicates where it is executed. The volatility attributes are PostgreSQL based
attributes, the EXECUTE ON attributes are Greenplum Database attributes.

For example, a function defined with the IMMUTABLE attribute can be executed at query planning time,
while a function with the VOLATILE attribute must be executed for every row in the query. A function
with the EXECUTE ON MASTER attribute executes only on the master instance, and a function with the
EXECUTE ON ALL SEGMENTS attribute executes on all primary segment instances (not the master).

These tables summarize what Greenplum Database assumes about function execution based on the
attribute.

Table 44: Function Volatility Attributes in Greenplum Database

Function
Attribute

Greenplum
Support

Description Comments

IMMUTABLE Yes Relies only on information
directly in its argument list.
Given the same argument
values, always returns the same
result.

STABLE Yes, in most
cases

Within a single table scan,
returns the same result for same
argument values, but results
change across SQL statements.

Results depend on database
lookups or parameter values.
current_timestamp family of
functions is STABLE; values do
not change within an execution.

VOLATILE Restricted Function values can change
within a single table scan.
For example: random(),
timeofday(). This is the
default attribute.

Any function with side effects
is volatile, even if its result
is predictable. For example:
setval().

Table 45: Function EXECUTE ON attributes in Greenplum Database

Function Attribute Description Comments

EXECUTE ON ANY Indicates that the function can be
executed on the master, or any segment
instance, and it returns the same result
regardless of where it executes. This is
the default attribute.

Greenplum Database determines where
the function executes.

EXECUTE ON
MASTER

Indicates that the function must be
executed on the master instance.

Specify this attribute if the user-defined
function executes queries to access
tables.

EXECUTE ON ALL
SEGMENTS

Indicates that for each invocation, the
function must be executed on all primary
segment instances, but not the master.

EXECUTE ON
INITPLAN

Indicates that the function contains an
SQL command that dispatches queries
to the segment instances and requires
special processing on the master
instance by Greenplum Database when
possible.

Greenplum Database Administrator Guide Release Notes

370

You can display the function volatility and EXECUTE ON attribute information with the psql \df+
function command.

Refer to the PostgreSQL Function Volatility Categories documentation for additional information about the
Greenplum Database function volatility classifications.

For more information about EXECUTE ON attributes, see CREATE FUNCTION.

In Greenplum Database, data is divided up across segments — each segment is a distinct PostgreSQL
database. To prevent inconsistent or unexpected results, do not execute functions classified as VOLATILE
at the segment level if they contain SQL commands or modify the database in any way. For example,
functions such as setval() are not allowed to execute on distributed data in Greenplum Database
because they can cause inconsistent data between segment instances.

A function can execute read-only queries on replicated tables (DISTRIBUTED REPLICATED) on the
segments, but any SQL command that modifies data must execute on the master instance.

Note: The hidden system columns (ctid, cmin, cmax, xmin, xmax, and gp_segment_id)
cannot be referenced in user queries on replicated tables because they have no single,
unambiguous value. Greenplum Database returns a column does not exist error for the
query.

To ensure data consistency, you can safely use VOLATILE and STABLE functions in statements that
are evaluated on and run from the master. For example, the following statements run on the master
(statements without a FROM clause):

SELECT setval('myseq', 201);
SELECT foo();

If a statement has a FROM clause containing a distributed table and the function in the FROM clause returns
a set of rows, the statement can run on the segments:

SELECT * from foo();

Greenplum Database does not support functions that return a table reference (rangeFuncs) or functions
that use the refCursor data type.

Function Volatility and Plan Caching

There is relatively little difference between the STABLE and IMMUTABLE function volatility categories for
simple interactive queries that are planned and immediately executed. It does not matter much whether
a function is executed once during planning or once during query execution start up. But there is a big
difference when you save the plan and reuse it later. If you mislabel a function IMMUTABLE, Greenplum
Database may prematurely fold it to a constant during planning, possibly reusing a stale value during
subsequent execution of the plan. You may run into this hazard when using PREPAREd statements, or
when using languages such as PL/pgSQL that cache plans.

User-Defined Functions
Greenplum Database supports user-defined functions. See Extending SQL in the PostgreSQL
documentation for more information.

Use the CREATE FUNCTION statement to register user-defined functions that are used as described in
Using Functions in Greenplum Database. By default, user-defined functions are declared as VOLATILE,
so if your user-defined function is IMMUTABLE or STABLE, you must specify the correct volatility level when
you register your function.

By default, user-defined functions are declared as EXECUTE ON ANY. A function that executes queries to
access tables is supported only when the function executes on the master instance, except that a function
can execute SELECT commands that access only replicated tables on the segment instances. A function
that accesses hash-distributed or randomly distributed tables must be defined with the EXECUTE ON

https://www.postgresql.org/docs/9.4/xfunc-volatility.html
https://www.postgresql.org/docs/9.4/extend.html

Greenplum Database Administrator Guide Release Notes

371

MASTER attribute. Otherwise, the function might return incorrect results when the function is used in a
complicated query. Without the attribute, planner optimization might determine it would be beneficial to
push the function invocation to segment instances.

When you create user-defined functions, avoid using fatal errors or destructive calls. Greenplum Database
may respond to such errors with a sudden shutdown or restart.

In Greenplum Database, the shared library files for user-created functions must reside in the same library
path location on every host in the Greenplum Database array (masters, segments, and mirrors).

You can also create and execute anonymous code blocks that are written in a Greenplum Database
procedural language such as PL/pgSQL. The anonymous blocks run as transient anonymous functions.
For information about creating and executing anonymous blocks, see the DO command.

Built-in Functions and Operators
The following table lists the categories of built-in functions and operators supported by PostgreSQL. All
functions and operators are supported in Greenplum Database as in PostgreSQL with the exception
of STABLE and VOLATILE functions, which are subject to the restrictions noted in Using Functions in
Greenplum Database. See the Functions and Operators section of the PostgreSQL documentation for
more information about these built-in functions and operators.

Greenplum Database includes JSON processing functions that manipulate values the json data type. For
information about JSON data, see Working with JSON Data.

Table 46: Built-in functions and operators

Operator/Function
Category

VOLATILE
Functions

STABLE Functions Restrictions

Logical Operators

Comparison Operators

Mathematical Functions
and Operators

random

setseed

String Functions and
Operators

All built-in
conversion
functions

convert

pg_client_encoding

Binary String Functions
and Operators

Bit String Functions and
Operators

Pattern Matching

Data Type Formatting
Functions

to_char

to_timestamp

https://www.postgresql.org/docs/9.4/functions.html
https://www.postgresql.org/docs/9.4/functions-logical.html
https://www.postgresql.org/docs/9.4/functions-comparison.html
https://www.postgresql.org/docs/9.4/functions-math.html
https://www.postgresql.org/docs/9.4/functions-math.html
https://www.postgresql.org/docs/9.4/functions-string.html
https://www.postgresql.org/docs/9.4/functions-string.html
https://www.postgresql.org/docs/9.4/functions-binarystring.html
https://www.postgresql.org/docs/9.4/functions-binarystring.html
https://www.postgresql.org/docs/9.4/functions-bitstring.html
https://www.postgresql.org/docs/9.4/functions-bitstring.html
https://www.postgresql.org/docs/9.4/functions-matching.html
https://www.postgresql.org/docs/9.4/functions-formatting.html
https://www.postgresql.org/docs/9.4/functions-formatting.html

Greenplum Database Administrator Guide Release Notes

372

Operator/Function
Category

VOLATILE
Functions

STABLE Functions Restrictions

Date/Time Functions and
Operators

timeofday age

current_date

current_time

current_timestamp

localtime

localtimestamp

now

Enum Support Functions

Geometric Functions and
Operators

Network Address
Functions and Operators

Sequence Manipulation
Functions

nextval()

setval()

Conditional Expressions

Array Functions and
Operators

All array functions

Aggregate Functions

Subquery Expressions

Row and Array
Comparisons

Set Returning Functions generate_series

System Information
Functions

All session
information functions

All access privilege
inquiry functions

All schema visibility
inquiry functions

All system catalog
information functions

All comment
information functions

All transaction ids and
snapshots

https://www.postgresql.org/docs/9.4/functions-datetime.html
https://www.postgresql.org/docs/9.4/functions-datetime.html
https://www.postgresql.org/docs/9.4/functions-enum.html
https://www.postgresql.org/docs/9.4/functions-geometry.html
https://www.postgresql.org/docs/9.4/functions-geometry.html
https://www.postgresql.org/docs/9.4/functions-net.html
https://www.postgresql.org/docs/9.4/functions-net.html
https://www.postgresql.org/docs/9.4/functions-sequence.html
https://www.postgresql.org/docs/9.4/functions-sequence.html
https://www.postgresql.org/docs/9.4/functions-conditional.html
https://www.postgresql.org/docs/9.4/functions-array.html
https://www.postgresql.org/docs/9.4/functions-array.html
https://www.postgresql.org/docs/9.4/functions-aggregate.html
https://www.postgresql.org/docs/9.4/functions-subquery.html
https://www.postgresql.org/docs/9.4/functions-comparisons.html
https://www.postgresql.org/docs/9.4/functions-comparisons.html
https://www.postgresql.org/docs/9.4/functions-srf.html
https://www.postgresql.org/docs/9.4/functions-info.html
https://www.postgresql.org/docs/9.4/functions-info.html

Greenplum Database Administrator Guide Release Notes

373

Operator/Function
Category

VOLATILE
Functions

STABLE Functions Restrictions

System Administration
Functions

set_config

pg_cancel_
backend

pg_terminate_
backend

pg_reload_conf

pg_rotate_logfile

pg_start_backup

pg_stop_backup

pg_size_pretty

pg_ls_dir

pg_read_file

pg_stat_file

current_setting

All database object
size functions

Note: The function pg_
column_size displays
bytes required to store the
value, possibly with TOAST
compression.

https://www.postgresql.org/docs/9.4/functions-admin.html
https://www.postgresql.org/docs/9.4/functions-admin.html

Greenplum Database Administrator Guide Release Notes

374

Operator/Function
Category

VOLATILE
Functions

STABLE Functions Restrictions

XML Functions and
function-like expressions

cursor_to_xml(cursor
refcursor, count
int, nulls boolean,
tableforest boolean,
targetns text)

cursor_to_
xmlschema(cursor
refcursor, nulls
boolean, tableforest
boolean, targetns
text)

database_to_
xml(nulls boolean,
tableforest boolean,
targetns text)

database_to_
xmlschema(nulls
boolean, tableforest
boolean, targetns
text)

database_
to_xml_and_
xmlschema(nulls
boolean, tableforest
boolean, targetns
text)

query_to_xml(query
text, nulls boolean,
tableforest boolean,
targetns text)

query_to_
xmlschema(query
text, nulls boolean,
tableforest boolean,
targetns text)

query_to_xml_and_
xmlschema(query
text, nulls boolean,
tableforest boolean,
targetns text)

schema_to_
xml(schema name,
nulls boolean,
tableforest boolean,
targetns text)

schema_to_
xmlschema(schema
name, nulls boolean,

https://www.postgresql.org/docs/9.4/functions-xml.html

Greenplum Database Administrator Guide Release Notes

375

Operator/Function
Category

VOLATILE
Functions

STABLE Functions Restrictions

tableforest boolean,
targetns text)

schema_to_xml_and_
xmlschema(schema
name, nulls boolean,
tableforest boolean,
targetns text)

table_to_xml(tbl
regclass, nulls
boolean, tableforest
boolean, targetns
text)

table_to_
xmlschema(tbl
regclass, nulls
boolean, tableforest
boolean, targetns
text)

table_to_xml_and_
xmlschema(tbl
regclass, nulls
boolean, tableforest
boolean, targetns
text)

xmlagg(xml)

xmlconcat(xml[, ...])

xmlelement(name
name [,
xmlattributes(value
[AS attname] [, ...])] [,
content, ...])

xmlexists(text, xml)

xmlforest(content [AS
name] [, ...])

xml_is_well_
formed(text)

xml_is_well_formed_
document(text)

xml_is_well_formed_
content(text)

xmlparse
({ DOCUMENT |
CONTENT } value)

xpath(text, xml)

xpath(text, xml, text[])

Greenplum Database Administrator Guide Release Notes

376

Operator/Function
Category

VOLATILE
Functions

STABLE Functions Restrictions

xpath_exists(text,
xml)

xpath_exists(text,
xml, text[])

xmlpi(name target [,
content])

xmlroot(xml, version
text | no value [,
standalone yes|no|no
value])

xmlserialize
({ DOCUMENT |
CONTENT } value AS
type)

xml(text)

text(xml)

xmlcomment(xml)

xmlconcat2(xml, xml)

Window Functions
The following built-in window functions are Greenplum extensions to the PostgreSQL database. All window
functions are immutable. For more information about window functions, see Window Expressions.

Table 47: Window functions

Function Return Type Full Syntax Description

cume_dist() double
precision

CUME_DIST() OVER ([PARTITION
BY expr] ORDER BY expr)

Calculates the
cumulative distribution
of a value in a group
of values. Rows with
equal values always
evaluate to the same
cumulative distribution
value.

dense_rank() bigint DENSE_RANK () OVER
([PARTITION BY expr] ORDER
BY expr)

Computes the rank of
a row in an ordered
group of rows without
skipping rank values.
Rows with equal
values are given the
same rank value.

first_
value(expr)

same as input
expr type

FIRST_VALUE(expr) OVER
([PARTITION BY expr] ORDER
BY expr [ROWS|RANGE frame_expr
])

Returns the first value
in an ordered set of
values.

Greenplum Database Administrator Guide Release Notes

377

Function Return Type Full Syntax Description

lag(expr
[,offset]
[,default])

same as input
expr type

LAG(expr [, offset] [, default])
OVER ([PARTITION BY expr]
ORDER BY expr)

Provides access to
more than one row
of the same table
without doing a self
join. Given a series
of rows returned
from a query and a
position of the cursor,
LAG provides access
to a row at a given
physical offset prior
to that position. The
default offset is
1. default sets the
value that is returned
if the offset goes
beyond the scope of
the window. If default
is not specified, the
default value is null.

last_value(expr) same as input
expr type

LAST_VALUE(expr) OVER
([PARTITION BY expr] ORDER
BY expr [ROWS|RANGE frame_
expr])

Returns the last value
in an ordered set of
values.

lead(expr
[,offset]
[,default])

same as input
expr type

LEAD(expr [,offset]
[,exprdefault]) OVER
([PARTITION BY expr] ORDER
BY expr)

Provides access to
more than one row
of the same table
without doing a self
join. Given a series
of rows returned
from a query and a
position of the cursor,
lead provides access
to a row at a given
physical offset after
that position. If offset
is not specified, the
default offset is 1.
default sets the value
that is returned if the
offset goes beyond
the scope of the
window. If default
is not specified, the
default value is null.

ntile(expr) bigint NTILE(expr) OVER ([PARTITION
BY expr] ORDER BY expr)

Divides an ordered
data set into a
number of buckets
(as defined by expr)
and assigns a bucket
number to each row.

Greenplum Database Administrator Guide Release Notes

378

Function Return Type Full Syntax Description

percent_rank() double
precision

PERCENT_RANK () OVER
([PARTITION BY expr] ORDER
BY expr)

Calculates the rank
of a hypothetical row
R minus 1, divided
by 1 less than the
number of rows being
evaluated (within a
window partition).

rank() bigint RANK () OVER ([PARTITION BY
expr] ORDER BY expr)

Calculates the rank of
a row in an ordered
group of values. Rows
with equal values for
the ranking criteria
receive the same
rank. The number
of tied rows are
added to the rank
number to calculate
the next rank value.
Ranks may not be
consecutive numbers
in this case.

row_number() bigint ROW_NUMBER () OVER
([PARTITION BY expr] ORDER
BY expr)

Assigns a unique
number to each row
to which it is applied
(either each row in
a window partition
or each row of the
query).

Advanced Aggregate Functions
The following built-in advanced aggregate functions are Greenplum extensions of the PostgreSQL
database. These functions are immutable.

Note: The Greenplum MADlib Extension for Analytics provides additional advanced functions to
perform statistical analysis and machine learning with Greenplum Database data. See Greenplum
MADlib Extension for Analytics in the Greenplum Database Reference Guide.

Table 48: Advanced Aggregate Functions

Function Return Type Full Syntax Description

MEDIAN (expr) timestamp,
timestamptz,
interval,
float

MEDIAN (expression)

Example:

SELECT departmzent_
id, MEDIAN(salary)
 FROM employees
GROUP BY department_
id;

Can take a two-dimensional
array as input. Treats such
arrays as matrices.

Greenplum Database Administrator Guide Release Notes

379

Function Return Type Full Syntax Description

sum(array[]) smallint[],
int[],
bigint[],
float[]

sum(array[[1,2],[3,4]])

Example:

CREATE TABLE mymatrix
 (myvalue int[]);
INSERT INTO mymatrix
 VALUES
 (array[[1,2],
[3,4]]);
INSERT INTO mymatrix
 VALUES
 (array[[0,1],
[1,0]]);
SELECT sum(myvalue)
 FROM mymatrix;
 sum

 {{1,3},{4,4}}

Performs matrix
summation. Can take as
input a two-dimensional
array that is treated as a
matrix.

pivot_sum
(label[], label,
expr)

int[],
bigint[],
float[]

pivot_
sum(array['A1','A2'],
attr, value)

A pivot aggregation using
sum to resolve duplicate
entries.

unnest (array[]) set of
anyelement

unnest(array['one',
'row', 'per', 'item'])

Transforms a one
dimensional array into
rows. Returns a set
of anyelement, a
polymorphic pseudo-type in
PostgreSQL.

Working with JSON Data
Greenplum Database supports the json and jsonb data types that store JSON (JavaScript Object
Notation) data.

Greenplum Database supports JSON as specified in the RFC 7159 document and enforces data validity
according to the JSON rules. There are also JSON-specific functions and operators available for the json
and jsonb data types. See JSON Functions and Operators.

This section contains the following topics:

• About JSON Data
• JSON Input and Output Syntax
• Designing JSON documents
• jsonb Containment and Existence
• jsonb Indexing
• JSON Functions and Operators

About JSON Data
Greenplum Database supports two JSON data types: json and jsonb. They accept almost identical sets
of values as input. The major difference is one of efficiency.

• The json data type stores an exact copy of the input text. This requires JSON processing functions to
reparse json data on each execution. The json data type does not alter the input text.

https://www.postgresql.org/docs/9.4/datatype-pseudo.html
https://tools.ietf.org/html/rfc7159

Greenplum Database Administrator Guide Release Notes

380

• Semantically-insignificant white space between tokens is retained, as well as the order of keys within
JSON objects.

• All key/value pairs are kept even if a JSON object contains duplicate keys. For duplicate keys, JSON
processing functions consider the last value as the operative one.

• The jsonb data type stores a decomposed binary format of the input text. The conversion overhead
makes data input slightly slower than the json data type. However, The JSON processing functions are
significantly faster because reparsing jsonb data is not required. The jsonb data type alters the input
text.

• White space is not preserved.
• The order of object keys is not preserved.
• Duplicate object keys are not kept. If the input includes duplicate keys, only the last value is kept.

The jsonb data type supports indexing. See jsonb Indexing.

In general, JSON data should be stored as the jsonb data type unless there are specialized needs, such
as legacy assumptions about ordering of object keys.

About Unicode Characters in JSON Data
The RFC 7159 document permits JSON strings to contain Unicode escape sequences denoted by
\uXXXX. However, Greenplum Database allows only one character set encoding per database. It is not
possible for the json data type to conform rigidly to the JSON specification unless the database encoding
is UTF8. Attempts to include characters that cannot be represented in the database encoding will fail.
Characters that can be represented in the database encoding, but not in UTF8, are allowed.

• The Greenplum Database input function for the json data type allows Unicode escapes regardless of
the database encoding and checks Unicode escapes only for syntactic correctness (a \u followed by
four hex digits).

• The Greenplum Database input function for the jsonb data type is more strict. It does not allow
Unicode escapes for non-ASCII characters (those above U+007F) unless the database encoding is
UTF8. It also rejects \u0000, which cannot be represented in the Greenplum Database text type,
and it requires that any use of Unicode surrogate pairs to designate characters outside the Unicode
Basic Multilingual Plane be correct. Valid Unicode escapes, except for \u0000, are converted to the
equivalent ASCII or UTF8 character for storage; this includes folding surrogate pairs into a single
character.

Note: Many of the JSON processing functions described in JSON Functions and Operators convert
Unicode escapes to regular characters. The functions throw an error for characters that cannot be
represented in the database encoding. You should avoid mixing Unicode escapes in JSON with a
non-UTF8 database encoding, if possible.

Mapping JSON Data Types to Greenplum Data Types
When converting JSON text input into jsonb data, the primitive data types described by RFC 7159 are
effectively mapped onto native Greenplum Database data types, as shown in the following table.

Table 49: JSON Primitive Types and Corresponding Greenplum Database Data Types

JSON primitive data type Greenplum Database data type Notes

string text \u0000 is not allowed. Non-
ASCII Unicode escapes are
allowed only if database encoding
is UTF8

number numeric NaN and infinity values are
disallowed

https://tools.ietf.org/html/rfc7159

Greenplum Database Administrator Guide Release Notes

381

JSON primitive data type Greenplum Database data type Notes

boolean boolean Only lowercase true and false
spellings are accepted

null (none) The JSON null primitive type is
different than the SQL NULL.

There are some minor constraints on what constitutes valid jsonb data that do not apply to the json data
type, nor to JSON in the abstract, corresponding to limits on what can be represented by the underlying
data type. Notably, when converting data to the jsonb data type, numbers that are outside the range of
the Greenplum Database numeric data type are rejected, while the json data type does not reject such
numbers.

Such implementation-defined restrictions are permitted by RFC 7159. However, in practice such problems
might occur in other implementations, as it is common to represent the JSON number primitive type as
IEEE 754 double precision floating point (which RFC 7159 explicitly anticipates and allows for).

When using JSON as an interchange format with other systems, be aware of the possibility of losing
numeric precision compared to data originally stored by Greenplum Database.

Also, as noted in the previous table, there are some minor restrictions on the input format of JSON
primitive types that do not apply to the corresponding Greenplum Database data types.

JSON Input and Output Syntax
The input and output syntax for the json data type is as specified in RFC 7159.

The following are all valid json expressions:

-- Simple scalar/primitive value
-- Primitive values can be numbers, quoted strings, true, false, or null
SELECT '5'::json;

-- Array of zero or more elements (elements need not be of same type)
SELECT '[1, 2, "foo", null]'::json;

-- Object containing pairs of keys and values
-- Note that object keys must always be quoted strings
SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;

-- Arrays and objects can be nested arbitrarily
SELECT '{"foo": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;

As previously stated, when a JSON value is input and then printed without any additional processing,
the json data type outputs the same text that was input, while the jsonb data type does not preserve
semantically-insignificant details such as whitespace. For example, note the differences here:

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;
 json

 {"bar": "baz", "balance": 7.77, "active":false}
(1 row)

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
 jsonb
--
 {"bar": "baz", "active": false, "balance": 7.77}
(1 row)

Greenplum Database Administrator Guide Release Notes

382

One semantically-insignificant detail worth noting is that with the jsonb data type, numbers will be printed
according to the behavior of the underlying numeric type. In practice, this means that numbers entered with
E notation will be printed without it, for example:

SELECT '{"reading": 1.230e-5}'::json, '{"reading": 1.230e-5}'::jsonb;
 json | jsonb
-----------------------+-------------------------
 {"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row)

However, the jsonb data type preserves trailing fractional zeroes, as seen in previous example, even
though those are semantically insignificant for purposes such as equality checks.

Designing JSON documents
Representing data as JSON can be considerably more flexible than the traditional relational data model,
which is compelling in environments where requirements are fluid. It is quite possible for both approaches
to co-exist and complement each other within the same application. However, even for applications
where maximal flexibility is desired, it is still recommended that JSON documents have a somewhat fixed
structure. The structure is typically unenforced (though enforcing some business rules declaratively is
possible), but having a predictable structure makes it easier to write queries that usefully summarize a set
of JSON documents (datums) in a table.

JSON data is subject to the same concurrency-control considerations as any other data type when stored
in a table. Although storing large documents is practicable, keep in mind that any update acquires a row-
level lock on the whole row. Consider limiting JSON documents to a manageable size in order to decrease
lock contention among updating transactions. Ideally, JSON documents should each represent an atomic
datum that business rules dictate cannot reasonably be further subdivided into smaller datums that could
be modified independently.

jsonb Containment and Existence
Testing containment is an important capability of jsonb. There is no parallel set of facilities for the
json type. Containment tests whether one jsonb document has contained within it another one. These
examples return true except as noted:

-- Simple scalar/primitive values contain only the identical value:
SELECT '"foo"'::jsonb @> '"foo"'::jsonb;

-- The array on the right side is contained within the one on the left:
SELECT '[1, 2, 3]'::jsonb @> '[1, 3]'::jsonb;

-- Order of array elements is not significant, so this is also true:
SELECT '[1, 2, 3]'::jsonb @> '[3, 1]'::jsonb;

-- Duplicate array elements don't matter either:
SELECT '[1, 2, 3]'::jsonb @> '[1, 2, 2]'::jsonb;

-- The object with a single pair on the right side is contained
-- within the object on the left side:
SELECT '{"product": "Greenplum", "version": "6.0.0", "jsonb":true}'::jsonb
 @> '{"version":"6.0.0"}'::jsonb;

-- The array on the right side is not considered contained within the
-- array on the left, even though a similar array is nested within it:
SELECT '[1, 2, [1, 3]]'::jsonb @> '[1, 3]'::jsonb; -- yields false

-- But with a layer of nesting, it is contained:
SELECT '[1, 2, [1, 3]]'::jsonb @> '[[1, 3]]'::jsonb;

Greenplum Database Administrator Guide Release Notes

383

-- Similarly, containment is not reported here:
SELECT '{"foo": {"bar": "baz", "zig": "zag"}}'::jsonb @> '{"bar":
 "baz"}'::jsonb; -- yields false

-- But with a layer of nesting, it is contained:
SELECT '{"foo": {"bar": "baz", "zig": "zag"}}'::jsonb @> '{"foo": {"bar":
 "baz"}}'::jsonb;

The general principle is that the contained object must match the containing object as to structure and data
contents, possibly after discarding some non-matching array elements or object key/value pairs from the
containing object. For containment, the order of array elements is not significant when doing a containment
match, and duplicate array elements are effectively considered only once.

As an exception to the general principle that the structures must match, an array may contain a primitive
value:

-- This array contains the primitive string value:
SELECT '["foo", "bar"]'::jsonb @> '"bar"'::jsonb;

-- This exception is not reciprocal -- non-containment is reported here:
SELECT '"bar"'::jsonb @> '["bar"]'::jsonb; -- yields false

jsonb also has an existence operator, which is a variation on the theme of containment: it tests whether a
string (given as a text value) appears as an object key or array element at the top level of the jsonb value.
These examples return true except as noted:

-- String exists as array element:
SELECT '["foo", "bar", "baz"]'::jsonb ? 'bar';

-- String exists as object key:
SELECT '{"foo": "bar"}'::jsonb ? 'foo';

-- Object values are not considered:
SELECT '{"foo": "bar"}'::jsonb ? 'bar'; -- yields false

-- As with containment, existence must match at the top level:
SELECT '{"foo": {"bar": "baz"}}'::jsonb ? 'bar'; -- yields false

-- A string is considered to exist if it matches a primitive JSON string:
SELECT '"foo"'::jsonb ? 'foo';

JSON objects are better suited than arrays for testing containment or existence when there are many keys
or elements involved, because unlike arrays they are internally optimized for searching, and do not need to
be searched linearly.

The various containment and existence operators, along with all other JSON operators and functions are
documented in JSON Functions and Operators.

Because JSON containment is nested, an appropriate query can skip explicit selection of sub-objects. As
an example, suppose that we have a doc column containing objects at the top level, with most objects
containing tags fields that contain arrays of sub-objects. This query finds entries in which sub-objects
containing both "term":"paris" and "term":"food" appear, while ignoring any such keys outside the
tags array:

SELECT doc->'site_name' FROM websites
 WHERE doc @> '{"tags":[{"term":"paris"}, {"term":"food"}]}';

The query with this predicate could accomplish the same thing.

SELECT doc->'site_name' FROM websites
 WHERE doc->'tags' @> '[{"term":"paris"}, {"term":"food"}]';

Greenplum Database Administrator Guide Release Notes

384

However, the second approach is less flexible and is often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the specified key or array
element at top level of the JSON value.

jsonb Indexing
The Greenplum Database jsonb data type, supports GIN, btree, and hash indexes.

• GIN Indexes on jsonb Data
• Btree and Hash Indexes on jsonb Data

GIN Indexes on jsonb Data

GIN indexes can be used to efficiently search for keys or key/value pairs occurring within a large number
of jsonb documents (datums). Two GIN operator classes are provided, offering different performance and
flexibility trade-offs.

The default GIN operator class for jsonb supports queries with the @>, ?, ?& and ?| operators. (For details
of the semantics that these operators implement, see the table Table 51: jsonb Operators.) An example of
creating an index with this operator class is:

CREATE INDEX idxgin ON api USING gin (jdoc);

The non-default GIN operator class jsonb_path_ops supports indexing the @> operator only. An
example of creating an index with this operator class is:

CREATE INDEX idxginp ON api USING gin (jdoc jsonb_path_ops);

Consider the example of a table that stores JSON documents retrieved from a third-party web service, with
a documented schema definition. This is a typical document:

{
 "guid": "9c36adc1-7fb5-4d5b-83b4-90356a46061a",
 "name": "Angela Barton",
 "is_active": true,
 "company": "Magnafone",
 "address": "178 Howard Place, Gulf, Washington, 702",
 "registered": "2009-11-07T08:53:22 +08:00",
 "latitude": 19.793713,
 "longitude": 86.513373,
 "tags": [
 "enim",
 "aliquip",
 "qui"
]
}

The JSON documents are stored a table named api, in a jsonb column named jdoc. If a GIN index is
created on this column, queries like the following can make use of the index:

-- Find documents in which the key "company" has value "Magnafone"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"company":
 "Magnafone"}';

However, the index could not be used for queries like the following. The operator ? is indexable, however,
the comparison is not applied directly to the indexed column jdoc:

-- Find documents in which the key "tags" contains key or array element
 "qui"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc -> 'tags' ? 'qui';

Greenplum Database Administrator Guide Release Notes

385

With appropriate use of expression indexes, the above query can use an index. If querying for particular
items within the tags key is common, defining an index like this might be worthwhile:

CREATE INDEX idxgintags ON api USING gin ((jdoc -> 'tags'));

Now, the WHERE clause jdoc -> 'tags' ? 'qui' is recognized as an application of the indexable
operator ? to the indexed expression jdoc -> 'tags'. For information about expression indexes, see
Indexes on Expressions.

Another approach to querying JSON documents is to exploit containment, for example:

-- Find documents in which the key "tags" contains array element "qui"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"tags": ["qui"]}';

A simple GIN index on the jdoc column can support this query. However, the index will store copies of
every key and value in the jdoc column, whereas the expression index of the previous example stores
only data found under the tags key. While the simple-index approach is far more flexible (since it supports
queries about any key), targeted expression indexes are likely to be smaller and faster to search than a
simple index.

Although the jsonb_path_ops operator class supports only queries with the @> operator, it has
performance advantages over the default operator class jsonb_ops. A jsonb_path_ops index is
usually much smaller than a jsonb_ops index over the same data, and the specificity of searches
is better, particularly when queries contain keys that appear frequently in the data. Therefore search
operations typically perform better than with the default operator class.

The technical difference between a jsonb_ops and a jsonb_path_ops GIN index is that the former
creates independent index items for each key and value in the data, while the latter creates index items
only for each value in the data.

Note: For this discussion, the term value includes array elements, though JSON terminology
sometimes considers array elements distinct from values within objects.

Basically, each jsonb_path_ops index item is a hash of the value and the key(s) leading to it; for
example to index {"foo": {"bar": "baz"}}, a single index item would be created incorporating all
three of foo, bar, and baz into the hash value. Thus a containment query looking for this structure would
result in an extremely specific index search; but there is no way at all to find out whether foo appears
as a key. On the other hand, a jsonb_ops index would create three index items representing foo, bar,
and baz separately; then to do the containment query, it would look for rows containing all three of these
items. While GIN indexes can perform such an AND search fairly efficiently, it will still be less specific and
slower than the equivalent jsonb_path_ops search, especially if there are a very large number of rows
containing any single one of the three index items.

A disadvantage of the jsonb_path_ops approach is that it produces no index entries for JSON structures
not containing any values, such as {"a": {}}. If a search for documents containing such a structure
is requested, it will require a full-index scan, which is quite slow. jsonb_path_ops is ill-suited for
applications that often perform such searches.

Btree and Hash Indexes on jsonb Data

jsonb also supports btree and hash indexes. These are usually useful only when it is important to check
the equality of complete JSON documents.

For completeness the btree ordering for jsonb datums is:

Object > Array > Boolean > Number > String > Null

Object with n pairs > object with n - 1 pairs

Array with n elements > array with n - 1 elements

Objects with equal numbers of pairs are compared in the order:

Greenplum Database Administrator Guide Release Notes

386

key-1, value-1, key-2 ...

Object keys are compared in their storage order. In particular, since shorter keys are stored before longer
keys, this can lead to orderings that might not be intuitive, such as:

{ "aa": 1, "c": 1} > {"b": 1, "d": 1}

Similarly, arrays with equal numbers of elements are compared in the order:

element-1, element-2 ...

Primitive JSON values are compared using the same comparison rules as for the underlying Greenplum
Database data type. Strings are compared using the default database collation.

JSON Functions and Operators
Greenplum Database includes built-in functions and operators that create and manipulate JSON data.

• JSON Operators
• JSON Creation Functions
• JSON Aggregate Functions
• JSON Processing Functions

Note: For json data type values, all key/value pairs are kept even if a JSON object contains
duplicate keys. For duplicate keys, JSON processing functions consider the last value as the
operative one. For the jsonb data type, duplicate object keys are not kept. If the input includes
duplicate keys, only the last value is kept. See About JSON Data.

JSON Operators

This table describes the operators that are available for use with the json and jsonb data types.

Table 50: json and jsonb Operators

Operator Right
Operand
Type

Description Example Example Result

-> int Get the JSON array element
(indexed from zero).

'[{"a":"foo"},
{"b":"bar"},
{"c":"baz"}]'::json-
>2

{"c":"baz"}

-> text Get the JSON object field by
key.

'{"a":
{"b":"foo"}}'::json-
>'a'

{"b":"foo"}

->> int Get the JSON array element
as text.

'[1,2,3]'::json->>2 3

->> text Get the JSON object field as
text.

'{"a":1,"b":2}'::json-
>>'b'

2

#> text[] Get the JSON object at
specified path.

'{"a": {"b":{"c":
"foo"}}}'::json#>'{a,b}'

{"c": "foo"}

#>> text[] Get the JSON object at
specified path as text.

'{"a":[1,2,3],"b":
[4,5,6]}'::json#>>'{a,2}'

3

Note: There are parallel variants of these operators for both the json and jsonb data types.
The field, element, and path extraction operators return the same data type as their left-hand input
(either json or jsonb), except for those specified as returning text, which coerce the value to

Greenplum Database Administrator Guide Release Notes

387

text. The field, element, and path extraction operators return NULL, rather than failing, if the JSON
input does not have the right structure to match the request; for example if no such element exists.

Operators that require the jsonb data type as the left operand are described in the following table.
Many of these operators can be indexed by jsonb operator classes. For a full description of jsonb
containment and existence semantics, see jsonb Containment and Existence. For information about how
these operators can be used to effectively index jsonb data, see jsonb Indexing.

Table 51: jsonb Operators

Operator Right Operand
Type

Description Example

@> jsonb Does the left JSON value contain within it the
right value?

'{"a":1,
"b":2}'::jsonb @>
'{"b":2}'::jsonb

<@ jsonb Is the left JSON value contained within the
right value?

'{"b":2}'::jsonb
<@ '{"a":1,
"b":2}'::jsonb

? text Does the key/element string exist within the
JSON value?

'{"a":1,
"b":2}'::jsonb ?
'b'

?| text[] Do any of these key/element strings exist? '{"a":1, "b":2,
"c":3}'::jsonb ?|
array['b', 'c']

?& text[] Do all of these key/element strings exist? '["a",
"b"]'::jsonb ?&
array['a', 'b']

The standard comparison operators in the following table are available only for the jsonb data type, not
for the json data type. They follow the ordering rules for B-tree operations described in jsonb Indexing.

Table 52: jsonb Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to

>= greater than or equal to

= equal

<> or != not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement !=
and <> operators that do different things.

JSON Creation Functions

This table describes the functions that create json data type values. (Currently, there are no equivalent
functions for jsonb, but you can cast the result of one of these functions to jsonb.)

Greenplum Database Administrator Guide Release Notes

388

Table 53: JSON Creation Functions

Function Description Example Example Result

to_
json(anyelement)

Returns the value as
a JSON object. Arrays
and composites are
processed recursively
and are converted to
arrays and objects. If
the input contains a
cast from the type to
json, the cast function
is used to perform the
conversion; otherwise,
a JSON scalar value
is produced. For any
scalar type other than
a number, a Boolean,
or a null value, the text
representation will be
used, properly quoted
and escaped so that it is
a valid JSON string.

to_json('Fred said
"Hi."'::text)

"Fred said \"Hi.
\""

array_to_
json(anyarray [,
pretty_bool])

Returns the array
as a JSON array. A
multidimensional array
becomes a JSON array
of arrays.

Line feeds will be added
between dimension-1
elements if pretty_
bool is true.

array_to_
json('{{1,5},
{99,100}}'::int[])

[[1,5],[99,100]]

row_to_json(record
[, pretty_bool])

Returns the row as a
JSON object.

Line feeds will be
added between level-1
elements if pretty_
bool is true.

row_to_
json(row(1,'foo'))

{"f1":1,"f2":"foo"}

json_build_
array(VARIADIC
"any")

Builds a possibly-
heterogeneously-typed
JSON array out of a
VARIADIC argument list.

json_build_
array(1,2,'3',4,5)

[1, 2, "3", 4, 5]

json_build_
object(VARIADIC
"any")

Builds a JSON object
out of a VARIADIC
argument list. The
argument list is taken in
order and converted to a
set of key/value pairs.

json_build_
object('foo',1,'bar',2)

{"foo": 1, "bar":
2}

Greenplum Database Administrator Guide Release Notes

389

Function Description Example Example Result

json_
object(text[])

Builds a JSON object out
of a text array. The array
must be either a one or a
two dimensional array.

The one dimensional
array must have an even
number of elements. The
elements are taken as
key/value pairs.

For a two dimensional
array, each inner array
must have exactly two
elements, which are
taken as a key/value
pair.

json_object('{a,
1, b, "def", c, 3.
5}')

json_object('{{a,
1},{b, "def"},{c,
3.5}}')

{"a": "1", "b":
"def", "c": "3.5"}

json_object(keys
text[], values
text[])

Builds a JSON object
out of a text array.
This form of json_
object takes keys and
values pairwise from
two separate arrays.
In all other respects it
is identical to the one-
argument form.

json_object('{a,
b}', '{1,2}')

{"a": "1", "b":
"2"}

Note: array_to_json and row_to_json have the same behavior as to_json except for
offering a pretty-printing option. The behavior described for to_json likewise applies to each
individual value converted by the other JSON creation functions.

Note: The hstore module contains functions that cast from hstore to json, so that hstore
values converted via the JSON creation functions will be represented as JSON objects, not as
primitive string values.

JSON Aggregate Functions

This table shows the functions aggregate records to an array of JSON objects and pairs of values to a
JSON object

Table 54: JSON Aggregate Functions

Function Argument Types Return Type Description

json_agg(record) record json Aggregates records as a
JSON array of objects.

json_object_
agg(name, value)

("any", "any") json Aggregates name/value
pairs as a JSON object.

JSON Processing Functions

This table shows the functions that are available for processing json and jsonb values.

Many of these processing functions and operators convert Unicode escapes in JSON strings to the
appropriate single character. This is a not an issue if the input data type is jsonb, because the conversion

Greenplum Database Administrator Guide Release Notes

390

was already done. However, for json data type input, this might result in an error being thrown. See About
JSON Data.

Table 55: JSON Processing Functions

Function Return Type Description Example Example Result

json_array_
length(json)

jsonb_array_
length(jsonb)

int Returns the
number of
elements in the
outermost JSON
array.

json_array_
length('[1,2,3,
{"f1":1,"f2":
[5,6]},4]')

5

json_
each(json)

jsonb_
each(jsonb)

setof key
text, value
json

setof key
text, value
jsonb

Expands the
outermost JSON
object into a set of
key/value pairs.

select *
from json_
each('{"a":"foo",
"b":"bar"}')

 key | value
-----+-------
 a | "foo"
 b | "bar"

json_each_
text(json)

jsonb_each_
text(jsonb)

setof key
text, value
text

Expands the
outermost JSON
object into a set
of key/value pairs.
The returned
values will be of
type text.

select * from
json_each_
text('{"a":"foo",
"b":"bar"}')

 key | value
-----+-------
 a | foo
 b | bar

json_extract_
path(from_json
json, VARIADIC
path_elems
text[])

jsonb_extract_
path(from_
json jsonb,
VARIADIC path_
elems text[])

json

jsonb

Returns the JSON
value pointed to
by path_elems
(equivalent to #>
operator).

json_extract_
path('{"f2":
{"f3":1},"f4":
{"f5":99,"f6":"foo"}}','f4')

{"f5":99,"f6":"foo"}

json_
extract_path_
text(from_json
json, VARIADIC
path_elems
text[])

jsonb_
extract_path_
text(from_
json jsonb,
VARIADIC path_
elems text[])

text Returns the JSON
value pointed to
by path_elems
as text. Equivalent
to #>> operator.

json_extract_
path_text('{"f2":
{"f3":1},"f4":
{"f5":99,"f6":"foo"}}','f4',
'f6')

foo

Greenplum Database Administrator Guide Release Notes

391

Function Return Type Description Example Example Result

json_object_
keys(json)

jsonb_object_
keys(jsonb)

setof text Returns set
of keys in the
outermost JSON
object.

json_object_
keys('{"f1":"abc","f2":
{"f3":"a",
"f4":"b"}}')

 json_object_
keys

 f1
 f2

json_populate_
record(base
anyelement,
from_json
json)

jsonb_
populate_
record(base
anyelement,
from_json
jsonb)

anyelement Expands the
object in from_
json to a row
whose columns
match the record
type defined by
base. See Note 1.

select * from
json_populate_
record(null::myrowtype,
'{"a":1,"b":2}')

 a | b
---+---
 1 | 2

json_populate_
recordset(base
anyelement,
from_json
json)

jsonb_
populate_
recordset(base
anyelement,
from_json
jsonb)

setof
anyelement

Expands the
outermost array of
objects in from_
json to a set
of rows whose
columns match
the record type
defined by base.
See Note 1.

select * from
json_populate_
recordset(null::myrowtype,
'[{"a":1,"b":2},
{"a":3,"b":4}]')

 a | b
---+---
 1 | 2
 3 | 4

json_array_
elements(json)

jsonb_array_
elements(jsonb)

setof json

setof jsonb

Expands a JSON
array to a set of
JSON values.

select * from
json_array_
elements('[1,true,
[2,false]]')

 value

 1
 true
 [2,false]

json_array_
elements_
text(json)

jsonb_array_
elements_
text(jsonb)

setof text Expands a JSON
array to a set of
text values.

select * from
json_array_
elements_
text('["foo",
"bar"]')

 value

 foo
 bar

json_
typeof(json)

jsonb_
typeof(jsonb)

text Returns the type
of the outermost
JSON value as
a text string.
Possible types are
object, array,
string, number,
boolean, and
null. See Note 2.

json_
typeof('-123.4')

number

Greenplum Database Administrator Guide Release Notes

392

Function Return Type Description Example Example Result

json_to_
record(json)

jsonb_to_
record(jsonb)

record Builds an arbitrary
record from a
JSON object. See
Note 1.

As with all
functions returning
record, the
caller must
explicitly define
the structure of
the record with an
AS clause.

select *
from json_to_
record('{"a":1,"b":
[1,2,3],"c":"bar"}')
as x(a int, b
text, d text)

 a | b
 | d
---+---------
+---
 1 | [1,2,3]
 |

json_to_
recordset(json)

jsonb_to_
recordset(jsonb)

setof record Builds an arbitrary
set of records
from a JSON
array of objects
See Note 1.

As with all
functions returning
record, the
caller must
explicitly define
the structure of
the record with an
AS clause.

select *
from json_to_
recordset('[{"a":1,"b":"foo"},
{"a":"2","c":"bar"}]')
as x(a int, b
text);

 a | b
---+-----
 1 | foo
 2 |

Note:

1. The examples for the functions json_populate_record(),
json_populate_recordset(), json_to_record() and json_to_recordset() use
constants. However, the typical use would be to reference a table in the FROM clause and use
one of its json or jsonb columns as an argument to the function. The extracted key values
can then be referenced in other parts of the query. For example the value can be referenced in
WHERE clauses and target lists. Extracting multiple values in this way can improve performance
over extracting them separately with per-key operators.

JSON keys are matched to identical column names in the target row type. JSON type coercion
for these functions might not result in desired values for some types. JSON fields that do not
appear in the target row type will be omitted from the output, and target columns that do not
match any JSON field will be NULL.

2. The json_typeof function null return value of null should not be confused with a
SQL NULL. While calling json_typeof('null'::json) will return null, calling
json_typeof(NULL::json) will return a SQL NULL.

Working with XML Data
Greenplum Database supports the xml data type that stores XML data.

The xml data type checks the input values for well-formedness, providing an advantage over simply
storing XML data in a text field. Additionally, support functions allow you to perform type-safe operations on
this data; refer to XML Function Reference, below.

The xml type can store well-formed "documents", as defined by the XML standard, as well as "content"
fragments, which are defined by reference to the more permissive document node of the XQuery and

https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode

Greenplum Database Administrator Guide Release Notes

393

XPath model. Roughly, this means that content fragments can have more than one top-level element or
character node. The expression xmlvalue IS DOCUMENT can be used to evaluate whether a particular
xml value is a full document or only a content fragment.

This section contains the following topics:

• Creating XML Values
• Encoding Handling
• Accessing XML Values
• Processing XML
• Mapping Tables to XML
• Using XML Functions and Expressions

Creating XML Values
To produce a value of type xml from character data, use the function xmlparse:

xmlparse ({ DOCUMENT | CONTENT } value)

For example:

XMLPARSE (DOCUMENT '<?xml version="1.0"?><book><title>Manual</
title><chapter>...</chapter></book>')
XMLPARSE (CONTENT 'abc<foo>bar</foo><bar>foo</bar>')

The above method converts character strings into XML values according to the SQL standard, but you can
also use Greenplum Database syntax like the following:

xml '<foo>bar</foo>'
'<foo>bar</foo>'::xml

The xml type does not validate input values against a document type declaration (DTD), even when the
input value specifies a DTD. There is also currently no built-in support for validating against other XML
schema languages such as XML schema.

The inverse operation, producing a character string value from xml, uses the function xmlserialize:

xmlserialize ({ DOCUMENT | CONTENT } value AS type)

type can be character, character varying, or text (or an alias for one of those). Again, according
to the SQL standard, this is the only way to convert between type xml and character types, but Greenplum
Database also allows you to simply cast the value.

When a character string value is cast to or from type xml without going through XMLPARSE or
XMLSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the XML
OPTION session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };

or simply like Greenplum Database:

SET XML OPTION TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

Encoding Handling
Be careful when dealing with multiple character encodings on the client, server, and in the XML data
passed through them. When using the text mode to pass queries to the server and query results to the

Greenplum Database Administrator Guide Release Notes

394

client (which is the normal mode), Greenplum Database converts all character data passed between the
client and the server, and vice versa, to the character encoding of the respective endpoint; see Character
Set Support. This includes string representations of XML values, such as in the above examples.
Ordinarily, this means that encoding declarations contained in XML data can become invalid, as the
character data is converted to other encodings while travelling between client and server, because the
embedded encoding declaration is not changed. To cope with this behavior, encoding declarations
contained in character strings presented for input to the xml type are ignored, and content is assumed
to be in the current server encoding. Consequently, for correct processing, character strings of XML data
must be sent from the client in the current client encoding. It is the responsibility of the client to either
convert documents to the current client encoding before sending them to the server, or to adjust the client
encoding appropriately. On output, values of type xml will not have an encoding declaration, and clients
should assume all data is in the current client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
character set conversion is performed, so the situation is different. In this case, an encoding declaration in
the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as required by
the XML standard; note that Greenplum Database does not support UTF-16). On output, data will have an
encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in which case it
will be omitted.

Note:

Processing XML data with Greenplum Database will be less error-prone and more efficient if the
XML data encoding, client encoding, and server encoding are the same. Because XML data is
internally processed in UTF-8, computations will be most efficient if the server encoding is also
UTF-8.

Accessing XML Values
The xml data type is unusual in that it does not provide any comparison operators. This is because
there is no well-defined and universally useful comparison algorithm for XML data. One consequence of
this is that you cannot retrieve rows by comparing an xml column against a search value. XML values
should therefore typically be accompanied by a separate key field such as an ID. An alternative solution
for comparing XML values is to convert them to character strings first, but note that character string
comparison has little to do with a useful XML comparison method.

Because there are no comparison operators for the xml data type, it is not possible to create an index
directly on a column of this type. If speedy searches in XML data are desired, possible workarounds
include casting the expression to a character string type and indexing that, or indexing an XPath
expression. Of course, the actual query would have to be adjusted to search by the indexed expression.

Processing XML
To process values of data type xml, Greenplum Database offers the functions xpath and
xpath_exists, which evaluate XPath 1.0 expressions.

xpath(xpath, xml [, nsarray])

The function xpath evaluates the XPath expression xpath (a text value) against the XML value xml. It
returns an array of XML values corresponding to the node set produced by the XPath expression.

The second argument must be a well formed XML document. In particular, it must have a single root node
element.

The optional third argument of the function is an array of namespace mappings. This array should be
a two-dimensional text array with the length of the second axis being equal to 2 (i.e., it should be an
array of arrays, each of which consists of exactly 2 elements). The first element of each array entry is
the namespace name (alias), the second the namespace URI. It is not required that aliases provided in

Greenplum Database Administrator Guide Release Notes

395

this array be the same as those being used in the XML document itself (in other words, both in the XML
document and in the xpath function context, aliases are local).

Example:

SELECT xpath('/my:a/text()', '<my:a xmlns:my="http://example.com">test</
my:a>',
 ARRAY[ARRAY['my', 'http://example.com']]);

 xpath

 {test}
(1 row)

To deal with default (anonymous) namespaces, do something like this:

SELECT xpath('//mydefns:b/text()', 'test</
b>',
 ARRAY[ARRAY['mydefns', 'http://example.com']]);

 xpath

 {test}
(1 row)

xpath_exists(xpath, xml [, nsarray])

The function xpath_exists is a specialized form of the xpath function. Instead of returning the
individual XML values that satisfy the XPath, this function returns a Boolean indicating whether the query
was satisfied or not. This function is equivalent to the standard XMLEXISTS predicate, except that it also
offers support for a namespace mapping argument.

Example:

SELECT xpath_exists('/my:a/text()', '<my:a xmlns:my="http://
example.com">test</my:a>',
 ARRAY[ARRAY['my', 'http://example.com']]);

 xpath_exists

 t
(1 row)

Mapping Tables to XML
The following functions map the contents of relational tables to XML values. They can be thought of as
XML export functionality:

table_to_xml(tbl regclass, nulls boolean, tableforest boolean, targetns
 text)
query_to_xml(query text, nulls boolean, tableforest boolean, targetns text)
cursor_to_xml(cursor refcursor, count int, nulls boolean,
 tableforest boolean, targetns text)

The return type of each function is xml.

table_to_xml maps the content of the named table, passed as parameter tbl. The regclass type
accepts strings identifying tables using the usual notation, including optional schema qualifications and
double quotes. query_to_xml executes the query whose text is passed as parameter query and maps
the result set. cursor_to_xml fetches the indicated number of rows from the cursor specified by the

Greenplum Database Administrator Guide Release Notes

396

parameter cursor. This variant is recommended if large tables have to be mapped, because the result
value is built up in memory by each function.

If tableforest is false, then the resulting XML document looks like this:

<tablename>
 <row>
 <columnname1>data</columnname1>
 <columnname2>data</columnname2>
 </row>

 <row>
 ...
 </row>

 ...
</tablename>

If tableforest is true, the result is an XML content fragment that looks like this:

<tablename>
 <columnname1>data</columnname1>
 <columnname2>data</columnname2>
</tablename>

<tablename>
 ...
</tablename>

...

If no table name is available, that is, when mapping a query or a cursor, the string table is used in the first
format, row in the second format.

The choice between these formats is up to the user. The first format is a proper XML document, which will
be important in many applications. The second format tends to be more useful in the cursor_to_xml
function if the result values are to be later reassembled into one document. The functions for producing
XML content discussed above, in particular xmlelement, can be used to alter the results as desired.

The data values are mapped in the same way as described for the function xmlelement, above.

The parameter nulls determines whether null values should be included in the output. If true, null values in
columns are represented as:

<columnname xsi:nil="true"/>

where xsi is the XML namespace prefix for XML schema Instance. An appropriate namespace declaration
will be added to the result value. If false, columns containing null values are simply omitted from the output.

The parameter targetns specifies the desired XML namespace of the result. If no particular namespace
is wanted, an empty string should be passed.

The following functions return XML schema documents describing the mappings performed by the
corresponding functions above:

able_to_xmlschema(tbl regclass, nulls boolean, tableforest boolean, targetns
 text)
query_to_xmlschema(query text, nulls boolean, tableforest boolean, targetns
 text)
cursor_to_xmlschema(cursor refcursor, nulls boolean, tableforest boolean,
 targetns text)

Greenplum Database Administrator Guide Release Notes

397

It is essential that the same parameters are passed in order to obtain matching XML data mappings and
XML schema documents.

The following functions produce XML data mappings and the corresponding XML schema in one document
(or forest), linked together. They can be useful where self-contained and self-describing results are
desired:

table_to_xml_and_xmlschema(tbl regclass, nulls boolean, tableforest boolean,
 targetns text)
query_to_xml_and_xmlschema(query text, nulls boolean, tableforest boolean,
 targetns text)

In addition, the following functions are available to produce analogous mappings of entire schemas or the
entire current database:

schema_to_xml(schema name, nulls boolean, tableforest boolean, targetns
 text)
schema_to_xmlschema(schema name, nulls boolean, tableforest boolean,
 targetns text)
schema_to_xml_and_xmlschema(schema name, nulls boolean, tableforest boolean,
 targetns text)

database_to_xml(nulls boolean, tableforest boolean, targetns text)
database_to_xmlschema(nulls boolean, tableforest boolean, targetns text)
database_to_xml_and_xmlschema(nulls boolean, tableforest boolean, targetns
 text)

Note that these potentially produce large amounts of data, which needs to be built up in memory. When
requesting content mappings of large schemas or databases, consider mapping the tables separately
instead, possibly even through a cursor.

The result of a schema content mapping looks like this:

<schemaname>

table1-mapping

table2-mapping

...

</schemaname>

where the format of a table mapping depends on the tableforest parameter, as explained above.

The result of a database content mapping looks like this:

<dbname>

<schema1name>
 ...
</schema1name>

<schema2name>
 ...
</schema2name>

...

</dbname>

where the schema mapping is as above.

Greenplum Database Administrator Guide Release Notes

398

The example below demonstrates using the output produced by these functions, The example shows an
XSLT stylesheet that converts the output of table_to_xml_and_xmlschema to an HTML document
containing a tabular rendition of the table data. In a similar manner, the results from these functions can be
converted into other XML-based formats.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/1999/xhtml"
>

 <xsl:output method="xml"
 doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
 doctype-public="-//W3C/DTD XHTML 1.0 Strict//EN"
 indent="yes"/>

 <xsl:template match="/*">
 <xsl:variable name="schema" select="//xsd:schema"/>
 <xsl:variable name="tabletypename"
 select="$schema/xsd:element[@name=name(current())]/@type"/
>
 <xsl:variable name="rowtypename"
 select="$schema/xsd:complexType[@name=$tabletypename]/
xsd:sequence/xsd:element[@name='row']/@type"/>

 <html>
 <head>
 <title><xsl:value-of select="name(current())"/></title>
 </head>
 <body>
 <table>
 <tr>
 <xsl:for-each select="$schema/xsd:complexType[@name=
$rowtypename]/xsd:sequence/xsd:element/@name">
 <th><xsl:value-of select="."/></th>
 </xsl:for-each>
 </tr>

 <xsl:for-each select="row">
 <tr>
 <xsl:for-each select="*">
 <td><xsl:value-of select="."/></td>
 </xsl:for-each>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

XML Function Reference
The functions described in this section operate on values of type xml. The section XML Predicatesalso
contains information about the xml functions and function-like expressions.

Function:

xmlcomment

Greenplum Database Administrator Guide Release Notes

399

Synopsis:

xmlcomment(text)

The function xmlcomment creates an XML value containing an XML comment with the specified text
as content. The text cannot contain "--" or end with a "-" so that the resulting construct is a valid XML
comment. If the argument is null, the result is null.

Example:

SELECT xmlcomment('hello');

 xmlcomment

 <!--hello-->

Function:

xmlconcat

Synopsis:

xmlconcat(xml[, …])

The function xmlconcat concatenates a list of individual XML values to create a single value containing
an XML content fragment. Null values are omitted; the result is only null if there are no nonnull arguments.

Example:

SELECT xmlconcat('<abc/>', '<bar>foo</bar>');

 xmlconcat

 <abc/><bar>foo</bar>

XML declarations, if present, are combined as follows:

• If all argument values have the same XML version declaration, that version is used in the result, else no
version is used.

• If all argument values have the standalone declaration value "yes", then that value is used in the result.
• If all argument values have a standalone declaration value and at least one is "no", then that is used in

the result. Otherwise, the result will have no standalone declaration.
• If the result is determined to require a standalone declaration but no version declaration, a version

declaration with version 1.0 will be used because XML requires an XML declaration to contain a version
declaration.

Encoding declarations are ignored and removed in all cases.

Example:

SELECT xmlconcat('<?xml version="1.1"?><foo/>', '<?xml version="1.1"
 standalone="no"?><bar/>');

 xmlconcat

 <?xml version="1.1"?><foo/><bar/>

Function:

xmlelement

Greenplum Database Administrator Guide Release Notes

400

Synopsis:

xmlelement(name name [, xmlattributes(value [AS attname] [, ...])] [,
 content, ...])

The xmlelement expression produces an XML element with the given name, attributes, and content.

Examples:

SELECT xmlelement(name foo);

 xmlelement

 <foo/>

SELECT xmlelement(name foo, xmlattributes('xyz' as bar));

 xmlelement

 <foo bar="xyz"/>

SELECT xmlelement(name foo, xmlattributes(current_date as bar), 'cont',
 'ent');

 xmlelement

 <foo bar="2017-01-26">content</foo>

Element and attribute names that are not valid XML names are escaped by replacing the offending
characters by the sequence _xHHHH_, where HHHH is the character's Unicode codepoint in hexadecimal
notation. For example:

SELECT xmlelement(name "foo$bar", xmlattributes('xyz' as "a&b"));

 xmlelement

 <foo_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which case
the column's name will be used as the attribute name by default. In other cases, the attribute must be given
an explicit name. So this example is valid:

CREATE TABLE test (a xml, b xml);
SELECT xmlelement(name test, xmlattributes(a, b)) FROM test;

But these are not:

SELECT xmlelement(name test, xmlattributes('constant'), a, b) FROM test;
SELECT xmlelement(name test, xmlattributes(func(a, b))) FROM test;

Element content, if specified, will be formatted according to its data type. If the content is itself of type xml,
complex XML documents can be constructed. For example:

SELECT xmlelement(name foo, xmlattributes('xyz' as bar),
 xmlelement(name abc),
 xmlcomment('test'),
 xmlelement(name xyz));

 xmlelement
--

Greenplum Database Administrator Guide Release Notes

401

 <foo bar="xyz"><abc/><!--test--><xyz/></foo>

Content of other types will be formatted into valid XML character data. This means in particular that the
characters <, >, and & will be converted to entities. Binary data (data type bytea) will be represented in
base64 or hex encoding, depending on the setting of the configuration parameter xmlbinary. The particular
behavior for individual data types is expected to evolve in order to align the SQL and Greenplum Database
data types with the XML schema specification, at which point a more precise description will appear.

Function:

xmlforest

Synopsis:

xmlforest(content [AS name] [, ...])

The xmlforest expression produces an XML forest (sequence) of elements using the given names and
content.

Examples:

SELECT xmlforest('abc' AS foo, 123 AS bar);

 xmlforest

 <foo>abc</foo><bar>123</bar>

SELECT xmlforest(table_name, column_name)
FROM information_schema.columns
WHERE table_schema = 'pg_catalog';

 xmlforest

 <table_name>pg_authid</table_name><column_name>rolname</column_name>
 <table_name>pg_authid</table_name><column_name>rolsuper</column_name>

As seen in the second example, the element name can be omitted if the content value is a column
reference, in which case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xmlelement above. Similarly,
content data is escaped to make valid XML content, unless it is already of type xml.

Note that XML forests are not valid XML documents if they consist of more than one element, so it might
be useful to wrap xmlforest expressions in xmlelement.

Function:

xmlpi

Synopsis:

xmlpi(name target [, content])

The xmlpi expression creates an XML processing instruction. The content, if present, must not contain
the character sequence ?>.

Example:

SELECT xmlpi(name php, 'echo "hello world";');

 xmlpi

https://www.postgresql.org/docs/9.4/runtime-config-client.html#GUC-XMLBINARY

Greenplum Database Administrator Guide Release Notes

402

 <?php echo "hello world";?>

Function:

xmlroot

Synopsis:

xmlroot(xml, version text | no value [, standalone yes|no|no value])

The xmlroot expression alters the properties of the root node of an XML value. If a version is specified, it
replaces the value in the root node's version declaration; if a standalone setting is specified, it replaces the
value in the root node's standalone declaration.

SELECT xmlroot(xmlparse(document '<?xml version="1.1"?><content>abc</
content>'),
 version '1.0', standalone yes);

 xmlroot
--
 <?xml version="1.0" standalone="yes"?>
 <content>abc</content>

Function:

xmlagg

xmlagg (xml)

The function xmlagg is, unlike the other functions described here, an aggregate function. It concatenates
the input values to the aggregate function call, much like xmlconcat does, except that concatenation
occurs across rows rather than across expressions in a single row. See Using Functions and Operators for
additional information about aggregate functions.

Example:

CREATE TABLE test (y int, x xml);
INSERT INTO test VALUES (1, '<foo>abc</foo>');
INSERT INTO test VALUES (2, '<bar/>');
SELECT xmlagg(x) FROM test;
 xmlagg

 <foo>abc</foo><bar/>

To determine the order of the concatenation, an ORDER BY clause may be added to the aggregate call.
For example:

SELECT xmlagg(x ORDER BY y DESC) FROM test;
 xmlagg

 <bar/><foo>abc</foo>

The following non-standard approach used to be recommended in previous versions, and may still be
useful in specific cases:

SELECT xmlagg(x) FROM (SELECT * FROM test ORDER BY y DESC) AS tab;
 xmlagg

 <bar/><foo>abc</foo>

Greenplum Database Administrator Guide Release Notes

403

XML Predicates
The expressions described in this section check properties of xml values.

Expression:

IS DOCUMENT

Synopsis:

xml IS DOCUMENT

The expression IS DOCUMENT returns true if the argument XML value is a proper XML document, false if it
is not (that is, it is a content fragment), or null if the argument is null.

Expression:

XMLEXISTS

Synopsis:

XMLEXISTS(text PASSING [BY REF] xml [BY REF])

The function xmlexists returns true if the XPath expression in the first argument returns any nodes, and
false otherwise. (If either argument is null, the result is null.)

Example:

SELECT xmlexists('//town[text() = ''Toronto'']' PASSING BY REF
 '<towns><town>Toronto</town><town>Ottawa</town></towns>');

 xmlexists

 t
(1 row)

The BY REF clauses have no effect in Greenplum Database, but are allowed for SQL conformance and
compatibility with other implementations. Per SQL standard, the first BY REF is required, the second
is optional. Also note that the SQL standard specifies the xmlexists construct to take an XQuery
expression as first argument, but Greenplum Database currently only supports XPath, which is a subset of
XQuery.

Expression:

xml_is_well_formed

Synopsis:

xml_is_well_formed(text)
xml_is_well_formed_document(text)
xml_is_well_formed_content(text)

These functions check whether a text string is well-formed XML, returning a Boolean
result. xml_is_well_formed_document checks for a well-formed document, while
xml_is_well_formed_content checks for well-formed content. xml_is_well_formed does the
former if the xmloption configuration parameter is set to DOCUMENT, or the latter if it is set to CONTENT.
This means that xml_is_well_formed is useful for seeing whether a simple cast to type xml will
succeed, whereas the other two functions are useful for seeing whether the corresponding variants of
XMLPARSE will succeed.

Greenplum Database Administrator Guide Release Notes

404

Examples:

SET xmloption TO DOCUMENT;
SELECT xml_is_well_formed('<>');
 xml_is_well_formed

 f
(1 row)

SELECT xml_is_well_formed('<abc/>');
 xml_is_well_formed

 t
(1 row)

SET xmloption TO CONTENT;
SELECT xml_is_well_formed('abc');
 xml_is_well_formed

 t
(1 row)

SELECT xml_is_well_formed_document('<pg:foo xmlns:pg="http://postgresql.org/
stuff">bar</pg:foo>');
 xml_is_well_formed_document

 t
(1 row)

SELECT xml_is_well_formed_document('<pg:foo xmlns:pg="http://postgresql.org/
stuff">bar</my:foo>');
 xml_is_well_formed_document

 f
(1 row)

The last example shows that the checks include whether namespaces are correctly matched.

Using Full Text Search
Greenplum Database provides data types, functions, operators, index types, and configurations for
querying natural language documents.

About Full Text Search
This topic provides an overview of Greenplum Database full text search, basic text search expressions,
configuring, and customizing text search. Greenplum Database full text search is compared with Pivotal
GPText.

This section contains the following subtopics:

• What is a Document?
• Basic Text Matching
• Configurations
• Comparing Greenplum Database Text Search with Pivotal GPText

Full Text Searching (or just "text search") provides the capability to identify natural-language documents
that satisfy a query, and optionally to rank them by relevance to the query. The most common type of
search is to find all documents containing given query terms and return them in order of their similarity to
the query.

Greenplum Database Administrator Guide Release Notes

405

Greenplum Database provides a data type tsvector to store preprocessed documents, and a data type
tsquery to store processed queries (Text Search Data Types). There are many functions and operators
available for these data types (Text Search Functions and Operators), the most important of which is the
match operator @@, which we introduce in Basic Text Matching. Full text searches can be accelerated
using indexes (GiST and GIN Indexes for Text Search).

Notions of query and similarity are very flexible and depend on the specific application. The simplest
search considers query as a set of words and similarity as the frequency of query words in the document.

Greenplum Database supports the standard text matching operators ~, ~*, LIKE, and ILIKE for textual
data types, but these operators lack many essential properties required for searching documents:

• There is no linguistic support, even for English. Regular expressions are not sufficient because they
cannot easily handle derived words, e.g., satisfies and satisfy. You might miss documents that
contain satisfies, although you probably would like to find them when searching for satisfy. It is
possible to use OR to search for multiple derived forms, but this is tedious and error-prone (some words
can have several thousand derivatives).

• They provide no ordering (ranking) of search results, which makes them ineffective when thousands of
matching documents are found.

• They tend to be slow because there is no index support, so they must process all documents for every
search.

Full text indexing allows documents to be preprocessed and an index saved for later rapid searching.
Preprocessing includes:

• Parsing documents into tokens. It is useful to identify various classes of tokens, e.g., numbers,
words, complex words, email addresses, so that they can be processed differently. In principle token
classes depend on the specific application, but for most purposes it is adequate to use a predefined set
of classes. Greenplum Database uses a parser to perform this step. A standard parser is provided, and
custom parsers can be created for specific needs.

• Converting tokens into lexemes. A lexeme is a string, just like a token, but it has been normalized
so that different forms of the same word are made alike. For example, normalization almost always
includes folding upper-case letters to lower-case, and often involves removal of suffixes (such as
s or es in English). This allows searches to find variant forms of the same word, without tediously
entering all the possible variants. Also, this step typically eliminates stop words, which are words
that are so common that they are useless for searching. (In short, then, tokens are raw fragments
of the document text, while lexemes are words that are believed useful for indexing and searching.)
Greenplum Database uses dictionaries to perform this step. Various standard dictionaries are provided,
and custom ones can be created for specific needs.

• Storing preprocessed documents optimized for searching. For example, each document can
be represented as a sorted array of normalized lexemes. Along with the lexemes it is often desirable
to store positional information to use for proximity ranking, so that a document that contains a more
"dense" region of query words is assigned a higher rank than one with scattered query words.

Dictionaries allow fine-grained control over how tokens are normalized. With appropriate dictionaries, you
can:

• Define stop words that should not be indexed.
• Map synonyms to a single word using Ispell.
• Map phrases to a single word using a thesaurus.
• Map different variations of a word to a canonical form using an Ispell dictionary.
• Map different variations of a word to a canonical form using Snowball stemmer rules.

What is a Document?
A document is the unit of searching in a full text search system; for example, a magazine article or email
message. The text search engine must be able to parse documents and store associations of lexemes (key
words) with their parent document. Later, these associations are used to search for documents that contain
query words.

Greenplum Database Administrator Guide Release Notes

406

For searches within Greenplum Database, a document is normally a textual field within a row of a database
table, or possibly a combination (concatenation) of such fields, perhaps stored in several tables or obtained
dynamically. In other words, a document can be constructed from different parts for indexing and it might
not be stored anywhere as a whole. For example:

SELECT title || ' ' || author || ' ' || abstract || ' ' || body AS
 document
FROM messages
WHERE mid = 12;

SELECT m.title || ' ' || m.author || ' ' || m.abstract || ' ' || d.body AS
 document
FROM messages m, docs d
WHERE mid = did AND mid = 12;

Note:

Actually, in these example queries, coalesce should be used to prevent a single NULL attribute
from causing a NULL result for the whole document.

Another possibility is to store the documents as simple text files in the file system. In this case, the
database can be used to store the full text index and to execute searches, and some unique identifier can
be used to retrieve the document from the file system. However, retrieving files from outside the database
requires superuser permissions or special function support, so this is usually less convenient than keeping
all the data inside Greenplum Database. Also, keeping everything inside the database allows easy access
to document metadata to assist in indexing and display.

For text search purposes, each document must be reduced to the preprocessed tsvector format.
Searching and ranking are performed entirely on the tsvector representation of a document — the original
text need only be retrieved when the document has been selected for display to a user. We therefore often
speak of the tsvector as being the document, but of course it is only a compact representation of the full
document.

Basic Text Matching
Full text searching in Greenplum Database is based on the match operator @@, which returns true if a
tsvector (document) matches a tsquery (query). It does not matter which data type is written first:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector @@ 'cat &
 rat'::tsquery;
 ?column?

 t

SELECT 'fat & cow'::tsquery @@ 'a fat cat sat on a mat and ate a fat
 rat'::tsvector;
 ?column?

 f

As the above example suggests, a tsquery is not just raw text, any more than a tsvector is. A
tsquery contains search terms, which must be already-normalized lexemes, and may combine multiple
terms using AND, OR, and NOT operators. (For details see.) There are functions to_tsquery and
plainto_tsquery that are helpful in converting user-written text into a proper tsquery, for example
by normalizing words appearing in the text. Similarly, to_tsvector is used to parse and normalize a
document string. So in practice a text search match would look more like this:

SELECT to_tsvector('fat cats ate fat rats') @@ to_tsquery('fat & rat');
 ?column?

Greenplum Database Administrator Guide Release Notes

407

 t

Observe that this match would not succeed if written as

SELECT 'fat cats ate fat rats'::tsvector @@ to_tsquery('fat & rat');
 ?column?

 f

since here no normalization of the word rats will occur. The elements of a tsvector are lexemes, which
are assumed already normalized, so rats does not match rat.

The @@ operator also supports text input, allowing explicit conversion of a text string to tsvector or
tsquery to be skipped in simple cases. The variants available are:

tsvector @@ tsquery
tsquery @@ tsvector
text @@ tsquery
text @@ text

The first two of these we saw already. The form text @@ tsquery is equivalent to to_tsvector(x)
@@ y. The form text @@ text is equivalent to to_tsvector(x) @@ plainto_tsquery(y).

Configurations
The above are all simple text search examples. As mentioned before, full text search functionality includes
the ability to do many more things: skip indexing certain words (stop words), process synonyms, and use
sophisticated parsing, e.g., parse based on more than just white space. This functionality is controlled
by text search configurations. Greenplum Database comes with predefined configurations for many
languages, and you can easily create your own configurations. (psql's \dF command shows all available
configurations.)

During installation an appropriate configuration is selected and default_text_search_config is set
accordingly in postgresql.conf. If you are using the same text search configuration for the entire
cluster you can use the value in postgresql.conf. To use different configurations throughout the cluster
but the same configuration within any one database, use ALTER DATABASE ... SET. Otherwise, you
can set default_text_search_config in each session.

Each text search function that depends on a configuration has an optional regconfig argument, so that
the configuration to use can be specified explicitly. default_text_search_config is used only when
this argument is omitted.

To make it easier to build custom text search configurations, a configuration is built up from simpler
database objects. Greenplum Database's text search facility provides four types of configuration-related
database objects:

• Text search parsers break documents into tokens and classify each token (for example, as words or
numbers).

• Text search dictionaries convert tokens to normalized form and reject stop words.
• Text search templates provide the functions underlying dictionaries. (A dictionary simply specifies a

template and a set of parameters for the template.)
• Text search configurations select a parser and a set of dictionaries to use to normalize the tokens

produced by the parser.

Text search parsers and templates are built from low-level C functions; therefore it requires C programming
ability to develop new ones, and superuser privileges to install one into a database. (There are examples
of add-on parsers and templates in the contrib/ area of the Greenplum Database distribution.) Since
dictionaries and configurations just parameterize and connect together some underlying parsers and
templates, no special privilege is needed to create a new dictionary or configuration. Examples of creating
custom dictionaries and configurations appear later in this chapter.

Greenplum Database Administrator Guide Release Notes

408

Comparing Greenplum Database Text Search with Pivotal GPText
Greenplum Database text search is PostgreSQL text search ported to the Greenplum Database MPP
platform. Pivotal also offers Pivotal GPText, which integrates Greenplum Database with the Apache Solr
text search platform. GPText installs an Apache Solr cluster alongside your Greenplum Database cluster
and provides Greenplum Database functions you can use to create Solr indexes, query them, and receive
results in the database session.

Both of these systems provide powerful, enterprise-quality document indexing and searching services.
Greenplum Database text search is immediately available to you, with no need to install and maintain
additional software. If it meets your applications' requirements, you should use it.

GPText, with Solr, has many capabilities that are not available with Greenplum Database text search. In
particular, GPText is better for advanced text analysis applications. Following are some of the advantages
and capabilities available to you when you use GPText for text search applications.

• The Apache Solr cluster can be scaled separately from the database. Solr nodes can be deployed on
the Greenplum Database hosts or on separate hosts on the network.

• Indexing and search workloads can be moved out of Greenplum Database to Solr to maintain database
query performance.

• GPText creates Solr indexes that are split into shards, one per Greenplum Database segment, so the
advantages of the Greenplum Database MPP architecture are extended to text search workloads.

• Indexing and searching documents with Solr is very fast and can be scaled by adding more Solr nodes
to the cluster.

• Document content can be stored in Greenplum Database tables, in the Solr index, or both.
• Through GPText, Solr can index documents stored as text in Greenplum Database tables, as well as

documents in external stores accessible using HTTP, FTP, S3, or HDFS URLs.
• Solr automatically recognizes most rich document formats and indexes document content and metadata

separately.
• Solr indexes are highly customizable. You can customize the text analysis chain down to the field level.
• In addition to the large number of languages, tokenizers, and filters available from the Apache project,

GPText provides a social media tokenizer, an international text tokenizer, and a universal query parser
that understands several common text search syntaxes.

• The GPText API supports advanced text analysis tools, such as facetting, named entity recognition
(NER), and parts of speech (POS) recognition.

See the GPText Documentation web site for more information about GPText.

Searching Text in Database Tables
This topic shows how to use text search operators to search database tables and how to create indexes to
speed up text searches.

The examples in the previous section illustrated full text matching using simple constant strings. This
section shows how to search table data, optionally using indexes.

This section contains the following subtopics:

• Searching a Table
• Creating Indexes

Searching a Table
It is possible to do a full text search without an index. A simple query to print the title of each row that
contains the word friend in its body field is:

SELECT title
FROM pgweb
WHERE to_tsvector('english', body) @@ to_tsquery('english', 'friend');

https://gptext.docs.pivotal.io

Greenplum Database Administrator Guide Release Notes

409

This will also find related words such as friends and friendly, since all these are reduced to the same
normalized lexeme.

The query above specifies that the english configuration is to be used to parse and normalize the strings.
Alternatively we could omit the configuration parameters:

SELECT title
FROM pgweb
WHERE to_tsvector(body) @@ to_tsquery('friend');

This query will use the configuration set by default_text_search_config.

A more complex example is to select the ten most recent documents that contain create and table in
the title or body:

SELECT title
FROM pgweb
WHERE to_tsvector(title || ' ' || body) @@ to_tsquery('create & table')
ORDER BY last_mod_date DESC
LIMIT 10;

For clarity we omitted the coalesce function calls which would be needed to find rows that contain NULL
in one of the two fields.

Although these queries will work without an index, most applications will find this approach too slow, except
perhaps for occasional ad-hoc searches. Practical use of text searching usually requires creating an index.

Creating Indexes
We can create a GIN index (GiST and GIN Indexes for Text Search) to speed up text searches:

CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector('english', body));

Notice that the two-argument version of to_tsvector is used. Only text search functions that specify
a configuration name can be used in expression indexes. This is because the index contents must be
unaffected by default_text_search_config. If they were affected, the index contents might be inconsistent
because different entries could contain tsvectors that were created with different text search
configurations, and there would be no way to guess which was which. It would be impossible to dump and
restore such an index correctly.

Because the two-argument version of to_tsvector was used in the index above, only a query reference
that uses the two-argument version of to_tsvector with the same configuration name will use that
index. That is, WHERE to_tsvector('english', body) @@ 'a & b' can use the index, but WHERE
to_tsvector(body) @@ 'a & b' cannot. This ensures that an index will be used only with the same
configuration used to create the index entries.

It is possible to set up more complex expression indexes wherein the configuration name is specified by
another column, e.g.:

CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector(config_name, body));

where config_name is a column in the pgweb table. This allows mixed configurations in the same index
while recording which configuration was used for each index entry. This would be useful, for example, if the
document collection contained documents in different languages. Again, queries that are meant to use the
index must be phrased to match, e.g., WHERE to_tsvector(config_name, body) @@ 'a & b'.

Indexes can even concatenate columns:

CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector('english', title || '
 ' || body));

Greenplum Database Administrator Guide Release Notes

410

Another approach is to create a separate tsvector column to hold the output of to_tsvector. This
example is a concatenation of title and body, using coalesce to ensure that one field will still be indexed
when the other is NULL:

ALTER TABLE pgweb ADD COLUMN textsearchable_index_col tsvector;
UPDATE pgweb SET textsearchable_index_col =
 to_tsvector('english', coalesce(title,'') || ' ' || coalesce(body,''));

Then we create a GIN index to speed up the search:

CREATE INDEX textsearch_idx ON pgweb USING gin(textsearchable_index_col);

Now we are ready to perform a fast full text search:

SELECT title FROM pgweb WHERE textsearchable_index_col @@ to_tsquery('create
 & table')
ORDER BY last_mod_date DESC LIMIT 10;

One advantage of the separate-column approach over an expression index is that it is not necessary to
explicitly specify the text search configuration in queries in order to make use of the index. As shown in
the example above, the query can depend on default_text_search_config. Another advantage is
that searches will be faster, since it will not be necessary to redo the to_tsvector calls to verify index
matches. (This is more important when using a GiST index than a GIN index; see GiST and GIN Indexes
for Text Search .) The expression-index approach is simpler to set up, however, and it requires less disk
space since the tsvector representation is not stored explicitly.

Controlling Text Search
This topic shows how to create search and query vectors, how to rank search results, and how to highlight
search terms in the results of text search queries.

To implement full text searching there must be a function to create a tsvector from a document and a
tsquery from a user query. Also, we need to return results in a useful order, so we need a function that
compares documents with respect to their relevance to the query. It's also important to be able to display
the results nicely. Greenplum Database provides support for all of these functions.

This topic contains the following subtopics:

• Parsing Documents
• Parsing Queries
• Ranking Search Results
• Highlighting Results

Parsing Documents
Greenplum Database provides the function to_tsvector for converting a document to the tsvector
data type.

to_tsvector([config regconfig,] document text) returns tsvector

to_tsvector parses a textual document into tokens, reduces the tokens to lexemes, and returns
a tsvector which lists the lexemes together with their positions in the document. The document is
processed according to the specified or default text search configuration. Here is a simple example:

SELECT to_tsvector('english', 'a fat cat sat on a mat - it ate a fat
 rats');
 to_tsvector

 'ate':9 'cat':3 'fat':2,11 'mat':7 'rat':12 'sat':4

Greenplum Database Administrator Guide Release Notes

411

In the example above we see that the resulting tsvector does not contain the words a, on, or it, the word
rats became rat, and the punctuation sign - was ignored.

The to_tsvector function internally calls a parser which breaks the document text into tokens and
assigns a type to each token. For each token, a list of dictionaries (Text Search Dictionaries) is consulted,
where the list can vary depending on the token type. The first dictionary that recognizes the token emits
one or more normalized lexemes to represent the token. For example, rats became rat because one of
the dictionaries recognized that the word rats is a plural form of rat. Some words are recognized as stop
words, which causes them to be ignored since they occur too frequently to be useful in searching. In our
example these are a, on, and it. If no dictionary in the list recognizes the token then it is also ignored. In
this example that happened to the punctuation sign - because there are in fact no dictionaries assigned
for its token type (Space symbols), meaning space tokens will never be indexed. The choices of parser,
dictionaries and which types of tokens to index are determined by the selected text search configuration
(Text Search Configuration Example). It is possible to have many different configurations in the same
database, and predefined configurations are available for various languages. In our example we used the
default configuration english for the English language.

The function setweight can be used to label the entries of a tsvector with a given weight, where a
weight is one of the letters A, B, C, or D. This is typically used to mark entries coming from different parts of
a document, such as title versus body. Later, this information can be used for ranking of search results.

Because to_tsvector(NULL) will return NULL, it is recommended to use coalesce whenever a field
might be null. Here is the recommended method for creating a tsvector from a structured document:

UPDATE tt SET ti = setweight(to_tsvector(coalesce(title,'')), 'A')
 || setweight(to_tsvector(coalesce(keyword,'')), 'B')
 || setweight(to_tsvector(coalesce(abstract,'')), 'C')
 || setweight(to_tsvector(coalesce(body,'')), 'D');

Here we have used setweight to label the source of each lexeme in the finished tsvector, and then
merged the labeled tsvector values using the tsvector concatenation operator ||. (Additional Text
Search Features gives details about these operations.)

Parsing Queries
Greenplum Database provides the functions to_tsquery and plainto_tsquery for converting a query
to the tsquery data type. to_tsquery offers access to more features than plainto_tsquery, but is
less forgiving about its input.

to_tsquery([config regconfig,] querytext text) returns tsquery

to_tsquery creates a tsquery value from querytext, which must consist of single tokens separated by
the Boolean operators & (AND), | (OR), and !(NOT). These operators can be grouped using parentheses.
In other words, the input to to_tsquery must already follow the general rules for tsquery input, as
described in Text Search Data Types. The difference is that while basic tsquery input takes the tokens at
face value, to_tsquery normalizes each token to a lexeme using the specified or default configuration,
and discards any tokens that are stop words according to the configuration. For example:

SELECT to_tsquery('english', 'The & Fat & Rats');
 to_tsquery

 'fat' & 'rat'

As in basic tsquery input, weight(s) can be attached to each lexeme to restrict it to match only tsvector
lexemes of those weight(s). For example:

SELECT to_tsquery('english', 'Fat | Rats:AB');
 to_tsquery

Greenplum Database Administrator Guide Release Notes

412

 'fat' | 'rat':AB

Also, * can be attached to a lexeme to specify prefix matching:

SELECT to_tsquery('supern:*A & star:A*B');
 to_tsquery

 'supern':*A & 'star':*AB

Such a lexeme will match any word in a tsvector that begins with the given string.

to_tsquery can also accept single-quoted phrases. This is primarily useful when the configuration
includes a thesaurus dictionary that may trigger on such phrases. In the example below, a thesaurus
contains the rule supernovae stars : sn:

SELECT to_tsquery('''supernovae stars'' & !crab');
 to_tsquery

 'sn' & !'crab'

Without quotes, to_tsquery will generate a syntax error for tokens that are not separated by an AND or
OR operator.

plainto_tsquery([config regconfig,] querytext ext) returns tsquery

plainto_tsquery transforms unformatted text querytext to tsquery. The text is parsed and
normalized much as for to_tsvector, then the & (AND) Boolean operator is inserted between surviving
words.

Example:

SELECT plainto_tsquery('english', 'The Fat Rats');
 plainto_tsquery

 'fat' & 'rat'

Note that plainto_tsquery cannot recognize Boolean operators, weight labels, or prefix-match labels in
its input:

SELECT plainto_tsquery('english', 'The Fat & Rats:C');
 plainto_tsquery

 'fat' & 'rat' & 'c'

Here, all the input punctuation was discarded as being space symbols.

Ranking Search Results
Ranking attempts to measure how relevant documents are to a particular query, so that when there are
many matches the most relevant ones can be shown first. Greenplum Database provides two predefined
ranking functions, which take into account lexical, proximity, and structural information; that is, they
consider how often the query terms appear in the document, how close together the terms are in the
document, and how important is the part of the document where they occur. However, the concept of
relevancy is vague and very application-specific. Different applications might require additional information
for ranking, e.g., document modification time. The built-in ranking functions are only examples. You can
write your own ranking functions and/or combine their results with additional factors to fit your specific
needs.

The two ranking functions currently available are:

Greenplum Database Administrator Guide Release Notes

413

ts_rank([weights float4[],]
vector tsvector, query tsquery [,
normalization integer]) returns
float4

Ranks vectors based on the frequency of their
matching lexemes.

ts_rank_cd([weights float4[],]
vector tsvector, query tsquery [,
normalization integer]) returns
float4

This function computes the cover density ranking
for the given document vector and query, as
described in Clarke, Cormack, and Tudhope's
"Relevance Ranking for One to Three Term
Queries" in the journal "Information Processing
and Management", 1999. Cover density is similar
to ts_rank ranking except that the proximity
of matching lexemes to each other is taken into
consideration.

This function requires lexeme positional information
to perform its calculation. Therefore, it ignores any
"stripped" lexemes in the tsvector. If there are
no unstripped lexemes in the input, the result will
be zero. (See Manipulating Documents for more
information about the strip function and positional
information in tsvectors.)

For both these functions, the optional weights argument offers the ability to weigh word instances more
or less heavily depending on how they are labeled. The weight arrays specify how heavily to weigh each
category of word, in the order:

{D-weight, C-weight, B-weight, A-weight}

If no weights are provided, then these defaults are used:

{0.1, 0.2, 0.4, 1.0}

Typically weights are used to mark words from special areas of the document, like the title or an initial
abstract, so they can be treated with more or less importance than words in the document body.

Since a longer document has a greater chance of containing a query term it is reasonable to take into
account document size, e.g., a hundred-word document with five instances of a search word is probably
more relevant than a thousand-word document with five instances. Both ranking functions take an integer
normalization option that specifies whether and how a document's length should impact its rank. The
integer option controls several behaviors, so it is a bit mask: you can specify one or more behaviors using
| (for example, 2|4).

• 0 (the default) ignores the document length
• 1 divides the rank by 1 + the logarithm of the document length
• 2 divides the rank by the document length
• 4 divides the rank by the mean harmonic distance between extents (this is implemented only by

ts_rank_cd)
• 8 divides the rank by the number of unique words in document
• 16 divides the rank by 1 + the logarithm of the number of unique words in document
• 32 divides the rank by itself + 1

If more than one flag bit is specified, the transformations are applied in the order listed.

It is important to note that the ranking functions do not use any global information, so it is impossible to
produce a fair normalization to 1% or 100% as sometimes desired. Normalization option 32 (rank/
(rank+1)) can be applied to scale all ranks into the range zero to one, but of course this is just a
cosmetic change; it will not affect the ordering of the search results.

Greenplum Database Administrator Guide Release Notes

414

Here is an example that selects only the ten highest-ranked matches:

SELECT title, ts_rank_cd(textsearch, query) AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
 title | rank
---+----------
 Neutrinos in the Sun | 3.1
 The Sudbury Neutrino Detector | 2.4
 A MACHO View of Galactic Dark Matter | 2.01317
 Hot Gas and Dark Matter | 1.91171
 The Virgo Cluster: Hot Plasma and Dark Matter | 1.90953
 Rafting for Solar Neutrinos | 1.9
 NGC 4650A: Strange Galaxy and Dark Matter | 1.85774
 Hot Gas and Dark Matter | 1.6123
 Ice Fishing for Cosmic Neutrinos | 1.6
 Weak Lensing Distorts the Universe | 0.818218

This is the same example using normalized ranking:

SELECT title, ts_rank_cd(textsearch, query, 32 /* rank/(rank+1) */) AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
 title | rank
---+-------------------
 Neutrinos in the Sun | 0.756097569485493
 The Sudbury Neutrino Detector | 0.705882361190954
 A MACHO View of Galactic Dark Matter | 0.668123210574724
 Hot Gas and Dark Matter | 0.65655958650282
 The Virgo Cluster: Hot Plasma and Dark Matter | 0.656301290640973
 Rafting for Solar Neutrinos | 0.655172410958162
 NGC 4650A: Strange Galaxy and Dark Matter | 0.650072921219637
 Hot Gas and Dark Matter | 0.617195790024749
 Ice Fishing for Cosmic Neutrinos | 0.615384618911517
 Weak Lensing Distorts the Universe | 0.450010798361481

Ranking can be expensive since it requires consulting the tsvector of each matching document, which can
be I/O bound and therefore slow. Unfortunately, it is almost impossible to avoid since practical queries
often result in large numbers of matches.

Highlighting Results
To present search results it is ideal to show a part of each document and how it is related to the query.
Usually, search engines show fragments of the document with marked search terms. Greenplum Database
provides a function ts_headline that implements this functionality.

ts_headline([config regconfig,] document text, query tsquery [, options
 text]) returns text

ts_headline accepts a document along with a query, and returns an excerpt from the document in which
terms from the query are highlighted. The configuration to be used to parse the document can be specified
by config; if config is omitted, the default_text_search_config configuration is used.

If an options string is specified it must consist of a comma-separated list of one or more option=value
pairs. The available options are:

Greenplum Database Administrator Guide Release Notes

415

• StartSel, StopSel: the strings with which to delimit query words appearing in the document, to
distinguish them from other excerpted words. You must double-quote these strings if they contain
spaces or commas.

• MaxWords, MinWords: these numbers determine the longest and shortest headlines to output.
• ShortWord: words of this length or less will be dropped at the start and end of a headline. The default

value of three eliminates common English articles.
• HighlightAll: Boolean flag; if true the whole document will be used as the headline, ignoring the

preceding three parameters.
• MaxFragments: maximum number of text excerpts or fragments to display. The default value of

zero selects a non-fragment-oriented headline generation method. A value greater than zero selects
fragment-based headline generation. This method finds text fragments with as many query words as
possible and stretches those fragments around the query words. As a result query words are close to
the middle of each fragment and have words on each side. Each fragment will be of at most MaxWords
and words of length ShortWord or less are dropped at the start and end of each fragment. If not all
query words are found in the document, then a single fragment of the first MinWords in the document
will be displayed.

• FragmentDelimiter: When more than one fragment is displayed, the fragments will be separated by
this string.

Any unspecified options receive these defaults:

StartSel=, StopSel=,
MaxWords=35, MinWords=15, ShortWord=3, HighlightAll=FALSE,
MaxFragments=0, FragmentDelimiter=" ... "

For example:

SELECT ts_headline('english',
 'The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.',
 to_tsquery('query & similarity'));
 ts_headline
--
 containing given query terms
 and return them in order of their similarity to the
 query.

SELECT ts_headline('english',
 'The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.',
 to_tsquery('query & similarity'),
 'StartSel = <, StopSel = >');
 ts_headline

 containing given <query> terms
 and return them in order of their <similarity> to the
 <query>.

ts_headline uses the original document, not a tsvector summary, so it can be slow and should be
used with care. A typical mistake is to call ts_headline for every matching document when only ten
documents are to be shown. SQL subqueries can help; here is an example:

SELECT id, ts_headline(body, q), rank
FROM (SELECT id, body, q, ts_rank_cd(ti, q) AS rank
 FROM apod, to_tsquery('stars') q
 WHERE ti @@ q

Greenplum Database Administrator Guide Release Notes

416

 ORDER BY rank DESC
 LIMIT 10) AS foo;

Additional Text Search Features
Greenplum Database has additional functions and operators you can use to manipulate search and query
vectors, and to rewite search queries.

This section contains the following subtopics:

• Manipulating Documents
• Manipulating Queries
• Rewriting Queries
• Gathering Document Statistics

Manipulating Documents
Parsing Documents showed how raw textual documents can be converted into tsvector values.
Greenplum Database also provides functions and operators that can be used to manipulate documents
that are already in tsvector form.

tsvector || tsvector The tsvector concatenation operator returns a
vector which combines the lexemes and positional
information of the two vectors given as arguments.
Positions and weight labels are retained during
the concatenation. Positions appearing in the
right-hand vector are offset by the largest position
mentioned in the left-hand vector, so that the result
is nearly equivalent to the result of performing
to_tsvector on the concatenation of the two
original document strings. (The equivalence is
not exact, because any stop-words removed from
the end of the left-hand argument will not affect
the result, whereas they would have affected the
positions of the lexemes in the right-hand argument
if textual concatenation were used.)

One advantage of using concatenation in the
vector form, rather than concatenating text before
applying to_tsvector, is that you can use
different configurations to parse different sections
of the document. Also, because the setweight
function marks all lexemes of the given vector the
same way, it is necessary to parse the text and do
setweight before concatenating if you want to
label different parts of the document with different
weights.

setweight(vector tsvector, weight
"char") returns tsvector

setweight returns a copy of the input vector in
which every position has been labeled with the
given weight, either A, B, C, or D. (D is the default
for new vectors and as such is not displayed on
output.) These labels are retained when vectors are
concatenated, allowing words from different parts
of a document to be weighted differently by ranking
functions.

Greenplum Database Administrator Guide Release Notes

417

Note that weight labels apply to positions, not
lexemes. If the input vector has been stripped of
positions then setweight does nothing.

length(vector tsvector) returns
integer

Returns the number of lexemes stored in the vector.

strip(vector tsvector) returns tsvector Returns a vector which lists the same lexemes
as the given vector, but which lacks any position
or weight information. While the returned vector
is much less useful than an unstripped vector for
relevance ranking, it will usually be much smaller.

Manipulating Queries
Parsing Queries showed how raw textual queries can be converted into tsquery values. Greenplum
Database also provides functions and operators that can be used to manipulate queries that are already in
tsquery form.

tsquery && tsquery Returns the AND-combination of the two given
queries.

tsquery || tsquery Returns the OR-combination of the two given
queries.

!! tsquery Returns the negation (NOT) of the given query.

numnode(query tsquery) returns integer Returns the number of nodes (lexemes plus
operators) in a tsquery. This function is useful to
determine if the query is meaningful (returns > 0),
or contains only stop words (returns 0). Examples:

SELECT numnode(plainto_tsquery('the
 any'));
NOTICE: query contains only
 stopword(s) or doesn't contain
 lexeme(s), ignored
 numnode

 0

SELECT numnode('foo &
 bar'::tsquery);
 numnode

 3

querytree(query tsquery) returns text Returns the portion of a tsquery that can be used
for searching an index. This function is useful for
detecting unindexable queries, for example those
containing only stop words or only negated terms.
For example:

SELECT querytree(to_tsquery('!
defined'));
 querytree

Greenplum Database Administrator Guide Release Notes

418

Rewriting Queries
The ts_rewrite family of functions search a given tsquery for occurrences of a target subquery, and
replace each occurrence with a substitute subquery. In essence this operation is a tsquery-specific
version of substring replacement. A target and substitute combination can be thought of as a query rewrite
rule. A collection of such rewrite rules can be a powerful search aid. For example, you can expand the
search using synonyms (e.g., new york, big apple, nyc, gotham) or narrow the search to direct
the user to some hot topic. There is some overlap in functionality between this feature and thesaurus
dictionaries (Thesaurus Dictionary). However, you can modify a set of rewrite rules on-the-fly without
reindexing, whereas updating a thesaurus requires reindexing to be effective.

ts_rewrite(query tsquery, target
tsquery, substitute tsquery) returns
tsquery

This form of ts_rewrite simply applies a single
rewrite rule: target is replaced by substitute
wherever it appears in query. For example:

SELECT ts_rewrite('a & b'::tsquery,
 'a'::tsquery, 'c'::tsquery);
 ts_rewrite

 'b' & 'c'

ts_rewrite(query tsquery, select text)
returns tsquery

This form of ts_rewrite accepts a starting query
and a SQL select command, which is given as
a text string. The select must yield two columns
of tsquery type. For each row of the select
result, occurrences of the first column value (the
target) are replaced by the second column value
(the substitute) within the current query value. For
example:

CREATE TABLE aliases (id int, t
 tsquery, s tsquery);
INSERT INTO aliases VALUES('a',
 'c');

SELECT ts_rewrite('a & b'::tsquery,
 'SELECT t,s FROM aliases');
 ts_rewrite

 'b' & 'c'

Note that when multiple rewrite rules are applied in
this way, the order of application can be important;
so in practice you will want the source query to
ORDER BY some ordering key.

Let's consider a real-life astronomical example. We'll expand query supernovae using table-driven
rewriting rules:

CREATE TABLE aliases (id int, t tsquery primary key, s tsquery);
INSERT INTO aliases VALUES(1, to_tsquery('supernovae'),
 to_tsquery('supernovae|sn'));

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT t, s FROM
 aliases');
 ts_rewrite

 'crab' & ('supernova' | 'sn')

Greenplum Database Administrator Guide Release Notes

419

We can change the rewriting rules just by updating the table:

UPDATE aliases
SET s = to_tsquery('supernovae|sn & !nebulae')
WHERE t = to_tsquery('supernovae');

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT t, s FROM
 aliases');
 ts_rewrite

 'crab' & ('supernova' | 'sn' & !'nebula')

Rewriting can be slow when there are many rewriting rules, since it checks every rule for a possible match.
To filter out obvious non-candidate rules we can use the containment operators for the tsquery type. In
the example below, we select only those rules which might match the original query:

SELECT ts_rewrite('a & b'::tsquery,
 'SELECT t,s FROM aliases WHERE ''a & b''::tsquery @> t');
 ts_rewrite

 'b' & 'c'

Gathering Document Statistics
The function ts_stat is useful for checking your configuration and for finding stop-word candidates.

ts_stat(sqlquery text, [weights text,]
 OUT word text, OUT ndoc integer,
 OUT nentry integer) returns setof record

sqlquery is a text value containing an SQL query which must return a single tsvector column.
ts_stat executes the query and returns statistics about each distinct lexeme (word) contained in the
tsvector data. The columns returned are

• word text — the value of a lexeme
• ndoc integer — number of documents (tsvectors) the word occurred in
• nentry integer — total number of occurrences of the word

If weights is supplied, only occurrences having one of those weights are counted.

For example, to find the ten most frequent words in a document collection:

SELECT * FROM ts_stat('SELECT vector FROM apod')
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

The same, but counting only word occurrences with weight A or B:

SELECT * FROM ts_stat('SELECT vector FROM apod', 'ab')
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

Text Search Parsers
This topic describes the types of tokens the Greenplum Database text search parser produces from raw
text.

Text search parsers are responsible for splitting raw document text into tokens and identifying each
token's type, where the set of possible types is defined by the parser itself. Note that a parser does not
modify the text at all — it simply identifies plausible word boundaries. Because of this limited scope,

Greenplum Database Administrator Guide Release Notes

420

there is less need for application-specific custom parsers than there is for custom dictionaries. At present
Greenplum Database provides just one built-in parser, which has been found to be useful for a wide range
of applications.

The built-in parser is named pg_catalog.default. It recognizes 23 token types, shown in the following
table.

Table 56: Default Parser's Token Types

Alias Description Example

asciiword Word, all ASCII letters elephant

word Word, all letters mañana

numword Word, letters and digits beta1

asciihword Hyphenated word, all ASCII up-to-date

hword Hyphenated word, all letters lógico-matemática

numhword Hyphenated word, letters and
digits

postgresql-beta1

hword_asciipart Hyphenated word part, all ASCII postgresql in the context
postgresql-beta1

hword_part Hyphenated word part, all letters lógico or matemática in the
context lógico-matemática

hword_numpart Hyphenated word part, letters and
digits

beta1 in the context postgresql-
beta1

email Email address foo@example.com

protocol Protocol head http://

url URL example.com/stuff/index.html

host Host example.com

url_path URL path /stuff/index.html, in the context of
a URL

file File or path name /usr/local/foo.txt, if not within a
URL

sfloat Scientific notation -1.234e56

float Decimal notation -1.234

int Signed integer -1234

uint Unsigned integer 1234

version Version number 8.3.0

tag XML tag

entity XML entity &

blank Space symbols (any whitespace or punctuation
not otherwise recognized)

Note:

Greenplum Database Administrator Guide Release Notes

421

The parser's notion of a "letter" is determined by the database's locale setting, specifically
lc_ctype. Words containing only the basic ASCII letters are reported as a separate token type,
since it is sometimes useful to distinguish them. In most European languages, token types word
and asciiword should be treated alike.

email does not support all valid email characters as defined by RFC 5322. Specifically, the only
non-alphanumeric characters supported for email user names are period, dash, and underscore.

It is possible for the parser to produce overlapping tokens from the same piece of text. As an example, a
hyphenated word will be reported both as the entire word and as each component:

SELECT alias, description, token FROM ts_debug('foo-bar-beta1');
 alias | description | token
-----------------+--+---------------
 numhword | Hyphenated word, letters and digits | foo-bar-beta1
 hword_asciipart | Hyphenated word part, all ASCII | foo
 blank | Space symbols | -
 hword_asciipart | Hyphenated word part, all ASCII | bar
 blank | Space symbols | -
 hword_numpart | Hyphenated word part, letters and digits | beta1

This behavior is desirable since it allows searches to work for both the whole compound word and for
components. Here is another instructive example:

SELECT alias, description, token FROM ts_debug('http://example.com/stuff/
index.html');
 alias | description | token
----------+---------------+------------------------------
 protocol | Protocol head | http://
 url | URL | example.com/stuff/index.html
 host | Host | example.com
 url_path | URL path | /stuff/index.html

Text Search Dictionaries
Tokens produced by the Greenplum Database full text search parser are passed through a chain of
dictionaries to produce a normalized term or "lexeme". Different kinds of dictionaries are available to filter
and transform tokens in different ways and for different languages.

This section contains the following subtopics:

• About Text Search Dictionaries
• Stop Words
• Simple Dictionary
• Synonym Dictionary
• Thesaurus Dictionary
• Ispell Dictionary
• SnowBall Dictionary

About Text Search Dictionaries
Dictionaries are used to eliminate words that should not be considered in a search (stop words), and to
normalize words so that different derived forms of the same word will match. A successfully normalized
word is called a lexeme. Aside from improving search quality, normalization and removal of stop words
reduces the size of the tsvector representation of a document, thereby improving performance.
Normalization does not always have linguistic meaning and usually depends on application semantics.

Some examples of normalization:

Greenplum Database Administrator Guide Release Notes

422

• Linguistic - Ispell dictionaries try to reduce input words to a normalized form; stemmer dictionaries
remove word endings

• URL locations can be canonicalized to make equivalent URLs match:

• http://www.pgsql.ru/db/mw/index.html

• http://www.pgsql.ru/db/mw/

• http://www.pgsql.ru/db/../db/mw/index.html

• Color names can be replaced by their hexadecimal values, e.g., red, green, blue, magenta ->
FF0000, 00FF00, 0000FF, FF00FF

• If indexing numbers, we can remove some fractional digits to reduce the range of possible numbers, so
for example 3.14159265359, 3.1415926, 3.14 will be the same after normalization if only two digits are
kept after the decimal point.

A dictionary is a program that accepts a token as input and returns:

• an array of lexemes if the input token is known to the dictionary (notice that one token can produce
more than one lexeme)

• a single lexeme with the TSL_FILTER flag set, to replace the original token with a new token to be
passed to subsequent dictionaries (a dictionary that does this is called a filtering dictionary)

• an empty array if the dictionary knows the token, but it is a stop word
• NULL if the dictionary does not recognize the input token

Greenplum Database provides predefined dictionaries for many languages. There are also several
predefined templates that can be used to create new dictionaries with custom parameters. Each predefined
dictionary template is described below. If no existing template is suitable, it is possible to create new ones;
see the contrib/ area of the Greenplum Database distribution for examples.

A text search configuration binds a parser together with a set of dictionaries to process the parser's output
tokens. For each token type that the parser can return, a separate list of dictionaries is specified by the
configuration. When a token of that type is found by the parser, each dictionary in the list is consulted in
turn, until some dictionary recognizes it as a known word. If it is identified as a stop word, or if no dictionary
recognizes the token, it will be discarded and not indexed or searched for. Normally, the first dictionary that
returns a non-NULL output determines the result, and any remaining dictionaries are not consulted; but a
filtering dictionary can replace the given word with a modified word, which is then passed to subsequent
dictionaries.

The general rule for configuring a list of dictionaries is to place first the most narrow, most specific
dictionary, then the more general dictionaries, finishing with a very general dictionary, like a Snowball
stemmer or simple, which recognizes everything. For example, for an astronomy-specific search
(astro_en configuration) one could bind token type asciiword (ASCII word) to a synonym dictionary of
astronomical terms, a general English dictionary and a Snowball English stemmer:

ALTER TEXT SEARCH CONFIGURATION astro_en
 ADD MAPPING FOR asciiword WITH astrosyn, english_ispell, english_stem;

A filtering dictionary can be placed anywhere in the list, except at the end where it'd be useless. Filtering
dictionaries are useful to partially normalize words to simplify the task of later dictionaries. For example,
a filtering dictionary could be used to remove accents from accented letters, as is done by the unaccent
module.

Stop Words
Stop words are words that are very common, appear in almost every document, and have no
discrimination value. Therefore, they can be ignored in the context of full text searching. For example,
every English text contains words like a and the, so it is useless to store them in an index. However, stop
words do affect the positions in tsvector, which in turn affect ranking:

SELECT to_tsvector('english','in the list of stop words');
 to_tsvector

https://www.postgresql.org/docs/9.4/unaccent.html

Greenplum Database Administrator Guide Release Notes

423

 'list':3 'stop':5 'word':6

The missing positions 1,2,4 are because of stop words. Ranks calculated for documents with and without
stop words are quite different:

SELECT ts_rank_cd (to_tsvector('english','in the list of stop words'),
 to_tsquery('list & stop'));
 ts_rank_cd

 0.05

SELECT ts_rank_cd (to_tsvector('english','list stop words'),
 to_tsquery('list & stop'));
 ts_rank_cd

 0.1

It is up to the specific dictionary how it treats stop words. For example, ispell dictionaries first normalize
words and then look at the list of stop words, while Snowball stemmers first check the list of stop words.
The reason for the different behavior is an attempt to decrease noise.

Simple Dictionary
The simple dictionary template operates by converting the input token to lower case and checking it
against a file of stop words. If it is found in the file then an empty array is returned, causing the token to be
discarded. If not, the lower-cased form of the word is returned as the normalized lexeme. Alternatively, the
dictionary can be configured to report non-stop-words as unrecognized, allowing them to be passed on to
the next dictionary in the list.

Here is an example of a dictionary definition using the simple template:

CREATE TEXT SEARCH DICTIONARY public.simple_dict (
 TEMPLATE = pg_catalog.simple,
 STOPWORDS = english
);

Here, english is the base name of a file of stop words. The file's full name will be $SHAREDIR/
tsearch_data/english.stop, where $SHAREDIR means the Greenplum Database installation's
shared-data directory, often /usr/local/greenplum-db-<version>/share/postgresql (use
pg_config --sharedir to determine it if you're not sure). The file format is simply a list of words, one
per line. Blank lines and trailing spaces are ignored, and upper case is folded to lower case, but no other
processing is done on the file contents.

Now we can test our dictionary:

SELECT ts_lexize('public.simple_dict','YeS');
 ts_lexize

 {yes}

SELECT ts_lexize('public.simple_dict','The');
 ts_lexize

 {}

We can also choose to return NULL, instead of the lower-cased word, if it is not found in the stop words file.
This behavior is selected by setting the dictionary's Accept parameter to false. Continuing the example:

ALTER TEXT SEARCH DICTIONARY public.simple_dict (Accept = false);

Greenplum Database Administrator Guide Release Notes

424

SELECT ts_lexize('public.simple_dict','YeS');
 ts_lexize

 {yes}

SELECT ts_lexize('public.simple_dict','The');
 ts_lexize

 {}

With the default setting of Accept = true, it is only useful to place a simple dictionary at the end of a
list of dictionaries, since it will never pass on any token to a following dictionary. Conversely, Accept =
false is only useful when there is at least one following dictionary.

Caution: Most types of dictionaries rely on configuration files, such as files of stop words. These
files must be stored in UTF-8 encoding. They will be translated to the actual database encoding, if
that is different, when they are read into the server.

Caution: Normally, a database session will read a dictionary configuration file only once, when it
is first used within the session. If you modify a configuration file and want to force existing sessions
to pick up the new contents, issue an ALTER TEXT SEARCH DICTIONARY command on the
dictionary. This can be a "dummy" update that doesn't actually change any parameter values.

Synonym Dictionary
This dictionary template is used to create dictionaries that replace a word with a synonym. Phrases are not
supported—use the thesaurus template (Thesaurus Dictionary) for that. A synonym dictionary can be used
to overcome linguistic problems, for example, to prevent an English stemmer dictionary from reducing the
word "Paris" to "pari". It is enough to have a Paris paris line in the synonym dictionary and put it before
the english_stem dictionary. For example:

SELECT * FROM ts_debug('english', 'Paris');
 alias | description | token | dictionaries | dictionary |
 lexemes
-----------+-----------------+-------+----------------+--------------
+---------
 asciiword | Word, all ASCII | Paris | {english_stem} | english_stem |
 {pari}

CREATE TEXT SEARCH DICTIONARY my_synonym (
 TEMPLATE = synonym,
 SYNONYMS = my_synonyms
);

ALTER TEXT SEARCH CONFIGURATION english
 ALTER MAPPING FOR asciiword
 WITH my_synonym, english_stem;

SELECT * FROM ts_debug('english', 'Paris');
 alias | description | token | dictionaries |
 dictionary | lexemes
-----------+-----------------+-------+---------------------------
+------------+---------
 asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} |
 my_synonym | {paris}

The only parameter required by the synonym template is SYNONYMS, which is the base name of its
configuration file — my_synonyms in the above example. The file's full name will be $SHAREDIR/
tsearch_data/my_synonyms.syn (where $SHAREDIR means the Greenplum Database installation's
shared-data directory). The file format is just one line per word to be substituted, with the word followed by
its synonym, separated by white space. Blank lines and trailing spaces are ignored.

Greenplum Database Administrator Guide Release Notes

425

The synonym template also has an optional parameter CaseSensitive, which defaults to false. When
CaseSensitive is false, words in the synonym file are folded to lower case, as are input tokens. When
it is true, words and tokens are not folded to lower case, but are compared as-is.

An asterisk (*) can be placed at the end of a synonym in the configuration file. This indicates that the
synonym is a prefix. The asterisk is ignored when the entry is used in to_tsvector(), but when it is
used in to_tsquery(), the result will be a query item with the prefix match marker (see Parsing Queries).
For example, suppose we have these entries in $SHAREDIR/tsearch_data/synonym_sample.syn:

postgres pgsql postgresql pgsql postgre pgsql
gogle googl
indices index*

Then we will get these results:

mydb=# CREATE TEXT SEARCH DICTIONARY syn (template=synonym,
 synonyms='synonym_sample');
mydb=# SELECT ts_lexize('syn','indices');
 ts_lexize

 {index}
(1 row)

mydb=# CREATE TEXT SEARCH CONFIGURATION tst (copy=simple);
mydb=# ALTER TEXT SEARCH CONFIGURATION tst ALTER MAPPING FOR asciiword WITH
 syn;
mydb=# SELECT to_tsvector('tst','indices');
 to_tsvector

 'index':1
(1 row)

mydb=# SELECT to_tsquery('tst','indices');
 to_tsquery

 'index':*
(1 row)

mydb=# SELECT 'indexes are very useful'::tsvector;
 tsvector

 'are' 'indexes' 'useful' 'very'
(1 row)

mydb=# SELECT 'indexes are very useful'::tsvector @@
 to_tsquery('tst','indices');
 ?column?

 t
(1 row)

Thesaurus Dictionary
A thesaurus dictionary (sometimes abbreviated as TZ) is a collection of words that includes information
about the relationships of words and phrases, i.e., broader terms (BT), narrower terms (NT), preferred
terms, non-preferred terms, related terms, etc.

Basically a thesaurus dictionary replaces all non-preferred terms by one preferred term and, optionally,
preserves the original terms for indexing as well. Greenplum Database's current implementation of the

Greenplum Database Administrator Guide Release Notes

426

thesaurus dictionary is an extension of the synonym dictionary with added phrase support. A thesaurus
dictionary requires a configuration file of the following format:

this is a comment
sample word(s) : indexed word(s)
more sample word(s) : more indexed word(s)
...

where the colon (:) symbol acts as a delimiter between a phrase and its replacement.

A thesaurus dictionary uses a subdictionary (which is specified in the dictionary's configuration) to
normalize the input text before checking for phrase matches. It is only possible to select one subdictionary.
An error is reported if the subdictionary fails to recognize a word. In that case, you should remove the
use of the word or teach the subdictionary about it. You can place an asterisk (*) at the beginning of
an indexed word to skip applying the subdictionary to it, but all sample words must be known to the
subdictionary.

The thesaurus dictionary chooses the longest match if there are multiple phrases matching the input, and
ties are broken by using the last definition.

Specific stop words recognized by the subdictionary cannot be specified; instead use ? to mark the
location where any stop word can appear. For example, assuming that a and the are stop words
according to the subdictionary:

? one ? two : swsw

matches a one the two and the one a two; both would be replaced by swsw.

Since a thesaurus dictionary has the capability to recognize phrases it must remember its state and
interact with the parser. A thesaurus dictionary uses these assignments to check if it should handle the
next word or stop accumulation. The thesaurus dictionary must be configured carefully. For example, if
the thesaurus dictionary is assigned to handle only the asciiword token, then a thesaurus dictionary
definition like one 7 will not work since token type uint is not assigned to the thesaurus dictionary.

Caution: Thesauruses are used during indexing so any change in the thesaurus dictionary's
parameters requires reindexing. For most other dictionary types, small changes such as adding or
removing stopwords does not force reindexing.

Thesaurus Configuration

To define a new thesaurus dictionary, use the thesaurus template. For example:

CREATE TEXT SEARCH DICTIONARY thesaurus_simple (
 TEMPLATE = thesaurus,
 DictFile = mythesaurus,
 Dictionary = pg_catalog.english_stem
);

Here:

• thesaurus_simple is the new dictionary's name
• mythesaurus is the base name of the thesaurus configuration file. (Its full name will be $SHAREDIR/

tsearch_data/mythesaurus.ths, where $SHAREDIR means the installation shared-data
directory.)

• pg_catalog.english_stem is the subdictionary (here, a Snowball English stemmer) to use for
thesaurus normalization. Notice that the subdictionary will have its own configuration (for example, stop
words), which is not shown here.

Now it is possible to bind the thesaurus dictionary thesaurus_simple to the desired token types in a
configuration, for example:

ALTER TEXT SEARCH CONFIGURATION russian

Greenplum Database Administrator Guide Release Notes

427

 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
 WITH thesaurus_simple;

Thesaurus Example

Consider a simple astronomical thesaurus thesaurus_astro, which contains some astronomical word
combinations:

supernovae stars : sn
crab nebulae : crab

Below we create a dictionary and bind some token types to an astronomical thesaurus and English
stemmer:

CREATE TEXT SEARCH DICTIONARY thesaurus_astro (
 TEMPLATE = thesaurus,
 DictFile = thesaurus_astro,
 Dictionary = english_stem
);

ALTER TEXT SEARCH CONFIGURATION russian
 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
 WITH thesaurus_astro, english_stem;

Now we can see how it works. ts_lexize is not very useful for testing a thesaurus, because it treats its
input as a single token. Instead we can use plainto_tsquery and to_tsvector, which will break their
input strings into multiple tokens:

SELECT plainto_tsquery('supernova star');
 plainto_tsquery

 'sn'

SELECT to_tsvector('supernova star');
 to_tsvector

 'sn':1

In principle, one can use to_tsquery if you quote the argument:

SELECT to_tsquery('''supernova star''');
 to_tsquery

 'sn'

Notice that supernova star matches supernovae stars in thesaurus_astro because we
specified the english_stem stemmer in the thesaurus definition. The stemmer removed the e and s.

To index the original phrase as well as the substitute, just include it in the right-hand part of the definition:

supernovae stars : sn supernovae stars

SELECT plainto_tsquery('supernova star');
 plainto_tsquery

 'sn' & 'supernova' & 'star'

Ispell Dictionary
The Ispell dictionary template supports morphological dictionaries, which can normalize many different
linguistic forms of a word into the same lexeme. For example, an English Ispell dictionary can match all

Greenplum Database Administrator Guide Release Notes

428

declensions and conjugations of the search term bank, e.g., banking, banked, banks, banks', and
bank's.

The standard Greenplum Database distribution does not include any Ispell configuration files. Dictionaries
for a large number of languages are available from Ispell. Also, some more modern dictionary file formats
are supported — MySpell (OO < 2.0.1) and Hunspell (OO >= 2.0.2). A large list of dictionaries is available
on the OpenOffice Wiki.

To create an Ispell dictionary, use the built-in ispell template and specify several parameters:

CREATE TEXT SEARCH DICTIONARY english_ispell (
 TEMPLATE = ispell,
 DictFile = english,
 AffFile = english,
 StopWords = english
);

Here, DictFile, AffFile, and StopWords specify the base names of the dictionary, affixes, and stop-
words files. The stop-words file has the same format explained above for the simple dictionary type. The
format of the other files is not specified here but is available from the above-mentioned web sites.

Ispell dictionaries usually recognize a limited set of words, so they should be followed by another broader
dictionary; for example, a Snowball dictionary, which recognizes everything.

Ispell dictionaries support splitting compound words; a useful feature. Notice that the affix file should
specify a special flag using the compoundwords controlled statement that marks dictionary words that
can participate in compound formation:

compoundwords controlled z

Here are some examples for the Norwegian language:

SELECT ts_lexize('norwegian_ispell',
 'overbuljongterningpakkmesterassistent');
 {over,buljong,terning,pakk,mester,assistent}
SELECT ts_lexize('norwegian_ispell', 'sjokoladefabrikk');
 {sjokoladefabrikk,sjokolade,fabrikk}

Note:

MySpell does not support compound words. Hunspell has sophisticated support for compound
words. At present, Greenplum Database implements only the basic compound word operations of
Hunspell.

SnowBall Dictionary
The Snowball dictionary template is based on a project by Martin Porter, inventor of the popular Porter's
stemming algorithm for the English language. Snowball now provides stemming algorithms for many
languages (see the Snowball site for more information). Each algorithm understands how to reduce
common variant forms of words to a base, or stem, spelling within its language. A Snowball dictionary
requires a language parameter to identify which stemmer to use, and optionally can specify a stopword
file name that gives a list of words to eliminate. (Greenplum Database's standard stopword lists are also
provided by the Snowball project.) For example, there is a built-in definition equivalent to

CREATE TEXT SEARCH DICTIONARY english_stem (
 TEMPLATE = snowball,
 Language = english,
 StopWords = english
);

The stopword file format is the same as already explained.

http://ficus-www.cs.ucla.edu/geoff/ispell.html
http://en.wikipedia.org/wiki/MySpell
http://sourceforge.net/projects/hunspell/
http://wiki.services.openoffice.org/wiki/Dictionaries
http://snowballstem.org/

Greenplum Database Administrator Guide Release Notes

429

A Snowball dictionary recognizes everything, whether or not it is able to simplify the word, so it should be
placed at the end of the dictionary list. It is useless to have it before any other dictionary because a token
will never pass through it to the next dictionary.

Text Search Configuration Example
This topic shows how to create a customized text search configuration to process document and query
text.

A text search configuration specifies all options necessary to transform a document into a tsvector: the
parser to use to break text into tokens, and the dictionaries to use to transform each token into a lexeme.
Every call of to_tsvector or to_tsquery needs a text search configuration to perform its processing.
The configuration parameter default_text_search_config specifies the name of the default configuration,
which is the one used by text search functions if an explicit configuration parameter is omitted. It can be set
in postgresql.conf using the gpconfig command-line utility, or set for an individual session using the
SET command.

Several predefined text search configurations are available, and you can create custom configurations
easily. To facilitate management of text search objects, a set of SQL commands is available, and there are
several psql commands that display information about text search objects (psql Support).

As an example we will create a configuration pg, starting by duplicating the built-in english configuration:

CREATE TEXT SEARCH CONFIGURATION public.pg (COPY = pg_catalog.english);

We will use a PostgreSQL-specific synonym list and store it in $SHAREDIR/tsearch_data/
pg_dict.syn. The file contents look like:

postgres pg
pgsql pg
postgresql pg

We define the synonym dictionary like this:

CREATE TEXT SEARCH DICTIONARY pg_dict (
 TEMPLATE = synonym,
 SYNONYMS = pg_dict
);

Next we register the Ispell dictionary english_ispell, which has its own configuration files:

CREATE TEXT SEARCH DICTIONARY english_ispell (
 TEMPLATE = ispell,
 DictFile = english,
 AffFile = english,
 StopWords = english
);

Now we can set up the mappings for words in configuration pg:

ALTER TEXT SEARCH CONFIGURATION pg
 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart,
 word, hword, hword_part
 WITH pg_dict, english_ispell, english_stem;

We choose not to index or search some token types that the built-in configuration does handle:

ALTER TEXT SEARCH CONFIGURATION pg
 DROP MAPPING FOR email, url, url_path, sfloat, float;

Greenplum Database Administrator Guide Release Notes

430

Now we can test our configuration:

SELECT * FROM ts_debug('public.pg', '
PostgreSQL, the highly scalable, SQL compliant, open source object-
relational
database management system, is now undergoing beta testing of the next
version of our software.
');

The next step is to set the session to use the new configuration, which was created in the public schema:

=> \dF
 List of text search configurations
 Schema | Name | Description
---------+------+-------------
 public | pg |

SET default_text_search_config = 'public.pg';
SET

SHOW default_text_search_config;
 default_text_search_config

 public.pg

Testing and Debugging Text Search
This topic introduces the Greenplum Database functions you can use to test and debug a search
configuration or the individual parser and dictionaries specified in a configuration.

The behavior of a custom text search configuration can easily become confusing. The functions described
in this section are useful for testing text search objects. You can test a complete configuration, or test
parsers and dictionaries separately.

This section contains the following subtopics:

• Configuration Testing
• Parser Testing
• Dictionary Testing

Configuration Testing
The function ts_debug allows easy testing of a text search configuration.

ts_debug([config regconfig,] document text,
 OUT alias text,
 OUT description text,
 OUT token text,
 OUT dictionaries regdictionary[],
 OUT dictionary regdictionary,
 OUT lexemes text[])
 returns setof record

ts_debug displays information about every token of document as produced by the parser
and processed by the configured dictionaries. It uses the configuration specified by config, or
default_text_search_config if that argument is omitted.

ts_debug returns one row for each token identified in the text by the parser. The columns returned are

• alias text — short name of the token type
• description text — description of the token type

Greenplum Database Administrator Guide Release Notes

431

• token text — text of the token
• dictionaries regdictionary[] — the dictionaries selected by the configuration for this token

type
• dictionary regdictionary — the dictionary that recognized the token, or NULL if none did
• lexemes text[] — the lexeme(s) produced by the dictionary that recognized the token, or NULL if

none did; an empty array ({}) means it was recognized as a stop word

Here is a simple example:

SELECT * FROM ts_debug('english','a fat cat sat on a mat - it ate a fat
 rats');
 alias | description | token | dictionaries | dictionary |
 lexemes
-----------+-----------------+-------+----------------+--------------
+---------
 asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | cat | {english_stem} | english_stem | {cat}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | sat | {english_stem} | english_stem | {sat}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | on | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | mat | {english_stem} | english_stem | {mat}
 blank | Space symbols | | {} | |
 blank | Space symbols | - | {} | |
 asciiword | Word, all ASCII | it | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | ate | {english_stem} | english_stem | {ate}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | rats | {english_stem} | english_stem | {rat}

For a more extensive demonstration, we first create a public.english configuration and Ispell
dictionary for the English language:

CREATE TEXT SEARCH CONFIGURATION public.english (COPY =
 pg_catalog.english);

CREATE TEXT SEARCH DICTIONARY english_ispell (
 TEMPLATE = ispell,
 DictFile = english,
 AffFile = english,
 StopWords = english
);

ALTER TEXT SEARCH CONFIGURATION public.english
 ALTER MAPPING FOR asciiword WITH english_ispell, english_stem;

SELECT * FROM ts_debug('public.english','The Brightest supernovaes');
 alias | description | token | dictionaries |
 dictionary | lexemes
-----------+-----------------+-------------+-------------------------------
+----------------+-------------

Greenplum Database Administrator Guide Release Notes

432

 asciiword | Word, all ASCII | The | {english_ispell,english_stem} |
 english_ispell | {}
 blank | Space symbols | | {} |
 |
 asciiword | Word, all ASCII | Brightest | {english_ispell,english_stem} |
 english_ispell | {bright}
 blank | Space symbols | | {} |
 |
 asciiword | Word, all ASCII | supernovaes | {english_ispell,english_stem} |
 english_stem | {supernova}

In this example, the word Brightest was recognized by the parser as an ASCII word (alias
asciiword). For this token type the dictionary list is english_ispell and english_stem. The word
was recognized by english_ispell, which reduced it to the noun bright. The word supernovaes is
unknown to the english_ispell dictionary so it was passed to the next dictionary, and, fortunately, was
recognized (in fact, english_stem is a Snowball dictionary which recognizes everything; that is why it
was placed at the end of the dictionary list).

The word The was recognized by the english_ispell dictionary as a stop word (Stop Words) and will
not be indexed. The spaces are discarded too, since the configuration provides no dictionaries at all for
them.

You can reduce the width of the output by explicitly specifying which columns you want to see:

SELECT alias, token, dictionary, lexemes FROM ts_debug('public.english','The
 Brightest supernovaes');
 alias | token | dictionary | lexemes
-----------+-------------+----------------+-------------
 asciiword | The | english_ispell | {}
 blank | | |
 asciiword | Brightest | english_ispell | {bright}
 blank | | |
 asciiword | supernovaes | english_stem | {supernova}

Parser Testing
The following functions allow direct testing of a text search parser.

ts_parse(parser_name text, document text,
 OUT tokid integer, OUT token text) returns setof record
ts_parse(parser_oid oid, document text,
 OUT tokid integer, OUT token text) returns setof record

ts_parse parses the given document and returns a series of records, one for each token produced by
parsing. Each record includes a tokid showing the assigned token type and a token, which is the text of
the token. For example:

SELECT * FROM ts_parse('default', '123 - a number');
 tokid | token
-------+--------
 22 | 123
 12 |
 12 | -
 1 | a
 12 |
 1 | number

ts_token_type(parser_name text, OUT tokid integer,
 OUT alias text, OUT description text) returns setof record
ts_token_type(parser_oid oid, OUT tokid integer,
 OUT alias text, OUT description text) returns setof record

Greenplum Database Administrator Guide Release Notes

433

ts_token_type returns a table which describes each type of token the specified parser can recognize.
For each token type, the table gives the integer tokid that the parser uses to label a token of that
type, the alias that names the token type in configuration commands, and a short description. For
example:

SELECT * FROM ts_token_type('default');
 tokid | alias | description
-------+-----------------+--
 1 | asciiword | Word, all ASCII
 2 | word | Word, all letters
 3 | numword | Word, letters and digits
 4 | email | Email address
 5 | url | URL
 6 | host | Host
 7 | sfloat | Scientific notation
 8 | version | Version number
 9 | hword_numpart | Hyphenated word part, letters and digits
 10 | hword_part | Hyphenated word part, all letters
 11 | hword_asciipart | Hyphenated word part, all ASCII
 12 | blank | Space symbols
 13 | tag | XML tag
 14 | protocol | Protocol head
 15 | numhword | Hyphenated word, letters and digits
 16 | asciihword | Hyphenated word, all ASCII
 17 | hword | Hyphenated word, all letters
 18 | url_path | URL path
 19 | file | File or path name
 20 | float | Decimal notation
 21 | int | Signed integer
 22 | uint | Unsigned integer
 23 | entity | XML entity

Dictionary Testing
The ts_lexize function facilitates dictionary testing.

ts_lexize(dictreg dictionary, token text) returns text[]

ts_lexize returns an array of lexemes if the input token is known to the dictionary, or an empty array if
the token is known to the dictionary but it is a stop word, or NULL if it is an unknown word.

Examples:

SELECT ts_lexize('english_stem', 'stars');
 ts_lexize

 {star}

SELECT ts_lexize('english_stem', 'a');
 ts_lexize

 {}

Note: The ts_lexize function expects a single token, not text. Here is a case where this can be
confusing:

SELECT ts_lexize('thesaurus_astro','supernovae stars') is null;
 ?column?

 t

Greenplum Database Administrator Guide Release Notes

434

The thesaurus dictionary thesaurus_astro does know the phrase supernovae stars,
but ts_lexize fails since it does not parse the input text but treats it as a single token. Use
plainto_tsquery or to_tsvector to test thesaurus dictionaries, for example:

SELECT plainto_tsquery('supernovae stars');
 plainto_tsquery

 'sn'

GiST and GIN Indexes for Text Search
This topic describes and compares the Greenplum Database index types that are used for full text
searching.

There are two kinds of indexes that can be used to speed up full text searches. Indexes are not mandatory
for full text searching, but in cases where a column is searched on a regular basis, an index is usually
desirable.

CREATE INDEX name ON table USING
gist(column);

Creates a GiST (Generalized Search Tree)-
based index. The column can be of tsvector or
tsquery type.

CREATE INDEX name ON table USING
gin(column);

Creates a GIN (Generalized Inverted Index)-based
index. The column must be of tsvector type.

There are substantial performance differences between the two index types, so it is important to
understand their characteristics.

A GiST index is lossy, meaning that the index may produce false matches, and it is necessary to check
the actual table row to eliminate such false matches. (Greenplum Database does this automatically when
needed.) GiST indexes are lossy because each document is represented in the index by a fixed-length
signature. The signature is generated by hashing each word into a single bit in an n-bit string, with all these
bits OR-ed together to produce an n-bit document signature. When two words hash to the same bit position
there will be a false match. If all words in the query have matches (real or false) then the table row must be
retrieved to see if the match is correct.

Lossiness causes performance degradation due to unnecessary fetches of table records that turn out to be
false matches. Since random access to table records is slow, this limits the usefulness of GiST indexes.
The likelihood of false matches depends on several factors, in particular the number of unique words, so
using dictionaries to reduce this number is recommended.

GIN indexes are not lossy for standard queries, but their performance depends logarithmically on the
number of unique words. (However, GIN indexes store only the words (lexemes) of tsvector values, and
not their weight labels. Thus a table row recheck is needed when using a query that involves weights.)

In choosing which index type to use, GiST or GIN, consider these performance differences:

• GIN index lookups are about three times faster than GiST
• GIN indexes take about three times longer to build than GiST
• GIN indexes are moderately slower to update than GiST indexes, but about 10 times slower if fast-

update support was disabled (see GIN Fast Update Technique in the PostgreSQL documentation for
details)

• GIN indexes are two-to-three times larger than GiST indexes

As a rule of thumb, GIN indexes are best for static data because lookups are faster. For dynamic data,
GiST indexes are faster to update. Specifically, GiST indexes are very good for dynamic data and fast if
the number of unique words (lexemes) is under 100,000, while GIN indexes will handle 100,000+ lexemes
better but are slower to update.

https://www.postgresql.org/docs/9.4/gin-implementation.html#GIN-FAST-UPDATE

Greenplum Database Administrator Guide Release Notes

435

Note that GIN index build time can often be improved by increasing maintenance_work_mem, while GiST
index build time is not sensitive to that parameter.

Partitioning of big collections and the proper use of GiST and GIN indexes allows the implementation
of very fast searches with online update. Partitioning can be done at the database level using table
inheritance, or by distributing documents over servers and collecting search results using dblink. The latter
is possible because ranking functions use only local information.

psql Support
The psql command-line utility provides a meta-command to display information about Greenplum Database
full text search configurations.

Information about text search configuration objects can be obtained in psql using a set of commands:

\dF{d,p,t}[+] [PATTERN]

An optional + produces more details.

The optional parameter PATTERN can be the name of a text search object, optionally schema-qualified. If
PATTERN is omitted then information about all visible objects will be displayed. PATTERN can be a regular
expression and can provide separate patterns for the schema and object names. The following examples
illustrate this:

=> \dF *fulltext*
 List of text search configurations
 Schema | Name | Description
--------+--------------+-------------
 public | fulltext_cfg |

=> \dF *.fulltext*
 List of text search configurations
 Schema | Name | Description
----------+----------------------------
 fulltext | fulltext_cfg |
 public | fulltext_cfg |

The available commands are:

\dF[+] [PATTERN] List text search configurations (add + for more
detail).

=> \dF russian
 List of text search
 configurations
 Schema | Name |
 Description
------------+---------
+------------------------------------
 pg_catalog | russian |
 configuration for russian language

=> \dF+ russian
Text search configuration
 "pg_catalog.russian"
Parser: "pg_catalog.default"
 Token | Dictionaries
-----------------+--------------
 asciihword | english_stem
 asciiword | english_stem
 email | simple

Greenplum Database Administrator Guide Release Notes

436

 file | simple
 float | simple
 host | simple
 hword | russian_stem
 hword_asciipart | english_stem
 hword_numpart | simple
 hword_part | russian_stem
 int | simple
 numhword | simple
 numword | simple
 sfloat | simple
 uint | simple
 url | simple
 url_path | simple
 version | simple
 word | russian_stem

\dFd[+] [PATTERN] List text search dictionaries (add + for more detail).

=> \dFd
 List of
 text search dictionaries
 Schema | Name |
 Description

------------+-----------------
+---
 pg_catalog | danish_stem
 | snowball stemmer for danish
 language
 pg_catalog | dutch_stem |
 snowball stemmer for dutch language
 pg_catalog | english_stem
 | snowball stemmer for english
 language
 pg_catalog | finnish_stem
 | snowball stemmer for finnish
 language
 pg_catalog | french_stem
 | snowball stemmer for french
 language
 pg_catalog | german_stem
 | snowball stemmer for german
 language
 pg_catalog | hungarian_stem |
 snowball stemmer for hungarian
 language
 pg_catalog | italian_stem
 | snowball stemmer for italian
 language
 pg_catalog | norwegian_stem |
 snowball stemmer for norwegian
 language
 pg_catalog | portuguese_stem |
 snowball stemmer for portuguese
 language
 pg_catalog | romanian_stem |
 snowball stemmer for romanian
 language
 pg_catalog | russian_stem
 | snowball stemmer for russian
 language

Greenplum Database Administrator Guide Release Notes

437

 pg_catalog | simple |
 simple dictionary: just lower case
 and check for stopword
 pg_catalog | spanish_stem
 | snowball stemmer for spanish
 language
 pg_catalog | swedish_stem
 | snowball stemmer for swedish
 language
 pg_catalog | turkish_stem
 | snowball stemmer for turkish
 language

\dFp[+] [PATTERN] List text search parsers (add + for more detail).

=> \dFp
 List of text search parsers
 Schema | Name |
 Description
------------+---------
+---------------------
 pg_catalog | default | default word
 parser
=> \dFp+
 Text search parser
 "pg_catalog.default"
 Method | Function |
 Description
-----------------+----------------
+-------------
 Start parse | prsd_start |
 Get next token | prsd_nexttoken |
 End parse | prsd_end |
 Get headline | prsd_headline |
 Get token types | prsd_lextype |

 Token types for parser
 "pg_catalog.default"
 Token name |
 Description

+--
 asciihword | Hyphenated word,
 all ASCII
 asciiword | Word, all ASCII
 blank | Space symbols
 email | Email address
 entity | XML entity
 file | File or path name
 float | Decimal notation
 host | Host
 hword | Hyphenated word,
 all letters
 hword_asciipart | Hyphenated word
 part, all ASCII
 hword_numpart | Hyphenated word
 part, letters and digits
 hword_part | Hyphenated word
 part, all letters
 int | Signed integer
 numhword | Hyphenated word,
 letters and digits

Greenplum Database Administrator Guide Release Notes

438

 numword | Word, letters and
 digits
 protocol | Protocol head
 sfloat | Scientific
 notation
 tag | XML tag
 uint | Unsigned integer
 url | URL
 url_path | URL path
 version | Version number
 word | Word, all letters
(23 rows)

\dFt[+] [PATTERN] List text search templates (add + for more detail).

=> \dFt
 List of
 text search templates
 Schema | Name |
 Description

------------+-----------
+---
 pg_catalog | ispell | ispell
 dictionary
 pg_catalog | simple | simple
 dictionary: just lower case and
 check for stopword
 pg_catalog | snowball | snowball
 stemmer
 pg_catalog | synonym | synonym
 dictionary: replace word by its
 synonym
 pg_catalog | thesaurus | thesaurus
 dictionary: phrase by phrase
 substitution

Limitations
This topic lists limitations and maximums for Greenplum Database full text search objects.

The current limitations of Greenplum Database's text search features are:

• The tsvector and tsquery types are not supported in the distribution key for a Greenplum Database
table

• The length of each lexeme must be less than 2K bytes
• The length of a tsvector (lexemes + positions) must be less than 1 megabyte
• The number of lexemes must be less than 264

• Position values in tsvector must be greater than 0 and no more than 16,383
• No more than 256 positions per lexeme
• The number of nodes (lexemes + operators) in a tsquery must be less than 32,768

For comparison, the PostgreSQL 8.1 documentation contained 10,441 unique words, a total of 335,420
words, and the most frequent word "postgresql" was mentioned 6,127 times in 655 documents.

Another example — the PostgreSQL mailing list archives contained 910,989 unique words with 57,491,343
lexemes in 461,020 messages.

Greenplum Database Administrator Guide Release Notes

439

Using Greenplum MapReduce
MapReduce is a programming model developed by Google for processing and generating large data sets
on an array of commodity servers. Greenplum MapReduce allows programmers who are familiar with
the MapReduce model to write map and reduce functions and submit them to the Greenplum Database
parallel engine for processing.

You configure a Greenplum MapReduce job via a YAML-formatted configuration file, then pass the file to
the Greenplum MapReduce program, gpmapreduce, for execution by the Greenplum Database parallel
engine. The Greenplum Database system distributes the input data, executes the program across a set of
machines, handles machine failures, and manages the required inter-machine communication.

Refer to gpmapreduce for details about running the Greenplum MapReduce program.

About the Greenplum MapReduce Configuration File
This section explains some basics of the Greenplum MapReduce configuration file format to help you
get started creating your own Greenplum MapReduce configuration files. Greenplum uses the YAML 1.1
document format and then implements its own schema for defining the various steps of a MapReduce job.

All Greenplum MapReduce configuration files must first declare the version of the YAML specification
they are using. After that, three dashes (---) denote the start of a document, and three dots (...)
indicate the end of a document without starting a new one. (A document in this context is equivalent
to a MapReduce job.) Comment lines are prefixed with a pound symbol (#). You can declare multiple
Greenplum MapReduce documents/jobs in the same file:

%YAML 1.1

Begin Document 1
...

Begin Document 2
...

Within a Greenplum MapReduce document, there are three basic types of data structures or nodes:
scalars, sequences and mappings.

A scalar is a basic string of text indented by a space. If you have a scalar input that spans multiple lines, a
preceding pipe (|) denotes a literal style, where all line breaks are significant. Alternatively, a preceding
angle bracket (>) folds a single line break to a space for subsequent lines that have the same indentation
level. If a string contains characters that have reserved meaning, the string must be quoted or the special
character must be escaped with a backslash (\).

Read each new line literally
somekey: | this value contains two lines
 and each line is read literally
Treat each new line as a space
anotherkey: >
 this value contains two lines
 but is treated as one continuous line
This quoted string contains a special character
ThirdKey: "This is a string: not a mapping"

A sequence is a list with each entry in the list on its own line denoted by a dash and a space (-).
Alternatively, you can specify an inline sequence as a comma-separated list within square brackets.
A sequence provides a set of data and gives it an order. When you load a list into the Greenplum
MapReduce program, the order is kept.

list sequence

http://yaml.org/spec/1.1/

Greenplum Database Administrator Guide Release Notes

440

- this
- is
- a list
- with
- five scalar values
inline sequence
[this, is, a list, with, five scalar values]

A mapping is used to pair up data values with indentifiers called keys. Mappings use a colon and space (:
) for each key: value pair, or can also be specified inline as a comma-separated list within curly braces.
The key is used as an index for retrieving data from a mapping.

a mapping of items
title: War and Peace
author: Leo Tolstoy
date: 1865
same mapping written inline
{title: War and Peace, author: Leo Tolstoy, date: 1865}

Keys are used to associate meta information with each node and specify the expected node type (scalar,
sequence or mapping).

The Greenplum MapReduce program processes the nodes of a document in order and uses indentation
(spaces) to determine the document hierarchy and the relationships of the nodes to one another. The use
of white space is significant. White space should not be used simply for formatting purposes, and tabs
should not be used at all.

Refer to gpmapreduce.yaml for detailed information about the Greenplum MapReduce configuration file
format and the keys and values supported.

Example Greenplum MapReduce Job
In this example, you create a MapReduce job that processes text documents and reports on the number of
occurrences of certain keywords in each document. The documents and keywords are stored in separate
Greenplum Database tables that you create as part of the exercise.

This example MapReduce job utilizes the untrusted plpythonu language; as such, you must run the job
as a user with Greenplum Database administrative privileges.

1. Log in to the Greenplum Database master host as the gpadmin administrative user and set up your
environment. For example:

$ ssh gpadmin@<gpmaster>
gpadmin@gpmaster$. /usr/local/greenplum-db/greenplum_path.sh

2. Create a new database for the MapReduce example: For example:

gpadmin@gpmaster$ createdb mapredex_db

3. Start the psql subsystem, connecting to the new database:

gpadmin@gpmaster$ psql -d mapredex_db

4. Register the PL/Python language in the database. For example:

mapredex_db=> CREATE EXTENSION plpythonu;

5. Create the documents table and add some data to the table. For example:

CREATE TABLE documents (doc_id int, url text, data text);
INSERT INTO documents VALUES (1, 'http:/url/1', 'this is one document in
 the corpus');

Greenplum Database Administrator Guide Release Notes

441

INSERT INTO documents VALUES (2, 'http:/url/2', 'i am the second document
 in the corpus');
INSERT INTO documents VALUES (3, 'http:/url/3', 'being third never really
 bothered me until now');
INSERT INTO documents VALUES (4, 'http:/url/4', 'the document before me is
 the third document');

6. Create the keywords table and add some data to the table. For example:

CREATE TABLE keywords (keyword_id int, keyword text);
INSERT INTO keywords VALUES (1, 'the');
INSERT INTO keywords VALUES (2, 'document');
INSERT INTO keywords VALUES (3, 'me');
INSERT INTO keywords VALUES (4, 'being');
INSERT INTO keywords VALUES (5, 'now');
INSERT INTO keywords VALUES (6, 'corpus');
INSERT INTO keywords VALUES (7, 'is');
INSERT INTO keywords VALUES (8, 'third');

7. Construct the MapReduce YAML configuration file. For example, open a file named mymrjob.yaml in
the editor of your choice and copy/paste the following large text block:

This example MapReduce job processes documents and looks for keywords in
 them.
It takes two database tables as input:
- documents (doc_id integer, url text, data text)
- keywords (keyword_id integer, keyword text)#
The documents data is searched for occurrences of keywords and returns
 results of
url, data and keyword (a keyword can be multiple words, such as "high
 performance # computing")
%YAML 1.1

VERSION: 1.0.0.2

Connect to Greenplum Database using this database and role
DATABASE: mapredex_db
USER: gpadmin

Begin definition section
DEFINE:

 # Declare the input, which selects all columns and rows from the
 # 'documents' and 'keywords' tables.
 - INPUT:
 NAME: doc
 TABLE: documents
 - INPUT:
 NAME: kw
 TABLE: keywords
 # Define the map functions to extract terms from documents and keyword
 # This example simply splits on white space, but it would be possible
 # to make use of a python library like nltk (the natural language
 toolkit)
 # to perform more complex tokenization and word stemming.
 - MAP:
 NAME: doc_map
 LANGUAGE: python
 FUNCTION: |
 i = 0 # the index of a word within the document
 terms = {}# a hash of terms and their indexes within the document

 # Lower-case and split the text string on space

Greenplum Database Administrator Guide Release Notes

442

 for term in data.lower().split():
 i = i + 1# increment i (the index)

 # Check for the term in the terms list:
 # if stem word already exists, append the i value to the array
 entry
 # corresponding to the term. This counts multiple occurrences of
 the word.
 # If stem word does not exist, add it to the dictionary with
 position i.
 # For example:
 # data: "a computer is a machine that manipulates data"
 # "a" [1, 4]
 # "computer" [2]
 # "machine" [3]
 # …
 if term in terms:
 terms[term] += ','+str(i)
 else:
 terms[term] = str(i)

 # Return multiple lines for each document. Each line consists of
 # the doc_id, a term and the positions in the data where the term
 appeared.
 # For example:
 # (doc_id => 100, term => "a", [1,4]
 # (doc_id => 100, term => "computer", [2]
 # …
 for term in terms:
 yield([doc_id, term, terms[term]])
 OPTIMIZE: STRICT IMMUTABLE
 PARAMETERS:
 - doc_id integer
 - data text
 RETURNS:
 - doc_id integer
 - term text
 - positions text

 # The map function for keywords is almost identical to the one for
 documents
 # but it also counts of the number of terms in the keyword.
 - MAP:
 NAME: kw_map
 LANGUAGE: python
 FUNCTION: |
 i = 0
 terms = {}
 for term in keyword.lower().split():
 i = i + 1
 if term in terms:
 terms[term] += ','+str(i)
 else:
 terms[term] = str(i)

 # output 4 values including i (the total count for term in terms):
 yield([keyword_id, i, term, terms[term]])
 OPTIMIZE: STRICT IMMUTABLE
 PARAMETERS:
 - keyword_id integer
 - keyword text
 RETURNS:
 - keyword_id integer
 - nterms integer

Greenplum Database Administrator Guide Release Notes

443

 - term text
 - positions text

 # A TASK is an object that defines an entire INPUT/MAP/REDUCE stage
 # within a Greenplum MapReduce pipeline. It is like EXECUTION, but it is
 # executed only when called as input to other processing stages.
 # Identify a task called 'doc_prep' which takes in the 'doc' INPUT
 defined earlier
 # and runs the 'doc_map' MAP function which returns doc_id, term,
 [term_position]
 - TASK:
 NAME: doc_prep
 SOURCE: doc
 MAP: doc_map

 # Identify a task called 'kw_prep' which takes in the 'kw' INPUT defined
 earlier
 # and runs the kw_map MAP function which returns kw_id, term,
 [term_position]
 - TASK:
 NAME: kw_prep
 SOURCE: kw
 MAP: kw_map

 # One advantage of Greenplum MapReduce is that MapReduce tasks can be
 # used as input to SQL operations and SQL can be used to process a
 MapReduce task.
 # This INPUT defines a SQL query that joins the output of the
 'doc_prep'
 # TASK to that of the 'kw_prep' TASK. Matching terms are output to the
 'candidate'
 # list (any keyword that shares at least one term with the document).
 - INPUT:
 NAME: term_join
 QUERY: |
 SELECT doc.doc_id, kw.keyword_id, kw.term, kw.nterms,
 doc.positions as doc_positions,
 kw.positions as kw_positions
 FROM doc_prep doc INNER JOIN kw_prep kw ON (doc.term = kw.term)

 # In Greenplum MapReduce, a REDUCE function is comprised of one or more
 functions.
 # A REDUCE has an initial 'state' variable defined for each grouping
 key. that is
 # A TRANSITION function adjusts the state for every value in a key
 grouping.
 # If present, an optional CONSOLIDATE function combines multiple
 # 'state' variables. This allows the TRANSITION function to be executed
 locally at
 # the segment-level and only redistribute the accumulated 'state' over
 # the network. If present, an optional FINALIZE function can be used to
 perform
 # final computation on a state and emit one or more rows of output from
 the state.
 #
 # This REDUCE function is called 'term_reducer' with a TRANSITION
 function
 # called 'term_transition' and a FINALIZE function called
 'term_finalizer'
 - REDUCE:
 NAME: term_reducer
 TRANSITION: term_transition
 FINALIZE: term_finalizer

Greenplum Database Administrator Guide Release Notes

444

 - TRANSITION:
 NAME: term_transition
 LANGUAGE: python
 PARAMETERS:
 - state text
 - term text
 - nterms integer
 - doc_positions text
 - kw_positions text
 FUNCTION: |

 # 'state' has an initial value of '' and is a colon delimited set
 # of keyword positions. keyword positions are comma delimited sets
 of
 # integers. For example, '1,3,2:4:'
 # If there is an existing state, split it into the set of keyword
 positions
 # otherwise construct a set of 'nterms' keyword positions - all
 empty
 if state:
 kw_split = state.split(':')
 else:
 kw_split = []
 for i in range(0,nterms):
 kw_split.append('')

 # 'kw_positions' is a comma delimited field of integers indicating
 what
 # position a single term occurs within a given keyword.
 # Splitting based on ',' converts the string into a python list.
 # add doc_positions for the current term
 for kw_p in kw_positions.split(','):
 kw_split[int(kw_p)-1] = doc_positions

 # This section takes each element in the 'kw_split' array and
 strings
 # them together placing a ':' in between each element from the
 array.
 # For example: for the keyword "computer software computer
 hardware",
 # the 'kw_split' array matched up to the document data of
 # "in the business of computer software software engineers"
 # would look like: ['5', '6,7', '5', '']
 # and the outstate would look like: 5:6,7:5:
 outstate = kw_split[0]
 for s in kw_split[1:]:
 outstate = outstate + ':' + s
 return outstate

 - FINALIZE:
 NAME: term_finalizer
 LANGUAGE: python
 RETURNS:
 - count integer
 MODE: MULTI
 FUNCTION: |
 if not state:
 yield 0
 kw_split = state.split(':')

 # This function does the following:
 # 1) Splits 'kw_split' on ':'
 # for example, 1,5,7:2,8 creates '1,5,7' and '2,8'

Greenplum Database Administrator Guide Release Notes

445

 # 2) For each group of positions in 'kw_split', splits the set on
 ','
 # to create ['1','5','7'] from Set 0: 1,5,7 and
 # eventually ['2', '8'] from Set 1: 2,8
 # 3) Checks for empty strings
 # 4) Adjusts the split sets by subtracting the position of the
 set
 # in the 'kw_split' array
 # ['1','5','7'] - 0 from each element = ['1','5','7']
 # ['2', '8'] - 1 from each element = ['1', '7']
 # 5) Resulting arrays after subtracting the offset in step 4 are
 # intersected and their overlapping values kept:
 # ['1','5','7'].intersect['1', '7'] = [1,7]
 # 6) Determines the length of the intersection, which is the
 number of
 # times that an entire keyword (with all its pieces) matches in
 the
 # document data.
 previous = None
 for i in range(0,len(kw_split)):
 isplit = kw_split[i].split(',')
 if any(map(lambda(x): x == '', isplit)):
 yield 0
 adjusted = set(map(lambda(x): int(x)-i, isplit))
 if (previous):
 previous = adjusted.intersection(previous)
 else:
 previous = adjusted

 # return the final count
 if previous:
 yield len(previous)

 # Define the 'term_match' task which is then executed as part
 # of the 'final_output' query. It takes the INPUT 'term_join' defined
 # earlier and uses the REDUCE function 'term_reducer' defined earlier
 - TASK:
 NAME: term_match
 SOURCE: term_join
 REDUCE: term_reducer
 - INPUT:
 NAME: final_output
 QUERY: |
 SELECT doc.*, kw.*, tm.count
 FROM documents doc, keywords kw, term_match tm
 WHERE doc.doc_id = tm.doc_id
 AND kw.keyword_id = tm.keyword_id
 AND tm.count > 0

Execute this MapReduce job and send output to STDOUT
EXECUTE:
 - RUN:
 SOURCE: final_output
 TARGET: STDOUT

8. Save the file and exit the editor.
9. Run the MapReduce job. For example:

gpadmin@gpmaster$ gpmapreduce -f mymrjob.yaml

The job displays the number of occurrences of each keyword in each document to stdout.

Greenplum Database Administrator Guide Release Notes

446

Flow Diagram for MapReduce Example

The following diagram shows the job flow of the MapReduce job defined in the example:

Greenplum Database Administrator Guide Release Notes

447

Query Performance
Greenplum Database dynamically eliminates irrelevant partitions in a table and optimally allocates memory
for different operators in a query. These enhancements scan less data for a query, accelerate query
processing, and support more concurrency.

• Dynamic Partition Elimination

In Greenplum Database, values available only when a query runs are used to dynamically prune
partitions, which improves query processing speed. Enable or disable dynamic partition elimination by
setting the server configuration parameter gp_dynamic_partition_pruning to ON or OFF; it is ON
by default.

• Memory Optimizations

Greenplum Database allocates memory optimally for different operators in a query and frees and re-
allocates memory during the stages of processing a query.

Note: Greenplum Database uses GPORCA, the Greenplum next generation query optimizer, by
default. GPORCA extends the planning and optimization capabilities of the Postgres optimizer. For
information about the features and limitations of GPORCA, see Overview of GPORCA.

Managing Spill Files Generated by Queries
Greenplum Database creates spill files, also known as workfiles, on disk if it does not have sufficient
memory to execute an SQL query in memory.
The maximum number of spill files for a given query is governed by the
gp_workfile_limit_files_per_query server configuration parameter setting. The default value of
100,000 spill files is sufficient for the majority of queries.

If a query creates more than the configured number of spill files, Greenplum Database returns this error:

ERROR: number of workfiles per query limit exceeded

Greenplum Database may generate a large number of spill files when:

• Data skew is present in the queried data. To check for data skew, see Checking for Data Distribution
Skew.

• The amount of memory allocated for the query is too low. You control the maximum amount of
memory that can be used by a query with the Greenplum Database server configuration parameters
max_statement_mem and statement_mem, or through resource group or resource queue
configuration.

You might be able to run the query successfully by changing the query, changing the data distribution, or
changing the system memory configuration. The gp_toolkit gp_workfile_* views display spill file usage
information. You can use this information to troubleshoot and tune queries. The gp_workfile_* views are
described in Checking Query Disk Spill Space Usage.

Additional documentation resources:

• Memory Consumption Parameters identifies the memory-related spill file server configuration
parameters.

• Using Resource Groups describes memory and spill considerations when resource group-based
resource management is active.

• Using Resource Queues describes memory and spill considerations when resource queue-based
resource management is active.

Query Profiling
Examine the query plans of poorly performing queries to identify possible performance tuning
opportunities.

Greenplum Database Administrator Guide Release Notes

448

Greenplum Database devises a query plan for each query. Choosing the right query plan to match the
query and data structure is necessary for good performance. A query plan defines how Greenplum
Database will run the query in the parallel execution environment.

The query optimizer uses data statistics maintained by the database to choose a query plan with the lowest
possible cost. Cost is measured in disk I/O, shown as units of disk page fetches. The goal is to minimize
the total execution cost for the plan.

View the plan for a given query with the EXPLAIN command. EXPLAIN shows the query optimizer's
estimated cost for the query plan. For example:

EXPLAIN SELECT * FROM names WHERE id=22;

EXPLAIN ANALYZE runs the statement in addition to displaying its plan. This is useful for determining how
close the optimizer's estimates are to reality. For example:

EXPLAIN ANALYZE SELECT * FROM names WHERE id=22;

Note: In Greenplum Database, the default GPORCA optimizer co-exists with the Postgres Planner.
The EXPLAIN output generated by GPORCA is different than the output generated by the Postgres
Planner.

By default, Greenplum Database uses GPORCA to generate an execution plan for a query when
possible.

When the EXPLAIN ANALYZE command uses GPORCA, the EXPLAIN plan shows only the
number of partitions that are being eliminated. The scanned partitions are not shown. To show
name of the scanned partitions in the segment logs set the server configuration parameter
gp_log_dynamic_partition_pruning to on. This example SET command enables the
parameter.

SET gp_log_dynamic_partition_pruning = on;

For information about GPORCA, see Querying Data.

Reading EXPLAIN Output
A query plan is a tree of nodes. Each node in the plan represents a single operation, such as a table scan,
join, aggregation, or sort.

Read plans from the bottom to the top: each node feeds rows into the node directly above it. The bottom
nodes of a plan are usually table scan operations: sequential, index, or bitmap index scans. If the query
requires joins, aggregations, sorts, or other operations on the rows, there are additional nodes above
the scan nodes to perform these operations. The topmost plan nodes are usually Greenplum Database
motion nodes: redistribute, explicit redistribute, broadcast, or gather motions. These operations move rows
between segment instances during query processing.

The output of EXPLAIN has one line for each node in the plan tree and shows the basic node type and the
following execution cost estimates for that plan node:

• cost —Measured in units of disk page fetches. 1.0 equals one sequential disk page read. The first
estimate is the start-up cost of getting the first row and the second is the total cost of cost of getting
all rows. The total cost assumes all rows will be retrieved, which is not always true; for example, if the
query uses LIMIT, not all rows are retrieved.

Note: The cost values generated by the Pivotal Query Optimizer and the Postgres Planner
are not directly comparable. The two optimizers use different cost models, as well as different
algorithms, to determine the cost of an execution plan. Nothing can or should be inferred by
comparing cost values between the two optimizers.

Greenplum Database Administrator Guide Release Notes

449

In addition, the cost generated for any given optimizer is valid only for comparing plan
alternatives for a given single query and set of statistics. Different queries can generate plans
with different costs, even when keeping the optimizer a constant.

To summarize, the cost is essentially an internal number used by a given optimizer, and nothing
should be inferred by examining only the cost value displayed in the EXPLAIN plans.

• rows —The total number of rows output by this plan node. This number is usually less than the number
of rows processed or scanned by the plan node, reflecting the estimated selectivity of any WHERE
clause conditions. Ideally, the estimate for the topmost node approximates the number of rows that the
query actually returns, updates, or deletes.

• width —The total bytes of all the rows that this plan node outputs.

Note the following:

• The cost of a node includes the cost of its child nodes. The topmost plan node has the estimated total
execution cost for the plan. This is the number the optimizer intends to minimize.

• The cost reflects only the aspects of plan execution that the query optimizer takes into consideration.
For example, the cost does not reflect time spent transmitting result rows to the client.

EXPLAIN Example

The following example describes how to read an EXPLAIN query plan for a query:

EXPLAIN SELECT * FROM names WHERE name = 'Joelle';
 QUERY PLAN
--
Gather Motion 2:1 (slice1) (cost=0.00..20.88 rows=1 width=13)

 -> Seq Scan on 'names' (cost=0.00..20.88 rows=1 width=13)
 Filter: name::text ~~ 'Joelle'::text

Read the plan from the bottom to the top. To start, the query optimizer sequentially scans the names
table. Notice the WHERE clause is applied as a filter condition. This means the scan operation checks the
condition for each row it scans and outputs only the rows that satisfy the condition.

The results of the scan operation are passed to a gather motion operation. In Greenplum Database, a
gather motion is when segments send rows to the master. In this example, we have two segment instances
that send to one master instance. This operation is working on slice1 of the parallel query execution
plan. A query plan is divided into slices so the segments can work on portions of the query plan in parallel.

The estimated startup cost for this plan is 00.00 (no cost) and a total cost of 20.88 disk page fetches.
The optimizer estimates this query will return one row.

Reading EXPLAIN ANALYZE Output
EXPLAIN ANALYZE plans and runs the statement. The EXPLAIN ANALYZE plan shows the actual
execution cost along with the optimizer's estimates. This allows you to see if the optimizer's estimates are
close to reality. EXPLAIN ANALYZE also shows the following:

• The total runtime (in milliseconds) in which the query executed.
• The memory used by each slice of the query plan, as well as the memory reserved for the whole query

statement.
• The number of workers (segments) involved in a plan node operation. Only segments that return rows

are counted.
• The maximum number of rows returned by the segment that produced the most rows for the operation.

If multiple segments produce an equal number of rows, EXPLAIN ANALYZE shows the segment with
the longest <time> to end.

• The segment id of the segment that produced the most rows for an operation.

Greenplum Database Administrator Guide Release Notes

450

• For relevant operations, the amount of memory (work_mem) used by the operation. If the work_mem
was insufficient to perform the operation in memory, the plan shows the amount of data spilled to disk
for the lowest-performing segment. For example:

Work_mem used: 64K bytes avg, 64K bytes max (seg0).
Work_mem wanted: 90K bytes avg, 90K byes max (seg0) to lessen
workfile I/O affecting 2 workers.

• The time (in milliseconds) in which the segment that produced the most rows retrieved the first row, and
the time taken for that segment to retrieve all rows. The result may omit <time> to first row if it is the
same as the <time> to end.

EXPLAIN ANALYZE Examples

This example describes how to read an EXPLAIN ANALYZE query plan using the same query. The bold
parts of the plan show actual timing and rows returned for each plan node, as well as memory and time
statistics for the whole query.

EXPLAIN ANALYZE SELECT * FROM names WHERE name = 'Joelle';
 QUERY PLAN
--
Gather Motion 2:1 (slice1; segments: 2) (cost=0.00..20.88 rows=1 width=13)
 Rows out: 1 rows at destination with 0.305 ms to first row, 0.537 ms to
 end, start offset by 0.289 ms.
 -> Seq Scan on names (cost=0.00..20.88 rows=1 width=13)
 Rows out: Avg 1 rows x 2 workers. Max 1 rows (seg0) with 0.255
 ms to first row, 0.486 ms to end, start offset by 0.968 ms.
 Filter: name = 'Joelle'::text
 Slice statistics:

 (slice0) Executor memory: 135K bytes.

 (slice1) Executor memory: 151K bytes avg x 2 workers, 151K bytes max
 (seg0).

Statement statistics:
 Memory used: 128000K bytes
 Total runtime: 22.548 ms

Read the plan from the bottom to the top. The total elapsed time to run this query was 22.548 milliseconds.

The sequential scan operation had only one segment (seg0) that returned rows, and it returned just 1
row. It took 0.255 milliseconds to find the first row and 0.486 to scan all rows. This result is close to the
optimizer's estimate: the query optimizer estimated it would return one row for this query. The gather
motion (segments sending data to the master) received 1 row . The total elapsed time for this operation
was 0.537 milliseconds.

Determining the Query Optimizer

You can view EXPLAIN output to determine if GPORCA is enabled for the query plan and whether
GPORCA or the Postgres Planner generated the explain plan. The information appears at the end of
the EXPLAIN output. The Settings line displays the setting of the server configuration parameter
OPTIMIZER. The Optimizer status line displays whether GPORCA or the Postgres Planner generated
the explain plan.

For these two example query plans, GPORCA is enabled, the server configuration parameter OPTIMIZER
is on. For the first plan, GPORCA generated the EXPLAIN plan. For the second plan, Greenplum
Database fell back to the Postgres Planner to generate the query plan.

 QUERY PLAN
--

Greenplum Database Administrator Guide Release Notes

451

 Aggregate (cost=0.00..296.14 rows=1 width=8)
 -> Gather Motion 2:1 (slice1; segments: 2) (cost=0.00..295.10 rows=1
 width=8)
 -> Aggregate (cost=0.00..294.10 rows=1 width=8)
 -> Seq Scan on part (cost=0.00..97.69 rows=100040 width=1)
 Settings: optimizer=on
 Optimizer status: Pivotal Optimizer (GPORCA) version 1.584
(5 rows)

explain select count(*) from part;

 QUERY PLAN
--
 Aggregate (cost=3519.05..3519.06 rows=1 width=8)
 -> Gather Motion 2:1 (slice1; segments: 2) (cost=3518.99..3519.03
 rows=1 width=8)
 -> Aggregate (cost=3518.99..3519.00 rows=1 width=8)
 -> Seq Scan on part (cost=0.00..3018.79 rows=100040
 width=1)
 Settings: optimizer=on
 Optimizer status: Postgres query optimizer
(5 rows)

For this query, the server configuration parameter OPTIMIZER is off.

explain select count(*) from part;

 QUERY PLAN
--
 Aggregate (cost=3519.05..3519.06 rows=1 width=8)
 -> Gather Motion 2:1 (slice1; segments: 2) (cost=3518.99..3519.03
 rows=1 width=8)
 -> Aggregate (cost=3518.99..3519.00 rows=1 width=8)
 -> Seq Scan on part (cost=0.00..3018.79 rows=100040
 width=1)
 Settings: optimizer=off
 Optimizer status: Postgres query optimizer
(5 rows)

Examining Query Plans to Solve Problems
If a query performs poorly, examine its query plan and ask the following questions:

• Do operations in the plan take an exceptionally long time? Look for an operation consumes the
majority of query processing time. For example, if an index scan takes longer than expected, the index
could be out-of-date and need to be reindexed. Or, adjust enable_<operator> parameters to see
if you can force the Postgres Planner to choose a different plan by disabling a particular query plan
operator for that query.

• Does the query planning time exceed query execution time? When the query involves many table
joins, the Postgres Planner uses a dynamic algorithm to plan the query that is in part based on the
number of table joins. You can reduce the amount of time that the Postgres Planner spends planning
the query by setting the join_collapse_limit and from_collapse_limit server configuration
parameters to a smaller value, such as 8. Note that while smaller values reduce planning time, they
may also yield inferior query plans.

• Are the optimizer's estimates close to reality? Run EXPLAIN ANALYZE and see if the number of
rows the optimizer estimates is close to the number of rows the query operation actually returns. If there
is a large discrepancy, collect more statistics on the relevant columns.

See the Greenplum Database Reference Guide for more information on the EXPLAIN ANALYZE and
ANALYZE commands.

Greenplum Database Administrator Guide Release Notes

452

• Are selective predicates applied early in the plan? Apply the most selective filters early in the plan
so fewer rows move up the plan tree. If the query plan does not correctly estimate query predicate
selectivity, collect more statistics on the relevant columns. See the ANALYZE command in the
Greenplum Database Reference Guide for more information collecting statistics. You can also try
reordering the WHERE clause of your SQL statement.

• Does the optimizer choose the best join order? When you have a query that joins multiple tables,
make sure that the optimizer chooses the most selective join order. Joins that eliminate the largest
number of rows should be done earlier in the plan so fewer rows move up the plan tree.

If the plan is not choosing the optimal join order, set join_collapse_limit=1 and use explicit JOIN
syntax in your SQL statement to force the Postgres Planner to the specified join order. You can also
collect more statistics on the relevant join columns.

See the ANALYZE command in the Greenplum Database Reference Guide for more information
collecting statistics.

• Does the optimizer selectively scan partitioned tables? If you use table partitioning, is the optimizer
selectively scanning only the child tables required to satisfy the query predicates? Scans of the parent
tables should return 0 rows since the parent tables do not contain any data. See Verifying Your Partition
Strategy for an example of a query plan that shows a selective partition scan.

• Does the optimizer choose hash aggregate and hash join operations where applicable? Hash
operations are typically much faster than other types of joins or aggregations. Row comparison and
sorting is done in memory rather than reading/writing from disk. To enable the query optimizer to
choose hash operations, there must be sufficient memory available to hold the estimated number of
rows. Try increasing work memory to improve performance for a query. If possible, run an EXPLAIN
ANALYZE for the query to show which plan operations spilled to disk, how much work memory they
used, and how much memory was required to avoid spilling to disk. For example:

Work_mem used: 23430K bytes avg, 23430K bytes max (seg0). Work_mem wanted:
33649K bytes avg, 33649K bytes max (seg0) to lessen workfile I/O affecting 2
workers.

The "bytes wanted" message from EXPLAIN ANALYZE is based on the amount of data written to work
files and is not exact. The minimum work_mem needed can differ from the suggested value.

Greenplum Database Administrator Guide Release Notes

453

Working with External Data
Both external and foreign tables provide access to data stored in data sources outside of Greenplum
Database as if the data were stored in regular database tables. You can read data from and write data to
external and foreign tables.

An external table is a Greenplum Database table backed with data that resides outside of the database.
You create a readable external table to read data from the external data source and create a writable
external table to write data to the external source. You can use external tables in SQL commands just as
you would a regular database table. For example, you can SELECT (readable external table), INSERT
(writable external table), and join external tables with other Greenplum tables. External tables are most
often used to load and unload database data. Refer to Defining External Tables for more information about
using external tables to access external data.

Accessing External Data with PXF describes using PXF and external tables to access external data
sources.

A foreign table is a different kind of Greenplum Database table backed with data that resides outside of the
database. You can both read from and write to the same foreign table. You can similarly use foreign tables
in SQL commands as described above for external tables. Refer to Accessing External Data with Foreign
Tables for more information about accessing external data using foreign tables.

Web-based external tables provide access to data served by an HTTP server or an operating system
process. See Creating and Using External Web Tables for more about web-based tables.

Accessing External Data with PXF
Data managed by your organization may already reside in external sources such as Hadoop, object stores,
and other SQL databases. The Greenplum Platform Extension Framework (PXF) provides access to this
external data via built-in connectors that map an external data source to a Greenplum Database table
definition.

PXF is installed with Hadoop and Object Storage connectors. These connectors enable you to read
external data stored in text, Avro, JSON, RCFile, Parquet, SequenceFile, and ORC formats. You can use
the JDBC connector to access an external SQL database.

Note: In previous versions of Greenplum Database, you may have used the gphdfs external table
protocol to access data stored in Hadoop. Greenplum Database version 6.0.0 removes the gphdfs
protocol. Use PXF and the pxf external table protocol to access Hadoop in Greenplum Database
version 6.x.

The Greenplum Platform Extension Framework includes a C-language extension and a Java service.
After you configure and initialize PXF, you start a single PXF JVM process on each Greenplum Database
segment host. This long- running process concurrently serves multiple query requests.

For detailed information about the architecture of and using PXF, refer to the Greenplum Platform
Extension Framework (PXF) documentation.

Defining External Tables
External tables enable accessing external data as if it were a regular database table. They are often used
to move data into and out of a Greenplum database.

To create an external table definition, you specify the format of your input files and the location of your
external data sources. For information about input file formats, see Formatting Data Files.

Use one of the following protocols to access external table data sources. You cannot mix protocols in
CREATE EXTERNAL TABLE statements:

../../../pxf/5-15/overview_pxf.html
../../../pxf/5-15/overview_pxf.html

Greenplum Database Administrator Guide Release Notes

454

• file:// accesses external data files on segment hosts that the Greenplum Database superuser
(gpadmin) can access. See file:// Protocol.

• gpfdist:// points to a directory on the file host and serves external data files to all Greenplum
Database segments in parallel. See gpfdist:// Protocol.

• gpfdists:// is the secure version of gpfdist. See gpfdists:// Protocol.
• The pxf:// protocol accesses object store systems (Azure, Google Cloud Storage, Minio, S3),

external Hadoop systems (HDFS, Hive, HBase), and SQL databases using the Greenplum Platform
Extension Framework (PXF). See pxf:// Protocol.

• s3:// accesses files in an Amazon S3 bucket. See s3:// Protocol.

The pxf:// and s3:// protocols are custom data access protocols, where the file://, gpfdist://,
and gpfdists:// protocols are implemented internally in Greenplum Database. The custom and internal
protocols differ in these ways:

• pxf:// and s3:// are custom protocols that must be registered using the CREATE EXTENSION
command (pxf) or the CREATE PROTOCOL command (s3). Registering the PXF extension in a
database creates the pxf protocol. (See Accessing External Data with PXF.) To use the s3 protocol,
you must configure the database and register the s3 protocol. (See Configuring and Using S3 External
Tables.) Internal protocols are always present and cannot be unregistered.

• When a custom protocol is registered, a row is added to the pg_extprotocol catalog table to
specify the handler functions that implement the protocol. The protocol's shared libraries must have
been installed on all Greenplum Database hosts. The internal protocols are not represented in the
pg_extprotocol table and have no additional libraries to install.

• To grant users permissions on custom protocols, you use GRANT [SELECT | INSERT | ALL] ON
PROTOCOL. To allow (or deny) users permissions on the internal protocols, you use CREATE ROLE or
ALTER ROLE to add the CREATEEXTTABLE (or NOCREATEEXTTABLE) attribute to each user's role.

External tables access external files from within the database as if they are regular database tables.
External tables defined with the gpfdist/gpfdists, pxf, and s3 protocols utilize Greenplum parallelism
by using the resources of all Greenplum Database segments to load or unload data. The pxf protocol
leverages the parallel architecture of the Hadoop Distributed File System to access files on that system.
The s3 protocol utilizes the Amazon Web Services (AWS) capabilities.

You can query external table data directly and in parallel using SQL commands such as SELECT, JOIN, or
SORT EXTERNAL TABLE DATA, and you can create views for external tables.

The steps for using external tables are:

1. Define the external table.

To use the pxf or s3 protocol, you must also configure Greenplum Database and enable the protocol.
See pxf:// Protocol or s3:// Protocol.

2. Do one of the following:

• Start the Greenplum Database file server(s) when using the gpfdist or gpdists protocols.
• Verify the configuration for the PXF service and start the service.
• Verify the Greenplum Database configuration for the s3 protocol.

3. Place the data files in the correct locations.
4. Query the external table with SQL commands.

Greenplum Database provides readable and writable external tables:

• Readable external tables for data loading. Readable external tables support:

• Basic extraction, transformation, and loading (ETL) tasks common in data warehousing
• Reading external table data in parallel from multiple Greenplum database segment instances, to

optimize large load operations
• Filter pushdown. If a query contains a WHERE clause, it may be passed to the external data source.

Refer to the gp_external_enable_filter_pushdown server configuration parameter discussion for

Greenplum Database Administrator Guide Release Notes

455

more information. Note that this feature is currently supported only with the pxf protocol (see pxf://
Protocol).

Readable external tables allow only SELECT operations.
• Writable external tables for data unloading. Writable external tables support:

• Selecting data from database tables to insert into the writable external table
• Sending data to an application as a stream of data. For example, unload data from Greenplum

Database and send it to an application that connects to another database or ETL tool to load the
data elsewhere

• Receiving output from Greenplum parallel MapReduce calculations.

Writable external tables allow only INSERT operations.

External tables can be file-based or web-based. External tables using the file:// protocol are read-only
tables.

• Regular (file-based) external tables access static flat files. Regular external tables are rescannable: the
data is static while the query runs.

• Web (web-based) external tables access dynamic data sources, either on a web server with the
http:// protocol or by executing OS commands or scripts. External web tables are not rescannable:
the data can change while the query runs.

Greenplum Database backup and restore operations back up and restore only external and external web
table definitions, not the data source data.

file:// Protocol
The file:// protocol is used in a URI that specifies the location of an operating system file.

The URI includes the host name, port, and path to the file. Each file must reside on a segment host in a
location accessible by the Greenplum Database superuser (gpadmin). The host name used in the URI
must match a segment host name registered in the gp_segment_configuration system catalog table.

The LOCATION clause can have multiple URIs, as shown in this example:

CREATE EXTERNAL TABLE ext_expenses (
 name text, date date, amount float4, category text, desc1 text)
LOCATION ('file://host1:5432/data/expense/*.csv',
 'file://host2:5432/data/expense/*.csv',
 'file://host3:5432/data/expense/*.csv')
FORMAT 'CSV' (HEADER);

The number of URIs you specify in the LOCATION clause is the number of segment instances that will
work in parallel to access the external table. For each URI, Greenplum assigns a primary segment on
the specified host to the file. For maximum parallelism when loading data, divide the data into as many
equally sized files as you have primary segments. This ensures that all segments participate in the load.
The number of external files per segment host cannot exceed the number of primary segment instances on
that host. For example, if your array has four primary segment instances per segment host, you can place
four external files on each segment host. Tables based on the file:// protocol can only be readable
tables.

The system view pg_max_external_files shows how many external table files are permitted
per external table. This view lists the available file slots per segment host when using the file://
protocol. The view is only applicable for the file:// protocol. For example:

SELECT * FROM pg_max_external_files;

Greenplum Database Administrator Guide Release Notes

456

gpfdist:// Protocol
The gpfdist:// protocol is used in a URI to reference a running gpfdist instance.

The gpfdist utility serves external data files from a directory on a file host to all Greenplum Database
segments in parallel.

gpfdist is located in the $GPHOME/bin directory on your Greenplum Database master host and on each
segment host.

Run gpfdist on the host where the external data files reside. For readable external tables, gpfdist
uncompresses gzip (.gz) and bzip2 (.bz2) files automatically. For writable external tables, data is
compressed using gzip if the target file has a .gz extension. You can use the wildcard character (*)
or other C-style pattern matching to denote multiple files to read. The files specified are assumed to be
relative to the directory that you specified when you started the gpfdist instance.

Note: Compression is not supported for readable and writeable external tables when the gpfdist
utility runs on Windows platforms.

All primary segments access the external file(s) in parallel, subject to the number of segments set in the
gp_external_max_segments server configuration parameter. Use multiple gpfdist data sources in a
CREATE EXTERNAL TABLE statement to scale the external table's scan performance.

gpfdist supports data transformations. You can write a transformation process to convert external data
from or to a format that is not directly supported with Greenplum Database external tables.

For more information about configuring gpfdist, see Using the Greenplum Parallel File Server (gpfdist).

See the gpfdist reference documentation for more information about using gpfdist with external
tables.

gpfdists:// Protocol
The gpfdists:// protocol is a secure version of the gpfdist:// protocol.

To use it, you run the gpfdist utility with the --ssl option. When specified in a URI, the gpfdists://
protocol enables encrypted communication and secure identification of the file server and the Greenplum
Database to protect against attacks such as eavesdropping and man-in-the-middle attacks.

gpfdists implements SSL security in a client/server scheme with the following attributes and limitations:

• Client certificates are required.
• Multilingual certificates are not supported.
• A Certificate Revocation List (CRL) is not supported.
• The TLSv1 protocol is used with the TLS_RSA_WITH_AES_128_CBC_SHA encryption algorithm.
• SSL parameters cannot be changed.
• SSL renegotiation is supported.
• The SSL ignore host mismatch parameter is set to false.
• Private keys containing a passphrase are not supported for the gpfdist file server (server.key) and for

the Greenplum Database (client.key).
• Issuing certificates that are appropriate for the operating system in use is the user's responsibility.

Generally, converting certificates as shown in https://www.sslshopper.com/ssl-converter.html is
supported.

Note: A server started with the gpfdist --ssl option can only communicate with the
gpfdists protocol. A server that was started with gpfdist without the --ssl option can only
communicate with the gpfdist protocol.

• The client certificate file, client.crt
• The client private key file, client.key

Use one of the following methods to invoke the gpfdists protocol.

https://www.sslshopper.com/ssl-converter.html

Greenplum Database Administrator Guide Release Notes

457

• Run gpfdist with the --ssl option and then use the gpfdists protocol in the LOCATION clause of a
CREATE EXTERNAL TABLE statement.

• Use a gpload YAML control file with the SSL option set to true. Running gpload starts the gpfdist
server with the --ssl option, then uses the gpfdists protocol.

Using gpfdists requires that the following client certificates reside in the $PGDATA/gpfdists directory
on each segment.

• The client certificate file, client.crt
• The client private key file, client.key
• The trusted certificate authorities, root.crt

For an example of loading data into an external table security, see Example 3—Multiple gpfdists instances
.

The server configuration parameter verify_gpfdists_cert controls whether SSL certificate
authentication is enabled when Greenplum Database communicates with the gpfdist utility to either read
data from or write data to an external data source. You can set the parameter value to false to disable
authentication when testing the communication between the Greenplum Database external table and the
gpfdist utility that is serving the external data. If the value is false, these SSL exceptions are ignored:

• The self-signed SSL certificate that is used by gpfdist is not trusted by Greenplum Database.
• The host name contained in the SSL certificate does not match the host name that is running gpfdist.

Warning: Disabling SSL certificate authentication exposes a security risk by not validating the
gpfdists SSL certificate.

pxf:// Protocol
You can use the Greenplum Platform Extension Framework (PXF) pxf:// protocol to access data
residing in object store systems (Azure, Google Cloud Storage, Minio, S3), external Hadoop systems
(HDFS, Hive, HBase), and SQL databases.

The PXF pxf protocol is packaged as a Greenplum Database extension. The pxf protocol supports
reading from external data stores. You can also write text, binary, and parquet-format data with the pxf
protocol.

When you use the pxf protocol to query an external data store, you specify the directory, file, or table that
you want to access. PXF requests the data from the data store and delivers the relevant portions in parallel
to each Greenplum Database segment instance serving the query.

You must explicitly initialize and start PXF before you can use the pxf protocol to read or write external
data. You must also enable PXF in each database in which you want to allow users to create external
tables to access external data, and grant permissions on the pxf protocol to those Greenplum Database
users.

For detailed information about configuring and using PXF and the pxf protocol, refer to Accessing External
Data with PXF.

s3:// Protocol
The s3 protocol is used in a URL that specifies the location of an Amazon S3 bucket and a prefix to use for
reading or writing files in the bucket.

Amazon Simple Storage Service (Amazon S3) provides secure, durable, highly-scalable object storage.
For information about Amazon S3, see Amazon S3.

You can define read-only external tables that use existing data files in the S3 bucket for table data, or
writable external tables that store the data from INSERT operations to files in the S3 bucket. Greenplum
Database uses the S3 URL and prefix specified in the protocol URL either to select one or more files for a
read-only table, or to define the location and filename format to use when uploading S3 files for INSERT
operations to writable tables.

https://aws.amazon.com/s3/

Greenplum Database Administrator Guide Release Notes

458

The s3 protocol also supports Dell EMC Elastic Cloud Storage (ECS), an Amazon S3 compatible service.

Note: The pxf protocol can access data in S3 and other object store systems such as Azure,
Google Cloud Storage, and Minio. The pxf protocol can also access data in external Hadoop
systems (HDFS, Hive, HBase), and SQL databases. See pxf:// Protocol.

This topic contains the sections:

• Configuring and Using S3 External Tables
• About the S3 Protocol URL
• About S3 Data Files
• s3 Protocol AWS Server-Side Encryption Support
• s3 Protocol Proxy Support
• About the s3 Protocol config Parameter
• s3 Protocol Configuration File
• s3 Protocol Limitations
• Using the gpcheckcloud Utility

Configuring and Using S3 External Tables
Follow these basic steps to configure the S3 protocol and use S3 external tables, using the available links
for more information. See also s3 Protocol Limitations to better understand the capabilities and limitations
of S3 external tables:

1. Configure each database to support the s3 protocol:

a. In each database that will access an S3 bucket with the s3 protocol, create the read and write
functions for the s3 protocol library:

CREATE OR REPLACE FUNCTION write_to_s3() RETURNS integer AS
 '$libdir/gps3ext.so', 's3_export' LANGUAGE C STABLE;

CREATE OR REPLACE FUNCTION read_from_s3() RETURNS integer AS
 '$libdir/gps3ext.so', 's3_import' LANGUAGE C STABLE;

b. In each database that will access an S3 bucket, declare the s3 protocol and specify the read and
write functions you created in the previous step:

CREATE PROTOCOL s3 (writefunc = write_to_s3, readfunc = read_from_s3);

Note: The protocol name s3 must be the same as the protocol of the URL specified for the
external table you create to access an S3 resource.

The corresponding function is called by every Greenplum Database segment instance. All
segment hosts must have access to the S3 bucket.

2. On each Greenplum Database segment, create and install the s3 protocol configuration file:

a. Create a template s3 protocol configuration file using the gpcheckcloud utility:

gpcheckcloud -t > ./mytest_s3.config

b. Edit the template file to specify the accessid and secret required to connect to the S3 location.
See s3 Protocol Configuration File for information about other s3 protocol configuration parameters.

c. Copy the file to the same location and filename for all Greenplum Database segments on all hosts.
The default file location is gpseg_data_dir/gpseg_prefixN/s3/s3.conf. gpseg_data_dir is
the path to the Greenplum Database segment data directory, gpseg_prefix is the segment prefix,
and N is the segment ID. The segment data directory, prefix, and ID are set when you initialize a
Greenplum Database system.

https://www.emc.com/en-us/storage/ecs/index.htm

Greenplum Database Administrator Guide Release Notes

459

If you copy the file to a different location or filename, then you must specify the location with the
config parameter in the s3 protocol URL. See About the s3 Protocol config Parameter.

d. Use the gpcheckcloud utility to validate connectivity to the S3 bucket:

gpcheckcloud -c "s3://<s3-endpoint>/<s3-bucket> config=./
mytest_s3.config"

Specify the correct path to the configuration file for your system, as well as the S3 endpoint name
and bucket that you want to check. gpcheckcloud attempts to connect to the S3 endpoint and lists
any files in the S3 bucket, if available. A successful connection ends with the message:

Your configuration works well.

You can optionally use gpcheckcloud to validate uploading to and downloading from the S3
bucket, as described in Using the gpcheckcloud Utility.

3. After completing the previous steps to create and configure the s3 protocol, you can specify an s3
protocol URL in the CREATE EXTERNAL TABLE command to define S3 external tables. For read-only
S3 tables, the URL defines the location and prefix used to select existing data files that comprise the S3
table. For example:

CREATE READABLE EXTERNAL TABLE S3TBL (date text, time text, amt int)
 LOCATION('s3://s3-us-west-2.amazonaws.com/s3test.example.com/dataset1/
normal/ config=/home/gpadmin/aws_s3/s3.conf')
 FORMAT 'csv';

For writable S3 tables, the protocol URL defines the S3 location in which Greenplum database stores
data files for the table, as well as a prefix to use when creating files for table INSERT operations. For
example:

CREATE WRITABLE EXTERNAL TABLE S3WRIT (LIKE S3TBL)
 LOCATION('s3://s3-us-west-2.amazonaws.com/s3test.example.com/dataset1/
normal/ config=/home/gpadmin/aws_s3/s3.conf')
 FORMAT 'csv';

See About the S3 Protocol URL for more information.

About the S3 Protocol URL
For the s3 protocol, you specify a location for files and an optional configuration file location in the
LOCATION clause of the CREATE EXTERNAL TABLE command. This is the syntax:

's3://S3_endpoint[:port]/bucket_name/[S3_prefix] [region=S3_region]
 [config=config_file_location]'

The s3 protocol requires that you specify the S3 endpoint and S3 bucket name. Each Greenplum
Database segment instance must have access to the S3 location. The optional S3_prefix value is used
to select files for read-only S3 tables, or as a filename prefix to use when uploading files for S3 writable
tables.

Note: The Greenplum Database s3 protocol URL must include the S3 endpoint hostname.

To specify an ECS endpoint (an Amazon S3 compatible service) in the LOCATION clause, you must
set the s3 configuration file parameter version to 2. The version parameter controls whether the
region parameter is used in the LOCATION clause. You can also specify an Amazon S3 location when
the version parameter is 2. For information about version parameter, see s3 Protocol Configuration
File.

Greenplum Database Administrator Guide Release Notes

460

Note: Although the S3_prefix is an optional part of the syntax, you should always include an
S3 prefix for both writable and read-only S3 tables to separate datasets as part of the CREATE
EXTERNAL TABLE syntax.

For writable S3 tables, the s3 protocol URL specifies the endpoint and bucket name where Greenplum
Database uploads data files for the table. The S3 bucket permissions must be Upload/Delete for the S3
user ID that uploads the files. The S3 file prefix is used for each new file uploaded to the S3 location as a
result of inserting data to the table. See About S3 Data Files.

For read-only S3 tables, the S3 file prefix is optional. If you specify an S3_prefix, then the s3 protocol
selects all files that start with the specified prefix as data files for the external table. The s3 protocol does
not use the slash character (/) as a delimiter, so a slash character following a prefix is treated as part of
the prefix itself.

For example, consider the following 5 files that each have the S3_endpoint named s3-us-
west-2.amazonaws.com and the bucket_name test1:

s3://s3-us-west-2.amazonaws.com/test1/abc
s3://s3-us-west-2.amazonaws.com/test1/abc/
s3://s3-us-west-2.amazonaws.com/test1/abc/xx
s3://s3-us-west-2.amazonaws.com/test1/abcdef
s3://s3-us-west-2.amazonaws.com/test1/abcdefff

• If the S3 URL is provided as s3://s3-us-west-2.amazonaws.com/test1/abc, then the abc
prefix selects all 5 files.

• If the S3 URL is provided as s3://s3-us-west-2.amazonaws.com/test1/abc/, then the abc/
prefix selects the files s3://s3-us-west-2.amazonaws.com/test1/abc/ and s3://s3-us-
west-2.amazonaws.com/test1/abc/xx.

• If the S3 URL is provided as s3://s3-us-west-2.amazonaws.com/test1/abcd, then the abcd
prefix selects the files s3://s3-us-west-2.amazonaws.com/test1/abcdef and s3://s3-us-
west-2.amazonaws.com/test1/abcdefff

Wildcard characters are not supported in an S3_prefix; however, the S3 prefix functions as if a wildcard
character immediately followed the prefix itself.

All of the files selected by the S3 URL (S3_endpoint/bucket_name/S3_prefix) are used as the source for
the external table, so they must have the same format. Each file must also contain complete data rows. A
data row cannot be split between files. The S3 file permissions must be Open/Download and View for the
S3 user ID that is accessing the files.

For information about the Amazon S3 endpoints see http://docs.aws.amazon.com/general/latest/gr/
rande.html#s3_region. For information about S3 buckets and folders, see the Amazon S3 documentation
https://aws.amazon.com/documentation/s3/. For information about the S3 file prefix, see the Amazon S3
documentation Listing Keys Hierarchically Using a Prefix and Delimiter.

The config parameter specifies the location of the required s3 protocol configuration file that contains
AWS connection credentials and communication parameters. See About the s3 Protocol config Parameter.

About S3 Data Files
For each INSERT operation to a writable S3 table, each Greenplum Database
segment uploads a single file to the configured S3 bucket using the filename format
<prefix><segment_id><random>.<extension>[.gz] where:

• <prefix> is the prefix specified in the S3 URL.
• <segment_id> is the Greenplum Database segment ID.
• <random> is a random number that is used to ensure that the filename is unique.
• <extension> describes the file type (.txt or .csv, depending on the value you provide in the

FORMAT clause of CREATE WRITABLE EXTERNAL TABLE). Files created by the gpcheckcloud utility
always uses the extension .data.

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://aws.amazon.com/documentation/s3/
http://docs.aws.amazon.com/AmazonS3/latest/dev/ListingKeysHierarchy.html

Greenplum Database Administrator Guide Release Notes

461

• .gz is appended to the filename if compression is enabled for S3 writable tables (the default).

For writable S3 tables, you can configure the buffer size and the number of threads that segments use for
uploading files. See s3 Protocol Configuration File.

For read-only S3 tables, all of the files specified by the S3 file location
(S3_endpoint/bucket_name/S3_prefix) are used as the source for the external table and must have the
same format. Each file must also contain complete data rows. If the files contain an optional header row,
the column names in the header row cannot contain a newline character (\n) or a carriage return (\r).
Also, the column delimiter cannot be a newline character (\n) or a carriage return character (\r).

For read-only S3 tables, the s3 protocol recognizes gzip and deflate compressed files and automatically
decompresses the files. For gzip compression, the protocol recognizes the format of a gzip compressed
file. For deflate compression, the protocol assumes a file with the .deflate suffix is a deflate compressed
file.

The S3 file permissions must be Open/Download and View for the S3 user ID that is accessing the files.
Writable S3 tables require the S3 user ID to have Upload/Delete permissions.

For read-only S3 tables, each segment can download one file at a time from S3 location using several
threads. To take advantage of the parallel processing performed by the Greenplum Database segments,
the files in the S3 location should be similar in size and the number of files should allow for multiple
segments to download the data from the S3 location. For example, if the Greenplum Database system
consists of 16 segments and there was sufficient network bandwidth, creating 16 files in the S3 location
allows each segment to download a file from the S3 location. In contrast, if the location contained only 1 or
2 files, only 1 or 2 segments download data.

s3 Protocol AWS Server-Side Encryption Support
Greenplum Database supports server-side encryption using Amazon S3-managed keys (SSE-S3) for
AWS S3 files you access with readable and writable external tables created using the s3 protocol. SSE-S3
encrypts your object data as it writes to disk, and transparently decrypts the data for you when you access
it.

Note: The s3 protocol supports SSE-S3 only for Amazon Web Services S3 files. SS3-SE is not
supported when accessing files in S3 compatible services.

Your S3 accessid and secret permissions govern your access to all S3 bucket objects, whether the
data is encrypted or not. However, you must configure your client to use S3-managed keys for accessing
encrypted data.

Refer to Protecting Data Using Server-Side Encryption in the AWS documentation for additional
information about AWS Server-Side Encryption.

Configuring S3 Server-Side Encryption

s3 protocol server-side encryption is disabled by default. To take advantage of server-side encryption
on AWS S3 objects you write using the Greenplum Database s3 protocol, you must set the
server_side_encryption configuration parameter in your s3 configuration file to the value sse-s3:

server_side_encryption = sse-s3

When the configuration file you provide to a CREATE WRITABLE EXTERNAL TABLE call using the s3
protocol includes the server_side_encryption = sse-s3 setting, Greenplum Database applies
encryption headers for you on all INSERT operations on that external table. S3 then encrypts on write the
object(s) identified by the URI you provided in the LOCATION clause.

S3 transparently decrypts data during read operations of encrypted files accessed via readable external
tables you create using the s3 protocol. No additional configuration is required.

For further encryption configuration granularity, you may consider creating Amazon Web Services S3
Bucket Policy(s), identifying the objects you want to encrypt and the write actions on those objects as

http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html

Greenplum Database Administrator Guide Release Notes

462

described in the Protecting Data Using Server-Side Encryption with Amazon S3-Managed Encryption Keys
(SSE-S3) AWS documentation.

s3 Protocol Proxy Support
You can specify a URL that is the proxy that S3 uses to connect to a data source. S3 supports these
protocols: HTTP and HTTPS. You can specify a proxy with the s3 protocol configuration parameter proxy
or an environment variable. If the configuration parameter is set, the environment variables are ignored.

To specify proxy with an environment variable, you set the environment variable based on the protocol:
http_proxy or https_proxy. You can specify a different URL for each protocol by setting the
appropriate environment variable. S3 supports these environment variables.

• all_proxy specifies the proxy URL that is used if an environment variable for a specific protocol is not
set.

• no_proxy specifies a comma-separated list of hosts names that do not use the proxy specified by an
environment variable.

The environment variables must be set must and must be accessible to Greenplum Database on all
Greenplum Database hosts.

For information about the configuration parameter proxy, see s3 Protocol Configuration File.

About the s3 Protocol config Parameter
The optional config parameter specifies the location of the required s3 protocol configuration file. The
file contains Amazon Web Services (AWS) connection credentials and communication parameters. For
information about the file, see s3 Protocol Configuration File.

The configuration file is required on all Greenplum Database segment hosts. This is default location is a
location in the data directory of each Greenplum Database segment instance.

gpseg_data_dir/gpseg_prefixN/s3/s3.conf

The gpseg_data_dir is the path to the Greenplum Database segment data directory, the gpseg_prefix is
the segment prefix, and N is the segment ID. The segment data directory, prefix, and ID are set when you
initialize a Greenplum Database system.

If you have multiple segment instances on segment hosts, you can simplify the configuration by creating a
single location on each segment host. Then you specify the absolute path to the location with the config
parameter in the s3 protocol LOCATION clause. This example specifies a location in the gpadmin home
directory.

LOCATION ('s3://s3-us-west-2.amazonaws.com/test/my_data config=/home/
gpadmin/s3.conf')

All segment instances on the hosts use the file /home/gpadmin/s3.conf.

s3 Protocol Configuration File
When using the s3 protocol, an s3 protocol configuration file is required on all Greenplum Database
segments. The default location is:

gpseg_data_dir/gpseg-prefixN/s3/s3.conf

The gpseg_data_dir is the path to the Greenplum Database segment data directory, the gpseg-prefix is
the segment prefix, and N is the segment ID. The segment data directory, prefix, and ID are set when you
initialize a Greenplum Database system.

If you have multiple segment instances on segment hosts, you can simplify the configuration by creating
a single location on each segment host. Then you can specify the absolute path to the location with the

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html

Greenplum Database Administrator Guide Release Notes

463

config parameter in the s3 protocol LOCATION clause. However, note that both read-only and writable
S3 external tables use the same parameter values for their connections. If you want to configure protocol
parameters differently for read-only and writable S3 tables, then you must use two different s3 protocol
configuration files and specify the correct file in the CREATE EXTERNAL TABLE statement when you
create each table.

This example specifies a single file location in the s3 directory of the gpadmin home directory:

config=/home/gpadmin/s3/s3.conf

All segment instances on the hosts use the file /home/gpadmin/s3/s3.conf.

The s3 protocol configuration file is a text file that consists of a [default] section and parameters This is
an example configuration file:

[default]
secret = "secret"
accessid = "user access id"
threadnum = 3
chunksize = 67108864

You can use the Greenplum Database gpcheckcloud utility to test the S3 configuration file. See Using
the gpcheckcloud Utility.

s3 Configuration File Parameters

accessid

Required. AWS S3 ID to access the S3 bucket.

secret

Required. AWS S3 passcode for the S3 ID to access the S3 bucket.

autocompress

For writable S3 external tables, this parameter specifies whether to compress files (using
gzip) before uploading to S3. Files are compressed by default if you do not specify this
parameter.

chunksize

The buffer size that each segment thread uses for reading from or writing to the S3 server.
The default is 64 MB. The minimum is 8MB and the maximum is 128MB.

When inserting data to a writable S3 table, each Greenplum Database segment writes
the data into its buffer (using multiple threads up to the threadnum value) until it is full,
after which it writes the buffer to a file in the S3 bucket. This process is then repeated as
necessary on each segment until the insert operation completes.

Because Amazon S3 allows a maximum of 10,000 parts for multipart uploads, the
minimum chunksize value of 8MB supports a maximum insert size of 80GB per
Greenplum database segment. The maximum chunksize value of 128MB supports a
maximum insert size 1.28TB per segment. For writable S3 tables, you must ensure that
the chunksize setting can support the anticipated table size of your table. See Multipart
Upload Overview in the S3 documentation for more information about uploads to S3.

encryption

Use connections that are secured with Secure Sockets Layer (SSL). Default value is true.
The values true, t, on, yes, and y (case insensitive) are treated as true. Any other
value is treated as false.

If the port is not specified in the URL in the LOCATION clause of the CREATE EXTERNAL
TABLE command, the configuration file encryption parameter affects the port used by

http://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html

Greenplum Database Administrator Guide Release Notes

464

the s3 protocol (port 80 for HTTP or port 443 for HTTPS). If the port is specified, that port
is used regardless of the encryption setting.

gpcheckcloud_newline

When downloading files from an S3 location, the gpcheckcloud utility appends a new
line character to last line of a file if the last line of a file does not have an EOL (end of line)
character. The default character is \n (newline). The value can be \n, \r (carriage return),
or \n\r (newline/carriage return).

Adding an EOL character prevents the last line of one file from being concatenated with
the first line of next file.

low_speed_limit

The upload/download speed lower limit, in bytes per second. The default speed is 10240
(10K). If the upload or download speed is slower than the limit for longer than the time
specified by low_speed_time, then the connection is aborted and retried. After 3 retries,
the s3 protocol returns an error. A value of 0 specifies no lower limit.

low_speed_time

When the connection speed is less than low_speed_limit, this parameter specified the
amount of time, in seconds, to wait before aborting an upload to or a download from the S3
bucket. The default is 60 seconds. A value of 0 specifies no time limit.

proxy

Specify a URL that is the proxy that S3 uses to connect to a data source. S3 supports
these protocols: HTTP and HTTPS. This is the format for the parameter.

proxy = protocol://[user:password@]proxyhost[:port]

If this parameter is not set or is an empty string (proxy = ""), S3 uses the proxy
specified by the environment variable http_proxy or https_proxy (and the
environment variables all_proxy and no_proxy). The environment variable that S3
uses depends on the protocol. For information about the environment variables, see s3
Protocol Proxy Support in the Greenplum Database Administrator Guide.

There can be at most one proxy parameter in the configuration file. The URL specified by
the parameter is the proxy for all supported protocols.

server_side_encryption

The S3 server-side encryption method that has been configured for the bucket. Greenplum
Database supports only server-side encryption with Amazon S3-managed keys, identified
by the configuration parameter value sse-s3. Server-side encryption is disabled (none)
by default.

threadnum

The maximum number of concurrent threads a segment can create when uploading data
to or downloading data from the S3 bucket. The default is 4. The minimum is 1 and the
maximum is 8.

verifycert

Controls how the s3 protocol handles authentication when establishing encrypted
communication between a client and an S3 data source over HTTPS. The value is either
true or false. The default value is true.

• verifycert=false - Ignores authentication errors and allows encrypted
communication over HTTPS.

• verifycert=true - Requires valid authentication (a proper certificate) for encrypted
communication over HTTPS.

Greenplum Database Administrator Guide Release Notes

465

Setting the value to false can be useful in testing and development environments to allow
communication without changing certificates.

Warning: Setting the value to false exposes a security risk by ignoring
invalid credentials when establishing communication between a client and a
S3 data store.

version

Specifies the version of the information specified in the LOCATION clause of the CREATE
EXTERNAL TABLE command. The value is either 1 or 2. The default value is 1.

If the value is 1, the LOCATION clause supports an Amazon S3 URL, and does not contain
the region parameter. If the value is 2, the LOCATION clause supports S3 compatible
services and must include the region parameter. The region parameter specifies
the S3 data source region. For this S3 URL s3://s3-us-west-2.amazonaws.com/
s3test.example.com/dataset1/normal/, the AWS S3 region is us-west-2.

If version is 1 or is not specified, this is an example of the LOCATION clause of the
CREATE EXTERNAL TABLE command that specifies an Amazon S3 endpoint.

LOCATION ('s3://s3-us-west-2.amazonaws.com/s3test.example.com/
dataset1/normal/ config=/home/gpadmin/aws_s3/s3.conf')

If version is 2, this is an example LOCATION clause with the region parameter for an
AWS S3 compatible service.

LOCATION ('s3://test.company.com/s3test.company/test1/normal/
 region=local-test config=/home/gpadmin/aws_s3/s3.conf')

If version is 2, the LOCATION clause can also specify an Amazon S3 endpoint. This
example specifies an Amazon S3 endpoint that uses the region parameter.

LOCATION ('s3://s3-us-west-2.amazonaws.com/s3test.example.com/
dataset1/normal/ region=us-west-2 config=/home/gpadmin/aws_s3/
s3.conf')

Note: Greenplum Database can require up to threadnum * chunksize memory on each
segment host when uploading or downloading S3 files. Consider this s3 protocol memory
requirement when you configure overall Greenplum Database memory.

s3 Protocol Limitations
These are s3 protocol limitations:

• Only the S3 path-style URL is supported.

s3://S3_endpoint/bucketname/[S3_prefix]

• Only the S3 endpoint is supported. The protocol does not support virtual hosting of S3 buckets (binding
a domain name to an S3 bucket).

• AWS signature version 4 signing process is supported.

For information about the S3 endpoints supported by each signing process, see http://
docs.aws.amazon.com/general/latest/gr/rande.html#s3_region.

• Only a single URL and optional configuration file is supported in the LOCATION clause of the CREATE
EXTERNAL TABLE command.

• If the NEWLINE parameter is not specified in the CREATE EXTERNAL TABLE command, the newline
character must be identical in all data files for specific prefix. If the newline character is different in some
data files with the same prefix, read operations on the files might fail.

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Greenplum Database Administrator Guide Release Notes

466

• For writable S3 external tables, only the INSERT operation is supported. UPDATE, DELETE, and
TRUNCATE operations are not supported.

• Because Amazon S3 allows a maximum of 10,000 parts for multipart uploads, the maximum
chunksize value of 128MB supports a maximum insert size of 1.28TB per Greenplum database
segment for writable s3 tables. You must ensure that the chunksize setting can support the
anticipated table size of your table. See Multipart Upload Overview in the S3 documentation for more
information about uploads to S3.

• To take advantage of the parallel processing performed by the Greenplum Database segment
instances, the files in the S3 location for read-only S3 tables should be similar in size and the number
of files should allow for multiple segments to download the data from the S3 location. For example, if
the Greenplum Database system consists of 16 segments and there was sufficient network bandwidth,
creating 16 files in the S3 location allows each segment to download a file from the S3 location. In
contrast, if the location contained only 1 or 2 files, only 1 or 2 segments download data.

Using the gpcheckcloud Utility
The Greenplum Database utility gpcheckcloud helps users create an s3 protocol configuration file
and test a configuration file. You can specify options to test the ability to access an S3 bucket with a
configuration file, and optionally upload data to or download data from files in the bucket.

If you run the utility without any options, it sends a template configuration file to STDOUT. You can capture
the output and create an s3 configuration file to connect to Amazon S3.

The utility is installed in the Greenplum Database $GPHOME/bin directory.

Syntax

gpcheckcloud {-c | -d} "s3://S3_endpoint/bucketname/[S3_prefix]
 [config=path_to_config_file]"

gpcheckcloud -u <file_to_upload> "s3://S3_endpoint/bucketname/[S3_prefix]
 [config=path_to_config_file]"
gpcheckcloud -t

gpcheckcloud -h

Options
-c

Connect to the specified S3 location with the configuration specified in the s3 protocol URL
and return information about the files in the S3 location.

If the connection fails, the utility displays information about failures such as invalid
credentials, prefix, or server address (DNS error), or server not available.

-d

Download data from the specified S3 location with the configuration specified in the s3
protocol URL and send the output to STDOUT.

If files are gzip compressed or have a .deflate suffix to indicate deflate compression,
the uncompressed data is sent to STDOUT.

-u

Upload a file to the S3 bucket specified in the s3 protocol URL using the specified
configuration file if available. Use this option to test compression and chunksize and
autocompress settings for your configuration.

-t

Sends a template configuration file to STDOUT. You can capture the output and create an
s3 configuration file to connect to Amazon S3.

-h

http://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html

Greenplum Database Administrator Guide Release Notes

467

Display gpcheckcloud help.

Examples

This example runs the utility without options to create a template s3 configuration file
mytest_s3.config in the current directory.

gpcheckcloud -t > ./mytest_s3.config

This example attempts to upload a local file, test-data.csv to an S3 bucket location using the s3
configuration file s3.mytestconf:

gpcheckcloud -u ./test-data.csv "s3://s3-us-west-2.amazonaws.com/test1/abc
 config=s3.mytestconf"

A successful upload results in one or more files placed in the S3 bucket using the filename format
abc<segment_id><random>.data[.gz]. See About S3 Data Files.

This example attempts to connect to an S3 bucket location with the s3 configuration file s3.mytestconf.

gpcheckcloud -c "s3://s3-us-west-2.amazonaws.com/test1/abc
 config=s3.mytestconf"

Download all files from the S3 bucket location and send the output to STDOUT.

gpcheckcloud -d "s3://s3-us-west-2.amazonaws.com/test1/abc
 config=s3.mytestconf"

Using a Custom Protocol
A custom protocol allows you to connect Greenplum Database to a data source that cannot be accessed
with the file://, gpfdist://, or pxf:// protocols.

Creating a custom protocol requires that you implement a set of C functions with specified interfaces,
declare the functions in Greenplum Database, and then use the CREATE TRUSTED PROTOCOL command
to enable the protocol in the database.

See Example Custom Data Access Protocol for an example.

Handling Errors in External Table Data
By default, if external table data contains an error, the command fails and no data loads into the target
database table.

Define the external table with single row error handling to enable loading correctly formatted rows and to
isolate data errors in external table data. See Handling Load Errors.

The gpfdist file server uses the HTTP protocol. External table queries that use LIMIT end the
connection after retrieving the rows, causing an HTTP socket error. If you use LIMIT in queries of external
tables that use the gpfdist:// or http:// protocols, ignore these errors – data is returned to the
database as expected.

Creating and Using External Web Tables
External web tables allow Greenplum Database to treat dynamic data sources like regular database tables.
Because web table data can change as a query runs, the data is not rescannable.

CREATE EXTERNAL WEB TABLE creates a web table definition. You can define command-based or URL-
based external web tables. The definition forms are distinct: you cannot mix command-based and URL-
based definitions.

Greenplum Database Administrator Guide Release Notes

468

Command-based External Web Tables

The output of a shell command or script defines command-based web table data. Specify the command in
the EXECUTE clause of CREATE EXTERNAL WEB TABLE. The data is current as of the time the command
runs. The EXECUTE clause runs the shell command or script on the specified master, and/or segment
host or hosts. The command or script must reside on the hosts corresponding to the host(s) defined in the
EXECUTE clause.

By default, the command is run on segment hosts when active segments have output rows to process. For
example, if each segment host runs four primary segment instances that have output rows to process, the
command runs four times per segment host. You can optionally limit the number of segment instances that
execute the web table command. All segments included in the web table definition in the ON clause run the
command in parallel.

The command that you specify in the external table definition executes from the database and cannot
access environment variables from .bashrc or .profile. Set environment variables in the EXECUTE
clause. For example:

=# CREATE EXTERNAL WEB TABLE output (output text)
 EXECUTE 'PATH=/home/gpadmin/programs; export PATH; myprogram.sh'
 FORMAT 'TEXT';

Scripts must be executable by the gpadmin user and reside in the same location on the master or
segment hosts.

The following command defines a web table that runs a script. The script runs on each segment host
where a segment has output rows to process.

=# CREATE EXTERNAL WEB TABLE log_output
 (linenum int, message text)
 EXECUTE '/var/load_scripts/get_log_data.sh' ON HOST
 FORMAT 'TEXT' (DELIMITER '|');

URL-based External Web Tables

A URL-based web table accesses data from a web server using the HTTP protocol. Web table data is
dynamic; the data is not rescannable.

Specify the LOCATION of files on a web server using http://. The web data file(s) must reside on a
web server that Greenplum segment hosts can access. The number of URLs specified corresponds to the
number of segment instances that work in parallel to access the web table. For example, if you specify two
external files to a Greenplum Database system with eight primary segments, two of the eight segments
access the web table in parallel at query runtime.

The following sample command defines a web table that gets data from several URLs.

=# CREATE EXTERNAL WEB TABLE ext_expenses (name text,
 date date, amount float4, category text, description text)
 LOCATION (

 'http://intranet.company.com/expenses/sales/file.csv',
 'http://intranet.company.com/expenses/exec/file.csv',
 'http://intranet.company.com/expenses/finance/file.csv',
 'http://intranet.company.com/expenses/ops/file.csv',
 'http://intranet.company.com/expenses/marketing/file.csv',
 'http://intranet.company.com/expenses/eng/file.csv'

)
 FORMAT 'CSV' (HEADER);

Greenplum Database Administrator Guide Release Notes

469

Examples for Creating External Tables
These examples show how to define external data with different protocols. Each CREATE EXTERNAL
TABLE command can contain only one protocol.

Note: When using IPv6, always enclose the numeric IP addresses in square brackets.

Start gpfdist before you create external tables with the gpfdist protocol. The following code starts the
gpfdist file server program in the background on port 8081 serving files from directory /var/data/
staging. The logs are saved in /home/gpadmin/log.

gpfdist -p 8081 -d /var/data/staging -l /home/gpadmin/log &

Example 1—Single gpfdist instance on single-NIC machine

Creates a readable external table, ext_expenses, using the gpfdist protocol. The files are formatted
with a pipe (|) as the column delimiter.

=# CREATE EXTERNAL TABLE ext_expenses (name text,
 date date, amount float4, category text, desc1 text)
 LOCATION ('gpfdist://etlhost-1:8081/*')
FORMAT 'TEXT' (DELIMITER '|');

Example 2—Multiple gpfdist instances

Creates a readable external table, ext_expenses, using the gpfdist protocol from all files with the txt
extension. The column delimiter is a pipe (|) and NULL (' ') is a space.

=# CREATE EXTERNAL TABLE ext_expenses (name text,
 date date, amount float4, category text, desc1 text)
 LOCATION ('gpfdist://etlhost-1:8081/*.txt',
 'gpfdist://etlhost-2:8081/*.txt')
 FORMAT 'TEXT' (DELIMITER '|' NULL ' ') ;

Example 3—Multiple gpfdists instances

Creates a readable external table, ext_expenses, from all files with the txt extension using the gpfdists
protocol. The column delimiter is a pipe (|) and NULL (' ') is a space. For information about the location of
security certificates, see gpfdists:// Protocol.

1. Run gpfdist with the --ssl option.
2. Run the following command.

=# CREATE EXTERNAL TABLE ext_expenses (name text,
 date date, amount float4, category text, desc1 text)
 LOCATION ('gpfdists://etlhost-1:8081/*.txt',
 'gpfdists://etlhost-2:8082/*.txt')
 FORMAT 'TEXT' (DELIMITER '|' NULL ' ') ;

Example 4—Single gpfdist instance with error logging

Uses the gpfdist protocol to create a readable external table, ext_expenses, from all files with the txt
extension. The column delimiter is a pipe (|) and NULL (' ') is a space.

Access to the external table is single row error isolation mode. Input data formatting errors are captured
internally in Greenplum Database with a description of the error. See Viewing Bad Rows in the Error Log
for information about investigating error rows. You can view the errors, fix the issues, and then reload the

Greenplum Database Administrator Guide Release Notes

470

rejected data. If the error count on a segment is greater than five (the SEGMENT REJECT LIMIT value),
the entire external table operation fails and no rows are processed.

=# CREATE EXTERNAL TABLE ext_expenses (name text,
 date date, amount float4, category text, desc1 text)
 LOCATION ('gpfdist://etlhost-1:8081/*.txt',
 'gpfdist://etlhost-2:8082/*.txt')
 FORMAT 'TEXT' (DELIMITER '|' NULL ' ')
 LOG ERRORS SEGMENT REJECT LIMIT 5;

To create the readable ext_expenses table from CSV-formatted text files:

=# CREATE EXTERNAL TABLE ext_expenses (name text,
 date date, amount float4, category text, desc1 text)
 LOCATION ('gpfdist://etlhost-1:8081/*.txt',
 'gpfdist://etlhost-2:8082/*.txt')
 FORMAT 'CSV' (DELIMITER ',')
 LOG ERRORS SEGMENT REJECT LIMIT 5;

Example 5—TEXT Format on a Hadoop Distributed File Server

Creates a readable external table, ext_expenses, using the pxf protocol. The column delimiter is a pipe
(|).

=# CREATE EXTERNAL TABLE ext_expenses (name text,
 date date, amount float4, category text, desc1 text)
 LOCATION ('pxf://dir/data/filename.txt?PROFILE=hdfs:text')
 FORMAT 'TEXT' (DELIMITER '|');

Refer to Accessing External Data with PXF for information about using the Greenplum Platform Extension
Framework (PXF) to access data on a Hadoop Distributed File System.

Example 6—Multiple files in CSV format with header rows

Creates a readable external table, ext_expenses, using the file protocol. The files are CSV format and
have a header row.

=# CREATE EXTERNAL TABLE ext_expenses (name text,
 date date, amount float4, category text, desc1 text)
 LOCATION ('file://filehost/data/international/*',
 'file://filehost/data/regional/*',
 'file://filehost/data/supplement/*.csv')
 FORMAT 'CSV' (HEADER);

Example 7—Readable External Web Table with Script

Creates a readable external web table that executes a script once per segment host:

=# CREATE EXTERNAL WEB TABLE log_output (linenum int,
 message text)
 EXECUTE '/var/load_scripts/get_log_data.sh' ON HOST
 FORMAT 'TEXT' (DELIMITER '|');

Greenplum Database Administrator Guide Release Notes

471

Example 8—Writable External Table with gpfdist

Creates a writable external table, sales_out, that uses gpfdist to write output data to the file sales.out.
The column delimiter is a pipe (|) and NULL (' ') is a space. The file will be created in the directory
specified when you started the gpfdist file server.

=# CREATE WRITABLE EXTERNAL TABLE sales_out (LIKE sales)
 LOCATION ('gpfdist://etl1:8081/sales.out')
 FORMAT 'TEXT' (DELIMITER '|' NULL ' ')
 DISTRIBUTED BY (txn_id);

Example 9—Writable External Web Table with Script

Creates a writable external web table, campaign_out, that pipes output data received by the segments to
an executable script, to_adreport_etl.sh:

=# CREATE WRITABLE EXTERNAL WEB TABLE campaign_out
 (LIKE campaign)
 EXECUTE '/var/unload_scripts/to_adreport_etl.sh'
 FORMAT 'TEXT' (DELIMITER '|');

Example 10—Readable and Writable External Tables with XML Transformations

Greenplum Database can read and write XML data to and from external tables with gpfdist. For information
about setting up an XML transform, see Transforming External Data with gpfdist and gpload.

Accessing External Data with Foreign Tables
Greenplum Database implements portions of the SQL/MED specification, allowing you to access data that
resides outside of Greenplum using regular SQL queries. Such data is referred to as foreign or external
data.

You can access foreign data with help from a foreign-data wrapper. A foreign-data wrapper is a library
that communicates with a remote data source. This library hides the source-specific connection and data
access details.

Note: Most PostgreSQL foreign-data wrappers should work with Greenplum Database. However,
PostgreSQL foreign-data wrappers connect only through the Greenplum Database master and do
not access the Greenplum Database segment instances directly.

If none of the existing foreign-data wrappers suit your needs, you can write your own as described in
Writing a Foreign Data Wrapper.

To access foreign data, you create a foreign server object, which defines how to connect to a particular
remote data source according to the set of options used by its supporting foreign-data wrapper. Then you
create one or more foreign tables, which define the structure of the remote data. A foreign table can be
used in queries just like a normal table, but a foreign table has no storage in the Greenplum Database
server. Whenever a foreign table is accessed, Greenplum Database asks the foreign-data wrapper to fetch
data from, or update data in (if supported by the wrapper), the remote source.

Note: The Pivotal Query Optimizer, GPORCA, does not support foreign tables. A query on a
foreign table always falls back to the Postgres Planner.

Accessing remote data may require authenticating to the remote data source. This information can be
provided by a user mapping, which can provide additional data such as a user name and password based
on the current Greenplum Database role.

For additional information, refer to CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE USER
MAPPING, and CREATE FOREIGN TABLE.

Greenplum Database Administrator Guide Release Notes

472

Writing a Foreign Data Wrapper
This chapter outlines how to write a new foreign-data wrapper.

All operations on a foreign table are handled through its foreign-data wrapper (FDW), a library that
consists of a set of functions that the core Greenplum Database server calls. The foreign-data wrapper
is responsible for fetching data from the remote data store and returning it to the Greenplum Database
executor. If updating foreign-data is supported, the wrapper must handle that, too.

The foreign-data wrappers included in the Greenplum Database open source github repository are good
references when trying to write your own. You may want to examine the file_fdw and postgres_fdw
modules in the contrib/ directory. The CREATE FOREIGN DATA WRAPPER reference page also
provides some useful details.

Note: The SQL standard specifies an interface for writing foreign-data wrappers. Greenplum
Database does not implement that API, however, because the effort to accommodate it into
Greenplum would be large, and the standard API hasn't yet gained wide adoption.

This topic includes the following sections:

• Requirements
• Known Issues and Limitations
• Header Files
• Foreign Data Wrapper Functions
• Foreign Data Wrapper Callback Functions
• Foreign Data Wrapper Helper Functions
• Greenplum Database Considerations
• Building a Foreign Data Wrapper Extension with PGXS
• Deployment Considerations

Requirements

When you develop with the Greenplum Database foreign-data wrapper API:

• You must develop your code on a system with the same hardware and software architecture as that of
your Greenplum Database hosts.

• Your code must be written in a compiled language such as C, using the version-1 interface. For
details on C language calling conventions and dynamic loading, refer to C Language Functions in the
PostgreSQL documentation.

• Symbol names in your object files must not conflict with each other nor with symbols defined in the
Greenplum Database server. You must rename your functions or variables if you get error messages to
this effect.

• Review the foreign table introduction described in Accessing External Data with Foreign Tables.

Known Issues and Limitations

The Greenplum Database 6 foreign-data wrapper implementation has the following known issues and
limitations:

• The Greenplum Database 6 distribution does not install any foreign data wrappers.
• Greenplum Database uses the mpp_execute option value for foreign table scans only. Greenplum

does not honor the mpp_execute setting when you write to, or update, a foreign table; all write
operations are initiated through the master.

Header Files

The Greenplum Database header files that you may use when you develop a foreign-data wrapper are
located in the greenplum-db/src/include/ directory (when developing against the Greenplum

https://github.com/greenplum-db/gpdb/tree/master/contrib/file_fdw
https://github.com/greenplum-db/gpdb/tree/master/contrib/postgres_fdw
https://www.postgresql.org/docs/9.4/xfunc-c.html

Greenplum Database Administrator Guide Release Notes

473

Database open source github repository), or installed in the $GPHOME/include/postgresql/server/
directory (when developing against a Greenplum installation):

• foreign/fdwapi.h - FDW API structures and callback function signatures
• foreign/foreign.h - foreign-data wrapper helper structs and functions
• catalog/pg_foreign_table.h - foreign table definition
• catalog/pg_foreign_server.h - foreign server definition

Your FDW code may also be dependent on header files and libraries required to access the remote data
store.

Foreign Data Wrapper Functions

The developer of a foreign-data wrapper must implement an SQL-invokable handler function, and
optionally an SQL-invokable validator function. Both functions must be written in a compiled language such
as C, using the version-1 interface.

The handler function simply returns a struct of function pointers to callback functions that will be called by
the Greenplum Database planner, executor, and various maintenance commands. The handler function
must be registered with Greenplum Database as taking no arguments and returning the special pseudo-
type fdw_handler. For example:

CREATE FUNCTION NEW_fdw_handler()
 RETURNS fdw_handler
 AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

Most of the effort in writing a foreign-data wrapper is in implementing the callback functions. The FDW
API callback functions, plain C functions that are not visible or callable at the SQL level, are described in
Foreign Data Wrapper Callback Functions.

The validator function is responsible for validating options provided in CREATE and ALTER commands for
its foreign-data wrapper, as well as foreign servers, user mappings, and foreign tables using the wrapper.
The validator function must be registered as taking two arguments, a text array containing the options to be
validated, and an OID representing the type of object with which the options are associated. For example:

CREATE FUNCTION NEW_fdw_validator(text[], oid)
 RETURNS void
 AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

The OID argument reflects the type of the system catalog that the object would be stored in, one of
ForeignDataWrapperRelationId, ForeignServerRelationId, UserMappingRelationId, or
ForeignTableRelationId. If no validator function is supplied by a foreign data wrapper, Greenplum
Database does not check option validity at object creation time or object alteration time.

Foreign Data Wrapper Callback Functions

The foreign-data wrapper API defines callback functions that Greenplum Database invokes when scanning
and updating foreign tables. The API also includes callbacks for performing explain and analyze operations
on a foreign table.

The handler function of a foreign-data wrapper returns a palloc'd FdwRoutine struct containing pointers
to callback functions described below. The FdwRoutine struct is located in the foreign/fdwapi.h
header file, and is defined as follows:

/*
 * FdwRoutine is the struct returned by a foreign-data wrapper's handler
 * function. It provides pointers to the callback functions needed by the
 * planner and executor.

Greenplum Database Administrator Guide Release Notes

474

 *
 * More function pointers are likely to be added in the future. Therefore
 * it's recommended that the handler initialize the struct with
 * makeNode(FdwRoutine) so that all fields are set to NULL. This will
 * ensure that no fields are accidentally left undefined.
 */
typedef struct FdwRoutine
{
 NodeTag type;

 /* Functions for scanning foreign tables */
 GetForeignRelSize_function GetForeignRelSize;
 GetForeignPaths_function GetForeignPaths;
 GetForeignPlan_function GetForeignPlan;
 BeginForeignScan_function BeginForeignScan;
 IterateForeignScan_function IterateForeignScan;
 ReScanForeignScan_function ReScanForeignScan;
 EndForeignScan_function EndForeignScan;

 /*
 * Remaining functions are optional. Set the pointer to NULL for any that
 * are not provided.
 */

 /* Functions for updating foreign tables */
 AddForeignUpdateTargets_function AddForeignUpdateTargets;
 PlanForeignModify_function PlanForeignModify;
 BeginForeignModify_function BeginForeignModify;
 ExecForeignInsert_function ExecForeignInsert;
 ExecForeignUpdate_function ExecForeignUpdate;
 ExecForeignDelete_function ExecForeignDelete;
 EndForeignModify_function EndForeignModify;
 IsForeignRelUpdatable_function IsForeignRelUpdatable;

 /* Support functions for EXPLAIN */
 ExplainForeignScan_function ExplainForeignScan;
 ExplainForeignModify_function ExplainForeignModify;

 /* Support functions for ANALYZE */
 AnalyzeForeignTable_function AnalyzeForeignTable;
} FdwRoutine;

You must implement the scan-related functions in your foreign-data wrapper; implementing the other
callback functions is optional.

Greenplum Database Administrator Guide Release Notes

475

Scan-related callback functions include:

Callback Signature Description

void
GetForeignRelSize
 (PlannerInfo *root,

 RelOptInfo *baserel,
 Oid
 foreigntableid)

Obtain relation size estimates for a foreign table. Called at the
beginning of planning for a query on a foreign table.

void
GetForeignPaths
 (PlannerInfo *root,

 RelOptInfo *baserel,
 Oid
 foreigntableid)

Create possible access paths for a scan on a foreign table. Called
during query planning.

Note: A Greenplum Database-compatible FDW
must call create_foreignscan_path() in its
GetForeignPaths() callback function.

ForeignScan *
GetForeignPlan
 (PlannerInfo *root,

 RelOptInfo *baserel,
 Oid
 foreigntableid,

 ForeignPath *best_path,
 List
 *tlist,
 List
 *scan_clauses)

Create a ForeignScan plan node from the selected foreign
access path. Called at the end of query planning.

void
BeginForeignScan
 (ForeignScanState
 *node,
 int
 eflags)

Begin executing a foreign scan. Called during executor startup.

TupleTableSlot *
IterateForeignScan
 (ForeignScanState
 *node)

Fetch one row from the foreign source, returning it in a tuple table
slot; return NULL if no more rows are available.

void
ReScanForeignScan
 (ForeignScanState
 *node)

Restart the scan from the beginning.

void
End the scan and release resources.

Greenplum Database Administrator Guide Release Notes

476

Callback Signature Description

EndForeignScan
 (ForeignScanState
 *node)

Refer to Foreign Data Wrapper Callback Routines in the PostgreSQL documentation for detailed
information about the inputs and outputs of the FDW callback functions.

Foreign Data Wrapper Helper Functions

The FDW API exports several helper functions from the Greenplum Database core server so that authors
of foreign-data wrappers have easy access to attributes of FDW-related objects, such as options provided
when the user creates or alters the foreign-data wrapper, server, or foreign table. To use these helper
functions, you must include foreign.h header file in your source file:

#include "foreign/foreign.h"

https://www.postgresql.org/docs/9.4/fdw-callbacks.html

Greenplum Database Administrator Guide Release Notes

477

The FDW API includes the helper functions listed in the table below. Refer to Foreign Data Wrapper Helper
Functions in the PostgreSQL documentation for more information about these functions.

Helper Signature Description

ForeignDataWrapper *
GetForeignDataWrapper(Oid
 fdwid);

Returns the ForeignDataWrapper object for the foreign-data
wrapper with the given OID.

ForeignDataWrapper *
GetForeignDataWrapperByName(const
 char *name, bool
 missing_ok);

Returns the ForeignDataWrapper object for the foreign-data
wrapper with the given name.

ForeignServer *
GetForeignServer(Oid
 serverid);

Returns the ForeignServer object for the foreign server with the
given OID.

ForeignServer *
GetForeignServerByName(const
 char *name, bool
 missing_ok);

Returns the ForeignServer object for the foreign server with the
given name.

UserMapping *
GetUserMapping(Oid
 userid, Oid serverid);

Returns the UserMapping object for the user mapping of the
given role on the given server.

ForeignTable *
GetForeignTable(Oid
 relid);

Returns the ForeignTable object for the foreign table with the
given OID.

List *
GetForeignColumnOptions(Oid
 relid, AttrNumber
 attnum);

Returns the per-column FDW options for the column with the given
foreign table OID and attribute number.

Greenplum Database Considerations

A Greenplum Database user can specify the mpp_execute option when they create or alter a foreign
table, foreign server, or foreign data wrapper. A Greenplum Database-compatible foreign-data wrapper
examines the mpp_execute option value on a scan and uses it to determine where to request data - from
the master (the default), any (master or any one segment), or all segments.

Note: Write/update operations using a foreign data wrapper are always executed on the
Greenplum Database master, regardless of the mpp_execute setting.

The following scan code snippet probes the mpp_execute value associated with a foreign table:

ForeignTable *table = GetForeignTable(foreigntableid);
if (table->exec_location == FTEXECLOCATION_ALL_SEGMENTS)
{
 ...
}

https://www.postgresql.org/docs/9.4/fdw-helpers.html
https://www.postgresql.org/docs/9.4/fdw-helpers.html

Greenplum Database Administrator Guide Release Notes

478

else if (table->exec_location == FTEXECLOCATION_ANY)
{
 ...
}
else if (table->exec_location == FTEXECLOCATION_MASTER)
{
 ...
}

If the foreign table was not created with an mpp_execute option setting, the mpp_execute setting of the
foreign server, and then the foreign data wrapper, is probed and used. If none of the foreign-data-related
objects has an mpp_execute setting, the default setting is master.

If a foreign-data wrapper supports mpp_execute 'all', it will implement a policy that matches
Greenplum segments to data. So as not to duplicate data retrieved from the remote, the FDW on each
segment must be able to establish which portion of the data is their responsibility. An FDW may use
the segment identifier and the number of segments to help make this determination. The following code
snippet demonstrates how a foreign-data wrapper may retrieve the segment number and total number of
segments:

int segmentNumber = GpIdentity.segindex;
int totalNumberOfSegments = getgpsegmentCount();

Building a Foreign Data Wrapper Extension with PGXS

You compile the foreign-data wrapper functions that you write with the FDW API into one or more shared
libraries that the Greenplum Database server loads on demand.

You can use the PostgreSQL build extension infrastructure (PGXS) to build the source code for your
foreign-data wrapper against a Greenplum Database installation. This framework automates common build
rules for simple modules. If you have a more complicated use case, you will need to write your own build
system.

To use the PGXS infrastructure to generate a shared library for your FDW, create a simple Makefile that
sets PGXS-specific variables.

Note: Refer to Extension Building Infrastructure in the PostgreSQL documentation for information
about the Makefile variables supported by PGXS.

For example, the following Makefile generates a shared library in the current working directory named
base_fdw.so from two C source files, base_fdw_1.c and base_fdw_2.c:

MODULE_big = base_fdw
OBJS = base_fdw_1.o base_fdw_2.o

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)

PG_CPPFLAGS = -I$(shell $(PG_CONFIG) --includedir)
SHLIB_LINK = -L$(shell $(PG_CONFIG) --libdir)
include $(PGXS)

A description of the directives used in this Makefile follows:

• MODULE_big - identifes the base name of the shared library generated by the Makefile
• PG_CPPFLAGS - adds the Greenplum Database installation include/ directory to the compiler header

file search path
• SHLIB_LINK adds the Greenplum Database installation library directory ($GPHOME/lib/) to the linker

search path
• The PG_CONFIG and PGXS variable settings and the include statement are required and typically

reside in the last three lines of the Makefile.

https://www.postgresql.org/docs/9.4/extend-pgxs.html

Greenplum Database Administrator Guide Release Notes

479

To package the foreign-data wrapper as a Greenplum Database extension, you create script (newfdw--
version.sql) and control (newfdw.control) files that register the FDW handler and validator
functions, create the foreign data wrapper, and identify the characteristics of the FDW shared library file.

Note: Packaging Related Objects into an Extension in the PostgreSQL documentation describes
how to package an extension.

Example foreign-data wrapper extension script file named base_fdw--1.0.sql:

CREATE FUNCTION base_fdw_handler()
 RETURNS fdw_handler
 AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

CREATE FUNCTION base_fdw_validator(text[], oid)
 RETURNS void
 AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

CREATE FOREIGN DATA WRAPPER base_fdw
 HANDLER base_fdw_handler
 VALIDATOR base_fdw_validator;

Example FDW control file named base_fdw.control:

base_fdw FDW extension
comment = 'base foreign-data wrapper implementation; does not do much'
default_version = '1.0'
module_pathname = '$libdir/base_fdw'
relocatable = true

When you add the following directives to the Makefile, you identify the FDW extension control file base
name (EXTENSION) and SQL script (DATA):

EXTENSION = base_fdw
DATA = base_fdw--1.0.sql

Running make install with these directives in the Makefile copies the shared library and FDW SQL
and control files into the specified or default locations in your Greenplum Database installation ($GPHOME).

Deployment Considerations

You must package the FDW shared library and extension files in a form suitable for deployment in a
Greenplum Database cluster. When you construct and deploy the package, take into consideration the
following:

• The FDW shared library must be installed to the same file system location on the master host and on
every segment host in the Greenplum Database cluster. You specify this location in the .control file.
This location is typically the $GPHOME/lib/postgresql/ directory.

• The FDW .sql and .control files must be installed to the $GPHOME/share/postgresql/
extension/ directory on the master host and on every segment host in the Greenplum Database
cluster.

• The gpadmin user must have permission to traverse the complete file system path to the FDW shared
library file and extension files.

https://www.postgresql.org/docs/9.4/extend-extensions.html

Greenplum Database Administrator Guide Release Notes

480

Using the Greenplum Parallel File Server (gpfdist)
The gpfdist protocol is used in a CREATE EXTERNAL TABLE SQL command to access external data
served by the Greenplum Database gpfdist file server utility. When external data is served by gpfdist,
all segments in the Greenplum Database system can read or write external table data in parallel.

This topic describes the setup and management tasks for using gpfdist with external tables.

• About gpfdist and External Tables
• About gpfdist Setup and Performance
• Controlling Segment Parallelism
• Installing gpfdist
• Starting and Stopping gpfdist
• Troubleshooting gpfdist

About gpfdist and External Tables
The gpfdist file server utility is located in the $GPHOME/bin directory on your Greenplum Database
master host and on each segment host. When you start a gpfdist instance you specify a listen port and
the path to a directory containing files to read or where files are to be written. For example, this command
runs gpfdist in the background, listening on port 8801, and serving files in the /home/gpadmin/
external_files directory:

$ gpfdist -p 8801 -d /home/gpadmin/external_files &

The CREATE EXTERNAL TABLE command LOCATION clause connects an external table definition to one
or more gpfdist instances. If the external table is readable, the gpfdist server reads data records from
files from in specified directory, packs them into a block, and sends the block in a response to a Greenplum
Database segment's request. The segments unpack rows they receive and distribute them according to the
external table's distribution policy. If the external table is a writable table, segments send blocks of rows in
a request to gpfdist and gpfdist writes them to the external file.

External data files can contain rows in CSV format or any delimited text format supported by the FORMAT
clause of the CREATE EXTERNAL TABLE command. In addition, gpfdist can be configured with a
YAML-formatted file to transform external data files between a supported text format and another format,
for example XML or JSON. See <ref> for an example that shows how to use gpfdist to read external
XML files into a Greenplum Database readable external table.

For readable external tables, gpfdist uncompresses gzip (.gz) and bzip2 (.bz2) files automatically.
You can use the wildcard character (*) or other C-style pattern matching to denote multiple files to read.
External files are assumed to be relative to the directory specified when you started the gpfdist instance.

About gpfdist Setup and Performance
You can run gpfdist instances on multiple hosts and you can run multiple gpfdist instances on each
host. This allows you to deploy gpfdist servers strategically so that you can attain fast data load and
unload rates by utilizing all of the available network bandwidth and Greenplum Database's parallelism.

• Allow network traffic to use all ETL host network interfaces simultaneously. Run one instance of
gpfdist for each interface on the ETL host, then declare the host name of each NIC in the LOCATION
clause of your external table definition (see Examples for Creating External Tables).

Greenplum Database Administrator Guide Release Notes

481

Figure 25: External Table Using Single gpfdist Instance with Multiple NICs

• Divide external table data equally among multiple gpfdist instances on the ETL host. For example,
on an ETL system with two NICs, run two gpfdist instances (one on each NIC) to optimize data load
performance and divide the external table data files evenly between the two gpfdist servers.

Figure 26: External Tables Using Multiple gpfdist Instances with Multiple NICs

Greenplum Database Administrator Guide Release Notes

482

Note: Use pipes (|) to separate formatted text when you submit files to gpfdist. Greenplum
Database encloses comma-separated text strings in single or double quotes. gpfdist has to
remove the quotes to parse the strings. Using pipes to separate formatted text avoids the extra step
and improves performance.

Controlling Segment Parallelism
The gp_external_max_segs server configuration parameter controls the number of segment instances
that can access a single gpfdist instance simultaneously. 64 is the default. You can set the number
of segments such that some segments process external data files and some perform other database
processing. Set this parameter in the postgresql.conf file of your master instance.

Installing gpfdist
gpfdist is installed in $GPHOME/bin of your Greenplum Database master host installation. Run
gpfdist on a machine other than the Greenplum Database master or standby master, such as on a
machine devoted to ETL processing. Running gpfdist on the master or standby master can have a
performance impact on query execution. To install gpfdist on your ETL server, get it from the Greenplum
Load Tools package and follow its installation instructions.

Starting and Stopping gpfdist
You can start gpfdist in your current directory location or in any directory that you specify. The default
port is 8080.

From your current directory, type:

gpfdist &

From a different directory, specify the directory from which to serve files, and optionally, the HTTP port to
run on.

To start gpfdist in the background and log output messages and errors to a log file:

$ gpfdist -d /var/load_files -p 8081 -l /home/gpadmin/log &

For multiple gpfdist instances on the same ETL host (see Figure 25: External Table Using Single gpfdist
Instance with Multiple NICs), use a different base directory and port for each instance. For example:

$ gpfdist -d /var/load_files1 -p 8081 -l /home/gpadmin/log1 &
$ gpfdist -d /var/load_files2 -p 8082 -l /home/gpadmin/log2 &

To stop gpfdist when it is running in the background:

First find its process id:

$ ps -ef | grep gpfdist

Then kill the process, for example (where 3456 is the process ID in this example):

$ kill 3456

Greenplum Database Administrator Guide Release Notes

483

Troubleshooting gpfdist
The segments access gpfdist at runtime. Ensure that the Greenplum segment hosts have network
access to gpfdist. gpfdist is a web server: test connectivity by running the following command from
each host in the Greenplum array (segments and master):

$ wget http://gpfdist_hostname:port/filename

The CREATE EXTERNAL TABLE definition must have the correct host name, port, and file names for
gpfdist. Specify file names and paths relative to the directory from which gpfdist serves files (the
directory path specified when gpfdist started). See Examples for Creating External Tables.

If you start gpfdist on your system and IPv6 networking is disabled, gpfdist displays this warning
message when testing for an IPv6 port.

[WRN gpfdist.c:2050] Creating the socket failed

If the corresponding IPv4 port is available, gpfdist uses that port and the warning for IPv6 port can be
ignored. To see information about the ports that gpfdist tests, use the -V option.

For information about IPv6 and IPv4 networking, see your operating system documentation.

When reading or writing data with the gpfdist or gfdists protocol, the gpfdist utility rejects HTTP
requests that do not include X-GP-PROTO in the request header. If X-GP-PROTO is not detected in the
header request gpfist returns a 400 error in the status line of the HTTP response header: 400 invalid
request (no gp-proto).

Greenplum Database includes X-GP-PROTO in the HTTP request header to indicate that the request is
from Greenplum Database.

If the gpfdist utility hangs with no read or write activity occurring, you can generate a core dump the next
time a hang occurs to help debug the issue. Set the environment variable GPFDIST_WATCHDOG_TIMER
to the number of seconds of no activity to wait before gpfdist is forced to exit. When the environment
variable is set and gpfdist hangs, the utility aborts after the specified number of seconds, creates a core
dump, and sends abort information to the log file.

This example sets the environment variable on a Linux system so that gpfdist exits after 300 seconds (5
minutes) of no activity.

export GPFDIST_WATCHDOG_TIMER=300

Greenplum Database Administrator Guide Release Notes

484

Loading and Unloading Data
The topics in this section describe methods for loading and writing data into and out of a Greenplum
Database, and how to format data files.

Greenplum Database supports high-performance parallel data loading and unloading, and for smaller
amounts of data, single file, non-parallel data import and export.

Greenplum Database can read from and write to several types of external data sources, including text files,
Hadoop file systems, Amazon S3, and web servers.

• The COPY SQL command transfers data between an external text file on the master host, or multiple
text files on segment hosts, and a Greenplum Database table.

• Readable external tables allow you to query data outside of the database directly and in parallel using
SQL commands such as SELECT, JOIN, or SORT EXTERNAL TABLE DATA, and you can create views
for external tables. External tables are often used to load external data into a regular database table
using a command such as CREATE TABLE table AS SELECT * FROM ext_table.

• External web tables provide access to dynamic data. They can be backed with data from URLs
accessed using the HTTP protocol or by the output of an OS script running on one or more segments.

• The gpfdist utility is the Greenplum Database parallel file distribution program. It is an HTTP server
that is used with external tables to allow Greenplum Database segments to load external data in
parallel, from multiple file systems. You can run multiple instances of gpfdist on different hosts and
network interfaces and access them in parallel.

• The gpload utility automates the steps of a load task using gpfdist and a YAML-formatted control
file.

• You can create readable and writable external tables with the Greenplum Platform Extension
Framework (PXF), and use these tables to load data into, or offload data from, Greenplum Database.
For information about using PXF, refer to Accessing External Data with PXF.

• The Greenplum-Kafka Integration provides high-speed, parallel data transfer from Kafka to Greenplum
Database. For information about using these tools, refer to the Greenplum-Kafka Integration
documentation.

• The Greenplum Streaming Server is an ETL tool and API that you can use to load data into
Greenplum Database. For information about using this tool, refer to the Greenplum Streaming Server
documentation.

• The Greenplum-Spark Connector provides high speed, parallel data transfer between Pivotal
Greenplum Database and Apache Spark. For information about using the Greenplum-Spark Connector,
refer to the documentation at https://greenplum-spark.docs.pivotal.io/.

• The Greenplum-Informatica Connector provides high speed data transfer from an Informatica
PowerCenter cluster to a Pivotal Greenplum Database cluster for batch and streaming ETL operations.
For information about using the Greenplum-Informatica Connector, refer to the documentation at https://
greenplum-informatica.docs.pivotal.io/.

The method you choose to load data depends on the characteristics of the source data—its location, size,
format, and any transformations required.

In the simplest case, the COPY SQL command loads data into a table from a text file that is accessible
to the Greenplum Database master instance. This requires no setup and provides good performance for
smaller amounts of data. With the COPY command, the data copied into or out of the database passes
between a single file on the master host and the database. This limits the total size of the dataset to the
capacity of the file system where the external file resides and limits the data transfer to a single file write
stream.

More efficient data loading options for large datasets take advantage of the Greenplum Database MPP
architecture, using the Greenplum Database segments to load data in parallel. These methods allow data
to load simultaneously from multiple file systems, through multiple NICs, on multiple hosts, achieving
very high data transfer rates. External tables allow you to access external files from within the database

https://greenplum.docs.pivotal.io/streaming-server/1-4/kafka/intro.html
https://greenplum.docs.pivotal.io/streaming-server/1-4/intro.html
https://greenplum-spark.docs.pivotal.io/
https://greenplum-informatica.docs.pivotal.io/
https://greenplum-informatica.docs.pivotal.io/

Greenplum Database Administrator Guide Release Notes

485

as if they are regular database tables. When used with gpfdist, the Greenplum Database parallel file
distribution program, external tables provide full parallelism by using the resources of all Greenplum
Database segments to load or unload data.

Greenplum Database leverages the parallel architecture of the Hadoop Distributed File System to access
files on that system.

Loading Data Using an External Table
Use SQL commands such as INSERT and SELECT to query a readable external table, the same way
that you query a regular database table. For example, to load travel expense data from an external table,
ext_expenses, into a database table, expenses_travel:

=# INSERT INTO expenses_travel
 SELECT * from ext_expenses where category='travel';

To load all data into a new database table:

=# CREATE TABLE expenses AS SELECT * from ext_expenses;

Loading and Writing Non-HDFS Custom Data
Greenplum Database supports TEXT and CSV formats for importing and exporting data through external
tables. You can load and save data in other formats by defining a custom format or custom protocol or by
setting up a transformation with the gpfdist parallel file server.

Using a Custom Format
You specify a custom data format in the FORMAT clause of CREATE EXTERNAL TABLE.

FORMAT 'CUSTOM' (formatter=format_function, key1=val1,...keyn=valn)

Where the 'CUSTOM' keyword indicates that the data has a custom format and formatter specifies the
function to use to format the data, followed by comma-separated parameters to the formatter function.

Greenplum Database provides functions for formatting fixed-width data, but you must author the formatter
functions for variable-width data. The steps are as follows.

1. Author and compile input and output functions as a shared library.
2. Specify the shared library function with CREATE FUNCTION in Greenplum Database.
3. Use the formatter parameter of CREATE EXTERNAL TABLE's FORMAT clause to call the function.

Importing and Exporting Fixed Width Data

Specify custom formats for fixed-width data with the Greenplum Database functions fixedwith_in
and fixedwidth_out. These functions already exist in the file $GPHOME/share/postgresql/
cdb_external_extensions.sql. The following example declares a custom format, then calls the
fixedwidth_in function to format the data.

CREATE READABLE EXTERNAL TABLE students (
name varchar(20), address varchar(30), age int)
LOCATION ('file://<host>/file/path/')
FORMAT 'CUSTOM' (formatter=fixedwidth_in,
 name='20', address='30', age='4');

The following options specify how to import fixed width data.

• Read all the data.

Greenplum Database Administrator Guide Release Notes

486

To load all the fields on a line of fixed with data, you must load them in their physical order. You must
specify the field length, but cannot specify a starting and ending position. The fields names in the
fixed width arguments must match the order in the field list at the beginning of the CREATE TABLE
command.

• Set options for blank and null characters.

Trailing blanks are trimmed by default. To keep trailing blanks, use the preserve_blanks=on option.
You can reset the trailing blanks option to the default with the preserve_blanks=off option.

Use the null='null_string_value' option to specify a value for null characters.
• If you specify preserve_blanks=on, you must also define a value for null characters.
• If you specify preserve_blanks=off, null is not defined, and the field contains only blanks,

Greenplum writes a null to the table. If null is defined, Greenplum writes an empty string to the table.

Use the line_delim='line_ending' parameter to specify the line ending character. The following
examples cover most cases. The E specifies an escape string constant.

line_delim=E'\n'
line_delim=E'\r'
line_delim=E'\r\n'
line_delim='abc'

Examples: Read Fixed-Width Data

The following examples show how to read fixed-width data.

Example 1 – Loading a table with all fields defined

CREATE READABLE EXTERNAL TABLE students (
name varchar(20), address varchar(30), age int)
LOCATION ('file://<host>/file/path/')
FORMAT 'CUSTOM' (formatter=fixedwidth_in,
 name=20, address=30, age=4);

Example 2 – Loading a table with PRESERVED_BLANKS on

CREATE READABLE EXTERNAL TABLE students (
name varchar(20), address varchar(30), age int)
LOCATION ('gpfdist://<host>:<portNum>/file/path/')
FORMAT 'CUSTOM' (formatter=fixedwidth_in,
 name=20, address=30, age=4,
 preserve_blanks='on',null='NULL');

Example 3 – Loading data with no line delimiter

CREATE READABLE EXTERNAL TABLE students (
name varchar(20), address varchar(30), age int)
LOCATION ('file://<host>/file/path/')
FORMAT 'CUSTOM' (formatter=fixedwidth_in,
 name='20', address='30', age='4', line_delim='?@')

Example 4 – Create a writable external table with a \r\n line delimiter

CREATE WRITABLE EXTERNAL TABLE students_out (
name varchar(20), address varchar(30), age int)
LOCATION ('gpfdist://<host>:<portNum>/file/path/students_out.txt')
FORMAT 'CUSTOM' (formatter=fixedwidth_out,

Greenplum Database Administrator Guide Release Notes

487

 name=20, address=30, age=4, line_delim=E'\r\n');

Using a Custom Protocol
Greenplum Database provides protocols such as gpfdist, http, and file for accessing data over a
network, or you can author a custom protocol. You can use the standard data formats, TEXT and CSV, or a
custom data format with custom protocols.

You can create a custom protocol whenever the available built-in protocols do not suffice for a particular
need. For example, you could connect Greenplum Database in parallel to another system directly, and
stream data from one to the other without the need to materialize the data on disk or use an intermediate
process such as gpfdist. You must be a superuser to create and register a custom protocol.

1. Author the send, receive, and (optionally) validator functions in C, with a predefined API. These
functions are compiled and registered with the Greenplum Database. For an example custom protocol,
see Example Custom Data Access Protocol .

2. After writing and compiling the read and write functions into a shared object (.so), declare a database
function that points to the .so file and function names.

The following examples use the compiled import and export code.

CREATE FUNCTION myread() RETURNS integer
as '$libdir/gpextprotocol.so', 'myprot_import'
LANGUAGE C STABLE;
CREATE FUNCTION mywrite() RETURNS integer
as '$libdir/gpextprotocol.so', 'myprot_export'
LANGUAGE C STABLE;

The format of the optional validator function is:

CREATE OR REPLACE FUNCTION myvalidate() RETURNS void
AS '$libdir/gpextprotocol.so', 'myprot_validate'
LANGUAGE C STABLE;

3. Create a protocol that accesses these functions. Validatorfunc is optional.

CREATE TRUSTED PROTOCOL myprot(
writefunc='mywrite',
readfunc='myread',
validatorfunc='myvalidate');

4. Grant access to any other users, as necessary.

GRANT ALL ON PROTOCOL myprot TO otheruser;

5. Use the protocol in readable or writable external tables.

CREATE WRITABLE EXTERNAL TABLE ext_sales(LIKE sales)
LOCATION ('myprot://<meta>/<meta>/…')
FORMAT 'TEXT';
CREATE READABLE EXTERNAL TABLE ext_sales(LIKE sales)
LOCATION('myprot://<meta>/<meta>/…')
FORMAT 'TEXT';

Declare custom protocols with the SQL command CREATE TRUSTED PROTOCOL, then use the GRANT
command to grant access to your users. For example:

• Allow a user to create a readable external table with a trusted protocol

GRANT SELECT ON PROTOCOL <protocol name> TO <user name>;

Greenplum Database Administrator Guide Release Notes

488

• Allow a user to create a writable external table with a trusted protocol

GRANT INSERT ON PROTOCOL <protocol name> TO <user name>;

• Allow a user to create readable and writable external tables with a trusted protocol

GRANT ALL ON PROTOCOL <protocol name> TO <user name>;

Handling Load Errors
Readable external tables are most commonly used to select data to load into regular database tables. You
use the CREATE TABLE AS SELECT or INSERT INTO commands to query the external table data. By
default, if the data contains an error, the entire command fails and the data is not loaded into the target
database table.

The SEGMENT REJECT LIMIT clause allows you to isolate format errors in external table data and to
continue loading correctly formatted rows. Use SEGMENT REJECT LIMIT to set an error threshold,
specifying the reject limit count as number of ROWS (the default) or as a PERCENT of total rows (1-100).

The entire external table operation is aborted, and no rows are processed, if the number of error rows
reaches the SEGMENT REJECT LIMIT. The limit of error rows is per-segment, not per entire operation.
The operation processes all good rows, and it discards and optionally logs formatting errors for erroneous
rows, if the number of error rows does not reach the SEGMENT REJECT LIMIT.

The LOG ERRORS clause allows you to keep error rows for further examination. For information about
the LOG ERRORS clause, see the CREATE EXTERNAL TABLE command in the Greenplum Database
Reference Guide.

When you set SEGMENT REJECT LIMIT, Greenplum scans the external data in single row error isolation
mode. Single row error isolation mode applies to external data rows with format errors such as extra or
missing attributes, attributes of a wrong data type, or invalid client encoding sequences. Greenplum does
not check constraint errors, but you can filter constraint errors by limiting the SELECT from an external
table at runtime. For example, to eliminate duplicate key errors:

=# INSERT INTO table_with_pkeys
 SELECT DISTINCT * FROM external_table;

Note: When loading data with the COPY command or an external table, the value of the server
configuration parameter gp_initial_bad_row_limit limits the initial number of rows that are
processed that are not formatted properly. The default is to stop processing if the first 1000 rows
contain formatting errors. See the Greenplum Database Reference Guide for information about the
parameter.

Define an External Table with Single Row Error Isolation
The following example logs errors internally in Greenplum Database and sets an error threshold of 10
errors.

=# CREATE EXTERNAL TABLE ext_expenses (name text,
 date date, amount float4, category text, desc1 text)
 LOCATION ('gpfdist://etlhost-1:8081/*',
 'gpfdist://etlhost-2:8082/*')
 FORMAT 'TEXT' (DELIMITER '|')
 LOG ERRORS SEGMENT REJECT LIMIT 10
 ROWS;

Greenplum Database Administrator Guide Release Notes

489

Use the built-in SQL function gp_read_error_log('external_table') to read the error log data.
This example command displays the log errors for ext_expenses:

SELECT gp_read_error_log('ext_expenses');

For information about the format of the error log, see Viewing Bad Rows in the Error Log.

The built-in SQL function gp_truncate_error_log('external_table') deletes the error data. This
example deletes the error log data created from the previous external table example :

SELECT gp_truncate_error_log('ext_expenses');

Capture Row Formatting Errors and Declare a Reject Limit
The following SQL fragment captures formatting errors internally in Greenplum Database and declares a
reject limit of 10 rows.

LOG ERRORS SEGMENT REJECT LIMIT 10 ROWS

Use the built-in SQL function gp_read_error_log() to read the error log data. For information about
viewing log errors, see Viewing Bad Rows in the Error Log.

Viewing Bad Rows in the Error Log
If you use single row error isolation (see Define an External Table with Single Row Error Isolation or
Running COPY in Single Row Error Isolation Mode), any rows with formatting errors are logged internally
by Greenplum Database.

Greenplum Database captures the following error information in a table format:

Table 57: Error Log Format

column type description

cmdtime timestamptz Timestamp when the error occurred.

relname text The name of the external table or the target table of
a COPY command.

filename text The name of the load file that contains the error.

linenum int If COPY was used, the line number in the load file
where the error occurred. For external tables using
file:// protocol or gpfdist:// protocol and CSV format,
the file name and line number is logged.

bytenum int For external tables with the gpfdist:// protocol and
data in TEXT format: the byte offset in the load file
where the error occurred. gpfdist parses TEXT files
in blocks, so logging a line number is not possible.

CSV files are parsed a line at a time so line number
tracking is possible for CSV files.

errmsg text The error message text.

rawdata text The raw data of the rejected row.

Greenplum Database Administrator Guide Release Notes

490

column type description

rawbytes bytea In cases where there is a database encoding error
(the client encoding used cannot be converted to a
server-side encoding), it is not possible to log the
encoding error as rawdata. Instead the raw bytes
are stored and you will see the octal code for any
non seven bit ASCII characters.

You can use the Greenplum Database built-in SQL function gp_read_error_log() to display formatting
errors that are logged internally. For example, this command displays the error log information for the table
ext_expenses:

SELECT gp_read_error_log('ext_expenses');

For information about managing formatting errors that are logged internally, see the command COPY or
CREATE EXTERNAL TABLE in the Greenplum Database Reference Guide.

Moving Data between Tables
You can use CREATE TABLE AS or INSERT...SELECT to load external and external web table data into
another (non-external) database table, and the data will be loaded in parallel according to the external or
external web table definition.

If an external table file or external web table data source has an error, one of the following will happen,
depending on the isolation mode used:

• Tables without error isolation mode: any operation that reads from that table fails. Loading from
external and external web tables without error isolation mode is an all or nothing operation.

• Tables with error isolation mode: the entire file will be loaded, except for the problematic rows
(subject to the configured REJECT_LIMIT)

Loading Data with gpload
The Greenplum gpload utility loads data using readable external tables and the Greenplum parallel
file server (gpfdist or gpfdists). It handles parallel file-based external table setup and allows users
to configure their data format, external table definition, and gpfdist or gpfdists setup in a single
configuration file.

Note: gpfdist and gpload are compatible only with the Greenplum Database major version in
which they are shipped. For example, a gpfdist utility that is installed with Greenplum Database
4.x cannot be used with Greenplum Database 5.x or 6.x.

Note: MERGE and UPDATE operations are not supported if the target table column name is a
reserved keyword, has capital letters, or includes any character that requires quotes (" ") to identify
the column.

To use gpload
1. Ensure that your environment is set up to run gpload. Some dependent files from your Greenplum

Database installation are required, such as gpfdist and Python, as well as network access to the
Greenplum segment hosts.

See the Greenplum Database Reference Guide for details.
2. Create your load control file. This is a YAML-formatted file that specifies the Greenplum Database

connection information, gpfdist configuration information, external table options, and data format.

See the Greenplum Database Reference Guide for details.

Greenplum Database Administrator Guide Release Notes

491

For example:

VERSION: 1.0.0.1
DATABASE: ops
USER: gpadmin
HOST: mdw-1
PORT: 5432
GPLOAD:
 INPUT:
 - SOURCE:
 LOCAL_HOSTNAME:
 - etl1-1
 - etl1-2
 - etl1-3
 - etl1-4
 PORT: 8081
 FILE:
 - /var/load/data/*
 - COLUMNS:
 - name: text
 - amount: float4
 - category: text
 - descr: text
 - date: date
 - FORMAT: text
 - DELIMITER: '|'
 - ERROR_LIMIT: 25
 - LOG_ERRORS: true
 OUTPUT:
 - TABLE: payables.expenses
 - MODE: INSERT
 PRELOAD:
 - REUSE_TABLES: true
SQL:
 - BEFORE: "INSERT INTO audit VALUES('start', current_timestamp)"
 - AFTER: "INSERT INTO audit VALUES('end', current_timestamp)"

3. Run gpload, passing in the load control file. For example:

gpload -f my_load.yml

Accessing External Data with PXF
Data managed by your organization may already reside in external sources such as Hadoop, object stores,
and other SQL databases. The Greenplum Platform Extension Framework (PXF) provides access to this
external data via built-in connectors that map an external data source to a Greenplum Database table
definition.

PXF is installed with Hadoop and Object Storage connectors. These connectors enable you to read
external data stored in text, Avro, JSON, RCFile, Parquet, SequenceFile, and ORC formats. You can use
the JDBC connector to access an external SQL database.

Note: In previous versions of Greenplum Database, you may have used the gphdfs external table
protocol to access data stored in Hadoop. Greenplum Database version 6.0.0 removes the gphdfs
protocol. Use PXF and the pxf external table protocol to access Hadoop in Greenplum Database
version 6.x.

The Greenplum Platform Extension Framework includes a C-language extension and a Java service.
After you configure and initialize PXF, you start a single PXF JVM process on each Greenplum Database
segment host. This long- running process concurrently serves multiple query requests.

Greenplum Database Administrator Guide Release Notes

492

For detailed information about the architecture of and using PXF, refer to the Greenplum Platform
Extension Framework (PXF) documentation.

Transforming External Data with gpfdist and gpload
The gpfdist parallel file server allows you to set up transformations that enable Greenplum Database
external tables to read and write files in formats that are not supported with the CREATE EXTERNAL
TABLE command's FORMAT clause. An input transformation reads a file in the foreign data format and
outputs rows to gpfdist in the CSV or other text format specified in the external table's FORMAT clause.
An output transformation receives rows from gpfdist in text format and converts them to the foreign data
format.

Note: gpfdist and gpload are compatible only with the Greenplum Database major version in
which they are shipped. For example, a gpfdist utility that is installed with Greenplum Database
4.x cannot be used with Greenplum Database 5.x or 6.x.

This topic describes the tasks to set up data transformations that work with gpfdist to read or write
external data files with formats that Greenplum Database does not support.

• About gpfdist Transformations
• Determine the Transformation Schema
• Write a Transformation
• Write the gpfdist Configuration File
• Transfer the Data
• Configuration File Format
• XML Transformation Examples

About gpfdist Transformations
To set up a transformation for a data format, you provide an executable command that gpfdist can call
with the name of the file containing data. For example, you could write a shell script that runs an XSLT
transformation on an XML file to output rows with columns delimited with a vertical bar (|) character and
rows delimited with linefeeds.

Transformations are configured in a YAML-formatted configuration file passed to gpfdist on the
command line.

If you want to load the external data into a table in the Greenplum database, you can use the gpload
utility to automate the tasks to create an external table, run gpfdist, and load the transformed data into
the database table.

Accessing data in external XML files from within the database is a common example requiring
transformation. The following diagram shows gpfdist performing a transformation on XML files on an ETL
server.

../../../pxf/5-15/overview_pxf.html
../../../pxf/5-15/overview_pxf.html

Greenplum Database Administrator Guide Release Notes

493

Figure 27: External Tables using XML Transformations

Following are the high-level steps to set up a gpfdist transformation for external data files. The process
is illustrated with an XML example.

1. Determine the transformation schema.
2. Write a transformation.
3. Write the gpfdist configuration file.
4. Transfer the data.

Determine the Transformation Schema
To prepare for the transformation project:

1. Determine the goal of the project, such as indexing data, analyzing data, combining data, and so on.
2. Examine the source files and note the file structure and element names.
3. Choose the elements to import and decide if any other limits are appropriate.

For example, the following XML file, prices.xml, is a simple XML file that contains price records. Each price
record contains two fields: an item number and a price.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<prices>
 <pricerecord>
 <itemnumber>708421</itemnumber>
 <price>19.99</price>
 </pricerecord>
 <pricerecord>
 <itemnumber>708466</itemnumber>
 <price>59.25</price>
 </pricerecord>
 <pricerecord>
 <itemnumber>711121</itemnumber>
 <price>24.99</price>
 </pricerecord>
</prices>

Greenplum Database Administrator Guide Release Notes

494

The goal of this transformation is to import all the data into a Greenplum Database readable external table
with an integer itemnumber column and a decimal price column.

Write a Transformation
The transformation specifies what to extract from the data. You can use any authoring environment and
language appropriate for your project. For XML transformations choose from technologies such as XSLT,
Joost (STX), Java, Python, or Perl, based on the goals and scope of the project.

In the price example, the next step is to transform the XML data into a two-column delimited text format.

708421|19.99
708466|59.25
711121|24.99

The following STX transform, called input_transform.stx, performs the data transformation.

<?xml version="1.0"?>
<stx:transform version="1.0"
 xmlns:stx="http://stx.sourceforge.net/2002/ns"
 pass-through="none">
 <!-- declare variables -->
 <stx:variable name="itemnumber"/>
 <stx:variable name="price"/>
 <!-- match and output prices as columns delimited by | -->
 <stx:template match="/prices/pricerecord">
 <stx:process-children/>
 <stx:value-of select="$itemnumber"/>
<stx:text>|</stx:text>
 <stx:value-of select="$price"/> <stx:text>
</stx:text>
 </stx:template>
 <stx:template match="itemnumber">
 <stx:assign name="itemnumber" select="."/>
 </stx:template>
 <stx:template match="price">
 <stx:assign name="price" select="."/>
 </stx:template>
</stx:transform>

This STX transform declares two temporary variables, itemnumber and price, and the following rules.

1. When an element that satisfies the XPath expression /prices/pricerecord is found, examine the
child elements and generate output that contains the value of the itemnumber variable, a | character,
the value of the price variable, and a newline.

2. When an <itemnumber> element is found, store the content of that element in the variable
itemnumber.

3. When a <price> element is found, store the content of that element in the variable price.

Write the gpfdist Configuration File
The gpfdist configuration is specified as a YAML 1.1 document. It contains rules that gpfdist uses to
select a transformation to apply when loading or extracting data.

This example gpfdist configuration contains the following items that are required for the prices.xml
transformation scenario:

• the config.yaml file defining TRANSFORMATIONS
• the input_transform.sh wrapper script, referenced in the config.yaml file
• the input_transform.stx joost transformation, called from input_transform.sh

Greenplum Database Administrator Guide Release Notes

495

Aside from the ordinary YAML rules, such as starting the document with three dashes (---), a gpfdist
configuration must conform to the following restrictions:

1. A VERSION setting must be present with the value 1.0.0.1.
2. A TRANSFORMATIONS setting must be present and contain one or more mappings.
3. Each mapping in the TRANSFORMATION must contain:

• a TYPE with the value 'input' or 'output'
• a COMMAND indicating how the transformation is run.

4. Each mapping in the TRANSFORMATION can contain optional CONTENT, SAFE, and STDERR settings.

The following gpfdist configuration, called config.yaml, applies to the prices example. The initial
indentation on each line is significant and reflects the hierarchical nature of the specification. The
transformation name prices_input in the following example will be referenced later when creating the
table in SQL.

VERSION: 1.0.0.1
TRANSFORMATIONS:
 prices_input:
 TYPE: input
 COMMAND: /bin/bash input_transform.sh %filename%

The COMMAND setting uses a wrapper script called input_transform.sh with a %filename%
placeholder. When gpfdist runs the prices_input transform, it invokes input_transform.sh with
/bin/bash and replaces the %filename% placeholder with the path to the input file to transform. The
wrapper script called input_transform.sh contains the logic to invoke the STX transformation and
return the output.

If Joost is used, the Joost STX engine must be installed.

#!/bin/bash
input_transform.sh - sample input transformation,
demonstrating use of Java and Joost STX to convert XML into
text to load into Greenplum Database.
java arguments:
-jar joost.jar joost STX engine
-nodecl don't generate a <?xml?> declaration
$1 filename to process
input_transform.stx the STX transformation
#
the AWK step eliminates a blank line joost emits at the end
java \
 -jar joost.jar \
 -nodecl \
 $1 \
 input_transform.stx \
 | awk 'NF>0'

The input_transform.sh file uses the Joost STX engine with the AWK interpreter. The following
diagram shows the process flow as gpfdist runs the transformation.

Greenplum Database Administrator Guide Release Notes

496

Transfer the Data
Create the target database tables with SQL statements based on the appropriate schema.

There are no special requirements for Greenplum Database tables that hold loaded data. In the prices
example, the following command creates the prices table, where the data is to be loaded.

CREATE TABLE prices (
 itemnumber integer,
 price decimal
)
DISTRIBUTED BY (itemnumber);

Next, use one of the following approaches to transform the data with gpfdist.

• gpload supports only input transformations, but in many cases is easier to implement.
• gpfdist with INSERT INTO SELECT FROM supports both input and output transformations, but

exposes details that gpload automates for you.

Transforming with gpload

The Greenplum Database gpload utility orchestrates a data load operation using the gpfdist parallel file
server and a YAML-formatted configuration file. gpload automates these tasks:

• Creates a readable external table in the database.
• Starts gpfdist instances with the configuration file that contains the transformation.
• Runs INSERT INTO table_name SELECT FROM external_table to load the data.
• Removes the external table definition.

Transforming data with gpload requires that the settings TRANSFORM and TRANSFORM_CONFIG appear in
the INPUT section of the gpload control file.

For more information about the syntax and placement of these settings in the gpload control file, see the
Greenplum Database Reference Guide.

• TRANSFORM_CONFIG specifies the name of the gpfdist configuration file.
• The TRANSFORM setting indicates the name of the transformation that is described in the file named in

TRANSFORM_CONFIG.

VERSION: 1.0.0.1
DATABASE: ops

Greenplum Database Administrator Guide Release Notes

497

USER: gpadmin
GPLOAD:
 INPUT:
 - TRANSFORM_CONFIG: config.yaml
 - TRANSFORM: prices_input
 - SOURCE:
 FILE: prices.xml

The transformation name must appear in two places: in the TRANSFORM setting of the gpfdist
configuration file and in the TRANSFORMATIONS section of the file named in the TRANSFORM_CONFIG
section.

In the gpload control file, the optional parameter MAX_LINE_LENGTH specifies the maximum length of a
line in the XML transformation data that is passed to gpload.

The following diagram shows the relationships between the gpload control file, the gpfdist configuration
file, and the XML data file.

Transforming with gpfdist and INSERT INTO SELECT FROM

With this load method, you perform each of the tasks that gpload automates. You start gpfdist, create
an external table, load the data, and clean up by dropping the table and stopping gpfdist.

Specify the transformation in the CREATE EXTERNAL TABLE definition's LOCATION clause. For example,
the transform is shown in bold in the following command. (Run gpfdist first, using the command
gpfdist -c config.yaml).

CREATE READABLE EXTERNAL TABLE prices_readable (LIKE prices)
 LOCATION ('gpfdist://hostname:8080/prices.xml#transform=prices_input')
 FORMAT 'TEXT' (DELIMITER '|')
 LOG ERRORS SEGMENT REJECT LIMIT 10;

In the command above, change hostname to your hostname. prices_input comes from the gpfdist
configuration file.

Greenplum Database Administrator Guide Release Notes

498

The following query then loads the data into the prices table.

INSERT INTO prices SELECT * FROM prices_readable;

Configuration File Format

The gpfdist configuration file uses the YAML 1.1 document format and implements a schema for
defining the transformation parameters. The configuration file must be a valid YAML document.

The gpfdist program processes the document in order and uses indentation (spaces) to determine the
document hierarchy and relationships of the sections to one another. The use of white space is significant.
Do not use white space for formatting and do not use tabs.

The following is the basic structure of a configuration file.

VERSION: 1.0.0.1
TRANSFORMATIONS:
 transformation_name1:
 TYPE: input | output
 COMMAND: command
 CONTENT: data | paths
 SAFE: posix-regex
 STDERR: server | console
 transformation_name2:
 TYPE: input | output
 COMMAND: command
...

VERSION

Required. The version of the gpfdist configuration file schema. The current version is
1.0.0.1.

TRANSFORMATIONS

Required. Begins the transformation specification section. A configuration file must have at
least one transformation. When gpfdist receives a transformation request, it looks in this
section for an entry with the matching transformation name.

TYPE

Required. Specifies the direction of transformation. Values are input or output.

• input: gpfdist treats the standard output of the transformation process as a stream
of records to load into Greenplum Database.

• output : gpfdist treats the standard input of the transformation process as a stream
of records from Greenplum Database to transform and write to the appropriate output.

COMMAND

Required. Specifies the command gpfdist will execute to perform the transformation.

For input transformations, gpfdist invokes the command specified in the CONTENT
setting. The command is expected to open the underlying file(s) as appropriate and
produce one line of TEXT for each row to load into Greenplum Database. The input
transform determines whether the entire content should be converted to one row or to
multiple rows.

For output transformations, gpfdist invokes this command as specified in the CONTENT
setting. The output command is expected to open and write to the underlying file(s) as
appropriate. The output transformation determines the final placement of the converted
output.

CONTENT

Greenplum Database Administrator Guide Release Notes

499

Optional. The values are data and paths. The default value is data.

• When CONTENT specifies data, the text %filename% in the COMMAND section is
replaced by the path to the file to read or write.

• When CONTENT specifies paths, the text %filename% in the COMMAND section is
replaced by the path to the temporary file that contains the list of files to read or write.

The following is an example of a COMMAND section showing the text %filename% that is
replaced.

COMMAND: /bin/bash input_transform.sh %filename%

SAFE

Optional. A POSIX regular expression that the paths must match to be passed to the
transformation. Specify SAFE when there is a concern about injection or improper
interpretation of paths passed to the command. The default is no restriction on paths.

STDERR

Optional. The values are server and console.

This setting specifies how to handle standard error output from the transformation. The
default, server, specifies that gpfdist will capture the standard error output from
the transformation in a temporary file and send the first 8k of that file to Greenplum
Database as an error message. The error message will appear as an SQL error. Console
specifies that gpfdist does not redirect or transmit the standard error output from the
transformation.

XML Transformation Examples
The following examples demonstrate the complete process for different types of XML data and STX
transformations. Files and detailed instructions associated with these examples are in the GitHub repo
github.com://greenplum-db/gpdb in the gpMgmt/demo/gpfdist_transform directory. Read
the README file in the Before You Begin section before you run the examples. The README file explains
how to download the example data file used in the examples.

Command-based External Web Tables

The output of a shell command or script defines command-based web table data. Specify the command in
the EXECUTE clause of CREATE EXTERNAL WEB TABLE. The data is current as of the time the command
runs. The EXECUTE clause runs the shell command or script on the specified master, and/or segment
host or hosts. The command or script must reside on the hosts corresponding to the host(s) defined in the
EXECUTE clause.

By default, the command is run on segment hosts when active segments have output rows to process. For
example, if each segment host runs four primary segment instances that have output rows to process, the
command runs four times per segment host. You can optionally limit the number of segment instances that
execute the web table command. All segments included in the web table definition in the ON clause run the
command in parallel.

The command that you specify in the external table definition executes from the database and cannot
access environment variables from .bashrc or .profile. Set environment variables in the EXECUTE
clause. For example:

=# CREATE EXTERNAL WEB TABLE output (output text)
 EXECUTE 'PATH=/home/gpadmin/programs; export PATH; myprogram.sh'
 FORMAT 'TEXT';

Scripts must be executable by the gpadmin user and reside in the same location on the master or
segment hosts.

https://github.com/greenplum-db/gpdb/blob/master/gpMgmt/demo/gpfdist_transform

Greenplum Database Administrator Guide Release Notes

500

The following command defines a web table that runs a script. The script runs on each segment host
where a segment has output rows to process.

=# CREATE EXTERNAL WEB TABLE log_output
 (linenum int, message text)
 EXECUTE '/var/load_scripts/get_log_data.sh' ON HOST
 FORMAT 'TEXT' (DELIMITER '|');

IRS MeF XML Files (In demo Directory)

This example demonstrates loading a sample IRS Modernized eFile tax return using a Joost STX
transformation. The data is in the form of a complex XML file.

The U.S. Internal Revenue Service (IRS) made a significant commitment to XML and specifies its use in
its Modernized e-File (MeF) system. In MeF, each tax return is an XML document with a deep hierarchical
structure that closely reflects the particular form of the underlying tax code.

XML, XML Schema and stylesheets play a role in their data representation and business workflow. The
actual XML data is extracted from a ZIP file attached to a MIME "transmission file" message. For more
information about MeF, see Modernized e-File (Overview) on the IRS web site.

The sample XML document, RET990EZ_2006.xml, is about 350KB in size with two elements:

• ReturnHeader
• ReturnData

The <ReturnHeader> element contains general details about the tax return such as the taxpayer's name,
the tax year of the return, and the preparer. The <ReturnData> element contains multiple sections with
specific details about the tax return and associated schedules.

The following is an abridged sample of the XML file.

<?xml version="1.0" encoding="UTF-8"?>
<Return returnVersion="2006v2.0"
 xmlns="https://www.irs.gov/efile"
 xmlns:efile="https://www.irs.gov/efile"
 xsi:schemaLocation="https://www.irs.gov/efile"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ReturnHeader binaryAttachmentCount="1">
 <ReturnId>AAAAAAAAAAAAAAAAAAAA</ReturnId>
 <Timestamp>1999-05-30T12:01:01+05:01</Timestamp>
 <ReturnType>990EZ</ReturnType>
 <TaxPeriodBeginDate>2005-01-01</TaxPeriodBeginDate>
 <TaxPeriodEndDate>2005-12-31</TaxPeriodEndDate>
 <Filer>
 <EIN>011248772</EIN>
 ... more data ...
 </Filer>
 <Preparer>
 <Name>Percy Polar</Name>
 ... more data ...
 </Preparer>
 <TaxYear>2005</TaxYear>
 </ReturnHeader>
 ... more data ..

The goal is to import all the data into a Greenplum database. First, convert the XML document into text
with newlines "escaped", with two columns: ReturnId and a single column on the end for the entire MeF
tax return. For example:

AAAAAAAAAAAAAAAAAAAA|<Return returnVersion="2006v2.0"...

https://www.irs.gov/uac/modernized-e-file-overview

Greenplum Database Administrator Guide Release Notes

501

Load the data into Greenplum Database.

WITSML™ Files (In demo Directory)

This example demonstrates loading sample data describing an oil rig using a Joost STX transformation.
The data is in the form of a complex XML file downloaded from energistics.org.

The Wellsite Information Transfer Standard Markup Language (WITSML™) is an oil industry initiative to
provide open, non-proprietary, standard interfaces for technology and software to share information among
oil companies, service companies, drilling contractors, application vendors, and regulatory agencies. For
more information about WITSML™, see http://www.energistics.org/.

The oil rig information consists of a top level <rigs> element with multiple child elements such as
<documentInfo>, <rig>, and so on. The following excerpt from the file shows the type of information
in the <rig> tag.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="../stylesheets/rig.xsl" type="text/xsl"
 media="screen"?>
<rigs
 xmlns="http://www.energistics.org/schemas/131"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.energistics.org/schemas/131 ../obj_rig.xsd"
 version="1.3.1.1">
 <documentInfo>
 ... misc data ...
 </documentInfo>
 <rig uidWell="W-12" uidWellbore="B-01" uid="xr31">
 <nameWell>6507/7-A-42</nameWell>
 <nameWellbore>A-42</nameWellbore>
 <name>Deep Drill #5</name>
 <owner>Deep Drilling Co.</owner>
 <typeRig>floater</typeRig>
 <manufacturer>Fitsui Engineering</manufacturer>
 <yearEntService>1980</yearEntService>
 <classRig>ABS Class A1 M CSDU AMS ACCU</classRig>
 <approvals>DNV</approvals>
 ... more data ...

The goal is to import the information for this rig into Greenplum Database.

The sample document, rig.xml, is about 11KB in size. The input does not contain tabs so the relevant
information can be converted into records delimited with a pipe (|).

W-12|6507/7-A-42|xr31|Deep Drill #5|Deep Drilling Co.|John Doe|
John.Doe@example.com|

With the columns:

• well_uid text, -- e.g. W-12
• well_name text, -- e.g. 6507/7-A-42
• rig_uid text, -- e.g. xr31
• rig_name text, -- e.g. Deep Drill #5
• rig_owner text, -- e.g. Deep Drilling Co.
• rig_contact text, -- e.g. John Doe
• rig_email text, -- e.g. John.Doe@example.com
• doc xml

Then, load the data into Greenplum Database.

http://www.energistics.org/

Greenplum Database Administrator Guide Release Notes

502

Loading Data with COPY
COPY FROM copies data from a file or standard input into a table and appends the data to the table
contents. COPY is non-parallel: data is loaded in a single process using the Greenplum master instance.
Using COPY is only recommended for very small data files.

The COPY source file must be accessible to the postgres process on the master host. Specify the COPY
source file name relative to the data directory on the master host, or specify an absolute path.

Greenplum copies data from STDIN or STDOUT using the connection between the client and the master
server.

Loading From a File
The COPY command asks the postgres backend to open the specified file, read it and append it to the
table. In order to be able to read the file, the backend needs to have read permissions on the file, and the
file name must be specified using an absolute path on the master host, or a relative path to the master data
directory.

COPY table_name FROM /path/to/filename;

Loading From STDIN
To avoid the problem of copying the data file to the master host before loading the data, COPY FROM
STDIN uses the Standard Input channel and feeds data directly into the postgres backend. After the
COPY FROM STDIN command started, the backend will accept lines of data until a single line only contains
a backslash-period (\.).

COPY table_name FROM STDIN;

Loading Data Using \copy in psql
Do not confuse the psql \copy command with the COPY SQL command. The \copy invokes a regular
COPY FROM STDIN and sends the data from the psql client to the backend. Therefore any file must reside
on the host where the psql client runs, and must be accessible to the user which runs the client.

To avoid the problem of copying the data file to the master host before loading the data, COPY FROM
STDIN uses the Standard Input channel and feeds data directly into the postgres backend. After the
COPY FROM STDIN command started, the backend will accept lines of data until a single line only contains
a backslash-period (\.). psql is wrapping all of this into the handy \copy command.

\copy table_name FROM filename;

Input Format
COPY FROM accepts a FORMAT parameter, which specifies the format of the input data. The possible
values are TEXT, CSV (Comma Separated Values), and BINARY.

COPY table_name FROM /path/to/filename WITH (FORMAT csv);

The FORMAT csv will read comma-separated values. The FORMAT text by default uses tabulators to
separate the values, the DELIMITER option specifies a different character as value delimiter.

COPY table_name FROM /path/to/filename WITH (FORMAT text, DELIMITER '|');

Greenplum Database Administrator Guide Release Notes

503

By default, the default client encoding is used, this can be changed with the ENCODING option. This is
useful if data is coming from another operating system.

COPY table_name FROM /path/to/filename WITH (ENCODING 'latin1');

Running COPY in Single Row Error Isolation Mode
By default, COPY stops an operation at the first error: if the data contains an error, the operation fails and
no data loads. If you run COPY FROM in single row error isolation mode, Greenplum skips rows that contain
format errors and loads properly formatted rows. Single row error isolation mode applies only to rows in the
input file that contain format errors. If the data contains a constraint error such as violation of a NOT NULL,
CHECK, or UNIQUE constraint, the operation fails and no data loads.

Specifying SEGMENT REJECT LIMIT runs the COPY operation in single row error isolation mode. Specify
the acceptable number of error rows on each segment, after which the entire COPY FROM operation fails
and no rows load. The error row count is for each Greenplum Database segment, not for the entire load
operation.

If the COPY operation does not reach the error limit, Greenplum loads all correctly-formatted rows and
discards the error rows. Use the LOG ERRORS clause to capture data formatting errors internally in
Greenplum Database. For example:

=> COPY country FROM '/data/gpdb/country_data'
 WITH DELIMITER '|' LOG ERRORS
 SEGMENT REJECT LIMIT 10 ROWS;

See Viewing Bad Rows in the Error Log for information about investigating error rows.

Optimizing Data Load and Query Performance
Use the following tips to help optimize your data load and subsequent query performance.

• Drop indexes before loading data into existing tables.

Creating an index on pre-existing data is faster than updating it incrementally as each row is loaded.
You can temporarily increase the maintenance_work_mem server configuration parameter to help
speed up CREATE INDEX commands, though load performance is affected. Drop and recreate indexes
only when there are no active users on the system.

• Create indexes last when loading data into new tables. Create the table, load the data, and create any
required indexes.

• Run ANALYZE after loading data. If you significantly altered the data in a table, run ANALYZE or VACUUM
ANALYZE to update table statistics for the query optimizer. Current statistics ensure that the optimizer
makes the best decisions during query planning and avoids poor performance due to inaccurate or
nonexistent statistics.

• Run VACUUM after load errors. If the load operation does not run in single row error isolation mode, the
operation stops at the first error. The target table contains the rows loaded before the error occurred.
You cannot access these rows, but they occupy disk space. Use the VACUUM command to recover the
wasted space.

Unloading Data from Greenplum Database
A writable external table allows you to select rows from other database tables and output the rows to files,
named pipes, to applications, or as output targets for Greenplum parallel MapReduce calculations. You
can define file-based and web-based writable external tables.

Greenplum Database Administrator Guide Release Notes

504

This topic describes how to unload data from Greenplum Database using parallel unload (writable external
tables) and non-parallel unload (COPY).

Defining a File-Based Writable External Table
Writable external tables that output data to files can use the Greenplum parallel file server program,
gpfdist, or the Greenplum Platform Extension Framework (PXF), Greenplum's interface to Hadoop.

Use the CREATE WRITABLE EXTERNAL TABLE command to define the external table and specify
the location and format of the output files. See Using the Greenplum Parallel File Server (gpfdist) for
instructions on setting up gpfdist for use with an external table and Accessing External Data with PXF
for instructions on setting up PXF for use with an external table

• With a writable external table using the gpfdist protocol, the Greenplum segments send their data
to gpfdist, which writes the data to the named file. gpfdist must run on a host that the Greenplum
segments can access over the network. gpfdist points to a file location on the output host and writes
data received from the Greenplum segments to the file. To divide the output data among multiple files,
list multiple gpfdist URIs in your writable external table definition.

• A writable external web table sends data to an application as a stream of data. For example, unload
data from Greenplum Database and send it to an application that connects to another database or ETL
tool to load the data elsewhere. Writable external web tables use the EXECUTE clause to specify a shell
command, script, or application to run on the segment hosts and accept an input stream of data. See
Defining a Command-Based Writable External Web Table for more information about using EXECUTE
commands in a writable external table definition.

You can optionally declare a distribution policy for your writable external tables. By default, writable
external tables use a random distribution policy. If the source table you are exporting data from has a hash
distribution policy, defining the same distribution key column(s) for the writable external table improves
unload performance by eliminating the requirement to move rows over the interconnect. If you unload data
from a particular table, you can use the LIKE clause to copy the column definitions and distribution policy
from the source table.

Example 1—Greenplum file server (gpfdist)

=# CREATE WRITABLE EXTERNAL TABLE unload_expenses
 (LIKE expenses)
 LOCATION ('gpfdist://etlhost-1:8081/expenses1.out',
 'gpfdist://etlhost-2:8081/expenses2.out')
 FORMAT 'TEXT' (DELIMITER ',')
 DISTRIBUTED BY (exp_id);

Example 2—Hadoop file server (pxf)

=# CREATE WRITABLE EXTERNAL TABLE unload_expenses
 (LIKE expenses)
 LOCATION ('pxf://dir/path?PROFILE=hdfs:text')
 FORMAT 'TEXT' (DELIMITER ',')
 DISTRIBUTED BY (exp_id);

You specify an HDFS directory for a writable external table that you create with the pxf protocol.

Defining a Command-Based Writable External Web Table
You can define writable external web tables to send output rows to an application or script. The application
must accept an input stream, reside in the same location on all of the Greenplum segment hosts, and be
executable by the gpadmin user. All segments in the Greenplum system run the application or script,
whether or not a segment has output rows to process.

Greenplum Database Administrator Guide Release Notes

505

Use CREATE WRITABLE EXTERNAL WEB TABLE to define the external table and specify the application
or script to run on the segment hosts. Commands execute from within the database and cannot access
environment variables (such as $PATH). Set environment variables in the EXECUTE clause of your writable
external table definition. For example:

=# CREATE WRITABLE EXTERNAL WEB TABLE output (output text)
 EXECUTE 'export PATH=$PATH:/home/gpadmin
 /programs;
 myprogram.sh'
 FORMAT 'TEXT'
 DISTRIBUTED RANDOMLY;

The following Greenplum Database variables are available for use in OS commands executed by a web
or writable external table. Set these variables as environment variables in the shell that executes the
command(s). They can be used to identify a set of requests made by an external table statement across
the Greenplum Database array of hosts and segment instances.

Table 58: External Table EXECUTE Variables

Variable Description

$GP_CID Command count of the transaction executing the external table
statement.

$GP_DATABASE The database in which the external table definition resides.

$GP_DATE The date on which the external table command ran.

$GP_MASTER_HOST The host name of the Greenplum master host from which the external
table statement was dispatched.

$GP_MASTER_PORT The port number of the Greenplum master instance from which the
external table statement was dispatched.

$GP_QUERY_STRING The SQL command (DML or SQL query) executed by Greenplum
Database.

$GP_SEG_DATADIR The location of the data directory of the segment instance executing
the external table command.

$GP_SEG_PG_CONF The location of the postgresql.conf file of the segment instance
executing the external table command.

$GP_SEG_PORT The port number of the segment instance executing the external table
command.

$GP_SEGMENT_COUNT The total number of primary segment instances in the Greenplum
Database system.

$GP_SEGMENT_ID The ID number of the segment instance executing the external table
command (same as dbid in gp_segment_configuration).

$GP_SESSION_ID The database session identifier number associated with the external
table statement.

$GP_SN Serial number of the external table scan node in the query plan of the
external table statement.

$GP_TIME The time the external table command was executed.

$GP_USER The database user executing the external table statement.

$GP_XID The transaction ID of the external table statement.

Greenplum Database Administrator Guide Release Notes

506

Disabling EXECUTE for Web or Writable External Tables

There is a security risk associated with allowing external tables to execute OS commands or
scripts. To disable the use of EXECUTE in web and writable external table definitions, set the
gp_external_enable_exec server configuration parameter to off in your master postgresql.conf
file:

gp_external_enable_exec = off

Unloading Data Using a Writable External Table
Writable external tables allow only INSERT operations. You must grant INSERT permission on a table to
enable access to users who are not the table owner or a superuser. For example:

GRANT INSERT ON writable_ext_table TO admin;

To unload data using a writable external table, select the data from the source table(s) and insert it into the
writable external table. The resulting rows are output to the writable external table. For example:

INSERT INTO writable_ext_table SELECT * FROM regular_table;

Unloading Data Using COPY
COPY TO copies data from a table to a file (or standard input) on the Greenplum master host using a single
process on the Greenplum master instance. Use COPY to output a table's entire contents, or filter the
output using a SELECT statement. For example:

COPY (SELECT * FROM country WHERE country_name LIKE 'A%')
TO '/home/gpadmin/a_list_countries.out';

Formatting Data Files
When you use the Greenplum tools for loading and unloading data, you must specify how your data is
formatted. COPY, CREATE EXTERNAL TABLE, and gpload have clauses that allow you to specify
how your data is formatted. Data can be delimited text (TEXT) or comma separated values (CSV) format.
External data must be formatted correctly to be read by Greenplum Database. This topic explains the
format of data files expected by Greenplum Database.

Formatting Rows
Greenplum Database expects rows of data to be separated by the LF character (Line feed, 0x0A),
CR (Carriage return, 0x0D), or CR followed by LF (CR+LF, 0x0D 0x0A). LF is the standard newline
representation on UNIX or UNIX-like operating systems. Operating systems such as Windows or Mac OS
X use CR or CR+LF. All of these representations of a newline are supported by Greenplum Database as a
row delimiter. For more information, see Importing and Exporting Fixed Width Data.

Formatting Columns
The default column or field delimiter is the horizontal TAB character (0x09) for text files and the comma
character (0x2C) for CSV files. You can declare a single character delimiter using the DELIMITER
clause of COPY, CREATE EXTERNAL TABLE or gpload when you define your data format. The delimiter

Greenplum Database Administrator Guide Release Notes

507

character must appear between any two data value fields. Do not place a delimiter at the beginning or end
of a row. For example, if the pipe character (|) is your delimiter:

data value 1|data value 2|data value 3

The following command shows the use of the pipe character as a column delimiter:

=# CREATE EXTERNAL TABLE ext_table (name text, date date)
LOCATION ('gpfdist://<hostname>/filename.txt)
FORMAT 'TEXT' (DELIMITER '|');

Representing NULL Values
NULL represents an unknown piece of data in a column or field. Within your data files you can designate
a string to represent null values. The default string is \N (backslash-N) in TEXT mode, or an empty value
with no quotations in CSV mode. You can also declare a different string using the NULL clause of COPY,
CREATE EXTERNAL TABLE or gpload when defining your data format. For example, you can use
an empty string if you do not want to distinguish nulls from empty strings. When using the Greenplum
Database loading tools, any data item that matches the designated null string is considered a null value.

Escaping
There are two reserved characters that have special meaning to Greenplum Database:

• The designated delimiter character separates columns or fields in the data file.
• The newline character designates a new row in the data file.

If your data contains either of these characters, you must escape the character so that Greenplum treats it
as data and not as a field separator or new row. By default, the escape character is a \ (backslash) for text-
formatted files and a double quote (") for csv-formatted files.

Escaping in Text Formatted Files

By default, the escape character is a \ (backslash) for text-formatted files. You can declare a different
escape character in the ESCAPE clause of COPY, CREATE EXTERNAL TABLE or gpload. If your escape
character appears in your data, use it to escape itself.

For example, suppose you have a table with three columns and you want to load the following three fields:

• backslash = \

• vertical bar = |

• exclamation point = !

Your designated delimiter character is | (pipe character), and your designated escape character is \
(backslash). The formatted row in your data file looks like this:

backslash = \\ | vertical bar = \| | exclamation point = !

Notice how the backslash character that is part of the data is escaped with another backslash character,
and the pipe character that is part of the data is escaped with a backslash character.

You can use the escape character to escape octal and hexadecimal sequences. The escaped value is
converted to the equivalent character when loaded into Greenplum Database. For example, to load the
ampersand character (&), use the escape character to escape its equivalent hexadecimal (\0x26) or octal
(\046) representation.

Greenplum Database Administrator Guide Release Notes

508

You can disable escaping in TEXT-formatted files using the ESCAPE clause of COPY, CREATE EXTERNAL
TABLE or gpload as follows:

ESCAPE 'OFF'

This is useful for input data that contains many backslash characters, such as web log data.

Escaping in CSV Formatted Files

By default, the escape character is a " (double quote) for CSV-formatted files. If you want to use a different
escape character, use the ESCAPE clause of COPY, CREATE EXTERNAL TABLE or gpload to declare a
different escape character. In cases where your selected escape character is present in your data, you can
use it to escape itself.

For example, suppose you have a table with three columns and you want to load the following three fields:

• Free trip to A,B

• 5.89

• Special rate "1.79"

Your designated delimiter character is , (comma), and your designated escape character is " (double
quote). The formatted row in your data file looks like this:

 "Free trip to A,B","5.89","Special rate ""1.79"""

The data value with a comma character that is part of the data is enclosed in double quotes. The double
quotes that are part of the data are escaped with a double quote even though the field value is enclosed in
double quotes.

Embedding the entire field inside a set of double quotes guarantees preservation of leading and trailing
whitespace characters:

"Free trip to A,B ","5.89 ","Special rate ""1.79"" "

Note: In CSV mode, all characters are significant. A quoted value surrounded by white space,
or any characters other than DELIMITER, includes those characters. This can cause errors if
you import data from a system that pads CSV lines with white space to some fixed width. In this
case, preprocess the CSV file to remove the trailing white space before importing the data into
Greenplum Database.

Character Encoding
Character encoding systems consist of a code that pairs each character from a character set with
something else, such as a sequence of numbers or octets, to facilitate data stransmission and storage.
Greenplum Database supports a variety of character sets, including single-byte character sets such as
the ISO 8859 series and multiple-byte character sets such as EUC (Extended UNIX Code), UTF-8, and
Mule internal code. The server-side character set is defined during database initialization, UTF-8 is the
default and can be changed. Clients can use all supported character sets transparently, but a few are
not supported for use within the server as a server-side encoding. When loading or inserting data into
Greenplum Database, Greenplum transparently converts the data from the specified client encoding into
the server encoding. When sending data back to the client, Greenplum converts the data from the server
character encoding into the specified client encoding.

Data files must be in a character encoding recognized by Greenplum Database. See the Greenplum
Database Reference Guide for the supported character sets. Data files that contain invalid or unsupported
encoding sequences encounter errors when loading into Greenplum Database.

Greenplum Database Administrator Guide Release Notes

509

Note: On data files generated on a Microsoft Windows operating system, run the dos2unix
system command to remove any Windows-only characters before loading into Greenplum
Database.

Note: If you change the ENCODING value in an existing gpload control file, you must manually
drop any external tables that were creating using the previous ENCODING configuration. gpload
does not drop and recreate external tables to use the new ENCODING if REUSE_TABLES is set to
true.

Changing the Client-Side Character Encoding

The client-side character encoding can be changed for a session by setting the server configuration
parameter client_encoding

SET client_encoding TO 'latin1';

Change the client-side character encoding back to the default value:

RESET client_encoding;

Show the current client-side character encoding setting:

SHOW client_encoding;

Example Custom Data Access Protocol
The following is the API for the Greenplum Database custom data access protocol. The example protocol
implementation gpextprotocal.c is written in C and shows how the API can be used. For information about
accessing a custom data access protocol, see Using a Custom Protocol.

/* ---- Read/Write function API ------*/
CALLED_AS_EXTPROTOCOL(fcinfo)
EXTPROTOCOL_GET_URL(fcinfo)(fcinfo)
EXTPROTOCOL_GET_DATABUF(fcinfo)
EXTPROTOCOL_GET_DATALEN(fcinfo)
EXTPROTOCOL_GET_SCANQUALS(fcinfo)
EXTPROTOCOL_GET_USER_CTX(fcinfo)
EXTPROTOCOL_IS_LAST_CALL(fcinfo)
EXTPROTOCOL_SET_LAST_CALL(fcinfo)
EXTPROTOCOL_SET_USER_CTX(fcinfo, p)

/* ------ Validator function API ------*/
CALLED_AS_EXTPROTOCOL_VALIDATOR(fcinfo)
EXTPROTOCOL_VALIDATOR_GET_URL_LIST(fcinfo)
EXTPROTOCOL_VALIDATOR_GET_NUM_URLS(fcinfo)
EXTPROTOCOL_VALIDATOR_GET_NTH_URL(fcinfo, n)
EXTPROTOCOL_VALIDATOR_GET_DIRECTION(fcinfo)

Notes
The protocol corresponds to the example described in Using a Custom Protocol. The source code file
name and shared object are gpextprotocol.c and gpextprotocol.so.

The protocol has the following properties:

• The name defined for the protocol is myprot.
• The protocol has the following simple form: the protocol name and a path, separated by ://.

myprot:// path
• Three functions are implemented:

Greenplum Database Administrator Guide Release Notes

510

• myprot_import() a read function
• myprot_export() a write function
• myprot_validate_urls() a validation function

These functions are referenced in the CREATE PROTOCOL statement when the protocol is created and
declared in the database.

The example implementation gpextprotocal.c uses fopen() and fread() to simulate a simple protocol
that reads local files. In practice, however, the protocol would implement functionality such as a remote
connection to some process over the network.

Installing the External Table Protocol
To use the example external table protocol, you use the C compiler cc to compile and link the source code
to create a shared object that can be dynamically loaded by Greenplum Database. The commands to
compile and link the source code on a Linux system are similar to this:

cc -fpic -c gpextprotocal.c cc -shared -o gpextprotocal.so gpextprotocal.o

The option -fpic specifies creating position-independent code (PIC) and the -c option compiles the
source code without linking and creates an object file. The object file needs to be created as position-
independent code (PIC) so that it can be loaded at any arbitrary location in memory by Greenplum
Database.

The flag -shared specifies creating a shared object (shared library) and the -o option specifies the
shared object file name gpextprotocal.so. Refer to the GCC manual for more information on the cc
options.

The header files that are declared as include files in gpextprotocal.c are located in subdirectories of
$GPHOME/include/postgresql/.

For more information on compiling and linking dynamically-loaded functions and examples of compiling C
source code to create a shared library on other operating systems, see the PostgreSQL documentation at
https://www.postgresql.org/docs/9.4/xfunc-c.html#DFUNC .

The manual pages for the C compiler cc and the link editor ld for your operating system also contain
information on compiling and linking source code on your system.

The compiled code (shared object file) for the custom protocol must be placed in the same location on
every host in your Greenplum Database array (master and all segments). This location must also be in the
LD_LIBRARY_PATH so that the server can locate the files. It is recommended to locate shared libraries
either relative to $libdir (which is located at $GPHOME/lib) or through the dynamic library path (set
by the dynamic_library_path server configuration parameter) on all master segment instances in the
Greenplum Database array. You can use the Greenplum Database utilities gpssh and gpscp to update
segments.

gpextprotocal.c

#include "postgres.h"
#include "fmgr.h"
#include "funcapi.h"
#include "access/extprotocol.h"
#include "catalog/pg_proc.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "utils/memutils.h"

/* Our chosen URI format. We can change it however needed */
typedef struct DemoUri
{
 char *protocol;

https://www.postgresql.org/docs/9.4/xfunc-c.html#DFUNC
https://www.postgresql.org/docs/9.4/xfunc-c.html#DFUNC

Greenplum Database Administrator Guide Release Notes

511

 char *path;
} DemoUri;
static DemoUri *ParseDemoUri(const char *uri_str);
static void FreeDemoUri(DemoUri* uri);

/* Do the module magic dance */
PG_MODULE_MAGIC;
PG_FUNCTION_INFO_V1(demoprot_export);
PG_FUNCTION_INFO_V1(demoprot_import);
PG_FUNCTION_INFO_V1(demoprot_validate_urls);

Datum demoprot_export(PG_FUNCTION_ARGS);
Datum demoprot_import(PG_FUNCTION_ARGS);
Datum demoprot_validate_urls(PG_FUNCTION_ARGS);

/* A user context that persists across calls. Can be
declared in any other way */
typedef struct {
 char *url;
 char *filename;
 FILE *file;
} extprotocol_t;
/*
* The read function - Import data into GPDB.
*/
Datum
myprot_import(PG_FUNCTION_ARGS)
{
 extprotocol_t *myData;
 char *data;
 int datlen;
 size_t nread = 0;

 /* Must be called via the external table format manager */
 if (!CALLED_AS_EXTPROTOCOL(fcinfo))
 elog(ERROR, "myprot_import: not called by external
 protocol manager");

 /* Get our internal description of the protocol */
 myData = (extprotocol_t *) EXTPROTOCOL_GET_USER_CTX(fcinfo);

 if(EXTPROTOCOL_IS_LAST_CALL(fcinfo))
 {
 /* we're done receiving data. close our connection */
 if(myData && myData->file)
 if(fclose(myData->file))
 ereport(ERROR,
 (errcode_for_file_access(),
 errmsg("could not close file \"%s\": %m",
 myData->filename)));

 PG_RETURN_INT32(0);
 }

 if (myData == NULL)
 {
 /* first call. do any desired init */

 const char *p_name = "myprot";
 DemoUri *parsed_url;
 char *url = EXTPROTOCOL_GET_URL(fcinfo);
 myData = palloc(sizeof(extprotocol_t));

 myData->url = pstrdup(url);

Greenplum Database Administrator Guide Release Notes

512

 parsed_url = ParseDemoUri(myData->url);
 myData->filename = pstrdup(parsed_url->path);

 if(strcasecmp(parsed_url->protocol, p_name) != 0)
 elog(ERROR, "internal error: myprot called with a
 different protocol (%s)",
 parsed_url->protocol);

 FreeDemoUri(parsed_url);

 /* open the destination file (or connect to remote server in
 other cases) */
 myData->file = fopen(myData->filename, "r");

 if (myData->file == NULL)
 ereport(ERROR,
 (errcode_for_file_access(),
 errmsg("myprot_import: could not open file \"%s\"
 for reading: %m",
 myData->filename),
 errOmitLocation(true)));

 EXTPROTOCOL_SET_USER_CTX(fcinfo, myData);
 }
 /* ==
 * DO THE IMPORT
 * == */
 data = EXTPROTOCOL_GET_DATABUF(fcinfo);
 datlen = EXTPROTOCOL_GET_DATALEN(fcinfo);

 /* read some bytes (with fread in this example, but normally
 in some other method over the network) */
 if(datlen > 0)
 {
 nread = fread(data, 1, datlen, myData->file);
 if (ferror(myData->file))
 ereport(ERROR,
 (errcode_for_file_access(),
 errmsg("myprot_import: could not write to file
 \"%s\": %m",
 myData->filename)));
 }
 PG_RETURN_INT32((int)nread);
}
/*
 * Write function - Export data out of GPDB
 */
Datum
myprot_export(PG_FUNCTION_ARGS)
{
 extprotocol_t *myData;
 char *data;
 int datlen;
 size_t wrote = 0;

 /* Must be called via the external table format manager */
 if (!CALLED_AS_EXTPROTOCOL(fcinfo))
 elog(ERROR, "myprot_export: not called by external
 protocol manager");

 /* Get our internal description of the protocol */
 myData = (extprotocol_t *) EXTPROTOCOL_GET_USER_CTX(fcinfo);
 if(EXTPROTOCOL_IS_LAST_CALL(fcinfo))
 {

Greenplum Database Administrator Guide Release Notes

513

 /* we're done sending data. close our connection */
 if(myData && myData->file)
 if(fclose(myData->file))
 ereport(ERROR,
 (errcode_for_file_access(),
 errmsg("could not close file \"%s\": %m",
 myData->filename)));

 PG_RETURN_INT32(0);
 }
 if (myData == NULL)
 {
 /* first call. do any desired init */
 const char *p_name = "myprot";
 DemoUri *parsed_url;
 char *url = EXTPROTOCOL_GET_URL(fcinfo);

 myData = palloc(sizeof(extprotocol_t));

 myData->url = pstrdup(url);
 parsed_url = ParseDemoUri(myData->url);
 myData->filename = pstrdup(parsed_url->path);

 if(strcasecmp(parsed_url->protocol, p_name) != 0)
 elog(ERROR, "internal error: myprot called with a
 different protocol (%s)",
 parsed_url->protocol);

 FreeDemoUri(parsed_url);

 /* open the destination file (or connect to remote server in
 other cases) */
 myData->file = fopen(myData->filename, "a");
 if (myData->file == NULL)
 ereport(ERROR,
 (errcode_for_file_access(),
 errmsg("myprot_export: could not open file \"%s\"
 for writing: %m",
 myData->filename),
 errOmitLocation(true)));

 EXTPROTOCOL_SET_USER_CTX(fcinfo, myData);
 }
 /* ==
 * DO THE EXPORT
 * == */
 data = EXTPROTOCOL_GET_DATABUF(fcinfo);
 datlen = EXTPROTOCOL_GET_DATALEN(fcinfo);

 if(datlen > 0)
 {
 wrote = fwrite(data, 1, datlen, myData->file);

 if (ferror(myData->file))
 ereport(ERROR,
 (errcode_for_file_access(),
 errmsg("myprot_import: could not read from file
 \"%s\": %m",
 myData->filename)));
 }
 PG_RETURN_INT32((int)wrote);
}
Datum
myprot_validate_urls(PG_FUNCTION_ARGS)

Greenplum Database Administrator Guide Release Notes

514

{
 List *urls;
 int nurls;
 int i;
 ValidatorDirection direction;

 /* Must be called via the external table format manager */
 if (!CALLED_AS_EXTPROTOCOL_VALIDATOR(fcinfo))
 elog(ERROR, "myprot_validate_urls: not called by external
 protocol manager");

 nurls = EXTPROTOCOL_VALIDATOR_GET_NUM_URLS(fcinfo);
 urls = EXTPROTOCOL_VALIDATOR_GET_URL_LIST(fcinfo);
 direction = EXTPROTOCOL_VALIDATOR_GET_DIRECTION(fcinfo);
 /*
 * Dumb example 1: search each url for a substring
 * we don't want to be used in a url. in this example
 * it's 'secured_directory'.
 */
 for (i = 1 ; i <= nurls ; i++)
 {
 char *url = EXTPROTOCOL_VALIDATOR_GET_NTH_URL(fcinfo, i);

 if (strstr(url, "secured_directory") != 0)
 {
 ereport(ERROR,
 (errcode(ERRCODE_PROTOCOL_VIOLATION),
 errmsg("using 'secured_directory' in a url
 isn't allowed ")));
 }
 }
 /*
 * Dumb example 2: set a limit on the number of urls
 * used. In this example we limit readable external
 * tables that use our protocol to 2 urls max.
 */
 if(direction == EXT_VALIDATE_READ && nurls > 2)
 {
 ereport(ERROR,
 (errcode(ERRCODE_PROTOCOL_VIOLATION),
 errmsg("more than 2 urls aren't allowed in this protocol ")));
 }
 PG_RETURN_VOID();
}
/* --- utility functions --- */
static
DemoUri *ParseDemoUri(const char *uri_str)
{
 DemoUri *uri = (DemoUri *) palloc0(sizeof(DemoUri));
 int protocol_len;

 uri->path = NULL;
 uri->protocol = NULL;
 /*
 * parse protocol
 */
 char *post_protocol = strstr(uri_str, "://");

 if(!post_protocol)
 {
 ereport(ERROR,
 (errcode(ERRCODE_SYNTAX_ERROR),
 errmsg("invalid protocol URI \'%s\'", uri_str),
 errOmitLocation(true)));

Greenplum Database Administrator Guide Release Notes

515

 }

 protocol_len = post_protocol - uri_str;
 uri->protocol = (char *)palloc0(protocol_len + 1);
 strncpy(uri->protocol, uri_str, protocol_len);

 /* make sure there is more to the uri string */
 if (strlen(uri_str) <= protocol_len)
 ereport(ERROR,
 (errcode(ERRCODE_SYNTAX_ERROR),
 errmsg("invalid myprot URI \'%s\' : missing path",
 uri_str),
 errOmitLocation(true)));

 /* parse path */
 uri->path = pstrdup(uri_str + protocol_len + strlen("://"));

 return uri;
}
static
void FreeDemoUri(DemoUri *uri)
{
 if (uri->path)
 pfree(uri->path);
 if (uri->protocol)
 pfree(uri->protocol);

 pfree(uri);
}

Greenplum Database Administrator Guide Release Notes

516

Managing Performance
The topics in this section cover Greenplum Database performance management, including how to monitor
performance and how to configure workloads to prioritize resource utilization.

This section contains the following topics:

• Defining Database Performance
• Common Causes of Performance Issues
• Greenplum Database Memory Overview
• Managing Resources
• Investigating a Performance Problem

Defining Database Performance
Managing system performance includes measuring performance, identifying the causes of performance
problems, and applying the tools and techniques available to you to remedy the problems.

Greenplum measures database performance based on the rate at which the database management
system (DBMS) supplies information to requesters.

Understanding the Performance Factors
Several key performance factors influence database performance. Understanding these factors helps
identify performance opportunities and avoid problems:

• System Resources
• Workload
• Throughput
• Contention
• Optimization

System Resources

Database performance relies heavily on disk I/O and memory usage. To accurately set performance
expectations, you need to know the baseline performance of the hardware on which your DBMS is
deployed. Performance of hardware components such as CPUs, hard disks, disk controllers, RAM, and
network interfaces will significantly affect how fast your database performs.

Workload

The workload equals the total demand from the DBMS, and it varies over time. The total workload is
a combination of user queries, applications, batch jobs, transactions, and system commands directed
through the DBMS at any given time. For example, it can increase when month-end reports are run or
decrease on weekends when most users are out of the office. Workload strongly influences database
performance. Knowing your workload and peak demand times helps you plan for the most efficient use of
your system resources and enables processing the largest possible workload.

Throughput

A system's throughput defines its overall capability to process data. DBMS throughput is measured in
queries per second, transactions per second, or average response times. DBMS throughput is closely
related to the processing capacity of the underlying systems (disk I/O, CPU speed, memory bandwidth,
and so on), so it is important to know the throughput capacity of your hardware when setting DBMS
throughput goals.

Greenplum Database Administrator Guide Release Notes

517

Contention

Contention is the condition in which two or more components of the workload attempt to use the system
in a conflicting way — for example, multiple queries that try to update the same piece of data at the same
time or multiple large workloads that compete for system resources. As contention increases, throughput
decreases.

Optimization

DBMS optimizations can affect the overall system performance. SQL formulation, database configuration
parameters, table design, data distribution, and so on enable the database query optimizer to create the
most efficient access plans.

Determining Acceptable Performance
When approaching a performance tuning initiative, you should know your system's expected level of
performance and define measurable performance requirements so you can accurately evaluate your
system's performance. Consider the following when setting performance goals:

• Baseline Hardware Performance
• Performance Benchmarks

Baseline Hardware Performance

Most database performance problems are caused not by the database, but by the underlying systems on
which the database runs. I/O bottlenecks, memory problems, and network issues can notably degrade
database performance. Knowing the baseline capabilities of your hardware and operating system (OS) will
help you identify and troubleshoot hardware-related problems before you explore database-level or query-
level tuning initiatives.

See the Greenplum Database Reference Guide for information about running the gpcheckperf utility to
validate hardware and network performance.

Performance Benchmarks

To maintain good performance or fix performance issues, you should know the capabilities of your
DBMS on a defined workload. A benchmark is a predefined workload that produces a known result set.
Periodically run the same benchmark tests to help identify system-related performance degradation over
time. Use benchmarks to compare workloads and identify queries or applications that need optimization.

Many third-party organizations, such as the Transaction Processing Performance Council (TPC), provide
benchmark tools for the database industry. TPC provides TPC-H, a decision support system that examines
large volumes of data, executes queries with a high degree of complexity, and gives answers to critical
business questions. For more information about TPC-H, go to:

http://www.tpc.org/tpch

Common Causes of Performance Issues
This section explains the troubleshooting processes for common performance issues and potential
solutions to these issues.

Identifying Hardware and Segment Failures
The performance of Greenplum Database depends on the hardware and IT infrastructure on which it runs.
Greenplum Database is comprised of several servers (hosts) acting together as one cohesive system
(array); as a first step in diagnosing performance problems, ensure that all Greenplum Database segments
are online. Greenplum Database's performance will be as fast as the slowest host in the array. Problems

http://www.tpc.org/tpch

Greenplum Database Administrator Guide Release Notes

518

with CPU utilization, memory management, I/O processing, or network load affect performance. Common
hardware-related issues are:

• Disk Failure – Although a single disk failure should not dramatically affect database performance if
you are using RAID, disk resynchronization does consume resources on the host with failed disks. The
gpcheckperf utility can help identify segment hosts that have disk I/O issues.

• Host Failure – When a host is offline, the segments on that host are nonoperational. This means
other hosts in the array must perform twice their usual workload because they are running the primary
segments and multiple mirrors. If mirrors are not enabled, service is interrupted. Service is temporarily
interrupted to recover failed segments. The gpstate utility helps identify failed segments.

• Network Failure – Failure of a network interface card, a switch, or DNS server can bring down
segments. If host names or IP addresses cannot be resolved within your Greenplum array, these
manifest themselves as interconnect errors in Greenplum Database. The gpcheckperf utility helps
identify segment hosts that have network issues.

• Disk Capacity – Disk capacity on your segment hosts should never exceed 70 percent full. Greenplum
Database needs some free space for runtime processing. To reclaim disk space that deleted rows
occupy, run VACUUM after loads or updates. The gp_toolkit administrative schema has many views for
checking the size of distributed database objects.

See the Greenplum Database Reference Guide for information about checking database object sizes
and disk space.

Managing Workload
A database system has a limited CPU capacity, memory, and disk I/O resources. When multiple workloads
compete for access to these resources, database performance suffers. Resource management maximizes
system throughput while meeting varied business requirements. Greenplum Database provides resource
queues and resource groups to help you manage these system resources.

Resource queues and resource groups limit resource usage and the total number of concurrent queries
executing in the particular queue or group. By assigning database roles to the appropriate queue or
group, administrators can control concurrent user queries and prevent system overload. For more
information about resource queues and resource groups, including selecting the appropriate scheme for
your Greenplum Database environment, see Managing Resources.

Greenplum Database administrators should run maintenance workloads such as data loads and VACUUM
ANALYZE operations after business hours. Do not compete with database users for system resources;
perform administrative tasks at low-usage times.

Avoiding Contention
Contention arises when multiple users or workloads try to use the system in a conflicting way; for example,
contention occurs when two transactions try to update a table simultaneously. A transaction that seeks a
table-level or row-level lock will wait indefinitely for conflicting locks to be released. Applications should not
hold transactions open for long periods of time, for example, while waiting for user input.

Maintaining Database Statistics
Greenplum Database uses a cost-based query optimizer that relies on database statistics. Accurate
statistics allow the query optimizer to better estimate the number of rows retrieved by a query to choose
the most efficient query plan. Without database statistics, the query optimizer cannot estimate how many
records will be returned. The optimizer does not assume it has sufficient memory to perform certain
operations such as aggregations, so it takes the most conservative action and does these operations by
reading and writing from disk. This is significantly slower than doing them in memory. ANALYZE collects
statistics about the database that the query optimizer needs.

Note: When executing an SQL command with GPORCA, Greenplum Database issues a warning if
the command performance could be improved by collecting statistics on a column or set of columns

Greenplum Database Administrator Guide Release Notes

519

referenced by the command. The warning is issued on the command line and information is added
to the Greenplum Database log file. For information about collecting statistics on table columns, see
the ANALYZE command in the Greenplum Database Reference Guide

Identifying Statistics Problems in Query Plans

Before you interpret a query plan for a query using EXPLAIN or EXPLAIN ANALYZE, familiarize yourself
with the data to help identify possible statistics problems. Check the plan for the following indicators of
inaccurate statistics:

• Are the optimizer's estimates close to reality? Run EXPLAIN ANALYZE and see if the number of
rows the optimizer estimated is close to the number of rows the query operation returned .

• Are selective predicates applied early in the plan? The most selective filters should be applied early
in the plan so fewer rows move up the plan tree.

• Is the optimizer choosing the best join order? When you have a query that joins multiple tables,
make sure the optimizer chooses the most selective join order. Joins that eliminate the largest number
of rows should be done earlier in the plan so fewer rows move up the plan tree.

See Query Profiling for more information about reading query plans.

Tuning Statistics Collection

The following configuration parameters control the amount of data sampled for statistics collection:

• default_statistics_target

These parameters control statistics sampling at the system level. It is better to sample only increased
statistics for columns used most frequently in query predicates. You can adjust statistics for a particular
column using the command:

ALTER TABLE...SET STATISTICS

For example:

ALTER TABLE sales ALTER COLUMN region SET STATISTICS 50;

This is equivalent to changing default_statistics_target for a particular column. Subsequent
ANALYZE operations will then gather more statistics data for that column and produce better query plans
as a result.

Optimizing Data Distribution
When you create a table in Greenplum Database, you must declare a distribution key that allows for
even data distribution across all segments in the system. Because the segments work on a query in
parallel, Greenplum Database will always be as fast as the slowest segment. If the data is unbalanced, the
segments that have more data will return their results slower and therefore slow down the entire system.

Optimizing Your Database Design
Many performance issues can be improved by database design. Examine your database design and
consider the following:

• Does the schema reflect the way the data is accessed?
• Can larger tables be broken down into partitions?
• Are you using the smallest data type possible to store column values?
• Are columns used to join tables of the same datatype?
• Are your indexes being used?

Greenplum Database Administrator Guide Release Notes

520

Greenplum Database Maximum Limits

To help optimize database design, review the maximum limits that Greenplum Database supports:

Table 59: Maximum Limits of Greenplum Database

Dimension Limit

Database Size Unlimited

Table Size Unlimited, 128 TB per partition per segment

Row Size 1.6 TB (1600 columns * 1 GB)

Field Size 1 GB

Rows per Table 281474976710656 (2^48)

Columns per Table/View 1600

Indexes per Table Unlimited

Columns per Index 32

Table-level Constraints per Table Unlimited

Table Name Length 63 Bytes (Limited by name data type)

Dimensions listed as unlimited are not intrinsically limited by Greenplum Database. However, they are
limited in practice to available disk space and memory/swap space. Performance may suffer when these
values are unusually large.

Note:

There is a maximum limit on the number of objects (tables, indexes, and views, but not rows) that
may exist at one time. This limit is 4294967296 (2^32).

Greenplum Database Memory Overview
Memory is a key resource for a Greenplum Database system and, when used efficiently, can ensure
high performance and throughput. This topic describes how segment host memory is allocated between
segments and the options available to administrators to configure memory.

A Greenplum Database segment host runs multiple PostgreSQL instances, all sharing the host's memory.
The segments have an identical configuration and they consume similar amounts of memory, CPU, and
disk IO simultaneously, while working on queries in parallel.

For best query throughput, the memory configuration should be managed carefully. There are memory
configuration options at every level in Greenplum Database, from operating system parameters, to
managing resources with resource queues and resource groups, to setting the amount of memory
allocated to an individual query.

Segment Host Memory
On a Greenplum Database segment host, the available host memory is shared among all the processes
executing on the computer, including the operating system, Greenplum Database segment instances,
and other application processes. Administrators must determine what Greenplum Database and non-
Greenplum Database processes share the hosts' memory and configure the system to use the memory
efficiently. It is equally important to monitor memory usage regularly to detect any changes in the way host
memory is consumed by Greenplum Database or other processes.

Greenplum Database Administrator Guide Release Notes

521

The following figure illustrates how memory is consumed on a Greenplum Database segment host when
resource queue-based resource management is active.

Figure 28: Greenplum Database Segment Host Memory

Beginning at the bottom of the illustration, the line labeled A represents the total host memory. The line
directly above line A shows that the total host memory comprises both physical RAM and swap space.

The line labelled B shows that the total memory available must be shared by Greenplum Database and all
other processes on the host. Non-Greenplum Database processes include the operating system and any
other applications, for example system monitoring agents. Some applications may use a significant portion
of memory and, as a result, you may have to adjust the number of segments per Greenplum Database
host or the amount of memory per segment.

The segments (C) each get an equal share of the Greenplum Database Memory (B).

Within a segment, the currently active resource management scheme, Resource Queues or Resource
Groups, governs how memory is allocated to execute a SQL statement. These constructs allow you
to translate business requirements into execution policies in your Greenplum Database system and to
guard against queries that could degrade performance. For an overview of resource groups and resource
queues, refer to Managing Resources.

Options for Configuring Segment Host Memory
Host memory is the total memory shared by all applications on the segment host. You can configure the
amount of host memory using any of the following methods:

• Add more RAM to the nodes to increase the physical memory.
• Allocate swap space to increase the size of virtual memory.
• Set the kernel parameters vm.overcommit_memory and vm.overcommit_ratio to configure how the

operating system handles large memory allocation requests.

The physical RAM and OS configuration are usually managed by the platform team and system
administrators. See the Greenplum Database Installation Guide for the recommended kernel parameters
and for how to set the /etc/sysctl.conf file parameters.

The amount of memory to reserve for the operating system and other processes is workload dependent.
The minimum recommendation for operating system memory is 32GB, but if there is much concurrency
in Greenplum Database, increasing to 64GB of reserved memory may be required. The largest user of

Greenplum Database Administrator Guide Release Notes

522

operating system memory is SLAB, which increases as Greenplum Database concurrency and the number
of sockets used increases.

The vm.overcommit_memory kernel parameter should always be set to 2, the only safe value for
Greenplum Database.

The vm.overcommit_ratio kernel parameter sets the percentage of RAM that is used for application
processes, the remainder reserved for the operating system. The default for Red Hat is 50 (50%). Setting
this parameter too high may result in insufficient memory reserved for the operating system, which can
cause segment host failure or database failure. Leaving the setting at the default of 50 is generally
safe, but conservative. Setting the value too low reduces the amount of concurrency and the complexity
of queries you can run at the same time by reducing the amount of memory available to Greenplum
Database. When increasing vm.overcommit_ratio, it is important to remember to always reserve some
memory for operating system activities.

Configuring vm.overcommit_ratio when Resource Group-Based Resource Management is Active

When resource group-based resource management is active, tune the operating system
vm.overcommit_ratio as necessary. If your memory utilization is too low, increase the value; if your
memory or swap usage is too high, decrease the setting.

Configuring vm.overcommit_ratio when Resource Queue-Based Resource Management is Active

To calculate a safe value for vm.overcommit_ratio when resource queue-based resource
management is active, first determine the total memory available to Greenplum Database processes,
gp_vmem_rq, with this formula:

gp_vmem_rq = ((SWAP + RAM) – (7.5GB + 0.05 * RAM)) / 1.7

where SWAP is the swap space on the host in GB, and RAM is the number of GB of RAM installed on the
host. When resource queue-based resource management is active, use gp_vmem_rq to calculate the
vm.overcommit_ratio value with this formula:

vm.overcommit_ratio = (RAM - 0.026 * gp_vmem_rq) / RAM

Configuring Greenplum Database Memory
Greenplum Database Memory is the amount of memory available to all Greenplum Database segment
instances.

When you set up the Greenplum Database cluster, you determine the number of primary segments to run
per host and the amount of memory to allocate for each segment. Depending on the CPU cores, amount
of physical RAM, and workload characteristics, the number of segments is usually a value between 4
and 8. With segment mirroring enabled, it is important to allocate memory for the maximum number of
primary segments executing on a host during a failure. For example, if you use the default grouping mirror
configuration, a segment host failure doubles the number of acting primaries on the host that has the failed
host's mirrors. Mirror configurations that spread each host's mirrors over multiple other hosts can lower
the maximum, allowing more memory to be allocated for each segment. For example, if you use a block
mirroring configuration with 4 hosts per block and 8 primary segments per host, a single host failure would
cause other hosts in the block to have a maximum of 11 active primaries, compared to 16 for the default
grouping mirror configuration.

Configuring Segment Memory when Resource Group-Based Resource Management is Active

When resource group-based resource management is active, the amount of memory allocated to
each segment on a segment host is the memory available to Greenplum Database multiplied by the
gp_resource_group_memory_limit server configuration parameter and divided by the number of active
primary segments on the host. Use the following formula to calculate segment memory when using
resource groups for resource management.

Greenplum Database Administrator Guide Release Notes

523

rg_perseg_mem = ((RAM * (vm.overcommit_ratio / 100) + SWAP) *
 gp_resource_group_memory_limit) / num_active_primary_segments

Resource groups expose additional configuration parameters that enable you to further control and refine
the amount of memory allocated for queries.

Configuring Segment Memory when Resource Queue-Based Resource Management is Active

When resource queue-based resource management is active, the gp_vmem_protect_limit server
configuration parameter value identifies the amount of memory to allocate to each segment. This value
is estimated by calculating the memory available for all Greenplum Database processes and dividing
by the maximum number of primary segments during a failure. If gp_vmem_protect_limit is set too high,
queries can fail. Use the following formula to calculate a safe value for gp_vmem_protect_limit; provide the
gp_vmem_rq value that you calculated earlier.

gp_vmem_protect_limit = gp_vmem_rq / max_acting_primary_segments

where max_acting_primary_segments is the maximum number of primary segments that could be
running on a host when mirror segments are activated due to a host or segment failure.

gp_vmem_protect_limit does not affect segment memory when using resource groups for Greenplum
Database resource management.

Resource queues expose additional configuration parameters that enable you to further control and refine
the amount of memory allocated for queries.

Example Memory Configuration Calculations
This section provides example memory calculations for resource queues and resource groups for a
Greenplum Database system with the following specifications:

• Total RAM = 256GB
• Swap = 64GB
• 8 primary segments and 8 mirror segments per host, in blocks of 4 hosts
• Maximum number of primaries per host during failure is 11

Resource Group Example

When resource group-based resource management is active in Greenplum Database, the usable memory
available on a host is a function of the amount of RAM and swap space configured for the system, as well
as the vm.overcommit_ratio system parameter setting:

total_node_usable_memory = RAM * (vm.overcommit_ratio / 100) + Swap
 = 256GB * (50/100) + 64GB
 = 192GB

Assuming the default gp_resource_group_memory_limit value (.7), the memory allocated to a
Greenplum Database host with the example configuration is:

total_gp_memory = total_node_usable_memory * gp_resource_group_memory_limit
 = 192GB * .7
 = 134.4GB

The memory available to a Greenplum Database segment on a segment host is a function of the memory
reserved for Greenplum on the host and the number of active primary segments on the host. On cluster
startup:

Greenplum Database Administrator Guide Release Notes

524

gp_seg_memory = total_gp_memory / number_of_active_primary_segments
 = 134.4GB / 8
 = 16.8GB

Note that when 3 mirror segments switch to primary segments, the per-segment memory is still 16.8GB.
Total memory usage on the segment host may approach:

total_gp_memory_with_primaries = 16.8GB * 11 = 184.8GB

Resource Queue Example

The vm.overcommit_ratio calculation for the example system when resource queue-based resource
management is active in Greenplum Database follows:

gp_vmem_rq = ((SWAP + RAM) – (7.5GB + 0.05 * RAM)) / 1.7
 = ((64 + 256) - (7.5 + 0.05 * 256)) / 1.7
 = 176

vm.overcommit_ratio = (RAM - (0.026 * gp_vmem_rq)) / RAM
 = (256 - (0.026 * 176)) / 256
 = .982

You would set vm.overcommit_ratio of the example system to 98.

The gp_vmem_protect_limit calculation when resource queue-based resource management is active
in Greenplum Database:

gp_vmem_protect_limit = gp_vmem_rq / maximum_acting_primary_segments
 = 176 / 11
 = 16GB
 = 16384MB

You would set the gp_vmem_protect_limit server configuration parameter on the example system to
16384.

Managing Resources
Greenplum Database provides features to help you prioritize and allocate resources to queries according
to business requirements and to prevent queries from starting when resources are unavailable.

You can use resource management features to limit the number of concurrent queries, the amount
of memory used to execute a query, and the relative amount of CPU devoted to processing a query.
Greenplum Database provides two schemes to manage resources - Resource Queues and Resource
Groups.

Important: Significant Greenplum Database performance degradation has been observed when
enabling resource group-based workload management on RedHat 6.x and CentOS 6.x. This issue
is caused by a Linux cgroup kernel bug. This kernel bug has been fixed in CentOS 7.x and Red Hat
7.x systems.

If you use RedHat 6 and the performance with resource groups is acceptable for your use case,
upgrade your kernel to version 2.6.32-696 or higher to benefit from other fixes to the cgroups
implementation.

Either the resource queue or the resource group management scheme can be active in Greenplum
Database; both schemes cannot be active at the same time.

Resource queues are enabled by default when you install your Greenplum Database cluster. While you
can create and assign resource groups when resource queues are active, you must explicitly enable
resource groups to start using that management scheme.

Greenplum Database Administrator Guide Release Notes

525

The following table summarizes some of the differences between Resource Queues and Resource
Groups.

Metric Resource Queues Resource Groups

Concurrency Managed at the query level Managed at the transaction level

CPU Specify query priority Specify percentage of CPU
resources; uses Linux Control
Groups

Memory Managed at the queue and
operator level; users can over-
subscribe

Managed at the transaction level,
with enhanced allocation and
tracking; users cannot over-
subscribe

Memory Isolation None Memory is isolated between
resource groups and between
transactions within the same
resource group

Users Limits are applied only to non-
admin users

Limits are applied to SUPERUSER
and non-admin users alike

Queueing Queue only when no slot
available

Queue when no slot is available
or not enough available memory

Query Failure Query may fail immediately if not
enough memory

Query may fail after reaching
transaction fixed memory limit
when no shared resource
group memory exists and the
transaction requests more
memory

Limit Bypass Limits are not enforced for
SUPERUSER roles and certain
operators and functions

Limits are not enforced on SET,
RESET, and SHOW commands

External Components None Manage PL/Container CPU and
memory resources

Using Resource Groups
You use resource groups to set and enforce CPU, memory, and concurrent transaction limits in Greenplum
Database. After you define a resource group, you can then assign the group to one or more Greenplum
Database roles, or to an external component such as PL/Container, in order to control the resources used
by those roles or components.

When you assign a resource group to a role (a role-based resource group), the resource limits that you
define for the group apply to all of the roles to which you assign the group. For example, the memory
limit for a resource group identifies the maximum memory usage for all running transactions submitted by
Greenplum Database users in all roles to which you assign the group.

Similarly, when you assign a resource group to an external component, the group limits apply to all running
instances of the component. For example, if you create a resource group for a PL/Container external
component, the memory limit that you define for the group specifies the maximum memory usage for all
running instances of each PL/Container runtime to which you assign the group.

This topic includes the following subtopics:

• Understanding Role and Component Resource Groups
• Resource Group Attributes and Limits

Greenplum Database Administrator Guide Release Notes

526

• Memory Auditor
• Transaction Concurrency Limit
• CPU Limits
• Memory Limits

• Using Greenplum Command Center to Manage Resource Groups
• Configuring and Using Resource Groups

• Enabling Resource Groups
• Creating Resource Groups
• Configuring Automatic Query Termination Based on Memory Usage
• Assigning a Resource Group to a Role

• Monitoring Resource Group Status
• Moving a Query to a Different Resource Group
• Resource Group Frequently Asked Questions

Understanding Role and Component Resource Groups

Greenplum Database supports two types of resource groups: groups that manage resources for roles, and
groups that manage resources for external components such as PL/Container.

The most common application for resource groups is to manage the number of active queries that different
roles may execute concurrently in your Greenplum Database cluster. You can also manage the amount of
CPU and memory resources that Greenplum allocates to each query.

Resource groups for roles use Linux control groups (cgroups) for CPU resource management. Greenplum
Database tracks virtual memory internally for these resource groups using a memory auditor referred to as
vmtracker.

When the user executes a query, Greenplum Database evaluates the query against a set of limits defined
for the resource group. Greenplum Database executes the query immediately if the group's resource limits
have not yet been reached and the query does not cause the group to exceed the concurrent transaction
limit. If these conditions are not met, Greenplum Database queues the query. For example, if the maximum
number of concurrent transactions for the resource group has already been reached, a subsequent query
is queued and must wait until other queries complete before it runs. Greenplum Database may also
execute a pending query when the resource group's concurrency and memory limits are altered to large
enough values.

Within a resource group for roles, transactions are evaluated on a first in, first out basis. Greenplum
Database periodically assesses the active workload of the system, reallocating resources and starting/
queuing jobs as necessary.

You can also use resource groups to manage the CPU and memory resources of external components
such as PL/Container. Resource groups for external components use Linux cgroups to manage both the
total CPU and total memory resources for the component.

Note: Containerized deployments of Greenplum Database, such as Greenplum for Kubernetes,
might create a hierarchical set of nested cgroups to manage host system resources. The nesting
of cgroups affects the Greenplum Database resource group limits for CPU percentage, CPU cores,
and memory (except for Greenplum Database external components). The Greenplum Database
resource group system resource limit is based on the quota for the parent group.

For example, Greenplum Database is running in a cgroup demo, and the Greenplum Database
cgroup is nested in the cgroup demo. If the cgroup demo is configured with a CPU limit of 60% of
system CPU resources and the Greenplum Database resource group CPU limit is set 90%, the
Greenplum Database limit of host system CPU resources is 54% (0.6 x 0.9).

Nested cgroups do not affect memory limits for Greenplum Database external components such
as PL/Container. Memory limits for external components can only be managed if the cgroup that is

Greenplum Database Administrator Guide Release Notes

527

used to manage Greenplum Database resources is not nested, the cgroup is configured as a top-
level cgroup.

For information about configuring cgroups for use by resource groups, see Configuring and Using
Resource Groups.

Resource Group Attributes and Limits

When you create a resource group, you:

• Specify the type of resource group by identifying how memory for the group is audited.
• Provide a set of limits that determine the amount of CPU and memory resources available to the group.

Resource group attributes and limits:

Limit Type Description

MEMORY_AUDITOR The memory auditor in use for the resource group.
 vmtracker (the default) is required if you want
to assign the resource group to roles. Specify
cgroup to assign the resource group to an external
component.

CONCURRENCY The maximum number of concurrent transactions,
including active and idle transactions, that are
permitted in the resource group.

CPU_RATE_LIMIT The percentage of CPU resources available to this
resource group.

CPUSET The CPU cores to reserve for this resource group.

MEMORY_LIMIT The percentage of reserved memory resources
available to this resource group.

MEMORY_SHARED_QUOTA The percentage of reserved memory to share
across transactions submitted in this resource
group.

MEMORY_SPILL_RATIO The memory usage threshold for memory-intensive
transactions. When a transaction reaches this
threshold, it spills to disk.

Note: Resource limits are not enforced on SET, RESET, and SHOW commands.

Memory Auditor

The MEMORY_AUDITOR attribute specifies the type of resource group by identifying the memory auditor
for the group. A resource group that specifies the vmtracker MEMORY_AUDITOR identifies a resource
group for roles. A resource group specifying the cgroup MEMORY_AUDITOR identifies a resource group for
external components.

The default MEMORY_AUDITOR is vmtracker.

The MEMORY_AUDITOR that you specify for a resource group determines if and how Greenplum Database
uses the limit attributes to manage CPU and memory resources:

Limit Type Resource Group for Roles Resource Group for External
Components

CONCURRENCY Yes No; must be zero (0)

CPU_RATE_LIMIT Yes Yes

Greenplum Database Administrator Guide Release Notes

528

Limit Type Resource Group for Roles Resource Group for External
Components

CPUSET Yes Yes

MEMORY_LIMIT Yes Yes

MEMORY_SHARED_QUOTA Yes Component-specific

MEMORY_SPILL_RATIO Yes Component-specific

Note: For queries managed by resource groups that are configured to use the vmtracker
memory auditor, Greenplum Database supports the automatic termination of queries based
on the amount of memory the queries are using. See the server configuration parameter
runaway_detector_activation_percent.

Transaction Concurrency Limit

The CONCURRENCY limit controls the maximum number of concurrent transactions permitted for a resource
group for roles.

Note: The CONCURRENCY limit is not applicable to resource groups for external components and
must be set to zero (0) for such groups.

Each resource group for roles is logically divided into a fixed number of slots equal to the CONCURRENCY
limit. Greenplum Database allocates these slots an equal, fixed percentage of memory resources.

The default CONCURRENCY limit value for a resource group for roles is 20.

Greenplum Database queues any transactions submitted after the resource group reaches its
CONCURRENCY limit. When a running transaction completes, Greenplum Database un-queues and
executes the earliest queued transaction if sufficient memory resources exist.

You can set the server configuration parameter gp_resource_group_bypass to bypass a resource
group concurrency limit.

You can set the server configuration parameter gp_resource_group_queuing_timeout to specify the
amount of time a transaction remains in the queue before Greenplum Database cancels the transaction.
The default timeout is zero, Greenplum queues transactions indefinitely.

CPU Limits

You configure the share of CPU resources to reserve for a resource group on a segment host by assigning
specific CPU core(s) to the group, or by identifying the percentage of segment CPU resources to allocate
to the group. Greenplum Database uses the CPUSET and CPU_RATE_LIMIT resource group limits to
identify the CPU resource allocation mode. You must specify only one of these limits when you configure a
resource group.

You may employ both modes of CPU resource allocation simultaneously in your Greenplum Database
cluster. You may also change the CPU resource allocation mode for a resource group at runtime.

The gp_resource_group_cpu_limit server configuration parameter identifies the maximum
percentage of system CPU resources to allocate to resource groups on each Greenplum Database
segment host. This limit governs the maximum CPU usage of all resource groups on a segment host
regardless of the CPU allocation mode configured for the group. The remaining unreserved CPU resources
are used for the OS kernel and the Greenplum Database auxiliary daemon processes. The default
gp_resource_group_cpu_limit value is .9 (90%).

Note: The default gp_resource_group_cpu_limit value may not leave sufficient CPU
resources if you are running other workloads on your Greenplum Database cluster nodes, so be
sure to adjust this server configuration parameter accordingly.

Greenplum Database Administrator Guide Release Notes

529

Warning: Avoid setting gp_resource_group_cpu_limit to a value higher than .9. Doing so
may result in high workload queries taking near all CPU resources, potentially starving Greenplum
Database auxiliary processes.

Assigning CPU Resources by Core

You identify the CPU cores that you want to reserve for a resource group with the CPUSET property. The
CPU cores that you specify must be available in the system and cannot overlap with any CPU cores that
you reserved for other resource groups. (Although Greenplum Database uses the cores that you assign
to a resource group exclusively for that group, note that those CPU cores may also be used by non-
Greenplum processes in the system.)

Specify a comma-separated list of single core numbers or number intervals when you configure CPUSET.
You must enclose the core numbers/intervals in single quotes, for example, '1,3-4'.

When you assign CPU cores to CPUSET groups, consider the following:

• A resource group that you create with CPUSET uses the specified cores exclusively. If there are no
running queries in the group, the reserved cores are idle and cannot be used by queries in other
resource groups. Consider minimizing the number of CPUSET groups to avoid wasting system CPU
resources.

• Consider keeping CPU core 0 unassigned. CPU core 0 is used as a fallback mechanism in the following
cases:

• admin_group and default_group require at least one CPU core. When all CPU cores are
reserved, Greenplum Database assigns CPU core 0 to these default groups. In this situation,
the resource group to which you assigned CPU core 0 shares the core with admin_group and
default_group.

• If you restart your Greenplum Database cluster with one node replacement and the node does not
have enough cores to service all CPUSET resource groups, the groups are automatically assigned
CPU core 0 to avoid system start failure.

• Use the lowest possible core numbers when you assign cores to resource groups. If you replace a
Greenplum Database node and the new node has fewer CPU cores than the original, or if you back up
the database and want to restore it on a cluster with nodes with fewer CPU cores, the operation may
fail. For example, if your Greenplum Database cluster has 16 cores, assigning cores 1-7 is optimal. If
you create a resource group and assign CPU core 9 to this group, database restore to an 8 core node
will fail.

Resource groups that you configure with CPUSET have a higher priority on CPU resources. The maximum
CPU resource usage percentage for all resource groups configured with CPUSET on a segment host is the
number of CPU cores reserved divided by the number of all CPU cores, multiplied by 100.

When you configure CPUSET for a resource group, Greenplum Database disables CPU_RATE_LIMIT for
the group and sets the value to -1.

Note: You must configure CPUSET for a resource group after you have enabled resource group-
based resource management for your Greenplum Database cluster.

Assigning CPU Resources by Percentage

The Greenplum Database node CPU percentage is divided equally among each segment on the
Greenplum node. Each resource group that you configure with a CPU_RATE_LIMIT reserves the specified
percentage of the segment CPU for resource management.

The minimum CPU_RATE_LIMIT percentage you can specify for a resource group is 1, the maximum is
100.

The sum of CPU_RATE_LIMITs specified for all resource groups that you define in your Greenplum
Database cluster must not exceed 100.

Greenplum Database Administrator Guide Release Notes

530

The maximum CPU resource usage for all resource groups configured with a CPU_RATE_LIMIT on a
segment host is the minimum of:

• The number of non-reserved CPU cores divided by the number of all CPU cores, multiplied by 100, and
• The gp_resource_group_cpu_limit value.

CPU resource assignment for resource groups configured with a CPU_RATE_LIMIT is elastic in that
Greenplum Database may allocate the CPU resources of an idle resource group to a busier one(s). In
such situations, CPU resources are re-allocated to the previously idle resource group when that resource
group next becomes active. If multiple resource groups are busy, they are allocated the CPU resources of
any idle resource groups based on the ratio of their CPU_RATE_LIMITs. For example, a resource group
created with a CPU_RATE_LIMIT of 40 will be allocated twice as much extra CPU resource as a resource
group that you create with a CPU_RATE_LIMIT of 20.

When you configure CPU_RATE_LIMIT for a resource group, Greenplum Database disables CPUSET for
the group and sets the value to -1.

Memory Limits

When resource groups are enabled, memory usage is managed at the Greenplum Database node,
segment, and resource group levels. You can also manage memory at the transaction level with a resource
group for roles.

The gp_resource_group_memory_limit server configuration parameter identifies the maximum
percentage of system memory resources to allocate to resource groups on each Greenplum Database
segment host. The default gp_resource_group_memory_limit value is .7 (70%).

The memory resource available on a Greenplum Database node is further divided equally among each
segment on the node. When resource group-based resource management is active, the amount of memory
allocated to each segment on a segment host is the memory available to Greenplum Database multiplied
by the gp_resource_group_memory_limit server configuration parameter and divided by the number
of active primary segments on the host:

rg_perseg_mem = ((RAM * (vm.overcommit_ratio / 100) + SWAP) *
 gp_resource_group_memory_limit) / num_active_primary_segments

Each resource group may reserve a percentage of the segment memory for resource management. You
identify this percentage via the MEMORY_LIMIT value that you specify when you create the resource
group. The minimum MEMORY_LIMIT percentage you can specify for a resource group is 0, the maximum
is 100. When MEMORY_LIMIT is 0, Greenplum Database reserves no memory for the resource group,
but uses resource group global shared memory to fulfill all memory requests in the group. Refer to Global
Shared Memory for more information about resource group global shared memory.

The sum of MEMORY_LIMITs specified for all resource groups that you define in your Greenplum Database
cluster must not exceed 100.

Additional Memory Limits for Role-based Resource Groups

If resource group memory is reserved for roles (non-zero MEMORY_LIMIT), the memory is further divided
into fixed and shared components. The MEMORY_SHARED_QUOTA value that you specify when you create
the resource group identifies the percentage of reserved resource group memory that may be shared
among the currently running transactions. This memory is allotted on a first-come, first-served basis. A
running transaction may use none, some, or all of the MEMORY_SHARED_QUOTA.

The minimum MEMORY_SHARED_QUOTA that you can specify is 0, the maximum is 100. The default
MEMORY_SHARED_QUOTA is 80.

As mentioned previously, CONCURRENCY identifies the maximum number of concurrently running
transactions permitted in a resource group for roles. If fixed memory is reserved by a resource group (non-
zero MEMORY_LIMIT), it is divided into CONCURRENCY number of transaction slots. Each slot is allocated a

Greenplum Database Administrator Guide Release Notes

531

fixed, equal amount of the resource group memory. Greenplum Database guarantees this fixed memory to
each transaction.

Figure 29: Resource Group Memory Allotments

When a query's memory usage exceeds the fixed per-transaction memory usage amount, Greenplum
Database allocates available resource group shared memory to the query. The maximum amount of
resource group memory available to a specific transaction slot is the sum of the transaction's fixed memory
and the full resource group shared memory allotment.

Global Shared Memory

The sum of the MEMORY_LIMITs configured for all resource groups (including the default admin_group
and default_group groups) identifies the percentage of reserved resource group memory. If this sum is
less than 100, Greenplum Database allocates any unreserved memory to a resource group global shared
memory pool.

Resource group global shared memory is available only to resource groups that you configure with the
vmtracker memory auditor.

Greenplum Database Administrator Guide Release Notes

532

When available, Greenplum Database allocates global shared memory to a transaction after first allocating
slot and resource group shared memory (if applicable). Greenplum Database allocates resource group
global shared memory to transactions on a first-come first-served basis.

Note: Greenplum Database tracks, but does not actively monitor, transaction memory usage in
resource groups. If the memory usage for a resource group exceeds its fixed memory allotment, a
transaction in the resource group fails when all of these conditions are met:

• No available resource group shared memory exists.
• No available global shared memory exists.
• The transaction requests additional memory.

Greenplum Database uses resource group memory more efficiently when you leave some memory
(for example, 10-20%) unallocated for the global shared memory pool. The availability of global shared
memory also helps to mitigate the failure of memory-consuming or unpredicted queries.

Query Operator Memory

Most query operators are non-memory-intensive; that is, during processing, Greenplum Database can hold
their data in allocated memory. When memory-intensive query operators such as join and sort process
more data than can be held in memory, data is spilled to disk.

The gp_resgroup_memory_policy server configuration parameter governs the memory allocation and
distribution algorithm for all query operators. Greenplum Database supports eager-free (the default)
and auto memory policies for resource groups. When you specify the auto policy, Greenplum Database
uses resource group memory limits to distribute memory across query operators, allocating a fixed size
of memory to non-memory-intensive operators and the rest to memory-intensive operators. When the
eager_free policy is in place, Greenplum Database distributes memory among operators more optimally
by re-allocating memory released by operators that have completed their processing to operators in a later
query stage.

MEMORY_SPILL_RATIO identifies the memory usage threshold for memory-intensive operators in a
transaction. When this threshold is reached, a transaction spills to disk. Greenplum Database uses the
MEMORY_SPILL_RATIO to determine the initial memory to allocate to a transaction.

You can specify an integer percentage value from 0 to 100 inclusive for MEMORY_SPILL_RATIO. The
default MEMORY_SPILL_RATIO is 0.

When MEMORY_SPILL_RATIO is 0, Greenplum Database uses the statement_mem server configuration
parameter value to control initial query operator memory.

Note: When you set MEMORY_LIMIT to 0, MEMORY_SPILL_RATIO must also be set to 0.

You can selectively set the MEMORY_SPILL_RATIO on a per-query basis at the session level with the
memory_spill_ratio server configuration parameter.

memory_spill_ratio and Low Memory Queries
A low statement_mem setting (for example, in the 10MB range) has been shown to increase
the performance of queries with low memory requirements. Use the memory_spill_ratio and
statement_mem server configuration parameters to override the setting on a per-query basis. For
example:

SET memory_spill_ratio=0;
SET statement_mem='10 MB';

About Using Reserved Resource Group Memory vs. Using Resource Group Global Shared
Memory

When you do not reserve memory for a resource group (MEMORY_LIMIT and MEMORY_SPILL_RATIO are
set to 0):

Greenplum Database Administrator Guide Release Notes

533

• It increases the size of the resource group global shared memory pool.
• The resource group functions similarly to a resource queue, using the statement_mem server

configuration parameter value to control initial query operator memory.
• Any query submitted in the resource group competes for resource group global shared memory on a

first-come, first-served basis with queries running in other groups.
• There is no guarantee that Greenplum Database will be able to allocate memory for a query running in

the resource group. The risk of a query in the group encountering an out of memory (OOM) condition
increases when there are many concurrent queries consuming memory from the resource group global
shared memory pool at the same time.

To reduce the risk of OOM for a query running in an important resource group, consider reserving some
fixed memory for the group. While reserving fixed memory for a group reduces the size of the resource
group global shared memory pool, this may be a fair tradeoff to reduce the risk of encountering an OOM
condition in a query running in a critical resource group.

Other Memory Considerations

Resource groups for roles track all Greenplum Database memory allocated via the palloc() function.
Memory that you allocate using the Linux malloc() function is not managed by these resource groups.
To ensure that resource groups for roles are accurately tracking memory usage, avoid using malloc() to
allocate large amounts of memory in custom Greenplum Database user-defined functions.

Using Greenplum Command Center to Manage Resource Groups

Using Pivotal Greenplum Command Center, an administrator can create and manage resource groups,
change roles' resource groups, and create workload management rules.

Workload management assignment rules assign transactions to different resource groups based on user-
defined criteria. If no assignment rule is matched, Greenplum Database assigns the transaction to the
role's default resource group.

Refer to the Greenplum Command Center documentation for more information about creating and
managing resource groups and workload management rules.

Configuring and Using Resource Groups

Important: Significant Greenplum Database performance degradation has been observed when
enabling resource group-based workload management on RedHat 6.x and CentOS 6.x systems.
This issue is caused by a Linux cgroup kernel bug. This kernel bug has been fixed in CentOS 7.x
and Red Hat 7.x systems.

If you use RedHat 6 and the performance with resource groups is acceptable for your use case,
upgrade your kernel to version 2.6.32-696 or higher to benefit from other fixes to the cgroups
implementation.

Prerequisite
Greenplum Database resource groups use Linux Control Groups (cgroups) to manage CPU resources.
Greenplum Database also uses cgroups to manage memory for resource groups for external components.
With cgroups, Greenplum isolates the CPU and external component memory usage of your Greenplum
processes from other processes on the node. This allows Greenplum to support CPU and external
component memory usage restrictions on a per-resource-group basis.

For detailed information about cgroups, refer to the Control Groups documentation for your Linux
distribution.

Complete the following tasks on each node in your Greenplum Database cluster to set up cgroups for use
with resource groups:

http://gpcc.docs.pivotal.io/latest

Greenplum Database Administrator Guide Release Notes

534

1. If you are running the SuSE 11+ operating system on your Greenplum Database cluster nodes, you
must enable swap accounting on each node and restart your Greenplum Database cluster. The
swapaccount kernel boot parameter governs the swap accounting setting on SuSE 11+ systems.
After setting this boot parameter, you must reboot your systems. For details, refer to the Cgroup Swap
Control discussion in the SuSE 11 release notes. You must be the superuser or have sudo access to
configure kernel boot parameters and reboot systems.

2. Create the Greenplum Database cgroups configuration file /etc/cgconfig.d/gpdb.conf. You must
be the superuser or have sudo access to create this file:

sudo vi /etc/cgconfig.d/gpdb.conf

3. Add the following configuration information to /etc/cgconfig.d/gpdb.conf:

group gpdb {
 perm {
 task {
 uid = gpadmin;
 gid = gpadmin;
 }
 admin {
 uid = gpadmin;
 gid = gpadmin;
 }
 }
 cpu {
 }
 cpuacct {
 }
 cpuset {
 }
 memory {
 }
}

This content configures CPU, CPU accounting, CPU core set, and memory control groups managed
by the gpadmin user. Greenplum Database uses the memory control group only for those resource
groups created with the cgroup MEMORY_AUDITOR.

4. If not already installed and running, install the Control Groups operating system package and start the
cgroups service on each Greenplum Database node. The commands that you run to perform these
tasks will differ based on the operating system installed on the node. You must be the superuser or
have sudo access to run these commands:

• Redhat/CentOS 7.x systems:

sudo yum install libcgroup-tools
sudo cgconfigparser -l /etc/cgconfig.d/gpdb.conf

• Redhat/CentOS 6.x systems:

sudo yum install libcgroup
sudo service cgconfig start

• SuSE 11+ systems:

sudo zypper install libcgroup-tools
sudo cgconfigparser -l /etc/cgconfig.d/gpdb.conf

5. Identify the cgroup directory mount point for the node:

grep cgroup /proc/mounts

https://www.suse.com/releasenotes/x86_64/SUSE-SLES/11-SP2/#fate-310471
https://www.suse.com/releasenotes/x86_64/SUSE-SLES/11-SP2/#fate-310471

Greenplum Database Administrator Guide Release Notes

535

The first line of output identifies the cgroup mount point.
6. Verify that you set up the Greenplum Database cgroups configuration correctly by running the following

commands. Replace <cgroup_mount_point> with the mount point that you identified in the previous
step:

ls -l <cgroup_mount_point>/cpu/gpdb
ls -l <cgroup_mount_point>/cpuacct/gpdb
ls -l <cgroup_mount_point>/cpuset/gpdb
ls -l <cgroup_mount_point>/memory/gpdb

If these directories exist and are owned by gpadmin:gpadmin, you have successfully configured
cgroups for Greenplum Database CPU resource management.

7. To automatically recreate Greenplum Database required cgroup hierarchies and parameters
when your system is restarted, configure your system to enable the Linux cgroup service daemon
cgconfig.service (Redhat/CentOS 7.x and SuSE 11+) or cgconfig (Redhat/CentOS 6.x) at
node start-up. For example, configure one of the following cgroup service commands in your preferred
service auto-start tool:

• Redhat/CentOS 7.x and SuSE11+ systems:

sudo systemctl enable cgconfig.service

To start the service immediately (without having to reboot) enter:

sudo systemctl start cgconfig.service

• Redhat/CentOS 6.x systems:

sudo chkconfig cgconfig on

You may choose a different method to recreate the Greenplum Database resource group cgroup
hierarchies.

Procedure
To use resource groups in your Greenplum Database cluster, you:

1. Enable resource groups for your Greenplum Database cluster.
2. Create resource groups.
3. Assign the resource groups to one or more roles.
4. Use resource management system views to monitor and manage the resource groups.

Enabling Resource Groups

When you install Greenplum Database, resource queues are enabled by default. To use resource groups
instead of resource queues, you must set the gp_resource_manager server configuration parameter.

1. Set the gp_resource_manager server configuration parameter to the value "group":

gpconfig -s gp_resource_manager
gpconfig -c gp_resource_manager -v "group"

2. Restart Greenplum Database:

gpstop
gpstart

Once enabled, any transaction submitted by a role is directed to the resource group assigned to the role,
and is governed by that resource group's concurrency, memory, and CPU limits. Similarly, CPU and

Greenplum Database Administrator Guide Release Notes

536

memory usage by an external component is governed by the CPU and memory limits configured for the
resource group assigned to the component.

Greenplum Database creates two default resource groups for roles named admin_group and
default_group. When you enable resources groups, any role that was not explicitly assigned a
resource group is assigned the default group for the role's capability. SUPERUSER roles are assigned the
admin_group, non-admin roles are assigned the group named default_group.

The default resource groups admin_group and default_group are created with the following resource
limits:

Limit Type admin_group default_group

CONCURRENCY 10 20

CPU_RATE_LIMIT 10 30

CPUSET -1 -1

MEMORY_LIMIT 10 0

MEMORY_SHARED_QUOTA 80 80

MEMORY_SPILL_RATIO 0 0

MEMORY_AUDITOR vmtracker vmtracker

Keep in mind that the CPU_RATE_LIMIT and MEMORY_LIMIT values for the default resource groups
admin_group and default_group contribute to the total percentages on a segment host. You may find
that you need to adjust these limits for admin_group and/or default_group as you create and add new
resource groups to your Greenplum Database deployment.

Creating Resource Groups

When you create a resource group for a role, you provide a name and a CPU resource allocation mode.
You can optionally provide a concurrent transaction limit and memory limit, shared quota, and spill ratio
values. Use the CREATE RESOURCE GROUP command to create a new resource group.

When you create a resource group for a role, you must provide a CPU_RATE_LIMIT or CPUSET limit value.
These limits identify the percentage of Greenplum Database CPU resources to allocate to this resource
group. You may specify a MEMORY_LIMIT to reserve a fixed amount of memory for the resource group. If
you specify a MEMORY_LIMIT of 0, Greenplum Database uses global shared memory to fulfill all memory
requirements for the resource group.

For example, to create a resource group named rgroup1 with a CPU limit of 20, a memory limit of 25, and a
memory spill ratio of 20:

=# CREATE RESOURCE GROUP rgroup1 WITH (CPU_RATE_LIMIT=20, MEMORY_LIMIT=25,
 MEMORY_SPILL_RATIO=20);

The CPU limit of 20 is shared by every role to which rgroup1 is assigned. Similarly, the memory limit of
25 is shared by every role to which rgroup1 is assigned. rgroup1 utilizes the default MEMORY_AUDITOR
vmtracker and the default CONCURRENCY setting of 20.

When you create a resource group for an external component, you must provide CPU_RATE_LIMIT or
CPUSET and MEMORY_LIMIT limit values. You must also provide the MEMORY_AUDITOR and explicitly set
CONCURRENCY to zero (0). For example, to create a resource group named rgroup_extcomp for which you
reserve CPU core 1 and assign a memory limit of 15:

=# CREATE RESOURCE GROUP rgroup_extcomp WITH (MEMORY_AUDITOR=cgroup,
 CONCURRENCY=0,
 CPUSET='1', MEMORY_LIMIT=15);

Greenplum Database Administrator Guide Release Notes

537

The ALTER RESOURCE GROUP command updates the limits of a resource group. To change the limits of a
resource group, specify the new values that you want for the group. For example:

=# ALTER RESOURCE GROUP rg_role_light SET CONCURRENCY 7;
=# ALTER RESOURCE GROUP exec SET MEMORY_SPILL_RATIO 25;
=# ALTER RESOURCE GROUP rgroup1 SET CPUSET '2,4';

Note: You cannot set or alter the CONCURRENCY value for the admin_group to zero (0).

The DROP RESOURCE GROUP command drops a resource group. To drop a resource group for a role, the
group cannot be assigned to any role, nor can there be any transactions active or waiting in the resource
group. Dropping a resource group for an external component in which there are running instances kills the
running instances.

To drop a resource group:

=# DROP RESOURCE GROUP exec;

Configuring Automatic Query Termination Based on Memory Usage

When resource groups have a global shared memory pool, the server configuration parameter
runaway_detector_activation_percent sets the percent of utilized global shared memory that
triggers the termination of queries that are managed by resource groups that are configured to use the
vmtracker memory auditor, such as admin_group and default_group.

Resource groups have a global shared memory pool when the sum of the MEMORY_LIMIT attribute values
configured for all resource groups is less than 100. For example, if you have 3 resource groups configured
with MEMORY_LIMIT values of 10 , 20, and 30, then global shared memory is 40% = 100% - (10% + 20% +
30%).

For information about global shared memory, see Global Shared Memory.

Assigning a Resource Group to a Role

When you create a resource group with the default MEMORY_AUDITOR vmtracker, the group is available
for assignment to one or more roles (users). You assign a resource group to a database role using the
RESOURCE GROUP clause of the CREATE ROLE or ALTER ROLE commands. If you do not specify a
resource group for a role, the role is assigned the default group for the role's capability. SUPERUSER roles
are assigned the admin_group, non-admin roles are assigned the group named default_group.

Use the ALTER ROLE or CREATE ROLE commands to assign a resource group to a role. For example:

=# ALTER ROLE bill RESOURCE GROUP rg_light;
=# CREATE ROLE mary RESOURCE GROUP exec;

You can assign a resource group to one or more roles. If you have defined a role hierarchy, assigning a
resource group to a parent role does not propagate down to the members of that role group.

Note: You cannot assign a resource group that you create for an external component to a role.

If you wish to remove a resource group assignment from a role and assign the role the default group,
change the role's group name assignment to NONE. For example:

=# ALTER ROLE mary RESOURCE GROUP NONE;

Monitoring Resource Group Status

Monitoring the status of your resource groups and queries may involve the following tasks:

• Viewing Resource Group Limits
• Viewing Resource Group Query Status and CPU/Memory Usage

Greenplum Database Administrator Guide Release Notes

538

• Viewing the Resource Group Assigned to a Role
• Viewing a Resource Group's Running and Pending Queries
• Cancelling a Running or Queued Transaction in a Resource Group

Viewing Resource Group Limits

The gp_resgroup_config gp_toolkit system view displays the current limits for a resource group. To
view the limits of all resource groups:

=# SELECT * FROM gp_toolkit.gp_resgroup_config;

Viewing Resource Group Query Status and CPU/Memory Usage

The gp_resgroup_status gp_toolkit system view enables you to view the status and activity of a
resource group. The view displays the number of running and queued transactions. It also displays the
real-time CPU and memory usage of the resource group. To view this information:

=# SELECT * FROM gp_toolkit.gp_resgroup_status;

Viewing Resource Group CPU/Memory Usage Per Host

The gp_resgroup_status_per_host gp_toolkit system view enables you to view the real-time
CPU and memory usage of a resource group on a per-host basis. To view this information:

=# SELECT * FROM gp_toolkit.gp_resgroup_status_per_host;

Viewing Resource Group CPU/Memory Usage Per Segment

The gp_resgroup_status_per_segment gp_toolkit system view enables you to view the real-time
CPU and memory usage of a resource group on a per-segment, per-host basis. To view this information:

=# SELECT * FROM gp_toolkit.gp_resgroup_status_per_segment;

Viewing the Resource Group Assigned to a Role

To view the resource group-to-role assignments, perform the following query on the pg_roles and
pg_resgroup system catalog tables:

=# SELECT rolname, rsgname FROM pg_roles, pg_resgroup
 WHERE pg_roles.rolresgroup=pg_resgroup.oid;

Viewing a Resource Group's Running and Pending Queries

To view a resource group's running queries, pending queries, and how long the pending queries have been
queued, examine the pg_stat_activity system catalog table:

=# SELECT query, waiting, rsgname, rsgqueueduration
 FROM pg_stat_activity;

pg_stat_activity displays information about the user/role that initiated a query. A query that uses
an external component such as PL/Container is composed of two parts: the query operator that runs in
Greenplum Database and the UDF that runs in a PL/Container instance. Greenplum Database processes
the query operators under the resource group assigned to the role that initiated the query. A UDF running
in a PL/Container instance runs under the resource group assigned to the PL/Container runtime. The latter
is not represented in the pg_stat_activity view; Greenplum Database does not have any insight into
how external components such as PL/Container manage memory in running instances.

Greenplum Database Administrator Guide Release Notes

539

Cancelling a Running or Queued Transaction in a Resource Group

There may be cases when you want to cancel a running or queued transaction in a resource group. For
example, you may want to remove a query that is waiting in the resource group queue but has not yet been
executed. Or, you may want to stop a running query that is taking too long to execute, or one that is sitting
idle in a transaction and taking up resource group transaction slots that are needed by other users.

By default, transactions can remain queued in a resource group indefinitely. If you want Greenplum
Database to cancel a queued transaction after a specific amount of time, set the server configuration
parameter gp_resource_group_queuing_timeout. When this parameter is set to a value
(milliseconds) greater than 0, Greenplum cancels any queued transaction when it has waited longer than
the configured timeout.

To manually cancel a running or queued transaction, you must first determine the process id
(pid) associated with the transaction. Once you have obtained the process id, you can invoke
pg_cancel_backend() to end that process, as shown below.

For example, to view the process information associated with all statements currently active or waiting in
all resource groups, run the following query. If the query returns no results, then there are no running or
queued transactions in any resource group.

=# SELECT rolname, g.rsgname, pid, waiting, state, query, datname
 FROM pg_roles, gp_toolkit.gp_resgroup_status g, pg_stat_activity
 WHERE pg_roles.rolresgroup=g.groupid
 AND pg_stat_activity.usename=pg_roles.rolname;

Sample partial query output:

 rolname | rsgname | pid | waiting | state | query
 | datname
---------+----------+---------+---------+--------+------------------------ -
+---------
 sammy | rg_light | 31861 | f | idle | SELECT * FROM mytesttbl;
 | testdb
 billy | rg_light | 31905 | t | active | SELECT * FROM topten;
 | testdb

Use this output to identify the process id (pid) of the transaction you want to cancel, and then cancel the
process. For example, to cancel the pending query identified in the sample output above:

=# SELECT pg_cancel_backend(31905);

You can provide an optional message in a second argument to pg_cancel_backend() to indicate to the
user why the process was cancelled.

Note:

Do not use an operating system KILL command to cancel any Greenplum Database process.

Moving a Query to a Different Resource Group

A user with Greenplum Database superuser privileges can run the
gp_toolkit.pg_resgroup_move_query() function to move a running query from one resource group
to another, without stopping the query. Use this function to expedite a long-running query by moving it to a
resource group with a higher resource allotment or availability.

Note: You can move only an active or running query to a new resource group. You cannot move a
queued or pending query that is in an idle state due to concurrency or memory limits.

Greenplum Database Administrator Guide Release Notes

540

pg_resgroup_move_query() requires the process id (pid) of the running query, as well as the name of
the resource group to which you want to move the query. The signature of the function follows:

pg_resgroup_move_query(pid int4, group_name text);

You can obtain the pid of a running query from the pg_stat_activity system view as
described in Cancelling a Running or Queued Transaction in a Resource Group. Use the
gp_toolkit.gp_resgroup_status view to list the name, id, and status of each resource group.

When you invoke pg_resgroup_move_query(), the query is subject to the limits configured for the
destination resource group:

• If the group has already reached its concurrent task limit, Greenplum Database queues the query until a
slot opens.

• If the destination resource group does not have enough memory available to service the query's current
memory requirements, Greenplum Database returns the error: group <group_name> doesn't
have enough memory In this situation, you may choose to increase the group shared memory
allotted to the destination resource group, or perhaps wait a period of time for running queries to
complete and then invoke the function again.

After Greenplum moves the query, there is no way to guarantee that a query currently running in the
destination resource group does not exceed the group memory quota. In this situation, one or more
running queries in the destination group may fail, including the moved query. Reserve enough resource
group global shared memory to minimize the potential for this scenario to occur.

pg_resgroup_move_query() moves only the specified query to the destination resource group.
Greenplum Database assigns subsequent queries that you submit in the session to the original resource
group.

Note: Greenplum Database version 6.8 introduced support for moving a query to a different
resource group.

• If you upgraded from a previous Greenplum 6.x installation, you must manually register the
supporting functions for this feature, and grant access to the functions as follows:

CREATE FUNCTION gp_toolkit.pg_resgroup_check_move_query(IN session_id
 int, IN groupid oid, OUT session_mem int, OUT available_mem int)
RETURNS SETOF record
AS 'gp_resource_group', 'pg_resgroup_check_move_query'
VOLATILE LANGUAGE C;
GRANT EXECUTE ON FUNCTION
 gp_toolkit.pg_resgroup_check_move_query(int, oid, OUT int, OUT int)
 TO public;

CREATE FUNCTION gp_toolkit.pg_resgroup_move_query(session_id int4,
 groupid text)
RETURNS bool
AS 'gp_resource_group', 'pg_resgroup_move_query'
VOLATILE LANGUAGE C;
GRANT EXECUTE ON FUNCTION gp_toolkit.pg_resgroup_move_query(int4,
 text) TO public;

• If you register the supporting functions and then you downgrade your Greenplum Database
installation to version 6.7.x or older, manually drop these functions as follows:

DROP FUNCTION gp_toolkit.pg_resgroup_check_move_query(IN int, IN oid,
 OUT int, OUT int);
DROP FUNCTION gp_toolkit.pg_resgroup_move_query(int4, text);

Greenplum Database Administrator Guide Release Notes

541

Resource Group Frequently Asked Questions

CPU
• Why is CPU usage lower than the CPU_RATE_LIMIT configured for the resource group?

You may run into this situation when a low number of queries and slices are running in the resource
group, and these processes are not utilizing all of the cores on the system.

• Why is CPU usage for the resource group higher than the configured CPU_RATE_LIMIT?

This situation can occur in the following circumstances:

• A resource group may utilize more CPU than its CPU_RATE_LIMIT when other resource groups are
idle. In this situation, Greenplum Database allocates the CPU resource of an idle resource group to
a busier one. This resource group feature is called CPU burst.

• The operating system CPU scheduler may cause CPU usage to spike, then drop down. If you
believe this might be occurring, calculate the average CPU usage within a given period of time (for
example, 5 seconds) and use that average to determine if CPU usage is higher than the configured
limit.

Memory
• Why did my query return an "out of memory" error?

A transaction submitted in a resource group fails and exits when memory usage exceeds its fixed
memory allotment, no available resource group shared memory exists, and the transaction requests
more memory.

• Why did my query return a "memory limit reached" error?

Greenplum Database automatically adjusts transaction and group memory to the new settings when
you use ALTER RESOURCE GROUP to change a resource group's memory and/or concurrency limits.
An "out of memory" error may occur if you recently altered resource group attributes and there is no
longer a sufficient amount of memory available for a currently running query.

• Why does the actual memory usage of my resource group exceed the amount configured for the
group?

The actual memory usage of a resource group may exceed the configured amount when one or more
queries running in the group is allocated memory from the global shared memory pool. (If no global
shared memory is available, queries fail and do not impact the memory resources of other resource
groups.)

When global shared memory is available, memory usage may also exceed the configured amount when
a transaction spills to disk. Greenplum Database statements continue to request memory when they
start to spill to disk because:

• Spilling to disk requires extra memory to work.
• Other operators may continue to request memory.

Memory usage grows in spill situations; when global shared memory is available, the resource group
may eventually use up to 200-300% of its configured group memory limit.

Concurrency
• Why is the number of running transactions lower than the CONCURRENCY limit configured for the

resource group?

Greenplum Database considers memory availability before running a transaction, and will queue the
transaction if there is not enough memory available to serve it. If you use ALTER RESOURCE GROUP
to increase the CONCURRENCY limit for a resource group but do not also adjust memory limits, currently

Greenplum Database Administrator Guide Release Notes

542

running transactions may be consuming all allotted memory resources for the group. When in this state,
Greenplum Database queues subsequent transactions in the resource group.

• Why is the number of running transactions in the resource group higher than the configured
CONCURRENCY limit?

The resource group may be running SET and SHOW commands, which bypass resource group
transaction checks.

Using Resource Queues
Use Greenplum Database resource queues to prioritize and allocate resources to queries according to
business requirements and to prevent queries from starting when resources are unavailable.

Resource queues are one tool to manage the degree of concurrency in a Greenplum Database system.
Resource queues are database objects that you create with the CREATE RESOURCE QUEUE SQL
statement. You can use them to manage the number of active queries that may execute concurrently, the
amount of memory each type of query is allocated, and the relative priority of queries. Resource queues
can also guard against queries that would consume too many resources and degrade overall system
performance.

Each database role is associated with a single resource queue; multiple roles can share the same resource
queue. Roles are assigned to resource queues using the RESOURCE QUEUE phrase of the CREATE ROLE
or ALTER ROLE statements. If a resource queue is not specified, the role is associated with the default
resource queue, pg_default.

When the user submits a query for execution, the query is evaluated against the resource queue's limits.
If the query does not cause the queue to exceed its resource limits, then that query will run immediately. If
the query causes the queue to exceed its limits (for example, if the maximum number of active statement
slots are currently in use), then the query must wait until queue resources are free before it can run.
Queries are evaluated on a first in, first out basis. If query prioritization is enabled, the active workload on
the system is periodically assessed and processing resources are reallocated according to query priority
(see How Priorities Work). Roles with the SUPERUSER attribute are exempt from resource queue limits.
Superuser queries always run immediately regardless of limits imposed by their assigned resource queue.

Figure 30: Resource Queue Process

Resource queues define classes of queries with similar resource requirements. Administratrors should
create resource queues for the various types of workloads in their organization. For example, you could
create resource queues for the following classes of queries, corresponding to different service level
agreements:

• ETL queries
• Reporting queries
• Executive queries

Greenplum Database Administrator Guide Release Notes

543

A resource queue has the following characteristics:
MEMORY_LIMIT

The amount of memory used by all the queries in the queue (per segment). For example,
setting MEMORY_LIMIT to 2GB on the ETL queue allows ETL queries to use up to 2GB of
memory in each segment.

ACTIVE_STATEMENTS

The number of slots for a queue; the maximum concurrency level for a queue. When all
slots are used, new queries must wait. Each query uses an equal amount of memory by
default.

For example, the pg_default resource queue has ACTIVE_STATEMENTS = 20.

PRIORITY

The relative CPU usage for queries. This may be one of the following levels: LOW, MEDIUM,
HIGH, MAX. The default level is MEDIUM. The query prioritization mechanism monitors the
CPU usage of all the queries running in the system, and adjusts the CPU usage for each
to conform to its priority level. For example, you could set MAX priority to the executive
resource queue and MEDIUM to other queues to ensure that executive queries receive a
greater share of CPU.

MAX_COST

Query plan cost limit.

The Greenplum Database optimizer assigns a numeric cost to each query. If the cost
exceeds the MAX_COST value set for the resource queue, the query is rejected as too
expensive.

Note: GPORCA and the Postgres Planner utilize different query costing
models and may compute different costs for the same query. The Greenplum
Database resource queue resource management scheme neither
differentiates nor aligns costs between GPORCA and the Postgres Planner; it
uses the literal cost value returned from the optimizer to throttle queries.

When resource queue-based resource management is active, use the
MEMORY_LIMIT and ACTIVE_STATEMENTS limits for resource queues rather
than configuring cost-based limits. Even when using GPORCA, Greenplum
Database may fall back to using the Postgres Planner for certain queries, so
using cost-based limits can lead to unexpected results.

The default configuration for a Greenplum Database system has a single default resource queue named
pg_default. The pg_default resource queue has an ACTIVE_STATEMENTS setting of 20, no
MEMORY_LIMIT, medium PRIORITY, and no set MAX_COST. This means that all queries are accepted and
run immediately, at the same priority and with no memory limitations; however, only twenty queries may
execute concurrently.

The number of concurrent queries a resource queue allows depends on whether the MEMORY_LIMIT
parameter is set:

• If no MEMORY_LIMIT is set for a resource queue, the amount of memory allocated per query is the
value of the statement_mem server configuration parameter. The maximum memory the resource
queue can use is the product of statement_mem and ACTIVE_STATEMENTS.

• When a MEMORY_LIMIT is set on a resource queue, the number of queries that the queue can execute
concurrently is limited by the queue's available memory.

A query admitted to the system is allocated an amount of memory and a query plan tree is generated for
it. Each node of the tree is an operator, such as a sort or hash join. Each operator is a separate execution
thread and is allocated a fraction of the overall statement memory, at minimum 100KB. If the plan has a
large number of operators, the minimum memory required for operators can exceed the available memory
and the query will be rejected with an insufficient memory error. Operators determine if they can complete

Greenplum Database Administrator Guide Release Notes

544

their tasks in the memory allocated, or if they must spill data to disk, in work files. The mechanism that
allocates and controls the amount of memory used by each operator is called memory quota.

Not all SQL statements submitted through a resource queue are evaluated against the queue limits. By
default only SELECT, SELECT INTO, CREATE TABLE AS SELECT, and DECLARE CURSOR statements
are evaluated. If the server configuration parameter resource_select_only is set to off, then INSERT,
UPDATE, and DELETE statements will be evaluated as well.

Also, an SQL statement that is run during the execution of an EXPLAIN ANALYZE command is excluded
from resource queues.

Resource Queue Example

The default resource queue, pg_default, allows a maximum of 20 active queries and allocates the same
amount of memory to each. This is generally not adequate resource control for production systems. To
ensure that the system meets performance expectations, you can define classes of queries and assign
them to resource queues configured to execute them with the concurrency, memory, and CPU resources
best suited for that class of query.

The following illustration shows an example resource queue configuration for a Greenplum Database
system with gp_vmem_protect_limit set to 8GB:

Figure 31: Resource Queue Configuration Example

This example has three classes of queries with different characteristics and service level agreements
(SLAs). Three resource queues are configured for them. A portion of the segment memory is reserved as a
safety margin.

Resource Queue Name Active Statements Memory Limit Memory per Query

ETL 3 2GB 667MB

Reporting 7 3GB 429MB

Executive 1 1.4GB 1.4GB

The total memory allocated to the queues is 6.4GB, or 80% of the total segment memory defined by
the gp_vmem_protect_limit server configuration parameter. Allowing a safety margin of 20%
accommodates some operators and queries that are known to use more memory than they are allocated
by the resource queue.

See the CREATE RESOURCE QUEUE and CREATE/ALTER ROLE statements in the Greenplum Database
Reference Guide for help with command syntax and detailed reference information.

How Memory Limits Work

Setting MEMORY_LIMIT on a resource queue sets the maximum amount of memory that all active queries
submitted through the queue can consume for a segment instance. The amount of memory allotted
to a query is the queue memory limit divided by the active statement limit. (Use the memory limits in
conjunction with statement-based queues rather than cost-based queues.) For example, if a queue has
a memory limit of 2000MB and an active statement limit of 10, each query submitted through the queue

Greenplum Database Administrator Guide Release Notes

545

is allotted 200MB of memory by default. The default memory allotment can be overridden on a per-query
basis using the statement_mem server configuration parameter (up to the queue memory limit). Once
a query has started executing, it holds its allotted memory in the queue until it completes, even if during
execution it actually consumes less than its allotted amount of memory.

You can use the statement_mem server configuration parameter to override memory limits set by the
current resource queue. At the session level, you can increae statement_mem up to the resource queue's
MEMORY_LIMIT. This will allow an individual query to use all of the memory allocated for the entire queue
without affecting other resource queues.

The value of statement_mem is capped using the max_statement_mem configuration parameter (a
superuser parameter). For a query in a resource queue with MEMORY_LIMIT set, the maximum value
for statement_mem is min(MEMORY_LIMIT, max_statement_mem). When a query is admitted, the
memory allocated to it is subtracted from MEMORY_LIMIT. If MEMORY_LIMIT is exhausted, new queries
in the same resource queue must wait. This happens even if ACTIVE_STATEMENTS has not yet been
reached. Note that this can happen only when statement_mem is used to override the memory allocated
by the resource queue.

For example, consider a resource queue named adhoc with the following settings:

• MEMORY_LIMIT is 1.5GB
• ACTIVE_STATEMENTS is 3

By default each statement submitted to the queue is allocated 500MB of memory. Now consider the
following series of events:

1. User ADHOC_1 submits query Q1, overridingSTATEMENT_MEM to 800MB. The Q1 statement is admitted
into the system.

2. User ADHOC_2 submits query Q2, using the default 500MB.
3. With Q1 and Q2 still running, user ADHOC3 submits query Q3, using the default 500MB.

Queries Q1 and Q2 have used 1300MB of the queue's 1500MB. Therefore, Q3 must wait for Q1 or Q2 to
complete before it can run.

If MEMORY_LIMIT is not set on a queue, queries are admitted until all of the ACTIVE_STATEMENTS slots
are in use, and each query can set an arbitrarily high statement_mem. This could lead to a resource
queue using unbounded amounts of memory.

For more information on configuring memory limits on a resource queue, and other memory utilization
controls, see Creating Queues with Memory Limits.

statement_mem and Low Memory Queries
A low statement_mem setting (for example, in the 1-3MB range) has been shown to increase the
performance of queries with low memory requirements. Use the statement_mem server configuration
parameter to override the setting on a per-query basis. For example:

SET statement_mem='2MB';

How Priorities Work

The PRIORITY setting for a resource queue differs from the MEMORY_LIMIT and ACTIVE_STATEMENTS
settings, which determine whether a query will be admitted to the queue and eventually executed. The
PRIORITY setting applies to queries after they become active. Active queries share available CPU
resources as determined by the priority settings for its resource queue. When a statement from a high-
priority queue enters the group of actively running statements, it may claim a greater share of the available
CPU, reducing the share allocated to already-running statements in queues with a lesser priority setting.

The comparative size or complexity of the queries does not affect the allotment of CPU. If a simple, low-
cost query is running simultaneously with a large, complex query, and their priority settings are the same,

Greenplum Database Administrator Guide Release Notes

546

they will be allocated the same share of available CPU resources. When a new query becomes active, the
CPU shares will be recalculated, but queries of equal priority will still have equal amounts of CPU.

For example, an administrator creates three resource queues: adhoc for ongoing queries submitted by
business analysts, reporting for scheduled reporting jobs, and executive for queries submitted by executive
user roles. The administrator wants to ensure that scheduled reporting jobs are not heavily affected by
unpredictable resource demands from ad-hoc analyst queries. Also, the administrator wants to make sure
that queries submitted by executive roles are allotted a significant share of CPU. Accordingly, the resource
queue priorities are set as shown:

• adhoc — Low priority
• reporting — High priority
• executive — Maximum priority

At runtime, the CPU share of active statements is determined by these priority settings. If queries 1 and
2 from the reporting queue are running simultaneously, they have equal shares of CPU. When an ad-hoc
query becomes active, it claims a smaller share of CPU. The exact share used by the reporting queries is
adjusted, but remains equal due to their equal priority setting:

Figure 32: CPU share readjusted according to priority

Note:

The percentages shown in these illustrations are approximate. CPU usage between high, low and
maximum priority queues is not always calculated in precisely these proportions.

When an executive query enters the group of running statements, CPU usage is adjusted to account for its
maximum priority setting. It may be a simple query compared to the analyst and reporting queries, but until
it is completed, it will claim the largest share of CPU.

Greenplum Database Administrator Guide Release Notes

547

Figure 33: CPU share readjusted for maximum priority query

For more information about commands to set priorities, see Setting Priority Levels.

Steps to Enable Resource Management

Enabling and using resource management in Greenplum Database involves the following high-level tasks:

1. Configure resource management. See Configuring Resource Management.
2. Create the resource queues and set limits on them. See Creating Resource Queues and Modifying

Resource Queues.
3. Assign a queue to one or more user roles. See Assigning Roles (Users) to a Resource Queue.
4. Use the resource management system views to monitor and manage the resource queues. See

Checking Resource Queue Status.

Configuring Resource Management

Resource scheduling is enabled by default when you install Greenplum Database, and is required for all
roles. The default resource queue, pg_default, has an active statement limit of 20, no memory limit, and
a medium priority setting. Create resource queues for the various types of workloads.

To configure resource management
1. The following parameters are for the general configuration of resource queues:

• max_resource_queues - Sets the maximum number of resource queues.
• max_resource_portals_per_transaction - Sets the maximum number of simultaneously

open cursors allowed per transaction. Note that an open cursor will hold an active query slot in a
resource queue.

Greenplum Database Administrator Guide Release Notes

548

• resource_select_only - If set to on, then SELECT, SELECT INTO, CREATE TABLE
ASSELECT, and DECLARE CURSOR commands are evaluated. If set to offINSERT, UPDATE, and
DELETE commands will be evaluated as well.

• resource_cleanup_gangs_on_wait - Cleans up idle segment worker processes before taking a
slot in the resource queue.

• stats_queue_level - Enables statistics collection on resource queue usage, which can then be
viewed by querying the pg_stat_resqueues system view.

2. The following parameters are related to memory utilization:

• gp_resqueue_memory_policy - Enables Greenplum Database memory management features.

In Greenplum Database 4.2 and later, the distribution algorithm eager_free takes advantage of
the fact that not all operators execute at the same time. The query plan is divided into stages and
Greenplum Database eagerly frees memory allocated to a previous stage at the end of that stage's
execution, then allocates the eagerly freed memory to the new stage.

When set to none, memory management is the same as in Greenplum Database releases prior to
4.1. When set to auto, query memory usage is controlled by statement_mem and resource queue
memory limits.

• statement_mem and max_statement_mem - Used to allocate memory to a particular query at
runtime (override the default allocation assigned by the resource queue). max_statement_mem is
set by database superusers to prevent regular database users from over-allocation.

• gp_vmem_protect_limit - Sets the upper boundary that all query processes can consume
and should not exceed the amount of physical memory of a segment host. When a segment host
reaches this limit during query execution, the queries that cause the limit to be exceeded will be
cancelled.

• gp_vmem_idle_resource_timeout and gp_vmem_protect_segworker_cache_limit -
used to free memory on segment hosts held by idle database processes. Administrators may want to
adjust these settings on systems with lots of concurrency.

• shared_buffers - Sets the amount of memory a Greenplum server instance uses for shared
memory buffers. This setting must be at least 128 kilobytes and at least 16 kilobytes times
max_connections. The value must not exceed the operating system shared memory maximum
allocation request size, shmmax on Linux. See the Greenplum Database Installation Guide for
recommended OS memory settings for your platform.

3. The following parameters are related to query prioritization. Note that the following parameters are
all local parameters, meaning they must be set in the postgresql.conf files of the master and all
segments:

• gp_resqueue_priority - The query prioritization feature is enabled by default.
• gp_resqueue_priority_sweeper_interval - Sets the interval at which CPU usage is

recalculated for all active statements. The default value for this parameter should be sufficient for
typical database operations.

• gp_resqueue_priority_cpucores_per_segment - Specifies the number of CPU cores
allocated per segment instance. The default value is 4 for the master and segments.

Each host checks its own postgresql.conf file for the value of this parameter. This parameter
also affects the master node, where it should be set to a value reflecting the higher ratio of CPU
cores. For example, on a cluster that has 10 CPU cores per host and 4 segments per host, you
would specify these values for gp_resqueue_priority_cpucores_per_segment:

10 for the master and standby master. Typically, only the master instance is on the master host.

2.5 for segment instances on the segment hosts.

If the parameter value is not set correctly, either the CPU might not be fully utilized, or query
prioritization might not work as expected. For example, if the Greenplum Database cluster has fewer
than one segment instance per CPU core on your segment hosts, make sure you adjust this value
accordingly.

Greenplum Database Administrator Guide Release Notes

549

Actual CPU core utilization is based on the ability of Greenplum Database to parallelize a query and
the resources required to execute the query.

Note: Any CPU core that is available to the operating system is included in the number of CPU
cores. For example, virtual CPU cores are included in the number of CPU cores.

4. If you wish to view or change any of the resource management parameter values, you can use the
gpconfig utility.

5. For example, to see the setting of a particular parameter:

$ gpconfig --show gp_vmem_protect_limit

6. For example, to set one value on all segment instances and a different value on the master:

$ gpconfig -c gp_resqueue_priority_cpucores_per_segment -v 2 -m 8

7. Restart Greenplum Database to make the configuration changes effective:

$ gpstop -r

Creating Resource Queues

Creating a resource queue involves giving it a name, setting an active query limit, and optionally a query
priority on the resource queue. Use the CREATE RESOURCE QUEUE command to create new resource
queues.

Creating Queues with an Active Query Limit

Resource queues with an ACTIVE_STATEMENTS setting limit the number of queries that can be executed
by roles assigned to that queue. For example, to create a resource queue named adhoc with an active
query limit of three:

=# CREATE RESOURCE QUEUE adhoc WITH (ACTIVE_STATEMENTS=3);

This means that for all roles assigned to the adhoc resource queue, only three active queries can be
running on the system at any given time. If this queue has three queries running, and a fourth query is
submitted by a role in that queue, that query must wait until a slot is free before it can run.

Creating Queues with Memory Limits

Resource queues with a MEMORY_LIMIT setting control the amount of memory for all the queries
submitted through the queue. The total memory should not exceed the physical memory available per-
segment. Set MEMORY_LIMIT to 90% of memory available on a per-segment basis. For example, if a host
has 48 GB of physical memory and 6 segment instances, then the memory available per segment instance
is 8 GB. You can calculate the recommended MEMORY_LIMIT for a single queue as 0.90*8=7.2 GB. If
there are multiple queues created on the system, their total memory limits must also add up to 7.2 GB.

When used in conjunction with ACTIVE_STATEMENTS, the default amount of memory allotted per query is:
MEMORY_LIMIT / ACTIVE_STATEMENTS. When used in conjunction with MAX_COST, the default amount
of memory allotted per query is: MEMORY_LIMIT * (query_cost / MAX_COST). Use MEMORY_LIMIT
in conjunction with ACTIVE_STATEMENTS rather than with MAX_COST.

For example, to create a resource queue with an active query limit of 10 and a total memory limit of
2000MB (each query will be allocated 200MB of segment host memory at execution time):

=# CREATE RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=20,
MEMORY_LIMIT='2000MB');

Greenplum Database Administrator Guide Release Notes

550

The default memory allotment can be overridden on a per-query basis using the statement_mem server
configuration parameter, provided that MEMORY_LIMIT or max_statement_mem is not exceeded. For
example, to allocate more memory to a particular query:

=> SET statement_mem='2GB';
=> SELECT * FROM my_big_table WHERE column='value' ORDER BY id;
=> RESET statement_mem;

As a general guideline, MEMORY_LIMIT for all of your resource queues should not exceed the amount
of physical memory of a segment host. If workloads are staggered over multiple queues, it may be OK to
oversubscribe memory allocations, keeping in mind that queries may be cancelled during execution if the
segment host memory limit (gp_vmem_protect_limit) is exceeded.

Setting Priority Levels

To control a resource queue's consumption of available CPU resources, an administrator can assign an
appropriate priority level. When high concurrency causes contention for CPU resources, queries and
statements associated with a high-priority resource queue will claim a larger share of available CPU than
lower priority queries and statements.

Priority settings are created or altered using the WITH parameter of the commands CREATE RESOURCE
QUEUE and ALTER RESOURCE QUEUE. For example, to specify priority settings for the adhoc and
reporting queues, an administrator would use the following commands:

=# ALTER RESOURCE QUEUE adhoc WITH (PRIORITY=LOW);
=# ALTER RESOURCE QUEUE reporting WITH (PRIORITY=HIGH);

To create the executive queue with maximum priority, an administrator would use the following command:

=# CREATE RESOURCE QUEUE executive WITH (ACTIVE_STATEMENTS=3, PRIORITY=MAX);

When the query prioritization feature is enabled, resource queues are given a MEDIUM priority by default
if not explicitly assigned. For more information on how priority settings are evaluated at runtime, see How
Priorities Work.

Important: In order for resource queue priority levels to be enforced on the active query workload,
you must enable the query prioritization feature by setting the associated server configuration
parameters. See Configuring Resource Management.

Assigning Roles (Users) to a Resource Queue

Once a resource queue is created, you must assign roles (users) to their appropriate resource queue.
If roles are not explicitly assigned to a resource queue, they will go to the default resource queue,
pg_default. The default resource queue has an active statement limit of 20, no cost limit, and a medium
priority setting.

Use the ALTER ROLE or CREATE ROLE commands to assign a role to a resource queue. For example:

=# ALTER ROLE name RESOURCE QUEUE queue_name;
=# CREATE ROLE name WITH LOGIN RESOURCE QUEUE queue_name;

A role can only be assigned to one resource queue at any given time, so you can use the ALTER ROLE
command to initially assign or change a role's resource queue.

Resource queues must be assigned on a user-by-user basis. If you have a role hierarchy (for example, a
group-level role) then assigning a resource queue to the group does not propagate down to the users in
that group.

Superusers are always exempt from resource queue limits. Superuser queries will always run regardless of
the limits set on their assigned queue.

Greenplum Database Administrator Guide Release Notes

551

Removing a Role from a Resource Queue

All users must be assigned to a resource queue. If not explicitly assigned to a particular queue, users will
go into the default resource queue, pg_default. If you wish to remove a role from a resource queue and
put them in the default queue, change the role's queue assignment to none. For example:

=# ALTER ROLE role_name RESOURCE QUEUE none;

Modifying Resource Queues

After a resource queue has been created, you can change or reset the queue limits using the ALTER
RESOURCE QUEUE command. You can remove a resource queue using the DROP RESOURCE QUEUE
command. To change the roles (users) assigned to a resource queue, Assigning Roles (Users) to a
Resource Queue.

Altering a Resource Queue

The ALTER RESOURCE QUEUE command changes the limits of a resource queue. To change the limits of
a resource queue, specify the new values you want for the queue. For example:

=# ALTER RESOURCE QUEUE adhoc WITH (ACTIVE_STATEMENTS=5);
=# ALTER RESOURCE QUEUE exec WITH (PRIORITY=MAX);

To reset active statements or memory limit to no limit, enter a value of -1. To reset the maximum query
cost to no limit, enter a value of -1.0. For example:

=# ALTER RESOURCE QUEUE adhoc WITH (MAX_COST=-1.0, MEMORY_LIMIT='2GB');

You can use the ALTER RESOURCE QUEUE command to change the priority of queries associated with a
resource queue. For example, to set a queue to the minimum priority level:

ALTER RESOURCE QUEUE webuser WITH (PRIORITY=MIN);

Dropping a Resource Queue

The DROP RESOURCE QUEUE command drops a resource queue. To drop a resource queue, the queue
cannot have any roles assigned to it, nor can it have any statements waiting in the queue. See Removing
a Role from a Resource Queue and Clearing a Waiting Statement From a Resource Queue for instructions
on emptying a resource queue. To drop a resource queue:

=# DROP RESOURCE QUEUE name;

Checking Resource Queue Status

Checking resource queue status involves the following tasks:

• Viewing Queued Statements and Resource Queue Status
• Viewing Resource Queue Statistics
• Viewing the Roles Assigned to a Resource Queue
• Viewing the Waiting Queries for a Resource Queue
• Clearing a Waiting Statement From a Resource Queue
• Viewing the Priority of Active Statements
• Resetting the Priority of an Active Statement

Greenplum Database Administrator Guide Release Notes

552

Viewing Queued Statements and Resource Queue Status

The gp_toolkit.gp_resqueue_status view allows administrators to see status and activity for a
resource queue. It shows how many queries are waiting to run and how many queries are currently active
in the system from a particular resource queue. To see the resource queues created in the system, their
limit attributes, and their current status:

=# SELECT * FROM gp_toolkit.gp_resqueue_status;

Viewing Resource Queue Statistics

If you want to track statistics and performance of resource queues over time, you can enable statistics
collecting for resource queues. This is done by setting the following server configuration parameter in your
master postgresql.conf file:

stats_queue_level = on

Once this is enabled, you can use the pg_stat_resqueues system view to see the statistics collected
on resource queue usage. Note that enabling this feature does incur slight performance overhead, as each
query submitted through a resource queue must be tracked. It may be useful to enable statistics collecting
on resource queues for initial diagnostics and administrative planning, and then disable the feature for
continued use.

See the Statistics Collector section in the PostgreSQL documentation for more information about collecting
statistics in Greenplum Database.

Viewing the Roles Assigned to a Resource Queue

To see the roles assigned to a resource queue, perform the following query of the pg_roles and
gp_toolkit.gp_resqueue_status system catalog tables:

=# SELECT rolname, rsqname FROM pg_roles,
 gp_toolkit.gp_resqueue_status
 WHERE pg_roles.rolresqueue=gp_toolkit.gp_resqueue_status.queueid;

You may want to create a view of this query to simplify future inquiries. For example:

=# CREATE VIEW role2queue AS
 SELECT rolname, rsqname FROM pg_roles, pg_resqueue
 WHERE pg_roles.rolresqueue=gp_toolkit.gp_resqueue_status.queueid;

Then you can just query the view:

=# SELECT * FROM role2queue;

Viewing the Waiting Queries for a Resource Queue

When a slot is in use for a resource queue, it is recorded in the pg_locks system catalog table.
This is where you can see all of the currently active and waiting queries for all resource queues. To
check that statements are being queued (even statements that are not waiting), you can also use the
gp_toolkit.gp_locks_on_resqueue view. For example:

=# SELECT * FROM gp_toolkit.gp_locks_on_resqueue WHERE lorwaiting='true';

If this query returns no results, then that means there are currently no statements waiting in a resource
queue.

Greenplum Database Administrator Guide Release Notes

553

Clearing a Waiting Statement From a Resource Queue

In some cases, you may want to clear a waiting statement from a resource queue. For example, you may
want to remove a query that is waiting in the queue but has not been executed yet. You may also want
to stop a query that has been started if it is taking too long to execute, or if it is sitting idle in a transaction
and taking up resource queue slots that are needed by other users. To do this, you must first identify the
statement you want to clear, determine its process id (pid), and then, use pg_cancel_backend with the
process id to end that process, as shown below. An optional message to the process can be passed as the
second parameter, to indicate to the user why the process was cancelled.

For example, to see process information about all statements currently active or waiting in all resource
queues, run the following query:

=# SELECT rolname, rsqname, pg_locks.pid as pid, granted, state,
 query, datname
 FROM pg_roles, gp_toolkit.gp_resqueue_status, pg_locks,
 pg_stat_activity
 WHERE pg_roles.rolresqueue=pg_locks.objid
 AND pg_locks.objid=gp_toolkit.gp_resqueue_status.queueid
 AND pg_stat_activity.pid=pg_locks.pid
 AND pg_stat_activity.usename=pg_roles.rolname;

If this query returns no results, then that means there are currently no statements in a resource queue. A
sample of a resource queue with two statements in it looks something like this:

rolname | rsqname | pid | granted | state | query |
 datname
--------+---------+-------+---------+--------+------------------------
+---------
 sammy | webuser | 31861 | t | idle | SELECT * FROM testtbl; |
 namesdb
 daria | webuser | 31905 | f | active | SELECT * FROM topten; |
 namesdb

Use this output to identify the process id (pid) of the statement you want to clear from the resource queue.
To clear the statement, you would then open a terminal window (as the gpadmin database superuser or
as root) on the master host and cancel the corresponding process. For example:

=# pg_cancel_backend(31905)

Important: Do not use the operating system KILL command.

Viewing the Priority of Active Statements

The gp_toolkit administrative schema has a view called gp_resq_priority_statement, which lists all
statements currently being executed and provides the priority, session ID, and other information.

This view is only available through the gp_toolkit administrative schema. See the Greenplum Database
Reference Guide for more information.

Resetting the Priority of an Active Statement

Superusers can adjust the priority of a statement currently being executed using the built-in function
gp_adjust_priority(session_id, statement_count, priority). Using this function,
superusers can raise or lower the priority of any query. For example:

=# SELECT gp_adjust_priority(752, 24905, 'HIGH')

Greenplum Database Administrator Guide Release Notes

554

To obtain the session ID and statement count parameters required by this function, superusers can use the
gp_toolkit administrative schema view, gp_resq_priority_statement. From the view, use these values
for the function parameters.

• The value of the rqpsession column for the session_id parameter
• The value of the rqpcommand column for the statement_count parameter
• The value of rqppriority column is the current priority. You can specify a string value of MAX, HIGH,

MEDIUM, or LOW as the priority.

Note: The gp_adjust_priority() function affects only the specified statement. Subsequent
statements in the same resource queue are executed using the queue's normally assigned priority.

Investigating a Performance Problem
This section provides guidelines for identifying and troubleshooting performance problems in a Greenplum
Database system.

This topic lists steps you can take to help identify the cause of a performance problem. If the problem
affects a particular workload or query, you can focus on tuning that particular workload. If the performance
problem is system-wide, then hardware problems, system failures, or resource contention may be the
cause.

Checking System State
Use the gpstate utility to identify failed segments. A Greenplum Database system will incur performance
degradation when segment instances are down because other hosts must pick up the processing
responsibilities of the down segments.

Failed segments can indicate a hardware failure, such as a failed disk drive or network card. Greenplum
Database provides the hardware verification tool gpcheckperf to help identify the segment hosts with
hardware issues.

Checking Database Activity
• Checking for Active Sessions (Workload)
• Checking for Locks (Contention)
• Checking Query Status and System Utilization

Checking for Active Sessions (Workload)

The pg_stat_activity system catalog view shows one row per server process; it shows the database OID,
database name, process ID, user OID, user name, current query, time at which the current query began
execution, time at which the process was started, client address, and port number. To obtain the most
information about the current system workload, query this view as the database superuser. For example:

SELECT * FROM pg_stat_activity;

Note that the information does not update instantaneously.

Checking for Locks (Contention)

The pg_locks system catalog view allows you to see information about outstanding locks. If a transaction
is holding a lock on an object, any other queries must wait for that lock to be released before they can
continue. This may appear to the user as if a query is hanging.

Examine pg_locks for ungranted locks to help identify contention between database client sessions.
pg_locks provides a global view of all locks in the database system, not only those relevant to the current
database. You can join its relation column against pg_class.oid to identify locked relations (such as
tables), but this works correctly only for relations in the current database. You can join the pid column to

Greenplum Database Administrator Guide Release Notes

555

the pg_stat_activity.pid to see more information about the session holding or waiting to hold a lock.
For example:

SELECT locktype, database, c.relname, l.relation,
l.transactionid, l.pid, l.mode, l.granted,
a.query
 FROM pg_locks l, pg_class c, pg_stat_activity a
 WHERE l.relation=c.oid AND l.pid=a.pid
 ORDER BY c.relname;

If you use resource groups, queries that are waiting will also show in pg_locks. To see how many queries
are waiting to run in a resource group, use the gp_resgroup_status system catalog view. For example:

SELECT * FROM gp_toolkit.gp_resgroup_status;

Similarly, if you use resource queues, queries that are waiting in a queue also show in pg_locks. To see
how many queries are waiting to run from a resource queue, use the gp_resqueue_status system catalog
view. For example:

SELECT * FROM gp_toolkit.gp_resqueue_status;

Checking Query Status and System Utilization

You can use system monitoring utilities such as ps, top, iostat, vmstat, netstat and so on to
monitor database activity on the hosts in your Greenplum Database array. These tools can help identify
Greenplum Database processes (postgres processes) currently running on the system and the most
resource intensive tasks with regards to CPU, memory, disk I/O, or network activity. Look at these system
statistics to identify queries that degrade database performance by overloading the system and consuming
excessive resources. Greenplum Database's management tool gpssh allows you to run these system
monitoring commands on several hosts simultaneously.

You can create and use the Greenplum Database session_level_memory_consumption view that provides
information about the current memory utilization and idle time for sessions that are running queries on
Greenplum Database. For information about the view, see Viewing Session Memory Usage Information.

You can enable a dedicated database, gpperfmon, in which data collection agents running on each
segment host save query and system utilization metrics. Refer to the gpperfmon_install management
utility reference in the Greenplum Database Management Utility Reference Guide for help creating the
gpperfmon database and managing the agents. See documentation for the tables and views in the
gpperfmon database in the Greenplum Database Reference Guide.

The optional Greenplum Command Center web-based user interface graphically displays query and
system utilization metrics saved in the gpperfmon database. See the Greenplum Command Center
Documentation web site for procedures to enable Greenplum Command Center.

Troubleshooting Problem Queries
If a query performs poorly, look at its query plan to help identify problems. The EXPLAIN command shows
the query plan for a given query. See Query Profiling for more information about reading query plans and
identifying problems.

When an out of memory event occurs during query execution, the Greenplum Database memory
accounting framework reports detailed memory consumption of every query running at the time of the
event. The information is written to the Greenplum Database segment logs.

Investigating Error Messages
Greenplum Database log messages are written to files in the pg_log directory within the master's or
segment's data directory. Because the master log file contains the most information, you should always

https://gpcc.docs.pivotal.io
https://gpcc.docs.pivotal.io

Greenplum Database Administrator Guide Release Notes

556

check it first. Log files roll over daily and use the naming convention: gpdb-YYYY-MM-DD_hhmmss.csv.
To locate the log files on the master host:

$ cd $MASTER_DATA_DIRECTORY/pg_log

Log lines have the format of:

timestamp | user | database | statement_id | con#cmd#
|:-LOG_LEVEL: log_message

You may want to focus your search for WARNING, ERROR, FATAL or PANIC log level messages. You can
use the Greenplum utility gplogfilter to search through Greenplum Database log files. For example,
when you run the following command on the master host, it checks for problem log messages in the
standard logging locations:

$ gplogfilter -t

To search for related log entries in the segment log files, you can run gplogfilter on the segment
hosts using gpssh. You can identify corresponding log entries by the statement_id or con# (session
identifier). For example, to search for log messages in the segment log files containing the string con6 and
save output to a file:

gpssh -f seg_hosts_file -e 'source
/usr/local/greenplum-db/greenplum_path.sh ; gplogfilter -f
con6 /gpdata/*/pg_log/gpdb*.csv' > seglog.out

Gathering Information for Pivotal Customer Support

The Greenplum Magic Tool (GPMT) utility can run diagnostics and collect information from a Greenplum
Database system. You can then send the information to Pivotal Customer Support to aid the diagnosis of
Greenplum Database errors or system failures.

The GPMT utility is available from the Pivotal Knowledge Base on the GPMT page.

https://discuss.pivotal.io/hc/en-us/categories/200072608-Pivotal-Greenplum-Knowledge-Base
https://discuss.pivotal.io/hc/en-us/articles/217546277-Greenplum-Magic-Tool-GPMT-

557

Chapter 4

Greenplum Database Security Configuration Guide

This guide describes how to secure a Greenplum Database system. The guide assumes knowledge of
Linux/UNIX system administration and database management systems. Familiarity with structured query
language (SQL) is helpful.

Because Greenplum Database is based on PostgreSQL 9.4, this guide assumes some familiarity with
PostgreSQL. References to PostgreSQL documentation are provided throughout this guide for features
that are similar to those in Greenplum Database.

This information is intended for system administrators responsible for administering a Greenplum Database
system.

https://www.postgresql.org/docs/9.4/index.html

Greenplum Database Security Configuration Guide Release Notes

558

Securing the Database
Introduces Greenplum Database security topics.

The intent of security configuration is to configure the Greenplum Database server to eliminate as many
security vulnerabilities as possible. This guide provides a baseline for minimum security requirements, and
is supplemented by additional security documentation.

The essential security requirements fall into the following categories:

• Authentication covers the mechanisms that are supported and that can be used by the Greenplum
database server to establish the identity of a client application.

• Authorization pertains to the privilege and permission models used by the database to authorize client
access.

• Auditing, or log settings, covers the logging options available in Greenplum Database to track
successful or failed user actions.

• Data Encryption addresses the encryption capabilities that are available for protecting data at rest and
data in transit. This includes the security certifications that are relevant to the Greenplum Database.

Accessing a Kerberized Hadoop Cluster
You can use the Greenplum Platform Extension Framework (PXF) to read or write external tables
referencing files in a Hadoop file system. If the Hadoop cluster is secured with Kerberos ("Kerberized"),
you must configure Greenplum Database and PXF to allow users accessing external tables to authenticate
with Kerberos. Refer to Configuring PXF for Secure HDFS for the procedure to perform this setup.

Platform Hardening
Platform hardening involves assessing and minimizing system vulnerability by following best practices and
enforcing federal security standards. Hardening the product is based on the US Department of Defense
(DoD) guidelines Security Template Implementation Guides (STIG). Hardening removes unnecessary
packages, disables services that are not required, sets up restrictive file and directory permissions,
removes unowned files and directories, performs authentication for single-user mode, and provides options
for end users to configure the package to be compliant to the latest STIGs.

../../../pxf/5-15/pxf_kerbhdfs.html

Greenplum Database Security Configuration Guide Release Notes

559

Greenplum Database Ports and Protocols
Lists network ports and protocols used within the Greenplum cluster.

Greenplum Database clients connect with TCP to the Greenplum master instance at the client connection
port, 5432 by default. The listen port can be reconfigured in the postgresql.conf configuration file.
Client connections use the PostgreSQL libpq API. The psql command-line interface, several Greenplum
utilities, and language-specific programming APIs all either use the libpq library directly or implement the
libpq protocol internally.

Each segment instance also has a client connection port, used solely by the master instance to coordinate
database operations with the segments. The gpstate -p command, executed on the Greenplum master,
lists the port assignments for the Greenplum master and the primary segments and mirrors. For example:

[gpadmin@mdw ~]$ gpstate -p
20190403:02:57:04:011030 gpstate:mdw:gpadmin-[INFO]:-Starting gpstate with
 args: -p
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:-local
 Greenplum Version: 'postgres (Greenplum Database) 5.17.0 build
 commit:fc9a9d4cad8dd4037b9bc07bf837c0b958726103'
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:-master Greenplum
 Version: 'PostgreSQL 8.3.23 (Greenplum Database 5.17.0 build
 commit:fc9a9d4cad8dd4037b9bc07bf837c0b958726103) on x86_64-pc-linux-gnu,
 compiled by GCC gcc (GCC) 6.2.0, 64-bit compiled on Feb 13 2019 15:26:34'
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:-Obtaining Segment
 details from master...
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:--Master segment
 instance /data/master/gpseg-1 port = 5432
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:--Segment instance port
 assignments
20190403:02:57:05:011030 gpstate:mdw:gpadmin-
[INFO]:-----------------------------------
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- Host Datadir
 Port
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw1 /data/
primary/gpseg0 20000
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw2 /data/mirror/
gpseg0 21000
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw1 /data/
primary/gpseg1 20001
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw2 /data/mirror/
gpseg1 21001
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw1 /data/
primary/gpseg2 20002
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw2 /data/mirror/
gpseg2 21002
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw2 /data/
primary/gpseg3 20000
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw3 /data/mirror/
gpseg3 21000
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw2 /data/
primary/gpseg4 20001
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw3 /data/mirror/
gpseg4 21001
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw2 /data/
primary/gpseg5 20002
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw3 /data/mirror/
gpseg5 21002
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw3 /data/
primary/gpseg6 20000

Greenplum Database Security Configuration Guide Release Notes

560

20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw1 /data/mirror/
gpseg6 21000
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw3 /data/
primary/gpseg7 20001
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw1 /data/mirror/
gpseg7 21001
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw3 /data/
primary/gpseg8 20002
20190403:02:57:05:011030 gpstate:mdw:gpadmin-[INFO]:- sdw1 /data/mirror/
gpseg8 21002

Additional Greenplum Database network connections are created for features such as standby replication,
segment mirroring, statistics collection, and data exchange between segments. Some persistent
connections are established when the database starts up and other transient connections are created
during operations such as query execution. Transient connections for query execution processes, data
movement, and statistics collection use available ports in the range 1025 to 65535 with both TCP and UDP
protocols.

Note: To avoid port conflicts between Greenplum Database and other applications when
initializing Greenplum Database, do not specify Greenplum Database ports in the range specified
by the operating system parameter net.ipv4.ip_local_port_range. For example, if
net.ipv4.ip_local_port_range = 10000 65535, you could set the Greenplum Database
base port numbers to values outside of that range:

PORT_BASE = 6000
MIRROR_PORT_BASE = 7000

Some add-on products and services that work with Greenplum Database have additional networking
requirements. The following table lists ports and protocols used within the Greenplum cluster, and includes
services and applications that integrate with Greenplum Database.

Table 60: Greenplum Database Ports and Protocols

Service Protocol/Port Description

Master SQL client
connection

TCP 5432, libpq SQL client connection port on the Greenplum
master host. Supports clients using the PostgreSQL
libpq API. Configurable.

Segment SQL client
connection

varies, libpq The SQL client connection port for a segment
instance. Each primary and mirror segment on a
host must have a unique port. Ports are assigned
when the Greenplum system is initialized or
expanded. The gp_segment_configuration
system catalog records port numbers for each
primary (p) or mirror (m) segment in the port
column. Run gpstate -p to view the ports in use.

Segment mirroring port varies, libpq The port where a segment receives mirrored
blocks from its primary. The port is assigned
when the mirror is set up. The gp_segment_
configuration system catalog records port
numbers for each primary (p) or mirror (m) segment
in the port column. Run gpstate -p to view the
ports in use.

Greenplum Database
Interconnect

UDP 1025-65535,
dynamically allocated

The Interconnect transports database tuples
between Greenplum segments during query
execution.

Greenplum Database Security Configuration Guide Release Notes

561

Service Protocol/Port Description

Standby master client
listener

TCP 5432, libpq SQL client connection port on the standby
master host. Usually the same as the master
client connection port. Configure with the
gpinitstandby utility -P option.

Standby master
replicator

TCP 1025-65535,
gpsyncmaster

The gpsyncmaster process on the master host
establishes a connection to the secondary master
host to replicate the master's log to the standby
master.

Greenplum Database file
load and transfer utilities:
gpfdist, gpload.

TCP 8080, HTTP

TCP 9000, HTTPS

The gpfdist file serving utility can run on Greenplum
hosts or external hosts. Specify the connection port
with the -p option when starting the server.

The gpload utility runs one or more instances of
gpfdist with ports or port ranges specified in a
configuration file.

Gpperfmon agents TCP 8888 Connection port for gpperfmon agents (gpmmon
and gpsmon) executing on Greenplum Database
hosts. Configure by setting the gpperfmon_port
configuration variable in postgresql.conf on
master and segment hosts.

Backup completion
notification

TCP 25, TCP 587,
SMTP

The gpbackup backup utility can optionally send
email to a list of email addresses at completion of a
backup. The SMTP service must be enabled on the
Greenplum master host.

Greenplum Database
secure shell (SSH):
gpssh, gpscp, gpssh-
exkeys, gppkg

TCP 22, SSH Many Greenplum utilities use scp and ssh to
transfer files between hosts and manage the
Greenplum system within the cluster.

Greenplum Platform
Extension Framework
(PXF)

TCP 5888 The PXF Java service runs on port number 5888 on
each Greenplum Database segment host.

TCP 28080, HTTP/
HTTPS, WebSocket
(WS), Secure
WebSocket (WSS)

The GPCC web server (gpccws process) executes
on the Greenplum Database master host or
standby master host. The port number is configured
at installation time.

TCP 8899, rcp port A GPCC agent (ccagent process) on each
Greenplum Database segment host connects to
the GPCC rpc backend at port number 8899 on the
GPCC web server host.

Greenplum Command
Center (GPCC)

UNIX domain socket,
agent

Greenplum Database processes transmit
datagrams to the GPCC agent (ccagent process)
on each segment host using a UNIX domain
socket.

Greenplum Database Security Configuration Guide Release Notes

562

Service Protocol/Port Description

TCP 2188 (base port) ZooKeeper client ports. ZooKeeper uses a range
of ports beginning at the base port number. The
base port number and maximum port number are
set in the GPText installation configuration file at
installation time. The default base port number is
2188.

GPText

TCP 18983 (base port) GPText (Apache Solr) nodes. GPText nodes use a
range of ports beginning at the base port number.
The base port number and maximum port number
are set in the GPText installation configuration file
at installation time. The default base port number is
18983.

TCP/UDP 111, NFS
portmapper

Used to assign a random port for the mountd
service used by NFS and DD Boost. The mountd
service port can be statically assigned on the Data
Domain server.

TCP 2052 Main port used by NFS mountd. This port can be
set on the Data Domain system using the nfs set
mountd-port command .

TCP 2049, NFS Main port used by NFS. This port can be configured
using the nfs set server-port command on
the Data Domain server.

EMC Data Domain and
DD Boost

TCP 2051, replication Used when replication is configured on the Data
Domain system. This port can be configured using
the replication modify command on the Data
Domain server.

Pgbouncer connection
pooler

TCP, libpq The pgbouncer connection pooler runs between
libpq clients and Greenplum (or PostgreSQL)
databases. It can be run on the Greenplum
master host, but running it on a host outside of
the Greenplum cluster is recommended. When
it runs on a separate host, pgbouncer can act as
a warm standby mechanism for the Greenplum
master host, switching to the Greenplum standby
host without requiring clients to reconfigure. Set the
client connection port and the Greenplum master
host address and port in the pgbouncer.ini
configuration file.

Greenplum Database Security Configuration Guide Release Notes

563

Configuring Client Authentication
Describes the available methods for authenticating Greenplum Database clients.

When a Greenplum Database system is first initialized, the system contains one predefined superuser
role. This role will have the same name as the operating system user who initialized the Greenplum
Database system. This role is referred to as gpadmin. By default, the system is configured to only allow
local connections to the database from the gpadmin role. If you want to allow any other roles to connect,
or if you want to allow connections from remote hosts, you have to configure Greenplum Database to
allow such connections. This section explains how to configure client connections and authentication to
Greenplum Database.

• Allowing Connections to Greenplum Database
• Editing the pg_hba.conf File
• Authentication Methods
• Limiting Concurrent Connections
• Encrypting Client/Server Connections

Allowing Connections to Greenplum Database
Client access and authentication is controlled by a configuration file named pg_hba.conf (the standard
PostgreSQL host-based authentication file). For detailed information about this file, see The pg_hba.conf
File in the PostgreSQL documentation.

In Greenplum Database, the pg_hba.conf file of the master instance controls client access and
authentication to your Greenplum system. The segments also have pg_hba.conf files, but these are
already correctly configured to only allow client connections from the master host. The segments never
accept outside client connections, so there is no need to alter the pg_hba.conf file on segments.

The general format of the pg_hba.conf file is a set of records, one per line. Blank lines are ignored, as
is any text after a # comment character. A record is made up of a number of fields which are separated
by spaces and/or tabs. Fields can contain white space if the field value is quoted. Records cannot be
continued across lines.

A record can have one of seven formats:

local database user auth-method [auth-options]
host database user address auth-method [auth-options]
hostssl database user address auth-method [auth-options]
hostnossl database user address auth-method [auth-options]
host database user IP-address IP-mask auth-method [auth-options]
hostssl database user IP-address IP-mask auth-method [auth-options]
hostnossl database user IP-address IP-mask auth-method [auth-options]

The meaning of the pg_hba.conf fields is as follows:
local

Matches connection attempts using UNIX-domain sockets. Without a record of this type,
UNIX-domain socket connections are disallowed.

host

Matches connection attempts made using TCP/IP. Remote TCP/IP connections
will not be possible unless the server is started with an appropriate value for the
listen_addresses server configuration parameter. Greenplum Database by default
allows connections from all hosts ('*').

hostssl

https://www.postgresql.org/docs/9.4/auth-pg-hba-conf.html
https://www.postgresql.org/docs/9.4/auth-pg-hba-conf.html

Greenplum Database Security Configuration Guide Release Notes

564

Matches connection attempts made using TCP/IP, but only when the connection is
made with SSL encryption. SSL must be enabled at server start time by setting the
ssl configuration parameter to on. Requires SSL authentication be configured in
postgresql.conf. See Configuring postgresql.conf for SSL Authentication.

hostnossl

Matches connection attempts made over TCP/IP that do not use SSL.

database

Specifies which database names this record matches. The value all specifies that it
matches all databases. Multiple database names can be supplied by separating them with
commas. A separate file containing database names can be specified by preceding the file
name with @.

user

Specifies which database role names this record matches. The value all specifies that it
matches all roles. If the specified role is a group and you want all members of that group
to be included, precede the role name with a +. Multiple role names can be supplied by
separating them with commas. A separate file containing role names can be specified by
preceding the file name with @.

address

Specifies the client machine addresses that this record matches. This field can contain
either a host name, an IP address range, or one of the special key words mentioned
below.

An IP address range is specified using standard numeric notation for the range's starting
address, then a slash (/) and a CIDR mask length. The mask length indicates the number
of high-order bits of the client IP address that must match. Bits to the right of this should be
zero in the given IP address. There must not be any white space between the IP address,
the /, and the CIDR mask length.

Typical examples of an IPv4 address range specified this way are 172.20.143.89/32
for a single host, or 172.20.143.0/24 for a small network, or 10.6.0.0/16 for a larger
one. An IPv6 address range might look like ::1/128 for a single host (in this case the
IPv6 loopback address) or fe80::7a31:c1ff:0000:0000/96 for a small network.
0.0.0.0/0 represents all IPv4 addresses, and ::0/0 represents all IPv6 addresses.
To specify a single host, use a mask length of 32 for IPv4 or 128 for IPv6. In a network
address, do not omit trailing zeroes.

An entry given in IPv4 format will match only IPv4 connections, and an entry given in IPv6
format will match only IPv6 connections, even if the represented address is in the IPv4-in-
IPv6 range.

Note: Entries in IPv6 format will be rejected if the host system C library does
not have support for IPv6 addresses.

You can also write all to match any IP address, samehost to match any of the server's
own IP addresses, or samenet to match any address in any subnet to which the server is
directly connected.

If a host name is specified (an address that is not an IP address, IP range, or special key
word is treated as a host name), that name is compared with the result of a reverse name
resolution of the client IP address (for example, reverse DNS lookup, if DNS is used).
Host name comparisons are case insensitive. If there is a match, then a forward name
resolution (for example, forward DNS lookup) is performed on the host name to check
whether any of the addresses it resolves to are equal to the client IP address. If both
directions match, then the entry is considered to match.

The host name that is used in pg_hba.conf should be the one that address-to-name
resolution of the client's IP address returns, otherwise the line won't be matched. Some

Greenplum Database Security Configuration Guide Release Notes

565

host name databases allow associating an IP address with multiple host names, but the
operating system will only return one host name when asked to resolve an IP address.

A host name specification that starts with a dot (.) matches a suffix of the actual host
name. So .example.com would match foo.example.com (but not just example.com).

When host names are specified in pg_hba.conf, you should ensure that name resolution
is reasonably fast. It can be advantageous to set up a local name resolution cache such as
nscd. Also, you can enable the server configuration parameter log_hostname to see the
client host name instead of the IP address in the log.

IP-address
IP-mask

These two fields can be used as an alternative to the CIDR address notation. Instead
of specifying the mask length, the actual mask is specified in a separate column. For
example, 255.0.0.0 represents an IPv4 CIDR mask length of 8, and 255.255.255.255
represents a CIDR mask length of 32.

auth-method

Specifies the authentication method to use when a connection matches this record. See
Authentication Methods for options.

auth-options

After the auth-method field, there can be field(s) of the form name=value that specify
options for the authentication method. Details about which options are available for which
authentication methods are described in Authentication Methods.

Files included by @ constructs are read as lists of names, which can be separated by either whitespace or
commas. Comments are introduced by #, just as in pg_hba.conf, and nested @ constructs are allowed.
Unless the file name following @ is an absolute path, it is taken to be relative to the directory containing
the referencing file.

The pg_hba.conf records are examined sequentially for each connection attempt, so the order of the
records is significant. Typically, earlier records will have tight connection match parameters and weaker
authentication methods, while later records will have looser match parameters and stronger authentication
methods. For example, you might wish to use trust authentication for local TCP/IP connections but
require a password for remote TCP/IP connections. In this case a record specifying trust authentication
for connections from 127.0.0.1 would appear before a record specifying password authentication for a
wider range of allowed client IP addresses.

The pg_hba.conf file is read on start-up and when the main server process receives a SIGHUP signal. If
you edit the file on an active system, you must reload the file using this command:

$ gpstop -u

Caution: For a more secure system, remove records for remote connections that use trust
authentication from the pg_hba.conf file. trust authentication grants any user who can connect
to the server access to the database using any role they specify. You can safely replace trust
authentication with ident authentication for local UNIX-socket connections. You can also use
ident authentication for local and remote TCP clients, but the client host must be running an ident
service and you must trust the integrity of that machine.

Editing the pg_hba.conf File
Initially, the pg_hba.conf file is set up with generous permissions for the gpadmin user and no database
access for other Greenplum Database roles. You will need to edit the pg_hba.conf file to enable users'
access to databases and to secure the gpadmin user. Consider removing entries that have trust
authentication, since they allow anyone with access to the server to connect with any role they choose. For
local (UNIX socket) connections, use ident authentication, which requires the operating system user to
match the role specified. For local and remote TCP connections, ident authentication requires the client's

Greenplum Database Security Configuration Guide Release Notes

566

host to run an indent service. You could install an ident service on the master host and then use ident
authentication for local TCP connections, for example 127.0.0.1/28. Using ident authentication for
remote TCP connections is less secure because it requires you to trust the integrity of the ident service on
the client's host.

Note: Greenplum Command Center provides an interface for editing the pg_hba.conf file. It
verifies entries before you save them, keeps a version history of the file so that you can reload a
previous version of the file, and reloads the file into Greenplum Database.

This example shows how to edit the pg_hba.conf file on the master host to allow remote client access to
all databases from all roles using encrypted password authentication.

To edit pg_hba.conf:

1. Open the file $MASTER_DATA_DIRECTORY/pg_hba.conf in a text editor.
2. Add a line to the file for each type of connection you want to allow. Records are read sequentially,

so the order of the records is significant. Typically, earlier records will have tight connection match
parameters and weaker authentication methods, while later records will have looser match parameters
and stronger authentication methods. For example:

allow the gpadmin user local access to all databases
using ident authentication
local all gpadmin ident sameuser
host all gpadmin 127.0.0.1/32 ident
host all gpadmin ::1/128 ident
allow the 'dba' role access to any database from any
host with IP address 192.168.x.x and use md5 encrypted
passwords to authenticate the user
Note that to use SHA-256 encryption, replace md5 with
password in the line below
host all dba 192.168.0.0/32 md5

Authentication Methods
• Basic Authentication
• GSSAPI Authentication
• LDAP Authentication
• SSL Client Authentication
• PAM-Based Authentication
• Radius Authentication

Basic Authentication
Reject

Reject the connections with the matching parameters. You should typically use this to
restrict access from specific hosts or insecure connections.

Ident

Authenticates based on the client's operating system user name. This is secure for local
socket connections. Using ident for TCP connections from remote hosts requires that the
client's host is running an ident service. The ident authentication method should only be
used with remote hosts on a trusted, closed network.

md5

Require the client to supply a double-MD5-hashed password for authentication.

password

Greenplum Database Security Configuration Guide Release Notes

567

Require the client to supply an unencrypted password for authentication. Since the
password is sent in clear text over the network, this should not be used on untrusted
networks.

The password-based authentication methods are md5 and password. These methods operate similarly
except for the way that the password is sent across the connection: MD5-hashed and clear-text
respectively.

If you are at all concerned about password "sniffing" attacks then md5 is preferred. Plain password should
always be avoided if possible. If the connection is protected by SSL encryption then password can be
used safely (although SSL certificate authentication might be a better choice if you are depending on using
SSL).

Following are some sample pg_hba.conf basic authentication entries:

hostnossl all all 0.0.0.0 reject
hostssl all testuser 0.0.0.0/0 md5
local all gpuser ident

GSSAPI Authentication
GSSAPI is an industry-standard protocol for secure authentication defined in RFC 2743. Greenplum
Database supports GSSAPI with Kerberos authentication according to RFC 1964. GSSAPI provides
automatic authentication (single sign-on) for systems that support it. The authentication itself is secure, but
the data sent over the database connection will be sent unencrypted unless SSL is used.

The gss authentication method is only available for TCP/IP connections.

When GSSAPI uses Kerberos, it uses a standard principal in the format servicename/
hostname@realm. The Greenplum Database server will accept any principal that is included in the keytab
file used by the server, but care needs to be taken to specify the correct principal details when making
the connection from the client using the krbsrvname connection parameter. (See Connection Parameter
Key Words in the PostgreSQL documentation.) In most environments, this parameter never needs to be
changed. Some Kerberos implementations might require a different service name, such as Microsoft Active
Directory, which requires the service name to be in upper case (POSTGRES).

hostname is the fully qualified host name of the server machine. The service principal's realm is the
preferred realm of the server machine.

Client principals must have their Greenplum Database user name as their first component, for example
gpusername@realm. Alternatively, you can use a user name mapping to map from the first component
of the principal name to the database user name. By default, Greenplum Database does not check the
realm of the client. If you have cross-realm authentication enabled and need to verify the realm, use the
krb_realm parameter, or enable include_realm and use user name mapping to check the realm.

Make sure that your server keytab file is readable (and preferably only readable) by the gpadmin server
account. The location of the key file is specified by the krb_server_keyfile configuration parameter. For
security reasons, it is recommended to use a separate keytab just for the Greenplum Database server
rather than opening up permissions on the system keytab file.

The keytab file is generated by the Kerberos software; see the Kerberos documentation for details. The
following example is for MIT-compatible Kerberos 5 implementations:

kadmin% ank -randkey postgres/server.my.domain.org
kadmin% ktadd -k krb5.keytab postgres/server.my.domain.org

When connecting to the database make sure you have a ticket for a principal matching the requested
database user name. For example, for database user name fred, principal fred@EXAMPLE.COM would
be able to connect. To also allow principal fred/users.example.com@EXAMPLE.COM, use a user name
map, as described in User Name Maps in the PostgreSQL documentation.

https://www.postgresql.org/docs/9.4/libpq-connect.html#LIBPQ-PARAMKEYWORDS
https://www.postgresql.org/docs/9.4/libpq-connect.html#LIBPQ-PARAMKEYWORDS
https://www.postgresql.org/docs/9.4/auth-username-maps.html

Greenplum Database Security Configuration Guide Release Notes

568

The following configuration options are supported for GSSAPI:

include_realm

If set to 1, the realm name from the authenticated user principal is included in the
system user name that is passed through user name mapping. This is the recommended
configuration as, otherwise, it is impossible to differentiate users with the same username
who are from different realms. The default for this parameter is 0 (meaning to not include
the realm in the system user name) but may change to 1 in a future version of Greenplum
Database. You can set it explicitly to avoid any issues when upgrading.

map

Allows for mapping between system and database user names. For a GSSAPI/
Kerberos principal, such as username@EXAMPLE.COM (or, less commonly, username/
hostbased@EXAMPLE.COM), the default user name used for mapping is username (or
username/hostbased, respectively), unless include_realm has been set to 1 (as
recommended, see above), in which case username@EXAMPLE.COM (or username/
hostbased@EXAMPLE.COM) is what is seen as the system username when mapping.

krb_realm

Sets the realm to match user principal names against. If this parameter is set, only users
of that realm will be accepted. If it is not set, users of any realm can connect, subject to
whatever user name mapping is done.

LDAP Authentication
You can authenticate against an LDAP directory.

• LDAPS and LDAP over TLS options encrypt the connection to the LDAP server.
• The connection from the client to the server is not encrypted unless SSL is enabled. Configure client

connections to use SSL to encrypt connections from the client.
• To configure or customize LDAP settings, set the LDAPCONF environment variable with the path to the

ldap.conf file and add this to the greenplum_path.sh script.

Following are the recommended steps for configuring your system for LDAP authentication:

1. Set up the LDAP server with the database users/roles to be authenticated via LDAP.
2. On the database:

a. Verify that the database users to be authenticated via LDAP exist on the database. LDAP is only
used for verifying username/password pairs, so the roles should exist in the database.

b. Update the pg_hba.conf file in the $MASTER_DATA_DIRECTORY to use LDAP as the
authentication method for the respective users. Note that the first entry to match the user/role in the
pg_hba.conf file will be used as the authentication mechanism, so the position of the entry in the
file is important.

c. Reload the server for the pg_hba.conf configuration settings to take effect (gpstop -u).

Specify the following parameter auth-options.
ldapserver

Names or IP addresses of LDAP servers to connect to. Multiple servers may be specified,
separated by spaces.

ldapprefix

String to prepend to the user name when forming the DN to bind as, when doing simple
bind authentication.

ldapsuffix

String to append to the user name when forming the DN to bind as, when doing simple
bind authentication.

ldapport

Greenplum Database Security Configuration Guide Release Notes

569

Port number on LDAP server to connect to. If no port is specified, the LDAP library's
default port setting will be used.

ldaptls

Set to 1 to make the connection between PostgreSQL and the LDAP server use TLS
encryption. Note that this only encrypts the traffic to the LDAP server — the connection to
the client will still be unencrypted unless SSL is used.

ldapbasedn

Root DN to begin the search for the user in, when doing search+bind authentication.

ldapbinddn

DN of user to bind to the directory with to perform the search when doing search+bind
authentication.

ldapbindpasswd

Password for user to bind to the directory with to perform the search when doing search
+bind authentication.

ldapsearchattribute

Attribute to match against the user name in the search when doing search+bind
authentication.

Example:

ldapserver=ldap.greenplum.com prefix="cn=" suffix=", dc=greenplum, dc=com"

Following are sample pg_hba.conf file entries for LDAP authentication:

host all testuser 0.0.0.0/0 ldap ldap
ldapserver=ldapserver.greenplum.com ldapport=389 ldapprefix="cn="
 ldapsuffix=",ou=people,dc=greenplum,dc=com"
hostssl all ldaprole 0.0.0.0/0 ldap
ldapserver=ldapserver.greenplum.com ldaptls=1 ldapprefix="cn="
 ldapsuffix=",ou=people,dc=greenplum,dc=com"

SSL Client Authentication
SSL authentication compares the Common Name (cn) attribute of an SSL certificate provided by the
connecting client during the SSL handshake to the requested database user name. The database user
should exist in the database. A map file can be used for mapping between system and database user
names.

SSL Authentication Parameters
Authentication method:

• Cert

Authentication options:
Hostssl

Connection type must be hostssl.

map=mapping

mapping.

This is specified in the pg_ident.conf, or in the file specified in the ident_file server
setting.

Greenplum Database Security Configuration Guide Release Notes

570

Following are sample pg_hba.conf entries for SSL client authentication:

Hostssl testdb certuser 192.168.0.0/16 cert
Hostssl testdb all 192.168.0.0/16 cert map=gpuser

OpenSSL Configuration
Greenplum Database reads the OpenSSL configuration file specified in $GP_HOME/etc/openssl.cnf
by default. You can make changes to the default configuration for OpenSSL by modifying or updating this
file and restarting the server.

Creating a Self-Signed Certificate
A self-signed certificate can be used for testing, but a certificate signed by a certificate authority (CA)
(either one of the global CAs or a local one) should be used in production so that clients can verify the
server's identity. If all the clients are local to the organization, using a local CA is recommended.

To create a self-signed certificate for the server:

1. Enter the following openssl command:

openssl req -new -text -out server.req

2. Enter the requested information at the prompts.

Make sure you enter the local host name for the Common Name. The challenge password can be left
blank.

3. The program generates a key that is passphrase-protected; it does not accept a passphrase that is less
than four characters long. To remove the passphrase (and you must if you want automatic start-up of
the server), run the following command:

openssl rsa -in privkey.pem -out server.key rm privkey.pem

4. Enter the old passphrase to unlock the existing key. Then run the following command:

openssl req -x509 -in server.req -text -key server.key -out server.crt

This turns the certificate into a self-signed certificate and copies the key and certificate to where the
server will look for them.

5. Finally, run the following command:

chmod og-rwx server.key

For more details on how to create your server private key and certificate, refer to the OpenSSL
documentation.

Configuring postgresql.conf for SSL Authentication
The following Server settings need to be specified in the postgresql.conf configuration file:

• ssl boolean. Enables SSL connections.
• ssl_renegotiation_limit integer. Specifies the data limit before key renegotiation.
• ssl_ciphers string. Configures the list SSL ciphers that are allowed. ssl_ciphers overrides

any ciphers string specified in /etc/openssl.cnf. The default value ALL:!ADH:!LOW:!EXP:!
MD5:@STRENGTH enables all ciphers except for ADH, LOW, EXP, and MD5 ciphers, and prioritizes
ciphers by their strength.

Greenplum Database Security Configuration Guide Release Notes

571

Note: With TLS 1.2 some ciphers in MEDIUM and HIGH strength still use NULL encryption
(no encryption for transport), which the default ssl_ciphers string allows. To bypass NULL
ciphers with TLS 1.2 use a string such as TLSv1.2:!eNULL:!aNULL.

It is possible to have authentication without encryption overhead by using NULL-SHA or NULL-
MD5 ciphers. However, a man-in-the-middle could read and pass communications between client
and server. Also, encryption overhead is minimal compared to the overhead of authentication.
For these reasons, NULL ciphers should not be used.

The default location for the following SSL server files is the Greenplum Database master data directory
($MASTER_DATA_DIRECTORY):

• server.crt - Server certificate.
• server.key - Server private key.
• root.crt - Trusted certificate authorities.
• root.crl - Certificates revoked by certificate authorities.

If Greenplum Database master mirroring is enabled with SSL client authentication, the SSL server files
should not be placed in the default directory $MASTER_DATA_DIRECTORY. If an initstandby operation
is performed, the contents of $MASTER_DATA_DIRECTORY is copied from the master to the standby
master and the incorrect SSL key, and cert files (the master files, and not the standby master files) will
prevent standby master start up.

You can specify a different directory for the location of the SSL server files with the postgresql.conf
parameters sslcert, sslkey, sslrootcert, and sslcrl.

Configuring the SSL Client Connection
SSL options:
sslmode

Specifies the level of protection.
require

Only use an SSL connection. If a root CA file is present, verify the certificate in the same
way as if verify-ca was specified.

verify-ca

Only use an SSL connection. Verify that the server certificate is issued by a trusted CA.

verify-full

Only use an SSL connection. Verify that the server certificate is issued by a trusted CA and
that the server host name matches that in the certificate.

sslcert

The file name of the client SSL certificate. The default is $MASTER_DATA_DIRECTORY/
postgresql.crt.

sslkey

The secret key used for the client certificate. The default is $MASTER_DATA_DIRECTORY/
postgresql.key.

sslrootcert

The name of a file containing SSL Certificate Authority certificate(s). The default is
$MASTER_DATA_DIRECTORY/root.crt.

sslcrl

The name of the SSL certificate revocation list. The default is
$MASTER_DATA_DIRECTORY/root.crl.

The client connection parameters can be set using the following environment variables:

Greenplum Database Security Configuration Guide Release Notes

572

• sslmode – PGSSLMODE
• sslcert – PGSSLCERT
• sslkey – PGSSLKEY
• sslrootcert – PGSSLROOTCERT
• sslcrl – PGSSLCRL

PAM-Based Authentication
The "PAM" (Pluggable Authentication Modules) authentication method validates username/password pairs,
similar to basic authentication. To use PAM authentication, the user must already exist as a Greenplum
Database role name.

Greenplum uses the pamservice authentication parameter to identify the service from which to obtain the
PAM configuration.

Note: If PAM is set up to read /etc/shadow, authentication will fail because the PostgreSQL
server is started by a non-root user. This is not an issue when PAM is configured to use LDAP or
another authentication method.

Greenplum Database does not install a PAM configuration file. If you choose to use PAM authentication
with Greenplum, you must identify the PAM service name for Greenplum and create the associated PAM
service configuration file and configure Greenplum Database to use PAM authentication as described
below:

1. Log in to the Greenplum Database master host and set up your environment. For example:

$ ssh gpadmin@<gpmaster>
gpadmin@gpmaster$. /usr/local/greenplum-db/greenplum_path.sh

2. Identify the pamservice name for Greenplum Database. In this procedure, we choose the name
greenplum.

3. Create the PAM service configuration file, /etc/pam.d/greenplum, and add the text below. You
must have operating system superuser privileges to create the /etc/pam.d directory (if necessary)
and the greenplum PAM configuration file.

#%PAM-1.0
auth include password-auth
account include password-auth

This configuration instructs PAM to authenticate the local operating system user.
4. Ensure that the /etc/pam.d/greenplum file is readable by all users:

sudo chmod 644 /etc/pam.d/greenplum

5. Add one or more entries to the pg_hba.conf configuration file to enable PAM authentication in
Greenplum Database. These entries must specify the pam auth-method. You must also specify the
pamservice=greenplum auth-option. For example:

host <user-name> <db-name> <address> pam
 pamservice=greenplum

6. Reload the Greenplum Database configuration:

$ gpstop -u

Greenplum Database Security Configuration Guide Release Notes

573

Radius Authentication
RADIUS (Remote Authentication Dial In User Service) authentication works by sending an Access Request
message of type 'Authenticate Only' to a configured RADIUS server. It includes parameters for user name,
password (encrypted), and the Network Access Server (NAS) Identifier. The request is encrypted using the
shared secret specified in the radiussecret option. The RADIUS server responds with either Access
Accept or Access Reject.

Note: RADIUS accounting is not supported.

RADIUS authentication only works if the users already exist in the database.

The RADIUS encryption vector requires SSL to be enabled in order to be cryptographically strong.

RADIUS Authentication Options
radiusserver

The name of the RADIUS server.

radiussecret

The RADIUS shared secret.

radiusport

The port to connect to on the RADIUS server.

radiusidentifier

NAS identifier in RADIUS requests.

Following are sample pg_hba.conf entries for RADIUS client authentication:

hostssl all all 0.0.0.0/0 radius radiusserver=servername
 radiussecret=sharedsecret

Limiting Concurrent Connections
To limit the number of active concurrent sessions to your Greenplum Database system, you can configure
the max_connections server configuration parameter. This is a local parameter, meaning that you
must set it in the postgresql.conf file of the master, the standby master, and each segment instance
(primary and mirror). The value of max_connections on segments must be 5-10 times the value on the
master.

When you set max_connections, you must also set the dependent parameter
max_prepared_transactions. This value must be at least as large as the value of max_connections
on the master, and segment instances should be set to the same value as the master.

In $MASTER_DATA_DIRECTORY/postgresql.conf (including standby master):

max_connections=100
max_prepared_transactions=100

In SEGMENT_DATA_DIRECTORY/postgresql.conf for all segment instances:

max_connections=500
max_prepared_transactions=100

Note: Note: Raising the values of these parameters may cause Greenplum Database to
request more shared memory. To mitigate this effect, consider decreasing other memory-related
parameters such as gp_cached_segworkers_threshold.

To change the number of allowed connections:

Greenplum Database Security Configuration Guide Release Notes

574

1. Stop your Greenplum Database system:

$ gpstop

2. On the master host, edit $MASTER_DATA_DIRECTORY/postgresql.conf and change the following
two parameters:

• max_connections – the number of active user sessions you want to allow plus the number of
superuser_reserved_connections.

• max_prepared_transactions – must be greater than or equal to max_connections.
3. On each segment instance, edit SEGMENT_DATA_DIRECTORY/postgresql.conf and change the

following two parameters:

• max_connections – must be 5-10 times the value on the master.
• max_prepared_transactions – must be equal to the value on the master.

4. Restart your Greenplum Database system:

$ gpstart

Encrypting Client/Server Connections
Greenplum Database has native support for SSL connections between the client and the master server.
SSL connections prevent third parties from snooping on the packets, and also prevent man-in-the-middle
attacks. SSL should be used whenever the client connection goes through an insecure link, and must be
used whenever client certificate authentication is used.

Note: For information about encrypting data between the gpfdist server and Greenplum
Database segment hosts, see Encrypting gpfdist Connections.

To enable SSL requires that OpenSSL be installed on both the client and the master server systems.
Greenplum can be started with SSL enabled by setting the server configuration parameter ssl=on in the
master postgresql.conf. When starting in SSL mode, the server will look for the files server.key
(server private key) and server.crt (server certificate) in the master data directory. These files must be
set up correctly before an SSL-enabled Greenplum system can start.

Important: Do not protect the private key with a passphrase. The server does not prompt for a
passphrase for the private key, and the database startup fails with an error if one is required.

A self-signed certificate can be used for testing, but a certificate signed by a certificate authority (CA)
should be used in production, so the client can verify the identity of the server. Either a global or local CA
can be used. If all the clients are local to the organization, a local CA is recommended. See Creating a
Self-Signed Certificate for steps to create a self-signed certificate.

Greenplum Database Security Configuration Guide Release Notes

575

Configuring Database Authorization
Describes how to restrict authorization access to database data at the user level by using roles and
permissions.

Access Permissions and Roles
Greenplum Database manages database access permissions using roles. The concept of roles subsumes
the concepts of users and groups. A role can be a database user, a group, or both. Roles can own
database objects (for example, tables) and can assign privileges on those objects to other roles to control
access to the objects. Roles can be members of other roles, thus a member role can inherit the object
privileges of its parent role.

Every Greenplum Database system contains a set of database roles (users and groups). Those roles are
separate from the users and groups managed by the operating system on which the server runs. However,
for convenience you may want to maintain a relationship between operating system user names and
Greenplum Database role names, since many of the client applications use the current operating system
user name as the default.

In Greenplum Database, users log in and connect through the master instance, which verifies their role
and access privileges. The master then issues out commands to the segment instances behind the scenes
using the currently logged in role.

Roles are defined at the system level, so they are valid for all databases in the system.

To bootstrap the Greenplum Database system, a freshly initialized system always contains one predefined
superuser role (also referred to as the system user). This role will have the same name as the operating
system user that initialized the Greenplum Database system. Customarily, this role is named gpadmin. To
create more roles you first must connect as this initial role.

Managing Object Privileges
When an object (table, view, sequence, database, function, language, schema, or tablespace) is created, it
is assigned an owner. The owner is normally the role that executed the creation statement. For most kinds
of objects, the initial state is that only the owner (or a superuser) can do anything with the object. To allow
other roles to use it, privileges must be granted. Greenplum Database supports the following privileges for
each object type:

Object Type Privileges

Tables, Views, Sequences SELECT

INSERT

UPDATE

DELETE

RULE

ALL

External Tables SELECT

RULE

ALL

Greenplum Database Security Configuration Guide Release Notes

576

Object Type Privileges

Databases CONNECT

CREATE

TEMPORARY | TEMP

ALL

Functions EXECUTE

Procedural Languages USAGE

Schemas CREATE

USAGE

ALL

Privileges must be granted for each object individually. For example, granting ALL on a database does
not grant full access to the objects within that database. It only grants all of the database-level privileges
(CONNECT, CREATE, TEMPORARY) to the database itself.

Use the GRANT SQL command to give a specified role privileges on an object. For example:

=# GRANT INSERT ON mytable TO jsmith;

To revoke privileges, use the REVOKE command. For example:

=# REVOKE ALL PRIVILEGES ON mytable FROM jsmith;

You can also use the DROP OWNED and REASSIGN OWNED commands for managing objects owned by
deprecated roles. (Note: only an object's owner or a superuser can drop an object or reassign ownership.)
For example:

 =# REASSIGN OWNED BY sally TO bob;
 =# DROP OWNED BY visitor;

Using SSH-256 Encryption
Greenplum Database access control corresponds roughly to the Orange Book 'C2' level of security, not
the 'B1' level. Greenplum Database currently supports access privileges at the object level. Greenplum
Database does not support row-level access or row-level, labeled security.

You can simulate row-level access by using views to restrict the rows that are selected. You can simulate
row-level labels by adding an extra column to the table to store sensitivity information, and then using
views to control row-level access based on this column. You can then grant roles access to the views
rather than the base table. While these workarounds do not provide the same as "B1" level security, they
may still be a viable alternative for many organizations.

To use SHA-256 encryption, you must set a parameter either at the system or the session level. This
section outlines how to use a server parameter to implement SHA-256 encrypted password storage.
Note that in order to use SHA-256 encryption for storage, the client authentication method must be set to
password rather than the default, MD5. (See Configuring the SSL Client Connection for more details.) This
means that the password is transmitted in clear text over the network, so we highly recommend that you
set up SSL to encrypt the client server communication channel.

You can set your chosen encryption method system-wide or on a per-session basis. The available
encryption methods are SHA-256 and MD5 (for backward compatibility).

Greenplum Database Security Configuration Guide Release Notes

577

Setting Encryption Method System-wide
To set the password_hash_algorithm server parameter on a complete Greenplum system (master and
its segments):

1. Log in to your Greenplum Database instance as a superuser.
2. Execute gpconfig with the password_hash_algorithm set to SHA-256:

$ gpconfig -c password_hash_algorithm -v 'SHA-256'

3. Verify the setting:

$ gpconfig -s

You will see:

Master value: SHA-256
Segment value: SHA-256

Setting Encryption Method for an Individual Session
To set the password_hash_algorithm server parameter for an individual session:

1. Log in to your Greenplum Database instance as a superuser.
2. Set the password_hash_algorithm to SHA-256:

set password_hash_algorithm = 'SHA-256'

3. Verify the setting:

show password_hash_algorithm;

You will see:

SHA-256

Following is an example of how the new setting works:

1. Log in as a super user and verify the password hash algorithm setting:

show password_hash_algorithm
 password_hash_algorithm

 SHA-256

2. Create a new role with password that has login privileges.

create role testdb with password 'testdb12345#' LOGIN;

3. Change the client authentication method to allow for storage of SHA-256 encrypted passwords:

Open the pg_hba.conf file on the master and add the following line:

host all testdb 0.0.0.0/0 password

4. Restart the cluster.

Greenplum Database Security Configuration Guide Release Notes

578

5. Log in to the database as the user just created, testdb.

psql -U testdb

6. Enter the correct password at the prompt.
7. Verify that the password is stored as a SHA-256 hash.

Password hashes are stored in pg_authid.rolpasswod.
8. Log in as the super user.
9. Execute the following query:

 # SELECT rolpassword FROM pg_authid WHERE rolname = 'testdb';
 Rolpassword

 sha256<64 hexadecimal characters>

Restricting Access by Time
Greenplum Database enables the administrator to restrict access to certain times by role. Use the CREATE
ROLE or ALTER ROLE commands to specify time-based constraints.

Access can be restricted by day or by day and time. The constraints are removable without deleting and
recreating the role.

Time-based constraints only apply to the role to which they are assigned. If a role is a member of another
role that contains a time constraint, the time constraint is not inherited.

Time-based constraints are enforced only during login. The SET ROLE and SET SESSION
AUTHORIZATION commands are not affected by any time-based constraints.

Superuser or CREATEROLE privileges are required to set time-based constraints for a role. No one can add
time-based constraints to a superuser.

There are two ways to add time-based constraints. Use the keyword DENY in the CREATE ROLE or ALTER
ROLE command followed by one of the following.

• A day, and optionally a time, when access is restricted. For example, no access on Wednesdays.
• An interval—that is, a beginning and ending day and optional time—when access is restricted. For

example, no access from Wednesday 10 p.m. through Thursday at 8 a.m.

You can specify more than one restriction; for example, no access Wednesdays at any time and no access
on Fridays between 3:00 p.m. and 5:00 p.m.

There are two ways to specify a day. Use the word DAY followed by either the English term for the
weekday, in single quotation marks, or a number between 0 and 6, as shown in the table below.

English Term Number

DAY 'Sunday' DAY 0

DAY 'Monday' DAY 1

DAY 'Tuesday' DAY 2

DAY 'Wednesday' DAY 3

DAY 'Thursday' DAY 4

DAY 'Friday' DAY 5

DAY 'Saturday' DAY 6

Greenplum Database Security Configuration Guide Release Notes

579

A time of day is specified in either 12- or 24-hour format. The word TIME is followed by the specification in
single quotation marks. Only hours and minutes are specified and are separated by a colon (:). If using a
12-hour format, add AM or PM at the end. The following examples show various time specifications.

TIME '14:00' # 24-hour time implied
TIME '02:00 PM' # 12-hour time specified by PM
TIME '02:00' # 24-hour time implied. This is equivalent to TIME '02:00
 AM'.

Important: Time-based authentication is enforced with the server time. Timezones are
disregarded.

To specify an interval of time during which access is denied, use two day/time specifications with the words
BETWEEN and AND, as shown. DAY is always required.

BETWEEN DAY 'Monday' AND DAY 'Tuesday'

BETWEEN DAY 'Monday' TIME '00:00' AND
 DAY 'Monday' TIME '01:00'

BETWEEN DAY 'Monday' TIME '12:00 AM' AND
 DAY 'Tuesday' TIME '02:00 AM'

BETWEEN DAY 'Monday' TIME '00:00' AND
 DAY 'Tuesday' TIME '02:00'
 DAY 2 TIME '02:00'

The last three statements are equivalent.

Note: Intervals of days cannot wrap past Saturday.

The following syntax is not correct:

DENY BETWEEN DAY 'Saturday' AND DAY 'Sunday'

The correct specification uses two DENY clauses, as follows:

DENY DAY 'Saturday'
DENY DAY 'Sunday'

The following examples demonstrate creating a role with time-based constraints and modifying a role
to add time-based constraints. Only the statements needed for time-based constraints are shown. For
more details on creating and altering roles see the descriptions of CREATE ROLE and ALTER ROLE in the
Greenplum Database Reference Guide.

Example 1 – Create a New Role with Time-based Constraints
No access is allowed on weekends.

 CREATE ROLE generaluser
 DENY DAY 'Saturday'
 DENY DAY 'Sunday'
 ...

Example 2 – Alter a Role to Add Time-based Constraints
No access is allowed every night between 2:00 a.m. and 4:00 a.m.

ALTER ROLE generaluser
 DENY BETWEEN DAY 'Monday' TIME '02:00' AND DAY 'Monday' TIME '04:00'

Greenplum Database Security Configuration Guide Release Notes

580

 DENY BETWEEN DAY 'Tuesday' TIME '02:00' AND DAY 'Tuesday' TIME '04:00'
 DENY BETWEEN DAY 'Wednesday' TIME '02:00' AND DAY 'Wednesday' TIME '04:00'
 DENY BETWEEN DAY 'Thursday' TIME '02:00' AND DAY 'Thursday' TIME '04:00'
 DENY BETWEEN DAY 'Friday' TIME '02:00' AND DAY 'Friday' TIME '04:00'
 DENY BETWEEN DAY 'Saturday' TIME '02:00' AND DAY 'Saturday' TIME '04:00'
 DENY BETWEEN DAY 'Sunday' TIME '02:00' AND DAY 'Sunday' TIME '04:00'
 ...

Excample 3 – Alter a Role to Add Time-based Constraints
No access is allowed Wednesdays or Fridays between 3:00 p.m. and 5:00 p.m.

ALTER ROLE generaluser
 DENY DAY 'Wednesday'
 DENY BETWEEN DAY 'Friday' TIME '15:00' AND DAY 'Friday' TIME '17:00'

 Dropping a Time-based Restriction
To remove a time-based restriction, use the ALTER ROLE command. Enter the keywords DROP DENY
FOR followed by a day/time specification to drop.

DROP DENY FOR DAY 'Sunday'

Any constraint containing all or part of the conditions in a DROP clause is removed. For example, if an
existing constraint denies access on Mondays and Tuesdays, and the DROP clause removes constraints
for Mondays, the existing constraint is completely dropped. The DROP clause completely removes all
constraints that overlap with the constraint in the drop clause. The overlapping constraints are completely
removed even if they contain more restrictions that the restrictions mentioned in the DROP clause.

Example 1 - Remove a Time-based Restriction from a Role

 ALTER ROLE generaluser
 DROP DENY FOR DAY 'Monday'
 ...

This statement would remove all constraints that overlap with a Monday constraint for the role
generaluser in Example 2, even if there are additional constraints.

Greenplum Database Security Configuration Guide Release Notes

581

Greenplum Command Center Security
Greenplum Command Center is a web-based application for monitoring and managing Greenplum
clusters. Command Center works with data collected by agents running on the segment hosts and saved
to the gpperfmon database. Installing Command Center creates the gpperfmon database and the gpmon
database role if they do not already exist. It creates the gpmetrics schema in the gpperfmon database,
which contains metrics and query history tables populated by the Greenplum Database metrics collector
module.

Note: The gpperfmon_install utility also creates the gpperfmon database and gpmon role,
but Command Center no longer requires the history tables it creates in the database. Do not use
gpperfmon_install unless you need the old query history tables for some other purpose.
gpperfmon_install enables the gpmmon and gpsmon agents, which add unnecessary load to
the Greenplum Database system if you do not need the old history tables.

The gpmon User
The Command Center installer creates the gpmon database role and adds the role to the pg_hba.conf
file with the following entries:

local gpperfmon gpmon md5
host all gpmon 127.0.0.1/28 md5
host all gpmon ::1/128 md5

These entries allow gpmon to establish a local socket connection to the gpperfmon database and a TCP/IP
connection to any database.

The gpmon database role is a superuser. In a secure or production environment, it may be desirable to
restrict the gpmon user to just the gpperfmon database. Do this by editing the gpmon host entry in the
pg_hba.conf file and changing all in the database field to gpperfmon:

local gpperfmon gpmon md5
host gpperfmon gpmon 127.0.0.1/28 md5
host gpperfmon gpmon ::1/128 md5

The password used to authenticate the gpmon user is stored in the gpadmin home directory in the
~/.pgpass file. The ~/.pgpass file must be owned by the gpadmin user and be RW-accessible only
by the gpadmin user. The Command Center installer creates the gpmon role with the default password
"changeme". Be sure to change the password immediately after you install Command Center. Use the
ALTER ROLE command to change the password in the database, change the password in the ~/.pgpass
file, and then restart Command Center with the gpcc start command.

Because the .pgpass file contains the plain-text password of the gpmon user, you may want to remove
it and supply the gpmon password using a more secure method. The gpmon password is needed when
you run the gpcc start, gpcc stop, or gpcc status commands. You can add the -W option to the
gpcc command to have the command prompt you to enter the password. Alternatively, you can set the
PGPASSWORD environment variable to the gpmon password before you run the gpcc command.

Command Center does not allow logins from any role configured with trust authentication, including the
gpadmin user.

The gpmon user can log in to the Command Center Console and has access to all of the application's
features. You can allow other database roles access to Command Center so that you can secure the
gpmon user and restrict other users' access to Command Center features. Setting up other Command
Center users is described in the next section.

Greenplum Database Security Configuration Guide Release Notes

582

Greenplum Command Center Users
To log in to the Command Center web application, a user must be allowed access to the gpperfmon
database in pg_hba.conf. For example, to make user1 a regular Command Center user, edit the
pg_hba.conf file and either add or edit a line for the user so that the gpperfmon database is included in
the database field. For example:

host gpperfmon,accounts user1 127.0.0.1/28 md5

The Command Center web application includes an Admin interface to add, remove, and edit entries in the
pg_hba.conf file and reload the file into Greenplum Database.

Command Center has the following types of users:

• Self Only users can view metrics and view and cancel their own queries. Any Greenplum Database
user successfully authenticated through the Greenplum Database authentication system can access
Greenplum Command Center with Self Only permission. Higher permission levels are required to view
and cancel other’s queries and to access the System and Admin Control Center features.

• Basic users can view metrics, view all queries, and cancel their own queries. Users with Basic
permission are members of the Greenplum Database gpcc_basic group.

• Operator Basic users can view metrics, view their own and others’ queries, cancel their own queries,
and view the System and Admin screens. Users with Operator Basic permission are members of the
Greenplum Database gpcc_operator_basic group.

• Operator users can view their own and others’ queries, cancel their own and other’s queries, and
view the System and Admin screens. Users with Operator permission are members of the Greenplum
Database gpcc_operator group.

• Admin users can access all views and capabilities in the Command Center. Greenplum Database users
with the SUPERUSER privilege have Admin permissions in Command Center.

The Command Center web application has an Admin interface you can use to change a Command Center
user's access level.

Enabling SSL for Greenplum Command Center
The Command Center web server can be configured to support SSL so that client connections are
encrypted. To enable SSL, install a .pem file containing the web server's certificate and private key on
the web server host and then enter the full path to the .pem file when prompted by the Command Center
installer.

Enabling Kerberos Authentication for Greenplum Command Center
Users
If Kerberos authentication is enabled for Greenplum Database, Command Center users can also
authenticate with Kerberos. Command Center supports three Kerberos authentication modes: strict,
normal, and gpmon-only.

Strict

Command Center has a Kerberos keytab file containing the Command Center service
principal and a principal for every Command Center user. If the principal in the client’s
connection request is in the keytab file, the web server grants the client access and the
web server connects to Greenplum Database using the client’s principal name. If the
principal is not in the keytab file, the connection request fails.

Normal

The Command Center Kerberos keytab file contains the Command Center principal and
may contain principals for Command Center users. If the principal in the client’s connection
request is in Command Center’s keytab file, it uses the client’s principal for database
connections. Otherwise, Command Center uses the gpmon user for database connections.

Greenplum Database Security Configuration Guide Release Notes

583

gpmon-only

The Command Center uses the gpmon database role for all Greenplum Database
connections. No client principals are needed in the Command Center’s keytab file.

See the Greenplum Command Center documentation for instructions to enable Kerberos authentication
with Greenplum Command Center

http://gpcc.docs.pivotal.io

Greenplum Database Security Configuration Guide Release Notes

584

Auditing
Describes Greenplum Database events that are logged and should be monitored to detect security threats.

Greenplum Database is capable of auditing a variety of events, including startup and shutdown of the
system, segment database failures, SQL statements that result in an error, and all connection attempts
and disconnections. Greenplum Database also logs SQL statements and information regarding SQL
statements, and can be configured in a variety of ways to record audit information with more or less
detail. The log_error_verbosity configuration parameter controls the amount of detail written in the
server log for each message that is logged. Similarly, the log_min_error_statement parameter
allows administrators to configure the level of detail recorded specifically for SQL statements, and
the log_statement parameter determines the kind of SQL statements that are audited. Greenplum
Database records the username for all auditable events, when the event is initiated by a subject outside
the Greenplum Database.

Greenplum Database prevents unauthorized modification and deletion of audit records by only allowing
administrators with an appropriate role to perform any operations on log files. Logs are stored in a
proprietary format using comma-separated values (CSV). Each segment and the master stores its own log
files, although these can be accessed remotely by an administrator. Greenplum Database also authorizes
overwriting of old log files via the log_truncate_on_rotation parameter. This is a local parameter
and must be set on each segment and master configuration file.

Greenplum provides an administrative schema called gp_toolkit that you can use to query log files, as
well as system catalogs and operating environment for system status information. For more information,
including usage, refer to The gp_tookit Administrative Schema appendix in the Greenplum Database
Reference Guide.

Viewing the Database Server Log Files
Every database instance in Greenplum Database (master and segments) is a running PostgreSQL
database server with its own server log file. Daily log files are created in the pg_log directory of the
master and each segment data directory.

The server log files are written in comma-separated values (CSV) format. Not all log entries will have
values for all of the log fields. For example, only log entries associated with a query worker process will
have the slice_id populated. Related log entries of a particular query can be identified by its session
identifier (gp_session_id) and command identifier (gp_command_count).

Field Name Data Type Description

1 event_time timestamp with time
zone

Time that the log entry was written to the
log

2 user_name varchar(100) The database user name

3 database_name varchar(100) The database name

4 process_id varchar(10) The system process id (prefixed with "p")

5 thread_id varchar(50) The thread count (prefixed with "th")

6 remote_host varchar(100) On the master, the hostname/address of
the client machine. On the segment, the
hostname/address of the master.

Greenplum Database Security Configuration Guide Release Notes

585

Field Name Data Type Description

7 remote_port varchar(10) The segment or master port number

8 session_start_time timestamp with time
zone

Time session connection was opened

9 transaction_id int Top-level transaction ID on the
master. This ID is the parent of any
subtransactions.

10 gp_session_id text Session identifier number (prefixed with
"con")

11 gp_command_count text The command number within a session
(prefixed with "cmd")

12 gp_segment text The segment content identifier (prefixed
with "seg" for primaries or "mir" for
mirrors). The master always has a content
id of -1.

13 slice_id text The slice id (portion of the query plan
being executed)

14 distr_tranx_id text Distributed transaction ID

15 local_tranx_id text Local transaction ID

16 sub_tranx_id text Subtransaction ID

17 event_severity varchar(10) Values include: LOG, ERROR, FATAL,
PANIC, DEBUG1, DEBUG2

18 sql_state_code varchar(10) SQL state code associated with the log
message

19 event_message text Log or error message text

20 event_detail text Detail message text associated with an
error or warning message

21 event_hint text Hint message text associated with an
error or warning message

22 internal_query text The internally-generated query text

23 internal_query_pos int The cursor index into the internally-
generated query text

24 event_context text The context in which this message gets
generated

Greenplum Database Security Configuration Guide Release Notes

586

Field Name Data Type Description

25 debug_query_string text User-supplied query string with full detail
for debugging. This string can be modified
for internal use.

26 error_cursor_pos int The cursor index into the query string

27 func_name text The function in which this message is
generated

28 file_name text The internal code file where the message
originated

29 file_line int The line of the code file where the
message originated

30 stack_trace text Stack trace text associated with this
message

Greenplum provides a utility called gplogfilter that can be used to search through a Greenplum
Database log file for entries matching the specified criteria. By default, this utility searches through the
Greenplum master log file in the default logging location. For example, to display the last three lines of the
master log file:

$ gplogfilter -n 3

You can also use gplogfilter to search through all segment log files at once by running it through the
gpssh utility. For example, to display the last three lines of each segment log file:

$ gpssh -f seg_host_file
 => source /usr/local/greenplum-db/greenplum_path.sh
 => gplogfilter -n 3 /gpdata/gp*/pg_log/gpdb*.csv

The following are the Greenplum security-related audit (or logging) server configuration parameters that
are set in the postgresql.conf configuration file:

Field Name Value Range Default Description

log_connections Boolean off This outputs a line to the server log
detailing each successful connection.
Some client programs, like psql,
attempt to connect twice while
determining if a password is required,
so duplicate “connection received”
messages do not always indicate a
problem.

log_disconnections Boolean off This outputs a line in the server log
at termination of a client session, and
includes the duration of the session.

Greenplum Database Security Configuration Guide Release Notes

587

Field Name Value Range Default Description

log_statement NONE

DDL

MOD

ALL

ALL Controls which SQL statements are
logged. DDL logs all data definition
commands like CREATE, ALTER, and
DROP commands. MOD logs all DDL
statements, plus INSERT, UPDATE,
DELETE, TRUNCATE, and COPY
FROM. PREPARE and EXPLAIN
ANALYZE statements are also logged
if their contained command is of an
appropriate type.

log_hostname Boolean off By default, connection log messages
only show the IP address of the
connecting host. Turning on this option
causes logging of the host name as
well. Note that depending on your
host name resolution setup this might
impose a non-negligible performance
penalty.

log_duration Boolean off Causes the duration of every
completed statement which satisfies
log_statement to be logged.

log_error_verbosity TERSE

DEFAULT

VERBOSE

DEFAULT Controls the amount of detail written in
the server log for each message that is
logged.

log_min_duration_
statement

number of
milliseconds, 0, -1

-1 Logs the statement and its duration
on a single log line if its duration is
greater than or equal to the specified
number of milliseconds. Setting this
to 0 will print all statements and their
durations. -1 disables the feature.
For example, if you set it to 250 then
all SQL statements that run 250ms
or longer will be logged. Enabling
this option can be useful in tracking
down unoptimized queries in your
applications.

Greenplum Database Security Configuration Guide Release Notes

588

Field Name Value Range Default Description

log_min_messages DEBUG5

DEBUG4

DEBUG3

DEBUG2

DEBUG1

INFO

NOTICE

WARNING

ERROR

LOG

FATAL

PANIC

NOTICE Controls which message levels are
written to the server log. Each level
includes all the levels that follow it. The
later the level, the fewer messages are
sent to the log.

log_rotation_size 0 - INT_MAX/1024
kilobytes

1048576 When greater than 0, a new log file is
created when this number of kilobytes
have been written to the log. Set to
zero to disable size-based creation of
new log files.

log_rotation_age Any valid time
expression (number
and unit)

1d Determines the lifetime of an individual
log file. When this amount of time has
elapsed since the current log file was
created, a new log file will be created.
 Set to zero to disable time-based
creation of new log files.

log_statement_stats Boolean off For each query, write total performance
statistics of the query parser, planner,
and executor to the server log. This is a
crude profiling instrument.

log_truncate_on_
rotation

Boolean off Truncates (overwrites), rather than
appends to, any existing log file of the
same name. Truncation will occur only
when a new file is being opened due
to time-based rotation. For example,
using this setting in combination with
a log_filename such as gpseg#-%H.
log would result in generating twenty-
four hourly log files and then cyclically
overwriting them. When off, pre-
existing files will be appended to in all
cases.

Greenplum Database Security Configuration Guide Release Notes

589

Encrypting Data and Database Connections
Describes how to encrypt data at rest in the database or in transit over the network, to protect from
evesdroppers or man-in-the-middle attacks.

• Connections between clients and the master database can be encrypted with SSL. This is enabled
with the ssl server configuration parameter, which is off by default. Setting the ssl parameter to on
allows client communications with the master to be encrypted. The master database must be set up for
SSL. See OpenSSL Configuration for more about encrypting client connections with SSL.

• Greenplum Database allows SSL encryption of data in transit between the Greenplum parallel file
distribution server, gpfdist, and segment hosts. See Encrypting gpfdist Connections for more
information.

• The pgcrypto module of encryption/decryptions functions protect data at rest in the database.
Encryption at the column level protects sensitive information, such as social security numbers or credit
card numbers. See Encrypting Data at Rest with pgcrypto for more information.

Encrypting gpfdist Connections
The gpfdists protocol is a secure version of the gpfdist protocol that securely identifies the file server
and the Greenplum Database and encrypts the communications between them. Using gpfdists protects
against eavesdropping and man-in-the-middle attacks.

The gpfdists protocol implements client/server SSL security with the following notable features:

• Client certificates are required.
• Multilingual certificates are not supported.
• A Certificate Revocation List (CRL) is not supported.
• The TLSv1 protocol is used with the TLS_RSA_WITH_AES_128_CBC_SHA encryption algorithm. These

SSL parameters cannot be changed.
• SSL renegotiation is supported.
• The SSL ignore host mismatch parameter is set to false.
• Private keys containing a passphrase are not supported for the gpfdist file server (server.key) or for

the Greenplum Database (client.key).
• It is the user's responsibility to issue certificates that are appropriate for the operating system in use.

Generally, converting certificates to the required format is supported, for example using the SSL
Converter at https://www.sslshopper.com/ssl-converter.html.

A gpfdist server started with the --ssl option can only communicate with the gpfdists protocol. A
gpfdist server started without the --ssl option can only communicate with the gpfdist protocol. For
more detail about gpfdist refer to the Greenplum Database Administrator Guide.

There are two ways to enable the gpfdists protocol:

• Run gpfdist with the --ssl option and then use the gpfdists protocol in the LOCATION clause of a
CREATE EXTERNAL TABLE statement.

• Use a YAML control file with the SSL option set to true and run gpload. Running gpload starts the
gpfdist server with the --ssl option and then uses the gpfdists protocol.

When using gpfdists, the following client certificates must be located in the $PGDATA/gpfdists directory
on each segment:

• The client certificate file, client.crt
• The client private key file, client.key
• The trusted certificate authorities, root.crt

Important: Do not protect the private key with a passphrase. The server does not prompt for a
passphrase for the private key, and loading data fails with an error if one is required.

http://www.commoncriteriaportal.org/products/?expand#ALL

Greenplum Database Security Configuration Guide Release Notes

590

When using gpload with SSL you specify the location of the server certificates in the YAML control file.
When using gpfdist with SSL, you specify the location of the server certificates with the --ssl option.

The following example shows how to securely load data into an external table. The example creates a
readable external table named ext_expenses from all files with the txt extension, using the gpfdists
protocol. The files are formatted with a pipe (|) as the column delimiter and an empty space as null.

1. Run gpfdist with the --ssl option on the segment hosts.
2. Log into the database and execute the following command:

=# CREATE EXTERNAL TABLE ext_expenses
 (name text, date date, amount float4, category text, desc1 text)
LOCATION ('gpfdists://etlhost-1:8081/*.txt', 'gpfdists://etlhost-2:8082/
*.txt')
FORMAT 'TEXT' (DELIMITER '|' NULL ' ') ;

Encrypting Data at Rest with pgcrypto
The pgcrypto module for Greenplum Database provides functions for encrypting data at rest in the
database. Administrators can encrypt columns with sensitive information, such as social security numbers
or credit card numbers, to provide an extra layer of protection. Database data stored in encrypted form
cannot be read by users who do not have the encryption key, and the data cannot be read directly from
disk.

pgcrypto is installed by default when you install Greenplum Database. You must explicitly enable pgcrypto
in each database in which you want to use the module.

pgcrypto allows PGP encryption using symmetric and asymmetric encryption. Symmetric encryption
encrypts and decrypts data using the same key and is faster than asymmetric encryption. It is the preferred
method in an environment where exchanging secret keys is not an issue. With asymmetric encryption, a
public key is used to encrypt data and a private key is used to decrypt data. This is slower then symmetric
encryption and it requires a stronger key.

Using pgcrypto always comes at the cost of performance and maintainability. It is important to use
encryption only with the data that requires it. Also, keep in mind that you cannot search encrypted data by
indexing the data.

Before you implement in-database encryption, consider the following PGP limitations.

• No support for signing. That also means that it is not checked whether the encryption sub-key belongs
to the master key.

• No support for encryption key as master key. This practice is generally discouraged, so this limitation
should not be a problem.

• No support for several subkeys. This may seem like a problem, as this is common practice. On the
other hand, you should not use your regular GPG/PGP keys with pgcrypto, but create new ones, as the
usage scenario is rather different.

Greenplum Database is compiled with zlib by default; this allows PGP encryption functions to compress
data before encrypting. When compiled with OpenSSL, more algorithms will be available.

Because pgcrypto functions run inside the database server, the data and passwords move between
pgcrypto and the client application in clear-text. For optimal security, you should connect locally or use SSL
connections and you should trust both the system and database administrators.

pgcrypto configures itself according to the findings of the main PostgreSQL configure script.

When compiled with zlib, pgcrypto encryption functions are able to compress data before encrypting.

Pgcrypto has various levels of encryption ranging from basic to advanced built-in functions. The following
table shows the supported encryption algorithms.

Greenplum Database Security Configuration Guide Release Notes

591

Table 61: Pgcrypto Supported Encryption Functions

Value Functionality Built-in With OpenSSL

MD5 yes yes

SHA1 yes yes

SHA224/256/384/512 yes yes 3

Other digest algorithms no yes 4

Blowfish yes yes

AES yes yes5

DES/3DES/CAST5 no yes

Raw Encryption yes yes

PGP Symmetric-Key yes yes

PGP Public Key yes yes

Creating PGP Keys
To use PGP asymmetric encryption in Greenplum Database, you must first create public and private keys
and install them.

This section assumes you are installing Greenplum Database on a Linux machine with the Gnu Privacy
Guard (gpg) command line tool. Use the latest version of GPG to create keys. Download and install
Gnu Privacy Guard (GPG) for your operating system from https://www.gnupg.org/download/. On the
GnuPG website you will find installers for popular Linux distributions and links for Windows and Mac OS X
installers.

1. As root, execute the following command and choose option 1 from the menu:

gpg --gen-key
gpg (GnuPG) 2.0.14; Copyright (C) 2009 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

gpg: directory '/root/.gnupg' created
gpg: new configuration file '/root/.gnupg/gpg.conf' created
gpg: WARNING: options in '/root/.gnupg/gpg.conf' are not yet active during
 this run
gpg: keyring '/root/.gnupg/secring.gpg' created
gpg: keyring '/root/.gnupg/pubring.gpg' created
Please select what kind of key you want:
 (1) RSA and RSA (default)
 (2) DSA and Elgamal
 (3) DSA (sign only)
 (4) RSA (sign only)
Your selection? 1

2. Respond to the prompts and follow the instructions, as shown in this example:

RSA keys may be between 1024 and 4096 bits long.

3 SHA2 algorithms were added to OpenSSL in version 0.9.8. For older versions, pgcrypto will use built-in
code.

4 Any digest algorithm OpenSSL supports is automatically picked up. This is not possible with ciphers, which
need to be supported explicitly.

5 AES is included in OpenSSL since version 0.9.7. For older versions, pgcrypto will use built-in code.

https://www.gnupg.org/download/

Greenplum Database Security Configuration Guide Release Notes

592

What keysize do you want? (2048) Press enter to accept default key size
Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
 Key is valid for? (0) 365
Key expires at Wed 13 Jan 2016 10:35:39 AM PST
Is this correct? (y/N) y

GnuPG needs to construct a user ID to identify your key.

Real name: John Doe
Email address: jdoe@email.com
Comment:
You selected this USER-ID:
 "John Doe <jdoe@email.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
You need a Passphrase to protect your secret key.
(For this demo the passphrase is blank.)
can't connect to '/root/.gnupg/S.gpg-agent': No such file or directory
You don't want a passphrase - this is probably a *bad* idea!
I will do it anyway. You can change your passphrase at any time,
using this program with the option "--edit-key".

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
gpg: /root/.gnupg/trustdb.gpg: trustdb created
gpg: key 2027CC30 marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdbgpg:
 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: next trustdb check due at 2016-01-13
pub 2048R/2027CC30 2015-01-13 [expires: 2016-01-13]
 Key fingerprint = 7EDA 6AD0 F5E0 400F 4D45 3259 077D 725E 2027
 CC30
uid John Doe <jdoe@email.com>
sub 2048R/4FD2EFBB 2015-01-13 [expires: 2016-01-13]

3. List the PGP keys by entering the following command:

gpg --list-secret-keys
/root/.gnupg/secring.gpg

sec 2048R/2027CC30 2015-01-13 [expires: 2016-01-13]
uid John Doe <jdoe@email.com>
ssb 2048R/4FD2EFBB 2015-01-13

2027CC30 is the public key and will be used to encrypt data in the database. 4FD2EFBB is the private
(secret) key and will be used to decrypt data.

Greenplum Database Security Configuration Guide Release Notes

593

4. Export the keys using the following commands:

gpg -a --export 4FD2EFBB > public.key
gpg -a --export-secret-keys 2027CC30 > secret.key

See the pgcrypto documentation for more information about PGP encryption functions.

Encrypting Data in Tables using PGP
This section shows how to encrypt data inserted into a column using the PGP keys you generated.

1. Dump the contents of the public.key file and then copy it to the clipboard:

cat public.key
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2.0.14 (GNU/Linux)

mQENBFS1Zf0BCADNw8Qvk1V1C36Kfcwd3Kpm/dijPfRyyEwB6PqKyA05jtWiXZTh
2His1ojSP6LI0cSkIqMU9LAlncecZhRIhBhuVgKlGSgd9texg2nnSL9Admqik/yX
R5syVKG+qcdWuvyZg9oOOmeyjhc3n+kkbRTEMuM3flbMs8shOwzMvstCUVmuHU/V
vG5rJAe8PuYDSJCJ74I6w7SOH3RiRIc7IfL6xYddV42l3ctd44bl8/i71hq2UyN2
/Hbsjii2ymg7ttw3jsWAx2gP9nssDgoy8QDy/o9nNqC8EGlig96ZFnFnE6Pwbhn+
ic8MD0lK5/GAlR6Hc0ZIHf8KEcavruQlikjnABEBAAG0HHRlc3Qga2V5IDx0ZXN0
a2V5QGVtYWlsLmNvbT6JAT4EEwECACgFAlS1Zf0CGwMFCQHhM4AGCwkIBwMCBhUI
AgkKCwQWAgMBAh4BAheAAAoJEAd9cl4gJ8wwbfwH/3VyVsPkQl1owRJNxvXGt1bY
7BfrvU52yk+PPZYoes9UpdL3CMRk8gAM9bx5Sk08q2UXSZLC6fFOpEW4uWgmGYf8
JRoC3ooezTkmCBW8I1bU0qGetzVxopdXLuPGCE7hVWQe9HcSntiTLxGov1mJAwO7
TAoccXLbyuZh9Rf5vLoQdKzcCyOHh5IqXaQOT100TeFeEpb9TIiwcntg3WCSU5P0
DGoUAOanjDZ3KE8Qp7V74fhG1EZVzHb8FajR62CXSHFKqpBgiNxnTOk45NbXADn4
eTUXPSnwPi46qoAp9UQogsfGyB1XDOTB2UOqhutAMECaM7VtpePv79i0Z/NfnBe5
AQ0EVLVl/QEIANabFdQ+8QMCADOipM1bF/JrQt3zUoc4BTqICaxdyzAfz0tUSf/7
Zro2us99GlARqLWd8EqJcl/xmfcJiZyUam6ZAzzFXCgnH5Y1sdtMTJZdLp5WeOjw
gCWG/ZLu4wzxOFFzDkiPv9RDw6e5MNLtJrSp4hS5o2apKdbO4Ex83O4mJYnav/rE
iDDCWU4T0lhv3hSKCpke6LcwsX+7liozp+aNmP0Ypwfi4hR3UUMP70+V1beFqW2J
bVLz3lLLouHRgpCzla+PzzbEKs16jq77vG9kqZTCIzXoWaLljuitRlfJkO3vQ9hO
v/8yAnkcAmowZrIBlyFg2KBzhunYmN2YvkUAEQEAAYkBJQQYAQIADwUCVLVl/QIb
DAUJAeEzgAAKCRAHfXJeICfMMOHYCACFhInZA9uAM3TC44l+MrgMUJ3rW9izrO48
WrdTsxR8WkSNbIxJoWnYxYuLyPb/shc9k65huw2SSDkj//0fRrI61FPHQNPSvz62
WH+N2lasoUaoJjb2kQGhLOnFbJuevkyBylRz+hI/+8rJKcZOjQkmmK8Hkk8qb5x/
HMUc55H0g2qQAY0BpnJHgOOQ45Q6pk3G2/7Dbek5WJ6K1wUrFy51sNlGWE8pvgEx
/UUZB+dYqCwtvX0nnBu1KNCmk2AkEcFK3YoliCxomdOxhFOv9AKjjojDyC65KJci
Pv2MikPS2fKOAg1R3LpMa8zDEtl4w3vckPQNrQNnYuUtfj6ZoCxv
=XZ8J
-----END PGP PUBLIC KEY BLOCK-----

2. Create a table called userssn and insert some sensitive data, social security numbers for Bob and
Alice, in this example. Paste the public.key contents after "dearmor(".

CREATE TABLE userssn(ssn_id SERIAL PRIMARY KEY,
 username varchar(100), ssn bytea);

INSERT INTO userssn(username, ssn)
SELECT robotccs.username, pgp_pub_encrypt(robotccs.ssn, keys.pubkey) AS
 ssn
FROM (
 VALUES ('Alice', '123-45-6788'), ('Bob', '123-45-6799'))
 AS robotccs(username, ssn)
CROSS JOIN (SELECT dearmor('-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2.0.14 (GNU/Linux)

mQENBFS1Zf0BCADNw8Qvk1V1C36Kfcwd3Kpm/dijPfRyyEwB6PqKyA05jtWiXZTh
2His1ojSP6LI0cSkIqMU9LAlncecZhRIhBhuVgKlGSgd9texg2nnSL9Admqik/yX
R5syVKG+qcdWuvyZg9oOOmeyjhc3n+kkbRTEMuM3flbMs8shOwzMvstCUVmuHU/V

https://www.postgresql.org/docs/9.4/pgcrypto.html

Greenplum Database Security Configuration Guide Release Notes

594

vG5rJAe8PuYDSJCJ74I6w7SOH3RiRIc7IfL6xYddV42l3ctd44bl8/i71hq2UyN2
/Hbsjii2ymg7ttw3jsWAx2gP9nssDgoy8QDy/o9nNqC8EGlig96ZFnFnE6Pwbhn+
ic8MD0lK5/GAlR6Hc0ZIHf8KEcavruQlikjnABEBAAG0HHRlc3Qga2V5IDx0ZXN0
a2V5QGVtYWlsLmNvbT6JAT4EEwECACgFAlS1Zf0CGwMFCQHhM4AGCwkIBwMCBhUI
AgkKCwQWAgMBAh4BAheAAAoJEAd9cl4gJ8wwbfwH/3VyVsPkQl1owRJNxvXGt1bY
7BfrvU52yk+PPZYoes9UpdL3CMRk8gAM9bx5Sk08q2UXSZLC6fFOpEW4uWgmGYf8
JRoC3ooezTkmCBW8I1bU0qGetzVxopdXLuPGCE7hVWQe9HcSntiTLxGov1mJAwO7
TAoccXLbyuZh9Rf5vLoQdKzcCyOHh5IqXaQOT100TeFeEpb9TIiwcntg3WCSU5P0
DGoUAOanjDZ3KE8Qp7V74fhG1EZVzHb8FajR62CXSHFKqpBgiNxnTOk45NbXADn4
eTUXPSnwPi46qoAp9UQogsfGyB1XDOTB2UOqhutAMECaM7VtpePv79i0Z/NfnBe5
AQ0EVLVl/QEIANabFdQ+8QMCADOipM1bF/JrQt3zUoc4BTqICaxdyzAfz0tUSf/7
Zro2us99GlARqLWd8EqJcl/xmfcJiZyUam6ZAzzFXCgnH5Y1sdtMTJZdLp5WeOjw
gCWG/ZLu4wzxOFFzDkiPv9RDw6e5MNLtJrSp4hS5o2apKdbO4Ex83O4mJYnav/rE
iDDCWU4T0lhv3hSKCpke6LcwsX+7liozp+aNmP0Ypwfi4hR3UUMP70+V1beFqW2J
bVLz3lLLouHRgpCzla+PzzbEKs16jq77vG9kqZTCIzXoWaLljuitRlfJkO3vQ9hO
v/8yAnkcAmowZrIBlyFg2KBzhunYmN2YvkUAEQEAAYkBJQQYAQIADwUCVLVl/QIb
DAUJAeEzgAAKCRAHfXJeICfMMOHYCACFhInZA9uAM3TC44l+MrgMUJ3rW9izrO48
WrdTsxR8WkSNbIxJoWnYxYuLyPb/shc9k65huw2SSDkj//0fRrI61FPHQNPSvz62
WH+N2lasoUaoJjb2kQGhLOnFbJuevkyBylRz+hI/+8rJKcZOjQkmmK8Hkk8qb5x/
HMUc55H0g2qQAY0BpnJHgOOQ45Q6pk3G2/7Dbek5WJ6K1wUrFy51sNlGWE8pvgEx
/UUZB+dYqCwtvX0nnBu1KNCmk2AkEcFK3YoliCxomdOxhFOv9AKjjojDyC65KJci
Pv2MikPS2fKOAg1R3LpMa8zDEtl4w3vckPQNrQNnYuUtfj6ZoCxv
=XZ8J
-----END PGP PUBLIC KEY BLOCK-----' AS pubkey) AS keys;

3. Verify that the ssn column is encrypted.

test_db=# select * from userssn;
ssn_id | 1
username | Alice
ssn | \301\300L\003\235M%_O
\322\357\273\001\010\000\272\227\010\341\216\360\217C\020\261)_\367
[\227\034\313:C\354d<\337\006Q\351('\2330\031lX\263Qf
\341\262\200\3015\235\036AK\242fL+\315g\322
7u\270*\304\361\355\220\021\330"\200%\264\274}R
\213\377\363\235\366\030\023)\364!\331\303\237t\277=
f \015\004\242\231\263\225%\032\271a\001\035\277\021\375X\232\304\305/
\340\334\0131\325\344[~\362\0
37-\251\336\303\340\377_\011\275\301/MY\334\343\245\244\372y\257S
\374\230\346\277\373W\346\230\276\
017fi\226Q\307\012\326\3646\000\326\005:E\364W\252=zz\010(:\343Y
\237\257iqU\0326\350=v0\362\327\350\
315G^\027:K_9\254\362\354\215<\001\304\357\331\355\323,\302\213Fe
\265\315\232\367\254\245%(\\\373
4\254\230\331\356\006B\257\333\326H\022\013\353\216F?\023\220\370\035vH5/
\227\344b\322\227\026\362=\
42\033\322<\001}\243\224;)\030zqX\214\340\221\035\275U
\345\327\214\032\351\223c\2442\345\304K\016\
011\214\307\227\237\270\026'R\205\205a~1\263\236[\037C
\260\031\205\374\245\317\033k|\366\253\037

+--
--
--
--
--
--
--
--
--
--
ssn_id | 2
username | Bob

Greenplum Database Security Configuration Guide Release Notes

595

ssn | \301\300L\003\235M%_O\322\357\273\001\007\377t>\345\343,
\200\256\272\300\012\033M4\265\032L
L[v\262k\244\2435\264\232B\357\370d9\375\011\002\327\235<\246\210b
\030\012\337@\226Z\361\246\032\00
7'\012c\353]\355d7\360T\335\314\367\370;X\371\350*\231\212\260B
\010#RQ0\223\253c7\0132b\355\242\233\34
1\000\370\370\366\013\022\357\005i\202~\005\\z\301o\012\230Z
\014\362\244\324&\243g\351\362\325\375
\213\032\226$\2751\256XR\346k\266\030\234\267\201vUh\004\250\337A\231\223u
\247\366/i\022\275\276\350\2
20\316\306|\203+\010\261;\232\254tp\255\243\261\373Rq;\316w
\357\006\207\374U\333\365\365\245hg\031\005
\322\347ea\220\015l\212g\337\264\336b\263\004\311\210.4\340G+\221\274D
\035\375\2216\241'\346a0\273wE\2
12\342y^\202\262|A7\202t\240\333p\345G\373\253\243oCO
\011\360\247\211\014\024{\272\271\322<\001\267
\347\240\005\213\0078\036\210\307$\317\322\311\222\035\354\006<
\266\264\004\376\251q\256\220(+\030\
3270\013c\327\272\212%\363\033\252\322\337\354\276\225\232\201\212^
\304\210\2269@\3230\370{

4. Extract the public.key ID from the database:

SELECT pgp_key_id(dearmor('-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2.0.14 (GNU/Linux)

mQENBFS1Zf0BCADNw8Qvk1V1C36Kfcwd3Kpm/dijPfRyyEwB6PqKyA05jtWiXZTh
2His1ojSP6LI0cSkIqMU9LAlncecZhRIhBhuVgKlGSgd9texg2nnSL9Admqik/yX
R5syVKG+qcdWuvyZg9oOOmeyjhc3n+kkbRTEMuM3flbMs8shOwzMvstCUVmuHU/V
vG5rJAe8PuYDSJCJ74I6w7SOH3RiRIc7IfL6xYddV42l3ctd44bl8/i71hq2UyN2
/Hbsjii2ymg7ttw3jsWAx2gP9nssDgoy8QDy/o9nNqC8EGlig96ZFnFnE6Pwbhn+
ic8MD0lK5/GAlR6Hc0ZIHf8KEcavruQlikjnABEBAAG0HHRlc3Qga2V5IDx0ZXN0
a2V5QGVtYWlsLmNvbT6JAT4EEwECACgFAlS1Zf0CGwMFCQHhM4AGCwkIBwMCBhUI
AgkKCwQWAgMBAh4BAheAAAoJEAd9cl4gJ8wwbfwH/3VyVsPkQl1owRJNxvXGt1bY
7BfrvU52yk+PPZYoes9UpdL3CMRk8gAM9bx5Sk08q2UXSZLC6fFOpEW4uWgmGYf8
JRoC3ooezTkmCBW8I1bU0qGetzVxopdXLuPGCE7hVWQe9HcSntiTLxGov1mJAwO7
TAoccXLbyuZh9Rf5vLoQdKzcCyOHh5IqXaQOT100TeFeEpb9TIiwcntg3WCSU5P0
DGoUAOanjDZ3KE8Qp7V74fhG1EZVzHb8FajR62CXSHFKqpBgiNxnTOk45NbXADn4
eTUXPSnwPi46qoAp9UQogsfGyB1XDOTB2UOqhutAMECaM7VtpePv79i0Z/NfnBe5
AQ0EVLVl/QEIANabFdQ+8QMCADOipM1bF/JrQt3zUoc4BTqICaxdyzAfz0tUSf/7
Zro2us99GlARqLWd8EqJcl/xmfcJiZyUam6ZAzzFXCgnH5Y1sdtMTJZdLp5WeOjw
gCWG/ZLu4wzxOFFzDkiPv9RDw6e5MNLtJrSp4hS5o2apKdbO4Ex83O4mJYnav/rE
iDDCWU4T0lhv3hSKCpke6LcwsX+7liozp+aNmP0Ypwfi4hR3UUMP70+V1beFqW2J
bVLz3lLLouHRgpCzla+PzzbEKs16jq77vG9kqZTCIzXoWaLljuitRlfJkO3vQ9hO
v/8yAnkcAmowZrIBlyFg2KBzhunYmN2YvkUAEQEAAYkBJQQYAQIADwUCVLVl/QIb
DAUJAeEzgAAKCRAHfXJeICfMMOHYCACFhInZA9uAM3TC44l+MrgMUJ3rW9izrO48
WrdTsxR8WkSNbIxJoWnYxYuLyPb/shc9k65huw2SSDkj//0fRrI61FPHQNPSvz62
WH+N2lasoUaoJjb2kQGhLOnFbJuevkyBylRz+hI/+8rJKcZOjQkmmK8Hkk8qb5x/
HMUc55H0g2qQAY0BpnJHgOOQ45Q6pk3G2/7Dbek5WJ6K1wUrFy51sNlGWE8pvgEx
/UUZB+dYqCwtvX0nnBu1KNCmk2AkEcFK3YoliCxomdOxhFOv9AKjjojDyC65KJci
Pv2MikPS2fKOAg1R3LpMa8zDEtl4w3vckPQNrQNnYuUtfj6ZoCxv
=XZ8J
-----END PGP PUBLIC KEY BLOCK-----'));

pgp_key_id | 9D4D255F4FD2EFBB

This shows that the PGP key ID used to encrypt the ssn column is 9D4D255F4FD2EFBB. It is
recommended to perform this step whenever a new key is created and then store the ID for tracking.

You can use this key to see which key pair was used to encrypt the data:

SELECT username, pgp_key_id(ssn) As key_used
FROM userssn;

Greenplum Database Security Configuration Guide Release Notes

596

username | Bob
key_used | 9D4D255F4FD2EFBB
---------+-----------------
username | Alice
key_used | 9D4D255F4FD2EFBB

Note: Different keys may have the same ID. This is rare, but is a normal event. The client
application should try to decrypt with each one to see which fits — like handling ANYKEY. See
pgp_key_id() in the pgcrypto documentation.

5. Decrypt the data using the private key.

SELECT username, pgp_pub_decrypt(ssn, keys.privkey)
 AS decrypted_ssn FROM userssn
 CROSS JOIN
 (SELECT dearmor('-----BEGIN PGP PRIVATE KEY BLOCK-----
Version: GnuPG v2.0.14 (GNU/Linux)

lQOYBFS1Zf0BCADNw8Qvk1V1C36Kfcwd3Kpm/dijPfRyyEwB6PqKyA05jtWiXZTh
2His1ojSP6LI0cSkIqMU9LAlncecZhRIhBhuVgKlGSgd9texg2nnSL9Admqik/yX
R5syVKG+qcdWuvyZg9oOOmeyjhc3n+kkbRTEMuM3flbMs8shOwzMvstCUVmuHU/V
vG5rJAe8PuYDSJCJ74I6w7SOH3RiRIc7IfL6xYddV42l3ctd44bl8/i71hq2UyN2
/Hbsjii2ymg7ttw3jsWAx2gP9nssDgoy8QDy/o9nNqC8EGlig96ZFnFnE6Pwbhn+
ic8MD0lK5/GAlR6Hc0ZIHf8KEcavruQlikjnABEBAAEAB/wNfjjvP1brRfjjIm/j
XwUNm+sI4v2Ur7qZC94VTukPGf67lvqcYZJuqXxvZrZ8bl6mvl65xEUiZYy7BNA8
fe0PaM4Wy+Xr94Cz2bPbWgawnRNN3GAQy4rlBTrvqQWy+kmpbd87iTjwZidZNNmx
02iSzraq41Rt0Zx21Jh4rkpF67ftmzOH0vlrS0bWOvHUeMY7tCwmdPe9HbQeDlPr
n9CllUqBn4/acTtCClWAjREZn0zXAsNixtTIPC1V+9nO9YmecMkVwNfIPkIhymAM
OPFnuZ/Dz1rCRHjNHb5j6ZyUM5zDqUVnnezktxqrOENSxm0gfMGcpxHQogUMzb7c
6UyBBADSCXHPfo/VPVtMm5p1yGrNOR2jR2rUj9+poZzD2gjkt5G/xIKRlkB4uoQl
emu27wr9dVEX7ms0nvDq58iutbQ4d0JIDlcHMeSRQZluErblB75Vj3HtImblPjpn
4Jx6SWRXPUJPGXGI87u0UoBH0Lwij7M2PW7l1ao+MLEA9jAjQwQA+sr9BKPL4Ya2
r5nE72gsbCCLowkC0rdldf1RGtobwYDMpmYZhOaRKjkOTMG6rCXJxrf6LqiN8w/L
/gNziTmch35MCq/MZzA/bN4VMPyeIlwzxVZkJLsQ7yyqX/A7ac7B7DH0KfXciEXW
MSOAJhMmklW1Q1RRNw3cnYi8w3q7X40EAL/w54FVvvPqp3+sCd86SAAapM4UO2R3
tIsuNVemMWdgNXwvK8AJsz7VreVU5yZ4B8hvCuQj1C7geaN/LXhiT8foRsJC5o71
Bf+iHC/VNEv4k4uDb4lOgnHJYYyifB1wC+nn/EnXCZYQINMia1a4M6Vqc/RIfTH4
nwkZt/89LsAiR/20HHRlc3Qga2V5IDx0ZXN0a2V5QGVtYWlsLmNvbT6JAT4EEwEC
ACgFAlS1Zf0CGwMFCQHhM4AGCwkIBwMCBhUIAgkKCwQWAgMBAh4BAheAAAoJEAd9
cl4gJ8wwbfwH/3VyVsPkQl1owRJNxvXGt1bY7BfrvU52yk+PPZYoes9UpdL3CMRk
8gAM9bx5Sk08q2UXSZLC6fFOpEW4uWgmGYf8JRoC3ooezTkmCBW8I1bU0qGetzVx
opdXLuPGCE7hVWQe9HcSntiTLxGov1mJAwO7TAoccXLbyuZh9Rf5vLoQdKzcCyOH
h5IqXaQOT100TeFeEpb9TIiwcntg3WCSU5P0DGoUAOanjDZ3KE8Qp7V74fhG1EZV
zHb8FajR62CXSHFKqpBgiNxnTOk45NbXADn4eTUXPSnwPi46qoAp9UQogsfGyB1X
DOTB2UOqhutAMECaM7VtpePv79i0Z/NfnBedA5gEVLVl/QEIANabFdQ+8QMCADOi
pM1bF/JrQt3zUoc4BTqICaxdyzAfz0tUSf/7Zro2us99GlARqLWd8EqJcl/xmfcJ
iZyUam6ZAzzFXCgnH5Y1sdtMTJZdLp5WeOjwgCWG/ZLu4wzxOFFzDkiPv9RDw6e5
MNLtJrSp4hS5o2apKdbO4Ex83O4mJYnav/rEiDDCWU4T0lhv3hSKCpke6LcwsX+7
liozp+aNmP0Ypwfi4hR3UUMP70+V1beFqW2JbVLz3lLLouHRgpCzla+PzzbEKs16
jq77vG9kqZTCIzXoWaLljuitRlfJkO3vQ9hOv/8yAnkcAmowZrIBlyFg2KBzhunY
mN2YvkUAEQEAAQAH/A7r4hDrnmzX3QU6FAzePlRB7niJtE2IEN8AufF05Q2PzKU/
c1S72WjtqMAIAgYasDkOhfhcxanTneGuFVYggKT3eSDm1RFKpRjX22m0zKdwy67B
Mu95V2Oklul6OCm8dO6+2fmkGxGqc4ZsKy+jQxtxK3HG9YxMC0dvA2v2C5N4TWi3
Utc7zh//k6IbmaLd7F1d7DXt7Hn2Qsmo8I1rtgPE8grDToomTnRUodToyejEqKyI
ORwsp8n8g2CSFaXSrEyU6HbFYXSxZealhQJGYLFOZdR0MzVtZQCn/7n+IHjupndC
Nd2a8DVx3yQS3dAmvLzhFacZdjXi31wvj0moFOkEAOCz1E63SKNNksniQ11lRMJp
gaov6Ux/zGLMstwTzNouI+Kr8/db0GlSAy1Z3UoAB4tFQXEApoX9A4AJ2KqQjqOX
cZVULenfDZaxrbb9Lid7ZnTDXKVyGTWDF7ZHavHJ4981mCW17lU11zHBB9xMlx6p
dhFvb0gdy0jSLaFMFr/JBAD0fz3RrhP7e6Xll2zdBqGthjC5S/IoKwwBgw6ri2yx
LoxqBr2pl9PotJJ/JUMPhD/LxuTcOZtYjy8PKgm5jhnBDq3Ss0kNKAY1f5EkZG9a
6I4iAX/NekqSyF+OgBfC9aCgS5RG8hYoOCbp8na5R3bgiuS8IzmVmm5OhZ4MDEwg
nQP7BzmR0p5BahpZ8r3Ada7FcK+0ZLLRdLmOYF/yUrZ53SoYCZRzU/GmtQ7LkXBh
Gjqied9Bs1MHdNUolq7GaexcjZmOWHEf6w9+9M4+vxtQq1nkIWqtaphewEmd5/nf
EP3sIY0EAE3mmiLmHLqBju+UJKMNwFNeyMTqgcg50ISH8J9FRIkBJQQYAQIADwUC

https://www.postgresql.org/docs/9.4/pgcrypto.html

Greenplum Database Security Configuration Guide Release Notes

597

VLVl/QIbDAUJAeEzgAAKCRAHfXJeICfMMOHYCACFhInZA9uAM3TC44l+MrgMUJ3r
W9izrO48WrdTsxR8WkSNbIxJoWnYxYuLyPb/shc9k65huw2SSDkj//0fRrI61FPH
QNPSvz62WH+N2lasoUaoJjb2kQGhLOnFbJuevkyBylRz+hI/+8rJKcZOjQkmmK8H
kk8qb5x/HMUc55H0g2qQAY0BpnJHgOOQ45Q6pk3G2/7Dbek5WJ6K1wUrFy51sNlG
WE8pvgEx/UUZB+dYqCwtvX0nnBu1KNCmk2AkEcFK3YoliCxomdOxhFOv9AKjjojD
yC65KJciPv2MikPS2fKOAg1R3LpMa8zDEtl4w3vckPQNrQNnYuUtfj6ZoCxv
=fa+6
-----END PGP PRIVATE KEY BLOCK-----') AS privkey) AS keys;

username | decrypted_ssn
----------+---------------
 Alice | 123-45-6788
 Bob | 123-45-6799
(2 rows)

If you created a key with passphrase, you may have to enter it here. However for the purpose of this
example, the passphrase is blank.

Key Management
Whether you are using symmetric (single private key) or asymmetric (public and private key) cryptography,
it is important to store the master or private key securely. There are many options for storing encryption
keys, for example, on a file system, key vault, encrypted USB, trusted platform module (TPM), or hardware
security module (HSM).

Consider the following questions when planning for key management:

• Where will the keys be stored?
• When should keys expire?
• How are keys protected?
• How are keys accessed?
• How can keys be recovered and revoked?

The Open Web Application Security Project (OWASP) provides a very comprehensive guide to securing
encryption keys.

https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

Greenplum Database Security Configuration Guide Release Notes

598

Security Best Practices
Describes basic security best practices that you should follow to ensure the highest level of system
security.

In the default Greenplum Database security configuration:

• Only local connections are allowed.
• Basic authentication is configured for the superuser (gpadmin).
• The superuser is authorized to do anything.
• Only database role passwords are encrypted.

System User (gpadmin)
Secure and limit access to the gpadmin system user.

Greenplum requires a UNIX user id to install and initialize the Greenplum Database system. This system
user is referred to as gpadmin in the Greenplum documentation. The gpadmin user is the default
database superuser in Greenplum Database, as well as the file system owner of the Greenplum installation
and its underlying data files. The default administrator account is fundamental to the design of Greenplum
Database. The system cannot run without it, and there is no way to limit the access of the gpadmin user
id.

The gpadmin user can bypass all security features of Greenplum Database. Anyone who logs on to a
Greenplum host with this user id can read, alter, or delete any data, including system catalog data and
database access rights. Therefore, it is very important to secure the gpadmin user id and only allow
essential system administrators access to it.

Administrators should only log in to Greenplum as gpadmin when performing certain system maintenance
tasks (such as upgrade or expansion).

Database users should never log on as gpadmin, and ETL or production workloads should never run as
gpadmin.

Superusers
Roles granted the SUPERUSER attribute are superusers. Superusers bypass all access privilege checks
and resource queues. Only system administrators should be given superuser rights.

See "Altering Role Attributes" in the Greenplum Database Administrator Guide.

Login Users
Assign a distinct role to each user who logs in and set the LOGIN attribute.

For logging and auditing purposes, each user who is allowed to log in to Greenplum Database should be
given their own database role. For applications or web services, consider creating a distinct role for each
application or service. See "Creating New Roles (Users)" in the Greenplum Database Administrator Guide.

Each login role should be assigned to a single, non-default resource queue.

Groups
Use groups to manage access privileges.

Create a group for each logical grouping of object/access permissions.

Every login user should belong to one or more roles. Use the GRANT statement to add group access to a
role. Use the REVOKE statement to remove group access from a role.

Greenplum Database Security Configuration Guide Release Notes

599

The LOGIN attribute should not be set for group roles.

See "Creating Groups (Role Membership)" in the Greenplum Database Administrator Guide.

Object Privileges
Only the owner and superusers have full permissions to new objects. Permission must be granted to allow
other rules (users or groups) to access objects. Each type of database object has different privileges that
may be granted. Use the GRANT statement to add a permission to a role and the REVOKE statement to
remove the permission.

You can change the owner of an object using the REASIGN OWNED BY statement. For example, to
prepare to drop a role, change the owner of the objects that belong to the role. Use the DROP OWNED BY
to drop objects, including dependent objects, that are owned by a role.

Schemas can be used to enforce an additional layer of object permissions checking, but schema
permissions do not override object privileges set on objects contained within the schema.

Operating System Users and File System
To protect the network from intrusion, system administrators should verify the passwords used within an
organization are sufficiently strong. The following recommendations can strengthen a password:

• Minimum password length recommendation: At least 9 characters. MD5 passwords should be 15
characters or longer.

• Mix upper and lower case letters.
• Mix letters and numbers.
• Include non-alphanumeric characters.
• Pick a password you can remember.

The following are recommendations for password cracker software that you can use to determine the
strength of a password.

• John The Ripper. A fast and flexible password cracking program. It allows the use of multiple word lists
and is capable of brute-force password cracking. It is available online at http://www.openwall.com/john/.

• Crack. Perhaps the most well-known password cracking software, Crack is also very fast, though not
as easy to use as John The Ripper. It can be found online at https://dropsafe.crypticide.com/alecm/
software/crack/c50-faq.html.

The security of the entire system depends on the strength of the root password. This password should be
at least 12 characters long and include a mix of capitalized letters, lowercase letters, special characters,
and numbers. It should not be based on any dictionary word.

Password expiration parameters should be configured.

Ensure the following line exists within the file /etc/libuser.conf under the [import] section.

login_defs = /etc/login.defs

Ensure no lines in the [userdefaults] section begin with the following text, as these words override
settings from /etc/login.defs:

• LU_SHADOWMAX

• LU_SHADOWMIN

• LU_SHADOWWARNING

Ensure the following command produces no output. Any accounts listed by running this command should
be locked.

grep "^+:" /etc/passwd /etc/shadow /etc/group

http://www.openwall.com/john/
https://dropsafe.crypticide.com/alecm/software/crack/c50-faq.html
https://dropsafe.crypticide.com/alecm/software/crack/c50-faq.html

Greenplum Database Security Configuration Guide Release Notes

600

Note: We strongly recommend that customers change their passwords after initial setup.

cd /etc
chown root:root passwd shadow group gshadow
chmod 644 passwd group
chmod 400 shadow gshadow

Find all the files that are world-writable and that do not have their sticky bits set.

find / -xdev -type d \(-perm -0002 -a ! -perm -1000 \) -print

Set the sticky bit (# chmod +t {dir}) for all the directories that result from running the previous
command.

Find all the files that are world-writable and fix each file listed.

find / -xdev -type f -perm -0002 -print

Set the right permissions (# chmod o-w {file}) for all the files generated by running the
aforementioned command.

Find all the files that do not belong to a valid user or group and either assign an owner or remove the file,
as appropriate.

find / -xdev \(-nouser -o -nogroup \) -print

Find all the directories that are world-writable and ensure they are owned by either root or a system
account (assuming only system accounts have a User ID lower than 500). If the command generates any
output, verify the assignment is correct or reassign it to root.

find / -xdev -type d -perm -0002 -uid +500 -print

Authentication settings such as password quality, password expiration policy, password reuse, password
retry attempts, and more can be configured using the Pluggable Authentication Modules (PAM) framework.
PAM looks in the directory /etc/pam.d for application-specific configuration information. Running
authconfig or system-config-authentication will re-write the PAM configuration files, destroying
any manually made changes and replacing them with system defaults.

The default pam_cracklib PAM module provides strength checking for passwords. To configure
pam_cracklib to require at least one uppercase character, lowercase character, digit, and special
character, as recommended by the U.S. Department of Defense guidelines, edit the file /etc/pam.d/
system-auth to include the following parameters in the line corresponding to password requisite
pam_cracklib.so try_first_pass.

retry=3:
dcredit=-1. Require at least one digit
ucredit=-1. Require at least one upper case character
ocredit=-1. Require at least one special character
lcredit=-1. Require at least one lower case character
minlen-14. Require a minimum password length of 14.

For example:

Greenplum Database Security Configuration Guide Release Notes

601

password required pam_cracklib.so try_first_pass retry=3\minlen=14
 dcredit=-1 ucredit=-1 ocredit=-1 lcredit=-1

These parameters can be set to reflect your security policy requirements. Note that the password
restrictions are not applicable to the root password.

The pam_tally2 PAM module provides the capability to lock out user accounts after a specified number
of failed login attempts. To enforce password lockout, edit the file /etc/pam.d/system-auth to include
the following lines:

• The first of the auth lines should include:

auth required pam_tally2.so deny=5 onerr=fail unlock_time=900

• The first of the account lines should include:

account required pam_tally2.so

Here, the deny parameter is set to limit the number of retries to 5 and the unlock_time has been set to
900 seconds to keep the account locked for 900 seconds before it is unlocked. These parameters may be
configured appropriately to reflect your security policy requirements. A locked account can be manually
unlocked using the pam_tally2 utility:

/sbin/pam_tally2 --user {username} -reset

You can use PAM to limit the reuse of recent passwords. The remember option for the pam_ unix
module can be set to remember the recent passwords and prevent their reuse. To accomplish this, edit the
appropriate line in /etc/pam.d/system-auth to include the remember option.

For example:

password sufficient pam_unix.so [… existing_options …]
remember=5

You can set the number of previous passwords to remember to appropriately reflect your security policy
requirements.

cd /etc
chown root:root passwd shadow group gshadow
chmod 644 passwd group
chmod 400 shadow gshadow

Greenplum Database Best Practices Release Notes

602

Chapter 5

Greenplum Database Best Practices

A best practice is a method or technique that has consistently shown results superior to those achieved
with other means. Best practices are found through experience and are proven to reliably lead to a desired
result. Best practices are a commitment to use any product correctly and optimally, by leveraging all the
knowledge and expertise available to ensure success.

This document does not teach you how to use Greenplum Database features. Links are provided to other
relevant parts of the Greenplum Database documentation for information on how to use and implement
specific Greenplum Database features. This document addresses the most important best practices to
follow when designing, implementing, and using Greenplum Database.

It is not the intent of this document to cover the entire product or compendium of features, but rather to
provide a summary of what matters most in Greenplum Database. This document does not address edge
use cases. While edge use cases can further leverage and benefit from Greenplum Database features,
they require a proficient knowledge and expertise with these features, as well as a deep understanding of
your environment, including SQL access, query execution, concurrency, workload, and other factors.

By mastering these best practices, you will increase the success of your Greenplum Database clusters in
the areas of maintenance, support, performance, and scalability.

Greenplum Database Best Practices Release Notes

603

Best Practices Summary
A summary of best practices for Greenplum Database.

Data Model
Greenplum Database is an analytical MPP shared-nothing database. This model is significantly different
from a highly normalized/transactional SMP database. Because of this, the following best practices are
recommended.

• Greenplum Database performs best with a denormalized schema design suited for MPP analytical
processing for example, Star or Snowflake schema, with large fact tables and smaller dimension tables.

• Use the same data types for columns used in joins between tables.

See Schema Design.

Heap vs. Append-Optimized Storage
• Use heap storage for tables and partitions that will receive iterative batch and singleton UPDATE,

DELETE, and INSERT operations.
• Use heap storage for tables and partitions that will receive concurrent UPDATE, DELETE, and INSERT

operations.
• Use append-optimized storage for tables and partitions that are updated infrequently after the initial

load and have subsequent inserts only performed in large batch operations.
• Avoid performing singleton INSERT, UPDATE, or DELETE operations on append-optimized tables.
• Avoid performing concurrent batch UPDATE or DELETE operations on append-optimized tables.

Concurrent batch INSERT operations are acceptable.

See Heap Storage or Append-Optimized Storage.

Row vs. Column Oriented Storage
• Use row-oriented storage for workloads with iterative transactions where updates are required and

frequent inserts are performed.
• Use row-oriented storage when selects against the table are wide.
• Use row-oriented storage for general purpose or mixed workloads.
• Use column-oriented storage where selects are narrow and aggregations of data are computed over a

small number of columns.
• Use column-oriented storage for tables that have single columns that are regularly updated without

modifying other columns in the row.

See Row or Column Orientation.

Compression
• Use compression on large append-optimized and partitioned tables to improve I/O across the system.
• Set the column compression settings at the level where the data resides.
• Balance higher levels of compression with the time and CPU cycles needed to compress and

uncompress data.

See Compression.

Distributions
• Explicitly define a column or random distribution for all tables. Do not use the default.
• Use a single column that will distribute data across all segments evenly.

Greenplum Database Best Practices Release Notes

604

• Do not distribute on columns that will be used in the WHERE clause of a query.
• Do not distribute on dates or timestamps.
• Never distribute and partition tables on the same column.
• Achieve local joins to significantly improve performance by distributing on the same column for large

tables commonly joined together.
• To ensure there is no data skew, validate that data is evenly distributed after the initial load and after

incremental loads.

See Distributions.

Resource Queue Memory Management
• Set vm.overcommit_memory to 2.
• Do not configure the OS to use huge pages.
• Use gp_vmem_protect_limit to set the maximum memory that the instance can allocate for all work

being done in each segment database.
• You can use gp_vmem_protect_limit by calculating:

• gp_vmem – the total memory available to Greenplum Database

gp_vmem = ((SWAP + RAM) – (7.5GB + 0.05 * RAM)) / 1.7

where SWAP is the host's swap space in GB, and RAM is the host's RAM in GB
• max_acting_primary_segments – the maximum number of primary segments that could be

running on a host when mirror segments are activated due to a host or segment failure
• gp_vmem_protect_limit

gp_vmem_protect_limit = gp_vmem / acting_primary_segments

Convert to MB to set the value of the configuration parameter.
• In a scenario where a large number of workfiles are generated calculate the gp_vmem factor with this

formulat to account for the workfiles:

gp_vmem = ((SWAP + RAM) – (7.5GB + 0.05 * RAM - (300KB *
 total_#_workfiles))) / 1.7

• Never set gp_vmem_protect_limit too high or larger than the physical RAM on the system.
• Use the calculated gp_vmem value to calculate the setting for the vm.overcommit_ratio operating

system parameter:

vm.overcommit_ratio = (RAM - 0.026 * gp_vmem) / RAM

• Use statement_mem to allocate memory used for a query per segment db.
• Use resource queues to set both the numbers of active queries (ACTIVE_STATEMENTS) and the

amount of memory (MEMORY_LIMIT) that can be utilized by queries in the queue.
• Associate all users with a resource queue. Do not use the default queue.
• Set PRIORITY to match the real needs of the queue for the workload and time of day. Avoid using MAX

priority.
• Ensure that resource queue memory allocations do not exceed the setting for

gp_vmem_protect_limit.
• Dynamically update resource queue settings to match daily operations flow.

See Setting the Greenplum Recommended OS Parameters and Memory and Resource Management with
Resource Queues.

Greenplum Database Best Practices Release Notes

605

Partitioning
• Partition large tables only. Do not partition small tables.
• Use partitioning only if partition elimination (partition pruning) can be achieved based on the query

criteria.
• Choose range partitioning over list partitioning.
• Partition the table based on a commonly-used column, such as a date column.
• Never partition and distribute tables on the same column.
• Do not use default partitions.
• Do not use multi-level partitioning; create fewer partitions with more data in each partition.
• Validate that queries are selectively scanning partitioned tables (partitions are being eliminated) by

examining the query EXPLAIN plan.
• Do not create too many partitions with column-oriented storage because of the total number of physical

files on every segment: physical files = segments x columns x partitions

See Partitioning.

Indexes
• In general indexes are not needed in Greenplum Database.
• Create an index on a single column of a columnar table for drill-through purposes for high cardinality

tables that require queries with high selectivity.
• Do not index columns that are frequently updated.
• Consider dropping indexes before loading data into a table. After the load, re-create the indexes for the

table.
• Create selective B-tree indexes.
• Do not create bitmap indexes on columns that are updated.
• Avoid using bitmap indexes for unique columns, very high or very low cardinality data. Bitmap indexes

perform best when the column has a low cardinality—100 to 100,000 distinct values.
• Do not use bitmap indexes for transactional workloads.
• In general do not index partitioned tables. If indexes are needed, the index columns must be different

than the partition columns.

See Indexes.

Resource Queues
• Use resource queues to manage the workload on the cluster.
• Associate all roles with a user-defined resource queue.
• Use the ACTIVE_STATEMENTS parameter to limit the number of active queries that members of the

particular queue can run concurrently.
• Use the MEMORY_LIMIT parameter to control the total amount of memory that queries running through

the queue can utilize.
• Alter resource queues dynamically to match the workload and time of day.

See Configuring Resource Queues.

Monitoring and Maintenance
• Implement the "Recommended Monitoring and Maintenance Tasks" in the Greenplum Database

Administrator Guide.
• Run gpcheckperf at install time and periodically thereafter, saving the output to compare system

performance over time.
• Use all the tools at your disposal to understand how your system behaves under different loads.
• Examine any unusual event to determine the cause.

Greenplum Database Best Practices Release Notes

606

• Monitor query activity on the system by running explain plans periodically to ensure the queries are
running optimally.

• Review plans to determine whether index are being used and partition elimination is occurring as
expected.

• Know the location and content of system log files and monitor them on a regular basis, not just when
problems arise.

See System Monitoring and Maintenance, Query Profiling and Monitoring Greenplum Database Log Files.

ANALYZE
• Determine if analyzing the database is actually needed. Analyzing is not needed if

gp_autostats_mode is set to on_no_stats (the default) and the table is not partitioned.
• Use analyzedb in preference to ANALYZE when dealing with large sets of tables, as it does not

require analyzing the entire database. The analyzedb utility updates statistics data for the specified
tables incrementally and concurrently. For append optimized tables, analyzedb updates statistics
incrementally only if the statistics are not current. For heap tables, statistics are always updated.
ANALYZE does not update the table metadata that the analyzedb utility uses to determine whether
table statistics are up to date.

• Selectively run ANALYZE at the table level when needed.
• Always run ANALYZE after INSERT, UPDATE. and DELETE operations that significantly changes the

underlying data.
• Always run ANALYZE after CREATE INDEX operations.
• If ANALYZE on very large tables takes too long, run ANALYZE only on the columns used in a join

condition, WHERE clause, SORT, GROUP BY, or HAVING clause.
• When dealing with large sets of tables, use analyzedb instead of ANALYZE.

See Updating Statistics with ANALYZE.

Vacuum
• Run VACUUM after large UPDATE and DELETE operations.
• Do not run VACUUM FULL. Instead run a CREATE TABLE...AS operation, then rename and drop the

original table.
• Frequently run VACUUM on the system catalogs to avoid catalog bloat and the need to run VACUUM

FULL on catalog tables.
• Never kill VACUUM on catalog tables.

See Managing Bloat in a Database.

Loading
• Maximize the parallelism as the number of segments increase.
• Spread the data evenly across as many ETL nodes as possible.

• Split very large data files into equal parts and spread the data across as many file systems as
possible.

• Run two gpfdist instances per file system.
• Run gpfdist on as many interfaces as possible.
• Use gp_external_max_segs to control the number of segments that will request data from the

gpfdist process.
• Always keep gp_external_max_segs and the number of gpfdist processes an even factor.

• Always drop indexes before loading into existing tables and re-create the index after loading.
• Run VACUUM after load errors to recover space.

See Loading Data.

Greenplum Database Best Practices Release Notes

607

Security
• Secure the gpadmin user id and only allow essential system administrators access to it.
• Administrators should only log in to Greenplum as gpadmin when performing certain system

maintenance tasks (such as upgrade or expansion).
• Limit users who have the SUPERUSER role attribute. Roles that are superusers bypass all access

privilege checks in Greenplum Database, as well as resource queuing. Only system administrators
should be given superuser rights. See "Altering Role Attributes" in the Greenplum Database
Administrator Guide.

• Database users should never log on as gpadmin, and ETL or production workloads should never run
as gpadmin.

• Assign a distinct Greenplum Database role to each user, application, or service that logs in.
• For applications or web services, consider creating a distinct role for each application or service.
• Use groups to manage access privileges.
• Protect the root password.
• Enforce a strong password password policy for operating system passwords.
• Ensure that important operating system files are protected.

See Security.

Encryption
• Encrypting and decrypting data has a performance cost; only encrypt data that requires encryption.
• Do performance testing before implementing any encryption solution in a production system.
• Server certificates in a production Greenplum Database system should be signed by a certificate

authority (CA) so that clients can authenticate the server. The CA may be local if all clients are local to
the organization.

• Client connections to Greenplum Database should use SSL encryption whenever the connection goes
through an insecure link.

• A symmetric encryption scheme, where the same key is used to both encrypt and decrypt, has better
performance than an asymmetric scheme and should be used when the key can be shared safely.

• Use crytographic functions to encrypt data on disk. The data is encrypted and decrypted in the
database process, so it is important to secure the client connection with SSL to avoid transmitting
unencrypted data.

• Use the gpfdists protocol to secure ETL data as it is loaded into or unloaded from the database. .

See Encrypting Data and Database Connections

High Availability
Note: The following guidelines apply to actual hardware deployments, but not to public cloud-
based infrastructure, where high availability solutions may already exist.

• Use a hardware RAID storage solution with 8 to 24 disks.
• Use RAID 1, 5, or 6 so that the disk array can tolerate a failed disk.
• Configure a hot spare in the disk array to allow rebuild to begin automatically when disk failure is

detected.
• Protect against failure of the entire disk array and degradation during rebuilds by mirroring the RAID

volume.
• Monitor disk utilization regularly and add additional space when needed.
• Monitor segment skew to ensure that data is distributed evenly and storage is consumed evenly at all

segments.
• Set up a standby master instance to take over if the primary master fails.
• Plan how to switch clients to the new master instance when a failure occurs, for example, by updating

the master address in DNS.

Greenplum Database Best Practices Release Notes

608

• Set up monitoring to send notifications in a system monitoring application or by email when the primary
fails.

• Set up mirrors for all segments.
• Locate primary segments and their mirrors on different hosts to protect against host failure.
• Recover failed segments promptly, using the gprecoverseg utility, to restore redundancy and return

the system to optimal balance.
• Consider a Dual Cluster configuration to provide an additional level of redundancy and additional query

processing throughput.
• Backup Greenplum databases regularly unless the data is easily restored from sources.
• If backups are saved to local cluster storage, move the files to a safe, off-cluster location when the

backup is complete.
• If backups are saved to NFS mounts, use a scale-out NFS solution such as Dell EMC Isilon to prevent

IO bottlenecks.
• Consider using Greenplum integration to stream backups to the Dell EMC Data Domain enterprise

backup platform.

See High Availability.

Greenplum Database Best Practices Release Notes

609

System Configuration
Requirements and best practices for system administrators who are configuring Greenplum Database
cluster hosts.

Configuration of the Greenplum Database cluster is usually performed as root.

Configuring the Timezone
Greenplum Database selects a timezone to use from a set of internally stored PostgreSQL timezones. The
available PostgreSQL timezones are taken from the Internet Assigned Numbers Authority (IANA) Time
Zone Database, and Greenplum Database updates its list of available timezones as necessary when the
IANA database changes for PostgreSQL.

Greenplum selects the timezone by matching a PostgreSQL timezone with the user specified time zone, or
the host system time zone if no time zone is configured. For example, when selecting a default timezone,
Greenplum uses an algorithm to select a PostgreSQL timezone based on the host system timezone files.
If the system timezone includes leap second information, Greenplum Database cannot match the system
timezone with a PostgreSQL timezone. In this case, Greenplum Database calculates a "best match" with a
PostgreSQL timezone based on information from the host system.

As a best practice, configure Greenplum Database and the host systems to use a known, supported
timezone. This sets the timezone for the Greenplum Database master and segment instances, and
prevents Greenplum Database from recalculating a "best match" timezone each time the cluster is
restarted, using the current system timezone and Greenplum timezone files (which may have been
updated from the IANA database since the last restart). Use the gpconfig utility to show and set the
Greenplum Database timezone. For example, these commands show the Greenplum Database timezone
and set the timezone to US/Pacific.

gpconfig -s TimeZone
gpconfig -c TimeZone -v 'US/Pacific'

You must restart Greenplum Database after changing the timezone. The command gpstop -ra restarts
Greenplum Database. The catalog view pg_timezone_names provides Greenplum Database timezone
information.

File System
XFS is the file system used for Greenplum Database data directories. On RHEL/CentOS systems, mount
XFS volumes with the following mount options:

rw,nodev,noatime,nobarrier,inode64

The nobarrier option is not supported on Ubuntu systems. Use only the options:

rw,nodev,noatime,inode64

See the recommended OS parameter settings in the Greenplum Database Installation Guide for further
details.

Port Configuration
Set up ip_local_port_range so it does not conflict with the Greenplum Database port ranges. For
example, setting this range in /etc/sysctl.conf:

net.ipv4.ip_local_port_range = 10000 65535

Greenplum Database Best Practices Release Notes

610

you could set the Greenplum Database base port numbers to these values.

PORT_BASE = 6000
MIRROR_PORT_BASE = 7000

See the Recommended OS Parameters Settings in the Greenplum Database Installation Guide for further
details.

I/O Configuration
Set the blockdev read-ahead size to 16384 on the devices that contain data directories. This command
sets the read-ahead size for /dev/sdb.

/sbin/blockdev --setra 16384 /dev/sdb

This command returns the read-ahead size for /dev/sdb.

/sbin/blockdev --getra /dev/sdb
16384

See the Recommended OS Parameters Settings in the Greenplum Database Installation Guide for further
details.

The deadline IO scheduler should be set for all data directory devices.

 # cat /sys/block/sdb/queue/scheduler
 noop anticipatory [deadline] cfq

The maximum number of OS files and processes should be increased in the /etc/security/
limits.conf file.

* soft nofile 524288
* hard nofile 524288
* soft nproc 131072
* hard nproc 131072

Enable core files output to a known location and make sure limits.conf allows core files.

kernel.core_pattern = /var/core/core.%h.%t
grep core /etc/security/limits.conf
* soft core unlimited

OS Memory Configuration
The Linux sysctl vm.overcommit_memory and vm.overcommit_ratio variables affect how the
operating system manages memory allocation. See the /etc/sysctl.conf file parameters guidelines in
the Greenplum Datatabase Installation Guide for further details.

vm.overcommit_memory determines the method the OS uses for determining how much memory can be
allocated to processes. This should be always set to 2, which is the only safe setting for the database.

Note: For information on configuration of overcommit memory, refer to:

• https://en.wikipedia.org/wiki/Memory_overcommitment
• https://www.kernel.org/doc/Documentation/vm/overcommit-accounting

vm.overcommit_ratio is the percent of RAM that is used for application processes. The default is
50 on Red Hat Enterprise Linux. See Resource Queue Segment Memory Configuration for a formula to
calculate an optimal value.

Do not enable huge pages in the operating system.

https://www.google.com/url?q=https://en.wikipedia.org/wiki/Memory_overcommitment&sa=D&ust=1499719618717000&usg=AFQjCNErcHO7vErv4pn9fIhCxrR0XRiknA
https://www.google.com/url?q=https://www.kernel.org/doc/Documentation/vm/overcommit-accounting&sa=D&ust=1499719618717000&usg=AFQjCNEmu5tZutAaN1KCSlIwz4hwqihkOQ

Greenplum Database Best Practices Release Notes

611

See also Memory and Resource Management with Resource Queues.

Shared Memory Settings
Greenplum Database uses shared memory to communicate between postgres processes that are part
of the same postgres instance. The following shared memory settings should be set in sysctl and are
rarely modified. See the sysctl.conf file parameters in the Greenplum Database Installation Guide for
further details.

kernel.shmmax = 500000000
kernel.shmmni = 4096
kernel.shmall = 4000000000

Number of Segments per Host
Determining the number of segments to execute on each segment host has immense impact on overall
system performance. The segments share the host's CPU cores, memory, and NICs with each other
and with other processes running on the host. Over-estimating the number of segments a server can
accommodate is a common cause of suboptimal performance.

The factors that must be considered when choosing how many segments to run per host include the
following:

• Number of cores
• Amount of physical RAM installed in the server
• Number of NICs
• Amount of storage attached to server
• Mixture of primary and mirror segments
• ETL processes that will run on the hosts
• Non-Greenplum processes running on the hosts

Resource Queue Segment Memory Configuration
The gp_vmem_protect_limit server configuration parameter specifies the amount of memory that all
active postgres processes for a single segment can consume at any given time. Queries that exceed this
amount will fail. Use the following calculations to estimate a safe value for gp_vmem_protect_limit.

1. Calculate gp_vmem, the host memory available to Greenplum Database, using this formula:

gp_vmem = ((SWAP + RAM) – (7.5GB + 0.05 * RAM)) / 1.7

where SWAP is the host's swap space in GB and RAM is the RAM installed on the host in GB.
2. Calculate max_acting_primary_segments. This is the maximum number of primary segments

that can be running on a host when mirror segments are activated due to a segment or host failure
on another host in the cluster. With mirrors arranged in a 4-host block with 8 primary segments per
host, for example, a single segment host failure would activate two or three mirror segments on each
remaining host in the failed host's block. The max_acting_primary_segments value for this
configuration is 11 (8 primary segments plus 3 mirrors activated on failure).

3. Calculate gp_vmem_protect_limit by dividing the total Greenplum Database memory by the
maximum number of acting primaries:

gp_vmem_protect_limit = gp_vmem / max_acting_primary_segments

Convert to megabytes to find the value to set for the gp_vmem_protect_limit system configuration
parameter.

Greenplum Database Best Practices Release Notes

612

For scenarios where a large number of workfiles are generated, adjust the calculation for gp_vmem to
account for the workfiles:

gp_vmem = ((SWAP + RAM) – (7.5GB + 0.05 * RAM - (300KB
 * total_#_workfiles))) / 1.7

For information about monitoring and managing workfile usage, see the Greenplum Database
Administrator Guide.

You can calculate the value of the vm.overcommit_ratio operating system parameter from the value of
gp_vmem:

vm.overcommit_ratio = (RAM - 0.026 * gp_vmem) / RAM

See OS Memory Configuration for more about about vm.overcommit_ratio.

See also Memory and Resource Management with Resource Queues.

Resource Queue Statement Memory Configuration
The statement_mem server configuration parameter is the amount of memory to be allocated to any
single query in a segment database. If a statement requires additional memory it will spill to disk. Calculate
the value for statement_mem with the following formula:

(gp_vmem_protect_limit * .9) / max_expected_concurrent_queries

For example, for 40 concurrent queries with gp_vmem_protect_limit set to 8GB (8192MB), the
calculation for statement_mem would be:

(8192MB * .9) / 40 = 184MB

Each query would be allowed 184MB of memory before it must spill to disk.

To increase statement_mem safely you must either increase gp_vmem_protect_limit or reduce the
number of concurrent queries. To increase gp_vmem_protect_limit, you must add physical RAM and/
or swap space, or reduce the number of segments per host.

Note that adding segment hosts to the cluster cannot help out-of-memory errors unless you use the
additional hosts to decrease the number of segments per host.

Spill files are created when there is not enough memory to fit all the mapper output, usually when 80% of
the buffer space is occupied.

Also, see Resource Management for best practices for managing query memory using resource queues.

Resource Queue Spill File Configuration
Greenplum Database creates spill files (also called workfiles) on disk if a query is allocated insufficient
memory to execute in memory. A single query can create no more than 100,000 spill files, by default,
which is sufficient for the majority of queries.

You can control the maximum number of spill files created per query and per segment with the
configuration parameter gp_workfile_limit_files_per_query. Set the parameter to 0 to allow
queries to create an unlimited number of spill files. Limiting the number of spill files permitted prevents run-
away queries from disrupting the system.

A query could generate a large number of spill files if not enough memory is allocated to it or if data skew
is present in the queried data. If a query creates more than the specified number of spill files, Greenplum
Database returns this error:

ERROR: number of workfiles per query limit exceeded

Before raising the gp_workfile_limit_files_per_query, try reducing the number of spill files by
changing the query, changing the data distribution, or changing the memory configuration.

Greenplum Database Best Practices Release Notes

613

The gp_toolkit schema includes views that allow you to see information about all the queries that are
currently using spill files. This information can be used for troubleshooting and for tuning queries:

• The gp_workfile_entries view contains one row for each operator using disk space for workfiles
on a segment at the current time. See How to Read Explain Plansfor information about operators.

• The gp_workfile_usage_per_query view contains one row for each query using disk space for
workfiles on a segment at the current time.

• The gp_workfile_usage_per_segment view contains one row for each segment. Each row
displays the total amount of disk space used for workfiles on the segment at the current time.

See the Greenplum Database Reference Guide for descriptions of the columns in these views.

The gp_workfile_compression configuration parameter specifies whether the spill files are
compressed. It is off by default. Enabling compression can improve performance when spill files are
used.

Greenplum Database Best Practices Release Notes

614

Schema Design
Best practices for designing Greenplum Database schemas.

Greenplum Database is an analytical, shared-nothing database, which is much different than a highly
normalized, transactional SMP database. Greenplum Database performs best with a denormalized schema
design suited for MPP analytical processing, a star or snowflake schema, with large centralized fact tables
connected to multiple smaller dimension tables.

Data Types

Use Types Consistently
Use the same data types for columns used in joins between tables. If the data types differ, Greenplum
Database must dynamically convert the data type of one of the columns so the data values can be
compared correctly. With this in mind, you may need to increase the data type size to facilitate joins to
other common objects.

Choose Data Types that Use the Least Space
You can increase database capacity and improve query execution by choosing the most efficient data
types to store your data.

Use TEXT or VARCHAR rather than CHAR. There are no performance differences among the character data
types, but using TEXT or VARCHAR can decrease the storage space used.

Use the smallest numeric data type that will accommodate your data. Using BIGINT for data that fits in
INT or SMALLINT wastes storage space.

Storage Model
Greenplum Database provides an array of storage options when creating tables. It is very important to
know when to use heap storage versus append-optimized (AO) storage, and when to use row-oriented
storage versus column-oriented storage. The correct selection of heap versus AO and row versus column
is extremely important for large fact tables, but less important for small dimension tables.

The best practices for determining the storage model are:

1. Design and build an insert-only model, truncating a daily partition before load.
2. For large partitioned fact tables, evaluate and use optimal storage options for different partitions. One

storage option is not always right for the entire partitioned table. For example, some partitions can be
row-oriented while others are column-oriented.

3. When using column-oriented storage, every column is a separate file on every Greenplum Database
segment. For tables with a large number of columns consider columnar storage for data often accessed
(hot) and row-oriented storage for data not often accessed (cold).

4. Storage options should be set at the partition level.
5. Compress large tables to improve I/O performance and to make space in the cluster.

Heap Storage or Append-Optimized Storage
Heap storage is the default model, and is the model PostgreSQL uses for all database tables. Use
heap storage for tables and partitions that will receive iterative UPDATE, DELETE, and singleton INSERT
operations. Use heap storage for tables and partitions that will receive concurrent UPDATE, DELETE, and
INSERT operations.

Greenplum Database Best Practices Release Notes

615

Use append-optimized storage for tables and partitions that are updated infrequently after the initial load
and have subsequent inserts performed only in batch operations. Avoid performing singleton INSERT,
UPDATE, or DELETE operations on append-optimized tables. Concurrent batch INSERT operations are
acceptable, but never perform concurrent batch UPDATE or DELETE operations.

The append-optimized storage model is inappropriate for frequently updated tables, because space
occupied by rows that are updated and deleted in append-optimized tables is not recovered and reused as
efficiently as with heap tables. Append-optimized storage is intended for large tables that are loaded once,
updated infrequently, and queried frequently for analytical query processing.

Row or Column Orientation
Row orientation is the traditional way to store database tuples. The columns that comprise a row are stored
on disk contiguously, so that an entire row can be read from disk in a single I/O.

Column orientation stores column values together on disk. A separate file is created for each column. If the
table is partitioned, a separate file is created for each column and partition. When a query accesses only
a small number of columns in a column-oriented table with many columns, the cost of I/O is substantially
reduced compared to a row-oriented table; any columns not referenced do not have to be retrieved from
disk.

Row-oriented storage is recommended for transactional type workloads with iterative transactions
where updates are required and frequent inserts are performed. Use row-oriented storage when selects
against the table are wide, where many columns of a single row are needed in a query. If the majority of
columns in the SELECT list or WHERE clause is selected in queries, use row-oriented storage. Use row-
oriented storage for general purpose or mixed workloads, as it offers the best combination of flexibility and
performance.

Column-oriented storage is optimized for read operations but it is not optimized for write operations;
column values for a row must be written to different places on disk. Column-oriented tables can offer
optimal query performance on large tables with many columns where only a small subset of columns are
accessed by the queries.

Another benefit of column orientation is that a collection of values of the same data type can be stored
together in less space than a collection of mixed type values, so column-oriented tables use less disk
space (and consequently less disk I/O) than row-oriented tables. Column-oriented tables also compress
better than row-oriented tables.

Use column-oriented storage for data warehouse analytic workloads where selects are narrow or
aggregations of data are computed over a small number of columns. Use column-oriented storage for
tables that have single columns that are regularly updated without modifying other columns in the row.
Reading a complete row in a wide columnar table requires more time than reading the same row from
a row-oriented table. It is important to understand that each column is a separate physical file on every
segment in Greenplum Database.

Compression
Greenplum Database offers a variety of options to compress append-optimized tables and partitions.
Use compression to improve I/O across the system by allowing more data to be read with each disk read
operation. The best practice is to set the column compression settings at the partition level.

Note that new partitions added to a partitioned table do not automatically inherit compression defined at the
table level; you must specifically define compression when you add new partitions.

Run-length encoding (RLE) compression provides the best levels of compression. Higher levels of
compression usually result in more compact storage on disk, but require additional time and CPU cycles
when compressing data on writes and uncompressing on reads. Sorting data, in combination with the
various compression options, can achieve the highest level of compression.

Data compression should never be used for data that is stored on a compressed file system.

Greenplum Database Best Practices Release Notes

616

Test different compression types and ordering methods to determine the best compression for your
specific data. For example, you might start zstd compression at level 8 or 9 and adjust for best results. RLE
compression works best with files that contain repetitive data.

Distributions
An optimal distribution that results in evenly distributed data is the most important factor in Greenplum
Database. In an MPP shared nothing environment overall response time for a query is measured by the
completion time for all segments. The system is only as fast as the slowest segment. If the data is skewed,
segments with more data will take more time to complete, so every segment must have an approximately
equal number of rows and perform approximately the same amount of processing. Poor performance and
out of memory conditions may result if one segment has significantly more data to process than other
segments.

Consider the following best practices when deciding on a distribution strategy:

• Explicitly define a column or random distribution for all tables. Do not use the default.
• Ideally, use a single column that will distribute data across all segments evenly.
• Do not distribute on columns that will be used in the WHERE clause of a query.
• Do not distribute on dates or timestamps.
• The distribution key column data should contain unique values or very high cardinality.
• If a single column cannot achieve an even distribution, use a multi-column distribution key with a

maximum of two columns. Additional column values do not typically yield a more even distribution and
they require additional time in the hashing process.

• If a two-column distribution key cannot achieve an even distribution of data, use a random distribution.
Multi-column distribution keys in most cases require motion operations to join tables, so they offer no
advantages over a random distribution.

Greenplum Database random distribution is not round-robin, so there is no guarantee of an equal number
of records on each segment. Random distributions typically fall within a target range of less than ten
percent variation.

Optimal distributions are critical when joining large tables together. To perform a join, matching rows
must be located together on the same segment. If data is not distributed on the same join column, the
rows needed from one of the tables are dynamically redistributed to the other segments. In some cases
a broadcast motion, in which each segment sends its individual rows to all other segments, is performed
rather than a redistribution motion, where each segment rehashes the data and sends the rows to the
appropriate segments according to the hash key.

Local (Co-located) Joins
Using a hash distribution that evenly distributes table rows across all segments and results in local joins
can provide substantial performance gains. When joined rows are on the same segment, much of the
processing can be accomplished within the segment instance. These are called local or co-located joins.
Local joins minimize data movement; each segment operates independently of the other segments, without
network traffic or communications between segments.

To achieve local joins for large tables commonly joined together, distribute the tables on the same column.
Local joins require that both sides of a join be distributed on the same columns (and in the same order)
and that all columns in the distribution clause are used when joining tables. The distribution columns must
also be the same data type—although some values with different data types may appear to have the same
representation, they are stored differently and hash to different values, so they are stored on different
segments.

Greenplum Database Best Practices Release Notes

617

Data Skew
Data skew is often the root cause of poor query performance and out of memory conditions. Skewed data
affects scan (read) performance, but it also affects all other query execution operations, for instance, joins
and group by operations.

It is very important to validate distributions to ensure that data is evenly distributed after the initial load. It is
equally important to continue to validate distributions after incremental loads.

The following query shows the number of rows per segment as well as the variance from the minimum and
maximum numbers of rows:

SELECT 'Example Table' AS "Table Name",
 max(c) AS "Max Seg Rows", min(c) AS "Min Seg Rows",
 (max(c)-min(c))*100.0/max(c) AS "Percentage Difference Between Max &
 Min"
FROM (SELECT count(*) c, gp_segment_id FROM facts GROUP BY 2) AS a;

The gp_toolkit schema has two views that you can use to check for skew.

• The gp_toolkit.gp_skew_coefficients view shows data distribution skew by calculating the
coefficient of variation (CV) for the data stored on each segment. The skccoeff column shows the
coefficient of variation (CV), which is calculated as the standard deviation divided by the average. It
takes into account both the average and variability around the average of a data series. The lower the
value, the better. Higher values indicate greater data skew.

• The gp_toolkit.gp_skew_idle_fractions view shows data distribution skew by calculating the
percentage of the system that is idle during a table scan, which is an indicator of computational skew.
The siffraction column shows the percentage of the system that is idle during a table scan. This is
an indicator of uneven data distribution or query processing skew. For example, a value of 0.1 indicates
10% skew, a value of 0.5 indicates 50% skew, and so on. Tables that have more than10% skew should
have their distribution policies evaluated.

Processing Skew
Processing skew results when a disproportionate amount of data flows to, and is processed by, one or
a few segments. It is often the culprit behind Greenplum Database performance and stability issues. It
can happen with operations such join, sort, aggregation, and various OLAP operations. Processing skew
happens in flight while a query is executing and is not as easy to detect as data skew, which is caused
by uneven data distribution due to the wrong choice of distribution keys. Data skew is present at the table
level, so it can be easily detected and avoided by choosing optimal distribution keys.

If single segments are failing, that is, not all segments on a host, it may be a processing skew issue.
Identifying processing skew is currently a manual process. First look for spill files. If there is skew, but not
enough to cause spill, it will not become a performance issue. If you determine skew exists, then find the
query responsible for the skew. Following are the steps and commands to use. (Change names like the
host file name passed to gpssh accordingly):

1. Find the OID for the database that is to be monitored for skew processing:

SELECT oid, datname FROM pg_database;

Example output:

 oid | datname
-------+-----------
 17088 | gpadmin
 10899 | postgres
 1 | template1
 10898 | template0
 38817 | pws
 39682 | gpperfmon

Greenplum Database Best Practices Release Notes

618

(6 rows)

2. Run a gpssh command to check file sizes across all of the segment nodes in the system. Replace
<OID> with the OID of the database from the prior command:

[gpadmin@mdw kend]$ gpssh -f ~/hosts -e \
 "du -b /data[1-2]/primary/gpseg*/base/<OID>/pgsql_tmp/*" | \
 grep -v "du -b" | sort | awk -F" " '{ arr[$1] = arr[$1] + $2 ; tot =
 tot + $2 }; END \
 { for (i in arr) print "Segment node" i, arr[i], "bytes (" arr[i]/
(1024**3)" GB)"; \
 print "Total", tot, "bytes (" tot/(1024**3)" GB)" }' -

Example output:

Segment node[sdw1] 2443370457 bytes (2.27557 GB)
Segment node[sdw2] 1766575328 bytes (1.64525 GB)
Segment node[sdw3] 1761686551 bytes (1.6407 GB)
Segment node[sdw4] 1780301617 bytes (1.65804 GB)
Segment node[sdw5] 1742543599 bytes (1.62287 GB)
Segment node[sdw6] 1830073754 bytes (1.70439 GB)
Segment node[sdw7] 1767310099 bytes (1.64594 GB)
Segment node[sdw8] 1765105802 bytes (1.64388 GB)
Total 14856967207 bytes (13.8366 GB)

If there is a significant and sustained difference in disk usage, then the queries being executed should
be investigated for possible skew (the example output above does not reveal significant skew). In
monitoring systems, there will always be some skew, but often it is transient and will be short in
duration.

3. If significant and sustained skew appears, the next task is to identify the offending query.

The command in the previous step sums up the entire node. This time, find the actual segment
directory. You can do this from the master or by logging into the specific node identified in the previous
step. Following is an example run from the master.

This example looks specifically for sort files. Not all spill files or skew situations are caused by sort files,
so you will need to customize the command:

$ gpssh -f ~/hosts -e
 "ls -l /data[1-2]/primary/gpseg*/base/19979/pgsql_tmp/*"
 | grep -i sort | awk '{sub(/base.*tmp\//, ".../", $10); print $1,$6,
$10}' | sort -k2 -n

Here is output from this command:

[sdw1] 288718848
 /data1/primary/gpseg2/.../pgsql_tmp_slice0_sort_17758_0001.0[sdw1]
 291176448
 /data2/primary/gpseg5/.../pgsql_tmp_slice0_sort_17764_0001.0[sdw8]
 924581888
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0010.9[sdw4]
 980582400
 /data1/primary/gpseg18/.../pgsql_tmp_slice10_sort_29425_0001.0[sdw6]
 986447872
 /data2/primary/gpseg35/.../pgsql_tmp_slice10_sort_29602_0001.0...
[sdw5] 999620608
 /data1/primary/gpseg26/.../pgsql_tmp_slice10_sort_28637_0001.0[sdw2]
 999751680
 /data2/primary/gpseg9/.../pgsql_tmp_slice10_sort_3969_0001.0[sdw3]
 1000112128
 /data1/primary/gpseg13/.../pgsql_tmp_slice10_sort_24723_0001.0[sdw5]
 1000898560

Greenplum Database Best Practices Release Notes

619

 /data2/primary/gpseg28/.../pgsql_tmp_slice10_sort_28641_0001.0...
[sdw8] 1008009216
 /data1/primary/gpseg44/.../pgsql_tmp_slice10_sort_15671_0001.0[sdw5]
 1008566272
 /data1/primary/gpseg24/.../pgsql_tmp_slice10_sort_28633_0001.0[sdw4]
 1009451008
 /data1/primary/gpseg19/.../pgsql_tmp_slice10_sort_29427_0001.0[sdw7]
 1011187712
 /data1/primary/gpseg37/.../pgsql_tmp_slice10_sort_18526_0001.0[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0001.0[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0002.1[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0003.2[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0004.3[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0005.4[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0006.5[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0007.6[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0008.7[sdw8]
 1573741824
 /data2/primary/gpseg45/.../pgsql_tmp_slice10_sort_15673_0009.8

Scanning this output reveals that segment gpseg45 on host sdw8 is the culprit, as its sort files are
larger than the others in the output.

4. Log in to the offending node with ssh and become root. Use the lsof command to find the PID for the
process that owns one of the sort files:

[root@sdw8 ~]# lsof /data2/primary/gpseg45/base/19979/pgsql_tmp/
pgsql_tmp_slice10_sort_15673_0002.1
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
postgres 15673 gpadmin 11u REG 8,48 1073741824 64424546751 /data2/
primary/gpseg45/base/19979/pgsql_tmp/pgsql_tmp_slice10_sort_15673_0002.1

The PID, 15673, is also part of the file name, but this may not always be the case.
5. Use the ps command with the PID to identify the database and connection information:

[root@sdw8 ~]# ps -eaf | grep 15673
gpadmin 15673 27471 28 12:05 ? 00:12:59 postgres: port 40003,
 sbaskin bdw
 172.28.12.250(21813) con699238 seg45 cmd32 slice10 MPPEXEC SELECT
root 29622 29566 0 12:50 pts/16 00:00:00 grep 15673

6. On the master, check the pg_log log file for the user in the previous command (sbaskin), connection
(con699238, and command (cmd32). The line in the log file with these three values should be the line
that contains the query, but occasionally, the command number may differ slightly. For example, the ps
output may show cmd32, but in the log file it is cmd34. If the query is still running, the last query for the
user and connection is the offending query.

The remedy for processing skew in almost all cases is to rewrite the query. Creating temporary tables can
eliminate skew. Temporary tables can be randomly distributed to force a two-stage aggregation.

Partitioning
A good partitioning strategy reduces the amount of data to be scanned by reading only the partitions
needed to satisfy a query.

Greenplum Database Best Practices Release Notes

620

Each partition is a separate physical file or set of tiles (in the case of column-oriented tables) on every
segment. Just as reading a complete row in a wide columnar table requires more time than reading the
same row from a heap table, reading all partitions in a partitioned table requires more time than reading the
same data from a non-partitioned table.

Following are partitioning best practices:

• Partition large tables only, do not partition small tables.
• Use partitioning on large tables only when partition elimination (partition pruning) can be achieved

based on query criteria and is accomplished by partitioning the table based on the query predicate.
Whenever possible, use range partitioning instead of list partitioning.

• The query planner can selectively scan partitioned tables only when the query contains a direct and
simple restriction of the table using immutable operators, such as =, < , <= , >, >=, and <>.

• Selective scanning recognizes STABLE and IMMUTABLE functions, but does not recognize VOLATILE
functions within a query. For example, WHERE clauses such as

date > CURRENT_DATE

cause the query planner to selectively scan partitioned tables, but a WHERE clause such as

time > TIMEOFDAY

does not. It is important to validate that queries are selectively scanning partitioned tables (partitions are
being eliminated) by examining the query EXPLAIN plan.

• Do not use default partitions. The default partition is always scanned but, more importantly, in many
environments they tend to overfill resulting in poor performance.

• Never partition and distribute tables on the same column.
• Do not use multi-level partitioning. While sub-partitioning is supported, it is not recommended because

typically subpartitions contain little or no data. It is a myth that performance increases as the number
of partitions or subpartitions increases; the administrative overhead of maintaining many partitions and
subpartitions will outweigh any performance benefits. For performance, scalability and manageability,
balance partition scan performance with the number of overall partitions.

• Beware of using too many partitions with column-oriented storage.
• Consider workload concurrency and the average number of partitions opened and scanned for all

concurrent queries.

Number of Partition and Columnar Storage Files
The only hard limit for the number of files Greenplum Database supports is the operating system's open
file limit. It is important, however, to consider the total number of files in the cluster, the number of files on
every segment, and the total number of files on a host. In an MPP shared nothing environment, every node
operates independently of other nodes. Each node is constrained by its disk, CPU, and memory. CPU and
I/O constraints are not common with Greenplum Database, but memory is often a limiting factor because
the query execution model optimizes query performance in memory.

The optimal number of files per segment also varies based on the number of segments on the node,
the size of the cluster, SQL access, concurrency, workload, and skew. There are generally six to eight
segments per host, but large clusters should have fewer segments per host. When using partitioning and
columnar storage it is important to balance the total number of files in the cluster, but it is more important to
consider the number of files per segment and the total number of files on a node.

Example with 64GB Memory per Node

• Number of nodes: 16
• Number of segments per node: 8
• Average number of files per segment: 10,000

Greenplum Database Best Practices Release Notes

621

The total number of files per node is 8*10,000 = 80,000 and the total number of files for the cluster is
8*16*10,000 = 1,280,000. The number of files increases quickly as the number of partitions and the
number of columns increase.

As a general best practice, limit the total number of files per node to under 100,000. As the previous
example shows, the optimal number of files per segment and total number of files per node depends on
the hardware configuration for the nodes (primarily memory), size of the cluster, SQL access, concurrency,
workload and skew.

Indexes
Indexes are not generally needed in Greenplum Database. Most analytical queries operate on large
volumes of data, while indexes are intended for locating single rows or small numbers of rows of data. In
Greenplum Database, a sequential scan is an efficient method to read data as each segment contains an
equal portion of the data and all segments work in parallel to read the data.

If adding an index does not produce performance gains, drop it. Verify that every index you create is used
by the optimizer.

For queries with high selectivity, indexes may improve query performance. Create an index on a single
column of a columnar table for drill through purposes for high cardinality columns that are required for
highly selective queries.

Do not index columns that are frequently updated. Creating an index on a column that is frequently
updated increases the number of writes required on updates.

Indexes on expressions should be used only if the expression is used frequently in queries.

An index with a predicate creates a partial index that can be used to select a small number of rows from
large tables.

Avoid overlapping indexes. Indexes that have the same leading column are redundant.

Indexes can improve performance on compressed append-optimized tables for queries that return a
targeted set of rows. For compressed data, an index access method means only the necessary pages are
uncompressed.

Create selective B-tree indexes. Index selectivity is a ratio of the number of distinct values a column has
divided by the number of rows in a table. For example, if a table has 1000 rows and a column has 800
distinct values, the selectivity of the index is 0.8, which is considered good.

As a general rule, drop indexes before loading data into a table. The load will run an order of magnitude
faster than loading data into a table with indexes. After the load, re-create the indexes.

Bitmap indexes are suited for querying and not updating. Bitmap indexes perform best when the column
has a low cardinality—100 to 100,000 distinct values. Do not use bitmap indexes for unique columns, very
high, or very low cardinality data. Do not use bitmap indexes for transactional workloads.

If indexes are needed on partitioned tables, the index columns must be different than the partition columns.
A benefit of indexing partitioned tables is that because the b-tree performance degrades exponentially as
the size of the b-tree grows, creating indexes on partitioned tables creates smaller b-trees that perform
better than with non-partitioned tables.

Column Sequence and Byte Alignment
For optimum performance lay out the columns of a table to achieve data type byte alignment. Lay out the
columns in heap tables in the following order:

1. Distribution and partition columns
2. Fixed numeric types
3. Variable data types

Greenplum Database Best Practices Release Notes

622

Lay out the data types from largest to smallest, so that BIGINT and TIMESTAMP come before INT and
DATE, and all of these types come before TEXT, VARCHAR, or NUMERIC(x,y). For example, 8-byte types
first (BIGINT, TIMESTAMP), 4-byte types next (INT, DATE), 2-byte types next (SMALLINT), and variable
data type last (VARCHAR).

Instead of defining columns in this sequence:

Int, Bigint, Timestamp, Bigint, Timestamp, Int (distribution key), Date (partition key), Bigint,
Smallint

define the columns in this sequence:

Int (distribution key), Date (partition key), Bigint, Bigint, Timestamp, Bigint, Timestamp, Int,
Smallint

Greenplum Database Best Practices Release Notes

623

Memory and Resource Management with Resource
Groups

Managing Greenplum Database resources with resource groups.

Memory, CPU, and concurrent transaction management have a significant impact on performance in a
Greenplum Database cluster. Resource groups are a newer resource management scheme that enforce
memory, CPU, and concurrent transaction limits in Greenplum Database.

• Configuring Memory for Greenplum Database
• Memory Considerations when using Resource Groups
• Configuring Resource Groups
• Low Memory Queries
• Administrative Utilities and admin_group Concurrency

Configuring Memory for Greenplum Database
While it is not always possible to increase system memory, you can avoid many out-of-memory conditions
by configuring resource groups to manage expected workloads.

The following operating system and Greenplum Database memory settings are significant when you
manage Greenplum Database resources with resource groups:

• vm.overcommit_memory

This Linux kernel parameter, set in /etc/sysctl.conf, identifies the method that the
operating system uses to determine how much memory can be allocated to processes.
vm.overcommit_memory must always be set to 2 for Greenplum Database systems.

• vm.overcommit_ratio

This Linux kernel parameter, set in /etc/sysctl.conf, identifies the percentage of RAM that is
used for application processes; the remainder is reserved for the operating system. Tune the setting as
necessary. If your memory utilization is too low, increase the value; if your memory or swap usage is
too high, decrease the setting.

• gp_resource_group_memory_limit

The percentage of system memory to allocate to Greenplum Database. The default value is .7 (70%).
• gp_workfile_limit_files_per_query

Set gp_workfile_limit_files_per_query to limit the maximum number of temporary spill files
(workfiles) allowed per query. Spill files are created when a query requires more memory than it is
allocated. When the limit is exceeded the query is terminated. The default is zero, which allows an
unlimited number of spill files and may fill up the file system.

• gp_workfile_compression

If there are numerous spill files then set gp_workfile_compression to compress the spill files.
Compressing spill files may help to avoid overloading the disk subsystem with IO operations.

• memory_spill_ratio

Set memory_spill_ratio to increase or decrease the amount of query operator memory Greenplum
Database allots to a query. When memory_spill_ratio is larger than 0, it represents the percentage
of resource group memory to allot to query operators. If concurrency is high, this memory amount
may be small even when memory_spill_ratio is set to the max value of 100. When you set
memory_spill_ratio to 0, Greenplum Database uses the statement_mem setting to determine the
initial amount of query operator memory to allot.

• statement_mem

Greenplum Database Best Practices Release Notes

624

When memory_spill_ratio is 0, Greenplum Database uses the statement_mem setting to
determine the amount of memory to allocate to a query.

Other considerations:

• Do not configure the operating system to use huge pages. See the Recommended OS Parameters
Settings in the Greenplum Installation Guide.

• When you configure resource group memory, consider memory requirements for mirror segments
that become primary segments during a failure to ensure that database operations can continue when
primary segments or segment hosts fail.

Memory Considerations when using Resource Groups
Available memory for resource groups may be limited on systems that use low or no swap space, and
that use the default vm.overcommit_ratio and gp_resource_group_memory_limit settings. To
ensure that Greenplum Database has a reasonable per-segment-host memory limit, you may be required
to increase one or more of the following configuration settings:

1. The swap size on the system.
2. The system's vm.overcommit_ratio setting.
3. The resource group gp_resource_group_memory_limit setting.

Configuring Resource Groups
Greenplum Database resource groups provide a powerful mechanism for managing the workload of the
cluster. Consider these general guidelines when you configure resource groups for your system:

• A transaction submitted by any Greenplum Database role with SUPERUSER privileges runs under
the default resource group named admin_group. Keep this in mind when scheduling and running
Greenplum administration utilities.

• Ensure that you assign each non-admin role a resource group. If you do not assign a resource
group to a role, queries submitted by the role are handled by the default resource group named
default_group.

• Use the CONCURRENCY resource group parameter to limit the number of active queries that members of
a particular resource group can run concurrently.

• Use the MEMORY_LIMIT and MEMORY_SPILL_RATIO parameters to control the maximum amount of
memory that queries running in the resource group can consume.

• Greenplum Database assigns unreserved memory (100 - (sum of all resource group MEMORY_LIMITs)
to a global shared memory pool. This memory is available to all queries on a first-come, first-served
basis.

• Alter resource groups dynamically to match the real requirements of the group for the workload and the
time of day.

• Use the gp_toolkit views to examine resource group resource usage and to monitor how the groups
are working.

• Consider using Pivotal Greenplum Command Center to create and manage resource groups, and to
define the criteria under which Command Center dynamically assigns a transaction to a resource group.

Low Memory Queries
A low statement_mem setting (for example, in the 10MB range) has been shown to increase
the performance of queries with low memory requirements. Use the memory_spill_ratio and
statement_mem server configuration parameters to override the setting on a per-query basis. For
example:

SET memory_spill_ratio=0;
SET statement_mem='10 MB';

Greenplum Database Best Practices Release Notes

625

Administrative Utilities and admin_group Concurrency
The default resource group for database transactions initiated by Greenplum Database SUPERUSERs is the
group named admin_group. The default CONCURRENCY value for the admin_group resource group is
10.

Certain Greenplum Database administrative utilities may use more than one CONCURRENCY slot at
runtime, such as gpbackup that you invoke with the --jobs option. If the utility(s) you run require more
concurrent transactions than that configured for admin_group, consider temporarily increasing the
group's MEMORY_LIMIT and CONCURRENCY values to meet the utility's requirement, making sure to return
these parameters back to their original settings when the utility completes.

Note: Memory allocation changes that you initiate with ALTER RESOURCE GROUP may not take
affect immediately due to resource consumption by currently running queries. Be sure to alter
resource group parameters in advance of your maintenance window.

Greenplum Database Best Practices Release Notes

626

Memory and Resource Management with Resource
Queues

Avoid memory errors and manage Greenplum Database resources.

Note: Resource groups are a newer resource management scheme that enforces memory, CPU,
and concurrent transaction limits in Greenplum Database. The Managing Resources topic provides
a comparison of the resource queue and the resource group management schemes. Refer to Using
Resource Groups for configuration and usage information for this resource management scheme.

Memory management has a significant impact on performance in a Greenplum Database cluster. The
default settings are suitable for most environments. Do not change the default settings until you understand
the memory characteristics and usage on your system.

• Resolving Out of Memory Errors
• Low Memory Queries
• Configuring Memory for Greenplum Database
• Configuring Resource Queues

Resolving Out of Memory Errors
An out of memory error message identifies the Greenplum segment, host, and process that experienced
the out of memory error. For example:

Out of memory (seg27 host.example.com pid=47093)
VM Protect failed to allocate 4096 bytes, 0 MB available

Some common causes of out-of-memory conditions in Greenplum Database are:

• Insufficient system memory (RAM) available on the cluster
• Improperly configured memory parameters
• Data skew at the segment level
• Operational skew at the query level

Following are possible solutions to out of memory conditions:

• Tune the query to require less memory
• Reduce query concurrency using a resource queue
• Validate the gp_vmem_protect_limit configuration parameter at the database level. See

calculations for the maximum safe setting in Configuring Memory for Greenplum Database.
• Set the memory quota on a resource queue to limit the memory used by queries executed within the

resource queue
• Use a session setting to reduce the statement_mem used by specific queries
• Decrease statement_mem at the database level
• Decrease the number of segments per host in the Greenplum Database cluster. This solution requires a

re-initializing Greenplum Database and reloading your data.
• Increase memory on the host, if possible. (Additional hardware may be required.)

Adding segment hosts to the cluster will not in itself alleviate out of memory problems. The memory used
by each query is determined by the statement_mem parameter and it is set when the query is invoked.
However, if adding more hosts allows decreasing the number of segments per host, then the amount of
memory allocated in gp_vmem_protect_limit can be raised.

Greenplum Database Best Practices Release Notes

627

Low Memory Queries
A low statement_mem setting (for example, in the 1-3MB range) has been shown to increase the
performance of queries with low memory requirements. Use the statement_mem server configuration
parameter to override the setting on a per-query basis. For example:

SET statement_mem='2MB';

Configuring Memory for Greenplum Database
Most out of memory conditions can be avoided if memory is thoughtfully managed.

It is not always possible to increase system memory, but you can prevent out-of-memory conditions by
configuring memory use correctly and setting up resource queues to manage expected workloads.

It is important to include memory requirements for mirror segments that become primary segments during
a failure to ensure that the cluster can continue when primary segments or segment hosts fail.

The following are recommended operating system and Greenplum Database memory settings:

• Do not configure the OS to use huge pages.
• vm.overcommit_memory

This is a Linux kernel parameter, set in /etc/sysctl.conf and it should always be set to 2. It
determines the method the OS uses for determining how much memory can be allocated to processes
and 2 is the only safe setting for Greenplum Database. Please review the sysctl parameters in the
Greenplum Database Installation Guide.

• vm.overcommit_ratio

This is a Linux kernel parameter, set in /etc/sysctl.conf. It is the percentage of RAM that is used
for application processes. The remainder is reserved for the operating system. The default on Red Hat
is 50.

Setting vm.overcommit_ratio too high may result in not enough memory being reserved for the
operating system, which can result in segment host failure or database failure. Setting the value too low
reduces the amount of concurrency and query complexity that can be run by reducing the amount of
memory available to Greenplum Database. When increasing the setting it is important to remember to
always reserve some memory for operating system activities.

See Greenplum Database Memory Overview for instructions to calculate a value for
vm.overcommit_ratio.

• gp_vmem_protect_limit

Use gp_vmem_protect_limit to set the maximum memory that the instance can allocate for all
work being done in each segment database. Never set this value larger than the physical RAM on the
system. If gp_vmem_protect_limit is too high, it is possible for memory to become exhausted on
the system and normal operations may fail, causing segment failures. If gp_vmem_protect_limit
is set to a safe lower value, true memory exhaustion on the system is prevented; queries may fail for
hitting the limit, but system disruption and segment failures are avoided, which is the desired behavior.

See Resource Queue Segment Memory Configuration for instructions to calculate a safe value for
gp_vmem_protect_limit.

• runaway_detector_activation_percent

Runaway Query Termination, introduced in Greenplum Database 4.3.4, prevents out of memory
conditions. The runaway_detector_activation_percent system parameter controls the
percentage of gp_vmem_protect_limit memory utilized that triggers termination of queries. It is
set on by default at 90%. If the percentage of gp_vmem_protect_limit memory that is utilized for
a segment exceeds the specified value, Greenplum Database terminates queries based on memory
usage, beginning with the query consuming the largest amount of memory. Queries are terminated until
the utilized percentage of gp_vmem_protect_limit is below the specified percentage.

Greenplum Database Best Practices Release Notes

628

• statement_mem

Use statement_mem to allocate memory used for a query per segment database. If additional memory
is required it will spill to disk. Set the optimal value for statement_mem as follows:

(vmprotect * .9) / max_expected_concurrent_queries

The default value of statement_mem is 125MB. For example, on a system that is configured with 8
segments per host, a query uses 1GB of memory on each segment server (8 segments # 125MB) with
the default statement_mem setting. Set statement_mem at the session level for specific queries
that require additional memory to complete. This setting works well to manage query memory on
clusters with low concurrency. For clusters with high concurrency also use resource queues to provide
additional control on what and how much is running on the system.

• gp_workfile_limit_files_per_query

Set gp_workfile_limit_files_per_query to limit the maximum number of temporary spill files
(workfiles) allowed per query. Spill files are created when a query requires more memory than it is
allocated. When the limit is exceeded the query is terminated. The default is zero, which allows an
unlimited number of spill files and may fill up the file system.

• gp_workfile_compression

If there are numerous spill files then set gp_workfile_compression to compress the spill files.
Compressing spill files may help to avoid overloading the disk subsystem with IO operations.

Configuring Resource Queues
Greenplum Database resource queues provide a powerful mechanism for managing the workload of the
cluster. Queues can be used to limit both the numbers of active queries and the amount of memory that
can be used by queries in the queue. When a query is submitted to Greenplum Database, it is added to a
resource queue, which determines if the query should be accepted and when the resources are available
to execute it.

• Associate all roles with an administrator-defined resource queue.

Each login user (role) is associated with a single resource queue; any query the user submits is
handled by the associated resource queue. If a queue is not explicitly assigned the user's queries are
handed by the default queue, pg_default.

• Do not run queries with the gpadmin role or other superuser roles.

Superusers are exempt from resource queue limits, therefore superuser queries always run regardless
of the limits set on their assigned queue.

• Use the ACTIVE_STATEMENTS resource queue parameter to limit the number of active queries that
members of a particular queue can run concurrently.

• Use the MEMORY_LIMIT parameter to control the total amount of memory that queries running through
the queue can utilize. By combining the ACTIVE_STATEMENTS and MEMORY_LIMIT attributes an
administrator can fully control the activity emitted from a given resource queue.

The allocation works as follows: Suppose a resource queue, sample_queue, has
ACTIVE_STATEMENTS set to 10 and MEMORY_LIMIT set to 2000MB. This limits the queue to
approximately 2 gigabytes of memory per segment. For a cluster with 8 segments per server, the total
usage per server is 16 GB for sample_queue (2GB * 8 segments/server). If a segment server has
64GB of RAM, there could be no more than four of this type of resource queue on the system before
there is a chance of running out of memory (4 queues * 16GB per queue).

Note that by using STATEMENT_MEM, individual queries running in the queue can allocate more than
their "share" of memory, thus reducing the memory available for other queries in the queue.

• Resource queue priorities can be used to align workloads with desired outcomes. Queues with MAX
priority throttle activity in all other queues until the MAX queue completes running all queries.

Greenplum Database Best Practices Release Notes

629

• Alter resource queues dynamically to match the real requirements of the queue for the workload and
time of day. You can script an operational flow that changes based on the time of day and type of usage
of the system and add crontab entries to execute the scripts.

• Use gptoolkit to view resource queue usage and to understand how the queues are working.

Greenplum Database Best Practices Release Notes

630

System Monitoring and Maintenance
Best practices for regular maintenance that will ensure Greenplum Database high availability and optimal
performance.

Monitoring
Greenplum Database includes utilities that are useful for monitoring the system.

The gp_toolkit schema contains several views that can be accessed using SQL commands to query
system catalogs, log files, and operating environment for system status information.

The gp_stats_missing view shows tables that do not have statistics and require ANALYZE to be run.

For additional information on gpstate and gpcheckperf refer to the Greenplum Database Utility Guide.
For information about the gp_toolkit schema, see the Greenplum Database Reference Guide.

gpstate
The gpstate utility program displays the status of the Greenplum system, including which segments are
down, master and segment configuration information (hosts, data directories, etc.), the ports used by the
system, and mapping of primary segments to their corresponding mirror segments.

Run gpstate -Q to get a list of segments that are marked "down" in the master system catalog.

To get detailed status information for the Greenplum system, run gpstate -s.

gpcheckperf
The gpcheckperf utility tests baseline hardware performance for a list of hosts. The results can help
identify hardware issues. It performs the following checks:

• disk I/O test – measures I/O performance by writing and reading a large file using the dd operating
system command. It reports read and write rates in megabytes per second.

• memory bandwidth test – measures sustainable memory bandwidth in megabytes per second using the
STREAM benchmark.

• network performance test – runs the gpnetbench network benchmark program (optionally netperf)
to test network performance. The test is run in one of three modes: parallel pair test (-r N), serial pair
test (-r n), or full-matrix test (-r M). The minimum, maximum, average, and median transfer rates are
reported in megabytes per second.

To obtain valid numbers from gpcheckperf, the database system must be stopped. The numbers from
gpcheckperf can be inaccurate even if the system is up and running with no query activity.

gpcheckperf requires a trusted host setup between the hosts involved in the performance test. It calls
gpssh and gpscp, so these utilities must also be in your PATH. Specify the hosts to check individually (-h
host1 -h host2 ...) or with -f hosts_file, where hosts_file is a text file containing a list of the
hosts to check. If you have more than one subnet, create a separate host file for each subnet so that you
can test the subnets separately.

By default, gpcheckperf runs the disk I/O test, the memory test, and a serial pair network performance
test. With the disk I/O test, you must use the -d option to specify the file systems you want to test. The
following command tests disk I/O and memory bandwidth on hosts listed in the subnet_1_hosts file:

$ gpcheckperf -f subnet_1_hosts -d /data1 -d /data2 -r ds

The -r option selects the tests to run: disk I/O (d), memory bandwidth (s), network parallel pair (N),
network serial pair test (n), network full-matrix test (M). Only one network mode can be selected per
execution. See the Greenplum Database Reference Guide for the detailed gpcheckperf reference.

Greenplum Database Best Practices Release Notes

631

Monitoring with Operating System Utilities
The following Linux/UNIX utilities can be used to assess host performance:

• iostat allows you to monitor disk activity on segment hosts.
• top displays a dynamic view of operating system processes.
• vmstat displays memory usage statistics.

You can use gpssh to run utilities on multiple hosts.

Best Practices
• Implement the "Recommended Monitoring and Maintenance Tasks" in the Greenplum Database

Administrator Guide.
• Run gpcheckperf at install time and periodically thereafter, saving the output to compare system

performance over time.
• Use all the tools at your disposal to understand how your system behaves under different loads.
• Examine any unusual event to determine the cause.
• Monitor query activity on the system by running explain plans periodically to ensure the queries are

running optimally.
• Review plans to determine whether index are being used and partition elimination is occurring as

expected.

Additional Information
• gpcheckperf reference in the Greenplum Database Utility Guide.
• "Recommended Monitoring and Maintenance Tasks" in the Greenplum Database Administrator Guide.
• Sustainable Memory Bandwidth in Current High Performance Computers. John D. McCalpin. Oct 12,

1995.
• www.netperf.org to use netperf, netperf must be installed on each host you test. See gpcheckperf

reference for more information.

Updating Statistics with ANALYZE
The most important prerequisite for good query performance is to begin with accurate statistics for the
tables. Updating stastistics with the ANALYZE statement enables the query planner to generate optimal
query plans. When a table is analyzed, information about the data is stored in the system catalog tables. If
the stored information is out of date, the planner can generate inefficient plans.

Generating Statistics Selectively
Running ANALYZE with no arguments updates statistics for all tables in the database. This can be a very
long-running process and it is not recommended. You should ANALYZE tables selectively when data has
changed or use the analyzedb utility.

Running ANALYZE on a large table can take a long time. If it is not feasible to run ANALYZE on all
columns of a very large table, you can generate statistics for selected columns only using ANALYZE
table(column, ...). Be sure to include columns used in joins, WHERE clauses, SORT clauses, GROUP
BY clauses, or HAVING clauses.

For a partitioned table, you can run ANALYZE on just partitions that have changed, for example, if you add
a new partition. Note that for partitioned tables, you can run ANALYZE on the parent (main) table, or on the
leaf nodes—the partition files where data and statistics are actually stored. The intermediate files for sub-
partitioned tables store no data or statistics, so running ANALYZE on them does not work. You can find the
names of the partition tables in the pg_partitions system catalog:

SELECT partitiontablename from pg_partitions WHERE tablename='parent_table;

http://www.cs.virginia.edu/%7Emccalpin/papers/bandwidth/bandwidth.html
http://www.netperf.org/netperf

Greenplum Database Best Practices Release Notes

632

Improving Statistics Quality
There is a trade-off between the amount of time it takes to generate statistics and the quality, or accuracy,
of the statistics.

To allow large tables to be analyzed in a reasonable amount of time, ANALYZE takes a random sample of
the table contents, rather than examining every row. To increase the number of sample values for all table
columns adjust the default_statistics_target configuration parameter. The target value ranges
from 1 to 1000; the default target value is 100. The default_statistics_target variable applies to
all columns by default, and specifies the number of values that are stored in the list of common values. A
larger target may improve the quality of the query planner’s estimates, especially for columns with irregular
data patterns. default_statistics_target can be set at the master/session level and requires a
reload.

When to Run ANALYZE
Run ANALYZE:

• after loading data,
• after CREATE INDEX operations,
• and after INSERT, UPDATE, and DELETE operations that significantly change the underlying data.

ANALYZE requires only a read lock on the table, so it may be run in parallel with other database activity,
but do not run ANALYZE while performing loads, INSERT, UPDATE, DELETE, and CREATE INDEX
operations.

Configuring Automatic Statistics Collection
The gp_autostats_mode configuration parameter, together with the
gp_autostats_on_change_threshold parameter, determines when an automatic analyze operation
is triggered. When automatic statistics collection is triggered, the planner adds an ANALYZE step to the
query.

By default, gp_autostats_mode is on_no_stats, which triggers statistics collection for CREATE TABLE
AS SELECT, INSERT, or COPY operations on any table that has no existing statistics.

Setting gp_autostats_mode to on_change triggers statistics collection only when the number of rows
affected exceeds the threshold defined by gp_autostats_on_change_threshold, which has a default
value of 2147483647. Operations that can trigger automatic statistics collection with on_change are:
CREATE TABLE AS SELECT, UPDATE, DELETE, INSERT, and COPY.

Setting gp_autostats_mode to none disables automatics statistics collection.

For partitioned tables, automatic statistics collection is not triggered if data is inserted from the top-level
parent table of a partitioned table. But automatic statistics collection is triggered if data is inserted directly
in a leaf table (where the data is stored) of the partitioned table.

Managing Bloat in a Database
Database bloat occurs in heap tables, append-optimized tables, indexes, and system catalogs and affects
database performance and disk usage. You can detect database bloat and remove it from the database.

• About Bloat
• Detecting Bloat
• Removing Bloat from Database Tables
• Removing Bloat from Append-Optimized Tables
• Removing Bloat from Indexes
• Removing Bloat from System Catalogs

Greenplum Database Best Practices Release Notes

633

About Bloat
Database bloat is disk space that was used by a table or index and is available for reuse by the database
but has not been reclaimed. Bloat is created when updating tables or indexes.

Because Greenplum Database heap tables use the PostgreSQL Multiversion Concurrency Control (MVCC)
storage implementation, a deleted or updated row is logically deleted from the database, but a non-visible
image of the row remains in the table. These deleted rows, also called expired rows, are tracked in a
free space map. Running VACUUM marks the expired rows as free space that is available for reuse by
subsequent inserts.

It is normal for tables that have frequent updates to have a small or moderate amount of expired rows and
free space that will be reused as new data is added. But when the table is allowed to grow so large that
active data occupies just a small fraction of the space, the table has become significantly bloated. Bloated
tables require more disk storage and additional I/O that can slow down query execution.

Important:

It is very important to run VACUUM on individual tables after large UPDATE and DELETE operations
to avoid the necessity of ever running VACUUM FULL.

Running the VACUUM command regularly on tables prevents them from growing too large. If the table does
become significantly bloated, the VACUUM FULL command must be used to compact the table data.

If the free space map is not large enough to accommodate all of the expired rows, the VACUUM command
is unable to reclaim space for expired rows that overflowed the free space map. The disk space may only
be recovered by running VACUUM FULL, which locks the table, creates a new table, copies the table data
to the new table, and then drops old table. This is an expensive operation that can take an exceptional
amount of time to complete with a large table.

Warning: VACUUM FULL acquires an ACCESS EXCLUSIVE lock on tables. You should not run
VACUUM FULL <database_name>. If you run VACUUM FULL on tables, run it during a time when
users and applications do not require access to the tables, such as during a time of low activity, or
during a maintenance window.

Detecting Bloat
The statistics collected by the ANALYZE statement can be used to calculate the expected number of disk
pages required to store a table. The difference between the expected number of pages and the actual
number of pages is a measure of bloat. The gp_toolkit schema provides the gp_bloat_diag view
that identifies table bloat by comparing the ratio of expected to actual pages. To use it, make sure statistics
are up to date for all of the tables in the database, then run the following SQL:

gpadmin=# SELECT * FROM gp_toolkit.gp_bloat_diag;
 bdirelid | bdinspname | bdirelname | bdirelpages | bdiexppages |
 bdidiag
----------+------------+------------+-------------+-------------
+---------------------------------------
 21488 | public | t1 | 97 | 1 |
 significant amount of bloat suspected
(1 row)

The results include only tables with moderate or significant bloat. Moderate bloat is reported when the ratio
of actual to expected pages is greater than four and less than ten. Significant bloat is reported when the
ratio is greater than ten.

The gp_toolkit.gp_bloat_expected_pages view lists the actual number of used pages and
expected number of used pages for each database object.

gpadmin=# SELECT * FROM gp_toolkit.gp_bloat_expected_pages LIMIT 5;
 btdrelid | btdrelpages | btdexppages
----------+-------------+-------------

Greenplum Database Best Practices Release Notes

634

 10789 | 1 | 1
 10794 | 1 | 1
 10799 | 1 | 1
 5004 | 1 | 1
 7175 | 1 | 1
(5 rows)

The btdrelid is the object ID of the table. The btdrelpages column reports the number of pages the
table uses; the btdexppages column is the number of pages expected. Again, the numbers reported are
based on the table statistics, so be sure to run ANALYZE on tables that have changed.

Removing Bloat from Database Tables
The VACUUM command adds expired rows to the free space map so that the space can be reused. When
VACUUM is run regularly on a table that is frequently updated, the space occupied by the expired rows can
be promptly reused, preventing the table file from growing larger. It is also important to run VACUUM before
the free space map is filled. For heavily updated tables, you may need to run VACUUM at least once a day
to prevent the table from becoming bloated.

Warning: When a table is significantly bloated, it is better to run VACUUM before running ANALYZE.
Analyzing a severely bloated table can generate poor statistics if the sample contains empty pages,
so it is good practice to vacuum a bloated table before analyzing it.

When a table accumulates significant bloat, running the VACUUM command is insufficient. For small tables,
running VACUUM FULL <table_name> can reclaim space used by rows that overflowed the free space
map and reduce the size of the table file. However, a VACUUM FULL statement is an expensive operation
that requires an ACCESS EXCLUSIVE lock and may take an exceptionally long and unpredictable amount
of time to finish for large tables. You should run VACUUM FULL on tables during a time when users and
applications do not require access to the tables being vacuumed, such as during a time of low activity, or
during a maintenance window.

Removing Bloat from Append-Optimized Tables
Append-optimized tables are handled much differently than heap tables. Although append-optimized tables
allow update, insert, and delete operations, these operations are not optimized and are not recommended
with append-optimized tables. If you heed this advice and use append-optimized for load-once/read-many
workloads, VACUUM on an append-optimized table runs almost instantaneously.

If you do run UPDATE or DELETE commands on an append-optimized table, expired rows are tracked in
an auxiliary bitmap instead of the free space map. VACUUM is the only way to recover the space. Running
VACUUM on an append-optimized table with expired rows compacts a table by rewriting the entire table
without the expired rows. However, no action is performed if the percentage of expired rows in the table
exceeds the value of the gp_appendonly_compaction_threshold configuration parameter, which is
10 (10%) by default. The threshold is checked on each segment, so it is possible that a VACUUM statement
will compact an append-only table on some segments and not others. Compacting append-only tables can
be disabled by setting the gp_appendonly_compaction parameter to no.

Removing Bloat from Indexes
The VACUUM command only recovers space from tables. To recover the space from indexes, recreate them
using the REINDEX command.

To rebuild all indexes on a table run REINDEX table_name;. To rebuild a particular index, run REINDEX
index_name;. REINDEX sets the reltuples and relpages to 0 (zero) for the index, To update those
statistics, run ANALYZE on the table after reindexing.

Removing Bloat from System Catalogs
Greenplum Database system catalog tables are heap tables and can become bloated over time. As
database objects are created, altered, or dropped, expired rows are left in the system catalogs. Using

Greenplum Database Best Practices Release Notes

635

gpload to load data contributes to the bloat since gpload creates and drops external tables. (Rather than
use gpload, it is recommended to use gpfdist to load data.)

Bloat in the system catalogs increases the time require to scan the tables, for example, when creating
explain plans. System catalogs are scanned frequently and if they become bloated, overall system
performance is degraded.

It is recommended to run VACUUM on system catalog tables nightly and at least weekly. At the same time,
running REINDEX SYSTEM removes bloat from the indexes. Alternatively, you can reindex system tables
using the reindexdb utility with the -s (--system) option. After removing catalog bloat, run ANALYZE to
update catalog table statistics.

These are Greenplum Database system catalog maintenance steps.

1. Perform a REINDEX on the system catalog tables to rebuild the system catalog indexes. This removes
bloat in the indexes and improves VACUUM performance.

Note: When performing REINDEX on the system catalog tables, locking will occur on the
tables and might have an impact on currently running queries. You can schedule the REINDEX
operation during a period of low activity to avoid disrupting ongoing business operations.

2. Perform a VACUUM on system catalog tables.
3. Perform an ANALYZE on the system catalog tables to update the table statistics.

If you are performing system catalog maintenance during a maintenance period and you need to stop a
process due to time constraints, run the Greenplum Database function pg_cancel_backend(<PID>) to
safely stop a Greenplum Database process.

The following script runs REINDEX, VACUUM, and ANALYZE on the system catalogs.

#!/bin/bash
DBNAME="<database_name>"
SYSTABLES="' pg_catalog.' || relname || ';' from pg_class a, pg_namespace b \
where a.relnamespace=b.oid and b.nspname='pg_catalog' and a.relkind='r'"

reindexdb -s -d $DBNAME
psql -tc "SELECT 'VACUUM' || $SYSTABLES" $DBNAME | psql -a $DBNAME
analyzedb -s pg_catalog -d $DBNAME

If the system catalogs become significantly bloated, you must run VACUUM FULL during a scheduled
downtime period. During this period, stop all catalog activity on the system; VACUUM FULL takes ACCESS
EXCLUSIVE locks against the system catalog. Running VACUUM regularly on system catalog tables can
prevent the need for this more costly procedure.

These are steps for intensive system catalog maintenance.

1. Stop all catalog activity on the Greenplum Database system.
2. Perform a REINDEX on the system catalog tables to rebuild the system catalog indexes. This removes

bloat in the indexes and improves VACUUM performance.
3. Perform a VACUUM FULL on the system catalog tables. See the following Note.
4. Perform an ANALYZE on the system catalog tables to update the catalog table statistics.

Note: The system catalog table pg_attribute is usually the largest catalog table. If the
pg_attribute table is significantly bloated, a VACUUM FULL operation on the table might require
a significant amount of time and might need to be performed separately. The presence of both of
these conditions indicate a significantly bloated pg_attribute table that might require a long
VACUUM FULL time:

• The pg_attribute table contains a large number of records.
• The diagnostic message for pg_attribute is significant amount of bloat in the

gp_toolkit.gp_bloat_diag view.

Greenplum Database Best Practices Release Notes

636

Monitoring Greenplum Database Log Files
Know the location and content of system log files and monitor them on a regular basis and not just when
problems arise.

The following table shows the locations of the various Greenplum Database log files. In file paths:

• $GPADMIN_HOME refers to the home directory of the gpadmin operating system user.
• $MASTER_DATA_DIRECTORY refers to the master data directory on the Greenplum Database master

host.
• $GPDATA_DIR refers to a data directory on the Greenplum Database segment host.
• host identifies the Greenplum Database segment host name.
• segprefix identifies the segment prefix.
• N identifies the segment instance number.
• date is a date in the format YYYYMMDD.

Path Description

$GPADMIN_HOME/gpAdminLogs/* Many different types of log files, directory on each
server. $GPADMIN_HOME is the default location for
the gpAdminLogs/ directory. You can specify a
different location when you run an administrative
utility command.

$GPADMIN_HOME/gpAdminLogs/
gpinitsystem_date.log

system initialization log

$GPADMIN_HOME/gpAdminLogs/
gpstart_date.log

start log

$GPADMIN_HOME/gpAdminLogs/gpstop_date.
log

stop log

$GPADMIN_HOME/gpAdminLogs/gpsegstart.
py_host:gpadmin_date.log

segment host start log

$GPADMIN_HOME/gpAdminLogs/gpsegstop.
py_host:gpadmin_date.log

segment host stop log

$MASTER_DATA_DIRECTORY/pg_log/startup.
log, $GPDATA_DIR/segprefixN/pg_log/
startup.log

segment instance start log

$MASTER_DATA_DIRECTORY/gpperfmon/logs/
gpmon.*.log

gpperfmon logs

$MASTER_DATA_DIRECTORY/pg_log/*.csv,
$GPDATA_DIR/segprefixN/pg_log/*.csv

master and segment database logs

$GPDATA_DIR/mirror/segprefixN/pg_log/
*.csv

mirror segment database logs

$GPDATA_DIR/primary/segprefixN/pg_log/
*.csv

primary segment database logs

/var/log/messages Global Linux system messages

Use gplogfilter -t (--trouble) first to search the master log for messages beginning with ERROR:,
FATAL:, or PANIC:. Messages beginning with WARNING may also provide useful information.

Greenplum Database Best Practices Release Notes

637

To search log files on the segment hosts, use the Greenplum gplogfilter utility with gpssh to connect
to segment hosts from the master host. You can identify corresponding log entries in segment logs by the
statement_id.

Greenplum Database can be configured to rotate database logs based on the size and/or age of the
current log file. The log_rotation_size configuration parameter sets the size of an individual log file
that triggers rotation. When the current log file size is equal to or greater than this size, the file is closed
and a new log file is created. The log_rotation_age configuration parameter specifies the age of the
current log file that triggers rotation. When the specified time has elapsed since the current log file was
created, a new log file is created. The default log_rotation_age, 1d, creates a new log file 24 hours
after the current log file was created.

Greenplum Database Best Practices Release Notes

638

Loading Data
Description of the different ways to add data to Greenplum Database.

INSERT Statement with Column Values
A singleton INSERT statement with values adds a single row to a table. The row flows through the master
and is distributed to a segment. This is the slowest method and is not suitable for loading large amounts of
data.

COPY Statement
The PostgreSQL COPY statement copies data from an external file into a database table. It can insert
multiple rows more efficiently than an INSERT statement, but the rows are still passed through the master.
All of the data is copied in one command; it is not a parallel process.

Data input to the COPY command is from a file or the standard input. For example:

COPY table FROM '/data/mydata.csv' WITH CSV HEADER;

Use COPY to add relatively small sets of data, for example dimension tables with up to ten thousand rows,
or one-time data loads.

Use COPY when scripting a process that loads small amounts of data, less than 10 thousand rows.

Since COPY is a single command, there is no need to disable autocommit when you use this method to
populate a table.

You can run multiple concurrent COPY commands to improve performance.

External Tables
External tables provide access to data in sources outside of Greenplum Database. They can be accessed
with SELECT statements and are commonly used with the Extract, Load, Transform (ELT) pattern, a variant
of the Extract, Transform, Load (ETL) pattern that takes advantage of Greenplum Database's fast parallel
data loading capability.

With ETL, data is extracted from its source, transformed outside of the database using external
transformation tools, such as Informatica or Datastage, and then loaded into the database.

With ELT, Greenplum external tables provide access to data in external sources, which could be read-only
files (for example, text, CSV, or XML files), Web servers, Hadoop file systems, executable OS programs, or
the Greenplum gpfdist file server, described in the next section. External tables support SQL operations
such as select, sort, and join so the data can be loaded and transformed simultaneously, or loaded into a
load table and transformed in the database into target tables.

The external table is defined with a CREATE EXTERNAL TABLE statement, which has a LOCATION clause
to define the location of the data and a FORMAT clause to define the formatting of the source data so that
the system can parse the input data. Files use the file:// protocol, and must reside on a segment host
in a location accessible by the Greenplum superuser. The data can be spread out among the segment
hosts with no more than one file per primary segment on each host. The number of files listed in the
LOCATION clause is the number of segments that will read the external table in parallel.

External Tables with Gpfdist
The fastest way to load large fact tables is to use external tables with gpdist. gpfdist is a file server
program using an HTTP protocol that serves external data files to Greenplum Database segments

Greenplum Database Best Practices Release Notes

639

in parallel. A gpfdist instance can serve 200 MB/second and many gpfdist processes can run
simultaneously, each serving up a portion of the data to be loaded. When you begin the load using a
statement such as INSERT INTO <table> SELECT * FROM <external_table>, the INSERT
statement is parsed by the master and distributed to the primary segments. The segments connect to the
gpfdist servers and retrieve the data in parallel, parse and validate the data, calculate a hash from the
distribution key data and, based on the hash key, send the row to its destination segment. By default, each
gpfdist instance will accept up to 64 connections from segments. With many segments and gpfdist
servers participating in the load, data can be loaded at very high rates.

Primary segments access external files in parallel when using gpfdist up to the value of
gp_external_max_segments. When optimizing gpfdist performance, maximize the parallelism as the
number of segments increase. Spread the data evenly across as many ETL nodes as possible. Split very
large data files into equal parts and spread the data across as many file systems as possible.

Run two gpfdist instances per file system. gpfdist tends to be CPU bound on the segment nodes
when loading. But if, for example, there are eight racks of segment nodes, there is lot of available CPU on
the segments to drive more gpfdist processes. Run gpfdist on as many interfaces as possible. Be
aware of bonded NICs and be sure to start enough gpfdist instances to work them.

It is important to keep the work even across all these resources. The load is as fast as the slowest node.
Skew in the load file layout will cause the overall load to bottleneck on that resource.

The gp_external_max_segs configuration parameter controls the number of segments each gpfdist
process serves. The default is 64. You can set a different value in the postgresql.conf configuration
file on the master. Always keep gp_external_max_segs and the number of gpfdist processes an
even factor; that is, the gp_external_max_segs value should be a multiple of the number of gpfdist
processes. For example, if there are 12 segments and 4 gpfdist processes, the planner round robins the
segment connections as follows:

Segment 1 - gpfdist 1
Segment 2 - gpfdist 2
Segment 3 - gpfdist 3
Segment 4 - gpfdist 4
Segment 5 - gpfdist 1
Segment 6 - gpfdist 2
Segment 7 - gpfdist 3
Segment 8 - gpfdist 4
Segment 9 - gpfdist 1
Segment 10 - gpfdist 2
Segment 11 - gpfdist 3
Segment 12 - gpfdist 4

Drop indexes before loading into existing tables and re-create the index after loading. Creating an index on
pre-existing data is faster than updating it incrementally as each row is loaded.

Run ANALYZE on the table after loading. Disable automatic statistics collection during loading by setting
gp_autostats_mode to NONE. Run VACUUM after load errors to recover space.

Performing small, high frequency data loads into heavily partitioned column-oriented tables can have a
high impact on the system because of the number of physical files accessed per time interval.

Gpload
gpload is a data loading utility that acts as an interface to the Greenplum external table parallel loading
feature.

Beware of using gpload as it can cause catalog bloat by creating and dropping external tables. Use
gpfdist instead, since it provides the best performance.

gpload executes a load using a specification defined in a YAML-formatted control file. It performs the
following operations:

Greenplum Database Best Practices Release Notes

640

• Invokes gpfdist processes
• Creates a temporary external table definition based on the source data defined
• Executes an INSERT, UPDATE, or MERGE operation to load the source data into the target table in the

database
• Drops the temporary external table
• Cleans up gpfdist processes

The load is accomplished in a single transaction.

Best Practices
• Drop any indexes on an existing table before loading data and recreate the indexes after loading. Newly

creating an index is faster than updating an index incrementally as each row is loaded.
• Disable automatic statistics collection during loading by setting the gp_autostats_mode configuration

parameter to NONE.
• External tables are not intended for frequent or ad hoc access.
• External tables have no statistics to inform the optimizer. You can set rough estimates for the number

of rows and disk pages for the external table in the pg_class system catalog with a statement like the
following:

UPDATE pg_class SET reltuples=400000, relpages=400
WHERE relname='myexttable';

• When using gpfdist, maximize network bandwidth by running one gpfdist instance for each NIC on
the ETL server. Divide the source data evenly between the gpfdist instances.

• When using gpload, run as many simultaneous gpload instances as resources allow. Take
advantage of the CPU, memory, and networking resources available to increase the amount of data
that can be transferred from ETL servers to the Greenplum Database.

• Use the SEGMENT REJECT LIMIT clause of the COPY statement to set a limit for the number or
percentage of rows that can have errors before the COPY FROM command is aborted. The reject
limit is per segment; when any one segment exceeds the limit, the command is aborted and no rows
are added. Use the LOG ERRORS clause to save error rows. If a row has errors in the formatting—
for example missing or extra values, or incorrect data types—Greenplum Database stores the error
information and row internally. Use the gp_read_error_log() built-in SQL function to access this
stored information.

• If the load has errors, run VACUUM on the table to recover space.
• After you load data into a table, run VACUUM on heap tables, including system catalogs, and ANALYZE

on all tables. It is not necessary to run VACUUM on append-optimized tables. If the table is partitioned,
you can vacuum and analyze just the partitions affected by the data load. These steps clean up any
rows from aborted loads, deletes, or updates and update statistics for the table.

• Recheck for segment skew in the table after loading a large amount of data. You can use a query like
the following to check for skew:

• By default, gpfdist assumes a maximum record size of 32K. To load data records larger than 32K,
you must increase the maximum row size parameter by specifying the -m <bytes> option on the
gpfdist command line. If you use gpload, set the MAX_LINE_LENGTH parameter in the gpload
control file.

Note: Integrations with Informatica Power Exchange are currently limited to the default 32K
record length.

Additional Information
See the Greenplum Database Reference Guide for detailed instructions for loading data using gpfdist
and gpload.

Greenplum Database Best Practices Release Notes

641

Security
Best practices to ensure the highest level of system security.

Basic Security Best Practices
• Secure the gpadmin system user. Greenplum requires a UNIX user id to install and initialize

the Greenplum Database system. This system user is referred to as gpadmin in the Greenplum
documentation. The gpadmin user is the default database superuser in Greenplum Database, as
well as the file system owner of the Greenplum installation and its underlying data files. The default
administrator account is fundamental to the design of Greenplum Database. The system cannot
run without it, and there is no way to limit the access of the gpadmin user id. This gpadmin user
can bypass all security features of Greenplum Database. Anyone who logs on to a Greenplum host
with this user id can read, alter, or delete any data, including system catalog data and database
access rights. Therefore, it is very important to secure the gpadmin user id and only allow essential
system administrators access to it. Administrators should only log in to Greenplum as gpadmin when
performing certain system maintenance tasks (such as upgrade or expansion). Database users should
never log on as gpadmin, and ETL or production workloads should never run as gpadmin.

• Assign a distinct role to each user who logs in. For logging and auditing purposes, each user who is
allowed to log in to Greenplum Database should be given their own database role. For applications or
web services, consider creating a distinct role for each application or service. See "Creating New Roles
(Users)" in the Greenplum Database Administrator Guide.

• Use groups to manage access privileges. See "Creating Groups (Role Membership)" in the Greenplum
Database Administrator Guide.

• Limit users who have the SUPERUSER role attribute. Roles that are superusers bypass all access
privilege checks in Greenplum Database, as well as resource queuing. Only system administrators
should be given superuser rights. See "Altering Role Attributes" in the Greenplum Database
Administrator Guide.

Password Strength Guidelines
To protect the network from intrusion, system administrators should verify the passwords used within an
organization are strong ones. The following recommendations can strengthen a password:

• Minimum password length recommendation: At least 9 characters. MD5 passwords should be 15
characters or longer.

• Mix upper and lower case letters.
• Mix letters and numbers.
• Include non-alphanumeric characters.
• Pick a password you can remember.

The following are recommendations for password cracker software that you can use to determine the
strength of a password.

• John The Ripper. A fast and flexible password cracking program. It allows the use of multiple word lists
and is capable of brute-force password cracking. It is available online at http://www.openwall.com/john/.

• Crack. Perhaps the most well-known password cracking software, Crack is also very fast, though not
as easy to use as John The Ripper. It can be found online at http://www.crypticide.com/alecm/security/
crack/c50-faq.html.

The security of the entire system depends on the strength of the root password. This password should be
at least 12 characters long and include a mix of capitalized letters, lowercase letters, special characters,
and numbers. It should not be based on any dictionary word.

Password expiration parameters should be configured.

http://www.commoncriteriaportal.org/products/?expand#ALL
http://www.commoncriteriaportal.org/products/?expand#ALL
http://www.commoncriteriaportal.org/products/?expand#ALL

Greenplum Database Best Practices Release Notes

642

Ensure the following line exists within the file /etc/libuser.conf under the [import] section.

login_defs = /etc/login.defs

Ensure no lines in the [userdefaults] section begin with the following text, as these words override
settings from /etc/login.defs:

• LU_SHADOWMAX

• LU_SHADOWMIN

• LU_SHADOWWARNING

Ensure the following command produces no output. Any accounts listed by running this command should
be locked.

grep "^+:" /etc/passwd /etc/shadow /etc/group

Note: We strongly recommend that customers change their passwords after initial setup.

cd /etc
chown root:root passwd shadow group gshadow
chmod 644 passwd group
chmod 400 shadow gshadow

Find all the files that are world-writable and that do not have their sticky bits set.

find / -xdev -type d \(-perm -0002 -a ! -perm -1000 \) -print

Set the sticky bit (# chmod +t {dir}) for all the directories that result from running the previous
command.

Find all the files that are world-writable and fix each file listed.

find / -xdev -type f -perm -0002 -print

Set the right permissions (# chmod o-w {file}) for all the files generated by running the
aforementioned command.

Find all the files that do not belong to a valid user or group and either assign an owner or remove the file,
as appropriate.

find / -xdev \(-nouser -o -nogroup \) -print

Find all the directories that are world-writable and ensure they are owned by either root or a system
account (assuming only system accounts have a User ID lower than 500). If the command generates any
output, verify the assignment is correct or reassign it to root.

find / -xdev -type d -perm -0002 -uid +500 -print

Authentication settings such as password quality, password expiration policy, password reuse, password
retry attempts, and more can be configured using the Pluggable Authentication Modules (PAM) framework.
PAM looks in the directory /etc/pam.d for application-specific configuration information. Running
authconfig or system-config-authentication will re-write the PAM configuration files, destroying
any manually made changes and replacing them with system defaults.

Greenplum Database Best Practices Release Notes

643

The default pam_cracklib PAM module provides strength checking for passwords. To configure
pam_cracklib to require at least one uppercase character, lowercase character, digit, and special
character, as recommended by the U.S. Department of Defense guidelines, edit the file /etc/pam.d/
system-auth to include the following parameters in the line corresponding to password requisite
pam_cracklib.so try_first_pass.

retry=3:
dcredit=-1. Require at least one digit
ucredit=-1. Require at least one upper case character
ocredit=-1. Require at least one special character
lcredit=-1. Require at least one lower case character
minlen-14. Require a minimum password length of 14.

For example:

password required pam_cracklib.so try_first_pass retry=3\minlen=14
 dcredit=-1 ucredit=-1 ocredit=-1 lcredit=-1

These parameters can be set to reflect your security policy requirements. Note that the password
restrictions are not applicable to the root password.

The pam_tally2 PAM module provides the capability to lock out user accounts after a specified number
of failed login attempts. To enforce password lockout, edit the file /etc/pam.d/system-auth to include
the following lines:

• The first of the auth lines should include:

auth required pam_tally2.so deny=5 onerr=fail unlock_time=900

• The first of the account lines should include:

account required pam_tally2.so

Here, the deny parameter is set to limit the number of retries to 5 and the unlock_time has been set to
900 seconds to keep the account locked for 900 seconds before it is unlocked. These parameters may be
configured appropriately to reflect your security policy requirements. A locked account can be manually
unlocked using the pam_tally2 utility:

/sbin/pam_tally2 --user {username} -reset

You can use PAM to limit the reuse of recent passwords. The remember option for the pam_ unix
module can be set to remember the recent passwords and prevent their reuse. To accomplish this, edit the
appropriate line in /etc/pam.d/system-auth to include the remember option.

For example:

password sufficient pam_unix.so [… existing_options …]
remember=5

You can set the number of previous passwords to remember to appropriately reflect your security policy
requirements.

cd /etc
chown root:root passwd shadow group gshadow
chmod 644 passwd group
chmod 400 shadow gshadow

Greenplum Database Best Practices Release Notes

644

Encrypting Data and Database Connections
Best practices for implementing encryption and managing keys.

Encryption can be used to protect data in a Greenplum Database system in the following ways:

• Connections between clients and the master database can be encrypted with SSL. This is enabled
by setting the ssl server configuration parameter to on and editing the pg_hba.conf file. See
"Encrypting Client/Server Connections" in the Greenplum Database Administrator Guide for information
about enabling SSL in Greenplum Database.

• Greenplum Database 4.2.1 and above allow SSL encryption of data in transit between the Greenplum
parallel file distribution server, gpfdist, and segment hosts. See Encrypting gpfdist Connections for
more information.

• Network communications between hosts in the Greenplum Database cluster can be encrypted using
IPsec. An authenticated, encrypted VPN is established between every pair of hosts in the cluster.
Check your operating system documentation for IPsec support, or consider a third-party solution such
as that provided by Zettaset.

• The pgcrypto module of encryption/decryption functions protects data at rest in the database.
Encryption at the column level protects sensitive information, such as passwords, Social Security
numbers, or credit card numbers. See Encrypting Data in Tables using PGP for an example.

Best Practices
• Encryption ensures that data can be seen only by users who have the key required to decrypt the data.
• Encrypting and decrypting data has a performance cost; only encrypt data that requires encryption.
• Do performance testing before implementing any encryption solution in a production system.
• Server certificates in a production Greenplum Database system should be signed by a certificate

authority (CA) so that clients can authenticate the server. The CA may be local if all clients are local to
the organization.

• Client connections to Greenplum Database should use SSL encryption whenever the connection goes
through an insecure link.

• A symmetric encryption scheme, where the same key is used to both encrypt and decrypt, has better
performance than an asymmetric scheme and should be used when the key can be shared safely.

• Use functions from the pgcrypto module to encrypt data on disk. The data is encrypted and decrypted
in the database process, so it is important to secure the client connection with SSL to avoid transmitting
unencrypted data.

• Use the gpfdists protocol to secure ETL data as it is loaded into or unloaded from the database. See
Encrypting gpfdist Connections.

Key Management
Whether you are using symmetric (single private key) or asymmetric (public and private key) cryptography,
it is important to store the master or private key securely. There are many options for storing encryption
keys, for example, on a file system, key vault, encrypted USB, trusted platform module (TPM), or hardware
security module (HSM).

Consider the following questions when planning for key management:

• Where will the keys be stored?
• When should keys expire?
• How are keys protected?
• How are keys accessed?
• How can keys be recovered and revoked?

https://www.zettaset.com

Greenplum Database Best Practices Release Notes

645

The Open Web Application Security Project (OWASP) provides a very comprehensive guide to securing
encryption keys.

Encrypting Data at Rest with pgcrypto
The pgcrypto module for Greenplum Database provides functions for encrypting data at rest in the
database. Administrators can encrypt columns with sensitive information, such as social security numbers
or credit card numbers, to provide an extra layer of protection. Database data stored in encrypted form
cannot be read by users who do not have the encryption key, and the data cannot be read directly from
disk.

pgcrypto is installed by default when you install Greenplum Database. You must explicitly enable pgcrypto
in each database in which you want to use the module.

pgcrypto allows PGP encryption using symmetric and asymmetric encryption. Symmetric encryption
encrypts and decrypts data using the same key and is faster than asymmetric encryption. It is the preferred
method in an environment where exchanging secret keys is not an issue. With asymmetric encryption, a
public key is used to encrypt data and a private key is used to decrypt data. This is slower then symmetric
encryption and it requires a stronger key.

Using pgcrypto always comes at the cost of performance and maintainability. It is important to use
encryption only with the data that requires it. Also, keep in mind that you cannot search encrypted data by
indexing the data.

Before you implement in-database encryption, consider the following PGP limitations.

• No support for signing. That also means that it is not checked whether the encryption sub-key belongs
to the master key.

• No support for encryption key as master key. This practice is generally discouraged, so this limitation
should not be a problem.

• No support for several subkeys. This may seem like a problem, as this is common practice. On the
other hand, you should not use your regular GPG/PGP keys with pgcrypto, but create new ones, as the
usage scenario is rather different.

Greenplum Database is compiled with zlib by default; this allows PGP encryption functions to compress
data before encrypting. When compiled with OpenSSL, more algorithms will be available.

Because pgcrypto functions run inside the database server, the data and passwords move between
pgcrypto and the client application in clear-text. For optimal security, you should connect locally or use SSL
connections and you should trust both the system and database administrators.

pgcrypto configures itself according to the findings of the main PostgreSQL configure script.

When compiled with zlib, pgcrypto encryption functions are able to compress data before encrypting.

Pgcrypto has various levels of encryption ranging from basic to advanced built-in functions. The following
table shows the supported encryption algorithms.

Table 62: Pgcrypto Supported Encryption Functions

Value Functionality Built-in With OpenSSL

MD5 yes yes

SHA1 yes yes

SHA224/256/384/512 yes yes 6.

6 SHA2 algorithms were added to OpenSSL in version 0.9.8. For older versions, pgcrypto will use built-in
code

https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

Greenplum Database Best Practices Release Notes

646

Value Functionality Built-in With OpenSSL

Other digest algorithms no yes 7

Blowfish yes yes

AES yes yes8

DES/3DES/CAST5 no yes

Raw Encryption yes yes

PGP Symmetric-Key yes yes

PGP Public Key yes yes

Creating PGP Keys
To use PGP asymmetric encryption in Greenplum Database, you must first create public and private keys
and install them.

This section assumes you are installing Greenplum Database on a Linux machine with the Gnu Privacy
Guard (gpg) command line tool. Pivotal recommends using the latest version of GPG to create keys.
Download and install Gnu Privacy Guard (GPG) for your operating system from https://www.gnupg.org/
download/. On the GnuPG website you will find installers for popular Linux distributions and links for
Windows and Mac OS X installers.

1. As root, execute the following command and choose option 1 from the menu:

gpg --gen-key
gpg (GnuPG) 2.0.14; Copyright (C) 2009 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

gpg: directory `/root/.gnupg' created
gpg: new configuration file `/root/.gnupg/gpg.conf' created
gpg: WARNING: options in `/root/.gnupg/gpg.conf' are not yet active during
 this run
gpg: keyring `/root/.gnupg/secring.gpg' created
gpg: keyring `/root/.gnupg/pubring.gpg' created
Please select what kind of key you want:
 (1) RSA and RSA (default)
 (2) DSA and Elgamal
 (3) DSA (sign only)
 (4) RSA (sign only)
Your selection? 1

2. Respond to the prompts and follow the instructions, as shown in this example:

RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) Press enter to accept default key size
Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
 Key is valid for? (0) 365

7 Any digest algorithm OpenSSL supports is automatically picked up. This is not possible with ciphers, which
need to be supported explicitly.

8 AES is included in OpenSSL since version 0.9.7. For older versions, pgcrypto will use built-in code.

https://www.gnupg.org/download/
https://www.gnupg.org/download/

Greenplum Database Best Practices Release Notes

647

Key expires at Wed 13 Jan 2016 10:35:39 AM PST
Is this correct? (y/N) y

GnuPG needs to construct a user ID to identify your key.

Real name: John Doe
Email address: jdoe@email.com
Comment:
You selected this USER-ID:
 "John Doe <jdoe@email.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
You need a Passphrase to protect your secret key.
(For this demo the passphrase is blank.)
can't connect to `/root/.gnupg/S.gpg-agent': No such file or directory
You don't want a passphrase - this is probably a *bad* idea!
I will do it anyway. You can change your passphrase at any time,
using this program with the option "--edit-key".

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
gpg: /root/.gnupg/trustdb.gpg: trustdb created
gpg: key 2027CC30 marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdbgpg:
 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: next trustdb check due at 2016-01-13
pub 2048R/2027CC30 2015-01-13 [expires: 2016-01-13]
 Key fingerprint = 7EDA 6AD0 F5E0 400F 4D45 3259 077D 725E 2027
 CC30
uid John Doe <jdoe@email.com>
sub 2048R/4FD2EFBB 2015-01-13 [expires: 2016-01-13]

3. List the PGP keys by entering the following command:

gpg --list-secret-keys
/root/.gnupg/secring.gpg

sec 2048R/2027CC30 2015-01-13 [expires: 2016-01-13]
uid John Doe <jdoe@email.com>
ssb 2048R/4FD2EFBB 2015-01-13

2027CC30 is the public key and will be used to encrypt data in the database. 4FD2EFBB is the private
(secret) key and will be used to decrypt data.

4. Export the keys using the following commands:

gpg -a --export 4FD2EFBB > public.key
gpg -a --export-secret-keys 2027CC30 > secret.key

See the pgcrypto documentation for more information about PGP encryption functions.

https://www.postgresql.org/docs/9.4/pgcrypto.html

Greenplum Database Best Practices Release Notes

648

Encrypting Data in Tables using PGP
This section shows how to encrypt data inserted into a column using the PGP keys you generated.

1. Dump the contents of the public.key file and then copy it to the clipboard:

cat public.key
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2.0.14 (GNU/Linux)

mQENBFS1Zf0BCADNw8Qvk1V1C36Kfcwd3Kpm/dijPfRyyEwB6PqKyA05jtWiXZTh
2His1ojSP6LI0cSkIqMU9LAlncecZhRIhBhuVgKlGSgd9texg2nnSL9Admqik/yX
R5syVKG+qcdWuvyZg9oOOmeyjhc3n+kkbRTEMuM3flbMs8shOwzMvstCUVmuHU/V
. . .
WH+N2lasoUaoJjb2kQGhLOnFbJuevkyBylRz+hI/+8rJKcZOjQkmmK8Hkk8qb5x/
HMUc55H0g2qQAY0BpnJHgOOQ45Q6pk3G2/7Dbek5WJ6K1wUrFy51sNlGWE8pvgEx
/UUZB+dYqCwtvX0nnBu1KNCmk2AkEcFK3YoliCxomdOxhFOv9AKjjojDyC65KJci
Pv2MikPS2fKOAg1R3LpMa8zDEtl4w3vckPQNrQNnYuUtfj6ZoCxv
=XZ8J
-----END PGP PUBLIC KEY BLOCK-----

2. Create a table called userssn and insert some sensitive data, social security numbers for Bob and
Alice, in this example. Paste the public.key contents after "dearmor(".

CREATE TABLE userssn(ssn_id SERIAL PRIMARY KEY,
 username varchar(100), ssn bytea);

INSERT INTO userssn(username, ssn)
SELECT robotccs.username, pgp_pub_encrypt(robotccs.ssn, keys.pubkey) AS
 ssn
FROM (
 VALUES ('Alice', '123-45-6788'), ('Bob', '123-45-6799'))
 AS robotccs(username, ssn)
CROSS JOIN (SELECT dearmor('-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2.0.14 (GNU/Linux)

mQENBFS1Zf0BCADNw8Qvk1V1C36Kfcwd3Kpm/dijPfRyyEwB6PqKyA05jtWiXZTh
2His1ojSP6LI0cSkIqMU9LAlncecZhRIhBhuVgKlGSgd9texg2nnSL9Admqik/yX
R5syVKG+qcdWuvyZg9oOOmeyjhc3n+kkbRTEMuM3flbMs8shOwzMvstCUVmuHU/V
. . .
WH+N2lasoUaoJjb2kQGhLOnFbJuevkyBylRz+hI/+8rJKcZOjQkmmK8Hkk8qb5x/
HMUc55H0g2qQAY0BpnJHgOOQ45Q6pk3G2/7Dbek5WJ6K1wUrFy51sNlGWE8pvgEx
/UUZB+dYqCwtvX0nnBu1KNCmk2AkEcFK3YoliCxomdOxhFOv9AKjjojDyC65KJci
Pv2MikPS2fKOAg1R3LpMa8zDEtl4w3vckPQNrQNnYuUtfj6ZoCxv
=XZ8J
-----END PGP PUBLIC KEY BLOCK-----' AS pubkey) AS keys;

3. Verify that the ssn column is encrypted.

test_db=# select * from userssn;
ssn_id | 1
username | Alice
ssn | \301\300L\003\235M%_O
\322\357\273\001\010\000\272\227\010\341\216\360\217C\020\261)_\367
[\227\034\313:C\354d<\337\006Q\351('\2330\031lX\263Qf
\341\262\200\3015\235\036AK\242fL+\315g\322
7u\270*\304\361\355\220\021\330"\200%\264\274}R
\213\377\363\235\366\030\023)\364!\331\303\237t\277=
f \015\004\242\231\263\225%\032\271a\001\035\277\021\375X\232\304\305/
\340\334\0131\325\344[~\362\0
37-\251\336\303\340\377_\011\275\301/MY\334\343\245\244\372y\257S
\374\230\346\277\373W\346\230\276\
017fi\226Q\307\012\326\3646\000\326\005:E\364W\252=zz\010(:\343Y
\237\257iqU\0326\350=v0\362\327\350\

Greenplum Database Best Practices Release Notes

649

315G^\027:K_9\254\362\354\215<\001\304\357\331\355\323,\302\213Fe
\265\315\232\367\254\245%(\\\373
4\254\230\331\356\006B\257\333\326H\022\013\353\216F?\023\220\370\035vH5/
\227\344b\322\227\026\362=\
42\033\322<\001}\243\224;)\030zqX\214\340\221\035\275U
\345\327\214\032\351\223c\2442\345\304K\016\
011\214\307\227\237\270\026`R\205\205a~1\263\236[\037C
\260\031\205\374\245\317\033k|\366\253\037

+--
--
--
--
--
--
--
--
--
--
ssn_id | 2
username | Bob
ssn | \301\300L\003\235M%_O\322\357\273\001\007\377t>\345\343,
\200\256\272\300\012\033M4\265\032L
L[v\262k\244\2435\264\232B\357\370d9\375\011\002\327\235<\246\210b
\030\012\337@\226Z\361\246\032\00
7`\012c\353]\355d7\360T\335\314\367\370;X\371\350*\231\212\260B
\010#RQ0\223\253c7\0132b\355\242\233\34
1\000\370\370\366\013\022\357\005i\202~\005\\z\301o\012\230Z
\014\362\244\324&\243g\351\362\325\375
\213\032\226$\2751\256XR\346k\266\030\234\267\201vUh\004\250\337A\231\223u
\247\366/i\022\275\276\350\2
20\316\306|\203+\010\261;\232\254tp\255\243\261\373Rq;\316w
\357\006\207\374U\333\365\365\245hg\031\005
\322\347ea\220\015l\212g\337\264\336b\263\004\311\210.4\340G+\221\274D
\035\375\2216\241`\346a0\273wE\2
12\342y^\202\262|A7\202t\240\333p\345G\373\253\243oCO
\011\360\247\211\014\024{\272\271\322<\001\267
\347\240\005\213\0078\036\210\307$\317\322\311\222\035\354\006<
\266\264\004\376\251q\256\220(+\030\
3270\013c\327\272\212%\363\033\252\322\337\354\276\225\232\201\212^
\304\210\2269@\3230\370{

4. Extract the public.key ID from the database:

SELECT pgp_key_id(dearmor('-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2.0.14 (GNU/Linux)

mQENBFS1Zf0BCADNw8Qvk1V1C36Kfcwd3Kpm/dijPfRyyEwB6PqKyA05jtWiXZTh
2His1ojSP6LI0cSkIqMU9LAlncecZhRIhBhuVgKlGSgd9texg2nnSL9Admqik/yX
R5syVKG+qcdWuvyZg9oOOmeyjhc3n+kkbRTEMuM3flbMs8shOwzMvstCUVmuHU/V
. . .
WH+N2lasoUaoJjb2kQGhLOnFbJuevkyBylRz+hI/+8rJKcZOjQkmmK8Hkk8qb5x/
HMUc55H0g2qQAY0BpnJHgOOQ45Q6pk3G2/7Dbek5WJ6K1wUrFy51sNlGWE8pvgEx
/UUZB+dYqCwtvX0nnBu1KNCmk2AkEcFK3YoliCxomdOxhFOv9AKjjojDyC65KJci
Pv2MikPS2fKOAg1R3LpMa8zDEtl4w3vckPQNrQNnYuUtfj6ZoCxv
=XZ8J
-----END PGP PUBLIC KEY BLOCK-----'));

pgp_key_id | 9D4D255F4FD2EFBB

This shows that the PGP key ID used to encrypt the ssn column is 9D4D255F4FD2EFBB. It is
recommended to perform this step whenever a new key is created and then store the ID for tracking.

Greenplum Database Best Practices Release Notes

650

You can use this key to see which key pair was used to encrypt the data:

SELECT username, pgp_key_id(ssn) As key_used

 FROM userssn;

 username | Bob
key_used | 9D4D255F4FD2EFBB
---------+-----------------
username | Alice
key_used | 9D4D255F4FD2EFBB

Note: Different keys may have the same ID. This is rare, but is a normal event. The client
application should try to decrypt with each one to see which fits — like handling ANYKEY. See
pgp_key_id() in the pgcrypto documentation.

5. Decrypt the data using the private key.

SELECT username, pgp_pub_decrypt(ssn, keys.privkey)
 AS decrypted_ssn FROM userssn
 CROSS JOIN
 (SELECT dearmor('-----BEGIN PGP PRIVATE KEY BLOCK-----
Version: GnuPG v2.0.14 (GNU/Linux)

lQOYBFS1Zf0BCADNw8Qvk1V1C36Kfcwd3Kpm/dijPfRyyEwB6PqKyA05jtWiXZTh
2His1ojSP6LI0cSkIqMU9LAlncecZhRIhBhuVgKlGSgd9texg2nnSL9Admqik/yX
R5syVKG+qcdWuvyZg9oOOmeyjhc3n+kkbRTEMuM3flbMs8shOwzMvstCUVmuHU/V
vG5rJAe8PuYDSJCJ74I6w7SOH3RiRIc7IfL6xYddV42l3ctd44bl8/i71hq2UyN2
/Hbsjii2ymg7ttw3jsWAx2gP9nssDgoy8QDy/o9nNqC8EGlig96ZFnFnE6Pwbhn+
ic8MD0lK5/GAlR6Hc0ZIHf8KEcavruQlikjnABEBAAEAB/wNfjjvP1brRfjjIm/j
XwUNm+sI4v2Ur7qZC94VTukPGf67lvqcYZJuqXxvZrZ8bl6mvl65xEUiZYy7BNA8
fe0PaM4Wy+Xr94Cz2bPbWgawnRNN3GAQy4rlBTrvqQWy+kmpbd87iTjwZidZNNmx
02iSzraq41Rt0Zx21Jh4rkpF67ftmzOH0vlrS0bWOvHUeMY7tCwmdPe9HbQeDlPr
n9CllUqBn4/acTtCClWAjREZn0zXAsNixtTIPC1V+9nO9YmecMkVwNfIPkIhymAM
OPFnuZ/Dz1rCRHjNHb5j6ZyUM5zDqUVnnezktxqrOENSxm0gfMGcpxHQogUMzb7c
6UyBBADSCXHPfo/VPVtMm5p1yGrNOR2jR2rUj9+poZzD2gjkt5G/xIKRlkB4uoQl
emu27wr9dVEX7ms0nvDq58iutbQ4d0JIDlcHMeSRQZluErblB75Vj3HtImblPjpn
4Jx6SWRXPUJPGXGI87u0UoBH0Lwij7M2PW7l1ao+MLEA9jAjQwQA+sr9BKPL4Ya2
r5nE72gsbCCLowkC0rdldf1RGtobwYDMpmYZhOaRKjkOTMG6rCXJxrf6LqiN8w/L
/gNziTmch35MCq/MZzA/bN4VMPyeIlwzxVZkJLsQ7yyqX/A7ac7B7DH0KfXciEXW
MSOAJhMmklW1Q1RRNw3cnYi8w3q7X40EAL/w54FVvvPqp3+sCd86SAAapM4UO2R3
tIsuNVemMWdgNXwvK8AJsz7VreVU5yZ4B8hvCuQj1C7geaN/LXhiT8foRsJC5o71
Bf+iHC/VNEv4k4uDb4lOgnHJYYyifB1wC+nn/EnXCZYQINMia1a4M6Vqc/RIfTH4
nwkZt/89LsAiR/20HHRlc3Qga2V5IDx0ZXN0a2V5QGVtYWlsLmNvbT6JAT4EEwEC
ACgFAlS1Zf0CGwMFCQHhM4AGCwkIBwMCBhUIAgkKCwQWAgMBAh4BAheAAAoJEAd9
cl4gJ8wwbfwH/3VyVsPkQl1owRJNxvXGt1bY7BfrvU52yk+PPZYoes9UpdL3CMRk
8gAM9bx5Sk08q2UXSZLC6fFOpEW4uWgmGYf8JRoC3ooezTkmCBW8I1bU0qGetzVx
opdXLuPGCE7hVWQe9HcSntiTLxGov1mJAwO7TAoccXLbyuZh9Rf5vLoQdKzcCyOH
h5IqXaQOT100TeFeEpb9TIiwcntg3WCSU5P0DGoUAOanjDZ3KE8Qp7V74fhG1EZV
zHb8FajR62CXSHFKqpBgiNxnTOk45NbXADn4eTUXPSnwPi46qoAp9UQogsfGyB1X
DOTB2UOqhutAMECaM7VtpePv79i0Z/NfnBedA5gEVLVl/QEIANabFdQ+8QMCADOi
pM1bF/JrQt3zUoc4BTqICaxdyzAfz0tUSf/7Zro2us99GlARqLWd8EqJcl/xmfcJ
iZyUam6ZAzzFXCgnH5Y1sdtMTJZdLp5WeOjwgCWG/ZLu4wzxOFFzDkiPv9RDw6e5
MNLtJrSp4hS5o2apKdbO4Ex83O4mJYnav/rEiDDCWU4T0lhv3hSKCpke6LcwsX+7
liozp+aNmP0Ypwfi4hR3UUMP70+V1beFqW2JbVLz3lLLouHRgpCzla+PzzbEKs16
jq77vG9kqZTCIzXoWaLljuitRlfJkO3vQ9hOv/8yAnkcAmowZrIBlyFg2KBzhunY
mN2YvkUAEQEAAQAH/A7r4hDrnmzX3QU6FAzePlRB7niJtE2IEN8AufF05Q2PzKU/
c1S72WjtqMAIAgYasDkOhfhcxanTneGuFVYggKT3eSDm1RFKpRjX22m0zKdwy67B
Mu95V2Oklul6OCm8dO6+2fmkGxGqc4ZsKy+jQxtxK3HG9YxMC0dvA2v2C5N4TWi3
Utc7zh//k6IbmaLd7F1d7DXt7Hn2Qsmo8I1rtgPE8grDToomTnRUodToyejEqKyI
ORwsp8n8g2CSFaXSrEyU6HbFYXSxZealhQJGYLFOZdR0MzVtZQCn/7n+IHjupndC
Nd2a8DVx3yQS3dAmvLzhFacZdjXi31wvj0moFOkEAOCz1E63SKNNksniQ11lRMJp
gaov6Ux/zGLMstwTzNouI+Kr8/db0GlSAy1Z3UoAB4tFQXEApoX9A4AJ2KqQjqOX

https://www.postgresql.org/docs/9.4/pgcrypto.html

Greenplum Database Best Practices Release Notes

651

cZVULenfDZaxrbb9Lid7ZnTDXKVyGTWDF7ZHavHJ4981mCW17lU11zHBB9xMlx6p
dhFvb0gdy0jSLaFMFr/JBAD0fz3RrhP7e6Xll2zdBqGthjC5S/IoKwwBgw6ri2yx
LoxqBr2pl9PotJJ/JUMPhD/LxuTcOZtYjy8PKgm5jhnBDq3Ss0kNKAY1f5EkZG9a
6I4iAX/NekqSyF+OgBfC9aCgS5RG8hYoOCbp8na5R3bgiuS8IzmVmm5OhZ4MDEwg
nQP7BzmR0p5BahpZ8r3Ada7FcK+0ZLLRdLmOYF/yUrZ53SoYCZRzU/GmtQ7LkXBh
Gjqied9Bs1MHdNUolq7GaexcjZmOWHEf6w9+9M4+vxtQq1nkIWqtaphewEmd5/nf
EP3sIY0EAE3mmiLmHLqBju+UJKMNwFNeyMTqgcg50ISH8J9FRIkBJQQYAQIADwUC
VLVl/QIbDAUJAeEzgAAKCRAHfXJeICfMMOHYCACFhInZA9uAM3TC44l+MrgMUJ3r
W9izrO48WrdTsxR8WkSNbIxJoWnYxYuLyPb/shc9k65huw2SSDkj//0fRrI61FPH
QNPSvz62WH+N2lasoUaoJjb2kQGhLOnFbJuevkyBylRz+hI/+8rJKcZOjQkmmK8H
kk8qb5x/HMUc55H0g2qQAY0BpnJHgOOQ45Q6pk3G2/7Dbek5WJ6K1wUrFy51sNlG
WE8pvgEx/UUZB+dYqCwtvX0nnBu1KNCmk2AkEcFK3YoliCxomdOxhFOv9AKjjojD
yC65KJciPv2MikPS2fKOAg1R3LpMa8zDEtl4w3vckPQNrQNnYuUtfj6ZoCxv
=fa+6
-----END PGP PRIVATE KEY BLOCK-----') AS privkey) AS keys;

username | decrypted_ssn
----------+---------------
 Alice | 123-45-6788
 Bob | 123-45-6799
(2 rows)

If you created a key with passphrase, you may have to enter it here. However for the purpose of this
example, the passphrase is blank.

Encrypting gpfdist Connections
The gpfdists protocol is a secure version of the gpfdist protocol that securely identifies the file server
and the Greenplum Database and encrypts the communications between them. Using gpfdists protects
against eavesdropping and man-in-the-middle attacks.

The gpfdists protocol implements client/server SSL security with the following notable features:

• Client certificates are required.
• Multilingual certificates are not supported.
• A Certificate Revocation List (CRL) is not supported.
• The TLSv1 protocol is used with the TLS_RSA_WITH_AES_128_CBC_SHA encryption algorithm. These

SSL parameters cannot be changed.
• SSL renegotiation is supported.
• The SSL ignore host mismatch parameter is set to false.
• Private keys containing a passphrase are not supported for the gpfdist file server (server.key) or for

the Greenplum Database (client.key).
• It is the user's responsibility to issue certificates that are appropriate for the operating system in use.

Generally, converting certificates to the required format is supported, for example using the SSL
Converter at https://www.sslshopper.com/ssl-converter.html.

A gpfdist server started with the --ssl option can only communicate with the gpfdists protocol. A
gpfdist server started without the --ssl option can only communicate with the gpfdist protocol. For
more detail about gpfdist refer to the Greenplum Database Administrator Guide.

There are two ways to enable the gpfdists protocol:

• Run gpfdist with the --ssl option and then use the gpfdists protocol in the LOCATION clause of a
CREATE EXTERNAL TABLE statement.

• Use a YAML control file with the SSL option set to true and run gpload. Running gpload starts the
gpfdist server with the --ssl option and then uses the gpfdists protocol.

When using gpfdists, the following client certificates must be located in the $PGDATA/gpfdists directory
on each segment:

http://www.commoncriteriaportal.org/products/?expand#ALL

Greenplum Database Best Practices Release Notes

652

• The client certificate file, client.crt
• The client private key file, client.key
• The trusted certificate authorities, root.crt

Important: Do not protect the private key with a passphrase. The server does not prompt for a
passphrase for the private key, and loading data fails with an error if one is required.

When using gpload with SSL you specify the location of the server certificates in the YAML control file.
When using gpfdist with SSL, you specify the location of the server certificates with the --ssl option.

The following example shows how to securely load data into an external table. The example creates a
readable external table named ext_expenses from all files with the txt extension, using the gpfdists
protocol. The files are formatted with a pipe (|) as the column delimiter and an empty space as null.

1. Run gpfdist with the --ssl option on the segment hosts.
2. Log into the database and execute the following command:

=# CREATE EXTERNAL TABLE ext_expenses
 (name text, date date, amount float4, category text, desc1 text)
LOCATION ('gpfdists://etlhost-1:8081/*.txt', 'gpfdists://etlhost-2:8082/
*.txt')
FORMAT 'TEXT' (DELIMITER '|' NULL ' ') ;

Greenplum Database Best Practices Release Notes

653

Tuning SQL Queries
The Greenplum Database cost-based optimizer evaluates many strategies for executing a query and
chooses the least costly method.

Like other RDBMS optimizers, the Greenplum optimizer takes into account factors such as the number
of rows in tables to be joined, availability of indexes, and cardinality of column data when calculating the
costs of alternative execution plans. The optimizer also accounts for the location of the data, preferring to
perform as much of the work as possible on the segments and to minimize the amount of data that must be
transmitted between segments to complete the query.

When a query runs slower than you expect, you can view the plan the optimizer selected as well as the
cost it calculated for each step of the plan. This will help you determine which steps are consuming the
most resources and then modify the query or the schema to provide the optimizer with more efficient
alternatives. You use the SQL EXPLAIN statement to view the plan for a query.

The optimizer produces plans based on statistics generated for tables. It is important to have accurate
statistics to produce the best plan. See Updating Statistics with ANALYZE in this guide for information
about updating statistics.

How to Generate Explain Plans
The EXPLAIN and EXPLAIN ANALYZE statements are useful tools to identify opportunities to improve
query performance. EXPLAIN displays the query plan and estimated costs for a query, but does not
execute the query. EXPLAIN ANALYZE executes the query in addition to displaying the query plan.
EXPLAIN ANALYZE discards any output from the SELECT statement; however, other operations in the
statement are performed (for example, INSERT, UPDATE, or DELETE). To use EXPLAIN ANALYZE on
a DML statement without letting the command affect the data, explicitly use EXPLAIN ANALYZE in a
transaction (BEGIN; EXPLAIN ANALYZE ...; ROLLBACK;).

EXPLAIN ANALYZE runs the statement in addition to displaying the plan with additional information as
follows:

• Total elapsed time (in milliseconds) to run the query
• Number of workers (segments) involved in a plan node operation
• Maximum number of rows returned by the segment (and its segment ID) that produced the most rows

for an operation
• The memory used by the operation
• Time (in milliseconds) it took to retrieve the first row from the segment that produced the most rows,

and the total time taken to retrieve all rows from that segment.

How to Read Explain Plans
An explain plan is a report detailing the steps the Greenplum Database optimizer has determined it will
follow to execute a query. The plan is a tree of nodes, read from bottom to top, with each node passing
its result to the node directly above. Each node represents a step in the plan, and one line for each node
identifies the operation performed in that step—for example, a scan, join, aggregation, or sort operation.
The node also identifies the method used to perform the operation. The method for a scan operation, for
example, may be a sequential scan or an index scan. A join operation may perform a hash join or nested
loop join.

Following is an explain plan for a simple query. This query finds the number of rows in the contributions
table stored at each segment.

Greenplum Database Best Practices Release Notes

654

This plan has eight nodes – Seq Scan, Sort, GroupAggregate, Result, Redistribute Motion, Sort,
GroupAggregate, and finally Gather Motion. Each node contains three cost estimates: cost (in sequential
page reads), the number of rows, and the width of the rows.

The cost is a two-part estimate. A cost of 1.0 is equal to one sequential disk page read. The first part of the
estimate is the start-up cost, which is the cost of getting the first row. The second estimate is the total cost,
the cost of getting all of the rows.

The rows estimate is the number of rows output by the plan node. The number may be lower than the
actual number of rows processed or scanned by the plan node, reflecting the estimated selectivity of
WHERE clause conditions. The total cost assumes that all rows will be retrieved, which may not always be
the case (for example, if you use a LIMIT clause).

The width estimate is the total width, in bytes, of all the columns output by the plan node.

The cost estimates in a node include the costs of all its child nodes, so the top-most node of the plan,
usually a Gather Motion, has the estimated total execution costs for the plan. This is this number that the
query planner seeks to minimize.

Scan operators scan through rows in a table to find a set of rows. There are different scan operators for
different types of storage. They include the following:

• Seq Scan on tables — scans all rows in the table.
• Index Scan — traverses an index to fetch the rows from the table.
• Bitmap Heap Scan — gathers pointers to rows in a table from an index and sorts by location on disk.

(The operator is called a Bitmap Heap Scan, even for append-only tables.)
• Dynamic Seq Scan — chooses partitions to scan using a partition selection function.

Join operators include the following:

• Hash Join – builds a hash table from the smaller table with the join column(s) as hash key. Then scans
the larger table, calculating the hash key for the join column(s) and probing the hash table to find the
rows with the same hash key. Hash joins are typically the fastest joins in Greenplum Database. The
Hash Cond in the explain plan identifies the columns that are joined.

• Nested Loop – iterates through rows in the larger dataset, scanning the rows in the smaller dataset
on each iteration. The Nested Loop join requires the broadcast of one of the tables so that all rows
in one table can be compared to all rows in the other table. It performs well for small tables or tables
that are limited by using an index. It is also used for Cartesian joins and range joins. There are
performance implications when using a Nested Loop join with large tables. For plan nodes that contain
a Nested Loop join operator, validate the SQL and ensure that the results are what is intended. Set the
enable_nestloop server configuration parameter to OFF (default) to favor Hash Join.

• Merge Join – sorts both datasets and merges them together. A merge join is fast for pre-ordered data,
but is very rare in the real world. To favor Merge Joins over Hash Joins, set the enable_mergejoin
system configuration parameter to ON.

Some query plan nodes specify motion operations. Motion operations move rows between segments
when required to process the query. The node identifies the method used to perform the motion operation.
Motion operators include the following:

• Broadcast motion – each segment sends its own, individual rows to all other segments so that every
segment instance has a complete local copy of the table. A Broadcast motion may not be as optimal
as a Redistribute motion, so the optimizer typically only selects a Broadcast motion for small tables.
A Broadcast motion is not acceptable for large tables. In the case where data was not distributed on
the join key, a dynamic redistribution of the needed rows from one of the tables to another segment is
performed.

• Redistribute motion – each segment rehashes the data and sends the rows to the appropriate
segments according to hash key.

• Gather motion – result data from all segments is assembled into a single stream. This is the final
operation for most query plans.

Other operators that occur in query plans include the following:

Greenplum Database Best Practices Release Notes

655

• Materialize – the planner materializes a subselect once so it does not have to repeat the work for each
top-level row.

• InitPlan – a pre-query, used in dynamic partition elimination, performed when the values the planner
needs to identify partitions to scan are unknown until execution time.

• Sort – sort rows in preparation for another operation requiring ordered rows, such as an Aggregation or
Merge Join.

• Group By – groups rows by one or more columns.
• Group/Hash Aggregate – aggregates rows using a hash.
• Append – concatenates data sets, for example when combining rows scanned from partitions in a

partitioned table.
• Filter – selects rows using criteria from a WHERE clause.
• Limit – limits the number of rows returned.

Optimizing Greenplum Queries
This topic describes Greenplum Database features and programming practices that can be used to
enhance system performance in some situations.

To analyze query plans, first identify the plan nodes where the estimated cost to perform the operation is
very high. Determine if the estimated number of rows and cost seems reasonable relative to the number of
rows for the operation performed.

If using partitioning, validate that partition elimination is achieved. To achieve partition elimination the query
predicate (WHERE clause) must be the same as the partitioning criteria. Also, the WHERE clause must not
contain an explicit value and cannot contain a subquery.

Review the execution order of the query plan tree. Review the estimated number of rows. You want the
execution order to build on the smaller tables or hash join result and probe with larger tables. Optimally, the
largest table is used for the final join or probe to reduce the number of rows being passed up the tree to the
topmost plan nodes. If the analysis reveals that the order of execution builds and/or probes is not optimal
ensure that database statistics are up to date. Running ANALYZE will likely address this and produce an
optimal query plan.

Look for evidence of computational skew. Computational skew occurs during query execution when
execution of operators such as Hash Aggregate and Hash Join cause uneven execution on the segments.
More CPU and memory are used on some segments than others, resulting in less than optimal execution.
The cause could be joins, sorts, or aggregations on columns that have low cardinality or non-uniform
distributions. You can detect computational skew in the output of the EXPLAIN ANALYZE statement for a
query. Each node includes a count of the maximum rows processed by any one segment and the average
rows processed by all segments. If the maximum row count is much higher than the average, at least one
segment has performed much more work than the others and computational skew should be suspected for
that operator.

Identify plan nodes where a Sort or Aggregate operation is performed. Hidden inside an Aggregate
operation is a Sort. If the Sort or Aggregate operation involves a large number of rows, there is an
opportunity to improve query performance. A HashAggregate operation is preferred over Sort and
Aggregate operations when a large number of rows are required to be sorted. Usually a Sort operation is
chosen by the optimizer due to the SQL construct; that is, due to the way the SQL is written. Most Sort
operations can be replaced with a HashAggregate if the query is rewritten. To favor a HashAggregate
operation over a Sort and Aggregate operation ensure that the enable_groupagg server configuration
parameter is set to ON.

When an explain plan shows a broadcast motion with a large number of rows, you should attempt to
eliminate the broadcast motion. One way to do this is to use the gp_segments_for_planner server
configuration parameter to increase the cost estimate of the motion so that alternatives are favored.
The gp_segments_for_planner variable tells the query planner how many primary segments
to use in its calculations. The default value is zero, which tells the planner to use the actual number
of primary segments in estimates. Increasing the number of primary segments increases the cost

Greenplum Database Best Practices Release Notes

656

of the motion, thereby favoring a redistribute motion over a broadcast motion. For example, setting
gp_segments_for_planner = 100000 tells the planner that there are 100,000 segments. Conversely,
to influence the optimizer to broadcast a table and not redistribute it, set gp_segments_for_planner to
a low number, for example 2.

Greenplum Grouping Extensions
Greenplum Database aggregation extensions to the GROUP BY clause can perform some common
calculations in the database more efficiently than in application or procedure code:

• GROUP BY ROLLUP(col1, col2, col3)

• GROUP BY CUBE(col1, col2, col3)

• GROUP BY GROUPING SETS((col1, col2), (col1, col3))

A ROLLUP grouping creates aggregate subtotals that roll up from the most detailed level to a grand total,
following a list of grouping columns (or expressions). ROLLUP takes an ordered list of grouping columns,
calculates the standard aggregate values specified in the GROUP BY clause, then creates progressively
higher-level subtotals, moving from right to left through the list. Finally, it creates a grand total.

A CUBE grouping creates subtotals for all of the possible combinations of the given list of grouping columns
(or expressions). In multidimensional analysis terms, CUBE generates all the subtotals that could be
calculated for a data cube with the specified dimensions.

You can selectively specify the set of groups that you want to create using a GROUPING SETS expression.
This allows precise specification across multiple dimensions without computing a whole ROLLUP or CUBE.

Refer to the Greenplum Database Reference Guide for details of these clauses.

Window Functions
Window functions apply an aggregation or ranking function over partitions of the result set—for example,
sum(population) over (partition by city). Window functions are powerful and, because they
do all of the work in the database, they have performance advantages over front-end tools that produce
similar results by retrieving detail rows from the database and reprocessing them.

• The row_number() window function produces row numbers for the rows in a partition, for example,
row_number() over (order by id).

• When a query plan indicates that a table is scanned in more than one operation, you may be able to
use window functions to reduce the number of scans.

• It is often possible to eliminate self joins by using window functions.

Greenplum Database Best Practices Release Notes

657

High Availability
Greenplum Database supports highly available, fault-tolerant database services when you enable and
properly configure Greenplum high availability features. To guarantee a required level of service, each
component must have a standby ready to take its place if it should fail.

Disk Storage
With the Greenplum Database "shared-nothing" MPP architecture, the master host and segment hosts
each have their own dedicated memory and disk storage, and each master or segment instance has its
own independent data directory. For both reliability and high performance, Pivotal recommends a hardware
RAID storage solution with from 8 to 24 disks. A larger number of disks improves I/O throughput when
using RAID 5 (or 6) because striping increases parallel disk I/O. The RAID controller can continue to
function with a failed disk because it saves parity data on each disk in a way that it can reconstruct the data
on any failed member of the array. If a hot spare is configured (or an operator replaces the failed disk with
a new one) the controller rebuilds the failed disk automatically.

RAID 1 exactly mirrors disks, so if a disk fails, a replacement is immediately available with performance
equivalent to that before the failure. With RAID 5 each I/O for data on the failed array member must be
reconstructed from data on the remaining active drives until the replacement disk is rebuilt, so there is a
temporary performance degradation. If the Greenplum master and segments are mirrored, you can switch
any affected Greenplum instances to their mirrors during the rebuild to maintain acceptable performance.

A RAID disk array can still be a single point of failure, for example, if the entire RAID volume fails. At
the hardware level, you can protect against a disk array failure by mirroring the array, using either host
operating system mirroring or RAID controller mirroring, if supported.

It is important to regularly monitor available disk space on each segment host. Query the gp_disk_free
external table in the gptoolkit schema to view disk space available on the segments. This view runs the
Linux df command. Be sure to check that there is sufficient disk space before performing operations that
consume large amounts of disk, such as copying a large table.

See gp_toolkit.gp_disk_free in the Greenplum Database Reference Guide.

Best Practices
• Use a hardware RAID storage solution with 8 to 24 disks.
• Use RAID 1, 5, or 6 so that the disk array can tolerate a failed disk.
• Configure a hot spare in the disk array to allow rebuild to begin automatically when disk failure is

detected.
• Protect against failure of the entire disk array and degradation during rebuilds by mirroring the RAID

volume.
• Monitor disk utilization regularly and add additional space when needed.
• Monitor segment skew to ensure that data is distributed evenly and storage is consumed evenly at all

segments.

Master Mirroring
The Greenplum Database master instance is clients' single point of access to the system. The master
instance stores the global system catalog, the set of system tables that store metadata about the database
instance, but no user data. If an unmirrored master instance fails or becomes inaccessible, the Greenplum
instance is effectively off-line, since the entry point to the system has been lost. For this reason, a standby
master must be ready to take over if the primary master fails.

Master mirroring uses two processes, a sender on the active master host and a receiver on the mirror
host, to synchronize the mirror with the master. As changes are applied to the master system catalogs,

Greenplum Database Best Practices Release Notes

658

the active master streams its write-ahead log (WAL) to the mirror so that each transaction applied on the
master is applied on the mirror.

The mirror is a warm standby. If the primary master fails, switching to the standby requires an
administrative user to run the gpactivatestandby utility on the standby host so that it begins to
accept client connections. Clients must reconnect to the new master and will lose any work that was not
committed when the primary failed.

See "Enabling High Availability Features" in the Greenplum Database Administrator Guide for more
information.

Best Practices
• Set up a standby master instance—a mirror—to take over if the primary master fails.
• The standby can be on the same host or on a different host, but it is best practice to place it on a

different host from the primary master to protect against host failure.
• Plan how to switch clients to the new master instance when a failure occurs, for example, by updating

the master address in DNS.
• Set up monitoring to send notifications in a system monitoring application or by email when the primary

fails.

Segment Mirroring
Greenplum Database segment instances each store and manage a portion of the database data, with
coordination from the master instance. If any unmirrored segment fails, the database may have to be
shutdown and recovered, and transactions occurring after the most recent backup could be lost. Mirroring
segments is, therefore, an essential element of a high availability solution.

A segment mirror is a hot standby for a primary segment. Greenplum Database detects when a segment
is unavailable and automatically activates the mirror. During normal operation, when the primary segment
instance is active, data is replicated from the primary to the mirror in two ways:

• The transaction commit log is replicated from the primary to the mirror before the transaction is
committed. This ensures that if the mirror is activated, the changes made by the last successful
transaction at the primary are present at the mirror. When the mirror is activated, transactions in the log
are applied to tables in the mirror.

• Second, segment mirroring uses physical file replication to update heap tables. Greenplum Server
stores table data on disk as fixed-size blocks packed with tuples. To optimize disk I/O, blocks are
cached in memory until the cache fills and some blocks must be evicted to make room for newly
updated blocks. When a block is evicted from the cache it is written to disk and replicated over the
network to the mirror. Because of the caching mechanism, table updates at the mirror can lag behind
the primary. However, because the transaction log is also replicated, the mirror remains consistent
with the primary. If the mirror is activated, the activation process updates the tables with any unapplied
changes in the transaction commit log.

When the acting primary is unable to access its mirror, replication stops and state of the primary changes
to "Change Tracking." The primary saves changes that have not been replicated to the mirror in a system
table to be replicated to the mirror when it is back on-line.

The master automatically detects segment failures and activates the mirror. Transactions in progress at the
time of failure are restarted using the new primary. Depending on how mirrors are deployed on the hosts,
the database system may be unbalanced until the original primary segment is recovered. For example, if
each segment host has four primary segments and four mirror segments, and a mirror is activated on one
host, that host will have five active primary segments. Queries are not complete until the last segment has
finished its work, so performance can be degraded until the balance is restored by recovering the original
primary.

Administrators perform the recovery while Greenplum Database is up and running by running the
gprecoverseg utility. This utility locates the failed segments, verifies they are valid, and compares the

Greenplum Database Best Practices Release Notes

659

transactional state with the currently active segment to determine changes made while the segment was
offline. gprecoverseg synchronizes the changed database files with the active segment and brings the
segment back online.

It is important to reserve enough memory and CPU resources on segment hosts to allow for increased
activity from mirrors that assume the primary role during a failure. The formulas provided in Configuring
Memory for Greenplum Database for configuring segment host memory include a factor for the maximum
number of primary hosts on any one segment during a failure. The arrangement of mirrors on the
segment hosts affects this factor and how the system will respond during a failure. See Segment Mirroring
Configurations for a discussion of segment mirroring options.

Best Practices
• Set up mirrors for all segments.
• Locate primary segments and their mirrors on different hosts to protect against host failure.
• Mirrors can be on a separate set of hosts or co-located on hosts with primary segments.
• Set up monitoring to send notifications in a system monitoring application or by email when a primary

segment fails.
• Recover failed segments promptly, using the gprecoverseg utility, to restore redundancy and return

the system to optimal balance.

Dual Clusters
For some use cases, an additional level of redundancy can be provided by maintaining two Greenplum
Database clusters that store the same data. The decision to implement dual clusters should be made with
business requirements in mind.

There are two recommended methods for keeping the data synchronized in a dual cluster configuration.
The first method is called Dual ETL. ETL (extract, transform, and load) is the common data warehousing
process of cleansing, transforming, validating, and loading data into a data warehouse. With Dual ETL,
the ETL processes are performed twice, in parallel on each cluster, and validated each time. Dual ETL
provides for a complete standby cluster with the same data. It also provides the capability to query the data
on both clusters, doubling the processing throughput. The application can take advantage of both clusters
as needed and also ensure that the ETL is successful and validated on both sides.

The second mechanism for maintaining dual clusters is backup and restore. The data is backedup on
the primary cluster, then the backup is replicated to and restored on the second cluster. The backup and
restore mechanism has higher latency than Dual ETL, but requires less application logic to be developed.
Backup and restore is ideal for use cases where data modifications and ETL are done daily or less
frequently.

Best Practices
• Consider a Dual Cluster configuration to provide an additional level of redundancy and additional query

processing throughput.

Backup and Restore
Backups are recommended for Greenplum Database databases unless the data in the database can be
easily and cleanly regenerated from source data. Backups protect from operational, software, or hardware
errors.

The gpbackup utility makes backups in parallel across the segments, so that backups scale as the cluster
grows in hardware size.

A backup strategy must consider where the backups will be written and where they will be stored. Backups
can be taken to the local cluster disks, but they should not be stored there permanently. If the database
and its backup are on the same storage, they can be lost simultaneously. The backup also occupies space

Greenplum Database Best Practices Release Notes

660

that could be used for database storage or operations. After performing a local backup, the files should be
copied to a safe, off-cluster location.

An alternative is to back up directly to an NFS mount. If each host in the cluster has an NFS mount, the
backups can be written directly to NFS storage. A scale-out NFS solution is recommended to ensure that
backups do not bottleneck on the IO throughput of the NFS device. Dell EMC Isilon is an example of this
type of solution and can scale alongside the Greenplum cluster.

Finally, through native API integration, Greenplum Database can stream backups directly to the Dell EMC
Data Domain enterprise backup platform.

Best Practices
• Back up Greenplum databases regularly unless the data is easily restored from sources.
• Use the gpbackup command to specify only the schema and tables that you want backed up. See the

gpbackup reference for more information.
• gpbackup places SHARED ACCESS locks on the set of tables to back up. Backups with fewer tables

are more efficient for selectively restoring schemas and tables, since gprestore does not have to
search through the entire database.

• If backups are saved to local cluster storage, move the files to a safe, off-cluster location when the
backup is complete. Backup files and database files that reside on the same storage can be lost
simultaneously.

• If backups are saved to NFS mounts, use a scale-out NFS solution such as Dell EMC Isilon to prevent
IO bottlenecks.

• Consider using Pivotal Greenplum Database integration to stream backups to the Dell EMC Data
Domain enterprise backup platform.

Detecting Failed Master and Segment Instances
Recovering from system failures requires intervention from a system administrator, even when the system
detects a failure and activates a standby for the failed component. In each case, the failed component
must be replaced or recovered to restore full redundancy. Until the failed component is recovered, the
active component lacks a standby, and the system may not be executing optimally. For these reasons,
it is important to perform recovery operations promptly. Constant system monitoring ensures that
administrators are aware of failures that demand their attention.

The Greenplum Database server ftsprobe subprocess handles fault detection. ftsprobe connects
to and scans all segments and database processes at intervals that you can configure with the
gp_fts_probe_interval configuration parameter. If ftsprobe cannot connect to a segment, it marks
the segment “down” in the Greenplum Database system catalog. The segment remains down until an
administrator runs the gprecoverseg recovery utility.

Best Practices
• Run the gpstate utility to see the overall state of the Greenplum system.

Additional Information
Greenplum Database Administrator Guide:

• Monitoring a Greenplum System
• Recovering a Failed Segment

Greenplum Database Utility Guide:

• gpstate - view state of the Greenplum system
• gprecoverseg - recover a failed segment
• gpactivatestandby - make the standby master the active master

RDBMS MIB Specification

https://gpdb.docs.pivotal.io/latest/utility_guide/ref/gpbackup.html
http://tools.ietf.org/html/rfc1697

Greenplum Database Best Practices Release Notes

661

Segment Mirroring Configurations
Segment mirroring allows database queries to fail over to a backup segment if the primary segment fails or
becomes unavailable. Pivotal requires mirroring for supported production Greenplum Database systems.

A primary segment and its mirror must be on different hosts to ensure high availability. Each host in a
Greenplum Database system has the same number of primary segments and mirror segments. Multi-
homed hosts should have the same numbers of primary and mirror segments on each interface. This
ensures that segment hosts and network resources are equally loaded when all primary segments are
operational and brings the most resources to bear on query processing.

When a segment becomes unavailable, its mirror segment on another host becomes the active primary
and processing continues. The additional load on the host creates skew and degrades performance, but
should allow the system to continue. A database query is not complete until all segments return results,
so a single host with an additional active primary segment has the same effect as adding an additional
primary segment to every host in the cluster.

The least amount of performance degradation in a failover scenario occurs when no host has more than
one mirror assuming the primary role. If multiple segments or hosts fail, the amount of degradation is
determined by the host or hosts with the largest number of mirrors assuming the primary role. Spreading a
host's mirrors across the remaining hosts minimizes degradation when any single host fails.

It is important, too, to consider the cluster's tolerance for multiple host failures and how to maintain a mirror
configuration when expanding the cluster by adding hosts. There is no mirror configuration that is ideal for
every situation.

You can allow Greenplum Database to arrange mirrors on the hosts in the cluster using one of two
standard configurations, or you can design your own mirroring configuration.

The two standard mirroring arrangements are group mirroring and spread mirroring:

• Group mirroring — Each host mirrors another host's primary segments. This is the default for
gpinitsystem and gpaddmirrors.

• Spread mirroring — Mirrors are spread across the available hosts. This requires that the number of
hosts in the cluster is greater than the number of segments per host.

You can design a custom mirroring configuration and use the Greenplum gpaddmirrors or
gpmovemirrors utilities to set up the configuration.

Block mirroring is a custom mirror configuration that divides hosts in the cluster into equally sized blocks
and distributes mirrors evenly to hosts within the block. If a primary segment fails, its mirror on another host
within the same block becomes the active primary. If a segment host fails, mirror segments on each of the
other hosts in the block become active.

The following sections compare the group, spread, and block mirroring configurations.

Group Mirroring
Group mirroring is easiest to set up and is the default Greenplum mirroring configuration. It is least
expensive to expand, since it can be done by adding as few as two hosts. There is no need to move
mirrors after expansion to maintain a consistent mirror configuration.

The following diagram shows a group mirroring configuration with eight primary segments on four hosts.

Greenplum Database Best Practices Release Notes

662

Unless both the primary and mirror of the same segment instance fail, up to half of your hosts can fail
and the cluster will continue to run as long as resources (CPU, memory, and IO) are sufficient to meet the
needs.

Any host failure will degrade performance by half or more because the host with the mirrors will have twice
the number of active primaries. If your resource utilization is normally greater than 50%, you will have to
adjust your workload until the failed host is recovered or replaced. If you normally run at less than 50%
resource utilization the cluster can continue to operate at a degraded level of performance until the failure
is corrected.

Spread Mirroring
With spread mirroring, mirrors for each host's primary segments are spread across as many hosts as there
are segments per host. Spread mirroring is easy to set up when the cluster is initialized, but requires that
the cluster have at least one more host than there are segments per host.

The following diagram shows the spread mirroring configuration for a cluster with three primaries on four
hosts.

Greenplum Database Best Practices Release Notes

663

Expanding a cluster with spread mirroring requires more planning and may take more time. You must
either add a set of hosts equal to the number of primaries per host plus one, or you can add two nodes in
a group mirroring configuration and, when the expansion is complete, move mirrors to recreate the spread
mirror configuration.

Spread mirroring has the least performance impact for a single failed host because each host's mirrors
are spread across the maximum number of hosts. Load is increased by 1/Nth, where N is the number of
primaries per host. Spread mirroring is, however, the most likely configuration to suffer catastrophic failure
if two or more hosts fail simultaneously.

Block Mirroring
With block mirroring, nodes are divided into blocks, for example a block of four or eight hosts, and the
mirrors for segments on each host are placed on other hosts within the block. Depending on the number of
hosts in the block and the number of primary segments per host, each host maintains more than one mirror
for each other host's segments.

The following diagram shows a single block mirroring configuration for a block of four hosts, each with eight
primary segments:

Greenplum Database Best Practices Release Notes

664

If there are eight hosts, an additional four-host block is added with the mirrors for primary segments 32
through 63 set up in the same pattern.

A cluster with block mirroring is easy to expand because each block is a self-contained primary mirror
group. The cluster is expanded by adding one or more blocks. There is no need to move mirrors after
expansion to maintain a consistent mirror setup. This configuration is able to survive multiple host failures
as long as the failed hosts are in different blocks.

Because each host in a block has multiple mirror instances for each other host in the block, block mirroring
has a higher performance impact for host failures than spread mirroring, but a lower impact than group
mirroring. The expected performance impact varies by block size and primary segments per node. As with
group mirroring, if the resources are available, performance will be negatively impacted but the cluster
will remain available. If resources are insufficient to accommodate the added load you must reduce the
workload until the failed node is replaced.

Implementing Block Mirroring
Block mirroring is not one of the automatic options Greenplum Database offers when you set up or expand
a cluster. To use it, you must create your own configuration.

Greenplum Database Best Practices Release Notes

665

For a new Greenplum system, you can initialize the cluster without mirrors, and then run gpaddmirrors
-i mirror_config_file with a custom mirror configuration file to create the mirrors for each block.
You must create the file system locations for the mirror segments before you run gpaddmirrors. See the
gpaddmirrors reference page in the Greenplum Database Management Utility Guide for details.

If you expand a system that has block mirroring or you want to implement block mirroring at the same time
you expand a cluster, it is recommended that you complete the expansion first, using the default grouping
mirror configuration, and then use the gpmovemirrors utility to move mirrors into the block configuration.

To implement block mirroring with an existing system that has a different mirroring scheme, you must first
determine the desired location for each mirror according to your block configuration, and then determine
which of the existing mirrors must be relocated. Follow these steps:

1. Run the following query to find the current locations of the primary and mirror segments:

SELECT dbid, content, role, port, hostname, datadir FROM
 gp_segment_configuration WHERE content > -1 ;

The gp_segment_configuration system catalog table contains the current segment configuration.
2. Create a list with the current mirror location and the desired block mirroring location, then remove any

mirrors from the list that are already on the correct host.
3. Create an input file for the gpmovemirrors utility with an entry for each mirror that must be moved.

The gpmovemirrors input file has the following format:

contentID|address|port|data_dir new_address|port|data_dir

Where contentID is the segment instance content ID, address is the host name or IP address of the
segment host, port is the communication port, and data_dir is the segment instance data directory.

The following example gpmovemirrors input file specifies three mirror segments to move.

1|sdw2|50001|/data2/mirror/gpseg1 sdw3|50001|/data/mirror/gpseg1
2|sdw2|50001|/data2/mirror/gpseg2 sdw4|50001|/data/mirror/gpseg2
3|sdw3|50001|/data2/mirror/gpseg3 sdw1|50001|/data/mirror/gpseg3

4. Run gpmovemirrors with a command like the following:

gpmovemirrors -i mirror_config_file

The gpmovemirrors utility validates the input file, calls gprecoverseg to relocate each specified mirror,
and removes the original mirror. It creates a backout configuration file which can be used as input to
gpmovemirrors to undo the changes that were made. The backout file has the same name as the input
file, with the suffix _backout_timestamp added.

See the Greenplum Database Management Utility Reference for complete information about the
gpmovemirrors utility.

Greenplum Database Utility Guide Release Notes

666

Chapter 6

Greenplum Database Utility Guide

Reference information for Greenplum Database utility programs.

Greenplum Database Utility Guide Release Notes

667

About the Greenplum Database Utilities
General information about using the Greenplum Database utility programs.

Referencing IP Addresses
When you reference IPv6 addresses in Greenplum Database utility programs, or when you use numeric
IP addresses instead of hostnames in any management utility, always enclose the IP address in brackets.
When specifying an IP address at the command line, the best practice is to escape any brackets or
enclose them in single quotes. For example, use either:

\[2620:0:170:610::11\]

Or:

'[2620:0:170:610::11]'

Running Backend Server Programs
Greenplum Database has modified certain PostgreSQL backend server programs to handle the parallelism
and distribution of a Greenplum Database system. You access these programs only through the
Greenplum Database management tools and utilities. Do not run these programs directly.

The following table identifies certain PostgreSQL backend server programs and the Greenplum Database
utility command to run instead.

Table 63: Greenplum Database Backend Server Programs

PostgreSQL Program Name Description Use Instead

initdb This program is called by
gpinitsystem when initializing
a Greenplum Database array. It
is used internally to create the
individual segment instances and
the master instance.

gpinitsystem

ipcclean Not used in Greenplum Database N/A

pg_basebackup This program makes a binary
copy of a single database
instance. Greenplum Database
uses it for tasks such as creating
a standby master instance, or
recovering a mirror segment
when a full copy is needed. Do
not use this utility to back up
Greenplum Database segment
instances because it does
not produce MPP-consistent
backups.

gpinitstandby,
gprecoverseg

pg_controldata Not used in Greenplum Database gpstate

Greenplum Database Utility Guide Release Notes

668

PostgreSQL Program Name Description Use Instead

pg_ctl This program is called by
gpstart and gpstop when
starting or stopping a Greenplum
Database array. It is used
internally to stop and start the
individual segment instances and
the master instance in parallel
and with the correct options.

gpstart, gpstop

pg_resetxlog DO NOT USE

Warning: This program might
cause data loss or cause data
to become unavailable. If this
program is used, the Pivotal
Greenplum Database cluster is
not supported. The cluster must
be reinitialized and restored by
the customer.

N/A

postgres The postgres executable is
the actual PostgreSQL server
process that processes queries.

The main postgres process
(postmaster) creates other
postgres subprocesses and
postgres session as needed to
handle client connections.

postmaster postmaster starts the
postgres database server
listener process that accepts
client connections. In Greenplum
Database, a postgres database
listener process runs on the
Greenplum master Instance and
on each Segment Instance.

In Greenplum Database, you
use gpstart and gpstop to
start all postmasters (postgres
processes) in the system at once
in the correct order and with the
correct options.

Greenplum Database Utility Guide Release Notes

669

Utility Reference
The command-line utilities provided with Greenplum Database.

Greenplum Database uses the standard PostgreSQL client and server programs and provides additional
management utilities for administering a distributed Greenplum Database DBMS.

Several utilities are installed when you install the Greenplum Database server. These utilities reside in
$GPHOME/bin. Other utilities must be downloaded from Pivotal Network and installed separately. These
include:

• The Pivotal Greenplum Backup and Restore utilities.
• The Pivotal Greenplum gpcopy utility.
• The Pivotal Greenplum-Kafka Integration utilities.
• The Pivotal Greenplum Streaming Server utilities.

Additionally, the Pivotal Greenplum Client and Loader Tools is a separate download from Pivotal Network
that includes selected utilities from the Greenplum Database server installation that you can install on a
client system.

Greenplum Database provides the following utility programs. Superscripts identify those utilities that
require separate downloads, as well as those utilities that are also installed with the Client and Loader
Tools Packages. (See the Note following the table.) All utilities are installed when you install the
Greenplum Database server, unless specifically identified by a superscript.

Note:
1 The utility program can be obtained from the Greenplum Backup and Restore tile on Pivotal
Network.
2 The utility program can be obtained from the Greenplum Data Copy Utility tile on Pivotal Network.
3 The utility program is also installed with the Greenplum Client and Loader Tools Packages for
Linux and Windows. You can obtain these packages from the Greenplum Database Greenplum
Clients filegroup on Pivotal Network.
4The utility program is also installed with the Greenplum Client and Loader Tools Package for Linux.
You can obtain the most up-to-date version of the Greenplum Streaming Server and Greenplum-
Kafka Integration from Pivotal Network.

analyzedb
A utility that performs ANALYZE operations on tables incrementally and concurrently. For append optimized
tables, analyzedb updates statistics only if the statistics are not current.

Synopsis

analyzedb -d dbname
 { -s schema |
 { -t schema.table
 [-i col1[, col2, ...] |
 -x col1[, col2, ...]] } |
 { -f | --file} config-file }
 [-l | --list]
 [--gen_profile_only]
 [-p parallel-level]
 [--full]
 [--skip_root_stats]
 [-v | --verbose]
 [--debug]

http://gpdb.docs.pivotal.io/backup-restore/latest/index.html
https://gpdb.docs.pivotal.io/gpcopy/latest/index.html
http://greenplum.docs.pivotal.io/streaming-server/1-4/kafka/gpkafka-ref.html
http://greenplum.docs.pivotal.io/streaming-server/1-4/ref/gpss-ref.html
https://network.pivotal.io/products/pivotal-gpdb-backup-restore
https://network.pivotal.io/products/pivotal-gpdb-backup-restore
https://network.pivotal.io/products/gpdb-data-copy
https://network.pivotal.io/products/pivotal-gpdb
https://network.pivotal.io/products/greenplum-streaming-server

Greenplum Database Utility Guide Release Notes

670

 [-a]

analyzedb { --clean_last | --clean_all }
analyzedb --version
analyzedb { -? | -h | --help }

Description
The analyzedb utility updates statistics on table data for the specified tables in a Greenplum database
incrementally and concurrently.

While performing ANALYZE operations, analyzedb creates a snapshot of the table metadata and stores
it on disk on the master host. An ANALYZE operation is performed only if the table has been modified. If a
table or partition has not been modified since the last time it was analyzed, analyzedb automatically skips
the table or partition because it already contains up-to-date statistics.

• For append optimized tables, analyzedb updates statistics incrementally, if the statistics are not
current. For example, if table data is changed after statistics were collected for the table. If there are no
statistics for the table, statistics are collected.

• For heap tables, statistics are always updated.

Specify the --full option to update append-optimized table statistics even if the table statistics are
current.

By default, analyzedb creates a maximum of 5 concurrent sessions to analyze tables in parallel. For
each session, analyzedb issues an ANALYZE command to the database and specifies different table
names. The -p option controls the maximum number of concurrent sessions.

Partitioned Append-Optimized Tables

For a partitioned, append-optimized table, analyzedb checks the partitioned table root partition and leaf
partitions. If needed, the utility updates statistics for non-current partitions and the root partition.

The root partition statistics is required by GPORCA. The analyzedb utility collects statistics on the root
partition of a partitioned table if the statistics do not exist. If any of the leaf partitions have stale statistics,
analyzedb also refreshes the root partition statistics. The cost of refreshing the root level statistics is
comparable to analyzing one leaf partition.

Notes
The analyzedb utility updates append optimized table statistics if the table has been modified by DML or
DDL commands, including INSERT, DELETE, UPDATE, CREATE TABLE, ALTER TABLE and TRUNCATE.
The utility determines if a table has been modified by comparing catalog metadata of tables with the
previous snapshot of metadata taken during a previous analyzedb operation. The snapshots of table
metadata are stored as state files in the directory db_analyze/<db_name>/<timestamp> in the
Greenplum Database master data directory.

The utility does not automatically remove old snapshot information. Over time, the snapshots can consume
a large amount of disk space. To recover disk space, you can keep the most recent snapshot information
and remove the older snapshots. You can also specify the --clean_last or --clean_all option to
remove state files generated by analyzedb.

If you do not specify a table, set of tables, or schema, the analyzedb utility collects the statistics as
needed on all system catalog tables and user-defined tables in the database.

External tables are not affected by analyzedb.

Table names that contain spaces are not supported.

Running the ANALYZE command on a table, not using the analyzedb utility, does not update the table
metadata that the analyzedb utility uses to determine whether table statistics are up to date.

Greenplum Database Utility Guide Release Notes

671

Options
--clean_last

Remove the state files generated by last analyzedb operation. All other options except -
d are ignored.

--clean_all

Remove all the state files generated by analyzedb. All other options except -d are
ignored.

-d dbname

Specifies the name of the database that contains the tables to be analyzed. If this option
is not specified, the database name is read from the environment variable PGDATABASE. If
PGDATABASE is not set, the user name specified for the connection is used.

--debug

If specified, sets the logging level to debug. During command execution, debug level
information is written to the log file and to the command line. The information includes the
commands executed by the utility and the duration of each ANALYZE operation.

-f config-file | --file config-file

Text file that contains a list of tables to be analyzed. A relative file path from current
directory can be specified.

The file lists one table per line. Table names must be qualified with a schema name.
Optionally, a list of columns can be specified using the -i or -x. No other options are
allowed in the file. Other options such as --full must be specified on the command line.

Only one of the options can be used to specify the files to be analyzed: -f or --file, -t ,
or -s.

When performing ANALYZE operations on multiple tables, analyzedb creates concurrent
sessions to analyze tables in parallel. The -p option controls the maximum number of
concurrent sessions.

In the following example, the first line performs an ANALYZE operation on the table
public.nation, the second line performs an ANALYZE operation only on the columns
l_shipdate and l_receiptdate in the table public.lineitem.

public.nation
public.lineitem -i l_shipdate, l_receiptdate

--full

Perform an ANALYZE operation on all the specified tables. The operation is performed
even if the statistics are up to date.

--gen_profile_only

Update the analyzedb snapshot of table statistics information without performing any
ANALYZE operations. If other options specify tables or a schema, the utility updates the
snapshot information only for the specified tables.

Specify this option if the ANALYZE command was run on database tables and you want to
update the analyzedb snapshot for the tables.

-i col1, col2, ...

Optional. Must be specified with the -t option. For the table specified with the -t option,
collect statistics only for the specified columns.

Only -i, or -x can be specified. Both options cannot be specified.

-l | --list

Lists the tables that would have been analyzed with the specified options. The ANALYZE
operations are not performed.

Greenplum Database Utility Guide Release Notes

672

-p parallel-level

The number of tables that are analyzed in parallel. parallel level can be an integer between
1 and 10, inclusive. Default value is 5.

--skip_root_stats

Note: This option is deprecated and will be removed in a future release.

If the option is specified, a warning is issued stating that the option will be ignored.

GPORCA uses root partition statistics. For information about how statistics are collected
for partitioned tables, see ANALYZE.

-s schema

Specify a schema to analyze. All tables in the schema will be analyzed. Only a single
schema name can be specified on the command line.

Only one of the options can be used to specify the files to be analyzed: -f or --file, -t ,
or -s.

-t schema.table

Collect statistics only on schema.table. The table name must be qualified with a schema
name. Only a single table name can be specified on the command line. You can specify
the -f option to specify multiple tables in a file or the -s option to specify all the tables in a
schema.

Only one of these options can be used to specify the files to be analyzed: -f or --file, -
t , or -s.

-x col1, col2, ...

Optional. Must be specified with the -t option. For the table specified with the -t option,
exclude statistics collection for the specified columns. Statistics are collected only on the
columns that are not listed.

Only -i, or -x can be specified. Both options cannot be specified.

-a

Quiet mode. Do not prompt for user confirmation.

-h | -? | --help

Displays the online help.

-v | --verbose

If specified, sets the logging level to verbose to write additional information the log file
and to the command line during command execution. The information includes a list of all
the tables to be analyzed (including child leaf partitions of partitioned tables). Output also
includes the duration of each ANALYZE operation.

--version

Displays the version of this utility.

Examples
An example that collects statistics only on a set of table columns. In the database mytest, collect statistics
on the columns shipdate and receiptdate in the table public.orders:

analyzedb -d mytest -t public.orders -i shipdate, receiptdate

An example that collects statistics on a table and exclude a set of columns. In the database mytest,
collect statistics on the table public.foo, and do not collect statistics on the columns bar and test2.

analyzedb -d mytest -t public.foo -x bar, test2

Greenplum Database Utility Guide Release Notes

673

An example that specifies a file that contains a list of tables. This command collect statistics on the tables
listed in the file analyze-tables in the database named mytest.

analyzedb -d mytest -f analyze-tables

If you do not specify a table, set of tables, or schema, the analyzedb utility collects the statistics as
needed on all catalog tables and user-defined tables in the specified database. This command refreshes
table statistics on the system catalog tables and user-defined tables in the database mytest.

analyzedb -d mytest

You can create a PL/Python function to run the analyzedb utility as a Greenplum Database function.
This example CREATE FUNCTION command creates a user defined PL/Python function that runs the
analyzedb utility and displays output on the command line. Specify analyzedb options as the function
parameter.

CREATE OR REPLACE FUNCTION analyzedb(params TEXT)
 RETURNS VOID AS
$BODY$
 import subprocess
 cmd = ['analyzedb', '-a'] + params.split()
 p = subprocess.Popen(cmd, stdout=subprocess.PIPE,
 stderr=subprocess.STDOUT)

 # verbose output of process
 for line in iter(p.stdout.readline, ''):
 plpy.info(line);

 p.wait()
$BODY$
LANGUAGE plpythonu VOLATILE;

When this SELECT command is run by the gpadmin user, the analyzedb utility performs an analyze
operation on the table public.mytable that is in the database mytest.

SELECT analyzedb('-d mytest -t public.mytable') ;

Note: To create a PL/Python function, the PL/Python procedural language must be registered
as a language in the database. For example, this CREATE LANGUAGE command run as gpadmin
registers PL/Python as an untrusted language:

CREATE LANGUAGE plpythonu;

See Also
ANALYZE in the Greenplum Database Reference Guide

clusterdb
Reclusters tables that were previously clustered with CLUSTER.

Synopsis

clusterdb [connection-option ...] [--verbose | -v] [--table | -t table] [[--
dbname | -d] dbname]

clusterdb [connection-option ...] [--all | -a] [--verbose | -v]

Greenplum Database Utility Guide Release Notes

674

clusterdb -? | --help

clusterdb -V | --version

Description
To cluster a table means to physically reorder a table on disk according to an index so that index scan
operations can access data on disk in a somewhat sequential order, thereby improving index seek
performance for queries that use that index.

The clusterdb utility will find any tables in a database that have previously been clustered with the
CLUSTER SQL command, and clusters them again on the same index that was last used. Tables that have
never been clustered are not affected.

clusterdb is a wrapper around the SQL command CLUSTER. Although clustering a table in this way
is supported in Greenplum Database, it is not recommended because the CLUSTER operation itself is
extremely slow.

If you do need to order a table in this way to improve your query performance, use a CREATE TABLE AS
statement to reorder the table on disk rather than using CLUSTER. If you do 'cluster' a table in this way,
then clusterdb would not be relevant.

Options
-a | --all

Cluster all databases.

[-d] dbname | [--dbname=]dbname

Specifies the name of the database to be clustered. If this is not specified, the database
name is read from the environment variable PGDATABASE. If that is not set, the user name
specified for the connection is used.

-e | --echo

Echo the commands that clusterdb generates and sends to the server.

-q | --quiet

Do not display a response.

-t table | --table=table

Cluster the named table only. Multiple tables can be clustered by writing multiple -t
switches.

-v | --verbose

Print detailed information during processing.

-V | --version

Print the clusterdb version and exit.

-? | --help

Show help about clusterdb command line arguments, and exit.

Connection Options
-h host | --host=host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port=port

The TCP port on which the Greenplum master database server is listening for connections.
If not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username=username

Greenplum Database Utility Guide Release Notes

675

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt
will fail. This option can be useful in batch jobs and scripts where no user is present to
enter a password.

-W | --password

Force a password prompt.

--maintenance-db=dbname

Specifies the name of the database to connect to discover what other databases should be
clustered. If not specified, the postgres database will be used, and if that does not exist,
template1 will be used.

Examples
To cluster the database test:

clusterdb test

To cluster a single table foo in a database named xyzzy:

clusterdb --table foo xyzzyb

See Also
CLUSTER in the Greenplum Database Reference Guide

createdb
Creates a new database.

Synopsis

createdb [connection-option ...] [option ...] [dbname ['description']]

createdb -? | --help

createdb -V | --version

Description
createdb creates a new database in a Greenplum Database system.

Normally, the database user who executes this command becomes the owner of the new database.
However, a different owner can be specified via the -O option, if the executing user has appropriate
privileges.

createdb is a wrapper around the SQL command CREATE DATABASE .

Options
dbname

The name of the database to be created. The name must be unique among all other
databases in the Greenplum system. If not specified, reads from the environment variable
PGDATABASE, then PGUSER or defaults to the current system user.

Greenplum Database Utility Guide Release Notes

676

description

A comment to be associated with the newly created database. Descriptions containing
white space must be enclosed in quotes.

-D tablespace | --tablespace=tablespace

Specifies the default tablespace for the database. (This name is processed as a double-
quoted identifier.)

-e echo

Echo the commands that createdb generates and sends to the server.

-E encoding | --encoding encoding

Character set encoding to use in the new database. Specify a string constant (such as
'UTF8'), an integer encoding number, or DEFAULT to use the default encoding. See the
Greenplum Database Reference Guide for information about supported character sets.

-l locale | --locale locale

Specifies the locale to be used in this database. This is equivalent to specifying both --
lc-collate and --lc-ctype.

--lc-collate locale

Specifies the LC_COLLATE setting to be used in this database.

--lc-ctype locale

Specifies the LC_CTYPE setting to be used in this database.

--maintenance-db=dbname

Specifies the name of the database to connect to when creating the new database. If not
specified, the postgres database will be used; if that does not exist (or if it is the name of
the new database being created), template1 will be used.

-O owner | --owner=owner

The name of the database user who will own the new database. Defaults to the user
executing this command. (This name is processed as a double-quoted identifier.)

-T template | --template=template

The name of the template from which to create the new database. Defaults to template1.
(This name is processed as a double-quoted identifier.)

-V | --version

Print the createdb version and exit.

-? | --help

Show help about createdb command line arguments, and exit.

The options -D, -l, -E, -O, and -T correspond to options of the underlying SQL command CREATE
DATABASE; see CREATE DATABASE in the Greenplum Database Reference Guide for more information
about them.

Connection Options
-h host | --host=host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port=port

The TCP port on which the Greenplum master database server is listening for connections.
If not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username=username

Greenplum Database Utility Guide Release Notes

677

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt
will fail. This option can be useful in batch jobs and scripts where no user is present to
enter a password.

-W | --password

Force a password prompt.

Examples
To create the database test using the default options:

createdb test

To create the database demo using the Greenplum master on host gpmaster, port 54321, using the
LATIN1 encoding scheme:

createdb -p 54321 -h gpmaster -E LATIN1 demo

See Also
CREATE DATABASE in the Greenplum Database Reference Guide

createlang
Defines a new procedural language for a database.

Synopsis

createlang [connection_option ...] [-e] langname [[-d] dbname]

createlang [connection-option ...] -l dbname

createlang -? | --help

createlang -V | --version

Description
The createlang utility adds a new procedural language to a database. createlang is a wrapper around
the SQL command CREATE EXTENSION.

Note: createlang is deprecated and may be removed in a future release. From Greenplum
Database 6.x, using createlang to add a procedural language package generates an error. Use
the CREATE EXTENSION command instead.

The procedural language packages included in the standard Greenplum Database distribution are:

• PL/pgSQL

• PL/Perl

• PL/Python

The PL/pgSQL language is registered in all databases by default.

Greenplum Database Utility Guide Release Notes

678

Greenplum Database also has language handlers for PL/Java and PL/R, but those languages are not
pre-installed with Greenplum Database. See the Greenplum PL/Java Language Extension and Greenplum
PL/R Language Extension sections in the documentation for more information.

Options
langname

Specifies the name of the procedural language to be installed. (This name is lower-cased.)

[-d] dbname | [--dbname=]dbname

Specifies the database to which the language should be added. The default is to use the
PGDATABASE environment variable setting, or the same name as the current system user.

-e | --echo

Echo the commands that createlang generates and sends to the server.

-l dbname | --list dbname

Show a list of already installed languages in the target database.

-V | --version

Print the createlang version and exit.

-? | --help

Show help about createlang command line arguments, and exit.

Connection Options
-h host | --host=host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port=port

The TCP port on which the Greenplum master database server is listening for connections.
If not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username=username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt
will fail. This option can be useful in batch jobs and scripts where no user is present to
enter a password.

-W | --password

Force a password prompt.

Examples
To install the language plperl into the database mytestdb:

createlang plperl mytestdb

See Also

createuser
Creates a new database role.

Greenplum Database Utility Guide Release Notes

679

Synopsis

createuser [connection-option ...] [role_attribute ...] [-e] role_name

createuser -? | --help

createuser -V | --version

Description
createuser creates a new Greenplum Database role. You must be a superuser or have the
CREATEROLE privilege to create new roles. You must connect to the database as a superuser to create
new superusers.

Superusers can bypass all access permission checks within the database, so superuser privileges should
not be granted lightly.

createuser is a wrapper around the SQL command CREATE ROLE.

Options
role_name

The name of the role to be created. This name must be different from all existing roles in
this Greenplum Database installation.

-c number | --connection-limit=number

Set a maximum number of connections for the new role. The default is to set no limit.

-d | --createdb

The new role will be allowed to create databases.

-D | --no-createdb

The new role will not be allowed to create databases. This is the default.

-e | --echo

Echo the commands that createuser generates and sends to the server.

-E | --encrypted

Encrypts the role's password stored in the database. If not specified, the default password
behavior is used.

-i | --inherit

The new role will automatically inherit privileges of roles it is a member of. This is the
default.

-I | --no-inherit

The new role will not automatically inherit privileges of roles it is a member of.

--interactive

Prompt for the user name if none is specified on the command line, and also prompt for
whichever of the options -d/-D, -r/-R, -s/-S is not specified on the command line.

-l | --login

The new role will be allowed to log in to Greenplum Database. This is the default.

-L | --no-login

The new role will not be allowed to log in (a group-level role).

-N | --unencrypted

Does not encrypt the role's password stored in the database. If not specified, the default
password behavior is used.

Greenplum Database Utility Guide Release Notes

680

-P | --pwprompt

If given, createuser will issue a prompt for the password of the new role. This is not
necessary if you do not plan on using password authentication.

-r | --createrole

The new role will be allowed to create new roles (CREATEROLE privilege).

-R | --no-createrole

The new role will not be allowed to create new roles. This is the default.

-s | --superuser

The new role will be a superuser.

-S | --no-superuser

The new role will not be a superuser. This is the default.

-V | --version

Print the createuser version and exit.

--replication

The new user will have the REPLICATION privilege, which is described more fully in the
documentation for CREATE ROLE.

--no-replication

The new user will not have the REPLICATION privilege, which is described more fully in
the documentation for CREATE ROLE.

-? | --help

Show help about createuser command line arguments, and exit.

Connection Options
-h host | --host=host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port=port

The TCP port on which the Greenplum master database server is listening for connections.
If not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username=username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt
will fail. This option can be useful in batch jobs and scripts where no user is present to
enter a password.

-W | --password

Force a password prompt.

Examples
To create a role joe on the default database server:

$ createuser joe

Greenplum Database Utility Guide Release Notes

681

To create a role joe on the default database server with prompting for some additional attributes:

$ createuser --interactive joe
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n
CREATE ROLE

To create the same role joe using connection options, with attributes explicitly specified, and taking a look
at the underlying command:

createuser -h masterhost -p 54321 -S -D -R -e joe
CREATE ROLE joe NOSUPERUSER NOCREATEDB NOCREATEROLE INHERIT
LOGIN;
CREATE ROLE

To create the role joe as a superuser, and assign password admin123 immediately:

createuser -P -s -e joe
Enter password for new role: admin123
Enter it again: admin123
CREATE ROLE joe PASSWORD 'admin123' SUPERUSER CREATEDB
CREATEROLE INHERIT LOGIN;
CREATE ROLE

In the above example, the new password is not actually echoed when typed, but we show what was typed
for clarity. However the password will appear in the echoed command, as illustrated if the -e option is
used.

See Also
CREATE ROLE in the Greenplum Database Reference Guide

dropdb
Removes a database.

Synopsis

dropdb [connection-option ...] [-e] [-i] dbname

dropdb -? | --help

dropdb -V | --version

Description
dropdb destroys an existing database. The user who executes this command must be a superuser or the
owner of the database being dropped.

dropdb is a wrapper around the SQL command DROP DATABASE. See the Greenplum Database
Reference Guide for information about DROP DATABASE.

Options
dbname

The name of the database to be removed.

-e | --echo

Greenplum Database Utility Guide Release Notes

682

Echo the commands that dropdb generates and sends to the server.

-i | --interactive

Issues a verification prompt before doing anything destructive.

-V | --version

Print the dropdb version and exit.

--if-exists

Do not throw an error if the database does not exist. A notice is issued in this case.

-? | --help

Show help about dropdb command line arguments, and exit.

Connection Options
-h host | --host=host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port=port

The TCP port on which the Greenplum master database server is listening for connections.
If not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username=username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt
will fail. This option can be useful in batch jobs and scripts where no user is present to
enter a password.

-W | --password

Force a password prompt.

--maintenance-db=dbname

Specifies the name of the database to connect to in order to drop the target database.
If not specified, the postgres database will be used; if that does not exist (or if it is the
name of the database being dropped), template1 will be used.

Examples
To destroy the database named demo using default connection parameters:

dropdb demo

To destroy the database named demo using connection options, with verification, and a peek at the
underlying command:

dropdb -p 54321 -h masterhost -i -e demo
Database "demo" will be permanently deleted.
Are you sure? (y/n) y
DROP DATABASE "demo"
DROP DATABASE

See Also
DROP DATABASE in the Greenplum Database Reference Guide

Greenplum Database Utility Guide Release Notes

683

droplang
Removes a procedural language.

Synopsis

droplang [connection-option ...] [-e] langname [[-d] dbname]

droplang [connection-option ...] [-e] -l dbname

droplang -? | --help

droplang -V | --version

Description
droplang removes an existing procedural language from a database.

droplang is a wrapper for the SQL command DROP EXTENSION.

Note: droplang is deprecated and may be removed in a future release. From Greenplum
Database 6.x using droplang to remove a procedural language package generates an error. Use
the DROP EXTENSION command instead.

Options
langname

Specifies the name of the procedural language to be removed. (This name is lower-cased.)

[-d] dbname | [--dbname=]dbname

Specifies from which database the language should be removed. The default is to use the
PGDATABASE environment variable setting, or the same name as the current system user.

-e | --echo

Echo the commands that droplang generates and sends to the server.

-l | --list

Show a list of already installed languages in the target database.

-V | --version

Print the droplang version and exit.

-? | --help

Show help about droplang command line arguments, and exit.

Connection Options
-h host | --host=host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port=port

The TCP port on which the Greenplum master database server is listening for connections.
If not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username=username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-w | --no-password

Greenplum Database Utility Guide Release Notes

684

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt
will fail. This option can be useful in batch jobs and scripts where no user is present to
enter a password.

-W | --password

Force a password prompt.

Examples
To remove the language pltcl from the mydatabase database:

droplang pltcl mydatabase

See Also

dropuser
Removes a database role.

Synopsis

dropuser [connection-option ...] [-e] [-i] role_name

dropuser -? | --help

dropuser -V | --version

Description
dropuser removes an existing role from Greenplum Database. Only superusers and users with the
CREATEROLE privilege can remove roles. To remove a superuser role, you must yourself be a superuser.

dropuser is a wrapper around the SQL command DROP ROLE.

Options
role_name

The name of the role to be removed. You will be prompted for a name if not specified on
the command line and the -i/--interactive option is used.

-e | --echo

Echo the commands that dropuser generates and sends to the server.

-i | --interactive

Prompt for confirmation before actually removing the role, and prompt for the role name if
none is specified on the command line.

--if-exists

Do not throw an error if the user does not exist. A notice is issued in this case.

-V | --version

Print the dropuser version and exit.

-? | --help

Show help about dropuser command line arguments, and exit.

Connection Options
-h host | --host=host

Greenplum Database Utility Guide Release Notes

685

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port=port

The TCP port on which the Greenplum master database server is listening for connections.
If not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username=username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt
will fail. This option can be useful in batch jobs and scripts where no user is present to
enter a password.

-W | --password

Force a password prompt.

Examples
To remove the role joe using default connection options:

dropuser joe
DROP ROLE

To remove the role joe using connection options, with verification, and a peek at the underlying command:

dropuser -p 54321 -h masterhost -i -e joe
Role "joe" will be permanently removed.
Are you sure? (y/n) y
DROP ROLE "joe"
DROP ROLE

See Also
DROP ROLE in the Greenplum Database Reference Guide

gpactivatestandby
Activates a standby master host and makes it the active master for the Greenplum Database system.

Synopsis

gpactivatestandby [-d standby_master_datadir] [-f] [-a] [-q]
 [-l logfile_directory]

gpactivatestandby -v

gpactivatestandby -? | -h | --help

Description
The gpactivatestandby utility activates a backup, standby master host and brings it into operation as
the active master instance for a Greenplum Database system. The activated standby master effectively
becomes the Greenplum Database master, accepting client connections on the master port.

Greenplum Database Utility Guide Release Notes

686

When you initialize a standby master, the default is to use the same port as the active master. For
information about the master port for the standby master, see gpinitstandby.

You must run this utility from the master host you are activating, not the failed master host you are
disabling. Running this utility assumes you have a standby master host configured for the system (see
gpinitstandby).

The utility will perform the following steps:

• Stops the synchronization process (walreceiver) on the standby master
• Updates the system catalog tables of the standby master using the logs
• Activates the standby master to be the new active master for the system
• Restarts the Greenplum Database system with the new master host

A backup, standby Greenplum master host serves as a 'warm standby' in the event of the primary
Greenplum master host becoming non-operational. The standby master is kept up to date by transaction
log replication processes (the walsender and walreceiver), which run on the primary master and
standby master hosts and keep the data between the primary and standby master hosts synchronized.

If the primary master fails, the log replication process is shutdown, and the standby master can be
activated in its place by using the gpactivatestandby utility. Upon activation of the standby master,
the replicated logs are used to reconstruct the state of the Greenplum master host at the time of the last
successfully committed transaction.

In order to use gpactivatestandby to activate a new primary master host, the master host that was
previously serving as the primary master cannot be running. The utility checks for a postmaster.pid file
in the data directory of the disabled master host, and if it finds it there, it will assume the old master host is
still active. In some cases, you may need to remove the postmaster.pid file from the disabled master
host data directory before running gpactivatestandby (for example, if the disabled master host process
was terminated unexpectedly).

After activating a standby master, run ANALYZE to update the database query statistics. For example:

psql dbname -c 'ANALYZE;'

After you activate the standby master as the primary master, the Greenplum Database system no longer
has a standby master configured. You might want to specify another host to be the new standby with the
gpinitstandby utility.

Options
-a (do not prompt)

Do not prompt the user for confirmation.

-d standby_master_datadir

The absolute path of the data directory for the master host you are activating.

If this option is not specified, gpactivatestandby uses the value of the
MASTER_DATA_DIRECTORY environment variable setting on the master host you are
activating. If this option is specified, it overrides any setting of MASTER_DATA_DIRECTORY.

If a directory cannot be determined, the utility returns an error.

-f (force activation)

Use this option to force activation of the backup master host. Use this option only if you are
sure that the standby and primary master hosts are consistent.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-q (no screen output)

Greenplum Database Utility Guide Release Notes

687

Run in quiet mode. Command output is not displayed on the screen, but is still written to
the log file.

-v (show utility version)

Displays the version, status, last updated date, and check sum of this utility.

-? | -h | --help (help)

Displays the online help.

Example
Activate the standby master host and make it the active master instance for a Greenplum Database system
(run from backup master host you are activating):

gpactivatestandby -d /gpdata

See Also
gpinitsystem, gpinitstandby

gpaddmirrors
Adds mirror segments to a Greenplum Database system that was initially configured without mirroring.

Synopsis

gpaddmirrors [-p port_offset] [-m datadir_config_file [-a]] [-s]
 [-d master_data_directory] [-B parallel_processes] [-l logfile_directory]
 [-v]

gpaddmirrors -i mirror_config_file [-a] [-d master_data_directory]
 [-B parallel_processes] [-l logfile_directory] [-v]

gpaddmirrors -o output_sample_mirror_config [-s] [-m datadir_config_file]

gpaddmirrors -?

gpaddmirrors --version

Description
The gpaddmirrors utility configures mirror segment instances for an existing Greenplum Database
system that was initially configured with primary segment instances only. The utility will create the mirror
instances and begin the online replication process between the primary and mirror segment instances.
Once all mirrors are synchronized with their primaries, your Greenplum Database system is fully data
redundant.

Important: During the online replication process, Greenplum Database should be in a quiescent
state, workloads and other queries should not be running.

By default, the utility will prompt you for the file system location(s) where it will create the mirror segment
data directories. If you do not want to be prompted, you can pass in a file containing the file system
locations using the -m option.

The mirror locations and ports must be different than your primary segment data locations and ports.

The utility creates a unique data directory for each mirror segment instance in the specified location using
the predefined naming convention. There must be the same number of file system locations declared for
mirror segment instances as for primary segment instances. It is OK to specify the same directory name

Greenplum Database Utility Guide Release Notes

688

multiple times if you want your mirror data directories created in the same location, or you can enter a
different data location for each mirror. Enter the absolute path. For example:

Enter mirror segment data directory location 1 of 2 > /gpdb/mirror
Enter mirror segment data directory location 2 of 2 > /gpdb/mirror

OR

Enter mirror segment data directory location 1 of 2 > /gpdb/m1
Enter mirror segment data directory location 2 of 2 > /gpdb/m2

Alternatively, you can run the gpaddmirrors utility and supply a detailed configuration file using the -
i option. This is useful if you want your mirror segments on a completely different set of hosts than your
primary segments. The format of the mirror configuration file is:

<contentID>|<address>|<port>|<data_dir>

Where <contentID> is the segment instance content ID, <address> is the host name or IP address
of the segment host, <port> is the communication port, and <data_dir> is the segment instance data
directory.

For example:

0|sdw1-1|60000|/gpdata/m1/gp0
1|sdw1-1|60001|/gpdata/m2/gp1

The gp_segment_configuration system catalog table can help you determine your current primary
segment configuration so that you can plan your mirror segment configuration. For example, run the
following query:

=# SELECT dbid, content, address as host_address, port, datadir
 FROM gp_segment_configuration
 ORDER BY dbid;

If you are creating mirrors on alternate mirror hosts, the new mirror segment hosts must be pre-installed
with the Greenplum Database software and configured exactly the same as the existing primary segment
hosts.

You must make sure that the user who runs gpaddmirrors (the gpadmin user) has permissions to write
to the data directory locations specified. You may want to create these directories on the segment hosts
and chown them to the appropriate user before running gpaddmirrors.

Note: This utility uses secure shell (SSH) connections between systems to perform its tasks. In
large Greenplum Database deployments, cloud deployments, or deployments with a large number
of segments per host, this utility may exceed the host's maximum threshold for unauthenticated
connections. Consider updating the SSH MaxStartups configuration parameter to increase this
threshold. For more information about SSH configuration options, refer to the SSH documentation
for your Linux distribution.

Options
-a (do not prompt)

Run in quiet mode - do not prompt for information. Must supply a configuration file with
either -m or -i if this option is used.

-B parallel_processes

The number of mirror setup processes to start in parallel. If not specified, the utility will start
up to 10 parallel processes depending on how many mirror segment instances it needs to
set up.

Greenplum Database Utility Guide Release Notes

689

-d master_data_directory

The master data directory. If not specified, the value set for $MASTER_DATA_DIRECTORY
will be used.

-i mirror_config_file

A configuration file containing one line for each mirror segment you want to create. You
must have one mirror segment instance listed for each primary segment in the system.
The format of this file is as follows (as per attributes in the gp_segment_configuration
catalog table):

<contentID>|<address>|<port>|<data_dir>

Where <contentID> is the segment instance content ID, <address> is the hostname
or IP address of the segment host, <port> is the communication port, and <data_dir>
is the segment instance data directory. For information about using a hostname or IP
address, see Specifying Hosts using Hostnames or IP Addresses. Also, see Using Host
Systems with Multiple NICs.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-m datadir_config_file

A configuration file containing a list of file system locations where the mirror data
directories will be created. If not supplied, the utility prompts you for locations. Each line in
the file specifies a mirror data directory location. For example:

/gpdata/m1
/gpdata/m2
/gpdata/m3
/gpdata/m4

-o output_sample_mirror_config

If you are not sure how to lay out the mirror configuration file used by the -i option, you
can run gpaddmirrors with this option to generate a sample mirror configuration file
based on your primary segment configuration. The utility will prompt you for your mirror
segment data directory locations (unless you provide these in a file using -m). You can
then edit this file to change the host names to alternate mirror hosts if necessary.

-p port_offset

Optional. This number is used to calculate the database ports used for mirror segments.
The default offset is 1000. Mirror port assignments are calculated as follows:

primary_port + offset = mirror_database_port

For example, if a primary segment has port 50001, then its mirror will use a database port
of 51001, by default.

-s (spread mirrors)

Spreads the mirror segments across the available hosts. The default is to group a set
of mirror segments together on an alternate host from their primary segment set. Mirror
spreading will place each mirror on a different host within the Greenplum Database array.
Spreading is only allowed if there is a sufficient number of hosts in the array (number of
hosts is greater than the number of segment instances per host).

-v (verbose)

Sets logging output to verbose.

--version (show utility version)

Displays the version of this utility.

Greenplum Database Utility Guide Release Notes

690

-? (help)

Displays the online help.

Specifying Hosts using Hostnames or IP Addresses
When specifying a mirroring configuration using the gpaddmirrors option -i, you can specify either a
hostname or an IP address for the <address> value.

• If you specify a hostname, the resolution of the hostname to an IP address should be done locally for
security. For example, you should use entries in a local /etc/hosts file to map the hostname to an IP
address. The resolution of a hostname to an IP address should not be performed by an external service
such as a public DNS server. You must stop the Greenplum system before you change the mapping of
a hostname to a different IP address.

• If you specify an IP address, the address should not be changed after the initial configuration. When
segment mirroring is enabled, replication from the primary to the mirror segment will fail if the IP
address changes from the configured value. For this reason, you should use a hostname when enabling
mirroring using the -i option unless you have a specific requirement to use IP addresses.

When enabling a mirroring configuration that adds hosts to the Greenplum system, gpaddmirrors
populates the gp_segment_configuration catalog table with the mirror segment instance information.
Greenplum Database uses the address value of the gp_segment_configuration catalog table when
looking up host systems for Greenplum interconnect (internal) communication between the master and
segment instances and between segment instances, and for other internal communication.

Using Host Systems with Multiple NICs
If hosts systems are configured with multiple NICs, you can initialize a Greenplum Database system to
use each NIC as a Greenplum host system. You must ensure that the host systems are configured with
sufficient resources to support all the segment instances being added to the host. Also, if you enable
segment mirroring, you must ensure that the Greenplum system configuration supports failover if a host
system fails. For information about Greenplum Database mirroring schemes, see Segment Mirroring
Configurations.

For example, this is a segment instance configuration for a simple Greenplum system. The segment host
gp6m is configured with two NICs, gp6m-1 and gp6m-2, where the Greenplum Database system uses
gp6m-1 for the master segment and gp6m-2 for segment instances.

select content, role, port, hostname, address from
 gp_segment_configuration ;

 content | role | port | hostname | address
---------+------+-------+----------+----------
 -1 | p | 5432 | gp6m | gp6m-1
 0 | p | 40000 | gp6m | gp6m-2
 0 | m | 50000 | gp6s | gp6s
 1 | p | 40000 | gp6s | gp6s
 1 | m | 50000 | gp6m | gp6m-2
(5 rows)

Examples
Add mirroring to an existing Greenplum Database system using the same set of hosts as your primary
data. Calculate the mirror database ports by adding 100 to the current primary segment port numbers:

$ gpaddmirrors -p 100

Greenplum Database Utility Guide Release Notes

691

Generate a sample mirror configuration file with the -o option to use with gpaddmirrors -i:

$ gpaddmirrors -o /home/gpadmin/sample_mirror_config

Add mirroring to an existing Greenplum Database system using a different set of hosts from your primary
data:

$ gpaddmirrors -i mirror_config_file

Where mirror_config_file looks something like this:

0|sdw1-1|52001|/gpdata/m1/gp0
1|sdw1-2|52002|/gpdata/m2/gp1
2|sdw2-1|52001|/gpdata/m1/gp2
3|sdw2-2|52002|/gpdata/m2/gp3

See Also
gpinitsystem, gpinitstandby, gpactivatestandby

gpbackup_manager
Display information about existing backups, delete existing backups, or encrypt passwords for secure
storage in plugin configuration files.

Synopsis

gpbackup_manager [command]

where command is:

delete-backup timestamp [--plugin-config config-file]
| display-report timestamp
| encrypt-password --plugin-config config-file
| list-backups
| help [command]

Commands
delete-backup timestamp

Deletes the backup set with the specified timestamp.

display-report timestamp

Displays the backup report for a specified timestamp.

encrypt-password

Encrypts plain-text passwords for storage in the DD Boost plugin configuration file.

list-backups

Displays a list of backups that have been taken. If the backup history file does not exist,
the command exits with an error message. See Table 64: Backup List Report for a
description of the columns in this list.

help command

Displays a help message for the specified command.

Options
--plugin-config config-file

Greenplum Database Utility Guide Release Notes

692

The delete-backup command requires this option if the backup Is stored in s3 or a Data
Domain system. The encrypt-password command requires this option.

-h | --help

Displays a help message for the gpbackup_manager command. For help on a specific
gpbackup_manager command, enter gpbackup_manager help command. For
example:

$ gpbackup_manager help encrypt-password

Description
The gpbackup_manager utility manages backup sets created using the gpbackup utility. You can list
backups, display a report for a backup, and delete a backup. gpbackup_manager can also encrypt
passwords to store in a DD Boost plugin configuration file.

Greenplum Database must be running to use the gpbackup_manager utility.

Backup history is saved on the Greenplum Database master host in the file $MASTER_DATA_DIRECTORY/
gpbackup_history.yaml. If no backups have been created yet, or if the backup history has been
deleted, gpbackup_manager commands that depend on the file will display an error message and exit. If
the backup history contains invalid YAML syntax, a yaml error message is displayed.

Versions of gpbackup earlier than v1.13.0 did not save the backup duration in the backup history file. The
list-backups command duration column is empty for these backups.

The encrypt-password command is used to encrypt Data Domain user passwords that are saved in a
DD Boost plug-In configuration file. To use this option, the pgcrypto extension must be enabled in the
Greenplum Database postgres database. See the Pivotal Greenplum Backup and Restore installation
instructions for help installing pgcrypto.

The encrypt-password command prompts you to enter and then re-enter the password to be encrypted.
To maintain password secrecy, characters entered are echoed as asterisks. If replication is enabled in
the specified DD Boost configuration file, the command also prompts for a password for the remote Data
Domain account. You must then copy the output of the command into the DD Boost configuration file.

The following table describes the contents of the columns in the list that is output by the
gpbackup_manager list-backups command.

Table 64: Backup List Report

Column Description

timestamp Timestamp value (YYYYMMDDHHMMSS) that specifies the time the
backup was taken.

date Date the backup was taken.

database Name of the database backed up (specified on the gpbackup
command line with the --dbname option).

Greenplum Database Utility Guide Release Notes

693

Column Description

type Which classes of data are included in the backup. Can be one of the
following:

full - contains all global and local metadata, and user data for the
database. This kind of backup can be the base for an incremental
backup. Depending on the gpbackup options specified, some
objects could have been filtered from the backup.
incremental – contains all global and local metadata, and user
data changed since a previous full backup.
metadata-only – contains only the global and local metadata for
the database. Depending on the gpbackup options specified,
some objects could have been filtered from the backup.
data-only – contains only user data from the database.
Depending on the gpbackup options specified, some objects
could have been filtered from the backup.

object filtering The object filtering options that were specified at least once on the
gpbackup command line, or blank if no filtering operations were
used. To see the object filtering details for a specific backup, run the
gpbackup_manager report command for the backgit st

include-schema – at least one --include-schema option was
specified.
exclude-schema – at least one --exclude-schema option was
specified.
include-table – at least one --include-table option was
specified.
exclude-table – at least one --exclude-table option was
specified.

plugin The name of the binary plugin file that was used to configure the
backup destination, excluding path information.

duration The amount of time (hh:mm:ss format) taken to complete the
backup.

date deleted The date the backup was deleted, or blank if the backup still exists.

Examples
1. Display a list of the existing backups.

gpadmin@mdw:$ gpbackup_manager list-backups
 timestamp date database type
 object filtering plugin duration date deleted
 20190719092809 Fri Jul 19 2019 09:28:09 sales full
 include-schema 01:49:38 Fri Jul 19 2019 09:30:34
 20190719092716 Fri Jul 19 2019 09:27:16 sales full
 exclude-schema 01:38:45
 20190719092609 Fri Jul 19 2019 09:26:09 sales data-only
 01:07:22
 20190719092557 Fri Jul 19 2019 09:25:57 sales metadata-only
 00:00:19
 20190719092530 Fri Jul 19 2019 09:25:30 sales full
 01:50:27

Greenplum Database Utility Guide Release Notes

694

2. Display the backup report for the backup with timestamp 20190612154608.

$ gpbackup_manager display-report 20190612154608

Greenplum Database Backup Report

Timestamp Key: 20190612154608
GPDB Version: 5.14.0+dev.8.gdb327b2a3f build
 commit:db327b2a3f6f2b0673229e9aa164812e3bb56263
gpbackup Version: 1.11.0
Database Name: sales
Command Line: gpbackup --dbname sales
Compression: gzip
Plugin Executable: None
Backup Section: All Sections
Object Filtering: None
Includes Statistics: No
Data File Format: Multiple Data Files Per Segment
Incremental: False
Start Time: 2019-06-12 15:46:08
End Time: 2019-06-12 15:46:53
Duration: 0:00:45

Backup Status: Success
Database Size: 3306 MB

Count of Database Objects in Backup:
Aggregates 12
Casts 4
Constraints 0
Conversions 0
Database GUCs 0
Extensions 0
Functions 0
Indexes 0
Operator Classes 0
Operator Families 1
Operators 0
Procedural Languages 1
Protocols 1
Resource Groups 2
Resource Queues 6
Roles 859
Rules 0
Schemas 185
Sequences 207
Tables 431
Tablespaces 0
Text Search Configurations 0
Text Search Dictionaries 0
Text Search Parsers 0
Text Search Templates 0
Triggers 0
Types 2
Views 0

3. Delete the local backup with timestamp 20190620145126.

$ gpbackup_manager delete-backup 20190620145126

Are you sure you want to delete-backup 20190620145126? (y/n)y
Deletion of 20190620145126 in progress.

Greenplum Database Utility Guide Release Notes

695

Deletion of 20190620145126 complete.

4. Delete a backup stored on a Data Domain system. The DD Boost plugin configuration file must be
specified with the --plugin-config option.

$ gpbackup_manager delete-backup 20190620160656 --plugin-config ~/
ddboost_config.yaml

Are you sure you want to delete-backup 20190620160656? (y/n)y
Deletion of 20190620160656 in progress.

Deletion of 20190620160656 done.

5. Encrypt a password. A DD Boost plugin configuration file must be specified with the --plugin-
config option.

$ gpbackup_manager encrypt-password --plugin-config ~/
ddboost_rep_on_config.yaml

Please enter your password ******
Please verify your password ******
Please enter your remote password ******
Please verify your remote password ******

Please copy/paste these lines into the plugin config file:

password:
 "c30d04090302a0ff861b823d71b079d23801ac367a74a1a8c088ed53beb62b7e190b7110277ea5b51c88afcba41857d2900070164db5f3efda63745dfffc7f2026290a31e1a2035dac"
password_encryption: "on"
remote_password:
 "c30d04090302c764fd06bfa1dade62d2380160a8f1e4d1ff0a4bb25a542fb1d31c7a19b98e9b2f00e7b1cf4811c6cdb3d54beebae67f605e6a9c4ec9718576769b20e5ebd0b9f53221"
remote_password_encryption: "on"

See Also
gprestore, Parallel Backup with gpbackup and gprestore and Using the S3 Storage Plugin with
gpbackup and gprestore

gpbackup
Create a Greenplum Database backup for use with the gprestore utility.

Synopsis

gpbackup --dbname database_name
 [--backup-dir directory]
 [--compression-level level]
 [--data-only]
 [--debug]
 [--exclude-schema schema_name [--exclude-schema schema_name ...]]
 [--exclude-table schema.table [--exclude-table schema.table ...]]
 [--exclude-schema-file file_name]
 [--exclude-table-file file_name]
 [--include-schema schema_name [--include-schema schema_name ...]]
 [--include-table schema.table [--include-table schema.table ...]]
 [--include-schema-file file_name]
 [--include-table-file file_name]
 [--incremental [--from-timestamp backup-timestamp]]
 [--jobs int]
 [--leaf-partition-data]
 [--metadata-only]

Greenplum Database Utility Guide Release Notes

696

 [--no-compression]
 [--plugin-config config_file_location]
 [--quiet]
 [--single-data-file]
 [--verbose]
 [--version]
 [--with-stats]

gpbackup --help

Description
The gpbackup utility backs up the contents of a database into a collection of metadata files and data files
that can be used to restore the database at a later time using gprestore. When you back up a database,
you can specify table level and schema level filter options to back up specific tables. For example, you
can combine schema level and table level options to back up all the tables in a schema except for a single
table.

By default, gpbackup backs up objects in the specified database as well as global Greenplum Database
system objects. You can optionally supply the --with-globals option with gprestore to restore global
objects. See Objects Included in a Backup or Restore for additional information.

For materialized views, data is not backed up, only the materialized view definition is backed up.

gpbackup stores the object metadata files and DDL files for a backup in the Greenplum Database master
data directory by default. Greenplum Database segments use the COPY ... ON SEGMENT command
to store their data for backed-up tables in compressed CSV data files, located in each segment's data
directory. See Understanding Backup Files for additional information.

You can add the --backup-dir option to copy all backup files from the Greenplum Database master and
segment hosts to an absolute path for later use. Additional options are provided to filter the backup set in
order to include or exclude specific tables.

You can create an incremental backup with the --incremental option. Incremental backups are
efficient when the total amount of data in append-optimized tables or table partitions that changed is small
compared to the data has not changed. See Creating and Using Incremental Backups with gpbackup and
gprestore for information about incremental backups.

With the default --jobs option (1 job), each gpbackup operation uses a single transaction on the
Greenplum Database master host. The COPY ... ON SEGMENT command performs the backup task in
parallel on each segment host. The backup process acquires an ACCESS SHARE lock on each table that is
backed up. During the table locking process, the database should be in a quiescent state.

When a back up operation completes, gpbackup returns a status code. See Return Codes.

The gpbackup utility cannot be run while gpexpand is initializing new segments. Backups created before
the expansion cannot be restored with gprestore after the cluster expansion is completed.

gpbackup can send status email notifications after a back up operation completes. You specify when the
utility sends the mail and the email recipients in a configuration file. See Configuring Email Notifications.

Note: This utility uses secure shell (SSH) connections between systems to perform its tasks. In
large Greenplum Database deployments, cloud deployments, or deployments with a large number
of segments per host, this utility may exceed the host's maximum threshold for unauthenticated
connections. Consider updating the SSH MaxStartups and MaxSessions configuration
parameters to increase this threshold. For more information about SSH configuration options, refer
to the SSH documentation for your Linux distribution.

Options
--dbname database_name

Required. Specifies the database to back up.

Greenplum Database Utility Guide Release Notes

697

--backup-dir directory

Optional. Copies all required backup files (metadata files and data files) to the specified
directory. You must specify directory as an absolute path (not relative). If you do not
supply this option, metadata files are created on the Greenplum Database master
host in the $MASTER_DATA_DIRECTORY/backups/YYYYMMDD/YYYYMMDDhhmmss/
directory. Segment hosts create CSV data files in the <seg_dir>/backups/YYYYMMDD/
YYYYMMDDhhmmss/ directory. When you specify a custom backup directory, files are
copied to these paths in subdirectories of the backup directory.

You cannot combine this option with the option --plugin-config.

--compression-level level

Optional. Specifies the gzip compression level (from 1 to 9) used to compress data files.
The default is 1. Note that gpbackup uses compression by default.

--data-only

Optional. Backs up only the table data into CSV files, but does not backup metadata files
needed to recreate the tables and other database objects.

--debug

Optional. Displays verbose debug messages during operation.

--exclude-schema schema_name

Optional. Specifies a database schema to exclude from the backup. You can specify this
option multiple times to exclude multiple schemas. You cannot combine this option with the
option --include-schema, --include-schema-file, or a table filtering option such
as --include-table.

See Filtering the Contents of a Backup or Restore for more information.

See Requirements and Limitations for limitations when leaf partitions of a partitioned table
are in different schemas from the root partition.

--exclude-schema-file file_name

Optional. Specifies a text file containing a list of schemas to exclude from the backup.
Each line in the text file must define a single schema. The file must not include trailing
lines. If a schema name uses any character other than a lowercase letter, number, or an
underscore character, then you must include that name in double quotes. You cannot
combine this option with the option --include-schema or --include-schema-file,
or a table filtering option such as --include-table.

See Filtering the Contents of a Backup or Restore for more information.

See Requirements and Limitations for limitations when leaf partitions of a partitioned table
are in different schemas from the root partition.

--exclude-table schema.table

Optional. Specifies a table to exclude from the backup. The table must be in the format
<schema-name>.<table-name>. If a table or schema name uses any character other
than a lowercase letter, number, or an underscore character, then you must include that
name in double quotes. You can specify this option multiple times. You cannot combine
this option with the option --exclude-schema, --exclude-schema-file, or another
a table filtering option such as --include-table.

You cannot use this option in combination with --leaf-partition-data. Although you
can specify leaf partition names, gpbackup ignores the partition names.

See Filtering the Contents of a Backup or Restore for more information.

--exclude-table-file file_name

Optional. Specifies a text file containing a list of tables to exclude from the backup. Each
line in the text file must define a single table using the format <schema-name>.<table-

Greenplum Database Utility Guide Release Notes

698

name>. The file must not include trailing lines. If a table or schema name uses any
character other than a lowercase letter, number, or an underscore character, then you
must include that name in double quotes. You cannot combine this option with the option
--exclude-schema, --exclude-schema-file, or another a table filtering option such
as --include-table.

You cannot use this option in combination with --leaf-partition-data. Although
you can specify leaf partition names in a file specified with --exclude-table-file,
gpbackup ignores the partition names.

See Filtering the Contents of a Backup or Restore for more information.

--include-schema schema_name

Optional. Specifies a database schema to include in the backup. You can specify this
option multiple times to include multiple schemas. If you specify this option, any schemas
that are not included in subsequent --include-schema options are omitted from the
backup set. You cannot combine this option with the options --exclude-schema, --
exclude-schema-file, --exclude-schema-file, --include-table, or --
include-table-file. See Filtering the Contents of a Backup or Restore for more
information.

--include-schema-file file_name

Optional. Specifies a text file containing a list of schemas to back up. Each line in the text
file must define a single schema. The file must not include trailing lines. If a schema name
uses any character other than a lowercase letter, number, or an underscore character,
then you must include that name in double quotes. See Filtering the Contents of a Backup
or Restore for more information.

--include-table schema.table

Optional. Specifies a table to include in the backup. The table must be in the format
<schema-name>.<table-name>. If a table or schema name uses any character other
than a lowercase letter, number, or an underscore character, then you must include that
name in single quotes. See Schema and Table Names for information about characters
that are supported in schema and table names.

You can specify this option multiple times. You cannot combine this option with a schema
filtering option such as --include-schema, or another table filtering option such as --
exclude-table-file.

You can also specify the qualified name of a sequence, a view, or a materialized view.

If you specify this option, the utility does not automatically back up dependent objects.
You must also explicitly specify dependent objects that are required. For example if you
back up a view or a materialized view, you must also back up the tables that the view or
materialized view uses. If you back up a table that uses a sequence, you must also back
up the sequence.

You can optionally specify a table leaf partition name in place of the table name, to include
only specific leaf partitions in a backup with the --leaf-partition-data option. When
a leaf partition is backed up, the leaf partition data is backed up along with the metadata
for the partitioned table.

See Filtering the Contents of a Backup or Restore for more information.

--include-table-file file_name

Optional. Specifies a text file containing a list of tables to include in the backup. Each line
in the text file must define a single table using the format <schema-name>.<table-
name>. The file must not include trailing lines. See Schema and Table Names for
information about characters that are supported in schema and table names.

Greenplum Database Utility Guide Release Notes

699

Any tables not listed in this file are omitted from the backup set. You cannot combine
this option with a schema filtering option such as --include-schema, or another table
filtering option such as --exclude-table-file.

You can also specify the qualified name of a sequence, a view, or a materialized view.

If you specify this option, the utility does not automatically back up dependent objects.
You must also explicitly specify dependent objects that are required. For example if you
back up a view or a materialized view, you must also specify the tables that the view or the
materialized view uses. If you specify a table that uses a sequence, you must also specify
the sequence.

You can optionally specify a table leaf partition name in place of the table name, to include
only specific leaf partitions in a backup with the --leaf-partition-data option. When
a leaf partition is backed up, the leaf partition data is backed up along with the metadata
for the partitioned table.

See Filtering the Contents of a Backup or Restore for more information.

--incremental

Specify this option to add an incremental backup to an incremental backup set. A backup
set is a full backup and one or more incremental backups. The backups in the set must be
created with a consistent set of backup options to ensure that the backup set can be used
in a restore operation.

By default, gpbackup attempts to find the most recent existing backup with a consistent
set of options. If the backup is a full backup, the utility creates a backup set. If the backup
is an incremental backup, the utility adds the backup to the existing backup set. The
incremental backup is added as the latest backup in the backup set. You can specify --
from-timestamp to override the default behavior.

--from-timestamp backup-timestamp

Optional. Specifies the timestamp of a backup. The specified backup must have backup
options that are consistent with the incremental backup that is being created. If the
specified backup is a full backup, the utility creates a backup set. If the specified backup is
an incremental backup, the utility adds the incremental backup to the existing backup set.

You must specify --leaf-partition-data with this option. You cannot combine this
option with --data-only or --metadata-only.

A backup is not created and the utility returns an error if the backup cannot add the backup
to an existing incremental backup set or cannot use the backup to create a backup set.

For information about creating and using incremental backups, see Creating and Using
Incremental Backups with gpbackup and gprestore.

--jobs int

Optional. Specifies the number of jobs to run in parallel when backing up tables. By
default, gpbackup uses 1 job (database connection). Increasing this number can improve
the speed of backing up data. When running multiple jobs, each job backs up tables in
a separate transaction. For example, if you specify --jobs 2, the utility creates two
processes, each process starts a single transaction, and the utility backs up the tables in
parallel using the two processes.

Important: If you specify a value higher than 1, the database must be in a
quiescent state while the utility acquires a lock on the tables that are being
backed up. If database operations are being performed on tables that are
being backed up during the table locking process, consistency between tables
that are backed up in different transactions cannot be guaranteed.

You cannot use this option in combination with the options --metadata-only, --
single-data-file, or --plugin-config.

Greenplum Database Utility Guide Release Notes

700

--leaf-partition-data

Optional. For partitioned tables, creates one data file per leaf partition instead of one data
file for the entire table (the default). Using this option also enables you to specify individual
leaf partitions to include in a backup, with the --include-table-file option. You
cannot use this option in combination with --exclude-table-file or --exclude-
table.

--metadata-only

Optional. Creates only the metadata files (DDL) needed to recreate the database objects,
but does not back up the actual table data.

--no-compression

Optional. Do not compress the table data CSV files.

--plugin-config config-file_location

Specify the location of the gpbackup plugin configuration file, a YAML-formatted text file.
The file contains configuration information for the plugin application that gpbackup uses
during the backup operation.

If you specify the --plugin-config option when you back up a database, you must
specify this option with configuration information for a corresponding plugin application
when you restore the database from the backup.

You cannot combine this option with the option --backup-dir.

For information about using storage plugin applications, see Using gpbackup Storage
Plugins.

--quiet

Optional. Suppress all non-warning, non-error log messages.

--single-data-file

Optional. Create a single data file on each segment host for all tables backed up on that
segment. By default, each gpbackup creates one compressed CSV file for each table that
is backed up on the segment.

Note: If you use the --single-data-file option to combine table
backups into a single file per segment, you cannot set the gprestore option
--jobs to a value higher than 1 to perform a parallel restore operation.

--verbose

Optional. Print verbose log messages.

--version

Optional. Print the version number and exit.

--with-stats

Optional. Include query plan statistics in the backup set.

--help

Displays the online help.

Return Codes
One of these codes is returned after gpbackup completes.

• 0 – Backup completed with no problems.
• 1 – Backup completed with non-fatal errors. See log file for more information.
• 2 – Backup failed with a fatal error. See log file for more information.

Greenplum Database Utility Guide Release Notes

701

Schema and Table Names
When specifying the table filtering option --include-table or --include-table-file to list tables
to be backed up, the gpbackup utility supports backing up schemas or tables when the name contains
upper-case characters or these special characters.

~ # $ % ^ & * () _ - + [] { } > < \ | ; : / ? ! ,

If a name contains an upper-case or special character and is specified on the command line with --
include-table, the name must be enclosed in single quotes.

gpbackup --dbname test --include-table 'my#1schema'.'my_$42_Table'

When the table is listed in a file for use with --include-table-file, single quotes are not required.
For example, this is the contents of a text file that is used with --include-table-file to back up two
tables.

my#1schema.my_$42_Table
my#1schema.my_$590_Table

Note: The --include-table and --include-table-file options do not support schema or
table names that contain the character double quote ("), period (.) , newline (\n), or space ().

Examples
Backup all schemas and tables in the "demo" database, including global Greenplum Database system
objects statistics:

$ gpbackup --dbname demo

Backup all schemas and tables in the "demo" database except for the "twitter" schema:

$ gpbackup --dbname demo --exclude-schema twitter

Backup only the "twitter" schema in the "demo" database:

$ gpbackup --dbname demo --include-schema twitter

Backup all schemas and tables in the "demo" database, including global Greenplum Database system
objects and query statistics, and copy all backup files to the /home/gpadmin/backup directory:

$ gpbackup --dbname demo --with-stats --backup-dir /home/gpadmin/backup

This example uses --include-schema with --exclude-table to back up a schema except for a
single table.

$ gpbackup --dbname demo --include-schema mydata --exclude-table
 mydata.addresses

You cannot use the option --exclude-schema with a table filtering option such as --include-table.

See Also
gprestore, Parallel Backup with gpbackup and gprestore and Using the S3 Storage Plugin with
gpbackup and gprestore

gpcheckcat
The gpcheckcat utility tests Greenplum Database catalog tables for inconsistencies.

Greenplum Database Utility Guide Release Notes

702

The utility is in $GPHOME/bin/lib.

Synopsis

gpcheckcat [options] [dbname]

 Options:
 -g dir
 -p port
 -P password
 -U user_name
 -S {none | only}
 -O
 -R test_name
 -C catalog_name
 -B parallel_processes
 -v
 -A

gpcheckcat -l

gpcheckcat -?

Description
The gpcheckcat utility runs multiple tests that check for database catalog inconsistencies. Some of
the tests cannot be run concurrently with other workload statements or the results will not be usable.
Restart the database in restricted mode when running gpcheckcat, otherwise gpcheckcat might report
inconsistencies due to ongoing database operations rather than the actual number of inconsistencies. If
you run gpcheckcat without stopping database activity, run it with -O option.

Note: Any time you run the utility, it checks for and deletes orphaned, temporary database
schemas (temporary schemas without a session ID) in the specified databases. The utility displays
the results of the orphaned, temporary schema check on the command line and also logs the
results.

Catalog inconsistencies are inconsistencies that occur between Greenplum Database system tables. In
general, there are three types of inconsistencies:

• Inconsistencies in system tables at the segment level. For example, an inconsistency between a system
table that contains table data and a system table that contains column data. As another, a system table
that contains duplicates in a column that should to be unique.

• Inconsistencies between same system table across segments. For example, a system table is missing
row on one segment, but other segments have this row. As another example, the values of specific row
column data are different across segments, such as table owner or table access privileges.

• Inconsistency between a catalog table and the filesystem. For example, a file exists in database
directory, but there is no entry for it in the pg_class table.

Options
-A

Run gpcheckcat on all databases in the Greenplum Database installation.

-B parallel_processes

The number of processes to run in parallel.

The gpcheckcat utility attempts to determine the number of simultaneous processes
(the batch size) to use. The utility assumes it can use a buffer with a minimum of 20MB for
each process. The maximum number of parallel processes is the number of Greenplum

Greenplum Database Utility Guide Release Notes

703

Database segment instances. The utility displays the number of parallel processes that it
uses when it starts checking the catalog.

Note: The utility might run out of memory if the number of errors returned
exceeds the buffer size. If an out of memory error occurs, you can lower the
batch size with the -B option. For example, if the utility displays a batch size
of 936 and runs out of memory, you can specify -B 468 to run 468 processes
in parallel.

-C catalog_table

Run cross consistency, foreign key, and ACL tests for the specified catalog table.

-g data_directory

Generate SQL scripts to fix catalog inconsistencies. The scripts are placed in
data_directory.

-l

List the gpcheckcat tests.

-O

Run only the gpcheckcat tests that can be run in online (not restricted) mode.

-p port

This option specifies the port that is used by the Greenplum Database.

-P password

The password of the user connecting to Greenplum Database.

-R test_name

Specify a test to run. Some tests can be run only when Greenplum Database is in
restricted mode.

These are the tests that can be performed:

acl - Cross consistency check for access control privileges

aoseg_table - Check that the vertical partition information (vpinfo) on segment instances
is consistent with pg_attribute (checks only append-optimized, column storage tables
in the database)

duplicate - Check for duplicate entries

foreign_key - Check foreign keys

inconsistent - Cross consistency check for master segment inconsistency

missing_extraneous - Cross consistency check for missing or extraneous entries

owner - Check table ownership that is inconsistent with the master database

orphaned_toast_tables - Check for orphaned TOAST tables.

Note: There are several ways a TOAST table can become orphaned
where a repair script cannot be generated and a manual catalog change is
required. One way is if the reltoastrelid entry in pg_class points to an
incorrect TOAST table (a TOAST table mismatch). Another way is if both the
reltoastrelid in pg_class is missing and the pg_depend entry is missing
(a double orphan TOAST table). If a manual catalog change is needed,
gpcheckcat will display detailed steps you can follow to update the catalog.
Contact Pivotal Support if you need help with the catalog change.

part_integrity - Check pg_partition branch integrity, partition with OIDs, partition
distribution policy

part_constraint - Check constraints on partitioned tables

Greenplum Database Utility Guide Release Notes

704

unique_index_violation - Check tables that have columns with the unique index
constraint for duplicate entries

dependency - Check for dependency on non-existent objects (restricted mode only)

distribution_policy - Check constraints on randomly distributed tables (restricted
mode only)

namespace - Check for schemas with a missing schema definition (restricted mode only)

pgclass - Check pg_class entry that does not have any corresponding pg_attribute entry
(restricted mode only)

-S {none | only}

Specify this option to control the testing of catalog tables that are shared across all
databases in the Greenplum Database installation, such as pg_database.

The value none disables testing of shared catalog tables. The value only tests only the
shared catalog tables.

-U user_name

The user connecting to Greenplum Database.

-? (help)

Displays the online help.

-v (verbose)

Displays detailed information about the tests that are performed.

Notes
The utility identifies tables with missing attributes and displays them in various locations in the output and
in a non-standardized format. The utility also displays a summary list of tables with missing attributes in the
format database.schema.table.segment_id after the output information is displayed.

If gpcheckcat detects inconsistent OID (Object ID) information, it generates one or more verification files
that contain an SQL query. You can run the SQL query to see details about the OID inconsistencies and
investigate the inconsistencies. The files are generated in the directory where gpcheckcat is invoked.

This is the format of the file:

gpcheckcat.verify.dbname.catalog_table_name.test_name.TIMESTAMP.sql

This is an example verification filename created by gpcheckcat when it detects inconsistent OID (Object
ID) information in the catalog table pg_type in the database mydb:

gpcheckcat.verify.mydb.pg_type.missing_extraneous.20150420102715.sql

This is an example query from a verification file:

SELECT *
 FROM (
 SELECT relname, oid FROM pg_class WHERE reltype
 IN (1305822,1301043,1301069,1301095)
 UNION ALL
 SELECT relname, oid FROM gp_dist_random('pg_class') WHERE reltype
 IN (1305822,1301043,1301069,1301095)
) alltyprelids
 GROUP BY relname, oid ORDER BY count(*) desc ;

gpcheckperf
Verifies the baseline hardware performance of the specified hosts.

Greenplum Database Utility Guide Release Notes

705

Synopsis

gpcheckperf -d test_directory [-d test_directory ...]
 {-f hostfile_gpcheckperf | - h hostname [-h hostname ...]}
 [-r ds] [-B block_size] [-S file_size] [-D] [-v|-V]

gpcheckperf -d temp_directory
 {-f hostfile_gpchecknet | - h hostname [-h hostname ...]}
 [-r n|N|M [--duration time] [--netperf]] [-D] [-v | -V]

gpcheckperf -?

gpcheckperf --version

Description
The gpcheckperf utility starts a session on the specified hosts and runs the following performance tests:

• Disk I/O Test (dd test) — To test the sequential throughput performance of a logical disk or file system,
the utility uses the dd command, which is a standard UNIX utility. It times how long it takes to write
and read a large file to and from disk and calculates your disk I/O performance in megabytes (MB)
per second. By default, the file size that is used for the test is calculated at two times the total random
access memory (RAM) on the host. This ensures that the test is truly testing disk I/O and not using the
memory cache.

• Memory Bandwidth Test (stream) — To test memory bandwidth, the utility uses the STREAM
benchmark program to measure sustainable memory bandwidth (in MB/s). This tests that your system
is not limited in performance by the memory bandwidth of the system in relation to the computational
performance of the CPU. In applications where the data set is large (as in Greenplum Database), low
memory bandwidth is a major performance issue. If memory bandwidth is significantly lower than the
theoretical bandwidth of the CPU, then it can cause the CPU to spend significant amounts of time
waiting for data to arrive from system memory.

• Network Performance Test (gpnetbench*) — To test network performance (and thereby the
performance of the Greenplum Database interconnect), the utility runs a network benchmark program
that transfers a 5 second stream of data from the current host to each remote host included in the
test. The data is transferred in parallel to each remote host and the minimum, maximum, average and
median network transfer rates are reported in megabytes (MB) per second. If the summary transfer
rate is slower than expected (less than 100 MB/s), you can run the network test serially using the -r n
option to obtain per-host results. To run a full-matrix bandwidth test, you can specify -r M which will
cause every host to send and receive data from every other host specified. This test is best used to
validate if the switch fabric can tolerate a full-matrix workload.

To specify the hosts to test, use the -f option to specify a file containing a list of host names, or use the -h
option to name single host names on the command-line. If running the network performance test, all entries
in the host file must be for network interfaces within the same subnet. If your segment hosts have multiple
network interfaces configured on different subnets, run the network test once for each subnet.

You must also specify at least one test directory (with -d). The user who runs gpcheckperf must have
write access to the specified test directories on all remote hosts. For the disk I/O test, the test directories
should correspond to your segment data directories (primary and/or mirrors). For the memory bandwidth
and network tests, a temporary directory is required for the test program files.

Before using gpcheckperf, you must have a trusted host setup between the hosts involved in the
performance test. You can use the utility gpssh-exkeys to update the known host files and exchange
public keys between hosts if you have not done so already. Note that gpcheckperf calls to gpssh and
gpscp, so these Greenplum utilities must also be in your $PATH.

Options
-B block_size

Greenplum Database Utility Guide Release Notes

706

Specifies the block size (in KB or MB) to use for disk I/O test. The default is 32KB, which is
the same as the Greenplum Database page size. The maximum block size is 1 MB.

-d test_directory

For the disk I/O test, specifies the file system directory locations to test. You must have
write access to the test directory on all hosts involved in the performance test. You can use
the -d option multiple times to specify multiple test directories (for example, to test disk I/O
of your primary and mirror data directories).

-d temp_directory

For the network and stream tests, specifies a single directory where the test program files
will be copied for the duration of the test. You must have write access to this directory on
all hosts involved in the test.

-D (display per-host results)

Reports performance results for each host for the disk I/O tests. The default is to report
results for just the hosts with the minimum and maximum performance, as well as the total
and average performance of all hosts.

--duration time

Specifies the duration of the network test in seconds (s), minutes (m), hours (h), or days
(d). The default is 15 seconds.

-f hostfile_gpcheckperf

For the disk I/O and stream tests, specifies the name of a file that contains one host name
per host that will participate in the performance test. The host name is required, and you
can optionally specify an alternate user name and/or SSH port number per host. The
syntax of the host file is one host per line as follows:

[username@]hostname[:ssh_port]

-f hostfile_gpchecknet

For the network performance test, all entries in the host file must be for host addresses
within the same subnet. If your segment hosts have multiple network interfaces configured
on different subnets, run the network test once for each subnet. For example (a host file
containing segment host address names for interconnect subnet 1):

sdw1-1
sdw2-1
sdw3-1

-h hostname

Specifies a single host name (or host address) that will participate in the performance test.
You can use the -h option multiple times to specify multiple host names.

--netperf

Specifies that the netperf binary should be used to perform the network test instead of
the Greenplum network test. To use this option, you must download netperf from http://
www.netperf.org and install it into $GPHOME/bin/lib on all Greenplum hosts (master and
segments).

-r ds{n|N|M}

Specifies which performance tests to run. The default is dsn:

• Disk I/O test (d)
• Stream test (s)
• Network performance test in sequential (n), parallel (N), or full-matrix (M) mode. The

optional --duration option specifies how long (in seconds) to run the network test.
To use the parallel (N) mode, you must run the test on an even number of hosts.

http://www.netperf.org
http://www.netperf.org

Greenplum Database Utility Guide Release Notes

707

If you would rather use netperf (http://www.netperf.org) instead of the Greenplum
network test, you can download it and install it into $GPHOME/bin/lib on all
Greenplum hosts (master and segments). You would then specify the optional --
netperf option to use the netperf binary instead of the default gpnetbench*
utilities.

-S file_size

Specifies the total file size to be used for the disk I/O test for all directories specified with
-d. file_size should equal two times total RAM on the host. If not specified, the default is
calculated at two times the total RAM on the host where gpcheckperf is executed. This
ensures that the test is truly testing disk I/O and not using the memory cache. You can
specify sizing in KB, MB, or GB.

-v (verbose) | -V (very verbose)

Verbose mode shows progress and status messages of the performance tests as they are
run. Very verbose mode shows all output messages generated by this utility.

--version

Displays the version of this utility.

-? (help)

Displays the online help.

Examples
Run the disk I/O and memory bandwidth tests on all the hosts in the file host_file using the test directory of
/data1 and /data2:

$ gpcheckperf -f hostfile_gpcheckperf -d /data1 -d /data2 -r ds

Run only the disk I/O test on the hosts named sdw1 and sdw2 using the test directory of /data1. Show
individual host results and run in verbose mode:

$ gpcheckperf -h sdw1 -h sdw2 -d /data1 -r d -D -v

Run the parallel network test using the test directory of /tmp, where hostfile_gpcheck_ic* specifies all
network interface host address names within the same interconnect subnet:

$ gpcheckperf -f hostfile_gpchecknet_ic1 -r N -d /tmp
$ gpcheckperf -f hostfile_gpchecknet_ic2 -r N -d /tmp

Run the same test as above, but use netperf instead of the Greenplum network test (note that netperf
must be installed in $GPHOME/bin/lib on all Greenplum hosts):

$ gpcheckperf -f hostfile_gpchecknet_ic1 -r N --netperf -d /tmp
$ gpcheckperf -f hostfile_gpchecknet_ic2 -r N --netperf -d /tmp

See Also
gpssh, gpscp

gpconfig
Sets server configuration parameters on all segments within a Greenplum Database system.

http://www.netperf.org

Greenplum Database Utility Guide Release Notes

708

Synopsis

gpconfig -c param_name -v value [-m master_value | --masteronly]
 | -r param_name [--masteronly]
 | -l
 [--skipvalidation] [--verbose] [--debug]

gpconfig -s param_name [--file | --file-compare] [--verbose] [--debug]

gpconfig --help

Description
The gpconfig utility allows you to set, unset, or view configuration parameters from the
postgresql.conf files of all instances (master, segments, and mirrors) in your Greenplum Database
system. When setting a parameter, you can also specify a different value for the master if necessary.
For example, parameters such as max_connections require a different setting on the master than
what is used for the segments. If you want to set or unset a global or master only parameter, use the --
masteronly option.

gpconfig can only be used to manage certain parameters. For example, you cannot use it to set
parameters such as port, which is required to be distinct for every segment instance. Use the -l (list)
option to see a complete list of configuration parameters supported by gpconfig.

When gpconfig sets a configuration parameter in a segment postgresql.conf file, the new parameter
setting always displays at the bottom of the file. When you use gpconfig to remove a configuration
parameter setting, gpconfig comments out the parameter in all segment postgresql.conf files,
thereby restoring the system default setting. For example, if you use gpconfig to remove (comment out)
a parameter and later add it back (set a new value), there will be two instances of the parameter; one that
is commented out, and one that is enabled and inserted at the bottom of the postgresql.conf file.

After setting a parameter, you must restart your Greenplum Database system or reload the
postgresql.conf files in order for the change to take effect. Whether you require a restart or a reload
depends on the parameter.

For more information about the server configuration parameters, see the Greenplum Database Reference
Guide.

To show the currently set values for a parameter across the system, use the -s option.

gpconfig uses the following environment variables to connect to the Greenplum Database master
instance and obtain system configuration information:

• PGHOST

• PGPORT

• PGUSER

• PGPASSWORD

• PGDATABASE

Options
-c | --change param_name

Changes a configuration parameter setting by adding the new setting to the bottom of the
postgresql.conf files.

-v | --value value

The value to use for the configuration parameter you specified with the -c option. By
default, this value is applied to all segments, their mirrors, the master, and the standby
master.

Greenplum Database Utility Guide Release Notes

709

The utility correctly quotes the value when adding the setting to the postgresql.conf
files.

To set the value to an empty string, enter empty single quotes ('').

-m | --mastervalue master_value

The master value to use for the configuration parameter you specified with the -c option.
If specified, this value only applies to the master and standby master. This option can only
be used with -v.

--masteronly

When specified, gpconfig will only edit the master postgresql.conf file.

-r | --remove param_name

Removes a configuration parameter setting by commenting out the entry in the
postgresql.conf files.

-l | --list

Lists all configuration parameters supported by the gpconfig utility.

-s | --show param_name

Shows the value for a configuration parameter used on all instances (master and
segments) in the Greenplum Database system. If there is a difference in a parameter
value among the instances, the utility displays an error message. Running gpconfig
with the -s option reads parameter values directly from the database, and not the
postgresql.conf file. If you are using gpconfig to set configuration parameters
across all segments, then running gpconfig -s to verify the changes, you might still see
the previous (old) values. You must reload the configuration files (gpstop -u) or restart
the system (gpstop -r) for changes to take effect.

--file

For a configuration parameter, shows the value from the postgresql.conf file on
all instances (master and segments) in the Greenplum Database system. If there is a
difference in a parameter value among the instances, the utility displays a message. Must
be specified with the -s option.

For example, the configuration parameter statement_mem is set to 64MB for a user
with the ALTER ROLE command, and the value in the postgresql.conf file is 128MB.
Running the command gpconfig -s statement_mem --file displays 128MB. The
command gpconfig -s statement_mem run by the user displays 64MB.

Not valid with the --file-compare option.

--file-compare

For a configuration parameter, compares the current Greenplum Database value with the
value in the postgresql.conf files on hosts (master and segments). The values in the
postgresql.conf files represent the value when Greenplum Database is restarted.

If the values are not the same, the utility displays the values from all hosts. If all hosts have
the same value, the utility displays a summary report.

Not valid with the --file option.

--skipvalidation

Overrides the system validation checks of gpconfig and allows you to operate on any
server configuration parameter, including hidden parameters and restricted parameters
that cannot be changed by gpconfig. When used with the -l option (list), it shows the list
of restricted parameters.

Warning: Use extreme caution when setting configuration parameters with
this option.

--verbose

Greenplum Database Utility Guide Release Notes

710

Displays additional log information during gpconfig command execution.

--debug

Sets logging output to debug level.

-? | -h | --help

Displays the online help.

Examples
Set the max_connections setting to 100 on all segments and 10 on the master:

gpconfig -c max_connections -v 100 -m 10

These examples shows the syntax required due to bash shell string processing.

gpconfig -c search_path -v '"\$user",public'
gpconfig -c dynamic_library_path -v '\$libdir'

The configuration parameters are added to the postgresql.conf file.

search_path='"$user",public'
dynamic_library_path='$libdir'

Comment out all instances of the default_statistics_target configuration parameter, and restore
the system default:

gpconfig -r default_statistics_target

List all configuration parameters supported by gpconfig:

gpconfig -l

Show the values of a particular configuration parameter across the system:

gpconfig -s max_connections

See Also
gpstop

gpcopy
The gpcopy utility copies objects from databases in a source Greenplum Database system to databases
in a destination Greenplum Database system.

Note: The gpcopy utility is available as a separate download for the commercial release of Pivotal
Greenplum Database. See the Pivotal gpcopy Documentation.

gpdeletesystem
Deletes a Greenplum Database system that was initialized using gpinitsystem.

Synopsis

gpdeletesystem [-d master_data_directory] [-B parallel_processes]
 [-f] [-l logfile_directory] [-D]

https://gpdb.docs.pivotal.io/gpcopy

Greenplum Database Utility Guide Release Notes

711

gpdeletesystem -?

gpdeletesystem -v

Description
The gpdeletesystem utility performs the following actions:

• Stop all postgres processes (the segment instances and master instance).
• Deletes all data directories.

Before running gpdeletesystem:

• Move any backup files out of the master and segment data directories.
• Make sure that Greenplum Database is running.
• If you are currently in a segment data directory, change directory to another location. The utility fails

with an error when run from within a segment data directory.

This utility will not uninstall the Greenplum Database software.

Options
-d master_data_directory

Specifies the master host data directory. If this option is not specified, the setting for the
environment variable MASTER_DATA_DIRECTORY is used. If this option is specified, it
overrides any setting of MASTER_DATA_DIRECTORY. If master_data_directory cannot be
determined, the utility returns an error.

-B parallel_processes

The number of segments to delete in parallel. If not specified, the utility will start up to 60
parallel processes depending on how many segment instances it needs to delete.

-f (force)

Force a delete even if backup files are found in the data directories. The default is to not
delete Greenplum Database instances if backup files are present.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-D (debug)

Sets logging level to debug.

-? (help)

Displays the online help.

-v (show utility version)

Displays the version, status, last updated date, and check sum of this utility.

Examples
Delete a Greenplum Database system:

gpdeletesystem -d /gpdata/gp-1

Delete a Greenplum Database system even if backup files are present:

gpdeletesystem -d /gpdata/gp-1 -f

See Also
gpinitsystem

Greenplum Database Utility Guide Release Notes

712

gpexpand
Expands an existing Greenplum Database across new hosts in the system.

Synopsis

gpexpand [{-f|--hosts-file} hosts_file]
 | {-i|--input} input_file [-B batch_size]
 | [{-d | --duration} hh:mm:ss | {-e|--end} 'YYYY-MM-DD hh:mm:ss']
 [-a|-analyze]
 [-n parallel_processes]
 | {-r|--rollback}
 | {-c|--clean}
 [-v|--verbose] [-s|--silent]
 [{-t|--tardir} directory]
 [-S|--simple-progress]

gpexpand -? | -h | --help

gpexpand --version

Prerequisites
• You are logged in as the Greenplum Database superuser (gpadmin).
• The new segment hosts have been installed and configured as per the existing segment hosts. This

involves:

• Configuring the hardware and OS
• Installing the Greenplum software
• Creating the gpadmin user account
• Exchanging SSH keys.

• Enough disk space on your segment hosts to temporarily hold a copy of your largest table.
• When redistributing data, Greenplum Database must be running in production mode. Greenplum

Database cannot be running in restricted mode or in master mode. The gpstart options -R or -m
cannot be specified to start Greenplum Database.

Note: These utilities cannot be run while gpexpand is performing segment initialization.

• gpbackup

• gpcheckcat

• gpconfig

• gppkg

• gprestore

Important: When expanding a Greenplum Database system, you must disable Greenplum
interconnect proxies before adding new hosts and segment instances to the system, and you must
update the gp_interconnect_proxy_addresses parameter with the newly-added segment
instances before you re-enable interconnect proxies. For information about Greenplum interconnect
proxies, see Configuring Proxies for the Greenplum Interconnect.

For information about preparing a system for expansion, see Expanding a Greenplum System in the
Greenplum Database Administrator Guide.

Description
The gpexpand utility performs system expansion in two phases: segment instance initialization and then
table data redistribution.

Greenplum Database Utility Guide Release Notes

713

In the initialization phase, gpexpand runs with an input file that specifies data directories, dbid values, and
other characteristics of the new segment instances. You can create the input file manually, or by following
the prompts in an interactive interview.

If you choose to create the input file using the interactive interview, you can optionally specify a file
containing a list of expansion system hosts. If your platform or command shell limits the length of the list
of hostnames that you can type when prompted in the interview, specifying the hosts with -f may be
mandatory.

In addition to initializing the segment instances, the initialization phase performs these actions:

• Creates an expansion schema named gpexpand in the postgres database to store the status of the
expansion operation, including detailed status for tables.

In the table data redistribution phase, gpexpand redistributes table data to rebalance the data across the
old and new segment instances.

Note: Data redistribution should be performed during low-use hours. Redistribution can be divided
into batches over an extended period.

To begin the redistribution phase, run gpexpand with either the -d (duration) or -e (end time) options, or
with no options. If you specify an end time or duration, then the utility redistributes tables in the expansion
schema until the specified end time or duration is reached. If you specify no options, then the utility
redistribution phase continues until all tables in the expansion schema are reorganized. Each table is
reorganized using ALTER TABLE commands to rebalance the tables across new segments, and to set
tables to their original distribution policy. If gpexpand completes the reorganization of all tables, it displays
a success message and ends.

Note: This utility uses secure shell (SSH) connections between systems to perform its tasks. In
large Greenplum Database deployments, cloud deployments, or deployments with a large number
of segments per host, this utility may exceed the host's maximum threshold for unauthenticated
connections. Consider updating the SSH MaxStartups and MaxSessions configuration
parameters to increase this threshold. For more information about SSH configuration options, refer
to the SSH documentation for your Linux distribution.

Options
-a | --analyze

Run ANALYZE to update the table statistics after expansion. The default is to not run
ANALYZE.

-B batch_size

Batch size of remote commands to send to a given host before making a one-second
pause. Default is 16. Valid values are 1-128.

The gpexpand utility issues a number of setup commands that may exceed the host's
maximum threshold for unauthenticated connections as defined by MaxStartups in the
SSH daemon configuration. The one-second pause allows authentications to be completed
before gpexpand issues any more commands.

The default value does not normally need to be changed. However, it may be necessary to
reduce the maximum number of commands if gpexpand fails with connection errors such
as 'ssh_exchange_identification: Connection closed by remote host.'

-c | --clean

Remove the expansion schema.

-d | --duration hh:mm:ss

Duration of the expansion session from beginning to end.

-e | --end 'YYYY-MM-DD hh:mm:ss'

Ending date and time for the expansion session.

Greenplum Database Utility Guide Release Notes

714

-f | --hosts-file filename

Specifies the name of a file that contains a list of new hosts for system expansion. Each
line of the file must contain a single host name.

This file can contain hostnames with or without network interfaces specified. The
gpexpand utility handles either case, adding interface numbers to end of the hostname if
the original nodes are configured with multiple network interfaces.

Note: The Greenplum Database segment host naming convention is sdwN
where sdw is a prefix and N is an integer. For example, sdw1, sdw2 and so
on. For hosts with multiple interfaces, the convention is to append a dash (-)
and number to the host name. For example, sdw1-1 and sdw1-2 are the two
interface names for host sdw1.

For information about using a hostname or IP address, see Specifying Hosts using
Hostnames or IP Addresses. Also, see Using Host Systems with Multiple NICs.

-i | --input input_file

Specifies the name of the expansion configuration file, which contains one line for each
segment to be added in the format of:

hostname|address|port|datadir|dbid|content|preferred_role

-n parallel_processes

The number of tables to redistribute simultaneously. Valid values are 1 - 96.

Each table redistribution process requires two database connections: one to alter the table,
and another to update the table's status in the expansion schema. Before increasing -n,
check the current value of the server configuration parameter max_connections and
make sure the maximum connection limit is not exceeded.

-r | --rollback

Roll back a failed expansion setup operation.

-s | --silent

Runs in silent mode. Does not prompt for confirmation to proceed on warnings.

-S | --simple-progress

If specified, the gpexpand utility records only the minimum progress information in the
Greenplum Database table gpexpand.expansion_progress. The utility does not record the
relation size information and status information in the table gpexpand.status_detail.

Specifying this option can improve performance by reducing the amount of progress
information written to the gpexpand tables.

[-t | --tardir] directory

The fully qualified path to a directory on segment hosts where the gpexpand utility copies
a temporary tar file. The file contains Greenplum Database files that are used to create
segment instances. The default directory is the user home directory.

-v | --verbose

Verbose debugging output. With this option, the utility will output all DDL and DML used to
expand the database.

--version

Display the utility's version number and exit.

-? | -h | --help

Displays the online help.

Greenplum Database Utility Guide Release Notes

715

Specifying Hosts using Hostnames or IP Addresses
When expanding a Greenplum Database system, you can specify either a hostname or an IP address for
the value.

• If you specify a hostname, the resolution of the hostname to an IP address should be done locally for
security. For example, you should use entries in a local /etc/hosts file to map a hostname to an IP
address. The resolution of a hostname to an IP address should not be performed by an external service
such as a public DNS server. You must stop the Greenplum system before you change the mapping of
a hostname to a different IP address.

• If you specify an IP address, the address should not be changed after the initial configuration. When
segment mirroring is enabled, replication from the primary to the mirror segment will fail if the IP
address changes from the configured value. For this reason, you should use a hostname when
expanding a Greenplum Database system unless you have a specific requirement to use IP addresses.

When expanding a Greenplum system, gpexpand populates gp_segment_configuration catalog
table with the new segment instance information. Greenplum Database uses the address value of the
gp_segment_configuration catalog table when looking up host systems for Greenplum interconnect
(internal) communication between the master and segment instances and between segment instances,
and for other internal communication.

Using Host Systems with Multiple NICs
If host systems are configured with multiple NICs, you can expand a Greenplum Database system to
use each NIC as a Greenplum host system. You must ensure that the host systems are configured with
sufficient resources to support all the segment instances being added to the host. Also, if you enable
segment mirroring, you must ensure that the expanded Greenplum system configuration supports failover if
a host system fails. For information about Greenplum Database mirroring schemes, see Segment Mirroring
Configurations.

For example, this is a gpexpand configuration file for a simple Greenplum system. The segment host
gp6s1 and gp6s2 are configured with two NICs, -s1 and -s2, where the Greenplum Database system
uses each NIC as a host system.

gp6s1-s2|gp6s1-s2|40001|/data/data1/gpseg2|6|2|p
gp6s2-s1|gp6s2-s1|50000|/data/mirror1/gpseg2|9|2|m
gp6s2-s1|gp6s2-s1|40000|/data/data1/gpseg3|7|3|p
gp6s1-s2|gp6s1-s2|50001|/data/mirror1/gpseg3|8|3|m

Examples
Run gpexpand with an input file to initialize new segments and create the expansion schema in the
postgres database:

$ gpexpand -i input_file

Run gpexpand for sixty hours maximum duration to redistribute tables to new segments:

$ gpexpand -d 60:00:00

See Also
gpssh-exkeys, Expanding a Greenplum System in the Greenplum Database Administrator Guide

gpfdist
Serves data files to or writes data files out from Greenplum Database segments.

Greenplum Database Utility Guide Release Notes

716

Synopsis

gpfdist [-d directory] [-p http_port] [-P last_http_port] [-l log_file]
 [-t timeout] [-S] [-w time] [-v | -V] [-s] [-m max_length]
 [--ssl certificate_path [--sslclean wait_time]]
 [-c config.yml]

gpfdist -? | --help

gpfdist --version

Description
gpfdist is Greenplum Database parallel file distribution program. It is used by readable external tables
and gpload to serve external table files to all Greenplum Database segments in parallel. It is used by
writable external tables to accept output streams from Greenplum Database segments in parallel and write
them out to a file.

Note: gpfdist and gpload are compatible only with the Greenplum Database major version in
which they are shipped. For example, a gpfdist utility that is installed with Greenplum Database
4.x cannot be used with Greenplum Database 5.x or 6.x.

In order for gpfdist to be used by an external table, the LOCATION clause of the external table definition
must specify the external table data using the gpfdist:// protocol (see the Greenplum Database
command CREATE EXTERNAL TABLE).

Note: If the --ssl option is specified to enable SSL security, create the external table with the
gpfdists:// protocol.

The benefit of using gpfdist is that you are guaranteed maximum parallelism while reading from or
writing to external tables, thereby offering the best performance as well as easier administration of external
tables.

For readable external tables, gpfdist parses and serves data files evenly to all the segment instances in
the Greenplum Database system when users SELECT from the external table. For writable external tables,
gpfdist accepts parallel output streams from the segments when users INSERT into the external table,
and writes to an output file.

Note: When gpfdist reads data and encounters a data formatting error, the error message
includes a row number indicating the location of the formatting error. gpfdist attempts to capture
the row that contains the error. However, gpfdist might not capture the exact row for some
formatting errors.

For readable external tables, if load files are compressed using gzip or bzip2 (have a .gz or .bz2 file
extension), gpfdist uncompresses the data while loading the data (on the fly). For writable external
tables, gpfdist compresses the data using gzip if the target file has a .gz extension.

Note: Compression is not supported for readable and writeable external tables when the gpfdist
utility runs on Windows platforms.

When reading or writing data with the gpfdist or gpfdists protocol, Greenplum Database includes
X-GP-PROTO in the HTTP request header to indicate that the request is from Greenplum Database. The
utility rejects HTTP requests that do not include X-GP-PROTO in the request header.

Most likely, you will want to run gpfdist on your ETL machines rather than the hosts where Greenplum
Database is installed. To install gpfdist on another host, simply copy the utility over to that host and add
gpfdist to your $PATH.

Note: When using IPv6, always enclose the numeric IP address in brackets.

Options
-d directory

Greenplum Database Utility Guide Release Notes

717

The directory from which gpfdist will serve files for readable external tables or create
output files for writable external tables. If not specified, defaults to the current directory.

-l log_file

The fully qualified path and log file name where standard output messages are to be
logged.

-p http_port

The HTTP port on which gpfdist will serve files. Defaults to 8080.

-P last_http_port

The last port number in a range of HTTP port numbers (http_port to last_http_port,
inclusive) on which gpfdist will attempt to serve files. gpfdist serves the files on the
first port number in the range to which it successfully binds.

-t timeout

Sets the time allowed for Greenplum Database to establish a connection to a gpfdist
process. Default is 5 seconds. Allowed values are 2 to 7200 seconds (2 hours). May need
to be increased on systems with a lot of network traffic.

-m max_length

Sets the maximum allowed data row length in bytes. Default is 32768. Should be used
when user data includes very wide rows (or when line too long error message
occurs). Should not be used otherwise as it increases resource allocation. Valid range is
32K to 256MB. (The upper limit is 1MB on Windows systems.)

Note: Memory issues might occur if you specify a large maximum row length
and run a large number of gpfdist concurrent connections. For example,
setting this value to the maximum of 256MB with 96 concurrent gpfdist
processes requires approximately 24GB of memory ((96 + 1) x 246MB).

-s

Enables simplified logging. When this option is specified, only messages with WARN level
and higher are written to the gpfdist log file. INFO level messages are not written to the
log file. If this option is not specified, all gpfdist messages are written to the log file.

You can specify this option to reduce the information written to the log file.

-S (use O_SYNC)

Opens the file for synchronous I/O with the O_SYNC flag. Any writes to the resulting file
descriptor block gpfdist until the data is physically written to the underlying hardware.

-w time

Sets the number of seconds that Greenplum Database delays before closing a target
file such as a named pipe. The default value is 0, no delay. The maximum value is 7200
seconds (2 hours).

For a Greenplum Database with multiple segments, there might be a delay between
segments when writing data from different segments to the file. You can specify a time to
wait before Greenplum Database closes the file to ensure all the data is written to the file.

--ssl certificate_path

Adds SSL encryption to data transferred with gpfdist. After executing gpfdist with the
--ssl certificate_path option, the only way to load data from this file server is with
the gpfdist:// protocol. For information on the gpfdist:// protocol, see "Loading and
Unloading Data" in the Greenplum Database Administrator Guide.

The location specified in certificate_path must contain the following files:

• The server certificate file, server.crt
• The server private key file, server.key

Greenplum Database Utility Guide Release Notes

718

• The trusted certificate authorities, root.crt

The root directory (/) cannot be specified as certificate_path.

--sslclean wait_time

When the utility is run with the --ssl option, sets the number of seconds that the
utility delays before closing an SSL session and cleaning up the SSL resources after it
completes writing data to or from a Greenplum Database segment. The default value is 0,
no delay. The maximum value is 500 seconds. If the delay is increased, the transfer speed
decreases.

In some cases, this error might occur when copying large amounts of data: gpfdist
server closed connection. To avoid the error, you can add a delay, for example --
sslclean 5.

-c config.yaml

Specifies rules that gpfdist uses to select a transform to apply when loading or
extracting data. The gpfdist configuration file is a YAML 1.1 document.

For information about the file format, see Configuration File Format in the Greenplum
Database Administrator Guide. For information about configuring data transformation
with gpfdist, see Transforming External Data with gpfdist and gpload in the Greenplum
Database Administrator Guide.

This option is not available on Windows platforms.

-v (verbose)

Verbose mode shows progress and status messages.

-V (very verbose)

Verbose mode shows all output messages generated by this utility.

-? (help)

Displays the online help.

--version

Displays the version of this utility.

Notes
The server configuration parameter verify_gpfdists_cert controls whether SSL certificate
authentication is enabled when Greenplum Database communicates with the gpfdist utility to either read
data from or write data to an external data source. You can set the parameter value to false to disable
authentication when testing the communication between the Greenplum Database external table and the
gpfdist utility that is serving the external data. If the value is false, these SSL exceptions are ignored:

• The self-signed SSL certificate that is used by gpfdist is not trusted by Greenplum Database.
• The host name contained in the SSL certificate does not match the host name that is running gpfdist.

Warning: Disabling SSL certificate authentication exposes a security risk by not validating the
gpfdists SSL certificate.

If the gpfdist utility hangs with no read or write activity occurring, you can generate a core dump the next
time a hang occurs to help debug the issue. Set the environment variable GPFDIST_WATCHDOG_TIMER
to the number of seconds of no activity to wait before gpfdist is forced to exit. When the environment
variable is set and gpfdist hangs, the utility aborts after the specified number of seconds, creates a core
dump, and sends abort information to the log file.

This example sets the environment variable on a Linux system so that gpfdist exits after 300 seconds (5
minutes) of no activity.

export GPFDIST_WATCHDOG_TIMER=300

Greenplum Database Utility Guide Release Notes

719

Examples
To serve files from a specified directory using port 8081 (and start gpfdist in the background):

gpfdist -d /var/load_files -p 8081 &

To start gpfdist in the background and redirect output and errors to a log file:

gpfdist -d /var/load_files -p 8081 -l /home/gpadmin/log &

To stop gpfdist when it is running in the background:

--First find its process id:

ps ax | grep gpfdist

--Then kill the process, for example:

kill 3456

See Also
gpload, CREATE EXTERNAL TABLE in the Greenplum Database Reference Guide

gpinitstandby
Adds and/or initializes a standby master host for a Greenplum Database system.

Synopsis

gpinitstandby { -s standby_hostname [-P port] | -r | -n } [-a] [-q]
 [-D] [-S standby_data_directory] [-l logfile_directory]

gpinitstandby -v

gpinitstandby -?

Description
The gpinitstandby utility adds a backup, standby master instance to your Greenplum Database
system. If your system has an existing standby master instance configured, use the -r option to remove it
before adding the new standby master instance.

Before running this utility, make sure that the Greenplum Database software is installed on the standby
master host and that you have exchanged SSH keys between the hosts. It is recommended that the
master port is set to the same port number on the master host and the standby master host.

This utility should be run on the currently active primary master host. See the Greenplum Database
Installation Guide for instructions.

The utility performs the following steps:

• Updates the Greenplum Database system catalog to remove the existing standby master information (if
the -r option is supplied)

• Updates the Greenplum Database system catalog to add the new standby master instance information
• Edits the pg_hba.conf file of the Greenplum Database master to allow access from the newly added

standby master
• Sets up the standby master instance on the alternate master host
• Starts the synchronization process

Greenplum Database Utility Guide Release Notes

720

A backup, standby master instance serves as a 'warm standby' in the event of the primary master
becoming non-operational. The standby master is kept up to date by transaction log replication processes
(the walsender and walreceiver), which run on the primary master and standby master hosts and
keep the data between the primary and standby master instances synchronized. If the primary master fails,
the log replication process is shut down, and the standby master can be activated in its place by using
the gpactivatestandby utility. Upon activation of the standby master, the replicated logs are used to
reconstruct the state of the master instance at the time of the last successfully committed transaction.

The activated standby master effectively becomes the Greenplum Database master, accepting client
connections on the master port and performing normal master operations such as SQL command
processing and resource management.

Important: If the gpinitstandby utility previously failed to initialize the standby master, you must
delete the files in the standby master data directory before running gpinitstandby again. The
standby master data directory is not cleaned up after an initialization failure because it contains log
files that can help in determining the reason for the failure.

If an initialization failure occurs, a summary report file is generated in the standby host directory /
tmp. The report file lists the directories on the standby host that require clean up.

Options
-a (do not prompt)

Do not prompt the user for confirmation.

-D (debug)

Sets logging level to debug.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-n (restart standby master)

Specify this option to start a Greenplum Database standby master that has been
configured but has stopped for some reason.

-P port

This option specifies the port that is used by the Greenplum Database standby master.
The default is the same port used by the active Greenplum Database master.

If the Greenplum Database standby master is on the same host as the active master, the
ports must be different. If the ports are the same for the active and standby master and the
host is the same, the utility returns an error.

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still written to
the log file.

-r (remove standby master)

Removes the currently configured standby master instance from your Greenplum
Database system.

-s standby_hostname

The host name of the standby master host.

-S standby_data_directory

The data directory to use for a new standby master. The default is the same directory used
by the active master.

If the standby master is on the same host as the active master, a different directory must
be specified using this option.

-v (show utility version)

Greenplum Database Utility Guide Release Notes

721

Displays the version, status, last updated date, and checksum of this utility.

-? (help)

Displays the online help.

Examples
Add a standby master instance to your Greenplum Database system and start the synchronization
process:

gpinitstandby -s host09

Start an existing standby master instance and synchronize the data with the current primary master
instance:

gpinitstandby -n

Note: Do not specify the -n and -s options in the same command.

Add a standby master instance to your Greenplum Database system specifying a different port:

gpinitstandby -s myhost -P 2222

If you specify the same host name as the active Greenplum Database master, you must also specify a
different port number with the -P option and a standby data directory with the -S option.

Remove the existing standby master from your Greenplum system configuration:

gpinitstandby -r

See Also
gpinitsystem, gpaddmirrors, gpactivatestandby

gpinitsystem
Initializes a Greenplum Database system using configuration parameters specified in the
gpinitsystem_config file.

Synopsis

gpinitsystem -c cluster_configuration_file
 [-h hostfile_gpinitsystem]
 [-B parallel_processes]
 [-p postgresql_conf_param_file]
 [-s standby_master_host
 [-P standby_master_port]
 [-S standby_master_datadir | --
standby_datadir=standby_master_datadir]]
 [--ignore-warnings]
 [-m number | --max_connections=number]
 [-b size | --shared_buffers=size]
 [-n locale | --locale=locale] [--lc-collate=locale]
 [--lc-ctype=locale] [--lc-messages=locale]
 [--lc-monetary=locale] [--lc-numeric=locale]
 [--lc-time=locale] [-e password | --su_password=password]
 [--mirror-mode={group|spread}] [-a] [-q] [-l logfile_directory]
 [-D]
 [-I input_configuration_file]
 [-O output_configuration_file]

Greenplum Database Utility Guide Release Notes

722

gpinitsystem -v | --version

gpinitsystem -? | --help

Description
The gpinitsystem utility creates a Greenplum Database instance or writes an input configuration file
using the values defined in a cluster configuration file and any command-line options that you provide. See
Initialization Configuration File Format for more information about the configuration file. Before running this
utility, make sure that you have installed the Greenplum Database software on all the hosts in the array.

With the -O output_configuration_file option, gpinitsystem writes all provided configuration
information to the specified output file. This file can be used with the -I option to create a new cluster or
re-create a cluster from a backed up configuration. See Initialization Configuration File Format for more
information.

In a Greenplum Database DBMS, each database instance (the master instance and all segment instances)
must be initialized across all of the hosts in the system in such a way that they can all work together as
a unified DBMS. The gpinitsystem utility takes care of initializing the Greenplum master and each
segment instance, and configuring the system as a whole.

Before running gpinitsystem, you must set the $GPHOME environment variable to point to the location
of your Greenplum Database installation on the master host and exchange SSH keys between all host
addresses in the array using gpssh-exkeys.

This utility performs the following tasks:

• Verifies that the parameters in the configuration file are correct.
• Ensures that a connection can be established to each host address. If a host address cannot be

reached, the utility will exit.
• Verifies the locale settings.
• Displays the configuration that will be used and prompts the user for confirmation.
• Initializes the master instance.
• Initializes the standby master instance (if specified).
• Initializes the primary segment instances.
• Initializes the mirror segment instances (if mirroring is configured).
• Configures the Greenplum Database system and checks for errors.
• Starts the Greenplum Database system.

Note: This utility uses secure shell (SSH) connections between systems to perform its tasks. In
large Greenplum Database deployments, cloud deployments, or deployments with a large number
of segments per host, this utility may exceed the host's maximum threshold for unauthenticated
connections. Consider updating the SSH MaxStartups and MaxSessions configuration
parameters to increase this threshold. For more information about SSH configuration options, refer
to the SSH documentation for your Linux distribution.

Options
-a

Do not prompt the user for confirmation.

-B parallel_processes

The number of segments to create in parallel. If not specified, the utility will start up to 4
parallel processes at a time.

-c cluster_configuration_file

Required. The full path and filename of the configuration file, which contains all
of the defined parameters to configure and initialize a new Greenplum Database

Greenplum Database Utility Guide Release Notes

723

system. See Initialization Configuration File Format for a description of this file. You
must provide either the -c cluster_configuration_file option or the -I
input_configuration_file option to gpinitsystem.

-D

Sets log output level to debug.

-h hostfile_gpinitsystem

Optional. The full path and filename of a file that contains the host addresses of your
segment hosts. If not specified on the command line, you can specify the host file using the
MACHINE_LIST_FILE parameter in the gpinitsystem_config file.

-I input_configuration_file

The full path and filename of an input configuration file, which defines the Greenplum
Database host systems, the master instance and segment instances on the hosts,
using the QD_PRIMARY_ARRAY, PRIMARY_ARRAY, and MIRROR_ARRAY parameters.
The input configuration file is typically created by using gpinitsystem with the -O
output_configuration_file option. Edit those parameters in order to initialize a new
cluster or re-create a cluster from a backed up configuration. You must provide either the
-c cluster_configuration_file option or the -I input_configuration_file
option to gpinitsystem.

--ignore-warnings

Controls the value returned by gpinitsystem when warnings or an error occurs. The
utility returns 0 if system initialization completes without warnings. If only warnings occur,
system initialization completes and the system is operational.

With this option, gpinitsystem also returns 0 if warnings occurred during system
initialization, and returns a non-zero value if a fatal error occurs.

If this option is not specified, gpinitsystem returns 1 if initialization completes with
warnings, and returns value of 2 or greater if a fatal error occurs.

See the gpinitsystem log file for warning and error messages.

-n locale | --locale=locale

Sets the default locale used by Greenplum Database. If not specified, the LC_ALL,
LC_COLLATE, or LANG environment variable of the master host determines the locale. If
these are not set, the default locale is C (POSIX). A locale identifier consists of a language
identifier and a region identifier, and optionally a character set encoding. For example,
sv_SE is Swedish as spoken in Sweden, en_US is U.S. English, and fr_CA is French
Canadian. If more than one character set can be useful for a locale, then the specifications
look like this: en_US.UTF-8 (locale specification and character set encoding). On most
systems, the command locale will show the locale environment settings and locale -a
will show a list of all available locales.

--lc-collate=locale

Similar to --locale, but sets the locale used for collation (sorting data). The sort order
cannot be changed after Greenplum Database is initialized, so it is important to choose a
collation locale that is compatible with the character set encodings that you plan to use for
your data. There is a special collation name of C or POSIX (byte-order sorting as opposed
to dictionary-order sorting). The C collation can be used with any character encoding.

--lc-ctype=locale

Similar to --locale, but sets the locale used for character classification (what character
sequences are valid and how they are interpreted). This cannot be changed after
Greenplum Database is initialized, so it is important to choose a character classification
locale that is compatible with the data you plan to store in Greenplum Database.

--lc-messages=locale

Greenplum Database Utility Guide Release Notes

724

Similar to --locale, but sets the locale used for messages output by Greenplum
Database. The current version of Greenplum Database does not support multiple locales
for output messages (all messages are in English), so changing this setting will not have
any effect.

--lc-monetary=locale

Similar to --locale, but sets the locale used for formatting currency amounts.

--lc-numeric=locale

Similar to --locale, but sets the locale used for formatting numbers.

--lc-time=locale

Similar to --locale, but sets the locale used for formatting dates and times.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-m number | --max_connections=number

Sets the maximum number of client connections allowed to the master. The default is 250.

-O output_configuration_file

Optional, used during new cluster initialization. This option writes the
cluster_configuration_file information (used with -c) to the specified
output_configuration_file. This file defines the Greenplum Database members using the
QD_PRIMARY_ARRAY, PRIMARY_ARRAY, and MIRROR_ARRAY parameters. Use this file as
a template for the -I input_configuration_file option. See Examples for more information.

-p postgresql_conf_param_file

Optional. The name of a file that contains postgresql.conf parameter settings
that you want to set for Greenplum Database. These settings will be used when the
individual master and segment instances are initialized. You can also set parameters after
initialization using the gpconfig utility.

-q

Run in quiet mode. Command output is not displayed on the screen, but is still written to
the log file.

-b size | --shared_buffers=size

Sets the amount of memory a Greenplum server instance uses for shared memory buffers.
You can specify sizing in kilobytes (kB), megabytes (MB) or gigabytes (GB). The default is
125MB.

-s standby_master_host

Optional. If you wish to configure a backup master instance, specify the host name using
this option. The Greenplum Database software must already be installed and configured
on this host.

-P standby_master_port

If you configure a standby master instance with -s, specify its port number using this
option. The default port is the same as the master port. To run the standby and master
on the same host, you must use this option to specify a different port for the standby. The
Greenplum Database software must already be installed and configured on the standby
host.

-S standby_master_datadir | --standby_dir=standby_master_datadir

If you configure a standby master host with -s, use this option to specify its data directory.
If you configure a standby on the same host as the master instance, the master and
standby must have separate data directories.

-e superuser_password | --su_password=superuser_password

Greenplum Database Utility Guide Release Notes

725

Use this option to specify the password to set for the Greenplum Database superuser
account (such as gpadmin). If this option is not specified, the default password gparray
is assigned to the superuser account. You can use the ALTER ROLE command to change
the password at a later time.

Recommended security best practices:

• Do not use the default password option for production environments.
• Change the password immediately after installation.

--mirror_mode={group|spread}

Use this option to specify the placement of mirror segment instances on the segment
hosts. The default, group, groups the mirror segments for all of a host's primary segments
on a single alternate host. spread spreads mirror segments for the primary segments
on a host across different hosts in the Greenplum Database array. Spreading is only
allowed if the number of hosts is greater than the number of segment instances per host.
See Overview of Segment Mirroring for information about Greenplum Database mirroring
strategies.

-v | --version

Print the gpinitsystem version and exit.

-? | --help

Show help about gpinitsystem command line arguments, and exit.

Initialization Configuration File Format
gpinitsystem requires a cluster configuration file with the following parameters defined. An
example initialization configuration file can be found in $GPHOME/docs/cli_help/gpconfigs/
gpinitsystem_config.

To avoid port conflicts between Greenplum Database and other applications, the Greenplum
Database port numbers should not be in the range specified by the operating system parameter
net.ipv4.ip_local_port_range. For example, if net.ipv4.ip_local_port_range = 10000
65535, you could set Greenplum Database base port numbers to these values.

PORT_BASE = 6000
MIRROR_PORT_BASE = 7000

ARRAY_NAME

Required. A name for the cluster you are configuring. You can use any name you like.
Enclose the name in quotes if the name contains spaces.

MACHINE_LIST_FILE

Optional. Can be used in place of the -h option. This specifies the file that contains the list
of the segment host address names that comprise the Greenplum Database system. The
master host is assumed to be the host from which you are running the utility and should
not be included in this file. If your segment hosts have multiple network interfaces, then this
file would include all addresses for the host. Give the absolute path to the file.

SEG_PREFIX

Required. This specifies a prefix that will be used to name the data directories on the
master and segment instances. The naming convention for data directories in a Greenplum
Database system is SEG_PREFIXnumber where number starts with 0 for segment
instances (the master is always -1). So for example, if you choose the prefix gpseg, your
master instance data directory would be named gpseg-1, and the segment instances
would be named gpseg0, gpseg1, gpseg2, gpseg3, and so on.

PORT_BASE

Greenplum Database Utility Guide Release Notes

726

Required. This specifies the base number by which primary segment port numbers are
calculated. The first primary segment port on a host is set as PORT_BASE, and then
incremented by one for each additional primary segment on that host. Valid values range
from 1 through 65535.

DATA_DIRECTORY

Required. This specifies the data storage location(s) where the utility will create the
primary segment data directories. The number of locations in the list dictate the number
of primary segments that will get created per physical host (if multiple addresses for
a host are listed in the host file, the number of segments will be spread evenly across
the specified interface addresses). It is OK to list the same data storage area multiple
times if you want your data directories created in the same location. The user who runs
gpinitsystem (for example, the gpadmin user) must have permission to write to these
directories. For example, this will create six primary segments per host:

declare -a DATA_DIRECTORY=(/data1/primary /data1/primary
/data1/primary /data2/primary /data2/primary /data2/primary)

MASTER_HOSTNAME

Required. The host name of the master instance. This host name must exactly match
the configured host name of the machine (run the hostname command to determine the
correct hostname).

MASTER_DIRECTORY

Required. This specifies the location where the data directory will be created on the
master host. You must make sure that the user who runs gpinitsystem (for example,
the gpadmin user) has permissions to write to this directory.

MASTER_PORT

Required. The port number for the master instance. This is the port number that users and
client connections will use when accessing the Greenplum Database system.

TRUSTED_SHELL

Required. The shell the gpinitsystem utility uses to execute commands on remote
hosts. Allowed values are ssh. You must set up your trusted host environment before
running the gpinitsystem utility (you can use gpssh-exkeys to do this).

CHECK_POINT_SEGMENTS

Required. Maximum distance between automatic write ahead log (WAL) checkpoints,
in log file segments (each segment is normally 16 megabytes). This will set the
checkpoint_segments parameter in the postgresql.conf file for each segment
instance in the Greenplum Database system.

ENCODING

Required. The character set encoding to use. This character set must be compatible with
the --locale settings used, especially --lc-collate and --lc-ctype. Greenplum
Database supports the same character sets as PostgreSQL.

DATABASE_NAME

Optional. The name of a Greenplum Database database to create after the system
is initialized. You can always create a database later using the CREATE DATABASE
command or the createdb utility.

MIRROR_PORT_BASE

Optional. This specifies the base number by which mirror segment port numbers are
calculated. The first mirror segment port on a host is set as MIRROR_PORT_BASE, and
then incremented by one for each additional mirror segment on that host. Valid values
range from 1 through 65535 and cannot conflict with the ports calculated by PORT_BASE.

Greenplum Database Utility Guide Release Notes

727

MIRROR_DATA_DIRECTORY

Optional. This specifies the data storage location(s) where the utility will create the mirror
segment data directories. There must be the same number of data directories declared for
mirror segment instances as for primary segment instances (see the DATA_DIRECTORY
parameter). The user who runs gpinitsystem (for example, the gpadmin user) must
have permission to write to these directories. For example:

declare -a MIRROR_DATA_DIRECTORY=(/data1/mirror
/data1/mirror /data1/mirror /data2/mirror /data2/mirror
/data2/mirror)

QD_PRIMARY_ARRAY, PRIMARY_ARRAY, MIRROR_ARRAY

Required when using input_configuration file with -I option. These parameters
specify the Greenplum Database master host, the primary segment, and the mirror
segment hosts respectively. During new cluster initialization, use the gpinitsystem -O
output_configuration_file to populate QD_PRIMARY_ARRAY, PRIMARY_ARRAY,
MIRROR_ARRAY.

To initialize a new cluster or re-create a cluster from a backed up configuration,
edit these values in the input configuration file used with the gpinitsystem -I
input_configuration_file option. Use one of the following formats to specify the
host information:

hostname~address~port~data_directory/seg_prefix<segment_id>~dbid~content_id

or

host~port~data_directory/seg_prefix<segment_id>~dbid~content_id

The first format populates the hostname and address fields in the
gp_segment_configuration catalog table with the hostname and address values
provided in the input configuration file. The second format populates hostname and
address fields with the same value, derived from host.

The Greenplum Database master always uses the value -1 for the segment ID and content
ID. For example, seg_prefix<segment_id> and dbid values for QD_PRIMARY_ARRAY use
-1 to indicate the master instance:

QD_PRIMARY_ARRAY=mdw~mdw~5432~/gpdata/master/gpseg-1~1~-1
declare -a PRIMARY_ARRAY=(
sdw1~sdw1~40000~/gpdata/data1/gpseg0~2~0
sdw1~sdw1~40001~/gpdata/data2/gpseg1~3~1
sdw2~sdw2~40000~/gpdata/data1/gpseg2~4~2
sdw2~sdw2~40001~/gpdata/data2/gpseg3~5~3
)
declare -a MIRROR_ARRAY=(
sdw2~sdw2~50000~/gpdata/mirror1/gpseg0~6~0
sdw2~sdw2~50001~/gpdata/mirror2/gpseg1~7~1
sdw1~sdw1~50000~/gpdata/mirror1/gpseg2~8~2
sdw1~sdw1~50001~/gpdata/mirror2/gpseg3~9~3
)

To re-create a cluster using a known Greenplum Database system configuration, you can
edit the segment and content IDs to match the values of the system.

HEAP_CHECKSUM

Optional. This parameter specifies if checksums are enabled for heap data. When
enabled, checksums are calculated for heap storage in all databases, enabling Greenplum

Greenplum Database Utility Guide Release Notes

728

Database to detect corruption in the I/O system. This option is set when the system is
initialized and cannot be changed later.

The HEAP_CHECKSUM option is on by default and turning it off is strongly discouraged. If
you set this option to off, data corruption in storage can go undetected and make recovery
much more difficult.

To determine if heap checksums are enabled in a Greenplum Database system, you
can query the data_checksums server configuration parameter with the gpconfig
management utility:

$ gpconfig -s data_checksums

HBA_HOSTNAMES

Optional. This parameter controls whether gpinitsystem uses IP addresses or host
names in the pg_hba.conf file when updating the file with addresses that can connect to
Greenplum Database. The default value is 0, the utility uses IP addresses when updating
the file. When initializing a Greenplum Database system, specify HBA_HOSTNAMES=1 to
have the utility use host names in the pg_hba.conf file.

For information about how Greenplum Database resolves host names in the
pg_hba.conf file, see Configuring Client Authentication.

Specifying Hosts using Hostnames or IP Addresses
When initializing a Greenplum Database system with gpinitsystem, you can specify segment hosts
using either hostnames or IP addresses. For example, you can use hostnames or IP addresses in the file
specified with the -h option.

• If you specify a hostname, the resolution of the hostname to an IP address should be done locally for
security. For example, you should use entries in a local /etc/hosts file to map a hostname to an IP
address. The resolution of a hostname to an IP address should not be performed by an external service
such as a public DNS server. You must stop the Greenplum system before you change the mapping of
a hostname to a different IP address.

• If you specify an IP address, the address should not be changed after the initial configuration. When
segment mirroring is enabled, replication from the primary to the mirror segment will fail if the IP
address changes from the configured value. For this reason, you should use a hostname when
initializing a Greenplum Database system unless you have a specific requirement to use IP addresses.

When initializing the Greenplum Database system, gpinitsystem uses the initialization information to
populate the gp_segment_configuration catalog table and adds hosts to the pg_hba.conf file. By
default, the host IP address is added to the file. Specify the gpinitsystem configuration file parameter
HBA_HOSTNAMES=1 to add hostnames to the file.

Greenplum Database uses the address value of the gp_segment_configuration catalog table when
looking up host systems for Greenplum interconnect (internal) communication between the master and
segment instances and between segment instances, and for other internal communication.

Examples
Initialize a Greenplum Database system by supplying a cluster configuration file and a segment host
address file, and set up a spread mirroring (--mirror-mode=spread) configuration:

$ gpinitsystem -c gpinitsystem_config -h hostfile_gpinitsystem --mirror-
mode=spread

Initialize a Greenplum Database system and set the superuser remote password:

$ gpinitsystem -c gpinitsystem_config -h hostfile_gpinitsystem --su-
password=mypassword

Greenplum Database Utility Guide Release Notes

729

Initialize a Greenplum Database system with an optional standby master host:

$ gpinitsystem -c gpinitsystem_config -h hostfile_gpinitsystem -s host09

Initialize a Greenplum Database system and write the provided configuration to an output file, for example
cluster_init.config:

$ gpinitsystem -c gpinitsystem_config -h hostfile_gpinitsystem -O
 cluster_init.config

The output file uses the QD_PRIMARY_ARRAY and PRIMARY_ARRAY parameters to define master and
segment hosts:

ARRAY_NAME="Greenplum Data Platform"
TRUSTED_SHELL=ssh
CHECK_POINT_SEGMENTS=8
ENCODING=UNICODE
SEG_PREFIX=gpseg
HEAP_CHECKSUM=on
HBA_HOSTNAMES=0
QD_PRIMARY_ARRAY=mdw~mwd.local~5433~/data/master1/gpseg-1~1~-1
declare -a PRIMARY_ARRAY=(
mwd~mwd.local~6001~/data/primary1/gpseg0~2~0
)
declare -a MIRROR_ARRAY=(
mwd~mwd.local~7001~/data/mirror1/gpseg0~3~0
)

Initialize a Greenplum Database using an input configuration file (a file that defines the Greenplum
Database cluster) using QD_PRIMARY_ARRAY and PRIMARY_ARRAY parameters:

$ gpinitsystem -I cluster_init.config

The following example uses a host system configured with mulitple NICs. If host systems are configured
with multiple NICs, you can initialize a Greenplum Database system to use each NIC as a Greenplum host
system. You must ensure that the host systems are configured with sufficient resources to support all the
segment instances being added to the host. Also, if high availability is enabled, you must ensure that the
Greenplum system configuration supports failover if a host system fails. For information about Greenplum
Database mirroring schemes, see Segment Mirroring Configurations.

For this simple master and segment instance configuration, the host system gp6m is configured with two
NICs gp6m-1 and gp6m-2. In the configuration, the QD_PRIMARY_ARRAY parameter defines the master
segment using gp6m-1. The PRIMARY_ARRAY and MIRROR_ARRAY parameters use gp6m-2 to define a
primary and mirror segment instance.

QD_PRIMARY_ARRAY=gp6m~gp6m-1~5432~/data/master/gpseg-1~1~-1
declare -a PRIMARY_ARRAY=(
gp6m~gp6m-2~40000~/data/data1/gpseg0~2~0
gp6s~gp6s~40000~/data/data1/gpseg1~3~1
)
declare -a MIRROR_ARRAY=(
gp6s~gp6s~50000~/data/mirror1/gpseg0~4~0
gp6m~gp6m-2~50000~/data/mirror1/gpseg1~5~1
)

See Also
gpssh-exkeys, gpdeletesystem, Initializing Greenplum Database.

Greenplum Database Utility Guide Release Notes

730

gpload
Runs a load job as defined in a YAML formatted control file.

Synopsis

gpload -f control_file [-l log_file] [-h hostname] [-p port]
 [-U username] [-d database] [-W] [--gpfdist_timeout seconds]
 [--no_auto_trans] [--max_retries retry_times] [[-v | -V] [-q]] [-D]

gpload -?

gpload --version

Requirements
The client machine where gpload is executed must have the following:

• The gpfdist parallel file distribution program installed and in your $PATH. This program is located in
$GPHOME/bin of your Greenplum Database server installation.

• Network access to and from all hosts in your Greenplum Database array (master and segments).
• Network access to and from the hosts where the data to be loaded resides (ETL servers).

Description
gpload is a data loading utility that acts as an interface to the Greenplum Database external table parallel
loading feature. Using a load specification defined in a YAML formatted control file, gpload executes
a load by invoking the Greenplum Database parallel file server (gpfdist), creating an external table
definition based on the source data defined, and executing an INSERT, UPDATE or MERGE operation to
load the source data into the target table in the database.

Note: gpfdist is compatible only with the Greenplum Database major version in which it is
shipped. For example, a gpfdist utility that is installed with Greenplum Database 4.x cannot be
used with Greenplum Database 5.x or 6.x.

Note: The Greenplum Database 5.22 and later gpload for Linux is compatible with Greenplum
Database 6.x. The Greenplum Database 6.x gpload for both Linux and Windows is compatible
with Greenplum 5.x.

Note: MERGE and UPDATE operations are not supported if the target table column name is a
reserved keyword, has capital letters, or includes any character that requires quotes (" ") to identify
the column.

The operation, including any SQL commands specified in the SQL collection of the YAML control file (see
Control File Format), are performed as a single transaction to prevent inconsistent data when performing
multiple, simultaneous load operations on a target table.

Options
-f control_file

Required. A YAML file that contains the load specification details. See Control File
Format.

--gpfdist_timeout seconds

Sets the timeout for the gpfdist parallel file distribution program to send a response.
Enter a value from 0 to 30 seconds (entering "0" to disables timeouts). Note that you might
need to increase this value when operating on high-traffic networks.

-l log_file

Greenplum Database Utility Guide Release Notes

731

Specifies where to write the log file. Defaults to ~/gpAdminLogs/gpload_YYYYMMDD.
For more information about the log file, see Log File Format.

--no_auto_trans

Specify --no_auto_trans to disable processing the load operation as a single
transaction if you are performing a single load operation on the target table.

By default, gpload processes each load operation as a single transaction to prevent
inconsistent data when performing multiple, simultaneous operations on a target table.

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still written to
the log file.

-D (debug mode)

Check for error conditions, but do not execute the load.

-v (verbose mode)

Show verbose output of the load steps as they are executed.

-V (very verbose mode)

Shows very verbose output.

-? (show help)

Show help, then exit.

--version

Show the version of this utility, then exit.

Connection Options
-d database

The database to load into. If not specified, reads from the load control file, the environment
variable $PGDATABASE or defaults to the current system user name.

-h hostname

Specifies the host name of the machine on which the Greenplum Database master
database server is running. If not specified, reads from the load control file, the
environment variable $PGHOST or defaults to localhost.

-p port

Specifies the TCP port on which the Greenplum Database master database server is
listening for connections. If not specified, reads from the load control file, the environment
variable $PGPORT or defaults to 5432.

--max_retries retry_times

Specifies the maximum number of times gpload attempts to connect to Greenplum
Database after a connection timeout. The default value is 0, do not attempt to connect
after a connection timeout. A negative integer, such as -1, specifies an unlimited number
of attempts.

-U username

The database role name to connect as. If not specified, reads from the load control file, the
environment variable $PGUSER or defaults to the current system user name.

-W (force password prompt)

Force a password prompt. If not specified, reads the password from the environment
variable $PGPASSWORD or from a password file specified by $PGPASSFILE or in
~/.pgpass. If these are not set, then gpload will prompt for a password even if -W is not
supplied.

Greenplum Database Utility Guide Release Notes

732

Control File Format
The gpload control file uses the YAML 1.1 document format and then implements its own schema for
defining the various steps of a Greenplum Database load operation. The control file must be a valid YAML
document.

The gpload program processes the control file document in order and uses indentation (spaces) to
determine the document hierarchy and the relationships of the sections to one another. The use of white
space is significant. White space should not be used simply for formatting purposes, and tabs should not
be used at all.

The basic structure of a load control file is:

VERSION: 1.0.0.1
DATABASE: db_name
USER: db_username
HOST: master_hostname
PORT: master_port
GPLOAD:
 INPUT:
 - SOURCE:
 LOCAL_HOSTNAME:
 - hostname_or_ip
 PORT: http_port
 | PORT_RANGE: [start_port_range, end_port_range]
 FILE:
 - /path/to/input_file
 SSL: true | false
 CERTIFICATES_PATH: /path/to/certificates
 - FULLY_QUALIFIED_DOMAIN_NAME: true | false
 - COLUMNS:
 - field_name: data_type
 - TRANSFORM: 'transformation'
 - TRANSFORM_CONFIG: 'configuration-file-path'
 - MAX_LINE_LENGTH: integer
 - FORMAT: text | csv
 - DELIMITER: 'delimiter_character'
 - ESCAPE: 'escape_character' | 'OFF'
 - NULL_AS: 'null_string'
 - FILL_MISSING_FIELDS: true | false
 - FORCE_NOT_NULL: true | false
 - QUOTE: 'csv_quote_character'
 - HEADER: true | false
 - ENCODING: database_encoding
 - ERROR_LIMIT: integer
 - LOG_ERRORS: true | false
 EXTERNAL:
 - SCHEMA: schema | '%'
 OUTPUT:
 - TABLE: schema.table_name
 - MODE: insert | update | merge
 - MATCH_COLUMNS:
 - target_column_name
 - UPDATE_COLUMNS:
 - target_column_name
 - UPDATE_CONDITION: 'boolean_condition'
 - MAPPING:
 target_column_name: source_column_name | 'expression'
 PRELOAD:
 - TRUNCATE: true | false
 - REUSE_TABLES: true | false
 - STAGING_TABLE: external_table_name
 - FAST_MATCH: true | false

http://yaml.org/spec/1.1/

Greenplum Database Utility Guide Release Notes

733

 SQL:
 - BEFORE: "sql_command"
 - AFTER: "sql_command"

VERSION

Optional. The version of the gpload control file schema. The current version is 1.0.0.1.

DATABASE

Optional. Specifies which database in the Greenplum Database system to connect to. If
not specified, defaults to $PGDATABASE if set or the current system user name. You can
also specify the database on the command line using the -d option.

USER

Optional. Specifies which database role to use to connect. If not specified, defaults to the
current user or $PGUSER if set. You can also specify the database role on the command
line using the -U option.

If the user running gpload is not a Greenplum Database superuser, then the appropriate
rights must be granted to the user for the load to be processed. See the Greenplum
Database Reference Guide for more information.

HOST

Optional. Specifies Greenplum Database master host name. If not specified, defaults to
localhost or $PGHOST if set. You can also specify the master host name on the command
line using the -h option.

PORT

Optional. Specifies Greenplum Database master port. If not specified, defaults to 5432 or
$PGPORT if set. You can also specify the master port on the command line using the -p
option.

GPLOAD

Required. Begins the load specification section. A GPLOAD specification must have an
INPUT and an OUTPUT section defined.

INPUT

Required. Defines the location and the format of the input data to be loaded. gpload will
start one or more instances of the gpfdist file distribution program on the current host
and create the required external table definition(s) in Greenplum Database that point to the
source data. Note that the host from which you run gpload must be accessible over the
network by all Greenplum Database hosts (master and segments).

SOURCE

Required. The SOURCE block of an INPUT specification defines the location of a source
file. An INPUT section can have more than one SOURCE block defined. Each SOURCE block
defined corresponds to one instance of the gpfdist file distribution program that will be
started on the local machine. Each SOURCE block defined must have a FILE specification.

For more information about using the gpfdist parallel file server and single and multiple
gpfdist instances, see Loading and Unloading Data.

LOCAL_HOSTNAME

Optional. Specifies the host name or IP address of the local machine on which gpload is
running. If this machine is configured with multiple network interface cards (NICs), you can
specify the host name or IP of each individual NIC to allow network traffic to use all NICs
simultaneously. The default is to use the local machine's primary host name or IP only.

PORT

Optional. Specifies the specific port number that the gpfdist file distribution program
should use. You can also supply a PORT_RANGE to select an available port from the
specified range. If both PORT and PORT_RANGE are defined, then PORT takes precedence.

Greenplum Database Utility Guide Release Notes

734

If neither PORT or PORT_RANGE are defined, the default is to select an available port
between 8000 and 9000.

If multiple host names are declared in LOCAL_HOSTNAME, this port number is used for all
hosts. This configuration is desired if you want to use all NICs to load the same file or set
of files in a given directory location.

PORT_RANGE

Optional. Can be used instead of PORT to supply a range of port numbers from which
gpload can choose an available port for this instance of the gpfdist file distribution
program.

FILE

Required. Specifies the location of a file, named pipe, or directory location on the local file
system that contains data to be loaded. You can declare more than one file so long as the
data is of the same format in all files specified.

If the files are compressed using gzip or bzip2 (have a .gz or .bz2 file extension), the
files will be uncompressed automatically (provided that gunzip or bunzip2 is in your
path).

When specifying which source files to load, you can use the wildcard character (*) or other
C-style pattern matching to denote multiple files. The files specified are assumed to be
relative to the current directory from which gpload is executed (or you can declare an
absolute path).

SSL

Optional. Specifies usage of SSL encryption. If SSL is set to true, gpload starts the
gpfdist server with the --ssl option and uses the gpfdists:// protocol.

CERTIFICATES_PATH

Required when SSL is true; cannot be specified when SSL is false or unspecified. The
location specified in CERTIFICATES_PATH must contain the following files:

• The server certificate file, server.crt
• The server private key file, server.key
• The trusted certificate authorities, root.crt

The root directory (/) cannot be specified as CERTIFICATES_PATH.

FULLY_QUALIFIED_DOMAIN_NAME

Optional. Specifies whether gpload resolve hostnames to the fully qualified domain
name (FQDN) or the local hostname. If the value is set to true, names are resolved to
the FQDN. If the value is set to false, resolution is to the local hostname. The default is
false.

A fully qualified domain name might be required in some situations. For example, if the
Greenplum Database system is in a different domain than an ETL application that is being
accessed by gpload.

COLUMNS

Optional. Specifies the schema of the source data file(s) in the format of
field_name:data_type. The DELIMITER character in the source file is what separates
two data value fields (columns). A row is determined by a line feed character (0x0a).

If the input COLUMNS are not specified, then the schema of the output TABLE is implied,
meaning that the source data must have the same column order, number of columns, and
data format as the target table.

Greenplum Database Utility Guide Release Notes

735

The default source-to-target mapping is based on a match of column names as defined
in this section and the column names in the target TABLE. This default mapping can be
overridden using the MAPPING section.

TRANSFORM

Optional. Specifies the name of the input transformation passed to gpload. For
information about XML transformations, see "Loading and Unloading Data" in the
Greenplum Database Administrator Guide.

TRANSFORM_CONFIG

Required when TRANSFORM is specified. Specifies the location of the transformation
configuration file that is specified in the TRANSFORM parameter, above.

MAX_LINE_LENGTH

Optional. An integer that specifies the maximum length of a line in the XML transformation
data passed to gpload.

FORMAT

Optional. Specifies the format of the source data file(s) - either plain text (TEXT) or comma
separated values (CSV) format. Defaults to TEXT if not specified. For more information
about the format of the source data, see Loading and Unloading Data.

DELIMITER

Optional. Specifies a single ASCII character that separates columns within each row (line)
of data. The default is a tab character in TEXT mode, a comma in CSV mode. You can
also specify a non- printable ASCII character or a non-printable unicode character, for
example: "\x1B" or "\u001B". The escape string syntax, E'character-code',
is also supported for non-printable characters. The ASCII or unicode character must be
enclosed in single quotes. For example: E'\x1B' or E'\u001B'.

ESCAPE

Specifies the single character that is used for C escape sequences (such as \n, \t, \100,
and so on) and for escaping data characters that might otherwise be taken as row or
column delimiters. Make sure to choose an escape character that is not used anywhere in
your actual column data. The default escape character is a \ (backslash) for text-formatted
files and a " (double quote) for csv-formatted files, however it is possible to specify another
character to represent an escape. It is also possible to disable escaping in text-formatted
files by specifying the value 'OFF' as the escape value. This is very useful for data such
as text-formatted web log data that has many embedded backslashes that are not intended
to be escapes.

NULL_AS

Optional. Specifies the string that represents a null value. The default is \N (backslash-
N) in TEXT mode, and an empty value with no quotations in CSV mode. You might prefer
an empty string even in TEXT mode for cases where you do not want to distinguish nulls
from empty strings. Any source data item that matches this string will be considered a null
value.

FILL_MISSING_FIELDS

Optional. The default value is false. When reading a row of data that has missing trailing
field values (the row of data has missing data fields at the end of a line or row), Greenplum
Database returns an error.

If the value is true, when reading a row of data that has missing trailing field values,
the values are set to NULL. Blank rows, fields with a NOT NULL constraint, and trailing
delimiters on a line will still report an error.

See the FILL MISSING FIELDS clause of the CREATE EXTERNAL TABLE command.

FORCE_NOT_NULL

Greenplum Database Utility Guide Release Notes

736

Optional. In CSV mode, processes each specified column as though it were quoted and
hence not a NULL value. For the default null string in CSV mode (nothing between two
delimiters), this causes missing values to be evaluated as zero-length strings.

QUOTE

Required when FORMAT is CSV. Specifies the quotation character for CSV mode. The
default is double-quote (").

HEADER

Optional. Specifies that the first line in the data file(s) is a header row (contains the names
of the columns) and should not be included as data to be loaded. If using multiple data
source files, all files must have a header row. The default is to assume that the input files
do not have a header row.

ENCODING

Optional. Character set encoding of the source data. Specify a string constant (such as
'SQL_ASCII'), an integer encoding number, or 'DEFAULT' to use the default client
encoding. If not specified, the default client encoding is used. For information about
supported character sets, see the Greenplum Database Reference Guide.

Note: If you change the ENCODING value in an existing gpload control
file, you must manually drop any external tables that were creating using
the previous ENCODING configuration. gpload does not drop and recreate
external tables to use the new ENCODING if REUSE_TABLES is set to true.

ERROR_LIMIT

Optional. Enables single row error isolation mode for this load operation. When enabled,
input rows that have format errors will be discarded provided that the error limit count is
not reached on any Greenplum Database segment instance during input processing. If
the error limit is not reached, all good rows will be loaded and any error rows will either
be discarded or captured as part of error log information. The default is to abort the load
operation on the first error encountered. Note that single row error isolation only applies to
data rows with format errors; for example, extra or missing attributes, attributes of a wrong
data type, or invalid client encoding sequences. Constraint errors, such as primary key
violations, will still cause the load operation to abort if encountered. For information about
handling load errors, see Loading and Unloading Data.

LOG_ERRORS

Optional when ERROR_LIMIT is declared. Value is either true or false. The default
value is false. If the value is true, rows with formatting errors are logged internally when
running in single row error isolation mode. You can examine formatting errors with the
Greenplum Database built-in SQL function gp_read_error_log('table_name'). If
formatting errors are detected when loading data, gpload generates a warning message
with the name of the table that contains the error information similar to this message.

timestamp|WARN|1 bad row, please use GPDB built-in function
 gp_read_error_log('table-name')
 to access the detailed error row

If LOG_ERRORS: true is specified, REUSE_TABLES: true must be specified to retain
the formatting errors in Greenplum Database error logs. If REUSE_TABLES: true is
not specified, the error information is deleted after the gpload operation. Only summary
information about formatting errors is returned. You can delete the formatting errors from
the error logs with the Greenplum Database function gp_truncate_error_log().

Note: When gpfdist reads data and encounters a data formatting error, the
error message includes a row number indicating the location of the formatting
error. gpfdist attempts to capture the row that contains the error. However,
gpfdist might not capture the exact row for some formatting errors.

Greenplum Database Utility Guide Release Notes

737

For more information about handling load errors, see "Loading and Unloading
Data" in the Greenplum Database Administrator Guide. For information about the
gp_read_error_log() function, see the CREATE EXTERNAL TABLE command.

EXTERNAL

Optional. Defines the schema of the external table database objects created by gpload.

The default is to use the Greenplum Database search_path.

SCHEMA

Required when EXTERNAL is declared. The name of the schema of the external table. If
the schema does not exist, an error is returned.

If % (percent character) is specified, the schema of the table name specified by TABLE
in the OUTPUT section is used. If the table name does not specify a schema, the default
schema is used.

OUTPUT

Required. Defines the target table and final data column values that are to be loaded into
the database.

TABLE

Required. The name of the target table to load into.

MODE

Optional. Defaults to INSERT if not specified. There are three available load modes:

INSERT - Loads data into the target table using the following method:

INSERT INTO target_table SELECT * FROM input_data;

UPDATE - Updates the UPDATE_COLUMNS of the target table where the rows have
MATCH_COLUMNS attribute values equal to those of the input data, and the optional
UPDATE_CONDITION is true. UPDATE is not supported if the target table column name is a
reserved keyword, has capital letters, or includes any character that requires quotes (" ") to
identify the column.

MERGE - Inserts new rows and updates the UPDATE_COLUMNS of existing rows
where FOOBAR attribute values are equal to those of the input data, and the optional
MATCH_COLUMNS is true. New rows are identified when the MATCH_COLUMNS value in the
source data does not have a corresponding value in the existing data of the target table.
In those cases, the entire row from the source file is inserted, not only the MATCH and
UPDATE columns. If there are multiple new MATCH_COLUMNS values that are the same,
only one new row for that value will be inserted. Use UPDATE_CONDITION to filter out
the rows to discard. MERGE is not supported if the target table column name is a reserved
keyword, has capital letters, or includes any character that requires quotes (" ") to identify
the column.

MATCH_COLUMNS

Required if MODE is UPDATE or MERGE. Specifies the column(s) to use as the join condition
for the update. The attribute value in the specified target column(s) must be equal to that
of the corresponding source data column(s) in order for the row to be updated in the target
table.

UPDATE_COLUMNS

Required if MODE is UPDATE or MERGE. Specifies the column(s) to update for the rows that
meet the MATCH_COLUMNS criteria and the optional UPDATE_CONDITION.

UPDATE_CONDITION

Optional. Specifies a Boolean condition (similar to what you would declare in a WHERE
clause) that must be met in order for a row in the target table to be updated (or inserted in
the case of a MERGE).

Greenplum Database Utility Guide Release Notes

738

MAPPING

Optional. If a mapping is specified, it overrides the default source-to-target column
mapping. The default source-to-target mapping is based on a match of column names
as defined in the source COLUMNS section and the column names of the target TABLE. A
mapping is specified as either:

target_column_name: source_column_name

or

target_column_name: 'expression'

Where expression is any expression that you would specify in the SELECT list of a query,
such as a constant value, a column reference, an operator invocation, a function call, and
so on.

PRELOAD

Optional. Specifies operations to run prior to the load operation. Right now the only preload
operation is TRUNCATE.

TRUNCATE

Optional. If set to true, gpload will remove all rows in the target table prior to loading it.
Default is false.

REUSE_TABLES

Optional. If set to true, gpload will not drop the external table objects and staging table
objects it creates. These objects will be reused for future load operations that use the
same load specifications. This improves performance of trickle loads (ongoing small loads
to the same target table).

If LOG_ERRORS: true is specified, REUSE_TABLES: true must be specified to retain
the formatting errors in Greenplum Database error logs. If REUSE_TABLES: true is not
specified, formatting error information is deleted after the gpload operation.

If the external_table_name exists, the utility uses the existing table. The utility returns an
error if the table schema does not match the OUTPUT table schema.

STAGING_TABLE

Optional. Specify the name of the temporary external table that is created during a gpload
operation. The external table is used by gpfdist. REUSE_TABLES: true must also
specified. If REUSE_TABLES is false or not specified, STAGING_TABLE is ignored. By
default, gpload creates a temporary external table with a randomly generated name.

If external_table_name contains a period (.), gpload returns an error. If the table exists,
the utility uses the table. The utility returns an error if the existing table schema does not
match the OUTPUT table schema.

The utility uses the value of SCHEMA in the EXTERNAL section as the schema for
external_table_name. If the SCHEMA value is %, the schema for external_table_name is the
same as the schema of the target table, the schema of TABLE in the OUTPUT section.

If SCHEMA is not set, the utility searches for the table (using the schemas in the database
search_path). If the table is not found, external_table_name is created in the default
PUBLIC schema.

FAST_MATCH

Optional. If set to true, gpload only searches the database for matching external table
objects when reusing external tables. The utility does not check the external table column
names and column types in the catalog table pg_attribute to ensure that the table can
be used for a gpload operation. Set the value to true to improve gpload performance
when reusing external table objects and the database catalog table pg_attribute
contains a large number of rows. The utility returns an error and quits if the column
definitions are not compatible.

Greenplum Database Utility Guide Release Notes

739

The default value is false, the utility checks the external table definition column names and
column types.

REUSE_TABLES: true must also specified. If REUSE_TABLES is false or not specified
and FAST_MATCH: true is specified, gpload returns a warning message.

SQL

Optional. Defines SQL commands to run before and/or after the load operation. You can
specify multiple BEFORE and/or AFTER commands. List commands in the order of desired
execution.

BEFORE

Optional. An SQL command to run before the load operation starts. Enclose commands in
quotes.

AFTER

Optional. An SQL command to run after the load operation completes. Enclose commands
in quotes.

Log File Format
Log files output by gpload have the following format:

timestamp|level|message

Where timestamp takes the form: YYYY-MM-DD HH:MM:SS, level is one of DEBUG, LOG, INFO, ERROR,
and message is a normal text message.

Some INFO messages that may be of interest in the log files are (where # corresponds to the actual
number of seconds, units of data, or failed rows):

INFO|running time: #.## seconds
INFO|transferred #.# kB of #.# kB.
INFO|gpload succeeded
INFO|gpload succeeded with warnings
INFO|gpload failed
INFO|1 bad row
INFO|# bad rows

Notes
If your database object names were created using a double-quoted identifier (delimited identifier), you must
specify the delimited name within single quotes in the gpload control file. For example, if you create a
table as follows:

CREATE TABLE "MyTable" ("MyColumn" text);

Your YAML-formatted gpload control file would refer to the above table and column names as follows:

- COLUMNS:
 - '"MyColumn"': text
OUTPUT:
 - TABLE: public.'"MyTable"'

If the YAML control file contains the ERROR_TABLE element that was available in Greenplum Database
4.3.x, gpload logs a warning stating that ERROR_TABLE is not supported, and load errors are handled as
if the LOG_ERRORS and REUSE_TABLE elements were set to true. Rows with formatting errors are logged
internally when running in single row error isolation mode.

Greenplum Database Utility Guide Release Notes

740

Examples
Run a load job as defined in my_load.yml:

gpload -f my_load.yml

Example load control file:

VERSION: 1.0.0.1
DATABASE: ops
USER: gpadmin
HOST: mdw-1
PORT: 5432
GPLOAD:
 INPUT:
 - SOURCE:
 LOCAL_HOSTNAME:
 - etl1-1
 - etl1-2
 - etl1-3
 - etl1-4
 PORT: 8081
 FILE:
 - /var/load/data/*
 - COLUMNS:
 - name: text
 - amount: float4
 - category: text
 - descr: text
 - date: date
 - FORMAT: text
 - DELIMITER: '|'
 - ERROR_LIMIT: 25
 - LOG_ERRORS: true
 OUTPUT:
 - TABLE: payables.expenses
 - MODE: INSERT
 PRELOAD:
 - REUSE_TABLES: true
 SQL:
 - BEFORE: "INSERT INTO audit VALUES('start', current_timestamp)"
 - AFTER: "INSERT INTO audit VALUES('end', current_timestamp)"

See Also
gpfdist, CREATE EXTERNAL TABLE

gplogfilter
Searches through Greenplum Database log files for specified entries.

Synopsis

gplogfilter [timestamp_options] [pattern_options]
 [output_options] [input_options] [input_file]

gplogfilter --help

gplogfilter --version

Greenplum Database Utility Guide Release Notes

741

Description
The gplogfilter utility can be used to search through a Greenplum Database log file for entries
matching the specified criteria. If an input file is not supplied, then gplogfilter will use the
$MASTER_DATA_DIRECTORY environment variable to locate the Greenplum master log file in the standard
logging location. To read from standard input, use a dash (-) as the input file name. Input files may
be compressed using gzip. In an input file, a log entry is identified by its timestamp in YYYY-MM-DD
[hh:mm[:ss]] format.

You can also use gplogfilter to search through all segment log files at once by running it through the
gpssh utility. For example, to display the last three lines of each segment log file:

gpssh -f seg_host_file
=> source /usr/local/greenplum-db/greenplum_path.sh
=> gplogfilter -n 3 /gpdata/*/pg_log/gpdb*.csv

By default, the output of gplogfilter is sent to standard output. Use the -o option to send the output
to a file or a directory. If you supply an output file name ending in .gz, the output file will be compressed
by default using maximum compression. If the output destination is a directory, the output file is given the
same name as the input file.

Options
Timestamp Options
-b datetime | --begin=datetime

Specifies a starting date and time to begin searching for log entries in the format of YYYY-
MM-DD [hh:mm[:ss]].

If a time is specified, the date and time must be enclosed in either single or double quotes.
This example encloses the date and time in single quotes:

gplogfilter -b '2013-05-23 14:33'

-e datetime | --end=datetime

Specifies an ending date and time to stop searching for log entries in the format of YYYY-
MM-DD [hh:mm[:ss]].

If a time is specified, the date and time must be enclosed in either single or double quotes.
This example encloses the date and time in single quotes:

gplogfilter -e '2013-05-23 14:33'

-d time | --duration=time

Specifies a time duration to search for log entries in the format of [hh][:mm[:ss]]. If
used without either the -b or -e option, will use the current time as a basis.

Pattern Matching Options
-c i [gnore] | r [espect] | --case=i [gnore] | r [espect]

Matching of alphabetic characters is case sensitive by default unless proceeded by the --
case=ignore option.

-C 'string' | --columns='string'

Selects specific columns from the log file. Specify the desired columns as a comma-
delimited string of column numbers beginning with 1, where the second column from left is
2, the third is 3, and so on. See "Viewing the Database Server Log Files" in the Greenplum
Database Administrator Guide for details about the log file format and for a list of the
available columns and their associated number.

-f 'string' | --find='string'

Finds the log entries containing the specified string.

Greenplum Database Utility Guide Release Notes

742

-F 'string' | --nofind='string'

Rejects the log entries containing the specified string.

-m regex | --match=regex

Finds log entries that match the specified Python regular expression. See https://
docs.python.org/library/re.html for Python regular expression syntax.

-M regex | --nomatch=regex

Rejects log entries that match the specified Python regular expression. See https://
docs.python.org/library/re.html for Python regular expression syntax.

-t | --trouble

Finds only the log entries that have ERROR:, FATAL:, or PANIC: in the first line.

Output Options
-n integer | --tail=integer

Limits the output to the last integer of qualifying log entries found.

-s offset [limit] | --slice=offset [limit]

From the list of qualifying log entries, returns the limit number of entries starting at the
offset entry number, where an offset of zero (0) denotes the first entry in the result set and
an offset of any number greater than zero counts back from the end of the result set.

-o output_file | --out=output_file

Writes the output to the specified file or directory location instead of STDOUT.

-z 0-9 | --zip=0-9

Compresses the output file to the specified compression level using gzip, where 0 is no
compression and 9 is maximum compression. If you supply an output file name ending in
.gz, the output file will be compressed by default using maximum compression.

-a | --append

If the output file already exists, appends to the file instead of overwriting it.

Input Options
input_file

The name of the input log file(s) to search through. If an input file is not supplied,
gplogfilter will use the $MASTER_DATA_DIRECTORY environment variable to locate
the Greenplum Database master log file. To read from standard input, use a dash (-) as
the input file name.

-u | --unzip

Uncompress the input file using gunzip. If the input file name ends in .gz, it will be
uncompressed by default.

--help

Displays the online help.

--version

Displays the version of this utility.

Examples
Display the last three error messages in the master log file:

gplogfilter -t -n 3

Display all log messages in the master log file timestamped in the last 10 minutes:

gplogfilter -d :10

https://docs.python.org/library/re.html
https://docs.python.org/library/re.html
https://docs.python.org/library/re.html
https://docs.python.org/library/re.html

Greenplum Database Utility Guide Release Notes

743

Display log messages in the master log file containing the string |con6 cmd11|:

gplogfilter -f '|con6 cmd11|'

Using gpssh, run gplogfilter on the segment hosts and search for log messages in the segment log
files containing the string con6 and save output to a file.

gpssh -f seg_hosts_file -e 'source
/usr/local/greenplum-db/greenplum_path.sh ; gplogfilter -f
con6 /gpdata/*/pg_log/gpdb*.csv' > seglog.out

See Also
gpssh, gpscp

gpmapreduce
Runs Greenplum MapReduce jobs as defined in a YAML specification document.

Synopsis

gpmapreduce -f config.yaml [dbname [username]]
 [-k name=value | --key name=value]
 [-h hostname | --host hostname] [-p port| --port port]
 [-U username | --username username] [-W] [-v]

gpmapreduce -x | --explain

gpmapreduce -X | --explain-analyze

gpmapreduce -V | --version

gpmapreduce -h | --help

Requirements
The following are required prior to running this program:

• You must have your MapReduce job defined in a YAML file. See gpmapreduce.yaml for more
information about the format of, and keywords supported in, the Greenplum MapReduce YAML
configuration file.

• You must be a Greenplum Database superuser to run MapReduce jobs written in untrusted Perl or
Python.

• You must be a Greenplum Database superuser to run MapReduce jobs with EXEC and FILE inputs.
• You must be a Greenplum Database superuser to run MapReduce jobs with GPFDIST input unless the

user has the appropriate rights granted.

Description
MapReduce is a programming model developed by Google for processing and generating large data sets
on an array of commodity servers. Greenplum MapReduce allows programmers who are familiar with the
MapReduce paradigm to write map and reduce functions and submit them to the Greenplum Database
parallel engine for processing.

gpmapreduce is the Greenplum MapReduce program. You configure a Greenplum MapReduce job via a
YAML-formatted configuration file that you pass to the program for execution by the Greenplum Database
parallel engine. The Greenplum Database system distributes the input data, executes the program across
a set of machines, handles machine failures, and manages the required inter-machine communication.

https://en.wikipedia.org/wiki/MapReduce

Greenplum Database Utility Guide Release Notes

744

Options
-f config.yaml

Required. The YAML file that contains the Greenplum MapReduce job definitions. Refer to
gpmapreduce.yaml for the format and content of the parameters that you specify in this
file.

-? | --help

Show help, then exit.

-V | --version

Show version information, then exit.

-v | --verbose

Show verbose output.

-x | --explain

Do not run MapReduce jobs, but produce explain plans.

-X | --explain-analyze

Run MapReduce jobs and produce explain-analyze plans.

-k | --keyname=value

Sets a YAML variable. A value is required. Defaults to "key" if no variable name is
specified.

Connection Options
-h host | --host host

Specifies the host name of the machine on which the Greenplum master database server
is running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port port

Specifies the TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or defaults to
5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system user name.

-W | --password

Force a password prompt.

Examples
Run a MapReduce job as defined in my_mrjob.yaml and connect to the database mydatabase:

gpmapreduce -f my_mrjob.yaml mydatabase

See Also
gpmapreduce.yaml

gpmapreduce.yaml
gpmapreduce configuration file.

Greenplum Database Utility Guide Release Notes

745

Synopsis

%YAML 1.1

VERSION: 1.0.0.2
DATABASE: dbname
USER: db_username
HOST: master_hostname
PORT: master_port

DEFINE:
 - INPUT:
 NAME: input_name
 FILE:
 - hostname:/path/to/file
 GPFDIST:
 - hostname:port/file_pattern
 TABLE: table_name
 QUERY: SELECT_statement
 EXEC: command_string
 COLUMNS:
 - field_name data_type
 FORMAT: TEXT | CSV
 DELIMITER: delimiter_character
 ESCAPE: escape_character
 NULL: null_string
 QUOTE: csv_quote_character
 ERROR_LIMIT: integer
 ENCODING: database_encoding

 - OUTPUT:
 NAME: output_name
 FILE: file_path_on_client
 TABLE: table_name
 KEYS:
 - column_name
 MODE: REPLACE | APPEND

 - MAP:
 NAME: function_name
 FUNCTION: function_definition
 LANGUAGE: perl | python | c
 LIBRARY: /path/filename.so
 PARAMETERS:
 - nametype
 RETURNS:
 - nametype
 OPTIMIZE: STRICT IMMUTABLE
 MODE: SINGLE | MULTI

 - TRANSITION | CONSOLIDATE | FINALIZE:
 NAME: function_name
 FUNCTION: function_definition
 LANGUAGE: perl | python | c
 LIBRARY: /path/filename.so
 PARAMETERS:
 - nametype
 RETURNS:
 - nametype
 OPTIMIZE: STRICT IMMUTABLE

Greenplum Database Utility Guide Release Notes

746

 MODE: SINGLE | MULTI

 - REDUCE:
 NAME: reduce_job_name
 TRANSITION: transition_function_name
 CONSOLIDATE: consolidate_function_name
 FINALIZE: finalize_function_name
 INITIALIZE: value
 KEYS:
 - key_name

 - TASK:
 NAME: task_name
 SOURCE: input_name
 MAP: map_function_name
 REDUCE: reduce_function_name
EXECUTE:

 - RUN:
 SOURCE: input_or_task_name
 TARGET: output_name
 MAP: map_function_name
 REDUCE: reduce_function_name...

Description
You specify the input, map and reduce tasks, and the output for the Greenplum MapReduce
gpmapreduce program in a YAML-formatted configuration file. (This reference page uses the name
gpmapreduce.yaml when referring to this file; you may choose your own name for the file.)

The gpmapreduce utility processes the YAML configuration file in order, using indentation (spaces) to
determine the document hierarchy and the relationships between the sections. The use of white space in
the file is significant.

Keys and Values
VERSION

Required. The version of the Greenplum MapReduce YAML specification. Current
supported versions are 1.0.0.1, 1.0.0.2, and 1.0.0.3.

DATABASE

Optional. Specifies which database in Greenplum to connect to. If not specified, defaults to
the default database or $PGDATABASE if set.

USER

Optional. Specifies which database role to use to connect. If not specified, defaults to
the current user or $PGUSER if set. You must be a Greenplum superuser to run functions
written in untrusted Python and Perl. Regular database users can run functions written in
trusted Perl. You also must be a database superuser to run MapReduce jobs that contain
FILE, GPFDIST and EXEC input types.

HOST

Optional. Specifies Greenplum master host name. If not specified, defaults to localhost or
$PGHOST if set.

PORT

Optional. Specifies Greenplum master port. If not specified, defaults to 5432 or $PGPORT if
set.

Greenplum Database Utility Guide Release Notes

747

DEFINE

Required. A sequence of definitions for this MapReduce document. The DEFINE section
must have at least one INPUT definition.

INPUT

Required. Defines the input data. Every MapReduce document must have at least one
input defined. Multiple input definitions are allowed in a document, but each input definition
can specify only one of these access types: a file, a gpfdist file reference, a table in
the database, an SQL command, or an operating system command. See gpfdist for
information about this reference.

NAME

A name for this input. Names must be unique with regards to the names of other objects in
this MapReduce job (such as map function, task, reduce function and output names). Also,
names cannot conflict with existing objects in the database (such as tables, functions or
views).

FILE

A sequence of one or more input files in the format: seghostname:/path/to/
filename. You must be a Greenplum Database superuser to run MapReduce jobs with
FILE input. The file must reside on a Greenplum segment host.

GPFDIST

A sequence identifying one or more running gpfdist file servers in the format:
hostname[:port]/file_pattern. You must be a Greenplum Database superuser to
run MapReduce jobs with GPFDIST input.

TABLE

The name of an existing table in the database.

QUERY

A SQL SELECT command to run within the database.

EXEC

An operating system command to run on the Greenplum segment hosts. The command
is run by all segment instances in the system by default. For example, if you have four
segment instances per segment host, the command will be run four times on each host.
You must be a Greenplum Database superuser to run MapReduce jobs with EXEC input.

COLUMNS

Optional. Columns are specified as: column_name [data_type]. If not specified, the
default is value text. The DELIMITER character is what separates two data value fields
(columns). A row is determined by a line feed character (0x0a).

FORMAT

Optional. Specifies the format of the data - either delimited text (TEXT) or comma
separated values (CSV) format. If the data format is not specified, defaults to TEXT.

DELIMITER

Optional for FILE, GPFDIST and EXEC inputs. Specifies a single character that separates
data values. The default is a tab character in TEXT mode, a comma in CSV mode. The
delimiter character must only appear between any two data value fields. Do not place a
delimiter at the beginning or end of a row.

ESCAPE

Optional for FILE, GPFDIST and EXEC inputs. Specifies the single character that is
used for C escape sequences (such as \n,\t,\100, and so on) and for escaping data
characters that might otherwise be taken as row or column delimiters. Make sure to
choose an escape character that is not used anywhere in your actual column data. The

Greenplum Database Utility Guide Release Notes

748

default escape character is a \ (backslash) for text-formatted files and a " (double quote)
for csv-formatted files, however it is possible to specify another character to represent
an escape. It is also possible to disable escaping by specifying the value 'OFF' as the
escape value. This is very useful for data such as text-formatted web log data that has
many embedded backslashes that are not intended to be escapes.

NULL

Optional for FILE, GPFDIST and EXEC inputs. Specifies the string that represents a null
value. The default is \N in TEXT format, and an empty value with no quotations in CSV
format. You might prefer an empty string even in TEXT mode for cases where you do not
want to distinguish nulls from empty strings. Any input data item that matches this string
will be considered a null value.

QUOTE

Optional for FILE, GPFDIST and EXEC inputs. Specifies the quotation character for CSV
formatted files. The default is a double quote ("). In CSV formatted files, data value fields
must be enclosed in double quotes if they contain any commas or embedded new lines.
Fields that contain double quote characters must be surrounded by double quotes, and
the embedded double quotes must each be represented by a pair of consecutive double
quotes. It is important to always open and close quotes correctly in order for data rows to
be parsed correctly.

ERROR_LIMIT

If the input rows have format errors they will be discarded provided that the error limit count
is not reached on any Greenplum segment instance during input processing. If the error
limit is not reached, all good rows will be processed and any error rows discarded.

ENCODING

Character set encoding to use for the data. Specify a string constant (such as
'SQL_ASCII'), an integer encoding number, or DEFAULT to use the default client
encoding. See Character Set Support for more information.

OUTPUT

Optional. Defines where to output the formatted data of this MapReduce job. If output is
not defined, the default is STDOUT (standard output of the client). You can send output to a
file on the client host or to an existing table in the database.

NAME

A name for this output. The default output name is STDOUT. Names must be unique with
regards to the names of other objects in this MapReduce job (such as map function, task,
reduce function and input names). Also, names cannot conflict with existing objects in the
database (such as tables, functions or views).

FILE

Specifies a file location on the MapReduce client machine to output data in the format: /
path/to/filename.

TABLE

Specifies the name of a table in the database to output data. If this table does not exist
prior to running the MapReduce job, it will be created using the distribution policy specified
with KEYS.

KEYS

Optional for TABLE output. Specifies the column(s) to use as the Greenplum Database
distribution key. If the EXECUTE task contains a REDUCE definition, then the REDUCE
keys will be used as the table distribution key by default. Otherwise, the first column of the
table will be used as the distribution key.

MODE

Greenplum Database Utility Guide Release Notes

749

Optional for TABLE output. If not specified, the default is to create the table if it does
not already exist, but error out if it does exist. Declaring APPEND adds output data to an
existing table (provided the table schema matches the output format) without removing any
existing data. Declaring REPLACE will drop the table if it exists and then recreate it. Both
APPEND and REPLACE will create a new table if one does not exist.

MAP

Required. Each MAP function takes data structured in (key, value) pairs, processes
each pair, and generates zero or more output (key, value) pairs. The Greenplum
MapReduce framework then collects all pairs with the same key from all output lists and
groups them together. This output is then passed to the REDUCE task, which is comprised
of TRANSITION | CONSOLIDATE | FINALIZE functions. There is one predefined MAP
function named IDENTITY that returns (key, value) pairs unchanged. Although (key,
value) are the default parameters, you can specify other prototypes as needed.

TRANSITION | CONSOLIDATE | FINALIZE

TRANSITION, CONSOLIDATE and FINALIZE are all component pieces of REDUCE. A
TRANSITION function is required. CONSOLIDATE and FINALIZE functions are optional.
By default, all take state as the first of their input PARAMETERS, but other prototypes
can be defined as well.

A TRANSITION function iterates through each value of a given key and accumulates
values in a state variable. When the transition function is called on the first value of a
key, the state is set to the value specified by INITIALIZE of a REDUCE job (or the default
state value for the data type). A transition takes two arguments as input; the current state
of the key reduction, and the next value, which then produces a new state.

If a CONSOLIDATE function is specified, TRANSITION processing is performed at the
segment-level before redistributing the keys across the Greenplum interconnect for final
aggregation (two-phase aggregation). Only the resulting state value for a given key is
redistributed, resulting in lower interconnect traffic and greater parallelism. CONSOLIDATE
is handled like a TRANSITION, except that instead of (state + value) => state, it is
(state + state) => state.

If a FINALIZE function is specified, it takes the final state produced by CONSOLIDATE
(if present) or TRANSITION and does any final processing before emitting the final result.
TRANSITION and CONSOLIDATE functions cannot return a set of values. If you need a
REDUCE job to return a set, then a FINALIZE is necessary to transform the final state into
a set of output values.

NAME

Required. A name for the function. Names must be unique with regards to the names of
other objects in this MapReduce job (such as function, task, input and output names). You
can also specify the name of a function built-in to Greenplum Database. If using a built-in
function, do not supply LANGUAGE or a FUNCTION body.

FUNCTION

Optional. Specifies the full body of the function using the specified LANGUAGE. If
FUNCTION is not specified, then a built-in database function corresponding to NAME is
used.

LANGUAGE

Required when FUNCTION is used. Specifies the implementation language used to
interpret the function. This release has language support for perl, python, and C. If
calling a built-in database function, LANGUAGE should not be specified.

LIBRARY

Required when LANGUAGE is C (not allowed for other language functions). To use this
attribute, VERSION must be 1.0.0.2. The specified library file must be installed prior

Greenplum Database Utility Guide Release Notes

750

to running the MapReduce job, and it must exist in the same file system location on all
Greenplum hosts (master and segments).

PARAMETERS

Optional. Function input parameters. The default type is text.

MAP default - key text, value text

TRANSITION default - state text, value text

CONSOLIDATE default - state1 text, state2 text (must have exactly two input
parameters of the same data type)

FINALIZE default - state text (single parameter only)

RETURNS

Optional. The default return type is text.

MAP default - key text, value text

TRANSITION default - state text (single return value only)

CONSOLIDATE default - state text (single return value only)

FINALIZE default - value text

OPTIMIZE

Optional optimization parameters for the function:

STRICT - function is not affected by NULL values

IMMUTABLE - function will always return the same value for a given input

MODE

Optional. Specifies the number of rows returned by the function.

MULTI - returns 0 or more rows per input record. The return value of the function must
be an array of rows to return, or the function must be written as an iterator using yield
in Python or return_next in Perl. MULTI is the default mode for MAP and FINALIZE
functions.

SINGLE - returns exactly one row per input record. SINGLE is the only mode supported
for TRANSITION and CONSOLIDATE functions. When used with MAP and FINALIZE
functions, SINGLE mode can provide modest performance improvement.

REDUCE

Required. A REDUCE definition names the TRANSITION | CONSOLIDATE | FINALIZE
functions that comprise the reduction of (key, value) pairs to the final result set. There
are also several predefined REDUCE jobs you can execute, which all operate over a column
named value:

IDENTITY - returns (key, value) pairs unchanged

SUM - calculates the sum of numeric data

AVG - calculates the average of numeric data

COUNT - calculates the count of input data

MIN - calculates minimum value of numeric data

MAX - calculates maximum value of numeric data

NAME

Required. The name of this REDUCE job. Names must be unique with regards to the names
of other objects in this MapReduce job (function, task, input and output names). Also,

Greenplum Database Utility Guide Release Notes

751

names cannot conflict with existing objects in the database (such as tables, functions or
views).

TRANSITION

Required. The name of the TRANSITION function.

CONSOLIDATE

Optional. The name of the CONSOLIDATE function.

FINALIZE

Optional. The name of the FINALIZE function.

INITIALIZE

Optional for text and float data types. Required for all other data types. The default
value for text is '' . The default value for float is 0.0 . Sets the initial state value of the
TRANSITION function.

KEYS

Optional. Defaults to [key, *]. When using a multi-column reduce it may be necessary
to specify which columns are key columns and which columns are value columns. By
default, any input columns that are not passed to the TRANSITION function are key
columns, and a column named key is always a key column even if it is passed to the
TRANSITION function. The special indicator * indicates all columns not passed to the
TRANSITION function. If this indicator is not present in the list of keys then any unmatched
columns are discarded.

TASK

Optional. A TASK defines a complete end-to-end INPUT/MAP/REDUCE stage within a
Greenplum MapReduce job pipeline. It is similar to EXECUTE except it is not immediately
executed. A task object can be called as INPUT to further processing stages.

NAME

Required. The name of this task. Names must be unique with regards to the names of
other objects in this MapReduce job (such as map function, reduce function, input and
output names). Also, names cannot conflict with existing objects in the database (such as
tables, functions or views).

SOURCE

The name of an INPUT or another TASK.

MAP

Optional. The name of a MAP function. If not specified, defaults to IDENTITY.

REDUCE

Optional. The name of a REDUCE function. If not specified, defaults to IDENTITY.

EXECUTE

Required. EXECUTE defines the final INPUT/MAP/REDUCE stage within a Greenplum
MapReduce job pipeline.

RUN

SOURCE

Required. The name of an INPUT or TASK.

TARGET

Optional. The name of an OUTPUT. The default output is STDOUT.

MAP

Optional. The name of a MAP function. If not specified, defaults to IDENTITY.

REDUCE

Greenplum Database Utility Guide Release Notes

752

Optional. The name of a REDUCE function. Defaults to IDENTITY.

See Also
gpmapreduce

gpmovemirrors
Moves mirror segment instances to new locations.

Synopsis

gpmovemirrors -i move_config_file [-d master_data_directory]
 [-l logfile_directory]
 [-B parallel_processes] [-v]

gpmovemirrors -?

gpmovemirrors --version

Description
The gpmovemirrors utility moves mirror segment instances to new locations. You may want to move
mirrors to new locations to optimize distribution or data storage.

Before moving segments, the utility verifies that they are mirrors, and that their corresponding primary
segments are up and are in synchronizing or resynchronizing mode.

By default, the utility will prompt you for the file system location(s) where it will move the mirror segment
data directories.

You must make sure that the user who runs gpmovemirrors (the gpadmin user) has permissions to
write to the data directory locations specified. You may want to create these directories on the segment
hosts and chown them to the appropriate user before running gpmovemirrors.

Options
-B parallel_processes

The number of mirror segments to move in parallel. If not specified, the utility will start
up to 4 parallel processes depending on how many mirror segment instances it needs to
move.

-d master_data_directory

The master data directory. If not specified, the value set for $MASTER_DATA_DIRECTORY
will be used.

-i move_config_file

A configuration file containing information about which mirror segments to move, and
where to move them.

You must have one mirror segment listed for each primary segment in the system.
Each line inside the configuration file has the following format (as per attributes in the
gp_segment_configuration catalog table):

<old_address>|<port>|<data_dir> <new_address>|<port>|<data_dir>

Where <old_address> and <new_address> are the host names or IP addresses of
the segment hosts, <port> is the communication port, and <data_dir> is the segment
instance data directory.

Greenplum Database Utility Guide Release Notes

753

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-v (verbose)

Sets logging output to verbose.

--version (show utility version)

Displays the version of this utility.

-? (help)

Displays the online help.

Examples
Moves mirrors from an existing Greenplum Database system to a different set of hosts:

$ gpmovemirrors -i move_config_file

Where the move_config_file looks something like this:

sdw2|50000|/data2/mirror/gpseg0 sdw3|50000|/data/mirror/gpseg0
sdw2|50001|/data2/mirror/gpseg1 sdw4|50001|/data/mirror/gpseg1
sdw3|50002|/data2/mirror/gpseg2 sdw1|50002|/data/mirror/gpseg2

gppkg
Installs Greenplum Database extensions in .gppkg format, such as PL/Java, PL/R, PostGIS, and MADlib,
along with their dependencies, across an entire cluster.

Synopsis

gppkg [-i package | -u package | -r name-version | -c]
 [-d master_data_directory] [-a] [-v]

gppkg --migrate GPHOME_old GPHOME_new [-a] [-v]

gppkg [-q | --query] query_option

gppkg -? | --help | -h

gppkg --version

Description
The Greenplum Package Manager (gppkg) utility installs Greenplum Database extensions, along with any
dependencies, on all hosts across a cluster. It will also automatically install extensions on new hosts in the
case of system expansion and segment recovery.

Note: After a major upgrade to Greenplum Database, you must download and install all gppkg
extensions again.

Examples of database extensions and packages software that are delivered using the Greenplum Package
Manager are:

• PL/Java
• PL/R
• PostGIS
• MADlib

Greenplum Database Utility Guide Release Notes

754

Options
-a (do not prompt)

Do not prompt the user for confirmation.

-c | --clean

Reconciles the package state of the cluster to match the state of the master host. Running
this option after a failed or partial install/uninstall ensures that the package installation state
is consistent across the cluster.

-d master_data_directory

The master data directory. If not specified, the value set for $MASTER_DATA_DIRECTORY
will be used.

-i package | --install=package

Installs the given package. This includes any pre/post installation steps and installation of
any dependencies.

--migrate GPHOME_old GPHOME_new

Migrates packages from a separate $GPHOME. Carries over packages from one version of
Greenplum Database to another.

For example: gppkg --migrate /usr/local/greenplum-db-<old-version> /
usr/local/greenplum-db-<new-version>

When migrating packages, these requirements must be met.

• At least the master instance of the destination Greenplum Database must be started
(the instance installed in GPHOME_new). Before running the gppkg command start the
Greenplum Database master with the command gpstart -m.

• Run the gppkg utility from the GPHOME_new installation. The migration destination
installation directory.

-q | --query query_option

Provides information specified by query_option about the installed packages. Only one
query_option can be specified at a time. The following table lists the possible values for
query_option. <package_file> is the name of a package.

Table 65: Query Options for gppkg

query_option Returns

<package_file> Whether the specified package is installed.

--info <package_file> The name, version, and other information
about the specified package.

--list <package_file> The file contents of the specified package.

--all List of all installed packages.

-r name-version | --remove=name-version

Removes the specified package.

-u package | --update=package

Updates the given package.

Warning: The process of updating a package includes removing all previous
versions of the system objects related to the package. For example, previous
versions of shared libraries are removed. After the update process, a
database function will fail when it is called if the function references a package
file that has been removed.

Greenplum Database Utility Guide Release Notes

755

--version (show utility version)

Displays the version of this utility.

-v | --verbose

Sets the logging level to verbose.

-? | -h | --help

Displays the online help.

gprecoverseg
Recovers a primary or mirror segment instance that has been marked as down (if mirroring is enabled).

Synopsis

gprecoverseg [-p new_recover_host[,...]] | -i recover_config_file] [-
d master_data_directory]
 [-B parallel_processes] [-F [-s]] [-a] [-q]
 [--no-progress] [-l logfile_directory]

gprecoverseg -r

gprecoverseg -o output_recover_config_file
 [-p new_recover_host[,...]]

gprecoverseg -? | --help

gprecoverseg --version

Description
In a system with mirrors enabled, the gprecoverseg utility reactivates a failed segment instance and
identifies the changed database files that require resynchronization. Once gprecoverseg completes this
process, the system goes into resyncronizing mode until the recovered segment is brought up to date. The
system is online and fully operational during resyncronization.

During an incremental recovery (the -F option is not specified), if gprecoverseg detects a segment
instance with mirroring disabled in a system with mirrors enabled, the utility reports that mirroring is
disabled for the segment, does not attempt to recover that segment instance, and continues the recovery
process.

A segment instance can fail for several reasons, such as a host failure, network failure, or disk failure.
When a segment instance fails, its status is marked as down in the Greenplum Database system catalog,
and its mirror is activated in change tracking mode. In order to bring the failed segment instance back into
operation again, you must first correct the problem that made it fail in the first place, and then recover the
segment instance in Greenplum Database using gprecoverseg.

Note: If incremental recovery was not successful and the down segment instance data is not
corrupted, contact Pivotal Support.

Segment recovery using gprecoverseg requires that you have an active mirror to recover from. For
systems that do not have mirroring enabled, or in the event of a double fault (a primary and mirror pair both
down at the same time) — you must take manual steps to recover the failed segment instances and then
perform a system restart to bring the segments back online. For example, this command restarts a system.

gpstop -r

Greenplum Database Utility Guide Release Notes

756

By default, a failed segment is recovered in place, meaning that the system brings the segment back online
on the same host and data directory location on which it was originally configured. In this case, use the
following format for the recovery configuration file (using -i).

<failed_host_address>|<port>|<data_directory>

In some cases, this may not be possible (for example, if a host was physically damaged and cannot be
recovered). In this situation, gprecoverseg allows you to recover failed segments to a completely new
host (using -p), on an alternative data directory location on your remaining live segment hosts (using -s),
or by supplying a recovery configuration file (using -i) in the following format. The word SPACE indicates
the location of a required space. Do not add additional spaces.

<failed_host_address>|<port>|<data_directory>SPACE
<recovery_host_address>|<port>|<data_directory>

See the -i option below for details and examples of a recovery configuration file.

The gp_segment_configuration system catalog table can help you determine your current segment
configuration so that you can plan your mirror recovery configuration. For example, run the following query:

=# SELECT dbid, content, address, port, datadir
 FROM gp_segment_configuration
 ORDER BY dbid;

The new recovery segment host must be pre-installed with the Greenplum Database software and
configured exactly the same as the existing segment hosts. A spare data directory location must exist on
all currently configured segment hosts and have enough disk space to accommodate the failed segments.

The recovery process marks the segment as up again in the Greenplum Database system catalog, and
then initiates the resyncronization process to bring the transactional state of the segment up-to-date with
the latest changes. The system is online and available during resyncronization. To check the status of the
resyncronization process run:

gpstate -m

Options
-a (do not prompt)

Do not prompt the user for confirmation.

-B parallel_processes

The number of segments to recover in parallel. If not specified, the utility will start up to 16
parallel processes depending on how many segment instances it needs to recover.

-d master_data_directory

Optional. The master host data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

-F (full recovery)

Optional. Perform a full copy of the active segment instance in order to recover the failed
segment. The default is to only copy over the incremental changes that occurred while the
segment was down.

Warning: A full recovery deletes the data directory of the down segment
instance before copying the data from the active (current primary) segment
instance. Before performing a full recovery, ensure that the segment failure
did not cause data corruption and that any host segment disk issues have
been fixed.

Greenplum Database Utility Guide Release Notes

757

Also, for a full recovery, the utility does not restore custom files that are stored
in the segment instance data directory even if the custom files are also in the
active segment instance. You must restore the custom files manually. For
example, when using the gpfdists protocol (gpfdist with SSL encryption)
to manage external data, client certificate files are required in the segment
instance $PGDATA/gpfdists directory. These files are not restored. For
information about configuring gpfdists, see Encrypting gpfdist Connections.

Full recovery can take a long time for large databases, so gprecoverseg displays a
running estimate of the completion progress of the copy for each segment. Progress for
each segment is updated once per second, using ANSI escape codes to update the line for
each segment in-place. If you are redirecting the gprecoverseg output to a file, or if the
ANSI escape codes do not work correctly on your terminal, you can include the -s option
on the command line to omit the ANSI escape codes. This outputs a new line once per
second for each segment. Include the --no-progress option to completely disable the
progress reports.

-i recover_config_file

Specifies the name of a file with the details about failed segments to recover. Each line
in the file is in the following format. The word SPACE indicates the location of a required
space. Do not add additional spaces.

<failed_host_address>|<port>|<data_directory>SPACE
<recovery_host_address>|<port>|<data_directory>

Comments

Lines beginning with # are treated as comments and ignored.

Segments to Recover

Each line after the first specifies a segment to recover. This line can have one of two
formats. In the event of in-place recovery, enter one group of colon delimited fields in the
line. For example:

failedAddress|failedPort|failedDataDirectory

For recovery to a new location, enter two groups of fields separated by a space in the line.
The required space is indicated by SPACE. Do not add additional spaces.

failedAddress|failedPort|failedDataDirectorySPACEnewAddress|
newPort|newDataDirectory

Examples

In-place recovery of a single mirror

sdw1-1|50001|/data1/mirror/gpseg16

Recovery of a single mirror to a new host

sdw1-1|50001|/data1/mirror/gpseg16SPACEsdw4-1|50001|/data1/
recover1/gpseg16

Obtaining a Sample File

You can use the -o option to output a sample recovery configuration file to use as a
starting point.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

Greenplum Database Utility Guide Release Notes

758

-o output_recover_config_file

Specifies a file name and location to output a sample recovery configuration file. The
output file lists the currently invalid segments and their default recovery location in the
format that is required by the -i option. Use together with the -p option to output a sample
file for recovering on a different host. This file can be edited to supply alternate recovery
locations if needed.

-p new_recover_host[,...]

Specifies a spare host outside of the currently configured Greenplum Database array
on which to recover invalid segments. In the case of multiple failed segment hosts, you
can specify a comma-separated list. The spare host must have the Greenplum Database
software installed and configured, and have the same hardware and OS configuration
as the current segment hosts (same OS version, locales, gpadmin user account, data
directory locations created, ssh keys exchanged, number of network interfaces, network
interface naming convention, and so on.).

-q (no screen output)

Run in quiet mode. Command output is not displayed on the screen, but is still written to
the log file.

-r (rebalance segments)

After a segment recovery, segment instances may not be returned to the preferred role
that they were given at system initialization time. This can leave the system in a potentially
unbalanced state, as some segment hosts may have more active segments than is optimal
for top system performance. This option rebalances primary and mirror segments by
returning them to their preferred roles. All segments must be valid and synchronized before
running gprecoverseg -r. If there are any in progress queries, they will be cancelled
and rolled back.

-s

Show pg_basebackup progress sequentially instead of in-place. Useful when writing to
a file, or if a tty does not support escape sequences. The default is to show progress in-
place.

--no-progress

Suppresses progress reports from the pg_basebackup utility. The default is to display
progress of base backups.

-v (verbose)

Sets logging output to verbose.

--version (version)

Displays the version of this utility.

-? (help)

Displays the online help.

Examples
Recover any failed segment instances in place:

$ gprecoverseg

Rebalance your Greenplum Database system after a recovery by resetting all segments to their preferred
role. First check that all segments are up and synchronized.

$ gpstate -m
$ gprecoverseg -r

Greenplum Database Utility Guide Release Notes

759

Recover any failed segment instances to a newly configured spare segment host:

$ gprecoverseg -i recover_config_file

Output the default recovery configuration file:

$ gprecoverseg -o /home/gpadmin/recover_config_file

See Also
gpstart, gpstop

gpreload
Reloads Greenplum Database table data sorting the data based on specified columns.

Synopsis

gpreload -d database [-p port] {-t | --table-file} path_to_file [-a]

gpreload -h

gpreload --version

Description
The gpreload utility reloads table data with column data sorted. For tables that were created with the
table storage option appendoptimized=TRUE and compression enabled, reloading the data with sorted
data can improve table compression. You specify a list of tables to be reloaded and the table columns to
be sorted in a text file.

Compression is improved by sorting data when the data in the column has a relatively low number of
distinct values when compared to the total number of rows.

For a table being reloaded, the order of the columns to be sorted might affect compression. The columns
with the fewest distinct values should be listed first. For example, listing state then city would generally
result in better compression than listing city then state.

public.cust_table: state, city
public.cust_table: city, state

For information about the format of the file used with gpreload, see the --table-file option.

Notes
To improve reload performance, indexes on tables being reloaded should be removed before reloading the
data.

Running the ANALYZE command after reloading table data might query performance because of a change
in the data distribution of the reloaded data.

For each table, the utility copies table data to a temporary table, truncates the existing table data, and
inserts data from the temporary table to the table in the specified sort order. Each table reload is performed
in a single transaction.

For a partitioned table, you can reload the data of a leaf child partition. However, data is inserted from the
root partition table, which acquires a ROW EXCLUSIVE lock on the entire table.

Greenplum Database Utility Guide Release Notes

760

Options
-a (do not prompt)

Optional. If specified, the gpreload utility does not prompt the user for confirmation.

-d database

The database that contains the tables to be reloaded. The gpreload utility connects to
the database as the user running the utility.

-p port

The Greenplum Database master port. If not specified, the value of the PGPORT
environment variable is used. If the value is not available, an error is returned.

{-t | --table-file } path_to_file

The location and name of file containing list of schema qualified table names to reload and
the column names to reorder from the Greenplum Database. Only user defined tables are
supported. Views or system catalog tables are not supported.

If indexes are defined on table listed in the file, gpreload prompts to continue.

Each line specifies a table name and the list of columns to sort. This is the format of each
line in the file:

schema.table_name: column [desc] [, column2 [desc] ...]

The table name is followed by a colon (:) and then at least one column name. If you
specify more than one column, separate the column names with a comma. The columns
are sorted in ascending order. Specify the keyword desc after the column name to sort the
column in descending order.

Wildcard characters are not supported.

If there are errors in the file, gpreload reports the first error and exits. No data is
reloaded.

The following example reloads three tables:

public.clients: region, state, rep_id desc
public.merchants: region, state
test.lineitem: group, assy, whse

In the first table public.clients, the data in the rep_id column is sorted in
descending order. The data in the other columns are sorted in ascending order.

--version (show utility version)

Displays the version of this utility.

-? (help)

Displays the online help.

Example
This example command reloads the tables in the database mytest that are listed in the file data-
tables.txt.

gpreload -d mytest --table-file data-tables.txt

See Also
CREATE TABLE in the Greenplum Database Reference Guide

Greenplum Database Utility Guide Release Notes

761

gprestore
Restore a Greenplum Database backup that was created using the gpbackup utility. By default
gprestore uses backed up metadata files and DDL files located in the Greenplum Database master host
data directory, with table data stored locally on segment hosts in CSV data files.

Synopsis

gprestore --timestamp YYYYMMDDHHMMSS
 [--backup-dir directory]
 [--create-db]
 [--debug]
 [--exclude-schema schema_name [--exclude-schema schema_name ...]]
 [--exclude-table schema.table [--exclude-table schema.table ...]]
 [--exclude-table-file file_name]
 [--exclude-schema-file file_name]
 [--include-schema schema_name [--include-schema schema_name ...]]
 [--include-table schema.table [--include-table schema.table ...]]
 [--include-schema-file file_name]
 [--include-table-file file_name]
 [--redirect-schema schema_name]
 [--data-only | --metadata-only]
 [--incremental]
 [--jobs int]
 [--on-error-continue]
 [--plugin-config config_file_location]
 [--quiet]
 [--redirect-db database_name]
 [--verbose]
 [--version]
 [--with-globals]
 [--with-stats]

gprestore --help

Description
To use gprestore to restore from a backup set, you must include the --timestamp option to specify
the exact timestamp value (YYYYMMDDHHMMSS) of the backup set to restore. If you specified a custom --
backup-dir to consolidate the backup files, include the same --backup-dir option with gprestore to
locate the backup files.

If the backup you specify is an incremental backup, you need a complete set of backup files (a full backup
and any required incremental backups). gprestore ensures that the complete backup set is available
before attempting to restore a backup.

Important: For incremental backup sets, the backups must be on a single device. For example, a
backup set must all be on a Data Domain system.

For information about incremental backups, see Creating and Using Incremental Backups with gpbackup
and gprestore.

When restoring from a backup set, gprestore restores to a database with the same name as the name
specified when creating the backup set. If the target database exists and a table being restored exists in
the database, the restore operation fails. Include the --create-db option if the target database does
not exist in the cluster. You can optionally restore a backup set to a different database by using the --
redirect-db option.

When restoring a backup set that contains data from some leaf partitions of a partitioned tables, the
partitioned table is restored along with the data for the leaf partitions. For example, you create a backup

Greenplum Database Utility Guide Release Notes

762

with the gpbackup option --include-table-file and the text file lists some leaf partitions of a
partitioned table. Restoring the backup creates the partitioned table and restores the data only for the leaf
partitions listed in the file.

Greenplum Database system objects are automatically included in a gpbackup backup set, but these
objects are only restored if you include the --with-globals option to gprestore. Similarly, if you
backed up query plan statistics using the --with-stats option, you can restore those statistics by
providing --with-stats to gprestore. By default, only database objects in the backup set are restored.

When a materialized view is restored, the data is not restored. To populate the materialized view with
data, use REFRESH MATERIALIZED VIEW. The tables that are referenced by the materialized view
definition must be available. The gprestore log file lists the materialized views that were restored and the
REFRESH MATERIALIZED VIEW commands that are used to populate the materialized views with data.

Performance of restore operations can be improved by creating multiple parallel connections to restore
table data and metadata. By default gprestore uses 1 connection, but you can increase this number with
the --jobs option for large restore operations.

When a restore operation completes, gprestore returns a status code. See Return Codes.

gprestore can send status email notifications after a back up operation completes. You specify when the
utility sends the mail and the email recipients in a configuration file. See Configuring Email Notifications.

Note: This utility uses secure shell (SSH) connections between systems to perform its tasks. In
large Greenplum Database deployments, cloud deployments, or deployments with a large number
of segments per host, this utility may exceed the host's maximum threshold for unauthenticated
connections. Consider updating the SSH MaxStartups and MaxSessions configuration
parameters to increase this threshold. For more information about SSH configuration options, refer
to the SSH documentation for your Linux distribution.

Options
--timestamp YYYYMMDDHHMMSS

Required. Specifies the timestamp of the gpbackup backup set to restore. By
default gprestore tries to locate metadata files for the timestamp on the Greenplum
Database master host in the $MASTER_DATA_DIRECTORY/backups/YYYYMMDD/
YYYYMMDDhhmmss/ directory, and CSV data files in the <seg_dir>/backups/
YYYYMMDD/YYYYMMDDhhmmss/ directory of each segment host.

--backup-dir directory

Optional. Sources all backup files (metadata files and data files) from the specified
directory. You must specify directory as an absolute path (not relative). If you do not supply
this option, gprestore tries to locate metadata files for the timestamp on the Greenplum
Database master host in the $MASTER_DATA_DIRECTORY/backups/YYYYMMDD/
YYYYMMDDhhmmss/ directory. CSV data files must be available on each segment in the
<seg_dir>/backups/YYYYMMDD/YYYYMMDDhhmmss/ directory. Include this option
when you specify a custom backup directory with gpbackup.

You cannot combine this option with the option --plugin-config.

--create-db

Optional. Creates the database before restoring the database object metadata.

The database is created by cloning the empty standard system database template0.

--data-only

Optional. Restores table data from a backup created with the gpbackup utility, without
creating the database tables. This option assumes the tables exist in the target database.
To restore data for a specific set of tables from a backup set, you can specify an option
to include tables or schemas or exclude tables or schemas. Specify the --with-stats
option to restore table statistics from the backup.

Greenplum Database Utility Guide Release Notes

763

The backup set must contain the table data to be restored. For example, a backup created
with the gpbackup option --metadata-only does not contain table data.

To restore only database tables, without restoring the table data, see the option --
metadata-only.

--debug

Optional. Displays verbose and debug log messages during a restore operation.

--exclude-schema schema_name

Optional. Specifies a database schema to exclude from the restore operation. You can
specify this option multiple times. You cannot combine this option with the option --
include-schema, --include-schema-file, or a table filtering option such as --
include-table.

--exclude-schema-file file_name

Optional. Specifies a text file containing a list of schemas to exclude from the backup.
Each line in the text file must define a single schema. The file must not include trailing
lines. If a schema name uses any character other than a lowercase letter, number, or an
underscore character, then you must include that name in double quotes. You cannot
combine this option with the option --include-schema or --include-schema-file,
or a table filtering option such as --include-table.

--exclude-table schema.table

Optional. Specifies a table to exclude from the restore operation. You can specify this
option multiple times. The table must be in the format <schema-name>.<table-name>.
If a table or schema name uses any character other than a lowercase letter, number, or an
underscore character, then you must include that name in double quotes. You can specify
this option multiple times. If the table is not in the backup set, the restore operation fails.
You cannot specify a leaf partition of a partitioned table.

You cannot combine this option with the option --exclude-schema, --exclude-
schema-file, or another a table filtering option such as --include-table.

--exclude-table-file file_name

Optional. Specifies a text file containing a list of tables to exclude from the restore
operation. Each line in the text file must define a single table using the format <schema-
name>.<table-name>. The file must not include trailing lines. If a table or schema name
uses any character other than a lowercase letter, number, or an underscore character,
then you must include that name in double quotes. If a table is not in the backup set, the
restore operation fails. You cannot specify a leaf partition of a partitioned table.

You cannot combine this option with the option --exclude-schema, --exclude-
schema-file, or another a table filtering option such as --include-table.

--include-schema schema_name

Optional. Specifies a database schema to restore. You can specify this option multiple
times. If you specify this option, any schemas that you specify must be available in the
backup set. Any schemas that are not included in subsequent --include-schema
options are omitted from the restore operation.

If a schema that you specify for inclusion exists in the database, the utility issues an error
and continues the operation. The utility fails if a table being restored exists in the database.

You cannot use this option if objects in the backup set have dependencies on multiple
schemas.

See Filtering the Contents of a Backup or Restore for more information.

--include-schema-file file_name

Optional. Specifies a text file containing a list of schemas to restore. Each line in the text
file must define a single schema. The file must not include trailing lines. If a schema name

Greenplum Database Utility Guide Release Notes

764

uses any character other than a lowercase letter, number, or an underscore character,
then you must include that name in double quotes.

The schemas must exist in the backup set. Any schemas not listed in this file are omitted
from the restore operation.

You cannot use this option if objects in the backup set have dependencies on multiple
schemas.

--include-table schema.table

Optional. Specifies a table to restore. The table must be in the format <schema-
name>.<table-name>. If a table or schema name uses any character other than a
lowercase letter, number, or an underscore character, then you must include that name
in double quotes. You can specify this option multiple times. You cannot specify a leaf
partition of a partitioned table.

You can also specify the qualified name of a sequence, a view, or a materialized view.

If you specify this option, the utility does not automatically restore dependent objects. You
must also explicitly specify the dependent objects that are required. For example if you
restore a view or a materialized view, you must also restore the tables that the view or the
materialized view uses. If you restore a table that uses a sequence, you must also restore
the sequence. The dependent objects must exist in the backup set.

You cannot combine this option with a schema filtering option such as --include-
schema, or another table filtering option such as --exclude-table-file.

--include-table-file file_name

Optional. Specifies a text file containing a list of tables to restore. Each line in the text file
must define a single table using the format <schema-name>.<table-name>. The file
must not include trailing lines. If a table or schema name uses any character other than a
lowercase letter, number, or an underscore character, then you must include that name in
double quotes. Any tables not listed in this file are omitted from the restore operation. You
cannot specify a leaf partition of a partitioned table.

You can also specify the qualified name of a sequence, a view, or a materialized view.

If you specify this option, the utility does not automatically restore dependent objects.
You must also explicitly specify dependent objects that are required. For example if you
restore a view or a materialized view, you must also specify the tables that the view or the
materialized uses. If you specify a table that uses a sequence, you must also specify the
sequence. The dependent objects must exist in the backup set.

For a materialized view, the data is not restored. To populate the materialized view with
data, you must use REFRESH MATERIALIZED VIEW and the tables that are referenced
by the materialized view definition must be available.

If you use the --include-table-file option, gprestore does not create roles or
set the owner of the tables. The utility restores table indexes and rules. Triggers are also
restored but are not supported in Greenplum Database.

See Filtering the Contents of a Backup or Restore for more information.

--incremental (Beta)

Restores only the table data in the incremental backup specified by the --timestamp
option. Table data is not restored from previous incremental backups in the backup set.
For information about incremental backups, see Creating and Using Incremental Backups
with gpbackup and gprestore.

Warning: This is a Beta feature and is not supported in a production
environment.

An incremental backup contains the following table data that can be restored.

Greenplum Database Utility Guide Release Notes

765

• Data from all heap tables.
• Data from append-optimized tables that have been modified since the previous backup.
• Data from leaf partitions that have been modified from the previous backup.

When this option is specified, gprestore restores table data by truncating the table and
reloading data into the table.

Warning: When this option is specified, gpbackup assumes that no changes
have been made to the table definitions of the tables being restored, such as
adding or removing columns.

--redirect-schema schema_name

Optional. Restore data in the specified schema instead of the original schemas. The
specified schema must already exist. If the data being restored is in multiple schemas, all
the data is redirected into the specified schema.

This option must be used with an option that includes tables, --inlcude-table or --
include table-file.

You cannot use this option with an option that excludes schemas or tables such as --
exclude-schema or --exclude-table.

You can use this option with the --metadata-only or --data-only options.

--jobs int

Optional. Specifies the number of parallel connections to use when restoring table data
and metadata. By default, gprestore uses 1 connection. Increasing this number can
improve the speed of restoring data.

Note: If you used the gpbackup --single-data-file option to combine
table backups into a single file per segment, you cannot set --jobs to a
value higher than 1 to perform a parallel restore operation.

--metadata-only

Optional. Creates database tables from a backup created with the gpbackup utility, but
does not restore the table data. This option assumes the tables do not exist in the target
database. To create a specific set of tables from a backup set, you can specify an option
to include tables or schemas or exclude tables or schemas. Specify the option --with-
globals to restore the Greenplum Database system objects.

The backup set must contain the DDL for tables to be restored. For example, a backup
created with the gpbackup option --data-only does not contain the DDL for tables.

To restore table data after you create the database tables, see the option --data-only.

--on-error-continue

Optional. Specify this option to continue the restore operation if an SQL error occurs
when creating database metadata (such as tables, roles, or functions) or restoring data. If
another type of error occurs, the utility exits. The default is to exit on the first error.

When this option is included, the utility displays an error summary and writes error
information to the gprestore log file and continues the restore operation. The utility also
creates text files in the backup directory that contain the list of tables that generated SQL
errors.

• Tables with metadata errors - gprestore_<backup-timestamp>_<restore-
time>_error_tables_metadata

• Tables with data errors - gprestore_<backup-timestamp>_<restore-
time>_error_tables_data

--plugin-config config-file_location

Greenplum Database Utility Guide Release Notes

766

Specify the location of the gpbackup plugin configuration file, a YAML-formatted text file.
The file contains configuration information for the plugin application that gprestore uses
during the restore operation.

If you specify the --plugin-config option when you back up a database, you must
specify this option with configuration information for a corresponding plugin application
when you restore the database from the backup.

You cannot combine this option with the option --backup-dir.

For information about using storage plugin applications, see Using gpbackup Storage
Plugins.

--quiet

Optional. Suppress all non-warning, non-error log messages.

--redirect-db database_name

Optional. Restore to the specified database_name instead of to the database that was
backed up.

--verbose

Optional. Displays verbose log messages during a restore operation.

--version

Optional. Print the version number and exit.

--with-globals

Optional. Restores Greenplum Database system objects in the backup set, in addition to
database objects. See Objects Included in a Backup or Restore.

--with-stats

Optional. Restore query plan statistics from the backup set.

--help

Displays the online help.

Return Codes
One of these codes is returned after gprestore completes.

• 0 – Restore completed with no problems.
• 1 – Restore completed with non-fatal errors. See log file for more information.
• 2 – Restore failed with a fatal error. See log file for more information.

Examples
Create the demo database and restore all schemas and tables in the backup set for the indicated
timestamp:

$ dropdb demo
$ gprestore --timestamp 20171103152558 --create-db

Restore the backup set to the "demo2" database instead of the "demo" database that was backed up:

$ createdb demo2
$ gprestore --timestamp 20171103152558 --redirect-db demo2

Greenplum Database Utility Guide Release Notes

767

Restore global Greenplum Database metadata and query plan statistics in addition to the database
objects:

$ gprestore --timestamp 20171103152558 --create-db --with-globals --with-
stats

Restore, using backup files that were created in the /home/gpadmin/backup directory, creating 8
parallel connections:

$ gprestore --backup-dir /home/gpadmin/backups/ --timestamp 20171103153156
 --create-db --jobs 8

Restore only the "wikipedia" schema included in the backup set:

$ dropdb demo
$ gprestore --include-schema wikipedia --backup-dir /home/gpadmin/backups/
 --timestamp 20171103153156 --create-db

If you restore from an incremental backup set, all the required files in the backup set must be available
to gprestore. For example, the following timestamp keys specify an incremental backup set.
20170514054532 is the full backup and the others are incremental backups.

20170514054532 (full backup)
20170714095512
20170914081205
20171114064330
20180114051246

The following gprestore command specifies the timestamp 20121114064330. The incremental backup
with the timestamps 20120714095512 and 20120914081205 and the full backup must be available to
perform a restore.

gprestore --timestamp 20121114064330 --redirect-db mystest --create-db

See Also
gpbackup, Parallel Backup with gpbackup and gprestore and Using the S3 Storage Plugin with gpbackup
and gprestore

gpscp
Copies files between multiple hosts at once.

Synopsis

gpscp { -f hostfile_gpssh | -h hostname [-h hostname ...] }
 [-J character] [-v] [[user@]hostname:]file_to_copy [...]
 [[user@]hostname:]copy_to_path

gpscp -?

gpscp --version

Description
The gpscp utility allows you to copy one or more files from the specified hosts to other specified hosts in
one command using SCP (secure copy). For example, you can copy a file from the Greenplum Database
master host to all of the segment hosts at the same time.

Greenplum Database Utility Guide Release Notes

768

To specify the hosts involved in the SCP session, use the -f option to specify a file containing a list of host
names, or use the -h option to name single host names on the command-line. At least one host name
(-h) or a host file (-f) is required. The -J option allows you to specify a single character to substitute
for the hostname in the copy from and copy to destination strings. If -J is not specified, the default
substitution character is an equal sign (=). For example, the following command will copy .bashrc from
the local host to /home/gpadmin on all hosts named in hostfile_gpssh:

gpscp -f hostfile_gpssh .bashrc =:/home/gpadmin

If a user name is not specified in the host list or with user@ in the file path, gpscp will copy files as the
currently logged in user. To determine the currently logged in user, do a whoami command. By default,
gpscp goes to $HOME of the session user on the remote hosts after login. To ensure the file is copied to
the correct location on the remote hosts, it is recommended that you use absolute paths.

Before using gpscp, you must have a trusted host setup between the hosts involved in the SCP session.
You can use the utility gpssh-exkeys to update the known host files and exchange public keys between
hosts if you have not done so already.

Options
-f hostfile_gpssh

Specifies the name of a file that contains a list of hosts that will participate in this SCP
session. The syntax of the host file is one host per line as follows:

<hostname>

-h hostname

Specifies a single host name that will participate in this SCP session. You can use the -h
option multiple times to specify multiple host names.

-J character

The -J option allows you to specify a single character to substitute for the hostname in the
copy from and copy to destination strings. If -J is not specified, the default substitution
character is an equal sign (=).

-v (verbose mode)

Optional. Reports additional messages in addition to the SCP command output.

file_to_copy

Required. The file name (or absolute path) of a file that you want to copy to other hosts (or
file locations). This can be either a file on the local host or on another named host.

copy_to_path

Required. The path where you want the file(s) to be copied on the named hosts. If an
absolute path is not used, the file will be copied relative to $HOME of the session user. You
can also use the equal sign '=' (or another character that you specify with the -J option)
in place of a hostname. This will then substitute in each host name as specified in the
supplied host file (-f) or with the -h option.

-? (help)

Displays the online help.

--version

Displays the version of this utility.

Greenplum Database Utility Guide Release Notes

769

Examples
Copy the file named installer.tar to / on all the hosts in the file hostfile_gpssh.

gpscp -f hostfile_gpssh installer.tar =:/

Copy the file named myfuncs.so to the specified location on the hosts named sdw1 and sdw2:

gpscp -h sdw1 -h sdw2 myfuncs.so =:/usr/local/greenplum-db/lib

See Also
gpssh, gpssh-exkeys

gpssh
Provides SSH access to multiple hosts at once.

Synopsis

gpssh { -f hostfile_gpssh | - h hostname [-h hostname ...] } [-s] [-e]
 [-d seconds] [-t multiplier] [-v]
 [bash_command]

gpssh -?

gpssh --version

Description
The gpssh utility allows you to run bash shell commands on multiple hosts at once using SSH (secure
shell). You can execute a single command by specifying it on the command-line, or omit the command to
enter into an interactive command-line session.

To specify the hosts involved in the SSH session, use the -f option to specify a file containing a list of host
names, or use the -h option to name single host names on the command-line. At least one host name (-
h) or a host file (-f) is required. Note that the current host is not included in the session by default — to
include the local host, you must explicitly declare it in the list of hosts involved in the session.

Before using gpssh, you must have a trusted host setup between the hosts involved in the SSH session.
You can use the utility gpssh-exkeys to update the known host files and exchange public keys between
hosts if you have not done so already.

If you do not specify a command on the command-line, gpssh will go into interactive mode. At the gpssh
command prompt (=>), you can enter a command as you would in a regular bash terminal command-line,
and the command will be executed on all hosts involved in the session. To end an interactive session,
press CTRL+D on the keyboard or type exit or quit.

If a user name is not specified in the host file, gpssh will execute commands as the currently logged in
user. To determine the currently logged in user, do a whoami command. By default, gpssh goes to $HOME
of the session user on the remote hosts after login. To ensure commands are executed correctly on all
remote hosts, you should always enter absolute paths.

If you encounter network timeout problems when using gpssh, you can use -d and -t options or set
parameters in the gpssh.conf file to control the timing that gpssh uses when validating the initial ssh
connection. For information about the configuration file, see gpssh Configuration File.

Options
bash_command

Greenplum Database Utility Guide Release Notes

770

A bash shell command to execute on all hosts involved in this session (optionally enclosed
in quotes). If not specified, gpssh starts an interactive session.

-d (delay) seconds

Optional. Specifies the time, in seconds, to wait at the start of a gpssh interaction with
ssh. Default is 0.05. This option overrides the delaybeforesend value that is specified
in the gpssh.conf configuration file.

Increasing this value can cause a long wait time during gpssh startup.

-e (echo)

Optional. Echoes the commands passed to each host and their resulting output while
running in non-interactive mode.

-f hostfile_gpssh

Specifies the name of a file that contains a list of hosts that will participate in this SSH
session. The syntax of the host file is one host per line.

-h hostname

Specifies a single host name that will participate in this SSH session. You can use the -h
option multiple times to specify multiple host names.

-s

Optional. If specified, before executing any commands on the target host, gpssh sources
the file greenplum_path.sh in the directory specified by the $GPHOME environment
variable.

This option is valid for both interactive mode and single command mode.

-t multiplier

Optional. A decimal number greater than 0 (zero) that is the multiplier for the timeout
that gpssh uses when validating the ssh prompt. Default is 1. This option overrides the
prompt_validation_timeout value that is specified in the gpssh.conf configuration
file.

Increasing this value has a small impact during gpssh startup.

-v (verbose mode)

Optional. Reports additional messages in addition to the command output when running in
non-interactive mode.

--version

Displays the version of this utility.

-? (help)

Displays the online help.

gpssh Configuration File
The gpssh.conf file contains parameters that let you adjust the timing that gpssh uses when
validating the initial ssh connection. These parameters affect the network connection before the gpssh
session executes commands with ssh. The location of the file is specified by the environment variable
MASTER_DATA_DIRECTORY. If the environment variable is not defined or the gpssh.conf file does not
exist, gpssh uses the default values or the values set with the -d and -t options. For information about
the environment variable, see the Greenplum Database Reference Guide.

The gpssh.conf file is a text file that consists of a [gpssh] section and parameters. On a line, the #
(pound sign) indicates the start of a comment. This is an example gpssh.conf file.

[gpssh]
delaybeforesend = 0.05
prompt_validation_timeout = 1.0

Greenplum Database Utility Guide Release Notes

771

sync_retries = 5

These are the gpssh.conf parameters.

delaybeforesend = seconds

Specifies the time, in seconds, to wait at the start of a gpssh interaction with ssh. Default
is 0.05. Increasing this value can cause a long wait time during gpssh startup. The -d
option overrides this parameter.

prompt_validation_timeout = multiplier

A decimal number greater than 0 (zero) that is the multiplier for the timeout that gpssh
uses when validating the ssh prompt. Increasing this value has a small impact during
gpssh startup. Default is 1. The -t option overrides this parameter.

sync_retries = attempts

A non-negative integer that specifies the maximum number of times that gpssh attempts
to connect to a remote Greenplum Database host. The default is 3. If the value is 0, gpssh
returns an error if the initial connection attempt fails. Increasing the number of attempts
also increases the time between retry attempts. This parameter cannot be configured with
a command-line option.

The -t option also affects the time between retry attempts.

Increasing this value can compensate for slow network performance or segment host
performance issues such as heavy CPU or I/O load. However, when a connection cannot
be established, an increased value also increases the delay when an error is returned.

Examples
Start an interactive group SSH session with all hosts listed in the file hostfile_gpssh:

$ gpssh -f hostfile_gpssh

At the gpssh interactive command prompt, run a shell command on all the hosts involved in this session.

=> ls -a /data/primary/*

Exit an interactive session:

=> exit
=> quit

Start a non-interactive group SSH session with the hosts named sdw1 and sdw2 and pass a file containing
several commands named command_file to gpssh:

$ gpssh -h sdw1 -h sdw2 -v -e < command_file

Execute single commands in non-interactive mode on hosts sdw2 and localhost:

$ gpssh -h sdw2 -h localhost -v -e 'ls -a /data/primary/*'
$ gpssh -h sdw2 -h localhost -v -e 'echo $GPHOME'
$ gpssh -h sdw2 -h localhost -v -e 'ls -1 | wc -l'

See Also
gpssh-exkeys, gpscp

Greenplum Database Utility Guide Release Notes

772

gpssh-exkeys
Exchanges SSH public keys between hosts.

Synopsis

gpssh-exkeys -f hostfile_exkeys | -h hostname [-h hostname ...]

gpssh-exkeys -e hostfile_exkeys -x hostfile_gpexpand

gpssh-exkeys -?

gpssh-exkeys --version

Description
The gpssh-exkeys utility exchanges SSH keys between the specified host names (or host addresses).
This allows SSH connections between Greenplum hosts and network interfaces without a password
prompt. The utility is used to initially prepare a Greenplum Database system for passwordless SSH
access, and also to prepare additional hosts for passwordless SSH access when expanding a Greenplum
Database system.

Keys are exchanged as the currently logged in user. You run the utility on the master host as the
gpadmin user (the user designated to own your Greenplum Database installation). Greenplum Database
management utilities require that the gpadmin user be created on all hosts in the Greenplum Database
system, and the utilities must be able to connect as that user to all hosts without a password prompt.

You can also use gpssh-exkeys to enable passwordless SSH for additional users, root, for example.

The gpssh-exkeys utility has the following prerequisites:

• The user must have an account on the master, standby, and every segment host in the Greenplum
Database cluster.

• The user must have an id_rsa SSH key pair installed on the master host.
• The user must be able to connect with SSH from the master host to every other host machine without

entering a password. (This is called "1-n passwordless SSH.")

You can enable 1-n passwordless SSH using the ssh-copy-id command to add the user's public key to
each host's authorized_keys file. The gpssh-exkeys utility enables "n-n passwordless SSH," which
allows the user to connect with SSH from any host to any other host in the cluster without a password.

To specify the hosts involved in an SSH key exchange, use the -f option to specify a file containing a list
of host names (recommended), or use the -h option to name single host names on the command-line.
At least one host name (-h) or a host file (-f) is required. Note that the local host is included in the key
exchange by default.

To specify new expansion hosts to be added to an existing Greenplum Database system, use the -e and
-x options. The -e option specifies a file containing a list of existing hosts in the system that have aready
exchanged SSH keys. The -x option specifies a file containing a list of new hosts that need to participate
in the SSH key exchange.

The gpssh-exkeys utility performs key exchange using the following steps:

• Adds the user's public key to the user's own authorized_keys file on the current host.
• Updates the known_hosts file of the current user with the host key of each host specified using the -

h, -f, -e, and -x options.
• Connects to each host using ssh and obtains the user's authorized_keys, known_hosts, and

id_rsa.pub files.

Greenplum Database Utility Guide Release Notes

773

• Adds keys from the id_rsa.pub files obtained from each host to the authorized_keys file of the
current user.

• Updates the authorized_keys, known_hosts, and id_rsa.pub files on all hosts with new host
information (if any).

Options
-e hostfile_exkeys

When doing a system expansion, this is the name and location of a file containing all
configured host names and host addresses (interface names) for each host in your current
Greenplum system (master, standby master, and segments), one name per line without
blank lines or extra spaces. Hosts specified in this file cannot be specified in the host file
used with -x.

-f hostfile_exkeys

Specifies the name and location of a file containing all configured host names and host
addresses (interface names) for each host in your Greenplum system (master, standby
master and segments), one name per line without blank lines or extra spaces.

-h hostname

Specifies a single host name (or host address) that will participate in the SSH key
exchange. You can use the -h option multiple times to specify multiple host names and
host addresses.

--version

Displays the version of this utility.

-x hostfile_gpexpand

When doing a system expansion, this is the name and location of a file containing all
configured host names and host addresses (interface names) for each new segment host
you are adding to your Greenplum system, one name per line without blank lines or extra
spaces. Hosts specified in this file cannot be specified in the host file used with -e.

-? (help)

Displays the online help.

Examples
Exchange SSH keys between all host names and addresses listed in the file hostfile_exkeys:

$ gpssh-exkeys -f hostfile_exkeys

Exchange SSH keys between the hosts sdw1, sdw2, and sdw3:

$ gpssh-exkeys -h sdw1 -h sdw2 -h sdw3

Exchange SSH keys between existing hosts sdw1, sdw2, and sdw3, and new hosts sdw4 and sdw5 as
part of a system expansion operation:

$ cat hostfile_exkeys
mdw
mdw-1
mdw-2
smdw
smdw-1
smdw-2
sdw1
sdw1-1
sdw1-2
sdw2

Greenplum Database Utility Guide Release Notes

774

sdw2-1
sdw2-2
sdw3
sdw3-1
sdw3-2
$ cat hostfile_gpexpand
sdw4
sdw4-1
sdw4-2
sdw5
sdw5-1
sdw5-2
$ gpssh-exkeys -e hostfile_exkeys -x hostfile_gpexpand

See Also
gpssh, gpscp

gpstart
Starts a Greenplum Database system.

Synopsis

gpstart [-d master_data_directory] [-B parallel_processes] [-R]
 [-m] [-y] [-a] [-t timeout_seconds] [-l logfile_directory]
 [--skip-heap-checksum-validation]
 [-v | -q]

gpstart -? | -h | --help

gpstart --version

Description
The gpstart utility is used to start the Greenplum Database server processes. When you start a
Greenplum Database system, you are actually starting several postgres database server listener
processes at once (the master and all of the segment instances). The gpstart utility handles the startup
of the individual instances. Each instance is started in parallel.

The first time an administrator runs gpstart, the utility creates a hosts cache file named .gphostcache
in the user's home directory. Subsequently, the utility uses this list of hosts to start the system more
efficiently. If new hosts are added to the system, you must manually remove this file from the gpadmin
user's home directory. The utility will create a new hosts cache file at the next startup.

As part of the startup process, the utility checks the consistency of heap checksum setting among the
Greenplum Database master and segment instances, either enabled or disabled on all instances. If the
heap checksum setting is different among the instances, an error is returned and Greenplum Database
does not start. The validation can be disabled by specifying the option --skip-heap-checksum-
validation. For more information about heap checksums, see Enabling High Availability and Data
Consistency Features in the Greenplum Database Admininstartor Guide.

Note: Before you can start a Greenplum Database system, you must have initialized the system
using gpinitsystem. Enabling or disabing heap checksums is set when you initialize the system
and cannot be changed after initialization.

If the Greenplum Database system is configured with a standby master, and gpstart does not detect it
during startup, gpstart displays a warning and lets you cancel the startup operation.

Greenplum Database Utility Guide Release Notes

775

• If the -a option (disable interactive mode prompts) is not specified, gpstart displays and logs these
messages:

Standby host is unreachable, cannot determine whether the standby is
 currently acting as the master. Received error: <error>
Continue only if you are certain that the standby is not acting as the
 master.

It also displays this prompt to continue startup:

Continue with startup Yy|Nn (default=N):

• If the -a option is specified, the utility does not start the system. The messages are only logged, and
gpstart adds this log message:

Non interactive mode detected. Not starting the cluster. Start the cluster
 in interactive mode.

If the standby master is not accessible, you can start the system and troubleshoot standby master issues
while the system is available.

Options
-a

Do not prompt the user for confirmation. Disables interactive mode.

-B parallel_processes

The number of segments to start in parallel. If not specified, the utility will start up to 64
parallel processes depending on how many segment instances it needs to start.

-d master_data_directory

Optional. The master host data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-m

Optional. Starts the master instance only, which may be useful for maintenance tasks. This
mode only allows connections to the master in utility mode. For example:

PGOPTIONS='-c gp_session_role=utility' psql

The consistency of the heap checksum setting on master and segment instances is not
checked.

-q

Run in quiet mode. Command output is not displayed on the screen, but is still written to
the log file.

-R

Starts Greenplum Database in restricted mode (only database superusers are allowed to
connect).

--skip-heap-checksum-validation

During startup, the utility does not validate the consistency of the heap checksum setting
among the Greenplum Database master and segment instances. The default is to ensure
that the heap checksum setting is the same on all instances, either enabled or disabled.

Warning: Starting Greenplum Database without this validation could lead
to data loss. Use this option to start Greenplum Database only when it is

Greenplum Database Utility Guide Release Notes

776

necessary to ignore the heap checksum verification errors to recover data or
to troubleshoot the errors.

-t timeout_seconds

Specifies a timeout in seconds to wait for a segment instance to start up. If a segment
instance was shutdown abnormally (due to power failure or killing its postgres database
listener process, for example), it may take longer to start up due to the database recovery
and validation process. If not specified, the default timeout is 60 seconds.

-v

Displays detailed status, progress and error messages output by the utility.

-y

Optional. Do not start the standby master host. The default is to start the standby master
host and synchronization process.

-? | -h | --help

Displays the online help.

--version

Displays the version of this utility.

Examples
Start a Greenplum Database system:

gpstart

Start a Greenplum Database system in restricted mode (only allow superuser connections):

gpstart -R

Start the Greenplum master instance only and connect in utility mode:

gpstart -m PGOPTIONS='-c gp_session_role=utility' psql

See Also
gpstop, gpinitsystem

gpstate
Shows the status of a running Greenplum Database system.

Synopsis

gpstate [-d master_data_directory] [-B parallel_processes]
 [-s | -b | -Q | -e] [-m | -c] [-p] [-i] [-f] [-v | -q] | -x
 [-l log_directory]

gpstate -? | -h | --help

Description
The gpstate utility displays information about a running Greenplum Database instance. There is
additional information you may want to know about a Greenplum Database system, since it is comprised
of multiple PostgreSQL database instances (segments) spanning multiple machines. The gpstate utility
provides additional status information for a Greenplum Database system, such as:

Greenplum Database Utility Guide Release Notes

777

• Which segments are down.
• Master and segment configuration information (hosts, data directories, etc.).
• The ports used by the system.
• A mapping of primary segments to their corresponding mirror segments.

Options
-b (brief status)

Optional. Display a brief summary of the state of the Greenplum Database system. This is
the default option.

-B parallel_processes

The number of segments to check in parallel. If not specified, the utility will start up to 60
parallel processes depending on how many segment instances it needs to check.

-c (show primary to mirror mappings)

Optional. Display mapping of primary segments to their corresponding mirror segments.

-d master_data_directory

Optional. The master data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

-e (show segments with mirror status issues)

Show details on primary/mirror segment pairs that have potential issues such as 1) the
active segment is running in change tracking mode, meaning a segment is down 2) the
active segment is in resynchronization mode, meaning it is catching up changes to the
mirror 3) a segment is not in its preferred role, for example a segment that was a primary
at system initialization time is now acting as a mirror, meaning you may have one or more
segment hosts with unbalanced processing load.

-f (show standby master details)

Display details of the standby master host if configured.

-i (show Greenplum Database version)

Display the Greenplum Database software version information for each instance.

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-m (list mirrors)

Optional. List the mirror segment instances in the system, their current role, and
synchronization status.

-p (show ports)

List the port numbers used throughout the Greenplum Database system.

-q (no screen output)

Optional. Run in quiet mode. Except for warning messages, command output is not
displayed on the screen. However, this information is still written to the log file.

-Q (quick status)

Optional. Checks segment status in the system catalog on the master host. Does not poll
the segments for status.

-s (detailed status)

Optional. Displays detailed status information for the Greenplum Database system.

-v (verbose output)

Optional. Displays error messages and outputs detailed status and progress information.

-x (expand)

Greenplum Database Utility Guide Release Notes

778

Optional. Displays detailed information about the progress and state of a Greenplum
system expansion.

-? | -h | --help (help)

Displays the online help.

Output Field Definitions
The following output fields are reported by gpstate -s for the master:

Table 66: gpstate output data for the master

Output Data Description

Master host host name of the master

Master postgres process ID PID of the master database listener process

Master data directory file system location of the master data directory

Master port port of the master postgres database listener
process

Master current role dispatch = regular operating mode

utility = maintenance mode

Greenplum array configuration type Standard = one NIC per host

Multi-Home = multiple NICs per host

Greenplum initsystem version version of Greenplum Database when system was
first initialized

Greenplum current version current version of Greenplum Database

Postgres version version of PostgreSQL that Greenplum Database is
based on

Greenplum mirroring status physical mirroring or none

Master standby host name of the standby master

Standby master state status of the standby master: active or passive

The following output fields are reported by gpstate -s for each segment:

Table 67: gpstate output data for segments

Output Data Description

Hostname system-configured host name

Address network address host name (NIC name)

Datadir file system location of segment data directory

Port port number of segment postgres database
listener process

Current Role current role of a segment: Mirror or Primary

Preferred Role role at system initialization time: Mirror or Primary

Greenplum Database Utility Guide Release Notes

779

Output Data Description

Mirror Status status of a primary/mirror segment pair:

Synchronized = data is up to date on both

Resynchronization = data is currently being copied
from one to the other

Change Tracking = segment down and active
segment is logging changes

Change tracking data size when in Change Tracking mode, the size of
the change log file (may grow and shrink as
compression is applied)

Estimated total data to synchronize when in Resynchronization mode, the estimated
size of data left to synchronize

Data synchronized when in Resynchronization mode, the estimated
size of data that has already been synchronized

Estimated resync progress with mirror When in Resynchronization mode, the estimated
percentage of completion

Estimated resync end time when in Resynchronization mode, the estimated
time to complete

File postmaster.pid status of postmaster.pid lock file: Found or
Missing

PID from postmaster.pid file PID found in the postmaster.pid file

Lock files in /tmp a segment port lock file for its postgres process
is created in /tmp (file is removed when a segment
shuts down)

Active PID active process ID of a segment

Master reports status as segment status as reported in the system catalog:
Up or Down

Database status status of Greenplum Database to incoming
requests: Up, Down, or Suspended. A Suspended
state means database activity is temporarily paused
while a segment transitions from one state to
another.

The following output fields are reported by gpstate -f for standby master replication status:

Table 68: gpstate output data for master replication

Output Data Description

Standby address hostname of the standby master

Standby data dir file system location of the standby master data
directory

Standby port port of the standby master postgres database
listener process

Standby PID process ID of the standby master

Greenplum Database Utility Guide Release Notes

780

Output Data Description

Standby status status of the standby master: Standby host passive

WAL Sender State write-ahead log (WAL) streaming state: streaming,
startup,backup, catchup

Sync state WAL sender synchronization state: sync

Sent Location WAL sender transaction log (xlog) record sent
location

Flush Location WAL receiver xlog record flush location

Replay Location standby xlog record replay location

Examples
Show detailed status information of a Greenplum Database system:

gpstate -s

Do a quick check for down segments in the master host system catalog:

gpstate -Q

Show information about mirror segment instances:

gpstate -m

Show information about the standby master configuration:

gpstate -f

Display the Greenplum software version information:

gpstate -i

See Also
gpstart, gpexpandgplogfilter

gpstop
Stops or restarts a Greenplum Database system.

Synopsis

gpstop [-d master_data_directory] [-B parallel_processes]
 [-M smart | fast | immediate] [-t timeout_seconds] [-r] [-y] [-a]
 [-l logfile_directory] [-v | -q]

gpstop -m [-d master_data_directory] [-y] [-l logfile_directory] [-v | -q]

gpstop -u [-d master_data_directory] [-l logfile_directory] [-v | -q]

gpstop --host host_name [-d master_data_directory] [-l logfile_directory]
 [-t timeout_seconds] [-a] [-v | -q]

gpstop --version

Greenplum Database Utility Guide Release Notes

781

gpstop -? | -h | --help

Description
The gpstop utility is used to stop the database servers that comprise a Greenplum Database system.
When you stop a Greenplum Database system, you are actually stopping several postgres database
server processes at once (the master and all of the segment instances). The gpstop utility handles the
shutdown of the individual instances. Each instance is shutdown in parallel.

The default shutdown mode (-M smart) waits for current client connections to finish before completing
the shutdown. If any connections remain open after the timeout period, or if you interrupt with CTRL-C,
gpstop lists the open connections and prompts whether to continue waiting for connections to finish, or to
perform a fast or immediate shutdown. The default timeout period is 120 seconds and can be changed with
the -t timeout_seconds option.

Specify the -M fast shutdown mode to roll back all in-progress transactions and terminate any
connections before shutting down.

With the -u option, the utility uploads changes made to the master pg_hba.conf file or to runtime
configuration parameters in the master postgresql.conf file without interruption of service. Note that
any active sessions will not pickup the changes until they reconnect to the database.

Options
-a

Do not prompt the user for confirmation.

-B parallel_processes

The number of segments to stop in parallel. If not specified, the utility will start up to 64
parallel processes depending on how many segment instances it needs to stop.

-d master_data_directory

Optional. The master host data directory. If not specified, the value set for
$MASTER_DATA_DIRECTORY will be used.

--host host_name

The utility shuts down the Greenplum Database segment instances on the specified host
to allow maintenance on the host. Each primary segment instance on the host is shut down
and the associated mirror segment instance is promoted to a primary segment if the mirror
segment is on another host. Mirror segment instances on the host are shut down.

The segment instances are not shut down and the utility returns an error in these cases:

• Segment mirroring is not enabled for the system.
• The master or standby master is on the host.
• Both a primary segment instance and its mirror are on the host.

This option cannot be specified with the -m, -r, -u, or -y options.

Note: The gprecoverseg utility restores segment instances. Run
gprecoverseg commands to start the segments as mirrors and then to
return the segments to their preferred role (primary segments).

-l logfile_directory

The directory to write the log file. Defaults to ~/gpAdminLogs.

-m

Optional. Shuts down a Greenplum master instance that was started in maintenance
mode.

-M fast

Greenplum Database Utility Guide Release Notes

782

Fast shut down. Any transactions in progress are interrupted and rolled back.

-M immediate

Immediate shut down. Any transactions in progress are aborted.

This mode kills all postgres processes without allowing the database server to complete
transaction processing or clean up any temporary or in-process work files.

-M smart

Smart shut down. This is the default shutdown mode. gpstop waits for active user
connections to disconnect and then proceeds with the shutdown. If any user connections
remain open after the timeout period (or if you interrupt by pressing CTRL-C) gpstop lists
the open user connections and prompts whether to continue waiting for connections to
finish, or to perform a fast or immediate shutdown.

-q

Run in quiet mode. Command output is not displayed on the screen, but is still written to
the log file.

-r

Restart after shutdown is complete.

-t timeout_seconds

Specifies a timeout threshold (in seconds) to wait for a segment instance to shutdown.
If a segment instance does not shutdown in the specified number of seconds, gpstop
displays a message indicating that one or more segments are still in the process of
shutting down and that you cannot restart Greenplum Database until the segment
instance(s) are stopped. This option is useful in situations where gpstop is executed and
there are very large transactions that need to rollback. These large transactions can take
over a minute to rollback and surpass the default timeout period of 120 seconds.

-u

This option reloads the pg_hba.conf files of the master and segments and the runtime
parameters of the postgresql.conf files but does not shutdown the Greenplum
Database array. Use this option to make new configuration settings active after editing
postgresql.conf or pg_hba.conf. Note that this only applies to configuration
parameters that are designated as runtime parameters.

-v

Displays detailed status, progress and error messages output by the utility.

-y

Do not stop the standby master process. The default is to stop the standby master.

-? | -h | --help

Displays the online help.

--version

Displays the version of this utility.

Examples
Stop a Greenplum Database system in smart mode:

gpstop

Stop a Greenplum Database system in fast mode:

gpstop -M fast

Greenplum Database Utility Guide Release Notes

783

Stop all segment instances and then restart the system:

gpstop -r

Stop a master instance that was started in maintenance mode:

gpstop -m

Reload the postgresql.conf and pg_hba.conf files after making configuration changes but do not
shutdown the Greenplum Database array:

gpstop -u

See Also
gpstart

pg_config
Retrieves information about the installed version of Greenplum Database.

Synopsis

pg_config [option ...]

pg_config -? | --help

pg_config --version

Description
The pg_config utility prints configuration parameters of the currently installed version of Greenplum
Database. It is intended, for example, to be used by software packages that want to interface to Greenplum
Database to facilitate finding the required header files and libraries. Note that information printed out by
pg_config is for the Greenplum Database master only.

If more than one option is given, the information is printed in that order, one item per line. If no options are
given, all available information is printed, with labels.

Options
--bindir

Print the location of user executables. Use this, for example, to find the psql program.
This is normally also the location where the pg_config program resides.

--docdir

Print the location of documentation files.

--includedir

Print the location of C header files of the client interfaces.

--pkgincludedir

Print the location of other C header files.

--includedir-server

Print the location of C header files for server programming.

--libdir

Print the location of object code libraries.

Greenplum Database Utility Guide Release Notes

784

--pkglibdir

Print the location of dynamically loadable modules, or where the server would search for
them. (Other architecture-dependent data files may also be installed in this directory.)

--localedir

Print the location of locale support files.

--mandir

Print the location of manual pages.

--sharedir

Print the location of architecture-independent support files.

--sysconfdir

Print the location of system-wide configuration files.

--pgxs

Print the location of extension makefiles.

--configure

Print the options that were given to the configure script when Greenplum Database was
configured for building.

--cc

Print the value of the CC variable that was used for building Greenplum Database. This
shows the C compiler used.

--cppflags

Print the value of the CPPFLAGS variable that was used for building Greenplum Database.
This shows C compiler switches needed at preprocessing time.

--cflags

Print the value of the CFLAGS variable that was used for building Greenplum Database.
This shows C compiler switches.

--cflags_sl

Print the value of the CFLAGS_SL variable that was used for building Greenplum
Database. This shows extra C compiler switches used for building shared libraries.

--ldflags

Print the value of the LDFLAGS variable that was used for building Greenplum Database.
This shows linker switches.

--ldflags_ex

Print the value of the LDFLAGS_EX variable that was used for building Greenplum
Database. This shows linker switches that were used for building executables only.

--ldflags_sl

Print the value of the LDFLAGS_SL variable that was used for building Greenplum
Database. This shows linker switches used for building shared libraries only.

--libs

Print the value of the LIBS variable that was used for building Greenplum Database. This
normally contains -l switches for external libraries linked into Greenplum Database.

--version

Print the version of Greenplum Database.

Greenplum Database Utility Guide Release Notes

785

Examples
To reproduce the build configuration of the current Greenplum Database installation, run the following
command:

eval ./configure 'pg_config --configure'

The output of pg_config --configure contains shell quotation marks so arguments with spaces are
represented correctly. Therefore, using eval is required for proper results.

pg_dump
Extracts a database into a single script file or other archive file.

Synopsis

pg_dump [connection-option ...] [dump_option ...] [dbname]

pg_dump -? | --help

pg_dump -V | --version

Description
pg_dump is a standard PostgreSQL utility for backing up a database, and is also supported in Greenplum
Database. It creates a single (non-parallel) dump file. For routine backups of Greenplum Database, it is
better to use the Greenplum Database backup utility, gpbackup, for the best performance.

Use pg_dump if you are migrating your data to another database vendor's system, or to another
Greenplum Database system with a different segment configuration (for example, if the system you
are migrating to has greater or fewer segment instances). To restore, you must use the corresponding
pg_restore utility (if the dump file is in archive format), or you can use a client program such as psql (if the
dump file is in plain text format).

Since pg_dump is compatible with regular PostgreSQL, it can be used to migrate data into Greenplum
Database. The pg_dump utility in Greenplum Database is very similar to the PostgreSQL pg_dump utility,
with the following exceptions and limitations:

• If using pg_dump to backup a Greenplum Database database, keep in mind that the dump operation
can take a long time (several hours) for very large databases. Also, you must make sure you have
sufficient disk space to create the dump file.

• If you are migrating data from one Greenplum Database system to another, use the --gp-syntax
command-line option to include the DISTRIBUTED BY clause in CREATE TABLE statements. This
ensures that Greenplum Database table data is distributed with the correct distribution key columns
upon restore.

pg_dump makes consistent backups even if the database is being used concurrently. pg_dump does not
block other users accessing the database (readers or writers).

When used with one of the archive file formats and combined with pg_restore, pg_dump provides
a flexible archival and transfer mechanism. pg_dump can be used to backup an entire database, then
pg_restore can be used to examine the archive and/or select which parts of the database are to be
restored. The most flexible output file formats are the custom format (-Fc) and the directory format (-
Fd). They allow for selection and reordering of all archived items, support parallel restoration, and are
compressed by default. The directory format is the only format that supports parallel dumps.

Options
dbname

Greenplum Database Utility Guide Release Notes

786

Specifies the name of the database to be dumped. If this is not specified, the environment
variable PGDATABASE is used. If that is not set, the user name specified for the connection
is used.

Dump Options
-a | --data-only

Dump only the data, not the schema (data definitions). Table data and sequence values
are dumped.

This option is similar to, but for historical reasons not identical to, specifying --
section=data.

-b | --blobs

Include large objects in the dump. This is the default behavior except when --schema, --
table, or --schema-only is specified. The -b switch is only useful add large objects
to dumps where a specific schema or table has been requested. Note that blobs are
considered data and therefore will be included when --data-only is used, but not when
--schema-only is.

Note: Greenplum Database does not support the PostgreSQL large object
facility for streaming user data that is stored in large-object structures.

-c | --clean

Adds commands to the text output file to clean (drop) database objects prior to outputting
the commands for creating them. (Restore might generate some harmless error messages,
if any objects were not present in the destination database.) Note that objects are not
dropped before the dump operation begins, but DROP commands are added to the DDL
dump output files so that when you use those files to do a restore, the DROP commands
are run prior to the CREATE commands. This option is only meaningful for the plain-text
format. For the archive formats, you may specify the option when you call pg_restore.

-C | --create

Begin the output with a command to create the database itself and reconnect to the
created database. (With a script of this form, it doesn't matter which database in the
destination installation you connect to before running the script.) If --clean is also
specified, the script drops and recreates the target database before reconnecting to it. This
option is only meaningful for the plain-text format. For the archive formats, you may specify
the option when you call pg_restore.

-E encoding | --encoding=encoding

Create the dump in the specified character set encoding. By default, the dump is
created in the database encoding. (Another way to get the same result is to set the
PGCLIENTENCODING environment variable to the desired dump encoding.)

-f file | --file=file

Send output to the specified file. This parameter can be omitted for file-based output
formats, in which case the standard output is used. It must be given for the directory output
format however, where it specifies the target directory instead of a file. In this case the
directory is created by pg_dump and must not exist before.

-F p|c|d|t | --format=plain|custom|directory|tar

Selects the format of the output. format can be one of the following:

p | plain — Output a plain-text SQL script file (the default).

c | custom — Output a custom archive suitable for input into pg_restore. Together with
the directory output format, this is the most flexible output format in that it allows manual
selection and reordering of archived items during restore. This format is compressed by
default and also supports parallel dumps.

https://www.postgresql.org/docs/9.4/largeobjects.html
https://www.postgresql.org/docs/9.4/largeobjects.html

Greenplum Database Utility Guide Release Notes

787

d | directory — Output a directory-format archive suitable for input into pg_restore. This
will create a directory with one file for each table and blob being dumped, plus a so-called
Table of Contents file describing the dumped objects in a machine-readable format that
pg_restore can read. A directory format archive can be manipulated with standard Unix
tools; for example, files in an uncompressed archive can be compressed with the gzip
tool. This format is compressed by default.

t | tar — Output a tar-format archive suitable for input into pg_restore. The tar format
is compatible with the directory format; extracting a tar-format archive produces a valid
directory-format archive. However, the tar format does not support compression. Also,
when using tar format the relative order of table data items cannot be changed during
restore.

-j njobs | --jobs=njobs

Run the dump in parallel by dumping njobs tables simultaneously. This option reduces the
time of the dump but it also increases the load on the database server. You can only use
this option with the directory output format because this is the only output format where
multiple processes can write their data at the same time.

Note: Parallel dumps using pg_dump are parallelized only on the query
dispatcher (master) node, not across the query executor (segment) nodes as
is the case when you use gpbackup.

pg_dump will open njobs + 1 connections to the database, so make sure your
max_connections setting is high enough to accommodate all connections.

Requesting exclusive locks on database objects while running a parallel dump could cause
the dump to fail. The reason is that the pg_dump master process requests shared locks
on the objects that the worker processes are going to dump later in order to make sure
that nobody deletes them and makes them go away while the dump is running. If another
client then requests an exclusive lock on a table, that lock will not be granted but will be
queued waiting for the shared lock of the master process to be released. Consequently,
any other access to the table will not be granted either and will queue after the exclusive
lock request. This includes the worker process trying to dump the table. Without any
precautions this would be a classic deadlock situation. To detect this conflict, the pg_dump
worker process requests another shared lock using the NOWAIT option. If the worker
process is not granted this shared lock, somebody else must have requested an exclusive
lock in the meantime and there is no way to continue with the dump, so pg_dump has no
choice but to abort the dump.

For a consistent backup, the database server needs to support synchronized snapshots,
a feature that was introduced in Greenplum Database 6.0. With this feature, database
clients can ensure they see the same data set even though they use different connections.
pg_dump -j uses multiple database connections; it connects to the database once
with the master process and once again for each worker job. Without the synchronized
snapshot feature, the different worker jobs wouldn't be guaranteed to see the same data in
each connection, which could lead to an inconsistent backup.

If you want to run a parallel dump of a pre-6.0 server, you need to make sure that the
database content doesn't change from between the time the master connects to the
database until the last worker job has connected to the database. The easiest way to do
this is to halt any data modifying processes (DDL and DML) accessing the database before
starting the backup. You also need to specify the --no-synchronized-snapshots
parameter when running pg_dump -j against a pre-6.0 Greenplum Database server.

-n schema | --schema=schema

Dump only schemas matching the schema pattern; this selects both the schema itself, and
all its contained objects. When this option is not specified, all non-system schemas in the
target database will be dumped. Multiple schemas can be selected by writing multiple -n
switches. Also, the schema parameter is interpreted as a pattern according to the same

Greenplum Database Utility Guide Release Notes

788

rules used by psql's \d commands, so multiple schemas can also be selected by writing
wildcard characters in the pattern. When using wildcards, be careful to quote the pattern if
needed to prevent the shell from expanding the wildcards.

Note: When -n is specified, pg_dump makes no attempt to dump any other database
objects that the selected schema(s) may depend upon. Therefore, there is no guarantee
that the results of a specific-schema dump can be successfully restored by themselves into
a clean database.

Note: Non-schema objects such as blobs are not dumped when -n is
specified. You can add blobs back to the dump with the --blobs switch.

-N schema | --exclude-schema=schema

Do not dump any schemas matching the schema pattern. The pattern is interpreted
according to the same rules as for -n. -N can be given more than once to exclude
schemas matching any of several patterns. When both -n and -N are given, the behavior
is to dump just the schemas that match at least one -n switch but no -N switches. If -N
appears without -n, then schemas matching -N are excluded from what is otherwise a
normal dump.

-o | --oids

Dump object identifiers (OIDs) as part of the data for every table. Use of this option is not
recommended for files that are intended to be restored into Greenplum Database.

-O | --no-owner

Do not output commands to set ownership of objects to match the original database. By
default, pg_dump issues ALTER OWNER or SET SESSION AUTHORIZATION statements
to set ownership of created database objects. These statements will fail when the script is
run unless it is started by a superuser (or the same user that owns all of the objects in the
script). To make a script that can be restored by any user, but will give that user ownership
of all the objects, specify -O. This option is only meaningful for the plain-text format. For
the archive formats, you may specify the option when you call pg_restore.

-s | --schema-only

Dump only the object definitions (schema), not data.

This option is the inverse of --data-only. It is similar to, but for historical reasons not
identical to, specifying --section=pre-data --section=post-data.

(Do not confuse this with the --schema option, which uses the word "schema" in a
different meaning.)

To exclude table data for only a subset of tables in the database, see --exclude-
table-data.

-S username | --superuser=username

Specify the superuser user name to use when disabling triggers. This is relevant only if --
disable-triggers is used. It is better to leave this out, and instead start the resulting
script as a superuser.

Note: Greenplum Database does not support user-defined triggers.

-t table | --table=table

Dump only tables (or views or sequences or foreign tables) matching the table pattern.
Specify the table in the format schema.table.

Multiple tables can be selected by writing multiple -t switches. Also, the table parameter
is interpreted as a pattern according to the same rules used by psql's \d commands,
so multiple tables can also be selected by writing wildcard characters in the pattern.
When using wildcards, be careful to quote the pattern if needed to prevent the shell
from expanding the wildcards. The -n and -N switches have no effect when -t is used,

Greenplum Database Utility Guide Release Notes

789

because tables selected by -t will be dumped regardless of those switches, and non-table
objects will not be dumped.

Note: When -t is specified, pg_dump makes no attempt to dump any other
database objects that the selected table(s) may depend upon. Therefore,
there is no guarantee that the results of a specific-table dump can be
successfully restored by themselves into a clean database.

Also, -t cannot be used to specify a child table partition. To dump a
partitioned table, you must specify the parent table name.

-T table | --exclude-table=table

Do not dump any tables matching the table pattern. The pattern is interpreted according
to the same rules as for -t. -T can be given more than once to exclude tables matching
any of several patterns. When both -t and -T are given, the behavior is to dump just the
tables that match at least one -t switch but no -T switches. If -T appears without -t, then
tables matching -T are excluded from what is otherwise a normal dump.

-v | --verbose

Specifies verbose mode. This will cause pg_dump to output detailed object comments and
start/stop times to the dump file, and progress messages to standard error.

-V | --version

Print the pg_dump version and exit.

-x | --no-privileges | --no-acl

Prevent dumping of access privileges (GRANT/REVOKE commands).

-Z 0..9 | --compress=0..9

Specify the compression level to use. Zero means no compression. For the custom archive
format, this specifies compression of individual table-data segments, and the default is to
compress at a moderate level.

For plain text output, setting a non-zero compression level causes the entire output file
to be compressed, as though it had been fed through gzip; but the default is not to
compress. The tar archive format currently does not support compression at all.

--binary-upgrade

This option is for use by in-place upgrade utilities. Its use for other purposes is not
recommended or supported. The behavior of the option may change in future releases
without notice.

--column-inserts | --attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT
INTOtable(column, ...) VALUES ...). This will make restoration very slow; it
is mainly useful for making dumps that can be loaded into non-PostgreSQL-based
databases. However, since this option generates a separate command for each row,
an error in reloading a row causes only that row to be lost rather than the entire table
contents.

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be
quoted using SQL standard string syntax.

--disable-triggers

This option is relevant only when creating a data-only dump. It instructs pg_dump to
include commands to temporarily disable triggers on the target tables while the data
is reloaded. Use this if you have triggers on the tables that you do not want to invoke
during data reload. The commands emitted for --disable-triggers must be done as
superuser. So, you should also specify a superuser name with -S, or preferably be careful

Greenplum Database Utility Guide Release Notes

790

to start the resulting script as a superuser. This option is only meaningful for the plain-text
format. For the archive formats, you may specify the option when you call pg_restore.

Note: Greenplum Database does not support user-defined triggers.

--exclude-table-data=table

Do not dump data for any tables matching the table pattern. The pattern is interpreted
according to the same rules as for -t. --exclude-table-data can be given more than
once to exclude tables matching any of several patterns. This option is useful when you
need the definition of a particular table even though you do not need the data in it.

To exclude data for all tables in the database, see --schema-only.

--if-exists

Use conditional commands (i.e. add an IF EXISTS clause) when cleaning database
objects. This option is not valid unless --clean is also specified.

--inserts

Dump data as INSERT commands (rather than COPY). This will make restoration very
slow; it is mainly useful for making dumps that can be loaded into non-PostgreSQL-based
databases. However, since this option generates a separate command for each row,
an error in reloading a row causes only that row to be lost rather than the entire table
contents. Note that the restore may fail altogether if you have rearranged column order.
The --column-inserts option is safe against column order changes, though even
slower.

--lock-wait-timeout=timeout

Do not wait forever to acquire shared table locks at the beginning of the dump. Instead,
fail if unable to lock a table within the specified timeout. Specify timeout as a number of
milliseconds.

--no-security-labels

Do not dump security labels.

--no-synchronized-snapshots

This option allows running pg_dump -j against a pre-6.0 Greenplum Database server;
see the documentation of the -j parameter for more details.

--no-tablespaces

Do not output commands to select tablespaces. With this option, all objects will be created
in whichever tablespace is the default during restore.

This option is only meaningful for the plain-text format. For the archive formats, you can
specify the option when you call pg_restore.

--no-unlogged-table-data

Do not dump the contents of unlogged tables. This option has no effect on whether or not
the table definitions (schema) are dumped; it only suppresses dumping the table data.
Data in unlogged tables is always excluded when dumping from a standby server.

--quote-all-identifiers

Force quoting of all identifiers. This option is recommended when dumping a database
from a server whose Greenplum Database major version is different from pg_dump's,
or when the output is intended to be loaded into a server of a different major version.
By default, pg_dump quotes only identifiers that are reserved words in its own major
version. This sometimes results in compatibility issues when dealing with servers of other
versions that may have slightly different sets of reserved words. Using --quote-all-
identifiers prevents such issues, at the price of a harder-to-read dump script.

--section=sectionname

Greenplum Database Utility Guide Release Notes

791

Only dump the named section. The section name can be pre-data, data, or post-
data. This option can be specified more than once to select multiple sections. The default
is to dump all sections.

The data section contains actual table data and sequence values. post-data items
include definitions of indexes, triggers, rules, and constraints other than validated check
constraints. pre-data items include all other data definition items.

--serializable-deferrable

Use a serializable transaction for the dump, to ensure that the snapshot used is consistent
with later database states; but do this by waiting for a point in the transaction stream at
which no anomalies can be present, so that there isn't a risk of the dump failing or causing
other transactions to roll back with a serialization_failure.

This option is not beneficial for a dump which is intended only for disaster recovery. It
could be useful for a dump used to load a copy of the database for reporting or other read-
only load sharing while the original database continues to be updated. Without it the dump
may reflect a state which is not consistent with any serial execution of the transactions
eventually committed. For example, if batch processing techniques are used, a batch may
show as closed in the dump without all of the items which are in the batch appearing.

This option will make no difference if there are no read-write transactions active when
pg_dump is started. If read-write transactions are active, the start of the dump may be
delayed for an indeterminate length of time. Once running, performance with or without the
switch is the same.

Note: Because Greenplum Database does not support serializable
transactions, the --serializable-deferrable option has no effect in
Greenplum Database.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER
OWNER commands to determine object ownership. This makes the dump more standards-
compatible, but depending on the history of the objects in the dump, may not restore
properly. A dump using SET SESSION AUTHORIZATION will require superuser privileges
to restore correctly, whereas ALTER OWNER requires lesser privileges.

--gp-syntax | --no-gp-syntax

Use --gp-syntax to dump Greenplum Database syntax in the CREATE TABLE
statements. This allows the distribution policy (DISTRIBUTED BY or DISTRIBUTED
RANDOMLY clauses) of a Greenplum Database table to be dumped, which is useful for
restoring into other Greenplum Database systems. The default is to include Greenplum
Database syntax when connected to a Greenplum Database system, and to exclude it
when connected to a regular PostgreSQL system.

--function-oids oids

Dump the function(s) specified in the oids list of object identifiers.

Note: This option is provided solely for use by other administration utilities; its
use for any other purpose is not recommended or supported. The behaviour
of the option may change in future releases without notice.

--relation-oids oids

Dump the relation(s) specified in the oids list of object identifiers.

Note: This option is provided solely for use by other administration utilities; its
use for any other purpose is not recommended or supported. The behaviour
of the option may change in future releases without notice.

-? | --help

Show help about pg_dump command line arguments, and exit.

Greenplum Database Utility Guide Release Notes

792

Connection Options
-d dbname | --dbname=dbname

Specifies the name of the database to connect to. This is equivalent to specifying dbname
as the first non-option argument on the command line.

If this parameter contains an = sign or starts with a valid URI prefix (postgresql://
or postgres://), it is treated as a conninfo string. See Connection Strings in the
PostgreSQL documentation for more information.

-h host | --host=host

The host name of the machine on which the Greenplum Database master database server
is running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port=port

The TCP port on which the Greenplum Database master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or defaults to
5432.

-U username | --username=username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-W | --password

Force a password prompt.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file the connection attempt
will fail. This option can be useful in batch jobs and scripts where no user is present to
enter a password.

--role=rolename

Specifies a role name to be used to create the dump. This option causes pg_dump to
issue a SET ROLE rolename command after connecting to the database. It is useful
when the authenticated user (specified by -U) lacks privileges needed by pg_dump, but
can switch to a role with the required rights. Some installations have a policy against
logging in directly as a superuser, and use of this option allows dumps to be made without
violating the policy.

Notes
When a data-only dump is chosen and the option --disable-triggers is used, pg_dump emits
commands to disable triggers on user tables before inserting the data and commands to re-enable them
after the data has been inserted. If the restore is stopped in the middle, the system catalogs may be left in
the wrong state.

The dump file produced by pg_dump does not contain the statistics used by the optimizer to make query
planning decisions. Therefore, it is wise to run ANALYZE after restoring from a dump file to ensure optimal
performance.

The database activity of pg_dump is normally collected by the statistics collector. If this is undesirable, you
can set parameter track_counts to false via PGOPTIONS or the ALTER USER command.

Because pg_dump may be used to transfer data to newer versions of Greenplum Database, the output
of pg_dump can be expected to load into Greenplum Database versions newer than pg_dump's version.
pg_dump can also dump from Greenplum Database versions older than its own version. However,
pg_dump cannot dump from Greenplum Database versions newer than its own major version; it will refuse
to even try, rather than risk making an invalid dump. Also, it is not guaranteed that pg_dump's output
can be loaded into a server of an older major version — not even if the dump was taken from a server

https://www.postgresql.org/docs/9.4/libpq-connect.html#LIBPQ-CONNSTRING

Greenplum Database Utility Guide Release Notes

793

of that version. Loading a dump file into an older server may require manual editing of the dump file to
remove syntax not understood by the older server. Use of the --quote-all-identifiers option is
recommended in cross-version cases, as it can prevent problems arising from varying reserved-word lists
in different Greenplum Database versions.

Examples
Dump a database called mydb into a SQL-script file:

pg_dump mydb > db.sql

To reload such a script into a (freshly created) database named newdb:

psql -d newdb -f db.sql

Dump a Greenplum Database in tar file format and include distribution policy information:

pg_dump -Ft --gp-syntax mydb > db.tar

To dump a database into a custom-format archive file:

pg_dump -Fc mydb > db.dump

To dump a database into a directory-format archive:

pg_dump -Fd mydb -f dumpdir

To dump a database into a directory-format archive in parallel with 5 worker jobs:

pg_dump -Fd mydb -j 5 -f dumpdir

To reload an archive file into a (freshly created) database named newdb:

pg_restore -d newdb db.dump

To dump a single table named mytab:

pg_dump -t mytab mydb > db.sql

To specify an upper-case or mixed-case name in -t and related switches, you need to double-quote the
name; else it will be folded to lower case. But double quotes are special to the shell, so in turn they must
be quoted. Thus, to dump a single table with a mixed-case name, you need something like:

pg_dump -t '"MixedCaseName"' mydb > mytab.sql

See Also
pg_dumpall, pg_restore, psql

pg_dumpall
Extracts all databases in a Greenplum Database system to a single script file or other archive file.

Synopsis

pg_dumpall [connection-option ...] [dump_option ...]

Greenplum Database Utility Guide Release Notes

794

pg_dumpall -? | --help

pg_dumpall -V | --version

Description
pg_dumpall is a standard PostgreSQL utility for backing up all databases in a Greenplum Database (or
PostgreSQL) instance, and is also supported in Greenplum Database. It creates a single (non-parallel)
dump file. For routine backups of Greenplum Database it is better to use the Greenplum Database backup
utility, gpbackup, for the best performance.

pg_dumpall creates a single script file that contains SQL commands that can be used as input to psql to
restore the databases. It does this by calling pg_dump for each database. pg_dumpall also dumps global
objects that are common to all databases. (pg_dump does not save these objects.) This currently includes
information about database users and groups, and access permissions that apply to databases as a whole.

Since pg_dumpall reads tables from all databases you will most likely have to connect as a database
superuser in order to produce a complete dump. Also you will need superuser privileges to execute the
saved script in order to be allowed to add users and groups, and to create databases.

The SQL script will be written to the standard output. Use the [-f | --file] option or shell operators to
redirect it into a file.

pg_dumpall needs to connect several times to the Greenplum Database master server (once per
database). If you use password authentication it is likely to ask for a password each time. It is convenient
to have a ~/.pgpass file in such cases.

Options
Dump Options
-a | --data-only

Dump only the data, not the schema (data definitions). This option is only meaningful for
the plain-text format. For the archive formats, you may specify the option when you call
pg_restore.

-c | --clean

Output commands to clean (drop) database objects prior to (the commands for) creating
them. This option is only meaningful for the plain-text format. For the archive formats, you
may specify the option when you call pg_restore.

-f filename | --file=filename

Send output to the specified file.

-g | --globals-only

Dump only global objects (roles and tablespaces), no databases.

-o | --oids

Dump object identifiers (OIDs) as part of the data for every table. Use of this option is not
recommended for files that are intended to be restored into Greenplum Database.

-O | --no-owner

Do not output commands to set ownership of objects to match the original database. By
default, pg_dump issues ALTER OWNER or SET SESSION AUTHORIZATION statements
to set ownership of created database objects. These statements will fail when the script is
run unless it is started by a superuser (or the same user that owns all of the objects in the
script). To make a script that can be restored by any user, but will give that user ownership
of all the objects, specify -O. This option is only meaningful for the plain-text format. For
the archive formats, you may specify the option when you call pg_restore.

-r | --roles-only

Dump only roles, not databases or tablespaces.

Greenplum Database Utility Guide Release Notes

795

-s | --schema-only

Dump only the object definitions (schema), not data.

-S username | --superuser=username

Specify the superuser user name to use when disabling triggers. This is relevant only if --
disable-triggers is used. It is better to leave this out, and instead start the resulting
script as a superuser.

Note: Greenplum Database does not support user-defined triggers.

-t | --tablespaces-only

Dump only tablespaces, not databases or roles.

-v | --verbose

Specifies verbose mode. This will cause pg_dump to output detailed object comments and
start/stop times to the dump file, and progress messages to standard error.

-V | --version

Print the pg_dumpall version and exit.

-x | --no-privileges | --no-acl

Prevent dumping of access privileges (GRANT/REVOKE commands).

--binary-upgrade

This option is for use by in-place upgrade utilities. Its use for other purposes is not
recommended or supported. The behavior of the option may change in future releases
without notice.

--column-inserts | --attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO table
(column, ...) VALUES ...). This will make restoration very slow; it is mainly useful
for making dumps that can be loaded into non-PostgreSQL-based databases. Also, since
this option generates a separate command for each row, an error in reloading a row
causes only that row to be lost rather than the entire table contents.

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be
quoted using SQL standard string syntax.

--disable-triggers

This option is relevant only when creating a data-only dump. It instructs pg_dumpall
to include commands to temporarily disable triggers on the target tables while the data
is reloaded. Use this if you have triggers on the tables that you do not want to invoke
during data reload. The commands emitted for --disable-triggers must be done as
superuser. So, you should also specify a superuser name with -S, or preferably be careful
to start the resulting script as a superuser.

Note: Greenplum Database does not support user-defined triggers.

--inserts

Dump data as INSERT commands (rather than COPY). This will make restoration very
slow; it is mainly useful for making dumps that can be loaded into non-PostgreSQL-based
databases. Also, since this option generates a separate command for each row, an error in
reloading a row causes only that row to be lost rather than the entire table contents. Note
that the restore may fail altogether if you have rearranged column order. The --column-
inserts option is safe against column order changes, though even slower.

--lock-wait-timeout=timeout

Do not wait forever to acquire shared table locks at the beginning of the dump. Instead, fail
if unable to lock a table within the specified timeout. The timeout may be specified in any

Greenplum Database Utility Guide Release Notes

796

of the formats accepted by SET statement_timeout. Allowed values vary depending
on the server version you are dumping from, but an integer number of milliseconds is
accepted by all Greenplum Database versions.

--no-security-labels

Do not dump security labels.

--no-tablespaces

Do not output commands to select tablespaces. With this option, all objects will be created
in whichever tablespace is the default during restore.

--no-unlogged-table-data

Do not dump the contents of unlogged tables. This option has no effect on whether or not
the table definitions (schema) are dumped; it only suppresses dumping the table data.

--quote-all-identifiers

Force quoting of all identifiers. This option is recommended when dumping a database
from a server whose Greenplum Database major version is different from pg_dumpall's,
or when the output is intended to be loaded into a server of a different major version. By
default, pg_dumpall quotes only identifiers that are reserved words in its own major
version. This sometimes results in compatibility issues when dealing with servers of other
versions that may have slightly different sets of reserved words. Using --quote-all-
identifiers prevents such issues, at the price of a harder-to-read dump script.

--resource-queues

Dump resource queue definitions.

--resource-groups

Dump resource group definitions.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER
OWNER commands to determine object ownership. This makes the dump more standards
compatible, but depending on the history of the objects in the dump, may not restore
properly. A dump using SET SESSION AUTHORIZATION will require superuser privileges
to restore correctly, whereas ALTER OWNER requires lesser privileges.

--gp-syntax

Output Greenplum Database syntax in the CREATE TABLE statements. This allows
the distribution policy (DISTRIBUTED BY or DISTRIBUTED RANDOMLY clauses) of
a Greenplum Database table to be dumped, which is useful for restoring into other
Greenplum Database systems.

--no-gp-syntax

Do not output the table distribution clauses in the CREATE TABLE statements.

-? | --help

Show help about pg_dumpall command line arguments, and exit.

Connection Options
-d connstr | --dbname=connstr

Specifies parameters used to connect to the server, as a connection string. See
Connection Strings in the PostgreSQL documentation for more information.

The option is called --dbname for consistency with other client applications, but because
pg_dumpall needs to connect to many databases, the database name in the connection
string will be ignored. Use the -l option to specify the name of the database used to dump
global objects and to discover what other databases should be dumped.

-h host | --host=host

https://www.postgresql.org/docs/9.4/libpq-connect.html#LIBPQ-CONNSTRING

Greenplum Database Utility Guide Release Notes

797

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-l dbname | --database=dbname

Specifies the name of the database in which to connect to dump global objects. If not
specified, the postgres database is used. If the postgres database does not exist, the
template1 database is used.

-p port | --port=port

The TCP port on which the Greenplum master database server is listening for connections.
If not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username= username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file the connection attempt
will fail. This option can be useful in batch jobs and scripts where no user is present to
enter a password.

-W | --password

Force a password prompt.

--role=rolename

Specifies a role name to be used to create the dump. This option causes pg_dumpall
to issue a SET ROLE rolename command after connecting to the database. It is useful
when the authenticated user (specified by -U) lacks privileges needed by pg_dumpall,
but can switch to a role with the required rights. Some installations have a policy against
logging in directly as a superuser, and use of this option allows dumps to be made without
violating the policy.

Notes
Since pg_dumpall calls pg_dump internally, some diagnostic messages will refer to pg_dump.

Once restored, it is wise to run ANALYZE on each database so the query planner has useful statistics. You
can also run vacuumdb -a -z to analyze all databases.

pg_dumpall requires all needed tablespace directories to exist before the restore; otherwise, database
creation will fail for databases in non-default locations.

Examples
To dump all databases:

pg_dumpall > db.out

To reload database(s) from this file, you can use:

psql template1 -f db.out

To dump only global objects (including resource queues):

pg_dumpall -g --resource-queues

Greenplum Database Utility Guide Release Notes

798

See Also
pg_dump

pg_restore
Restores a database from an archive file created by pg_dump.

Synopsis

pg_restore [connection-option ...] [restore_option ...] filename

pg_restore -? | --help

pg_restore -V | --version

Description
pg_restore is a utility for restoring a database from an archive created by pg_dump in one of the non-
plain-text formats. It will issue the commands necessary to reconstruct the database to the state it was in at
the time it was saved. The archive files also allow pg_restore to be selective about what is restored, or
even to reorder the items prior to being restored.

pg_restore can operate in two modes. If a database name is specified, the archive is restored directly
into the database. Otherwise, a script containing the SQL commands necessary to rebuild the database
is created and written to a file or standard output. The script output is equivalent to the plain text output
format of pg_dump. Some of the options controlling the output are therefore analogous to pg_dump
options.

pg_restore cannot restore information that is not present in the archive file. For instance, if the archive
was made using the "dump data as INSERT commands" option, pg_restore will not be able to load the
data using COPY statements.

Options
filename

Specifies the location of the archive file (or directory, for a directory-format archive) to be
restored. If not specified, the standard input is used.

Restore Options
-a | --data-only

Restore only the data, not the schema (data definitions). Table data and sequence values
are restored, if present in the archive.

This option is similar to, but for historical reasons not identical to, specifying --
section=data.

-c | --clean

Clean (drop) database objects before recreating them. (This might generate some
harmless error messages, if any objects were not present in the destination database.)

-C | --create

Create the database before restoring into it. If --clean is also specified, drop and
recreate the target database before connecting to it.

When this option is used, the database named with -d is used only to issue the initial
DROP DATABASE and CREATE DATABASE commands. All data is restored into the
database name that appears in the archive.

-d dbname | --dbname=dbname

Greenplum Database Utility Guide Release Notes

799

Connect to this database and restore directly into this database. This utility, like most other
Greenplum Database utilities, also uses the environment variables supported by libpq.
However it does not read PGDATABASE when a database name is not supplied.

-e | --exit-on-error

Exit if an error is encountered while sending SQL commands to the database. The default
is to continue and to display a count of errors at the end of the restoration.

-f outfilename | --file=outfilename

Specify output file for generated script, or for the listing when used with -l. Default is the
standard output.

-F c|d|t | --format={custom | directory | tar}

The format of the archive produced by pg_dump. It is not necessary to specify the format,
since pg_restore will determine the format automatically. Format can be custom,
directory, or tar.

-I index | --index=index

Restore definition of named index only.

-j | --number-of-jobs | --jobs=number-of-jobs

Run the most time-consuming parts of pg_restore — those which load data, create
indexes, or create constraints — using multiple concurrent jobs. This option can
dramatically reduce the time to restore a large database to a server running on a
multiprocessor machine.

Each job is one process or one thread, depending on the operating system, and uses a
separate connection to the server.

The optimal value for this option depends on the hardware setup of the server, of the
client, and of the network. Factors include the number of CPU cores and the disk setup. A
good place to start is the number of CPU cores on the server, but values larger than that
can also lead to faster restore times in many cases. Of course, values that are too high will
lead to decreased performance because of thrashing.

Only the custom archive format is supported with this option. The input file must be a
regular file (not, for example, a pipe). This option is ignored when emitting a script rather
than connecting directly to a database server. Also, multiple jobs cannot be used together
with the option --single-transaction.

-l | --list

List the contents of the archive. The output of this operation can be used with the -L option
to restrict and reorder the items that are restored.

-L list-file | --use-list=list-file

Restore elements in the list-file only, and in the order they appear in the file. Note that
if filtering switches such as -n or -t are used with -L, they will further restrict the items
restored.

list-file is normally created by editing the output of a previous -l operation. Lines can be
moved or removed, and can also be commented out by placing a semicolon (;) at the start
of the line. See below for examples.

-n schema | --schema=schema

Restore only objects that are in the named schema. This can be combined with the -t
option to restore just a specific table.

-O | --no-owner

Do not output commands to set ownership of objects to match the original database.
By default, pg_restore issues ALTER OWNER or SET SESSION AUTHORIZATION
statements to set ownership of created schema elements. These statements will fail

Greenplum Database Utility Guide Release Notes

800

unless the initial connection to the database is made by a superuser (or the same user
that owns all of the objects in the script). With -O, any user name can be used for the initial
connection, and this user will own all the created objects.

-P 'function-name(argtype [, ...])' | --function='function-name(argtype
[, ...])'

Restore the named function only. The function name must be enclosed in quotes. Be
careful to spell the function name and arguments exactly as they appear in the dump file's
table of contents (as shown by the --list option).

-s | --schema-only

Restore only the schema (data definitions), not data, to the extent that schema entries are
present in the archive.

This option is the inverse of --data-only. It is similar to, but for historical reasons not
identical to, specifying --section=pre-data --section=post-data.

(Do not confuse this with the --schema option, which uses the word "schema" in a
different meaning.)

-S username | --superuser=username

Specify the superuser user name to use when disabling triggers. This is only relevant if --
disable-triggers is used.

Note: Greenplum Database does not support user-defined triggers.

-t table | --table=table

Restore definition and/or data of named table only. Multiple tables may be specified with
multiple -t switches. This can be combined with the -n option to specify a schema.

-T trigger | --trigger=trigger

Restore named trigger only.

Note: Greenplum Database does not support user-defined triggers.

-v | --verbose

Specifies verbose mode.

-V | --version

Print the pg_restore version and exit.

-x | --no-privileges | --no-acl

Prevent restoration of access privileges (GRANT/REVOKE commands).

-1 | --single-transaction

Execute the restore as a single transaction. This ensures that either all the commands
complete successfully, or no changes are applied.

--disable-triggers

This option is relevant only when performing a data-only restore. It instructs pg_restore
to execute commands to temporarily disable triggers on the target tables while the data
is reloaded. Use this if you have triggers on the tables that you do not want to invoke
during data reload. The commands emitted for --disable-triggers must be done
as superuser. So you should also specify a superuser name with -S or, preferably, run
pg_restore as a superuser.

Note: Greenplum Database does not support user-defined triggers.

--no-data-for-failed-tables

By default, table data is restored even if the creation command for the table failed (e.g.,
because it already exists). With this option, data for such a table is skipped. This behavior
is useful when the target database may already contain the desired table contents.

Greenplum Database Utility Guide Release Notes

801

Specifying this option prevents duplicate or obsolete data from being loaded. This option
is effective only when restoring directly into a database, not when producing SQL script
output.

--no-security-labels

Do not output commands to restore security labels, even if the archive contains them.

--no-tablespaces

Do not output commands to select tablespaces. With this option, all objects will be created
in whichever tablespace is the default during restore.

--section=sectionname

Only restore the named section. The section name can be pre-data, data, or post-
data. This option can be specified more than once to select multiple sections.

The default is to restore all sections.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER
OWNER commands to determine object ownership. This makes the dump more standards-
compatible, but depending on the history of the objects in the dump, it might not restore
properly.

-? | --help

Show help about pg_restore command line arguments, and exit.

Connection Options
-h host | --host host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port port

The TCP port on which the Greenplum Database master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or defaults to
5432.

-U username | --username username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file the connection attempt
will fail. This option can be useful in batch jobs and scripts where no user is present to
enter a password.

-W | --password

Force a password prompt.

--role=rolename

Specifies a role name to be used to perform the restore. This option causes pg_restore
to issue a SET ROLE rolename command after connecting to the database. It is useful
when the authenticated user (specified by -U) lacks privileges needed by pg_restore,
but can switch to a role with the required rights. Some installations have a policy against
logging in directly as a superuser, and use of this option allows restores to be performed
without violating the policy.

Greenplum Database Utility Guide Release Notes

802

Notes
If your installation has any local additions to the template1 database, be careful to load the output of
pg_restore into a truly empty database; otherwise you are likely to get errors due to duplicate definitions
of the added objects. To make an empty database without any local additions, copy from template0 not
template1, for example:

CREATE DATABASE foo WITH TEMPLATE template0;

When restoring data to a pre-existing table and the option --disable-triggers is used, pg_restore
emits commands to disable triggers on user tables before inserting the data, then emits commands to re-
enable them after the data has been inserted. If the restore is stopped in the middle, the system catalogs
may be left in the wrong state.

See also the pg_dump documentation for details on limitations of pg_dump.

Once restored, it is wise to run ANALYZE on each restored table so the query planner has useful statistics.

Examples
Assume we have dumped a database called mydb into a custom-format dump file:

pg_dump -Fc mydb > db.dump

To drop the database and recreate it from the dump:

dropdb mydb
pg_restore -C -d template1 db.dump

To reload the dump into a new database called newdb. Notice there is no -C, we instead connect directly
to the database to be restored into. Also note that we clone the new database from template0 not
template1, to ensure it is initially empty:

createdb -T template0 newdb
pg_restore -d newdb db.dump

To reorder database items, it is first necessary to dump the table of contents of the archive:

pg_restore -l db.dump > db.list

The listing file consists of a header and one line for each item, for example,

; Archive created at Mon Sep 14 13:55:39 2009
; dbname: DBDEMOS
; TOC Entries: 81
; Compression: 9
; Dump Version: 1.10-0
; Format: CUSTOM
; Integer: 4 bytes
; Offset: 8 bytes
; Dumped from database version: 8.3.5
; Dumped by pg_dump version: 8.3.8
;
; Selected TOC Entries:
;
3; 2615 2200 SCHEMA - public pasha
1861; 0 0 COMMENT - SCHEMA public pasha
1862; 0 0 ACL - public pasha
317; 1247 17715 TYPE public composite pasha
319; 1247 25899 DOMAIN public domain0 pasha2

Greenplum Database Utility Guide Release Notes

803

Semicolons start a comment, and the numbers at the start of lines refer to the internal archive ID assigned
to each item. Lines in the file can be commented out, deleted, and reordered. For example:

10; 145433 TABLE map_resolutions postgres
;2; 145344 TABLE species postgres
;4; 145359 TABLE nt_header postgres
6; 145402 TABLE species_records postgres
;8; 145416 TABLE ss_old postgres

Could be used as input to pg_restore and would only restore items 10 and 6, in that order:

pg_restore -L db.list db.dump

See Also
pg_dump

pgbouncer
Manages database connection pools.

Synopsis

pgbouncer [OPTION ...] pgbouncer.ini

 OPTION
 [-d | --daemon]
 [-R | --restart]
 [-q | --quiet]
 [-v | --verbose]
 [{-u | --user}=username]

pgbouncer [-V | --version] | [-h | --help]

Description
PgBouncer is a light-weight connection pool manager for Greenplum and PostgreSQL databases.
PgBouncer maintains a pool of connections for each database user and database combination. PgBouncer
either creates a new database connection for the client or reuses an existing pooled connection for the
same user and database. When the client disconnects, PgBouncer returns the connection to the pool for
re-use.

PgBouncer supports the standard connection interface shared by PostgreSQL and Greenplum Database.
The Greenplum Database client application (for example, psql) should connect to the host and port on
which PgBouncer is running rather than directly to the Greenplum Database master host and port.

You configure PgBouncer and its access to Greenplum Database via a configuration file. You provide
the configuration file name, usually pgbouncer.ini, when you run the pgbouncer command. This
file provides location information for Greenplum databases. The pgbouncer.ini file also specifies
process, connection pool, authorized users, and authentication configuration for PgBouncer, among other
configuration options.

By default, the pgbouncer process runs as a foreground process. You can optionally start pgbouncer as
a background (daemon) process with the -d option.

The pgbouncer process is owned by the operating system user that starts the process. You can
optionally specify a different user name under which to start pgbouncer.

PgBouncer includes a psql-like administration console. Authorized users can connect to a virtual
database to monitor and manage PgBouncer. You can manage a PgBouncer daemon process via the

Greenplum Database Utility Guide Release Notes

804

admin console. You can also use the console to update and reload the PgBouncer configuration at runtime
without stopping and restarting the process.

For additional information about PgBouncer, refer to the PgBouncer FAQ.

Options
-d | --daemon

Run PgBouncer as a daemon (a background process). The default start-up mode is to run
as a foreground process.

When run as a daemon, PgBouncer displays start-up messages to stdout. To suppress
the display of these messages, include the -q option when you start PgBouncer.

To stop a PgBouncer process that was started as a daemon, issue the SHUTDOWN
command from the PgBouncer administration console.

-R | --restart

Restart PgBouncer using the specified command line arguments. Non-TLS connections to
databases are maintained during restart; TLS connections are dropped.

To restart PgBouncer as a daemon, specify the options -Rd.

Note: Restart is available only if the operating system supports Unix sockets
and the PgBouncer unix_socket_dir configuration is not disabled.

-q | --quiet

Run quietly. Do not display messages to stdout.

-v | --verbose

Increase message verbosity. Can be specified multiple times.

{-u | --user}=username

Assume the identity of username on PgBouncer process start-up.

-V | --version

Show the version and exit.

-h | --help

Show the command help message and exit.

See Also
pgbouncer.ini, pgbouncer-admin

pgbouncer.ini
PgBouncer configuration file.

Synopsis

[databases]
db = ...

[pgbouncer]
...

[users]
...

https://pgbouncer.github.io/faq.html

Greenplum Database Utility Guide Release Notes

805

Description
You specify PgBouncer configuration parameters and identify user-specific configuration parameters in the
pgbouncer.ini configuration file.

The PgBouncer configuration file (typically named pgbouncer.ini) is specified in .ini format. Files in
.ini format are composed of sections, parameters, and values. Section names are enclosed in square
brackets, for example, [section_name]. Parameters and values are specified in key=value format.
Lines beginning with a semicolon (;) or pound sign (#) are considered comment lines and are ignored.

The PgBouncer configuration file can contain %include directives, which specify another file to read and
process. This enables you to split the configuration file into separate parts. For example:

%include filename

If the filename provided is not an absolute path, the file system location is taken as relative to the current
working directory.

The PgBouncer configuration file includes the following sections, described in detail below:

• [databases] Section
• [pgbouncer] Section
• [users] Section

[databases] Section
The [databases] section contains key=value pairs, where the key is a database name and the value
is a libpq connect-string list of key=value pairs.

A database name can contain characters [0-9A-Za-z_.-] without quoting. Names that contain other
characters must be quoted with standard SQL identifier quoting:

• Enclose names in double quotes (" ").
• Represent a double-quote within an identifier with two consecutive double quote characters.

The database name * is the fallback database. PgBouncer uses the value for this key as a connect string
for the requested database. Automatically-created database entries such as these are cleaned up if they
remain idle longer than the time specified in autodb_idle_timeout parameter.

Database Connection Parameters
The following parameters may be included in the value to specify the location of the database.

dbname

The destination database name.

Default: the client-specified database name

host

The name or IP address of the Greenplum master host. Host names are resolved at
connect time. If DNS returns several results, they are used in a round-robin manner. The
DNS result is cached and the dns_max_ttl parameter determines when the cache entry
expires.

Default: not set; the connection is made through a Unix socket

port

The Greenplum Database master port.

Default: 5432

user, password

Greenplum Database Utility Guide Release Notes

806

If user= is set, all connections to the destination database are initiated as the specified
user, resulting in a single connection pool for the database.

If the user= parameter is not set, PgBouncer attempts to log in to the destination
database with the user name passed by the client. In this situation, there will be one pool
for each user who connects to the database.

auth_user

If auth_user is set, any user who is not specified in auth_file is authenticated
by querying the pg_shadow database view. PgBouncer performs this query as the
auth_user Greenplum Database user. auth_user's password must be set in the
auth_file.

client_encoding

Ask for specific client_encoding from server.

datestyle

Ask for specific datestyle from server.

timezone

Ask for specific timezone from server.

Pool Configuration
You can use the following parameters for database-specific pool configuration.

pool_size

Set the maximum size of pools for this database. If not set, the default_pool_size is
used.

connect_query

Query to be executed after a connection is established, but before allowing the connection
to be used by any clients. If the query raises errors, they are logged but ignored otherwise.

pool_mode

Set the pool mode for this database. If not set, the default pool_mode is used.

max_db_connections

Set a database-wide maximum number of PgBouncer connections for this database. The
total number of connections for all pools for this database will not exceed this value.

[pgbouncer] Section

Generic Settings
logfile

The location of the log file. The log file is kept open. After log rotation, execute kill -HUP
pgbouncer or run the RELOAD; command in the PgBouncer Administration Console.

Default: not set

pidfile

The name of the pid file. Without a pidfile, you cannot run PgBouncer as a background
(daemon) process.

Default: not set

listen_addr

A list of interface addresses where PgBouncer listens for TCP connections. You may also
use *, which means to listen on all interfaces. If not set, only Unix socket connections are
allowed.

Greenplum Database Utility Guide Release Notes

807

Specify addresses numerically (IPv4/IPv6) or by name.

Default: not set

listen_port

The port PgBouncer listens on. Applies to both TCP and Unix sockets.

Default: 6432

unix_socket_dir

Specifies the location for the Unix sockets. Applies to both listening socket and server
connections. If set to an empty string, Unix sockets are disabled. Required for online
restart (-R option) to work.

Default: /tmp

unix_socket_mode

Filesystem mode for the Unix socket.

Default: 0777

unix_socket_group

Group name to use for Unix socket.

Default: not set

user

If set, specifies the Unix user to change to after startup. This works only if PgBouncer is
started as root or if user is the same as the current user.

Default: not set

auth_file

The name of the file containing the user names and passwords to load. The file format is
the same as the Greenplum Database pg_auth file.

Default: not set

auth_hba_file

HBA configuration file to use when auth_type is hba. Refer to the HBA file format
discussion in the PgBouncer documentation for information about PgBouncer support of
the HBA authentication file format.

Default: not set

auth_type

How to authenticate users.
pam

Use PAM to authenticate users. auth_file is ignored. This method is not compatible
with databases using the auth_user option. The service name reported to PAM is
“pgbouncer”. PAM is not supported in the HBA configuration file.

hba

The actual authentication type is loaded from the auth_hba_file. This setting allows
different authentication methods different access paths.

cert

Clients must connect with TLS using a valid client certificate. The client's username is
taken from CommonName field in the certificate.

md5

Use MD5-based password check. auth_file may contain both MD5-encrypted or plain-
text passwords. This is the default authentication method.

https://pgbouncer.github.io/config.html#hba-file-format

Greenplum Database Utility Guide Release Notes

808

plain

Clear-text password is sent over wire. Deprecated.

trust

No authentication is performed. The username must still exist in the auth_file.

any

Like the trust method, but the username supplied is ignored. Requires that all databases
are configured to log in with a specific user. Additionally, the console database allows any
user to log in as admin.

auth_query

Query to load a user's password from the database. If a user does not exist in the
auth_file and the database entry includes an auth_user, this query is run in the
database as auth_user to lookup up the user.

Note that the query is run inside target database, so if a function is used it needs to be
installed into each database.

Default: SELECT usename, passwd FROM pg_shadow WHERE usename=$1

auth_user

If auth_user is set, any user who is not specified in auth_file is authenticated through
the auth_query query from the pg_shadow database view. PgBouncer performs this
query as the auth_user Greenplum Database user. auth_user's password must be set
in the auth_file.

Direct access to pg_shadow requires Greenplum Database administrative privileges. It is
preferable to use a non-admin user that calls SECURITY DEFINER function instead.

pool_mode

Specifies when a server connection can be reused by other clients.
session

Connection is returned to the pool when the client disconnects. Default.

transaction

Connection is returned to the pool when the transaction finishes.

statement

Connection is returned to the pool when the current query finishes. Long transactions with
multiple statements are disallowed in this mode.

max_client_conn

Maximum number of client connections allowed. When increased, you should also
increase the file descriptor limits. The actual number of file descriptors used is more than
max_client_conn. The theoretical maximum used, when each user connects with its
own username to the server is:

max_client_conn + (max_pool_size * total_databases * total_users)

If a database user is specified in the connect string, all users connect using the same
username. Then the theoretical maximum connections is:

max_client_conn + (max_pool_size * total_databases)

(The theoretical maximum should be never reached, unless someone deliberately crafts
a load for it. Still, it means you should set the number of file descriptors to a safely high
number. Search for ulimit in your operating system documentation.)

Default: 100

Greenplum Database Utility Guide Release Notes

809

default_pool_size

The number of server connections to allow per user/database pair. This can be overridden
in the per-database configuration.

Default: 20

min_pool_size

Add more server connections to the pool when it is lower than this number. This improves
behavior when the usual load drops and then returns suddenly after a period of total
inactivity.

Default: 0 (disabled)

reserve_pool_size

The number of additional connections to allow for a pool. 0 disables.

Default: 0 (disabled)

reserve_pool_timeout

If a client has not been serviced in this many seconds, PgBouncer enables use of
additional connections from the reserve pool. 0 disables.

Default: 5.0

max_db_connections

The maximum number of connections per database. If you hit the limit, closing a client
connection to one pool does not immediately allow a server connection to be established
for another pool, because the server connection for the first pool is still open. Once the
server connection closes (due to idle timeout), a new server connection will be opened for
the waiting pool.

Default: unlimited

max_user_connections

The maximum number of connections per-user. When you hit the limit, closing a client
connection to one pool does not immediately allow a connection to be established for
another pool, because the connection for the first pool is still open. After the connection for
the first pool has closed (due to idle timeout), a new server connection is opened for the
waiting pool.

server_round_robin

By default, PgBouncer reuses server connections in LIFO (last-in, first-out) order, so that
a few connections get the most load. This provides the best performance when a single
server serves a database. But if there is TCP round-robin behind a database IP, then it is
better if PgBouncer also uses connections in that manner to achieve uniform load.

Default: 0

ignore_startup_parameters

By default, PgBouncer allows only parameters it can keep track of in startup packets:
client_encoding, datestyle, timezone, and standard_conforming_strings.

All others parameters raise an error. To allow other parameters, specify them here so that
PgBouncer can ignore them.

Default: empty

disable_pqexec

Disable Simple Query protocol (PQexec). Unlike Extended Query protocol, Simple Query
protocol allows multiple queries in one packet, which allows some classes of SQL-injection
attacks. Disabling it can improve security. This means that only clients that exclusively use
Extended Query protocol will work.

Greenplum Database Utility Guide Release Notes

810

Default: 0

application_name_add_host

Add the client host address and port to the application name setting set on connection
start. This helps in identifying the source of bad queries. The setting is overwritten without
detection if the application executes SET application_name after connecting.

Default: 0

conffile

Show location of the current configuration file. Changing this parameter will result in
PgBouncer using another config file for next RELOAD / SIGHUP.

Default: file from command line

service_name

Used during win32 service registration.

Default: pgbouncer

job_name

Alias for service_name.

Log Settings
syslog

Toggles syslog on and off.

Default: 0

syslog_ident

Under what name to send logs to syslog.

Default: pgbouncer

syslog_facility

Under what facility to send logs to syslog. Some possibilities are: auth, authpriv,
daemon, user, local0-7

Default: daemon

log_connections

Log successful logins.

Default: 1

log_disconnections

Log disconnections, with reasons.

Default: 1

log_pooler_errors

Log error messages that the pooler sends to clients.

Default: 1

log_stats

Write aggregated statistics into the log, every stats_period. This can be disabled if
external monitoring tools are used to grab the same data from SHOW commands.

Default: 1

stats_period

How often to write aggregated statistics to the log.

Greenplum Database Utility Guide Release Notes

811

Default: 60

Console Access Control
admin_users

Comma-separated list of database users that are allowed to connect and run all
commands on the PgBouncer Administration Console. Ignored when auth_type=any, in
which case any username is allowed in as admin.

Default: empty

stats_users

Comma-separated list of database users that are allowed to connect and run read-only
queries on the console. This includes all SHOW commands except SHOW FDS.

Default: empty

Connection Sanity Checks, Timeouts
server_reset_query

Query sent to server on connection release, before making it available to other clients. At
that moment no transaction is in progress so it should not include ABORT or ROLLBACK.

The query should clean any changes made to a database session so that the next
client gets a connection in a well-defined state. Default is DISCARD ALL which cleans
everything, but that leaves the next client no pre-cached state.

Note: Greenplum Database does not support DISCARD ALL.

You can use other commands to clean up the session state. For example, DEALLOCATE
ALL drops prepared statements, and DISCARD TEMP drops temporary tables.

When transaction pooling is used, the server_reset_query should be empty, as clients
should not use any session features. If clients do use session features, they will be broken
because transaction pooling does not guarantee that the next query will run on the same
connection.

Default: DISCARD ALL; (Not supported by Greenplum Database.)

server_reset_query_always

Whether server_reset_query should be run in all pooling modes. When this setting
is off (default), the server_reset_query will be run only in pools that are in sessions
pooling mode. Connections in transaction pooling mode should not have any need for
reset query.

Default: 0

server_check_delay

How long to keep released connections available for re-use without running sanity-check
queries on it. If 0, then the query is run always.

Default: 30.0

server_check_query

A simple do-nothing query to test the server connection.

If an empty string, then sanity checking is disabled.

Default: SELECT 1;

server_fast_close

Disconnect a server in session pooling mode immediately or after the end of the current
transaction if it is in “close_needed” mode (set by RECONNECT, RELOAD that changes

Greenplum Database Utility Guide Release Notes

812

connection settings, or DNS change), rather than waiting for the session end. In statement
or transaction pooling mode, this has no effect since that is the default behavior there.

If because of this setting a server connection is closed before the end of the client session,
the client connection is also closed. This ensures that the client notices that the session
has been interrupted.

This setting makes connection configuration changes take effect sooner if session pooling
and long-running sessions are used. The downside is that client sessions are liable to be
interrupted by a configuration change, so client applications will need logic to reconnect
and reestablish session state. But note that no transactions will be lost, because running
transactions are not interrupted, only idle sessions.

Default: 0

server_lifetime

The pooler tries to close server connections that have been connected longer than this
number of seconds. Setting it to 0 means the connection is to be used only once, then
closed.

Default: 3600.0

server_idle_timeout

If a server connection has been idle more than this many seconds it is dropped. If this
parameter is set to 0, timeout is disabled. [seconds]

Default: 600.0

server_connect_timeout

If connection and login will not finish in this number of seconds, the connection will be
closed.

Default: 15.0

server_login_retry

If a login fails due to failure from connect() or authentication, the pooler waits this many
seconds before retrying to connect.

Default: 15.0

client_login_timeout

If a client connects but does not manage to login in this number of seconds, it is
disconnected. This is needed to avoid dead connections stalling SUSPEND and thus online
restart.

Default: 60.0

autodb_idle_timeout

If database pools created automatically (via *) have been unused this many seconds, they
are freed. Their statistics are also forgotten.

Default: 3600.0

dns_max_ttl

How long to cache DNS lookups, in seconds. If a DNS lookup returns several answers,
PgBouncer round-robins between them in the meantime. The actual DNS TTL is ignored.

Default: 15.0

dns_nxdomain_ttl

How long error and NXDOMAIN DNS lookups can be cached, in seconds.

Default: 15.0

Greenplum Database Utility Guide Release Notes

813

dns_zone_check_period

Period to check if zone serial numbers have changed.

PgBouncer can collect DNS zones from hostnames (everything after first dot) and
then periodically check if the zone serial numbers change. If changes are detected, all
hostnames in that zone are looked up again. If any host IP changes, its connections are
invalidated.

Works only with UDNS and c-ares backend (--with-udns or --with-cares to
configure).

Default: 0.0 (disabled)

TLS settings
client_tls_sslmode

TLS mode to use for connections from clients. TLS connections are disabled by default.
When enabled, client_tls_key_file and client_tls_cert_file must be also
configured to set up the key and certificate PgBouncer uses to accept client connections.

• disable: Plain TCP. If client requests TLS, it’s ignored. Default.
• allow: If client requests TLS, it is used. If not, plain TCP is used. If client uses client-

certificate, it is not validated.
• prefer: Same as allow.
• require: Client must use TLS. If not, client connection is rejected. If client uses client-

certificate, it is not validated.
• verify-ca: Client must use TLS with valid client certificate.
• verify-full: Same as verify-ca.

client_tls_key_file

Private key for PgBouncer to accept client connections.

Default: not set

client_tls_cert_file

Root certificate file to validate client certificates.

Default: unset

client_tls_ca_file

Root certificate to validate client certificates.

Default: unset

client_tls_protocols

Which TLS protocol versions are allowed.

Valid values: are tlsv1.0, tlsv1.1, tlsv1.2.

Shortcuts: all (tlsv1.0,tlsv1.1,tlsv1.2), secure (tlsv1.2), legacy (all).

Default: secure

client_tls_ciphers

Default: fast

client_tls_ecdhcurve

Elliptic Curve name to use for ECDH key exchanges.

Allowed values: none (DH is disabled), auto (256-bit ECDH), curve name.

Default: auto

client_tls_dheparams

Greenplum Database Utility Guide Release Notes

814

DHE key exchange type.

Allowed values: none (DH is disabled), auto (2048-bit DH), legacy (1024-bit DH).

Default: auto

server_tls_sslmode

TLS mode to use for connections to Greenplum Database and PostgreSQL servers. TLS
connections are disabled by default.

• disabled: Plain TCP. TLS is not requested from the server. Default.
• allow: If server rejects plain, try TLS. (PgBouncer Documentation is speculative on

this..)
• prefer: TLS connection is always requested first. When connection is refused, plain

TPC is used. Server certificate is not validated.
• require: Connection must use TLS. If server rejects it, plain TCP is not attempted.

Server certificate is not validated.
• verify-ca: Connection must use TLS and server certificate must be valid according

to server_tls_ca_file. The server hostname is not verfied against the certificate.
• verify-full: Connection must use TLS and the server certificate must be valid

according to server_tls_ca_file. The server hostname must match the hostname
in the certificate.

server_tls_ca_file

Path to the root certificate file used to validate Greenplum Database and PostgreSQL
server certificates.

Default: unset

server_tls_key_file

The private key for PgBouncer to authenticate against Greenplum Database or
PostgreSQL server.

Default: not set

server_tls_cert_file

Certificate for private key. Greenplum Database or PostgreSQL servers can validate it.

Default: not set

server_tls_protocols

Which TLS protocol versions are allowed.

Valid values are: tlsv1.0, tlsv1.1, tlsv1.2.

Shortcuts: all (tlsv1.0, tlsv1.1, tlsv1.2); secure (tlsv1.2); legacy (all).

Default: secure

server_tls_ciphers

Default: fast

Dangerous Timeouts
Setting the following timeouts can cause unexpected errors.

query_timeout

Queries running longer than this (seconds) are canceled. This parameter should be used
only with a slightly smaller server-side statement_timeout, to trap queries with network
problems. [seconds]

Default: 0.0 (disabled)

Greenplum Database Utility Guide Release Notes

815

query_wait_timeout

The maximum time, in seconds, queries are allowed to wait for execution. If the query
is not assigned a connection during that time, the client is disconnected. This is used to
prevent unresponsive servers from grabbing up connections.

Default: 120

client_idle_timeout

Client connections idling longer than this many seconds are closed. This should be larger
than the client-side connection lifetime settings, and only used for network problems.

Default: 0.0 (disabled)

idle_transaction_timeout

If client has been in "idle in transaction" state longer than this (seconds), it is disconnected.

Default: 0.0 (disabled)

Low-level Network Settings
pkt_buf

Internal buffer size for packets. Affects the size of TCP packets sent and general memory
usage. Actual libpq packets can be larger than this so there is no need to set it large.

Default: 4096

max_packet_size

Maximum size for packets that PgBouncer accepts. One packet is either one query or one
result set row. A full result set can be larger.

Default: 2147483647

listen_backlog

Backlog argument for the listen(2) system call. It determines how many new
unanswered connection attempts are kept in queue. When the queue is full, further new
connection attempts are dropped.

Default: 128

sbuf_loopcnt

How many times to process data on one connection, before proceeding. Without this
limit, one connection with a big result set can stall PgBouncer for a long time. One loop
processes one pkt_buf amount of data. 0 means no limit.

Default: 5

SO_REUSEPORT

Specifies whether to set the socket option SO_REUSEPORT on TCP listening sockets.
On some operating systems, this allows running multiple PgBouncer instances on the
same host listening on the same port and having the kernel distribute the connections
automatically. This option is a way to get PgBouncer to use more CPU cores. (PgBouncer
is single-threaded and uses one CPU core per instance.)

The behavior in detail depends on the operating system kernel. As of this writing, this
setting has the desired effect on recent versions of Linux. On systems that don’t support
the socket option at all, turning this setting on will result in an error.

Each PgBouncer instance on the same host needs different settings for at least
unix_socket_dir and pidfile, as well as logfile if that is used. Also note that if
you make use of this option, you can no longer connect to a specific PgBouncer instance
via TCP/IP, which might have implications for monitoring and metrics collection.

Default: 0

Greenplum Database Utility Guide Release Notes

816

suspend_timeout

How many seconds to wait for buffer flush during SUSPEND or restart (-R). Connection is
dropped if flush does not succeed.

Default: 10

tcp_defer_accept

For details on this and other TCP options, please see the tcp(7) man page.

Default: 45 on Linux, otherwise 0

tcp_socket_buffer

Default: not set

tcp_keepalive

Turns on basic keepalive with OS defaults.

On Linux, the system defaults are tcp_keepidle=7200, tcp_keepintvl=75,
tcp_keepcnt=9.

Default: 1

tcp_keepcnt

Default: not set

tcp_keepidle

Default: not set

tcp_keepintvl

Default: not set

tcp_user_timeout

Sets the TCP_USER_TIMEOUT socket option. This specifies the maximum amount of
time in milliseconds that transmitted data may remain unacknowledged before the TCP
connection is forcibly closed. If set to 0, then operating system’s default is used.

Default: 0

[users] Section
This section contains key=value pairs, where the key is a user name and the value is a libpq
connect-string list of key=value pairs.

Pool configuration

pool_mode

Set the pool mode for all connections from this user. If not set, the database or default
pool_mode is used.

Example Configuration Files
Minimal Configuration

[databases]
postgres = host=127.0.0.1 dbname=postgres auth_user=gpadmin

[pgbouncer]
pool_mode = session
listen_port = 6543
listen_addr = 127.0.0.1
auth_type = md5

Greenplum Database Utility Guide Release Notes

817

auth_file = users.txt
logfile = pgbouncer.log
pidfile = pgbouncer.pid
admin_users = someuser
stats_users = stat_collector

Use connection parameters passed by the client:

[databases]
* =

[pgbouncer]
listen_port = 6543
listen_addr = 0.0.0.0
auth_type = trust
auth_file = bouncer/users.txt
logfile = pgbouncer.log
pidfile = pgbouncer.pid
ignore_startup_parameters=options

Database Defaults

[databases]

; foodb over unix socket
foodb =

; redirect bardb to bazdb on localhost
bardb = host=127.0.0.1 dbname=bazdb

; access to destination database will go with single user
forcedb = host=127.0.0.1 port=300 user=baz password=foo
 client_encoding=UNICODE datestyle=ISO

See Also
pgbouncer, pgbouncer-admin, PgBouncer Configuration Page

pgbouncer-admin
PgBouncer Administration Console.

Synopsis

psql -p port pgbouncer

Description
The PgBouncer Administration Console is available via psql. Connect to the PgBouncer port and the
virtual database named pgbouncer to log in to the console.

Users listed in the pgbouncer.ini configuration parameters admin_users and stats_users have
privileges to log in to the PgBouncer Administration Console.

You can control connections between PgBouncer and Greenplum Database from the console. You can
also set PgBouncer configuration parameters.

Options
-p port

https://pgbouncer.github.io/config.html

Greenplum Database Utility Guide Release Notes

818

The PgBouncer port number.

Command Syntax

pgbouncer=# SHOW help;
NOTICE: Console usage
DETAIL:
 SHOW HELP|CONFIG|DATABASES|POOLS|CLIENTS|SERVERS|VERSION
 SHOW FDS|SOCKETS|ACTIVE_SOCKETS|LISTS|MEM
 SHOW DNS_HOSTS|DNS_ZONES
 SHOW STATS|STATS_TOTALS|STATS_AVERAGES
 SET key = arg
 RELOAD
 PAUSE [<db>]
 RESUME [<db>]
 DISABLE <db>
 ENABLE <db>
 KILL <db>
 SUSPEND
 SHUTDOWN

Administration Commands
The following PgBouncer administration commands control the running pgbouncer process.

PAUSE [db]

If no database is specified, PgBouncer tries to disconnect from all servers, first waiting for
all queries to complete. The command will not return before all queries are finished. This
command is to be used to prepare to restart the database.

If a database name is specified, PgBouncer pauses only that database.

If you run a PAUSE db command, and then a PAUSE command to pause all databases,
you must execute two RESUME commands, one for all databases, and one for the named
database.

SUSPEND

All socket buffers are flushed and PgBouncer stops listening for data on them. The
command will not return before all buffers are empty. To be used when rebooting
PgBouncer online.

RESUME [db]

Resume work from a previous PAUSE or SUSPEND command.

If a database was specified for the PAUSE command, the database must also be specified
with the RESUME command.

After pausing all databases with the PAUSE command, resuming a single database with
RESUME db is not supported.

DISABLE db

Reject all new client connections on the database.

ENABLE db

Allow new client connections on the database.

KILL db

Immediately drop all client and server connections to the named database.

SHUTDOWN

Stop PgBouncer process. To exit from the psql command line session, enter \q.

Greenplum Database Utility Guide Release Notes

819

RECONNECT

Close each open server connection for the given database, or all databases, after it is
released (according to the pooling mode), even if its lifetime is not up yet. New server
connections can be made immediately and will connect as necessary according to the pool
size settings.

This command is useful when the server connection setup has changed, for example to
perform a gradual switchover to a new server. It is not necessary to run this command
when the connection string in pgbouncer.ini has been changed and reloaded (see
RELOAD) or when DNS resolution has changed, because then the equivalent of this
command will be run automatically. This command is only necessary if something
downstream of PgBouncer routes the connections.

After this command is run, there could be an extended period where some server
connections go to an old destination and some server connections go to a new destination.
This is likely only sensible when switching read-only traffic between read-only replicas,
or when switching between nodes of a multimaster replication setup. If all connections
need to be switched at the same time, PAUSE is recommended instead. To close server
connections without waiting (for example, in emergency failover rather than gradual
switchover scenarios), also consider KILL.

RELOAD

The PgBouncer process reloads the current configuration file and updates the changeable
settings.

WAIT_CLOSE [db]

Wait until all server connections, either of the specified database or of all databases,
have cleared the “close_needed” state (see SHOW SERVERS). This can be called after a
RECONNECT or RELOAD to wait until the respective configuration change has been fully
activated, for example in switchover scripts.

SET key = value

Override specified configuration setting. See the SHOW CONFIG; command.

SHOW Command
The SHOW category command displays different types of PgBouncer information. You can specify one of
the following categories:

• ACTIVE_SOCKETS
• CLIENTS
• CONFIG
• DATABASES
• DNS_HOSTS
• DNS_ZONES
• FDS
• POOLS
• SERVERS
• SOCKETS
• STATS
• STATS_TOTALS
• STATS_AVERAGES
• LISTS
• MEM
• USERS
• VERSION

Greenplum Database Utility Guide Release Notes

820

ACTIVE_SOCKETS

Table 69: Active Socket Information

Column Description

type S, for server, C for client.

user Username pgbouncer uses to connect to server.

database Database name.

state State of the server connection, one of active, used or idle.

addr IP address of PostgreSQL server.

port Port of PostgreSQL server.

local_addr Connection start address on local machine.

local_port Connection start port on local machine.

connect_time When the connection was made.

request_time When last request was issued.

wait Time waiting.

wait_us Time waiting (microseconds).

ptr Address of internal object for this connection. Used as unique ID.

link Address of client connection the server is paired with.

remote_pid Process identifier of backend server process.

tls TLS context.

recv_pos Receive position in the I/O buffer.

pkt_pos Parse position in the I/O buffer.

pkt_remain Number of packets remaining on the socket.

send_pos Send position in the packet.

send_remain Total packet length remaining to send.

pkt_avail Amount of I/O buffer left to parse.

send_avail Amount of I/O buffer left to send.

CLIENTS

Table 70: Clients

Column Description

type C, for client.

user Client connected user.

database Database name.

state State of the client connection, one of active, used, waiting or idle.

Greenplum Database Utility Guide Release Notes

821

Column Description

addr IP address of client, or unix for a socket connection.

port Port client is connected to.

local_addr Connection end address on local machine.

local_port Connection end port on local machine.

connect_time Timestamp of connect time.

request_time Timestamp of latest client request.

wait Time waiting.

wait_us Time waiting (microseconds).

ptr Address of internal object for this connection. Used as unique ID.

link Address of server connection the client is paired with.

remote_pid Process ID, if client connects with Unix socket and the OS supports getting
it.

tls Client TLS context.

CONFIG

List of current PgBouncer parameter settings

Table 71: Config

Column Description

key Configuration variable name

value Configuration value

changeable Either yes or no. Shows whether the variable can be changed while
running. If no, the variable can be changed only at boot time.

DATABASES

Table 72: Databases

Column Description

name Name of configured database entry.

host Host pgbouncer connects to.

port Port pgbouncer connects to.

database Actual database name pgbouncer connects to.

force_user When user is part of the connection string, the connection between
pgbouncer and the database server is forced to the given user, whatever the
client user.

pool_size Maximum number of server connections.

reserve_pool The number of additional connections that can be created if the pool
reaches pool_size.

Greenplum Database Utility Guide Release Notes

822

Column Description

pool_mode The database's override pool_mode or NULL if the default will be used
instead.

max_connections Maximum number of connections for all pools for this database.

current_connections The total count of connections for all pools for this database.

paused Paused/unpaused state of the database.

disabled Enabled/disabled state of the database.

DNS_HOSTS

Table 73: DNS Zones in Cache

Column Description

hostname Host name

ttl How many seconds until next lookup.

addrs Comma-separated list of addresses.

DNS_ZONES

Table 74: DNS Zones in Cache

Column Description

zonename Zone name

serial Current DNS serial number

count Hostnames belonging to this zone

FDS

SHOW FDS is an internal command used for an online restart, for example when upgrading to a new
PgBouncer version. It displays a list of file descriptors in use with the internal state attached to them. This
command blocks the internal event loop, so it should not be used while PgBouncer is in use.

When the connected user has username "pgbouncer", connects through a Unix socket, and has the same
UID as the running process, the actual file descriptors are passed over the connection.

Table 75: FDS

Column Description

fd File descriptor numeric value.

task One of pooler, client, or server.

user User of the connection using the file descriptor.

database Database of the connection using the file descriptor.

addr IP address of the connection using the file descriptor, "unix" if a Unix socket
is used.

Greenplum Database Utility Guide Release Notes

823

Column Description

port Port used by the connection using the file descriptor.

cancel Cancel key for this connection.

link File descriptor for corresponding server/client. NULL if idle.

client_encoding Character set used for the database.

std_strings This controls whether ordinary string literals ('...') treat backslashes literally,
as specified in the SQL standard.

datestyle Display format for date and time values.

timezone The timezone for interpreting and displaying time stamps.

password auth_user's password.

LISTS

Shows the following PgBouncer statistcs in two columns: the item label and value.

Table 76: Count of PgBouncer Items

Item Description

databases Count of databases.

users Count of users.

pools Count of pools.

free_clients Count of free clients.

used_clients Count of used clients.

login_clients Count of clients in login state.

free_servers Count of free servers.

used_servers Count of used servers.

dns_names Count of DNS names.

dns_zones Count of DNS zones.

dns_queries Count of DNS queries.

dns_pending Count of in-flight DNS queries.

MEM

Shows cache memory information for these PgBouncer caches:

• user_cache
• db_cache
• pool_cache
• server_cache
• client_cache
• iobuf_cache

Greenplum Database Utility Guide Release Notes

824

Table 77: In Memory Cache

Column Description

name Name of cache.

size The size of a single slot in the cache.

used Number of used slots in the cache.

free The number of available slots in the cache.

memtotal Total bytes used by the cache.

POOLS

A new pool entry is made for each pair of (database, user).

Table 78: Pools

Column Description

database Database name.

user User name.

cl_active Client connections that are linked to server connection and can process
queries.

cl_waiting Client connections have sent queries but have not yet got a server
connection.

sv_active Server connections that linked to client.

sv_idle Server connections that are unused and immediately usable for client
queries.

sv_used Server connections that have been idle more than server_check_delay.
The server_check_query query must be run on them before they can be
used.

sv_tested Server connections that are currently running either server_reset_query
or server_check_query.

sv_login Server connections currently in process of logging in.

maxwait How long the first (oldest) client in the queue has waited, in seconds. If this
begins to increase, the current pool of servers does not handle requests fast
enough. The cause may be either an overloaded server or the pool_size
setting is too small.

maxwait_us max_wait (microseconds).

pool_mode The pooling mode in use.

SERVERS

Table 79: Servers

Column Description

type S, for server.

Greenplum Database Utility Guide Release Notes

825

Column Description

user User ID that pgbouncer uses to connect to server.

database Database name.

state State of the pgbouncer server connection, one of active, used, or idle.

addr IP address of the Greenplum or PostgreSQL server.

port Port of the Greenplum or PostgreSQL server.

local_addr Connection start address on local machine.

local_port Connection start port on local machine.

connect_time When the connection was made.

request_time When the last request was issued.

wait Time waiting.

wait_us Time waiting (microseconds).

close_needed 1 if the connection will be closed as soon as possible, because a
configuration file reload or DNS update changed the connection information
or RECONNECT was issued.

ptr Address of the internal object for this connection. Used as unique ID.

link Address of gthe client connection the server is paired with.

remote_pid Pid of backend server process. If the connection is made over Unix socket
and the OS supports getting process ID info, it is the OS pid. Otherwise it
is extracted from the cancel packet the server sent, which should be PID
in case server is PostgreSQL, but it is a random number in case server is
another PgBouncer.

tls TLS context.

STATS

Shows statistics.

Table 80: Stats

Column Description

database Statistics are presented per database.

total_xact_count Total number of SQL transactions pooled by PgBouncer.

total_query_count Total number of SQL queries pooled by PgBouncer.

total_received Total volume in bytes of network traffic received by pgbouncer.

total_sent Total volume in bytes of network traffic sent by pgbouncer.

total_xact_time Total number of microseconds spent by PgBouncer when connected to
Greenplum Database in a transaction, either idle in transaction or executing
queries.

total_query_time Total number of microseconds spent by pgbouncer when actively
connected to the database server.

total_wait_time Time spent (in microseconds) by clients waiting for a server.

Greenplum Database Utility Guide Release Notes

826

Column Description

avg_xact_count Average number of SQL transactions pooled by PgBouncer.

avg_query_count Average queries per second in last stats period.

avg_recv Average received (from clients) bytes per second.

avg_sent Average sent (to clients) bytes per second.

avg_xact_time Average transaction duration in microseconds.

avg_query_time Average query duration in microseconds.

avg_wait_time Time spent by clients waiting for a server in microseconds (average per
second).

STATS_AVERAGES

Subset of SHOW STATS showing the average values for selected statistics.

STATS_TOTALS

Subset of SHOW STATS showing the total values for selected statistics.

USERS

Table 81: Users

Column Description

name The user name

pool_mode The user's override pool_mode, or NULL if the default will be used instead.

VERSION

Display PgBouncer version information.

Note: This reference documentation is based on the PgBouncer 1.13 documentation.

See Also
pgbouncer, pgbouncer.ini

plcontainer
The plcontainer utility installs Docker images and manages the PL/Container configuration. The utility
consists of two sets of commands.

• image-* commands manage Docker images on the Greenplum Database system hosts.
• runtime-* commands manage the PL/Container configuration file on the Greenplum Database

instances. You can add Docker image information to the PL/Container configuration file including the
image name, location, and shared folder information. You can also edit the configuration file.

To configure PL/Container to use a Docker image, you install the Docker image on all the Greenplum
Database hosts and then add configuration information to the PL/Container configuration.

PL/Container configuration values, such as image names, runtime IDs, and parameter values and names
are case sensitive.

Greenplum Database Utility Guide Release Notes

827

plcontainer Syntax

plcontainer [command] [-h | --help] [--verbose]

Where command is one of the following.

 image-add {{-f | --file} image_file [-ulc | --use_local_copy]} | {{-u | --
URL} image_URL}
 image-delete {-i | --image} image_name
 image-list

 runtime-add {-r | --runtime} runtime_id
 {-i | --image} image_name {-l | --language} {python | python3 | r}
 [{-v | --volume} shared_volume [{-v| --volume} shared_volume...]]
 [{-s | --setting} param=value [{-s | --setting} param=value ...]]
 runtime-replace {-r | --runtime} runtime_id
 {-i | --image} image_name -l {r | python}
 [{-v | --volume} shared_volume [{-v | --volume} shared_volume...]]
 [{-s | --setting} param=value [{-s | --setting} param=value ...]]
 runtime-show {-r | --runtime} runtime_id
 runtime-delete {-r | --runtime} runtime_id
 runtime-edit [{-e | --editor} editor]
 runtime-backup {-f | --file} config_file
 runtime-restore {-f | --file} config_file
 runtime-verify

plcontainer Commands and Options
image-add location

Install a Docker image on the Greenplum Database hosts. Specify either the location of the
Docker image file on the host or the URL to the Docker image. These are the supported
location options:

• {-f | --file} image_file Specify the file system location of the Docker image tar archive
file on the local host. This example specifies an image file in the gpadmin user's home
directory: /home/gpadmin/test_image.tar.gz

• {-u | --URL} image_URL Specify the URL of the Docker repository and image. This
example URL points to a local Docker repository 192.168.0.1:5000/images/
mytest_plc_r:devel

By default, the image-add command copies the image to each Greenplum Database
segment and standby master host, and installs the image. When you specify an image_file
and provide the [-ulc | --use_local_copy] option, plcontainer installs the image only on
the host on which you execute the command.

After installing the Docker image, use the runtime-add command to configure PL/
Container to use the Docker image.

image-delete {-i | --image} image_name

Remove an installed Docker image from all Greenplum Database hosts. Specify
the full Docker image name including the tag for example pivotaldata/
plcontainer_python_shared:1.0.0

image-list

List the Docker images installed on the host. The command list only the images on the
local host, not remote hosts. The command lists all installed Docker images, including
images installed with Docker commands.

runtime-add options

Greenplum Database Utility Guide Release Notes

828

Add configuration information to the PL/Container configuration file on all Greenplum
Database hosts. If the specified runtime_id exists, the utility returns an error and the
configuration information is not added.

These are the supported options:

{-i | --image} docker-image

Required. Specify the full Docker image name, including the tag, that is
installed on the Greenplum Database hosts. For example pivotaldata/
plcontainer_python:1.0.0.

The utility returns a warning if the specified Docker image is not installed.

The plcontainer image-list command displays installed image information including
the name and tag (the Repository and Tag columns).

{-l | --language} python | python3 | r

Required. Specify the PL/Container language type, supported values are python (PL/
Python using Python 2), python3 (PL/Python using Python 3) and r (PL/R). When adding
configuration information for a new runtime, the utility adds a startup command to the
configuration based on the language you specify.

Startup command for the Python 2 language.

/clientdir/pyclient.sh

Startup command for the Python 3 language.

/clientdir/pyclient3.sh

Startup command for the R language.

/clientdir/rclient.sh

{-r | --runtime} runtime_id

Required. Add the runtime ID. When adding a runtime element in the PL/Container
configuration file, this is the value of the id element in the PL/Container configuration file.
Maximum length is 63 Bytes.

You specify the name in the Greenplum Database UDF on the # container line.

{-s | --setting} param=value

Optional. Specify a setting to add to the runtime configuration information. You can specify
this option multiple times. The setting applies to the runtime configuration specified by
the runtime_id. The parameter is the XML attribute of the settings element in the PL/
Container configuration file. These are valid parameters.

• cpu_share - Set the CPU limit for each container in the runtime configuration. The
default value is 1024. The value is a relative weighting of CPU usage compared to
other containers.

• memory_mb - Set the memory limit for each container in the runtime configuration. The
default value is 1024. The value is an integer that specifies the amount of memory in
MB.

• resource_group_id - Assign the specified resource group to the runtime
configuration. The resource group limits the total CPU and memory resource usage
for all containers that share this runtime configuration. You must specify the groupid
of the resource group. For information about managing PL/Container resources, see
About PL/Container Resource Management.

Greenplum Database Utility Guide Release Notes

829

• roles - Specify the Greenplum Database roles that are allowed to run a container for
the runtime configuration. You can specify a single role name or comma separated lists
of role names. The default is no restriction.

• use_container_logging - Enable or disable Docker logging for the container. The
value is either yes (enable logging) or no (disable logging, the default).

The Greenplum Database server configuration parameter log_min_messages
controls the log level. The default log level is warning. For information about PL/
Container log information, see Notes.

{-v | --volume} shared-volume

Optional. Specify a Docker volume to bind mount. You can specify this option multiple
times to define multiple volumes.

The format for a shared volume: host-dir:container-dir:[rw|ro]. The information
is stored as attributes in the shared_directory element of the runtime element in the
PL/Container configuration file.

• host-dir - absolute path to a directory on the host system. The Greenplum Database
administrator user (gpadmin) must have appropriate access to the directory.

• container-dir - absolute path to a directory in the Docker container.
• [rw|ro] - read-write or read-only access to the host directory from the container.

When adding configuration information for a new runtime, the utility adds this read-only
shared volume information.

greenplum-home/bin/plcontainer_clients:/clientdir:ro

If needed, you can specify other shared directories. The utility returns an error if the
specified container-dir is the same as the one that is added by the utility, or if you specify
multiple shared volumes with the same container-dir.

Warning: Allowing read-write access to a host directory requires special
considerations.

• When specifying read-write access to host directory, ensure that the
specified host directory has the correct permissions.

• When running PL/Container user-defined functions, multiple concurrent
Docker containers that are running on a host could change data in the host
directory. Ensure that the functions support multiple concurrent access to
the data in the host directory.

runtime-backup {-f | --file} config_file

Copies the PL/Container configuration file to the specified file on the local host.

runtime-delete {-r | --runtime} runtime_id

Removes runtime configuration information in the PL/Container configuration file on all
Greenplum Database instances. The utility returns a message if the specified runtime_id
does not exist in the file.

runtime-edit [{-e | --editor} editor]

Edit the XML file plcontainer_configuration.xml with the specified editor. The
default editor is vi.

Saving the file updates the configuration file on all Greenplum Database hosts. If errors
exist in the updated file, the utility returns an error and does not update the file.

runtime-replace options

Replaces runtime configuration information in the PL/Container configuration file on all
Greenplum Database instances. If the runtime_id does not exist, the information is added

Greenplum Database Utility Guide Release Notes

830

to the configuration file. The utility adds a startup command and shared directory to the
configuration.

See runtime-add for command options and information added to the configuration.

runtime-restore {-f | --file} config_file

Replaces information in the PL/Container configuration file
plcontainer_configuration.xml on all Greenplum Database instances with the
information from the specified file on the local host.

runtime-show [{-r | --runtime} runtime_id]

Displays formatted PL/Container runtime configuration information. If a runtime_id is not
specified, the configuration for all runtime IDs are displayed.

runtime-verify

Checks the PL/Container configuration information on the Greenplum Database instances
with the configuration information on the master. If the utility finds inconsistencies, you are
prompted to replace the remote copy with the local copy. The utility also performs XML
validation.

-h | --help

Display help text. If specified without a command, displays help for all plcontainer
commands. If specified with a command, displays help for the command.

--verbose

Enable verbose logging for the command.

Examples
These are examples of common commands to manage PL/Container:

• Install a Docker image on all Greenplum Database hosts. This example loads a Docker image from
a file. The utility displays progress information on the command line as the utility installs the Docker
image on all the hosts.

plcontainer image-add -f plc_newr.tar.gz

After installing the Docker image, you add or update a runtime entry in the PL/Container configuration
file to give PL/Container access to the Docker image to start Docker containers.

• Install the Docker image only on the local Greenplum Database host:

plcontainer image-add -f /home/gpadmin/plc_python_image.tar.gz --
use_local_copy

• Add a container entry to the PL/Container configuration file. This example adds configuration
information for a PL/R runtime, and specifies a shared volume and settings for memory and logging.

plcontainer runtime-add -r runtime2 -i test_image2:0.1 -l r \
 -v /host_dir2/shared2:/container_dir2/shared2:ro \
 -s memory_mb=512 -s use_container_logging=yes

The utility displays progress information on the command line as it adds the runtime configuration to the
configuration file and distributes the updated configuration to all instances.

• Show specific runtime with given runtime id in configuration file

plcontainer runtime-show -r plc_python_shared

Greenplum Database Utility Guide Release Notes

831

The utility displays the configuration information similar to this output.

PL/Container Runtime Configuration:

 Runtime ID: plc_python_shared
 Linked Docker Image: test1:latest
 Runtime Setting(s):
 Shared Directory:
 ---- Shared Directory From HOST '/usr/local/greenplum-db/bin/
plcontainer_clients' to Container '/clientdir', access mode is 'ro'
 ---- Shared Directory From HOST '/home/gpadmin/share/' to Container '/
opt/share', access mode is 'rw'

• Edit the configuration in an interactive editor of your choice. This example edits the configuration file
with the vim editor.

plcontainer runtime-edit -e vim

When you save the file, the utility displays progress information on the command line as it distributes
the file to the Greenplum Database hosts.

• Save the current PL/Container configuration to a file. This example saves the file to the local file /
home/gpadmin/saved_plc_config.xml

plcontainer runtime-backup -f /home/gpadmin/saved_plc_config.xml

• Overwrite PL/Container configuration file with an XML file. This example replaces the information in the
configuration file with the information from the file in the /home/gpadmin directory.

plcontainer runtime-restore -f /home/gpadmin/
new_plcontainer_configuration.xml

The utility displays progress information on the command line as it distributes the updated file to the
Greenplum Database instances.

plcontainer Configuration File
The Greenplum Database utility plcontainer manages the PL/Container configuration files in a
Greenplum Database system. The utility ensures that the configuration files are consistent across the
Greenplum Database master and segment instances.

Warning: Modifying the configuration files on the segment instances without using the utility might
create different, incompatible configurations on different Greenplum Database segments that could
cause unexpected behavior.

PL/Container Configuration File
PL/Container maintains a configuration file plcontainer_configuration.xml in the data directory of
all Greenplum Database segments. This query lists the Greenplum Database system data directories:

SELECT hostname, datadir FROM gp_segment_configuration;

A sample PL/Container configuration file is in $GPHOME/share/postgresql/plcontainer.

In an XML file, names, such as element and attribute names, and values are case sensitive.

In this XML file, the root element configuration contains one or more runtime elements. You specify
the id of the runtime element in the # container: line of a PL/Container function definition.

Greenplum Database Utility Guide Release Notes

832

This is an example file. Note that all XML elements, names, and attributes are case sensitive.

<?xml version="1.0" ?>
<configuration>
 <runtime>
 <id>plc_python_example1</id>
 
 <command>./pyclient</command>
 </runtime>
 <runtime>
 <id>plc_python_example2</id>
 
 <command>/clientdir/pyclient.sh</command>
 <shared_directory access="ro" container="/clientdir" host="/usr/
local/greenplum-db/bin/plcontainer_clients"/>
 <setting memory_mb="512"/>
 <setting use_container_logging="yes"/>
 <setting cpu_share="1024"/>
 <setting resource_group_id="16391"/>
 </runtime>
 <runtime>
 <id>plc_r_example</id>
 
 <command>/clientdir/rclient.sh</command>
 <shared_directory access="ro" container="/clientdir" host="/usr/
local/greenplum-db/bin/plcontainer_clients"/>
 <setting use_container_logging="yes"/>
 <setting roles="gpadmin,user1"/>
 </runtime>
 <runtime>
</configuration>

These are the XML elements and attributes in a PL/Container configuration file.

configuration

Root element for the XML file.

runtime

One element for each specific container available in the system. These are child elements
of the configuration element.

id

Required. The value is used to reference a Docker container from a PL/Container user-
defined function. The id value must be unique in the configuration. The id must start with
a character or digit (a-z, A-Z, or 0-9) and can contain characters, digits, or the characters _
(underscore), . (period), or - (dash). Maximum length is 63 Bytes.

The id specifies which Docker image to use when PL/Container creates a Docker
container to execute a user-defined function.

image

Required. The value is the full Docker image name, including image tag. The same way
you specify them for starting this container in Docker. Configuration allows to have many
container objects referencing the same image name, this way in Docker they would be
represented by identical containers.

For example, you might have two runtime elements, with different id elements,
plc_python_128 and plc_python_256, both referencing the Docker image
pivotaldata/plcontainer_python:1.0.0. The first runtime specifies a 128MB
RAM limit and the second one specifies a 256MB limit that is specified by the memory_mb
attribute of a setting element.

Greenplum Database Utility Guide Release Notes

833

command

Required. The value is the command to be run inside of container to start the client
process inside in the container. When creating a runtime element, the plcontainer
utility adds a command element based on the language (the -l option).

command element for the Python 2 language.

<command>/clientdir/pyclient.sh</command>

command element for the Python 3 language.

<command>/clientdir/pyclient3.sh</command>

command element for the R language.

<command>/clientdir/rclient.sh</command>

You should modify the value only if you build a custom container and want to implement
some additional initialization logic before the container starts.

Note: This element cannot be set with the plcontainer utility. You can
update the configuration file with the plcontainer runtime-edit
command.

shared_directory

Optional. This element specifies a shared Docker shared volume for a container
with access information. Multiple shared_directory elements are allowed. Each
shared_directory element specifies a single shared volume. XML attributes for the
shared_directory element:

• host - a directory location on the host system.
• container - a directory location inside of container.
• access - access level to the host directory, which can be either ro (read-only) or rw

(read-write).

When creating a runtime element, the plcontainer utility adds a shared_directory
element.

<shared_directory access="ro" container="/clientdir" host="/usr/
local/greenplum-db/bin/plcontainer_clients"/>

For each runtime element, the container attribute of the shared_directory
elements must be unique. For example, a runtime element cannot have two
shared_directory elements with attribute container="/clientdir".

Warning: Allowing read-write access to a host directory requires special
consideration.

• When specifying read-write access to host directory, ensure that the
specified host directory has the correct permissions.

• When running PL/Container user-defined functions, multiple concurrent
Docker containers that are running on a host could change data in the host
directory. Ensure that the functions support multiple concurrent access to
the data in the host directory.

settings

Greenplum Database Utility Guide Release Notes

834

Optional. This element specifies Docker container configuration information. Each
setting element contains one attribute. The element attribute specifies logging, memory,
or networking information. For example, this element enables logging.

<setting use_container_logging="yes"/>

These are the valid attributes.
cpu_share

Optional. Specify the CPU usage for each PL/Container container in the runtime. The
value of the element is a positive integer. The default value is 1024. The value is a relative
weighting of CPU usage compared to other containers.

For example, a container with a cpu_share of 2048 is allocated double the CPU slice
time compared with container with the default value of 1024.

memory_mb="size"

Optional. The value specifies the amount of memory, in MB, that each container is allowed
to use. Each container starts with this amount of RAM and twice the amount of swap
space. The container memory consumption is limited by the host system cgroups
configuration, which means in case of memory overcommit, the container is terminated by
the system.

resource_group_id="rg_groupid"

Optional. The value specifies the groupid of the resource group to assign to the PL/
Container runtime. The resource group limits the total CPU and memory resource usage
for all running containers that share this runtime configuration. You must specify the
groupid of the resource group. If you do not assign a resource group to a PL/Container
runtime configuration, its container instances are limited only by system resources. For
information about managing PL/Container resources, see About PL/Container Resource
Management.

roles="list_of_roles"

Optional. The value is a Greenplum Database role name or a comma-separated list of
roles. PL/Container runs a container that uses the PL/Container runtime configuration
only for the listed roles. If the attribute is not specified, any Greenplum Database role
can run an instance of this container runtime configuration. For example, you create a
UDF that specifies the plcontainer language and identifies a # container: runtime
configuration that has the roles attribute set. When a role (user) runs the UDF, PL/
Container checks the list of roles and runs the container only if the role is on the list.

use_container_logging="{yes | no}"

Optional. Enables or disables Docker logging for the container. The attribute value yes
enables logging. The attribute value no disables logging (the default).

The Greenplum Database server configuration parameter log_min_messages controls
the PL/Container log level. The default log level is warning. For information about PL/
Container log information, see Notes.

By default, the PL/Container log information is sent to a system service. On Red Hat 7 or
CentOS 7 systems, the log information is sent to the journald service. On Red Hat 6 or
CentOS 6 systems, the log is sent to the syslogd service.

Update the PL/Container Configuration
You can add a runtime element to the PL/Container configuration file with the plcontainer runtime-
add command. The command options specify information such as the runtime ID, Docker image, and
language. You can use the plcontainer runtime-replace command to update an existing runtime
element. The utility updates the configuration file on the master and all segment instances.

Greenplum Database Utility Guide Release Notes

835

The PL/Container configuration file can contain multiple runtime elements that reference the same
Docker image specified by the XML element image. In the example configuration file, the runtime
elements contain id elements named plc_python_128 and plc_python_256, both referencing the
Docker container pivotaldata/plcontainer_python:1.0.0. The first runtime element is defined
with a 128MB RAM limit and the second one with a 256MB RAM limit.

<configuration>
 <runtime>
 <id>plc_python_128</id>
 
 <command>./client</command>
 <shared_directory access="ro" container="/clientdir" host="/usr/local/
gpdb/bin/plcontainer_clients"/>
 <setting memory_mb="128"/>
 </runtime>
 <runtime>
 <id>plc_python_256</id>
 
 <command>./client</command>
 <shared_directory access="ro" container="/clientdir" host="/usr/local/
gpdb/bin/plcontainer_clients"/>
 <setting memory_mb="256"/>
 <setting resource_group_id="16391"/>
 </runtime>
<configuration>

Configuration changes that are made with the utility are applied to the XML files on all Greenplum
Database segments. However, PL/Container configurations of currently running sessions use the
configuration that existed during session start up. To update the PL/Container configuration in a running
session, execute this command in the session.

SELECT * FROM plcontainer_refresh_config;

Running the command executes a PL/Container function that updates the session configuration on the
master and segment instances.

psql
Interactive command-line interface for Greenplum Database

Synopsis

psql [option ...] [dbname [username]]

Description
psql is a terminal-based front-end to Greenplum Database. It enables you to type in queries interactively,
issue them to Greenplum Database, and see the query results. Alternatively, input can be from a file. In
addition, it provides a number of meta-commands and various shell-like features to facilitate writing scripts
and automating a wide variety of tasks.

Options
-a | --echo-all

Print all nonempty input lines to standard output as they are read. (This does not apply to
lines read interactively.) This is equivalent to setting the variable ECHO to all.

-A | --no-align

Switches to unaligned output mode. (The default output mode is aligned.)

Greenplum Database Utility Guide Release Notes

836

-c 'command' | --command='command'

Specifies that psql is to execute the specified command string, and then exit. This is
useful in shell scripts. command must be either a command string that is completely
parseable by the server, or a single backslash command. Thus you cannot mix SQL and
psql meta-commands with this option. To achieve that, you could pipe the string into
psql, like this:

echo '\x \\ SELECT * FROM foo;' | psql

(\\ is the separator meta-command.)

If the command string contains multiple SQL commands, they are processed in a single
transaction, unless there are explicit BEGIN/COMMIT commands included in the string to
divide it into multiple transactions. This is different from the behavior when the same string
is fed to psql's standard input. Also, only the result of the last SQL command is returned.

-d dbname | --dbname=dbname

Specifies the name of the database to connect to. This is equivalent to specifying dbname
as the first non-option argument on the command line.

If this parameter contains an = sign or starts with a valid URI prefix (postgresql://
or postgres://), it is treated as a conninfo string. See Connection Strings in the
PostgreSQL documentation for more information.

-e | --echo-queries

Copy all SQL commands sent to the server to standard output as well.

-E | --echo-hidden

Echo the actual queries generated by \d and other backslash commands. You can
use this to study psql's internal operations. This is equivalent to setting the variable
ECHO_HIDDEN to on.

-f filename | --file=filename

Use the file filename as the source of commands instead of reading commands
interactively. After the file is processed, psql terminates. This is in many ways equivalent
to the meta-command \i.

If filename is - (hyphen), then standard input is read until an EOF indication or \q meta-
command. Note however that Readline is not used in this case (much as if -n had been
specified).

Using this option is subtly different from writing psql < filename. In general, both will
do what you expect, but using -f enables some nice features such as error messages with
line numbers. There is also a slight chance that using this option will reduce the start-up
overhead. On the other hand, the variant using the shell's input redirection is (in theory)
guaranteed to yield exactly the same output you would have received had you entered
everything by hand.

-F separator | --field-separator=separator

Use the specified separator as the field separator for unaligned output.

-H | --html

Turn on HTML tabular output.

-l | --list

List all available databases, then exit. Other non-connection options are ignored.

-L filename | --log-file=filename

Write all query output into the specified log file, in addition to the normal output destination.

-n | --no-readline

https://www.postgresql.org/docs/9.4/libpq-connect.html#LIBPQ-CONNSTRING

Greenplum Database Utility Guide Release Notes

837

Do not use Readline for line editing and do not use the command history. This can be
useful to turn off tab expansion when cutting and pasting.

-o filename | --output=filename

Put all query output into the specified file.

-P assignment | --pset=assignment

Allows you to specify printing options in the style of \pset on the command line. Note that
here you have to separate name and value with an equal sign instead of a space. Thus to
set the output format to LaTeX, you could write -P format=latex.

-q | --quiet

Specifies that psql should do its work quietly. By default, it prints welcome messages and
various informational output. If this option is used, none of this happens. This is useful with
the -c option. This is equivalent to setting the variable QUIET to on.

-R separator | --record-separator=separator

Use separator as the record separator for unaligned output.

-s | --single-step

Run in single-step mode. That means the user is prompted before each command is sent
to the server, with the option to cancel execution as well. Use this to debug scripts.

-S | --single-line

Runs in single-line mode where a new line terminates an SQL command, as a semicolon
does.

-t | --tuples-only

Turn off printing of column names and result row count footers, etc. This command is
equivalent to \pset tuples_only and is provided for convenience.

-T table_options | --table-attr= table_options

Allows you to specify options to be placed within the HTML table tag. See \pset for
details.

-v assignment | --set=assignment | --variable= assignment

Perform a variable assignment, like the \set meta command. Note that you must separate
name and value, if any, by an equal sign on the command line. To unset a variable, leave
off the equal sign. To set a variable with an empty value, use the equal sign but leave off
the value. These assignments are done during a very early stage of start-up, so variables
reserved for internal purposes might get overwritten later.

-V | --version

Print the psql version and exit.

-x | --expanded

Turn on the expanded table formatting mode.

-X | --no-psqlrc

Do not read the start-up file (neither the system-wide psqlrc file nor the user's
~/.psqlrc file).

-z | --field-separator-zero

Set the field separator for unaligned output to a zero byte.

-0 | --record-separator-zero

Set the record separator for unaligned output to a zero byte. This is useful for interfacing,
for example, with xargs -0.

-1 | --single-transaction

Greenplum Database Utility Guide Release Notes

838

When psql executes a script, adding this option wraps BEGIN/COMMIT around the script
to execute it as a single transaction. This ensures that either all the commands complete
successfully, or no changes are applied.

If the script itself uses BEGIN, COMMIT, or ROLLBACK, this option will not have the
desired effects. Also, if the script contains any command that cannot be executed inside
a transaction block, specifying this option will cause that command (and hence the whole
transaction) to fail.

-? | --help

Show help about psql command line arguments, and exit.

Connection Options
-h host | --host=host

The host name of the machine on which the Greenplum master database server is
running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

When starting psql on the master host, if the host value begins with a slash, it is used as
the directory for the UNIX-domain socket.

-p port | --port=port

The TCP port on which the Greenplum master database server is listening for connections.
If not specified, reads from the environment variable PGPORT or defaults to 5432.

-U username | --username=username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system role name.

-W | --password

Force a password prompt. psql should automatically prompt for a password whenever the
server requests password authentication. However, currently password request detection
is not totally reliable, hence this option to force a prompt. If no password prompt is issued
and the server requires password authentication, the connection attempt will fail.

-w --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt
will fail. This option can be useful in batch jobs and scripts where no user is present to
enter a password.

Note: This option remains set for the entire session, and so it affects uses of the meta-
command \connect as well as the initial connection attempt.

Exit Status
psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own (out of memory, file not found)
occurs, 2 if the connection to the server went bad and the session was not interactive, and 3 if an error
occurred in a script and the variable ON_ERROR_STOP was set.

Usage
Connecting to a Database

psql is a client application for Greenplum Database. In order to connect to a database you need to know
the name of your target database, the host name and port number of the Greenplum master server and
what database user name you want to connect as. psql can be told about those parameters via command
line options, namely -d, -h, -p, and -U respectively. If an argument is found that does not belong to any
option it will be interpreted as the database name (or the user name, if the database name is already
given). Not all of these options are required; there are useful defaults. If you omit the host name, psql will
connect via a UNIX-domain socket to a master server on the local host, or via TCP/IP to localhost on

Greenplum Database Utility Guide Release Notes

839

machines that do not have UNIX-domain sockets. The default master port number is 5432. If you use a
different port for the master, you must specify the port. The default database user name is your operating-
system user name, as is the default database name. Note that you cannot just connect to any database
under any user name. Your database administrator should have informed you about your access rights.

When the defaults are not right, you can save yourself some typing by setting any or all of the environment
variables PGAPPNAME, PGDATABASE, PGHOST, PGPORT, and PGUSER to appropriate values.

It is also convenient to have a ~/.pgpass file to avoid regularly having to type in passwords. This file
should reside in your home directory and contain lines of the following format:

hostname:port:database:username:password

The permissions on .pgpass must disallow any access to world or group (for example: chmod 0600
~/.pgpass). If the permissions are less strict than this, the file will be ignored. (The file permissions are
not currently checked on Microsoft Windows clients, however.)

An alternative way to specify connection parameters is in a conninfo string or a URI, which is used
instead of a database name. This mechanism gives you very wide control over the connection. For
example:

$ psql "service=myservice sslmode=require"
$ psql postgresql://gpmaster:5433/mydb?sslmode=require

This way you can also use LDAP for connection parameter lookup as described in LDAP Lookup of
Connection Parameters in the PostgreSQL documentation. See Parameter Keywords in the PostgreSQL
documentation for more information on all the available connection options.

If the connection could not be made for any reason (insufficient privileges, server is not running, etc.),
psql will return an error and terminate.

If at least one of standard input or standard output are a terminal, then psql sets the client encoding to
auto, which will detect the appropriate client encoding from the locale settings (LC_CTYPE environment
variable on Unix systems). If this doesn't work out as expected, the client encoding can be overridden
using the environment variable PGCLIENTENCODING.

Entering SQL Commands

In normal operation, psql provides a prompt with the name of the database to which psql is currently
connected, followed by the string => for a regular user or =# for a superuser. For example:

testdb=>
testdb=#

At the prompt, the user may type in SQL commands. Ordinarily, input lines are sent to the server when
a command-terminating semicolon is reached. An end of line does not terminate a command. Thus
commands can be spread over several lines for clarity. If the command was sent and executed without
error, the results of the command are displayed on the screen.

If untrusted users have access to a database that has not adopted a secure schema usage
pattern, begin your session by removing publicly-writable schemas from search_path.
You can add options=-csearch_path= to the connection string or issue SELECT
pg_catalog.set_config('search_path', '', false) before other SQL commands. This
consideration is not specific to psql; it applies to every interface for executing arbitrary SQL commands.

Meta-Commands
Anything you enter in psql that begins with an unquoted backslash is a psql meta-command that is
processed by psql itself. These commands help make psql more useful for administration or scripting.
Meta-commands are more commonly called slash or backslash commands.

https://www.postgresql.org/docs/9.4/libpq-ldap.html
https://www.postgresql.org/docs/9.4/libpq-ldap.html
https://www.postgresql.org/docs/9.4/libpq-connect.html#LIBPQ-PARAMKEYWORDS
https://www.postgresql.org/docs/9.4/ddl-schemas.html#DDL-SCHEMAS-PATTERNS
https://www.postgresql.org/docs/9.4/ddl-schemas.html#DDL-SCHEMAS-PATTERNS

Greenplum Database Utility Guide Release Notes

840

The format of a psql command is the backslash, followed immediately by a command verb, then any
arguments. The arguments are separated from the command verb and each other by any number of
whitespace characters.

To include whitespace into an argument you may quote it with single quotes. To include a single quote into
such an argument, write two single quotes within single-quoted text. Anything contained in single quotes
is furthermore subject to C-like substitutions for \n (new line), \t (tab), \b (backspace), \r (carriage
return), \f (form feed), \digits (octal), and \xdigits (hexadecimal). A backslash preceding any other
character within single-quoted text quotes that single character, whatever it is.

Within an argument, text that is enclosed in backquotes (`) is taken as a command line that is passed to
the shell. The output of the command (with any trailing newline removed) replaces the backquoted text.

If an unquoted colon (:) followed by a psql variable name appears within an argument, it is replaced by
the variable's value, as described in SQL Interpolation.

Some commands take an SQL identifier (such as a table name) as argument. These arguments follow
the syntax rules of SQL: Unquoted letters are forced to lowercase, while double quotes (") protect letters
from case conversion and allow incorporation of whitespace into the identifier. Within double quotes, paired
double quotes reduce to a single double quote in the resulting name. For example, FOO"BAR"BAZ is
interpreted as fooBARbaz, and "A weird"" name" becomes A weird" name.

Parsing for arguments stops when another unquoted backslash occurs. This is taken as the beginning
of a new meta-command. The special sequence \\ (two backslashes) marks the end of arguments and
continues parsing SQL commands, if any. That way SQL and psql commands can be freely mixed on a
line. But in any case, the arguments of a meta-command cannot continue beyond the end of the line.

The following meta-commands are defined:

\a

If the current table output format is unaligned, it is switched to aligned. If it is not unaligned,
it is set to unaligned. This command is kept for backwards compatibility. See \pset for a
more general solution.

\c | \connect [dbname [username] [host] [port]] | conninfo

Establishes a new Greenplum Database connection. The connection parameters to use
can be specified either using a positional syntax, or using conninfo connection strings as
detailed in libpq Connection Strings.

Where the command omits database name, user, host, or port, the new connection
can reuse values from the previous connection. By default, values from the previous
connection are reused except when processing a conninfo string. Passing a first
argument of -reuse-previous=on or -reuse-previous=off overrides that default.
When the command neither specifies nor reuses a particular parameter, the libpq default
is used. Specifying any of dbname, username, host or port as - is equivalent to omitting
that parameter.

If the new connection is successfully made, the previous connection is closed. If the
connection attempt failed, the previous connection will only be kept if psql is in interactive
mode. When executing a non-interactive script, processing will immediately stop with
an error. This distinction was chosen as a user convenience against typos, and a safety
mechanism that scripts are not accidentally acting on the wrong database.

Examples:

=> \c mydb myuser host.dom 6432
=> \c service=foo
=> \c "host=localhost port=5432 dbname=mydb connect_timeout=10
 sslmode=disable"
=> \c postgresql://tom@localhost/mydb?application_name=myapp

\C [title]

https://www.postgresql.org/docs/9.4/libpq-connect.html#LIBPQ-CONNSTRING

Greenplum Database Utility Guide Release Notes

841

Sets the title of any tables being printed as the result of a query or unset any such title.
This command is equivalent to \pset title.

\cd [directory]

Changes the current working directory. Without argument, changes to the current user's
home directory. To print your current working directory, use \!pwd.

\conninfo

Displays information about the current connection including the database name, the user
name, the type of connection (UNIX domain socket, TCP/IP, etc.), the host, and the port.

\copy {table [(column_list)] | (query)} {from | to} {'filename' | program
'command' | stdin | stdout | pstdin | pstdout} [with] (option [, ...])]

Performs a frontend (client) copy. This is an operation that runs an SQL COPY command,
but instead of the server reading or writing the specified file, psql reads or writes the
file and routes the data between the server and the local file system. This means that
file accessibility and privileges are those of the local user, not the server, and no SQL
superuser privileges are required.

When program is specified, command is executed by psql and the data from or to
command is routed between the server and the client. This means that the execution
privileges are those of the local user, not the server, and no SQL superuser privileges are
required.

\copy ... from stdin | to stdout reads/writes based on the command input and
output respectively. All rows are read from the same source that issued the command,
continuing until \. is read or the stream reaches EOF. Output is sent to the same place
as command output. To read/write from psql's standard input or output, use pstdin or
pstdout. This option is useful for populating tables in-line within a SQL script file.

The syntax of the command is similar to that of the SQL COPY command, and option must
indicate one of the options of the SQL COPY command. Note that, because of this, special
parsing rules apply to the \copy command. In particular, the variable substitution rules
and backslash escapes do not apply.

This operation is not as efficient as the SQL COPY command because all data must pass
through the client/server connection.

\copyright

Shows the copyright and distribution terms of PostgreSQL on which Greenplum Database
is based.

\d [relation_pattern] | \d+ [relation_pattern] | \dS [relation_pattern]

For each relation (table, external table, view, materialized view, index, sequence, or foreign
table) or composite type matching the relation pattern, show all columns, their types, the
tablespace (if not the default) and any special attributes such as NOT NULL or defaults.
Associated indexes, constraints, rules, and triggers are also shown. For foreign tables, the
associated foreign server is shown as well.

• For some types of relation, \d shows additional information for each column: column
values for sequences, indexed expressions for indexes, and foreign data wrapper
options for foreign tables.

• The command form \d+ is identical, except that more information is displayed: any
comments associated with the columns of the table are shown, as is the presence of
OIDs in the table, the view definition if the relation is a view.

For partitioned tables, the command \d or \d+ specified with the root partition table
or child partition table displays information about the table including partition keys on
the current level of the partition table. The command \d+ also displays the immediate
child partitions of the table and whether the child partition is an external table or regular
table.

Greenplum Database Utility Guide Release Notes

842

For append-optimized tables and column-oriented tables, \d+ displays the storage
options for a table. For append-optimized tables, the options are displayed for the table.
For column-oriented tables, storage options are displayed for each column.

• By default, only user-created objects are shown; supply a pattern or the S modifier to
include system objects.

Note: If \d is used without a pattern argument, it is equivalent to
\dtvmsE which will show a list of all visible tables, views, materialized
views, sequences, and foreign tables.

\da[S] [aggregate_pattern]

Lists aggregate functions, together with the data types they operate on. If a pattern is
specified, only aggregates whose names match the pattern are shown. By default, only
user-created objects are shown; supply a pattern or the S modifier to include system
objects.

\db[+] [tablespace_pattern]

Lists all available tablespaces and their corresponding paths. If pattern is specified, only
tablespaces whose names match the pattern are shown. If + is appended to the command
name, each object is listed with its associated permissions.

\dc[S+] [conversion_pattern]

Lists conversions between character-set encodings. If a pattern is specified, only
conversions whose names match the pattern are listed. By default, only user-created
objects are shown; supply a pattern or the S modifier to include system objects. If + is
appended to the command name, each object is listed with its associated description.

\dC[+] [pattern]

Lists type casts. If a pattern is specified, only casts whose source or target types match
the pattern are listed. If + is appended to the command name, each object is listed with its
associated description.

\dd[S] [pattern]

Shows the descriptions of objects of type constraint, operator class, operator
family, rule, and trigger. All other comments may be viewed by the respective
backslash commands for those object types.

\dd displays descriptions for objects matching the pattern, or of visible objects of the
appropriate type if no argument is given. But in either case, only objects that have a
description are listed. By default, only user-created objects are shown; supply a pattern or
the S modifier to include system objects.

Descriptions for objects can be created with the COMMENT SQL command.

\ddp [pattern]

Lists default access privilege settings. An entry is shown for each role (and schema, if
applicable) for which the default privilege settings have been changed from the built-in
defaults. If pattern is specified, only entries whose role name or schema name matches the
pattern are listed.

The ALTER DEFAULT PRIVILEGES command is used to set default access privileges.
The meaning of the privilege display is explained under GRANT.

\dD[S+] [domain_pattern]

Lists domains. If a pattern is specified, only domains whose names match the pattern are
shown. By default, only user-created objects are shown; supply a pattern or the S modifier
to include system objects. If + is appended to the command name, each object is listed
with its associated permissions and description.

\dEimstPv[S+] [external_table | index | materialized_view | sequence |
table | parent table | view]

Greenplum Database Utility Guide Release Notes

843

This is not the actual command name: the letters E, i, m, s, t, P, and v stand for external
table, index, materialized view, sequence, table, parent table, and view, respectively.
You can specify any or all of these letters, in any order, to obtain a listing of objects of
these types. For example, \dit lists indexes and tables. If + is appended to the command
name, each object is listed with its physical size on disk and its associated description, if
any. If a pattern is specified, only objects whose names match the pattern are listed. By
default, only user-created objects are shown; supply a pattern or the S modifier to include
system objects.

\des[+] [foreign_server_pattern]

Lists foreign servers. If a pattern is specified, only those servers whose name matches
the pattern are listed. If the form \des+ is used, a full description of each server is shown,
including the server's ACL, type, version, options, and description.

\det[+] [foreign_table_pattern]

Lists all foreign tables. If a pattern is specified, only entries whose table name or schema
name matches the pattern are listed. If the form \det+ is used, generic options and the
foreign table description are also displayed.

\deu[+] [user_mapping_pattern]

Lists user mappings. If a pattern is specified, only those mappings whose user names
match the pattern are listed. If the form \deu+ is used, additional information about each
mapping is shown.

Warning: \deu+ might also display the user name and password of the
remote user, so care should be taken not to disclose them.

\dew[+] [foreign_data_wrapper_pattern]

Lists foreign-data wrappers. If a pattern is specified, only those foriegn-data wrappers
whose name matches the pattern are listed. If the form \dew+ is used, the ACL, options,
and description of the foreign-data wrapper are also shown.

\df[antwS+] [function_pattern]

Lists functions, together with their arguments, return types, and function types, which are
classified as "agg" (aggregate), "normal", "trigger", or "window". To display only functions
of a specific type(s), add the corresponding letters a, n, t, or w, to the command. If a
pattern is specified, only functions whose names match the pattern are shown. If the form
\df+ is used, additional information about each function, including security, volatility,
language, source code, and description, is shown. By default, only user-created objects
are shown; supply a pattern or the S modifier to include system objects.

\dF[+] [pattern]

Lists text search configurations. If a pattern is specified, only configurations whose
names match the pattern are shown. If the form \dF+ is used, a full description of each
configuration is shown, including the underlying text search parser and the dictionary list
for each parser token type.

\dFd[+] [pattern]

Lists text search dictionaries. If a pattern is specified, only dictionaries whose names
match the pattern are shown. If the form \dFd+ is used, additional information is shown
about each selected dictionary, including the underlying text search template and the
option values.

\dFp[+] [pattern]

Lists text search parsers. If a pattern is specified, only parsers whose names match the
pattern are shown. If the form \dFp+ is used, a full description of each parser is shown,
including the underlying functions and the list of recognized token types.

\dFt[+] [pattern]

Greenplum Database Utility Guide Release Notes

844

Lists text search templates. If a pattern is specified, only templates whose names match
the pattern are shown. If the form \dFt+ is used, additional information is shown about
each template, including the underlying function names.

\dg[+] [role_pattern]

Lists database roles. (Since the concepts of "users" and "groups" have been unified into
"roles", this command is now equivalent to \du.) If a pattern is specified, only those roles
whose names match the pattern are listed. If the form \dg+ is used, additional information
is shown about each role; currently this adds the comment for each role.

\dl

This is an alias for \lo_list, which shows a list of large objects.

Note: Greenplum Database does not support the PostgreSQL large object
facility for streaming user data that is stored in large-object structures.

\dL[S+] [pattern]

Lists procedural languages. If a pattern is specified, only languages whose names match
the pattern are listed. By default, only user-created languages are shown; supply the S
modifier to include system objects. If + is appended to the command name, each language
is listed with its call handler, validator, access privileges, and whether it is a system object.

\dn[S+] [schema_pattern]

Lists all available schemas (namespaces). If a pattern is specified, only schemas whose
names match the pattern are listed. By default, only user- create objects are show; supply
a pattern or the S modifier to include system objects. If + is appended to the command
name, each object is listed with its associated permissions and description, if any.

\do[S] [operator_pattern]

Lists available operators with their operand and return types. If a pattern is specified, only
operators whose names match the pattern are listed. By default, only user-created objects
are shown; supply a pattern or the S modifier to include system objects.

\dO[S+] [pattern]

Lists collations. If a pattern is specified, only collations whose names match the pattern are
listed. By default, only user-created objects are shown; supply a pattern or the S modifier
to include system objects. If + is appended to the command name, each collation is listed
with its associated description, if any. Note that only collations usable with the current
database's encoding are shown, so the results may vary in different databases of the same
installation.

\dp [relation_pattern_to_show_privileges]

Lists tables, views, and sequences with their associated access privileges. If a pattern is
specified, only tables, views, and sequences whose names match the pattern are listed.
The GRANT and REVOKE commands are used to set access privileges. The meaning of the
privilege display is explained under GRANT.

\drds [role-pattern [database-pattern]]

Lists defined configuration settings. These settings can be role-specific, database-specific,
or both. role-pattern and database-pattern are used to select specific roles and database
to list, respectively. If omitted, or if * is specified, all settings are listed, including those not
role-specific or database-specific, respectively.

The ALTER ROLE and ALTER DATABASE commands are used to define per-role and
per-database role configuration settings.

\dT[S+] [datatype_pattern]

Lists data types. If a pattern is specified, only types whose names match the pattern
are listed. If + is appended to the command name, each type is listed with its internal
name and size, its allowed values if it is an enum type, and its associated permissions. By

https://www.postgresql.org/docs/9.4/largeobjects.html
https://www.postgresql.org/docs/9.4/largeobjects.html

Greenplum Database Utility Guide Release Notes

845

default, only user-created objects are shown; supply a pattern or the S modifier to include
system objects.

\du[+] [role_pattern]

Lists database roles. (Since the concepts of "users" and "groups" have been unified into
"roles", this command is now equivalent to \dg.) If a pattern is specified, only those roles
whose names match the pattern are listed. If the form \du+ is used, additional information
is shown about each role; currently this adds the comment for each role.

\dx[+] [extension_pattern]

Lists installed extensions. If a pattern is specified, only those extensions whose names
match the pattern are listed. If the form \dx+ is used, all of the objects belonging to each
matching extension are listed.

\dy[+] [pattern]

Lists event triggers. If a pattern is specified, only those triggers whose names match the
pattern are listed. If + is appended to the command name, each object is listed with its
associated description.

\dy[+] [pattern]

Lists event triggers. If a pattern is specified, only those triggers whose names match the
pattern are listed. If + is appended to the command name, each object is listed with its
associated description.

Note: Greenplum Database does not support user-defined triggers.

\e | \edit [filename] [line_number]

If filename is specified, the file is edited; after the editor exits, its content is copied back to
the query buffer. If no filename is given, the current query buffer is copied to a temporary
file which is then edited in the same fashion.

The new query buffer is then re-parsed according to the normal rules of psql, where the
whole buffer is treated as a single line. (Thus you cannot make scripts this way. Use \i
for that.) This means also that if the query ends with (or rather contains) a semicolon, it is
immediately executed. In other cases it will merely wait in the query buffer; type semicolon
or \g to send it, or \r to cancel.

If a line number is specified, psql will position the cursor on the specified line of the file
or query buffer. Note that if a single all-digits argument is given, psql assumes it is a line
number, not a file name.

See Environment for information about configuring and customizing your editor.

\echo text [...]

Prints the arguments to the standard output, separated by one space and followed by a
newline. This can be useful to intersperse information in the output of scripts. If the first
argument is an unquoted -n, the trailing newline is not written.

Note: If you use the \o command to redirect your query output you might
wish to use \qecho instead of this command.

\ef [function_description [line_number]]

This command fetches and edits the definition of the named function, in the form of
a CREATE OR REPLACE FUNCTION command. Editing is done in the same way as
for \edit. After the editor exits, the updated command waits in the query buffer; type
semicolon or \g to send it, or \r to cancel.

The target function can be specified by name alone, or by name and arguments, for
example foo(integer, text). The argument types must be given if there is more than
one function with the same name.

If no function is specified, a blank CREATE FUNCTION template is presented for editing.

Greenplum Database Utility Guide Release Notes

846

If a line number is specified, psql will position the cursor on the specified line of the
function body. (Note that the function body typically does not begin on the first line of the
file.)

See Environment for information about configuring and customizing your editor.

\encoding [encoding]

Sets the client character set encoding. Without an argument, this command shows the
current encoding.

\f [field_separator_string]

Sets the field separator for unaligned query output. The default is the vertical bar (|). See
also \pset for a generic way of setting output options.

\g [filename]
\g [| command]

Sends the current query input buffer to the server, and optionally stores the query's output
in filename or pipes the output to the shell command command. The file or command is
written to only if the query successfully returns zero or more tuples, not if the query fails or
is a non-data-returning SQL command.

A bare \g is essentially equivalent to a semi-colon. A \g with argument is a one-shot
alternative to the \o command.

\gset [prefix]

Sends the current query input buffer to the server and stores the query's output into psql
variables. The query to be executed must return exactly one row. Each column of the row
is stored into a separate variable, named the same as the column. For example:

=> SELECT 'hello' AS var1, 10 AS var2;
-> \gset
=> \echo :var1 :var2
hello 10

If you specify a prefix, that string is prepended to the query's column names to create the
variable names to use:

=> SELECT 'hello' AS var1, 10 AS var2;
-> \gset result_
=> \echo :result_var1 :result_var2
hello 10

If a column result is NULL, the corresponding variable is unset rather than being set.

If the query fails or does not return one row, no variables are changed.

\h | \help [sql_command]

Gives syntax help on the specified SQL command. If a command is not specified,
then psql will list all the commands for which syntax help is available. If command is
an asterisk (*) then syntax help on all SQL commands is shown. To simplify typing,
commands that consist of several words do not have to be quoted.

\H | \html

Turns on HTML query output format. If the HTML format is already on, it is switched back
to the default aligned text format. This command is for compatibility and convenience, but
see \pset about setting other output options.

\i | \include filename

Reads input from the file filename and executes it as though it had been typed on the
keyboard.

Greenplum Database Utility Guide Release Notes

847

If filename is - (hyphen), then standard input is read until an EOF indication or \q meta-
command. This can be used to intersperse interactive input with input from files. Note that
Readline behavior will be used only if it is active at the outermost level.

If you want to see the lines on the screen as they are read you must set the variable ECHO
to all.

\ir | \include_relative filename

The \ir command is similar to \i, but resolves relative file names differently. When
executing in interactive mode, the two commands behave identically. However, when
invoked from a script, \ir interprets file names relative to the directory in which the script
is located, rather than the current working directory.

\l[+] | \list[+] [pattern]

List the databases in the server and show their names, owners, character set encodings,
and access privileges. If a pattern is specified, only databases whose names match
the pattern are listed. If + is appended to the command name, database sizes, default
tablespaces, and descriptions are also displayed. (Size information is only available for
databases that the current user can connect to.)

\lo_export loid filename

Reads the large object with OID loid from the database and writes it to filename. Note
that this is subtly different from the server function lo_export, which acts with the
permissions of the user that the database server runs as and on the server's file system.
Use \lo_list to find out the large object's OID.

Note: Greenplum Database does not support the PostgreSQL large object
facility for streaming user data that is stored in large-object structures.

\lo_import large_object_filename [comment]

Stores the file into a large object. Optionally, it associates the given comment with the
object. Example:

mydb=> \lo_import '/home/gpadmin/pictures/photo.xcf' 'a
picture of me'
lo_import 152801

The response indicates that the large object received object ID 152801 which one ought to
remember if one wants to access the object ever again. For that reason it is recommended
to always associate a human-readable comment with every object. Those can then be
seen with the \lo_list command. Note that this command is subtly different from the
server-side lo_import because it acts as the local user on the local file system, rather
than the server's user and file system.

Note: Greenplum Database does not support the PostgreSQL large object
facility for streaming user data that is stored in large-object structures.

\lo_list

Shows a list of all large objects currently stored in the database, along with any comments
provided for them.

Note: Greenplum Database does not support the PostgreSQL large object
facility for streaming user data that is stored in large-object structures.

\lo_unlink largeobject_oid

Deletes the large object of the specified OID from the database. Use \lo_list to find out
the large object's OID.

Note: Greenplum Database does not support the PostgreSQL large object
facility for streaming user data that is stored in large-object structures.

https://www.postgresql.org/docs/9.4/largeobjects.html
https://www.postgresql.org/docs/9.4/largeobjects.html
https://www.postgresql.org/docs/9.4/largeobjects.html
https://www.postgresql.org/docs/9.4/largeobjects.html
https://www.postgresql.org/docs/9.4/largeobjects.html
https://www.postgresql.org/docs/9.4/largeobjects.html
https://www.postgresql.org/docs/9.4/largeobjects.html
https://www.postgresql.org/docs/9.4/largeobjects.html

Greenplum Database Utility Guide Release Notes

848

\o | \out [filename]
\o | \out [| command]

Saves future query results to the file filename or pipes future results to the shell command
command. If no argument is specified, the query output is reset to the standard output.
Query results include all tables, command responses, and notices obtained from the
database server, as well as output of various backslash commands that query the
database (such as \d), but not error messages. To intersperse text output in between
query results, use \qecho.

\p

Print the current query buffer to the standard output.

\password [username]

Changes the password of the specified user (by default, the current user). This command
prompts for the new password, encrypts it, and sends it to the server as an ALTER ROLE
command. This makes sure that the new password does not appear in cleartext in the
command history, the server log, or elsewhere.

\prompt [text] name

Prompts the user to supply text, which is assigned to the variable name. An optional
prompt string, text, can be specified. (For multiword prompts, surround the text with single
quotes.)

By default, \prompt uses the terminal for input and output. However, if the -f command
line switch was used, \prompt uses standard input and standard output.

\pset [print_option [value]]

This command sets options affecting the output of query result tables. print_option
describes which option is to be set. The semantics of value vary depending on the selected
option. For some options, omitting value causes the option to be toggled or unset, as
described under the particular option. If no such behavior is mentioned, then omitting value
just results in the current setting being displayed.

\pset without any arguments displays the current status of all printing options.

Adjustable printing options are:

• border – The value must be a number. In general, the higher the number the more
borders and lines the tables will have, but this depends on the particular format. In
HTML format, this will translate directly into the border=... attribute; in the other
formats only values 0 (no border), 1 (internal dividing lines), and 2 (table frame) make
sense. latex and latex-longtable also support a border value of 3 which adds a
dividing line between each row.

• columns – Sets the target width for the wrapped format, and also the width limit for
determining whether output is wide enough to require the pager or switch to the vertical
display in expanded auto mode. The default is zero. Zero causes the target width to
be controlled by the environment variable COLUMNS, or the detected screen width if
COLUMNS is not set. In addition, if columns is zero then the wrapped format affects
screen output only. If columns is nonzero then file and pipe output is wrapped to that
width as well.

After setting the target width, use the command \pset format wrapped to enable
the wrapped format.

• expanded | x – If value is specified it must be either on or off, which will enable or
disable expanded mode, or auto. If value is omitted the command toggles between
the on and off settings. When expanded mode is enabled, query results are displayed
in two columns, with the column name on the left and the data on the right. This mode
is useful if the data wouldn't fit on the screen in the normal "horizontal" mode. In the
auto setting, the expanded mode is used whenever the query output is wider than the
screen, otherwise the regular mode is used. The auto setting is only effective in the

Greenplum Database Utility Guide Release Notes

849

aligned and wrapped formats. In other formats, it always behaves as if the expanded
mode is off.

• fieldsep – Specifies the field separator to be used in unaligned output mode.
That way one can create, for example, tab- or comma-separated output, which other
programs might prefer. To set a tab as field separator, type \pset fieldsep '\t'.
The default field separator is '|' (a vertical bar).

• fieldsep_zero - Sets the field separator to use in unaligned output format to a zero
byte.

• footer – If value is specified it must be either on or off which will enable or disable
display of the table footer (the (n rows) count). If value is omitted the command toggles
footer display on or off.

• format – Sets the output format to one of unaligned, aligned, html, latex (uses
tabular), latex-longtable, troff-ms, or wrapped. Unique abbreviations are
allowed.

unaligned format writes all columns of a row on one line, separated by the currently
active field separator. This is useful for creating output that might be intended to be
read in by other programs (for example, tab-separated or comma-separated format).

aligned format is the standard, human-readable, nicely formatted text output; this is
the default.

The html, latex, latex-longtable, and troff-ms formats put out tables that are
intended to be included in documents using the respective mark-up language. They are
not complete documents! (This might not be so dramatic in HTML, but in LaTeX you
must have a complete document wrapper. latex-longtable also requires the LaTeX
longtable and booktabs packages.)

The wrapped format is like aligned, but wraps wide data values across lines to make
the output fit in the target column width. The target width is determined as described
under the columns option. Note that psql does not attempt to wrap column header
titles; the wrapped format behaves the same as aligned if the total width needed for
column headers exceeds the target.

• linestyle [unicode | ascii | old-ascii] – Sets the border line drawing style
to one of unicode, ascii, or old-ascii. Unique abbreviations, including one letter, are
allowed for the three styles. The default setting is ascii. This option only affects the
aligned and wrapped output formats.

ascii – uses plain ASCII characters. Newlines in data are shown using a + symbol in
the right-hand margin. When the wrapped format wraps data from one line to the next
without a newline character, a dot (.) is shown in the right-hand margin of the first line,
and again in the left-hand margin of the following line.

old-ascii – style uses plain ASCII characters, using the formatting style used in
PostgreSQL 8.4 and earlier. Newlines in data are shown using a : symbol in place
of the left-hand column separator. When the data is wrapped from one line to the
next without a newline character, a ; symbol is used in place of the left-hand column
separator.

unicode – style uses Unicode box-drawing characters. Newlines in data are shown
using a carriage return symbol in the right-hand margin. When the data is wrapped from
one line to the next without a newline character, an ellipsis symbol is shown in the right-
hand margin of the first line, and again in the left-hand margin of the following line.

When the border setting is greater than zero, this option also determines the
characters with which the border lines are drawn. Plain ASCII characters work
everywhere, but Unicode characters look nicer on displays that recognize them.

Greenplum Database Utility Guide Release Notes

850

• null 'string' – The second argument is a string to print whenever a column is null.
The default is to print nothing, which can easily be mistaken for an empty string. For
example, one might prefer \pset null '(null)'.

• numericlocale – If value is specified it must be either on or off which will enable
or disable display of a locale-specific character to separate groups of digits to the left
of the decimal marker. If value is omitted the command toggles between regular and
locale-specific numberic output.

• pager – Controls the use of a pager for query and psql help output. If the environment
variable PAGER is set, the output is piped to the specified program. Otherwise a
platform-dependent default (such as more) is used. When off, the pager program is
not used. When on, the pager is used only when appropriate, i.e. when the output is to
a terminal and will not fit on the screen. Pager can also be set to always, which causes
the pager to be used for all terminal output regardless of whether it fits on the screen.
\pset pager without a value toggles pager use on and off.

• recordsep – Specifies the record (line) separator to use in unaligned output mode.
The default is a newline character.

• recordsep_zero - Sets the record separator to use in unaligned output format to a
zero byte.

• tableattr | T [text] – In HTML format, this specifies attributes to be placed inside the
HTML table tag. This could for example be cellpadding or bgcolor. Note that you
probably don't want to specify border here, as that is already taken care of by \pset
border. If no value is given, the table attributes are unset.

In latex-longtable format, this controls the proportional width of each column
containing a left-aligned data type. It is specified as a whitespace-separated list of
values, e.g. '0.2 0.2 0.6'. Unspecified output columns use the last specified value.

• title [text] – Sets the table title for any subsequently printed tables. This can be used
to give your output descriptive tags. If no value is given, the title is unset.

• tuples_only | t [novalue | on | off] – If value is specified, it must be either on or off
which will enable or disable tuples-only mode. If value is omitted the command toggles
between regular and tuples-only output. Regular output includes extra information such
as column headers, titles, and various footers. In tuples-only mode, only actual table
data is shown. The \t command is equivalent to \psettuples_only and is provided
for convenience.

Tip:

There are various shortcut commands for \pset. See \a, \C, \f, \H, \t, \T, and \x.

\q | \quit

Quits the psql program. In a script file, only execution of that script is terminated.

\qecho text [...]

This command is identical to \echo except that the output will be written to the query
output channel, as set by \o.

\r | \reset

Resets (clears) the query buffer.

\s [filename]

Print psql's command line history to filename. If filename is omitted, the history
is written to the standard output (using the pager if appropriate). This command is not
available if psql was built without Readline support.

\set [name [value [...]]]

Sets the psql variable name to value, or if more than one value is given, to the
concatenation of all of them. If only one argument is given, the variable is just set with an
empty value. To unset a variable, use the \unset command.

Greenplum Database Utility Guide Release Notes

851

\set without any arguments displays the names and values of all currently-set psql
variables.

Valid variable names can contain characters, digits, and underscores. See "Variables" in
Advanced Features. Variable names are case-sensitive.

Although you are welcome to set any variable to anything you want, psql treats several
variables as special. They are documented in the topic about variables.

This command is unrelated to the SQL command SET.

\setenv name [value]

Sets the environment variable name to value, or if the value is not supplied, unsets the
environment variable. Example:

testdb=> \setenv PAGER less
testdb=> \setenv LESS -imx4F

\sf[+] function_description

This command fetches and shows the definition of the named function, in the form of a
CREATE OR REPLACE FUNCTION command. The definition is printed to the current query
output channel, as set by \o.

The target function can be specified by name alone, or by name and arguments, for
example foo(integer, text). The argument types must be given if there is more than
one function of the same name.

If + is appended to the command name, then the output lines are numbered, with the first
line of the function body being line 1.

\t [novalue | on | off]

The \t command by itself toggles a display of output column name headings and row
count footer. The values on and off set the tuples display, regardless of the current
setting. This command is equivalent to \pset tuples_only and is provided for
convenience.

\T table_options

Specifies attributes to be placed within the table tag in HTML output format. This
command is equivalent to \pset tableattr table_options

\timing [novalue | on | off]

Without a parameter, toggles a display of how long each SQL statement takes, in
milliseconds. The values on and off set the time display, regardless of the current setting.

\unset name

Unsets (deletes) the psql variable name.

\w | \write filename
\w | \write | command

Outputs the current query buffer to the file filename or pipes it to the shell command
command.

\watch [seconds]

Repeatedly execute the current query buffer (like \g) until interrupted or the query fails.
Wait the specified number of seconds (default 2) between executions.

\x [on | off | auto]

Sets or toggles expanded table formatting mode. As such it is equivalent to \pset
expanded.

\z [pattern]

Greenplum Database Utility Guide Release Notes

852

Lists tables, views, and sequences with their associated access privileges. If a pattern is
specified, only tables, views and sequences whose names match the pattern are listed.
This is an alias for \dp.

\! [command]

Escapes to a separate shell or executes the shell command command. The arguments are
not further interpreted; the shell will see them as-is. In particular, the variable substitution
rules and backslash escapes do not apply.

\?

Shows help information about the psql backslash commands.

Patterns
The various \d commands accept a pattern parameter to specify the object name(s) to be displayed.
In the simplest case, a pattern is just the exact name of the object. The characters within a pattern are
normally folded to lower case, just as in SQL names; for example, \dt FOO will display the table named
foo. As in SQL names, placing double quotes around a pattern stops folding to lower case. Should you
need to include an actual double quote character in a pattern, write it as a pair of double quotes within
a double-quote sequence; again this is in accord with the rules for SQL quoted identifiers. For example,
\dt "FOO""BAR" will display the table named FOO"BAR (not foo"bar). Unlike the normal rules for SQL
names, you can put double quotes around just part of a pattern, for instance \dt FOO"FOO"BAR will
display the table named fooFOObar.

Within a pattern, * matches any sequence of characters (including no characters) and ? matches any
single character. (This notation is comparable to UNIX shell file name patterns.) For example, \dt int*
displays all tables whose names begin with int. But within double quotes, * and ? lose these special
meanings and are just matched literally.

A pattern that contains a dot (.) is interpreted as a schema name pattern followed by an object name
pattern. For example, \dt foo*.bar* displays all tables whose table name starts with bar that are
in schemas whose schema name starts with foo. When no dot appears, then the pattern matches only
objects that are visible in the current schema search path. Again, a dot within double quotes loses its
special meaning and is matched literally.

Advanced users can use regular-expression notations. All regular expression special characters work
as specified in the PostgreSQL documentation on regular expressions, except for . which is taken as a
separator as mentioned above, * which is translated to the regular-expression notation .*, and ? which
is translated to .. You can emulate these pattern characters at need by writing ? for .,(R+|) for R*, or
(R|) for R?. Remember that the pattern must match the whole name, unlike the usual interpretation of
regular expressions; write * at the beginning and/or end if you don't wish the pattern to be anchored. Note
that within double quotes, all regular expression special characters lose their special meanings and are
matched literally. Also, the regular expression special characters are matched literally in operator name
patterns (such as the argument of \do).

Whenever the pattern parameter is omitted completely, the \d commands display all objects that are
visible in the current schema search path – this is equivalent to using the pattern *. To see all objects in
the database, use the pattern *.*.

Advanced Features
Variables

psql provides variable substitution features similar to common UNIX command shells. Variables are
simply name/value pairs, where the value can be any string of any length. The name must consist of letters
(including non-Latin letters), digits, and underscores.

To set a variable, use the psql meta-command \set. For example,

testdb=> \set foo bar

https://www.postgresql.org/docs/9.4/functions-matching.html#FUNCTIONS-POSIX-REGEXP

Greenplum Database Utility Guide Release Notes

853

sets the variable foo to the value bar. To retrieve the content of the variable, precede the name with a
colon, for example:

testdb=> \echo :foo
bar

This works in both regular SQL commands and meta-commands; there is more detail in SQL Interpolation.

If you call \set without a second argument, the variable is set, with an empty string as value. To unset
(i.e., delete) a variable, use the command \unset. To show the values of all variables, call \set without
any argument.

Note: The arguments of \set are subject to the same substitution rules as with other commands.
Thus you can construct interesting references such as \set :foo 'something' and get 'soft
links' or 'variable variables' of Perl or PHP fame, respectively. Unfortunately, there is no way to do
anything useful with these constructs. On the other hand, \set bar :foo is a perfectly valid way
to copy a variable.

A number of these variables are treated specially by psql. They represent certain option settings that
can be changed at run time by altering the value of the variable, or in some cases represent changeable
state of psql. Although you can use these variables for other purposes, this is not recommended, as the
program behavior might grow really strange really quickly. By convention, all specially treated variables'
names consist of all upper-case ASCII letters (and possibly digits and underscores). To ensure maximum
compatibility in the future, avoid using such variable names for your own purposes. A list of all specially
treated variables follows.

AUTOCOMMIT

When on (the default), each SQL command is automatically committed upon successful
completion. To postpone commit in this mode, you must enter a BEGIN or START
TRANSACTION SQL command. When off or unset, SQL commands are not committed until
you explicitly issue COMMIT or END. The autocommit-on mode works by issuing an implicit
BEGIN for you, just before any command that is not already in a transaction block and is
not itself a BEGIN or other transaction-control command, nor a command that cannot be
executed inside a transaction block (such as VACUUM).

In autocommit-off mode, you must explicitly abandon any failed transaction by entering
ABORT or ROLLBACK. Also keep in mind that if you exit the session without committing,
your work will be lost.

The autocommit-on mode is PostgreSQL's traditional behavior, but autocommit-off
is closer to the SQL spec. If you prefer autocommit-off, you may wish to set it in your
~/.psqlrc file.

COMP_KEYWORD_CASE

Determines which letter case to use when completing an SQL key word. If set to lower
or upper, the completed word will be in lower or upper case, respectively. If set to
preserve-lower or preserve-upper (the default), the completed word will be in the
case of the word already entered, but words being completed without anything entered will
be in lower or upper case, respectively.

DBNAME

The name of the database you are currently connected to. This is set every time you
connect to a database (including program start-up), but can be unset.

ECHO

If set to all, all nonempty input lines are printed to standard output as they are read. (This
does not apply to lines read interactively.) To select this behavior on program start-up, use
the switch -a. If set to queries, psql prints each query to standard output as it is sent to
the server. The switch for this is -e.

ECHO_HIDDEN

Greenplum Database Utility Guide Release Notes

854

When this variable is set to on and a backslash command queries the database, the query
is first shown. This feature helps you to study Greenplum Database internals and provide
similar functionality in your own programs. (To select this behavior on program start-up,
use the switch -E.) If you set the variable to the value noexec, the queries are just shown
but are not actually sent to the server and executed.

ENCODING

The current client character set encoding.

FETCH_COUNT

If this variable is set to an integer value > 0, the results of SELECT queries are fetched
and displayed in groups of that many rows, rather than the default behavior of collecting
the entire result set before display. Therefore only a limited amount of memory is used,
regardless of the size of the result set. Settings of 100 to 1000 are commonly used when
enabling this feature. Keep in mind that when using this feature, a query may fail after
having already displayed some rows.

Although you can use any output format with this feature, the default aligned format tends
to look bad because each group of FETCH_COUNT rows will be formatted separately,
leading to varying column widths across the row groups. The other output formats work
better.

HISTCONTROL

If this variable is set to ignorespace, lines which begin with a space are not entered
into the history list. If set to a value of ignoredups, lines matching the previous history
line are not entered. A value of ignoreboth combines the two options. If unset, or if set
to any other value than those above, all lines read in interactive mode are saved on the
history list.

HISTFILE

The file name that will be used to store the history list. The default value is
~/.psql_history. For example, putting

\set HISTFILE ~/.psql_history- :DBNAME

in ~/.psqlrc will cause psql to maintain a separate history for each database.

HISTSIZE

The number of commands to store in the command history. The default value is 500.

HOST

The database server host you are currently connected to. This is set every time you
connect to a database (including program start-up), but can be unset.

IGNOREEOF

If unset, sending an EOF character (usually CTRL+D) to an interactive session of psql
will terminate the application. If set to a numeric value, that many EOF characters are
ignored before the application terminates. If the variable is set but has no numeric value,
the default is 10.

LASTOID

The value of the last affected OID, as returned from an INSERT or lo_import command.
This variable is only guaranteed to be valid until after the result of the next SQL command
has been displayed.

ON_ERROR_ROLLBACK

When set to on, if a statement in a transaction block generates an error, the error is
ignored and the transaction continues. When set to interactive, such errors are
only ignored in interactive sessions, and not when reading script files. When unset or
set to off, a statement in a transaction block that generates an error aborts the entire

Greenplum Database Utility Guide Release Notes

855

transaction. The error rollback mode works by issuing an implicit SAVEPOINT for you, just
before each command that is in a transaction block, and rolls back to the savepoint on
error.

ON_ERROR_STOP

By default, command processing continues after an error. When this variable is set to
on, processing will instead stop immediately. In interactive mode, psql will return to the
command prompt; otherwise, psql will exit, returning error code 3 to distinguish this case
from fatal error conditions, which are reported using error code 1. In either case, any
currently running scripts (the top-level script, if any, and any other scripts which it may
have in invoked) will be terminated immediately. If the top-level command string contained
multiple SQL commands, processing will stop with the current command.

PORT

The database server port to which you are currently connected. This is set every time you
connect to a database (including program start-up), but can be unset.

PROMPT1
PROMPT2
PROMPT3

These specify what the prompts psql issues should look like. See "Prompting".

QUIET

Setting this variable to on is equivalent to the command line option -q. It is not very useful
in interactive mode.

SINGLELINE

This variable is equivalent to the command line option -S.

SINGLESTEP

Setting this variable to on is equivalent to the command line option -s.

USER

The database user you are currently connected as. This is set every time you connect to a
database (including program start-up), but can be unset.

VERBOSITY

This variable can be set to the values default, verbose, or terse to control the
verbosity of error reports.

SQL Interpolation

A key feature of psql variables is that you can substitute ("interpolate") them into regular SQL statements,
as well as the arguments of meta-commands. Furthermore, psql provides facilities for ensuring that
variable values used as SQL literals and identifiers are properly quoted. The syntax for interpolating a
value without any quoting is to prepend the variable name with a colon (:). For example,

testdb=> \set foo 'my_table'
testdb=> SELECT * FROM :foo;

would query the table my_table. Note that this may be unsafe: the value of the variable is copied literally,
so it can contain unbalanced quotes, or even backslash commands. You must make sure that it makes
sense where you put it.

When a value is to be used as an SQL literal or identifier, it is safest to arrange for it to be quoted. To quote
the value of a variable as an SQL literal, write a colon followed by the variable name in single quotes. To
quote the value as an SQL identifier, write a colon followed by the variable name in double quotes. These
constructs deal correctly with quotes and other special characters embedded within the variable value. The
previous example would be more safely written this way:

testdb=> \set foo 'my_table'

Greenplum Database Utility Guide Release Notes

856

testdb=> SELECT * FROM :"foo";

Variable interpolation will not be performed within quoted SQL literals and identifiers. Therefore, a
construction such as ':foo' doesn't work to produce a quoted literal from a variable's value (and it would
be unsafe if it did work, since it wouldn't correctly handle quotes embedded in the value).

One example use of this mechanism is to copy the contents of a file into a table column. First load the file
into a variable and then interpolate the variable's value as a quoted string:

testdb=> \set content `cat my_file.txt`
testdb=> INSERT INTO my_table VALUES (:'content');

(Note that this still won't work if my_file.txt contains NUL bytes. psql does not support embedded NUL
bytes in variable values.)

Since colons can legally appear in SQL commands, an apparent attempt at interpolation (that is, :name,
:'name', or :"name") is not replaced unless the named variable is currently set. In any case, you can
escape a colon with a backslash to protect it from substitution.

The colon syntax for variables is standard SQL for embedded query languages, such as ECPG. The
colon syntaxes for array slices and type casts are Greenplum Database extensions, which can sometimes
conflict with the standard usage. The colon-quote syntax for escaping a variable's value as an SQL literal
or identifier is a psql extension.

Prompting

The prompts psql issues can be customized to your preference. The three variables PROMPT1, PROMPT2,
and PROMPT3 contain strings and special escape sequences that describe the appearance of the prompt.
Prompt 1 is the normal prompt that is issued when psql requests a new command. Prompt 2 is issued
when more input is expected during command entry, for example because the command was not
terminated with a semicolon or a quote was not closed. Prompt 3 is issued when you are running an SQL
COPY FROM STDIN command and you need to type in a row value on the terminal.

The value of the selected prompt variable is printed literally, except where a percent sign (%) is
encountered. Depending on the next character, certain other text is substituted instead. Defined
substitutions are:

%M

The full host name (with domain name) of the database server, or [local] if the
connection is over a UNIX domain socket, or [local:/dir/name], if the UNIX domain
socket is not at the compiled in default location.

%m

The host name of the database server, truncated at the first dot, or [local] if the
connection is over a UNIX domain socket.

%>

The port number at which the database server is listening.

%n

The database session user name. (The expansion of this value might change during a
database session as the result of the command SET SESSION AUTHORIZATION.)

%/

The name of the current database.

%~

Like %/, but the output is ~ (tilde) if the database is your default database.

%#

Greenplum Database Utility Guide Release Notes

857

If the session user is a database superuser, then a #, otherwise a >. (The expansion of
this value might change during a database session as the result of the command SET
SESSION AUTHORIZATION.)

%R

In prompt 1 normally =, but ^ if in single-line mode, or ! if the session is disconnected
from the database (which can happen if \connect fails). In prompt 2 %R is replaced by a
character that depends on why psql expects more input: - if the command simply wasn't
terminated yet, but * if there is an unfinished /* ... */ comment, a single quote if there
is an unfinished quoted string, a double quote if there is an unfinished quoted identifier, a
dollar sign if there is an unfinished dollar-quoted string, or (if there is an unmatched left
parenthesis. In prompt 3 %R doesn't produce anything.

%x

Transaction status: an empty string when not in a transaction block, or * when in a
transaction block, or ! when in a failed transaction block, or ? when the transaction state is
indeterminate (for example, because there is no connection).

%digits

The character with the indicated octal code is substituted.

%:name:

The value of the psql variable name. See "Variables" in Advanced Features for details.

%`command`

The output of command, similar to ordinary back-tick substitution.

%[... %]

Prompts may contain terminal control characters which, for example, change the color,
background, or style of the prompt text, or change the title of the terminal window. In order
for line editing to work properly, these non-printing control characters must be designated
as invisible by surrounding them with %[and %]. Multiple pairs of these may occur within
the prompt. For example,

testdb=> \set PROMPT1 '%[%033[1;33;40m%]%n@%/%R%[%033[0m%]%#'

results in a boldfaced (1;) yellow-on-black (33;40) prompt on VT100-compatible, color-
capable terminals. To insert a percent sign into your prompt, write %%. The default prompts
are '%/%R%# ' for prompts 1 and 2, and '>> ' for prompt 3.

Command-Line Editing

psql uses the readline library for convenient line editing and retrieval. The command history is
automatically saved when psql exits and is reloaded when psql starts up. Tab-completion is also
supported, although the completion logic makes no claim to be an SQL parser. The queries generated
by tab-completion can also interfere with other SQL commands, e.g. SET TRANSACTION ISOLATION
LEVEL. If for some reason you do not like the tab completion, you can turn it off by putting this in a file
named .inputrc in your home directory:

$if psql
set disable-completion on
$endif

Environment
COLUMNS

If \pset columns is zero, controls the width for the wrapped format and width for
determining if wide output requires the pager or should be switched to the vertical format in
expanded auto mode.

Greenplum Database Utility Guide Release Notes

858

PAGER

If the query results do not fit on the screen, they are piped through this command. Typical
values are more or less. The default is platform-dependent. The use of the pager can
be disabled by setting PAGER to empty, or by using pager-related options of the \pset
command.

PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters.

PSQL_EDITOR
EDITOR
VISUAL

Editor used by the \e and \ef commands. The variables are examined in the order listed;
the first that is set is used.

The built-in default editors are vi on Unix systems and notepad.exe on Windows
systems.

PSQL_EDITOR_LINENUMBER_ARG

When \e or \ef is used with a line number argument, this variable specifies the
command-line argument used to pass the starting line number to the user's editor. For
editors such as Emacs or vi, this is a plus sign. Include a trailing space in the value of
the variable if there needs to be space between the option name and the line number.
Examples:

PSQL_EDITOR_LINENUMBER_ARG='+'
PSQL_EDITOR_LINENUMBER_ARG='--line '

The default is + on Unix systems (corresponding to the default editor vi, and useful for
many other common editors); but there is no default on Windows systems.

PSQL_HISTORY

Alternative location for the command history file. Tilde (~) expansion is performed.

PSQLRC

Alternative location of the user's .psqlrc file. Tilde (~) expansion is performed.

SHELL

Command executed by the \! command.

TMPDIR

Directory for storing temporary files. The default is /tmp.

Files
psqlrc and ~/.psqlrc

Unless it is passed an -X or -c option, psql attempts to read and execute commands
from the system-wide startup file (psqlrc) and then the user's personal startup file
(~/.psqlrc), after connecting to the database but before accepting normal commands.
These files can be used to set up the client and/or the server to taste, typically with \set
and SET commands.

The system-wide startup file is named psqlrc and is sought in the installation's "system
configuration" directory, which is most reliably identified by running pg_config --
sysconfdir. By default this directory will be ../etc/ relative to the directory containing
the Greenplum Database executables. The name of this directory can be set explicitly via
the PGSYSCONFDIR environment variable.

Greenplum Database Utility Guide Release Notes

859

The user's personal startup file is named .psqlrc and is sought in the invoking user's
home directory. On Windows, which lacks such a concept, the personal startup file is
named %APPDATA%\postgresql\psqlrc.conf. The location of the user's startup file
can be set explicitly via the PSQLRC environment variable.

Both the system-wide startup file and the user's personal startup file can be made psql-
version-specific by appending a dash and the underlying PostgreSQL major or minor
release number to the file name, for example ~/.psqlrc-9.4. The most specific version-
matching file will be read in preference to a non-version-specific file.

.psql_history

The command-line history is stored in the file ~/.psql_history, or %APPDATA%
\postgresql\psql_history on Windows.

The location of the history file can be set explicitly via the PSQL_HISTORY environment
variable.

Notes
psql works best with servers of the same or an older major version. Backslash commands are particularly
likely to fail if the server is of a newer version than psql itself. However, backslash commands of the \d
family should work with older server versions, though not necessarily with servers newer than psql itself.
The general functionality of running SQL commands and displaying query results should also work with
servers of a newer major version, but this cannot be guaranteed in all cases.

If you want to use psql to connect to several servers of different major versions, it is recommended that
you use the newest version of psql. Alternatively, you can keep a copy of psql from each major version
around and be sure to use the version that matches the respective server. But in practice, this additional
complication should not be necessary.

Notes for Windows Users
psql is built as a console application. Since the Windows console windows use a different encoding than
the rest of the system, you must take special care when using 8-bit characters within psql. If psql detects
a problematic console code page, it will warn you at startup. To change the console code page, two things
are necessary:

Set the code page by entering:

cmd.exe /c chcp 1252

1252 is a character encoding of the Latin alphabet, used by Microsoft Windows for English and some other
Western languages. If you are using Cygwin, you can put this command in /etc/profile.

Set the console font to Lucida Console, because the raster font does not work with the ANSI code page.

Examples
Start psql in interactive mode:

psql -p 54321 -U sally mydatabase

In psql interactive mode, spread a command over several lines of input. Notice the changing prompt:

testdb=> CREATE TABLE my_table (
testdb(> first integer not null default 0,
testdb(> second text)
testdb-> ;
CREATE TABLE

Greenplum Database Utility Guide Release Notes

860

Look at the table definition:

testdb=> \d my_table
 Table "my_table"
 Attribute | Type | Modifier
-----------+---------+--------------------
 first | integer | not null default 0
 second | text |

Run psql in non-interactive mode by passing in a file containing SQL commands:

psql -f /home/gpadmin/test/myscript.sql

reindexdb
Rebuilds indexes in a database.

Synopsis

reindexdb [connection-option ...] [--table | -t table]
 [--index | -i index] [dbname]

reindexdb [connection-option ...] --all | -a

reindexdb [connection-option ...] --system | -s [dbname]

reindexdb -? | --help

reindexdb -V | --version

Description
reindexdb is a utility for rebuilding indexes in Greenplum Database.

reindexdb is a wrapper around the SQL command REINDEX. There is no effective difference between
reindexing databases via this utility and via other methods for accessing the server.

Options
-a | --all

Reindex all databases.

[-d] dbname | [--dbname=]dbname

Specifies the name of the database to be reindexed. If this is not specified and -all is not
used, the database name is read from the environment variable PGDATABASE. If that is not
set, the user name specified for the connection is used.

-e | --echo

Echo the commands that reindexdb generates and sends to the server.

-i index | --index=index

Recreate index only.

-q | --quiet

Do not display a response.

-s | --system

Reindex system catalogs.

-t table | --table=table

Greenplum Database Utility Guide Release Notes

861

Reindex table only. Multiple tables can be reindexed by writing multiple -t switches.

-V | --version

Print the reindexdb version and exit.

-? | --help

Show help about reindexdb command line arguments, and exit.

Connection Options
-h host | --host=host

Specifies the host name of the machine on which the Greenplum master database server
is running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port=port

Specifies the TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or defaults to
5432.

-U username | --username=username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system user name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt
will fail. This option can be useful in batch jobs and scripts where no user is present to
enter a password.

-W | --password

Force a password prompt.

--maintenance-db=dbname

Specifies the name of the database to connect to discover what other databases should be
reindexed. If not specified, the postgres database will be used, and if that does not exist,
template1 will be used.

Notes
reindexdb might need to connect several times to the master server, asking for a password each time. It
is convenient to have a ~/.pgpass file in such cases.

Examples
To reindex the database mydb:

reindexdb mydb

To reindex the table foo and the index bar in a database named abcd:

reindexdb --table foo --index bar abcd

See Also
REINDEX in the Greenplum Database Reference Guide

vacuumdb
Garbage-collects and analyzes a database.

Greenplum Database Utility Guide Release Notes

862

Synopsis

vacuumdb [connection-option...] [--full | -f] [--freeze | -F] [--verbose | -
v]
 [--analyze | -z] [--analyze-only | -Z] [--table | -t table [(column
 [,...])]] [dbname]

vacuumdb [connection-option...] [--all | -a] [--full | -f] [-F]
 [--verbose | -v] [--analyze | -z]
 [--analyze-only | -Z]

vacuumdb -? | --help

vacuumdb -V | --version

Description
vacuumdb is a utility for cleaning a Greenplum Database database. vacuumdb will also generate internal
statistics used by the Greenplum Database query optimizer.

vacuumdb is a wrapper around the SQL command VACUUM. There is no effective difference between
vacuuming databases via this utility and via other methods for accessing the server.

Options
-a | --all

Vacuums all databases.

[-d] dbname | [--dbname=]dbname

The name of the database to vacuum. If this is not specified and -a (or --all) is not
used, the database name is read from the environment variable PGDATABASE. If that is not
set, the user name specified for the connection is used.

-e | --echo

Echo the commands that reindexdb generates and sends to the server.

-f | --full

Selects a full vacuum, which may reclaim more space, but takes much longer and
exclusively locks the table.

Warning: A VACUUM FULL is not recommended in Greenplum Database.

-F | --freeze

Freeze row transaction information.

-q | --quiet

Do not display a response.

-t table [(column)] | --table= table [(column)]

Clean or analyze this table only. Column names may be specified only in conjunction with
the --analyze or --analyze-all options. Multiple tables can be vacuumed by writing
multiple -t switches. If you specify columns, you probably have to escape the parentheses
from the shell.

-v | --verbose

Print detailed information during processing.

-z | --analyze

Collect statistics for use by the query planner.

-Z | --analyze-only

Only calculate statistics for use by the query planner (no vacuum).

Greenplum Database Utility Guide Release Notes

863

-V | --version

Print the vacuumdb version and exit.

-? | --help

Show help about vacuumdb command line arguments, and exit.

Connection Options
-h host | --host=host

Specifies the host name of the machine on which the Greenplum master database server
is running. If not specified, reads from the environment variable PGHOST or defaults to
localhost.

-p port | --port=port

Specifies the TCP port on which the Greenplum master database server is listening for
connections. If not specified, reads from the environment variable PGPORT or defaults to
5432.

-U username | --username=username

The database role name to connect as. If not specified, reads from the environment
variable PGUSER or defaults to the current system user name.

-w | --no-password

Never issue a password prompt. If the server requires password authentication and a
password is not available by other means such as a .pgpass file, the connection attempt
will fail. This option can be useful in batch jobs and scripts where no user is present to
enter a password.

-W | --password

Force a password prompt.

--maintenance-db=dbname

Specifies the name of the database to connect to discover what other databases should be
vacuumed. If not specified, the postgres database will be used, and if that does not exist,
template1 will be used.

Notes
vacuumdb might need to connect several times to the master server, asking for a password each time. It is
convenient to have a ~/.pgpass file in such cases.

Examples
To clean the database test:

vacuumdb test

To clean and analyze a database named bigdb:

vacuumdb --analyze bigdb

To clean a single table foo in a database named mydb, and analyze a single column bar of the table.
Note the quotes around the table and column names to escape the parentheses from the shell:

vacuumdb --analyze --verbose --table 'foo(bar)' mydb

See Also
VACUUM and ANALYZE in the Greenplum Database Reference Guide

Greenplum Database Utility Guide Release Notes

864

Additional Supplied Programs
Additional programs available in the Greenplum Database installation.

The following PostgreSQL contrib server utility programs are installed:

• pg_upgrade - Server program to upgrade a Postgres Database server instance.

Note: pg_upgrade is not intended for direct use with Greenplum 6, but will be used by
Greenplum upgrade utilities in a future release.

• pg_upgrade_support - supporting library for pg_upgrade.
• pg_xlogdump - Server utility program to display a human-readable rendering of the write-ahead log of

a Greenplum Database cluster.

https://www.postgresql.org/docs/9.4/pgupgrade.html
https://www.postgresql.org/docs/9.4/pgxlogdump.html

865

Chapter 7

Greenplum Database Reference Guide

Reference information for Greenplum Database systems including SQL commands, system catalogs,
environment variables, server configuration parameters, character set support, datatypes, and Greenplum
Database extensions.

Greenplum Database Reference Guide Release Notes

866

SQL Commands
The following SQL commands are available in Greenplum Database:

• ABORT
• ALTER AGGREGATE
• ALTER COLLATION
• ALTER CONVERSION
• ALTER DATABASE
• ALTER DEFAULT PRIVILEGES
• ALTER DOMAIN
• ALTER EXTERNAL TABLE
• ALTER FOREIGN DATA WRAPPER
• ALTER FOREIGN TABLE
• ALTER FUNCTION
• ALTER GROUP
• ALTER INDEX
• ALTER LANGUAGE
• ALTER OPERATOR
• ALTER OPERATOR CLASS
• ALTER OPERATOR FAMILY
• ALTER PROTOCOL
• ALTER RESOURCE GROUP
• ALTER RESOURCE QUEUE
• ALTER ROLE
• ALTER RULE
• ALTER SCHEMA
• ALTER SEQUENCE
• ALTER SERVER
• ALTER TABLE
• ALTER TABLESPACE
• ALTER TEXT SEARCH CONFIGURATION
• ALTER TEXT SEARCH DICTIONARY
• ALTER TEXT SEARCH PARSER
• ALTER TEXT SEARCH TEMPLATE
• ALTER TYPE
• ALTER USER
• ALTER USER MAPPING
• ALTER VIEW
• ANALYZE
• BEGIN
• CHECKPOINT
• CLOSE
• CLUSTER
• COMMENT
• COMMIT
• COPY
• CREATE AGGREGATE
• CREATE CAST

Greenplum Database Reference Guide Release Notes

867

• CREATE COLLATION
• CREATE CONVERSION
• CREATE DATABASE
• CREATE DOMAIN
• CREATE EXTERNAL TABLE
• CREATE FOREIGN DATA WRAPPER
• CREATE FOREIGN TABLE
• CREATE FUNCTION
• CREATE GROUP
• CREATE INDEX
• CREATE LANGUAGE
• CREATE OPERATOR
• CREATE OPERATOR CLASS
• CREATE OPERATOR FAMILY
• CREATE PROTOCOL
• CREATE RESOURCE GROUP
• CREATE RESOURCE QUEUE
• CREATE ROLE
• CREATE RULE
• CREATE SCHEMA
• CREATE SEQUENCE
• CREATE SERVER
• CREATE TABLE
• CREATE TABLE AS
• CREATE TABLESPACE
• CREATE TEXT SEARCH CONFIGURATION
• CREATE TEXT SEARCH DICTIONARY
• CREATE TEXT SEARCH PARSER
• CREATE TEXT SEARCH TEMPLATE
• CREATE TYPE
• CREATE USER
• CREATE USER MAPPING
• CREATE VIEW
• DEALLOCATE
• DECLARE
• DELETE
• DISCARD
• DO
• DROP AGGREGATE
• DROP CAST
• DROP COLLATION
• DROP CONVERSION
• DROP DATABASE
• DROP DOMAIN
• DROP EXTERNAL TABLE
• DROP FOREIGN DATA WRAPPER
• DROP FOREIGN TABLE
• DROP FUNCTION
• DROP GROUP
• DROP INDEX

Greenplum Database Reference Guide Release Notes

868

• DROP LANGUAGE
• DROP OPERATOR
• DROP OPERATOR CLASS
• DROP OPERATOR FAMILY
• DROP OWNED
• DROP PROTOCOL
• DROP RESOURCE GROUP
• DROP RESOURCE QUEUE
• DROP ROLE
• DROP RULE
• DROP SCHEMA
• DROP SEQUENCE
• DROP SERVER
• DROP TABLE
• DROP TABLESPACE
• DROP TEXT SEARCH CONFIGURATION
• DROP TEXT SEARCH DICTIONARY
• DROP TEXT SEARCH PARSER
• DROP TEXT SEARCH TEMPLATE
• DROP TYPE
• DROP USER
• DROP USER MAPPING
• DROP VIEW
• END
• EXECUTE
• EXPLAIN
• FETCH
• GRANT
• INSERT
• LOAD
• LOCK
• MOVE
• PREPARE
• REASSIGN OWNED
• REINDEX
• RELEASE SAVEPOINT
• RESET
• REVOKE
• ROLLBACK
• ROLLBACK TO SAVEPOINT
• SAVEPOINT
• SELECT
• SELECT INTO
• SET
• SET CONSTRAINTS
• SET ROLE
• SET SESSION AUTHORIZATION
• SET TRANSACTION
• SHOW
• START TRANSACTION

Greenplum Database Reference Guide Release Notes

869

• TRUNCATE
• UPDATE
• VACUUM
• VALUES

* Not implemented in 5.0

SQL Syntax Summary

ABORT
Aborts the current transaction.

ABORT [WORK | TRANSACTION]

See ABORT for more information.

ALTER AGGREGATE
Changes the definition of an aggregate function

ALTER AGGREGATE name (aggregate_signature) RENAME TO new_name

ALTER AGGREGATE name (aggregate_signature) OWNER TO new_owner

ALTER AGGREGATE name (aggregate_signature) SET SCHEMA new_schema

See ALTER AGGREGATE for more information.

ALTER COLLATION
Changes the definition of a collation.

ALTER COLLATION name RENAME TO new_name

ALTER COLLATION name OWNER TO new_owner

ALTER COLLATION name SET SCHEMA new_schema

See ALTER COLLATION for more information.

ALTER CONVERSION
Changes the definition of a conversion.

ALTER CONVERSION name RENAME TO newname

ALTER CONVERSION name OWNER TO newowner

ALTER CONVERSION name SET SCHEMA new_schema

See ALTER CONVERSION for more information.

ALTER DATABASE
Changes the attributes of a database.

ALTER DATABASE name [WITH CONNECTION LIMIT connlimit]

Greenplum Database Reference Guide Release Notes

870

ALTER DATABASE name RENAME TO newname

ALTER DATABASE name OWNER TO new_owner

ALTER DATABASE name SET TABLESPACE new_tablespace

ALTER DATABASE name SET parameter { TO | = } { value | DEFAULT }
ALTER DATABASE name SET parameter FROM CURRENT
ALTER DATABASE name RESET parameter
ALTER DATABASE name RESET ALL

See ALTER DATABASE for more information.

ALTER DEFAULT PRIVILEGES
Changes default access privileges.

ALTER DEFAULT PRIVILEGES
 [FOR { ROLE | USER } target_role [, ...]]
 [IN SCHEMA schema_name [, ...]]
 abbreviated_grant_or_revoke

where abbreviated_grant_or_revoke is one of:

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES |
 TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON TABLES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON SEQUENCES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTIONS
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON TYPES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES |
 TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON TABLES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON SEQUENCES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTIONS
 FROM { [GROUP] role_name | PUBLIC } [, ...]

Greenplum Database Reference Guide Release Notes

871

 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON TYPES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

See ALTER DEFAULT PRIVILEGES for more information.

ALTER DOMAIN
Changes the definition of a domain.

ALTER DOMAIN name { SET DEFAULT expression | DROP DEFAULT }

ALTER DOMAIN name { SET | DROP } NOT NULL

ALTER DOMAIN name ADD domain_constraint [NOT VALID]

ALTER DOMAIN name DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT |
 CASCADE]

ALTER DOMAIN name RENAME CONSTRAINT constraint_name TO new_constraint_name

ALTER DOMAIN name VALIDATE CONSTRAINT constraint_name

ALTER DOMAIN name OWNER TO new_owner

ALTER DOMAIN name RENAME TO new_name

ALTER DOMAIN name SET SCHEMA new_schema

See ALTER DOMAIN for more information.

ALTER EXTENSION
Change the definition of an extension that is registered in a Greenplum database.

ALTER EXTENSION name UPDATE [TO new_version]
ALTER EXTENSION name SET SCHEMA new_schema
ALTER EXTENSION name ADD member_object
ALTER EXTENSION name DROP member_object

where member_object is:

 ACCESS METHOD object_name |
 AGGREGATE aggregate_name (aggregate_signature) |
 CAST (source_type AS target_type) |
 COLLATION object_name |
 CONVERSION object_name |
 DOMAIN object_name |
 EVENT TRIGGER object_name |
 FOREIGN DATA WRAPPER object_name |
 FOREIGN TABLE object_name |
 FUNCTION function_name ([[argmode] [argname] argtype [, ...]]) |
 MATERIALIZED VIEW object_name |
 OPERATOR operator_name (left_type, right_type) |
 OPERATOR CLASS object_name USING index_method |
 OPERATOR FAMILY object_name USING index_method |
 [PROCEDURAL] LANGUAGE object_name |
 SCHEMA object_name |

Greenplum Database Reference Guide Release Notes

872

 SEQUENCE object_name |
 SERVER object_name |
 TABLE object_name |
 TEXT SEARCH CONFIGURATION object_name |
 TEXT SEARCH DICTIONARY object_name |
 TEXT SEARCH PARSER object_name |
 TEXT SEARCH TEMPLATE object_name |
 TRANSFORM FOR type_name LANGUAGE lang_name |
 TYPE object_name |
 VIEW object_name

and aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname
] argtype [, ...]

See ALTER EXTENSION for more information.

ALTER EXTERNAL TABLE
Changes the definition of an external table.

ALTER EXTERNAL TABLE name action [, ...]

where action is one of:

 ADD [COLUMN] new_column type
 DROP [COLUMN] column [RESTRICT|CASCADE]
 ALTER [COLUMN] column TYPE type
 OWNER TO new_owner

See ALTER EXTERNAL TABLE for more information.

ALTER FOREIGN DATA WRAPPER
Changes the definition of a foreign-data wrapper.

ALTER FOREIGN DATA WRAPPER name
 [HANDLER handler_function | NO HANDLER]
 [VALIDATOR validator_function | NO VALIDATOR]
 [OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])]

ALTER FOREIGN DATA WRAPPER name OWNER TO new_owner
ALTER FOREIGN DATA WRAPPER name RENAME TO new_name

See ALTER FOREIGN DATA WRAPPER for more information.

ALTER FOREIGN TABLE
Changes the definition of a foreign table.

ALTER FOREIGN TABLE [IF EXISTS] name
 action [, ...]
ALTER FOREIGN TABLE [IF EXISTS] name
 RENAME [COLUMN] column_name TO new_column_name
ALTER FOREIGN TABLE [IF EXISTS] name
 RENAME TO new_name
ALTER FOREIGN TABLE [IF EXISTS] name
 SET SCHEMA new_schema

Greenplum Database Reference Guide Release Notes

873

See ALTER FOREIGN TABLE for more information.

ALTER FUNCTION
Changes the definition of a function.

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
 action [, ...] [RESTRICT]

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
 RENAME TO new_name

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
 OWNER TO new_owner

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
 SET SCHEMA new_schema

See ALTER FUNCTION for more information.

ALTER GROUP
Changes a role name or membership.

ALTER GROUP groupname ADD USER username [, ...]

ALTER GROUP groupname DROP USER username [, ...]

ALTER GROUP groupname RENAME TO newname

See ALTER GROUP for more information.

ALTER INDEX
Changes the definition of an index.

ALTER INDEX [IF EXISTS] name RENAME TO new_name

ALTER INDEX [IF EXISTS] name SET TABLESPACE tablespace_name

ALTER INDEX [IF EXISTS] name SET (storage_parameter = value [, ...])

ALTER INDEX [IF EXISTS] name RESET (storage_parameter [, ...])

ALTER INDEX ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]

See ALTER INDEX for more information.

ALTER LANGUAGE
Changes the name of a procedural language.

ALTER LANGUAGE name RENAME TO newname
ALTER LANGUAGE name OWNER TO new_owner

See ALTER LANGUAGE for more information.

Greenplum Database Reference Guide Release Notes

874

ALTER MATERIALIZED VIEW
Changes the definition of a materialized view.

ALTER MATERIALIZED VIEW [IF EXISTS] name action [, ...]
ALTER MATERIALIZED VIEW [IF EXISTS] name
 RENAME [COLUMN] column_name TO new_column_name
ALTER MATERIALIZED VIEW [IF EXISTS] name
 RENAME TO new_name
ALTER MATERIALIZED VIEW [IF EXISTS] name
 SET SCHEMA new_schema
ALTER MATERIALIZED VIEW ALL IN TABLESPACE name [OWNED BY role_name
 [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]

where action is one of:

 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column_name SET (attribute_option = value [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED |
 MAIN }
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET (storage_parameter = value [, ...])
 RESET (storage_parameter [, ...])
 OWNER TO new_owner

See ALTER MATERIALIZED VIEW for more information.

ALTER OPERATOR
Changes the definition of an operator.

ALTER OPERATOR name ({left_type | NONE} , {right_type | NONE})
 OWNER TO new_owner

ALTER OPERATOR name ({left_type | NONE} , {right_type | NONE})
 SET SCHEMA new_schema

See ALTER OPERATOR for more information.

ALTER OPERATOR CLASS
Changes the definition of an operator class.

ALTER OPERATOR CLASS name USING index_method RENAME TO new_name

ALTER OPERATOR CLASS name USING index_method OWNER TO new_owner

ALTER OPERATOR CLASS name USING index_method SET SCHEMA new_schema

See ALTER OPERATOR CLASS for more information.

ALTER OPERATOR FAMILY
Changes the definition of an operator family.

ALTER OPERATOR FAMILY name USING index_method ADD
 { OPERATOR strategy_number operator_name (op_type, op_type) [FOR
 SEARCH | FOR ORDER BY sort_family_name]

Greenplum Database Reference Guide Release Notes

875

 | FUNCTION support_number [(op_type [, op_type])] funcname
 (argument_type [, ...])
 } [, ...]

ALTER OPERATOR FAMILY name USING index_method DROP
 { OPERATOR strategy_number (op_type, op_type)
 | FUNCTION support_number [(op_type [, op_type])
 } [, ...]

ALTER OPERATOR FAMILY name USING index_method RENAME TO new_name

ALTER OPERATOR FAMILY name USING index_method OWNER TO new_owner

ALTER OPERATOR FAMILY name USING index_method SET SCHEMA new_schema

See ALTER OPERATOR FAMILY for more information.

ALTER PROTOCOL
Changes the definition of a protocol.

ALTER PROTOCOL name RENAME TO newname

ALTER PROTOCOL name OWNER TO newowner

See ALTER PROTOCOL for more information.

ALTER RESOURCE GROUP
Changes the limits of a resource group.

ALTER RESOURCE GROUP name SET group_attribute value

See ALTER RESOURCE GROUP for more information.

ALTER RESOURCE QUEUE
Changes the limits of a resource queue.

ALTER RESOURCE QUEUE name WITH (queue_attribute=value [, ...])

See ALTER RESOURCE QUEUE for more information.

ALTER ROLE
Changes a database role (user or group).

ALTER ROLE name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEEXTTABLE | NOCREATEEXTTABLE [(attribute='value' [, ...])
 where attributes and values are:
 type='readable'|'writable'
 protocol='gpfdist'|'http'
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION

Greenplum Database Reference Guide Release Notes

876

 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'

ALTER ROLE name RENAME TO new_name

ALTER ROLE { name | ALL } [IN DATABASE database_name]
 SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER ROLE { name | ALL } [IN DATABASE database_name]
 SET configuration_parameter FROM CURRENT
ALTER ROLE { name | ALL } [IN DATABASE database_name]
 RESET configuration_parameter
ALTER ROLE { name | ALL } [IN DATABASE database_name] RESET ALL
ALTER ROLE name RESOURCE QUEUE {queue_name | NONE}
ALTER ROLE name RESOURCE GROUP {group_name | NONE}

See ALTER ROLE for more information.

ALTER RULE
Changes the definition of a rule.

ALTER RULE name ON table_name RENAME TO new_name

See ALTER RULE for more information.

ALTER SCHEMA
Changes the definition of a schema.

ALTER SCHEMA name RENAME TO newname

ALTER SCHEMA name OWNER TO newowner

See ALTER SCHEMA for more information.

ALTER SEQUENCE
Changes the definition of a sequence generator.

ALTER SEQUENCE [IF EXISTS] name [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start]
 [RESTART [[WITH] restart]]
 [CACHE cache] [[NO] CYCLE]
 [OWNED BY {table.column | NONE}]

ALTER SEQUENCE [IF EXISTS] name OWNER TO new_owner

ALTER SEQUENCE [IF EXISTS] name RENAME TO new_name

ALTER SEQUENCE [IF EXISTS] name SET SCHEMA new_schema

See ALTER SEQUENCE for more information.

ALTER SERVER
Changes the definition of a foreign server.

ALTER SERVER server_name [VERSION 'new_version']

Greenplum Database Reference Guide Release Notes

877

 [OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])]

ALTER SERVER server_name OWNER TO new_owner

ALTER SERVER server_name RENAME TO new_name

See ALTER SERVER for more information.

ALTER TABLE
Changes the definition of a table.

ALTER TABLE [IF EXISTS] [ONLY] name
 action [, ...]

ALTER TABLE [IF EXISTS] [ONLY] name
 RENAME [COLUMN] column_name TO new_column_name

ALTER TABLE [IF EXISTS] [ONLY] name
 RENAME CONSTRAINT constraint_name TO new_constraint_name

ALTER TABLE [IF EXISTS] name
 RENAME TO new_name

ALTER TABLE [IF EXISTS] name
 SET SCHEMA new_schema

ALTER TABLE ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]

ALTER TABLE [IF EXISTS] [ONLY] name SET
 WITH (REORGANIZE=true|false)
 | DISTRIBUTED BY ({column_name [opclass]} [, ...])
 | DISTRIBUTED RANDOMLY
 | DISTRIBUTED REPLICATED

ALTER TABLE name
 [ALTER PARTITION { partition_name | FOR (RANK(number))
 | FOR (value) } [...]] partition_action

where action is one of:

 ADD [COLUMN] column_name data_type [DEFAULT default_expr]
 [column_constraint [...]]
 [COLLATE collation]
 [ENCODING (storage_directive [,...])]
 DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
 ALTER [COLUMN] column_name [SET DATA] TYPE type [COLLATE collation]
 [USING expression]
 ALTER [COLUMN] column_name SET DEFAULT expression
 ALTER [COLUMN] column_name DROP DEFAULT
 ALTER [COLUMN] column_name { SET | DROP } NOT NULL
 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column SET (attribute_option = value [, ...])
 ALTER [COLUMN] column RESET (attribute_option [, ...])
 ADD table_constraint [NOT VALID]
 ADD table_constraint_using_index
 VALIDATE CONSTRAINT constraint_name
 DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 CLUSTER ON index_name
 SET WITHOUT CLUSTER

Greenplum Database Reference Guide Release Notes

878

 SET WITHOUT OIDS
 SET (storage_parameter = value)
 RESET (storage_parameter [, ...])
 INHERIT parent_table
 NO INHERIT parent_table
 OF type_name
 NOT OF
 OWNER TO new_owner
 SET TABLESPACE new_tablespace

See ALTER TABLE for more information.

ALTER TABLESPACE
Changes the definition of a tablespace.

ALTER TABLESPACE name RENAME TO new_name

ALTER TABLESPACE name OWNER TO new_owner

ALTER TABLESPACE name SET (tablespace_option = value [, ...])

ALTER TABLESPACE name RESET (tablespace_option [, ...])

See ALTER TABLESPACE for more information.

ALTER TEXT SEARCH CONFIGURATION
Changes the definition of a text search configuration.

ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING FOR token_type [, ...] WITH dictionary_name [, ...]
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING REPLACE old_dictionary WITH new_dictionary
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING FOR token_type [, ...] REPLACE old_dictionary
 WITH new_dictionary
ALTER TEXT SEARCH CONFIGURATION name
 DROP MAPPING [IF EXISTS] FOR token_type [, ...]
ALTER TEXT SEARCH CONFIGURATION name RENAME TO new_name
ALTER TEXT SEARCH CONFIGURATION name OWNER TO new_owner
ALTER TEXT SEARCH CONFIGURATION name SET SCHEMA new_schema

See ALTER TEXT SEARCH CONFIGURATION for more information.

ALTER TEXT SEARCH DICTIONARY
Changes the definition of a text search dictionary.

ALTER TEXT SEARCH DICTIONARY name (
 option [= value] [, ...]
)
ALTER TEXT SEARCH DICTIONARY name RENAME TO new_name
ALTER TEXT SEARCH DICTIONARY name OWNER TO new_owner
ALTER TEXT SEARCH DICTIONARY name SET SCHEMA new_schema

See ALTER TEXT SEARCH DICTIONARY for more information.

Greenplum Database Reference Guide Release Notes

879

ALTER TEXT SEARCH PARSER
Changes the definition of a text search parser.

ALTER TEXT SEARCH PARSER name RENAME TO new_name
ALTER TEXT SEARCH PARSER name SET SCHEMA new_schema

See ALTER TEXT SEARCH PARSER for more information.

ALTER TEXT SEARCH TEMPLATE
Changes the definition of a text search template.

ALTER TEXT SEARCH TEMPLATE name RENAME TO new_name
ALTER TEXT SEARCH TEMPLATE name SET SCHEMA new_schema

See ALTER TEXT SEARCH TEMPLATE for more information.

ALTER TYPE
Changes the definition of a data type.

ALTER TYPE name action [, ...]
ALTER TYPE name OWNER TO new_owner
ALTER TYPE name RENAME ATTRIBUTE attribute_name TO new_attribute_name
 [CASCADE | RESTRICT]
ALTER TYPE name RENAME TO new_name
ALTER TYPE name SET SCHEMA new_schema
ALTER TYPE name ADD VALUE [IF NOT EXISTS] new_enum_value [{ BEFORE |
 AFTER } existing_enum_value]
ALTER TYPE name SET DEFAULT ENCODING (storage_directive)

where action is one of:

 ADD ATTRIBUTE attribute_name data_type [COLLATE collation] [CASCADE |
 RESTRICT]
 DROP ATTRIBUTE [IF EXISTS] attribute_name [CASCADE | RESTRICT]
 ALTER ATTRIBUTE attribute_name [SET DATA] TYPE data_type
 [COLLATE collation] [CASCADE | RESTRICT]

See ALTER TYPE for more information.

ALTER USER
Changes the definition of a database role (user).

ALTER USER name RENAME TO newname

ALTER USER name SET config_parameter {TO | =} {value | DEFAULT}

ALTER USER name RESET config_parameter

ALTER USER name RESOURCE QUEUE {queue_name | NONE}

ALTER USER name RESOURCE GROUP {group_name | NONE}

ALTER USER name [[WITH] option [...]]

See ALTER USER for more information.

Greenplum Database Reference Guide Release Notes

880

ALTER USER MAPPING
Changes the definition of a user mapping for a foreign server.

ALTER USER MAPPING FOR { username | USER | CURRENT_USER | PUBLIC }
 SERVER servername
 OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

See ALTER USER MAPPING for more information.

ALTER VIEW
Changes properties of a view.

ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name SET
 DEFAULT expression

ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name DROP DEFAULT

ALTER VIEW [IF EXISTS] name OWNER TO new_owner

ALTER VIEW [IF EXISTS] name RENAME TO new_name

ALTER VIEW [IF EXISTS] name SET SCHEMA new_schema

ALTER VIEW [IF EXISTS] name SET (view_option_name [= view_option_value]
 [, ...])

ALTER VIEW [IF EXISTS] name RESET (view_option_name [, ...])

See ALTER VIEW for more information.

ANALYZE
Collects statistics about a database.

ANALYZE [VERBOSE] [table [(column [, ...])]]

ANALYZE [VERBOSE] {root_partition|leaf_partition} [(column [, ...])]

ANALYZE [VERBOSE] ROOTPARTITION {ALL | root_partition [(column [, ...])]}

See ANALYZE for more information.

BEGIN
Starts a transaction block.

BEGIN [WORK | TRANSACTION] [transaction_mode]

See BEGIN for more information.

CHECKPOINT
Forces a transaction log checkpoint.

CHECKPOINT

See CHECKPOINT for more information.

Greenplum Database Reference Guide Release Notes

881

CLOSE
Closes a cursor.

CLOSE cursor_name

See CLOSE for more information.

CLUSTER
Physically reorders a heap storage table on disk according to an index. Not a recommended operation in
Greenplum Database.

CLUSTER indexname ON tablename

CLUSTER [VERBOSE] tablename

CLUSTER [VERBOSE]

See CLUSTER for more information.

COMMENT
Defines or changes the comment of an object.

COMMENT ON
{ TABLE object_name |
 COLUMN relation_name.column_name |
 AGGREGATE agg_name (agg_signature) |
 CAST (source_type AS target_type) |
 COLLATION object_name
 CONSTRAINT constraint_name ON table_name |
 CONVERSION object_name |
 DATABASE object_name |
 DOMAIN object_name |
 EXTENSION object_name |
 FOREIGN DATA WRAPPER object_name |
 FOREIGN TABLE object_name |
 FUNCTION func_name ([[argmode] [argname] argtype [, ...]]) |
 INDEX object_name |
 LARGE OBJECT large_object_oid |
 MATERIALIZED VIEW object_name |
 OPERATOR operator_name (left_type, right_type) |
 OPERATOR CLASS object_name USING index_method |
 [PROCEDURAL] LANGUAGE object_name |
 RESOURCE GROUP object_name |
 RESOURCE QUEUE object_name |
 ROLE object_name |
 RULE rule_name ON table_name |
 SCHEMA object_name |
 SEQUENCE object_name |
 SERVER object_name |
 TABLESPACE object_name |
 TRIGGER trigger_name ON table_name |
 TYPE object_name |
 VIEW object_name }
IS 'text'

See COMMENT for more information.

Greenplum Database Reference Guide Release Notes

882

COMMIT
Commits the current transaction.

COMMIT [WORK | TRANSACTION]

See COMMIT for more information.

COPY
Copies data between a file and a table.

COPY table_name [(column_name [, ...])]
 FROM {'filename' | PROGRAM 'command' | STDIN}
 [[WITH] (option [, ...])]
 [ON SEGMENT]

COPY { table_name [(column_name [, ...])] | (query)}
 TO {'filename' | PROGRAM 'command' | STDOUT}
 [[WITH] (option [, ...])]
 [ON SEGMENT]

See COPY for more information.

CREATE AGGREGATE
Defines a new aggregate function.

CREATE AGGREGATE name ([argmode] [argname] arg_data_type [, ...]) (
 SFUNC = statefunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, COMBINEFUNC = combinefunc]
 [, SERIALFUNC = serialfunc]
 [, DESERIALFUNC = deserialfunc]
 [, INITCOND = initial_condition]
 [, MSFUNC = msfunc]
 [, MINVFUNC = minvfunc]
 [, MSTYPE = mstate_data_type]
 [, MSSPACE = mstate_data_size]
 [, MFINALFUNC = mffunc]
 [, MFINALFUNC_EXTRA]
 [, MINITCOND = minitial_condition]
 [, SORTOP = sort_operator]
)

 CREATE AGGREGATE name ([[argmode] [argname] arg_data_type
 [, ...]]
 ORDER BY [argmode] [argname] arg_data_type [, ...]) (
 SFUNC = statefunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, COMBINEFUNC = combinefunc]
 [, SERIALFUNC = serialfunc]
 [, DESERIALFUNC = deserialfunc]
 [, INITCOND = initial_condition]
 [, HYPOTHETICAL]
)

Greenplum Database Reference Guide Release Notes

883

 or the old syntax

 CREATE AGGREGATE name (
 BASETYPE = base_type,
 SFUNC = statefunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, COMBINEFUNC = combinefunc]
 [, SERIALFUNC = serialfunc]
 [, DESERIALFUNC = deserialfunc]
 [, INITCOND = initial_condition]
 [, MSFUNC = msfunc]
 [, MINVFUNC = minvfunc]
 [, MSTYPE = mstate_data_type]
 [, MSSPACE = mstate_data_size]
 [, MFINALFUNC = mffunc]
 [, MFINALFUNC_EXTRA]
 [, MINITCOND = minitial_condition]
 [, SORTOP = sort_operator]
)

See CREATE AGGREGATE for more information.

CREATE CAST
Defines a new cast.

CREATE CAST (sourcetype AS targettype)
 WITH FUNCTION funcname (argtype [, ...])
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (sourcetype AS targettype)
 WITHOUT FUNCTION
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (sourcetype AS targettype)
 WITH INOUT
 [AS ASSIGNMENT | AS IMPLICIT]

See CREATE CAST for more information.

CREATE COLLATION
Defines a new collation using the specified operating system locale settings, or by copying an existing
collation.

CREATE COLLATION name (
 [LOCALE = locale,]
 [LC_COLLATE = lc_collate,]
 [LC_CTYPE = lc_ctype])

CREATE COLLATION name FROM existing_collation

See CREATE COLLATION for more information.

Greenplum Database Reference Guide Release Notes

884

CREATE CONVERSION
Defines a new encoding conversion.

CREATE [DEFAULT] CONVERSION name FOR source_encoding TO
 dest_encoding FROM funcname

See CREATE CONVERSION for more information.

CREATE DATABASE
Creates a new database.

CREATE DATABASE name [[WITH] [OWNER [=] user_name]
 [TEMPLATE [=] template]
 [ENCODING [=] encoding]
 [LC_COLLATE [=] lc_collate]
 [LC_CTYPE [=] lc_ctype]
 [TABLESPACE [=] tablespace]
 [CONNECTION LIMIT [=] connlimit]]

See CREATE DATABASE for more information.

CREATE DOMAIN
Defines a new domain.

CREATE DOMAIN name [AS] data_type [DEFAULT expression]
 [COLLATE collation]
 [CONSTRAINT constraint_name
 | NOT NULL | NULL
 | CHECK (expression) [...]]

See CREATE DOMAIN for more information.

CREATE EXTENSION
Registers an extension in a Greenplum database.

CREATE EXTENSION [IF NOT EXISTS] extension_name
 [WITH] [SCHEMA schema_name]
 [VERSION version]
 [FROM old_version]
 [CASCADE]

See CREATE EXTENSION for more information.

CREATE EXTERNAL TABLE
Defines a new external table.

CREATE [READABLE] EXTERNAL [TEMPORARY | TEMP] TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('file://seghost[:port]/path/file' [, ...])
 | ('gpfdist://filehost[:port]/file_pattern[#transform=trans_name]'
 [, ...]
 | ('gpfdists://filehost[:port]/file_pattern[#transform=trans_name]'
 [, ...])
 | ('pxf://path-to-data?PROFILE=profile_name[&SERVER=server_name]
[&custom-option=value[...]]'))

Greenplum Database Reference Guide Release Notes

885

 | ('s3://S3_endpoint[:port]/bucket_name/[S3_prefix] [region=S3-
region] [config=config_file]')
 [ON MASTER]
 FORMAT 'TEXT'
 [([HEADER]
 [DELIMITER [AS] 'delimiter' | 'OFF']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CSV'
 [([HEADER]
 [QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE NOT NULL column [, ...]]
 [ESCAPE [AS] 'escape']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CUSTOM' (Formatter=<formatter_specifications>)
 [ENCODING 'encoding']
 [[LOG ERRORS [PERSISTENTLY]] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

CREATE [READABLE] EXTERNAL WEB [TEMPORARY | TEMP] TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('http://webhost[:port]/path/file' [, ...])
 | EXECUTE 'command' [ON ALL
 | MASTER
 | number_of_segments
 | HOST ['segment_hostname']
 | SEGMENT segment_id]
 FORMAT 'TEXT'
 [([HEADER]
 [DELIMITER [AS] 'delimiter' | 'OFF']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CSV'
 [([HEADER]
 [QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE NOT NULL column [, ...]]
 [ESCAPE [AS] 'escape']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'encoding']
 [[LOG ERRORS [PERSISTENTLY]] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

CREATE WRITABLE EXTERNAL [TEMPORARY | TEMP] TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION('gpfdist://outputhost[:port]/filename[#transform=trans_name]'
 [, ...])
 | ('gpfdists://outputhost[:port]/file_pattern[#transform=trans_name]'
 [, ...])
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'

Greenplum Database Reference Guide Release Notes

886

 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]] | *]
 [ESCAPE [AS] 'escape'])]

 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'write_encoding']
 [DISTRIBUTED BY ({column [opclass]}, [...]) | DISTRIBUTED RANDOMLY]

CREATE WRITABLE EXTERNAL [TEMPORARY | TEMP] TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION('s3://S3_endpoint[:port]/bucket_name/[S3_prefix] [region=S3-
region] [config=config_file]')
 [ON MASTER]
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]] | *]
 [ESCAPE [AS] 'escape'])]

CREATE WRITABLE EXTERNAL WEB [TEMPORARY | TEMP] TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 EXECUTE 'command' [ON ALL]
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]] | *]
 [ESCAPE [AS] 'escape'])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'write_encoding']
 [DISTRIBUTED BY ({column [opclass]}, [...]) | DISTRIBUTED RANDOMLY]

See CREATE EXTERNAL TABLE for more information.

CREATE FOREIGN DATA WRAPPER
Defines a new foreign-data wrapper.

CREATE FOREIGN DATA WRAPPER name
 [HANDLER handler_function | NO HANDLER]
 [VALIDATOR validator_function | NO VALIDATOR]
 [OPTIONS ([mpp_execute { 'master' | 'any' | 'all segments' }
 [,]] option 'value' [, ...])]

See CREATE FOREIGN DATA WRAPPER for more information.

CREATE FOREIGN TABLE
Defines a new foreign table.

CREATE FOREIGN TABLE [IF NOT EXISTS] table_name ([

Greenplum Database Reference Guide Release Notes

887

 column_name data_type [OPTIONS (option 'value' [, ...])]
 [COLLATE collation] [column_constraint [...]]
 [, ...]
])
 SERVER server_name
 [OPTIONS ([mpp_execute { 'master' | 'any' | 'all segments' }
 [,]] option 'value' [, ...])]

See CREATE FOREIGN TABLE for more information.

CREATE FUNCTION
Defines a new function.

CREATE [OR REPLACE] FUNCTION name
 ([[argmode] [argname] argtype [{ DEFAULT | = } default_expr]
 [, ...]])
 [RETURNS rettype
 | RETURNS TABLE (column_name column_type [, ...])]
 { LANGUAGE langname
 | WINDOW
 | IMMUTABLE | STABLE | VOLATILE | [NOT] LEAKPROOF
 | CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
 | [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 | EXECUTE ON { ANY | MASTER | ALL SEGMENTS | INITPLAN }
 | COST execution_cost
 | SET configuration_parameter { TO value | = value | FROM CURRENT }
 | AS 'definition'
 | AS 'obj_file', 'link_symbol' } ...
 [WITH ({ DESCRIBE = describe_function
 } [, ...])]

See CREATE FUNCTION for more information.

CREATE GROUP
Defines a new database role.

CREATE GROUP name [[WITH] option [...]]

See CREATE GROUP for more information.

CREATE INDEX
Defines a new index.

CREATE [UNIQUE] INDEX [name] ON table_name [USING method]
 ({column_name | (expression)} [COLLATE parameter] [opclass] [ASC |
 DESC] [NULLS { FIRST | LAST }] [, ...])
 [WITH (storage_parameter = value [, ...])]
 [TABLESPACE tablespace]
 [WHERE predicate]

See CREATE INDEX for more information.

CREATE LANGUAGE
Defines a new procedural language.

CREATE [OR REPLACE] [PROCEDURAL] LANGUAGE name

Greenplum Database Reference Guide Release Notes

888

CREATE [OR REPLACE] [TRUSTED] [PROCEDURAL] LANGUAGE name
 HANDLER call_handler [INLINE inline_handler]
 [VALIDATOR valfunction]

See CREATE LANGUAGE for more information.

CREATE MATERIALIZED VIEW
Defines a new materialized view.

CREATE MATERIALIZED VIEW table_name
 [(column_name [, ...])]
 [WITH (storage_parameter [= value] [, ...])]
 [TABLESPACE tablespace_name]
 AS query
 [WITH [NO] DATA]
 [DISTRIBUTED {| BY column [opclass], [...] | RANDOMLY | REPLICATED }]

See CREATE MATERIALIZED VIEW for more information.

CREATE OPERATOR
Defines a new operator.

CREATE OPERATOR name (
 PROCEDURE = funcname
 [, LEFTARG = lefttype] [, RIGHTARG = righttype]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, MERGES])

See CREATE OPERATOR for more information.

CREATE OPERATOR CLASS
Defines a new operator class.

CREATE OPERATOR CLASS name [DEFAULT] FOR TYPE data_type
 USING index_method [FAMILY family_name] AS
 { OPERATOR strategy_number operator_name [(op_type, op_type)] [FOR
 SEARCH | FOR ORDER BY sort_family_name]
 | FUNCTION support_number funcname (argument_type [, ...])
 | STORAGE storage_type
 } [, ...]

See CREATE OPERATOR CLASS for more information.

CREATE OPERATOR FAMILY
Defines a new operator family.

CREATE OPERATOR FAMILY name USING index_method

See CREATE OPERATOR FAMILY for more information.

Greenplum Database Reference Guide Release Notes

889

CREATE PROTOCOL
Registers a custom data access protocol that can be specified when defining a Greenplum Database
external table.

CREATE [TRUSTED] PROTOCOL name (
 [readfunc='read_call_handler'] [, writefunc='write_call_handler']
 [, validatorfunc='validate_handler'])

See CREATE PROTOCOL for more information.

CREATE RESOURCE GROUP
Defines a new resource group.

CREATE RESOURCE GROUP name WITH (group_attribute=value [, ...])

See CREATE RESOURCE GROUP for more information.

CREATE RESOURCE QUEUE
Defines a new resource queue.

CREATE RESOURCE QUEUE name WITH (queue_attribute=value [, ...])

See CREATE RESOURCE QUEUE for more information.

CREATE ROLE
Defines a new database role (user or group).

CREATE ROLE name [[WITH] option [...]]

See CREATE ROLE for more information.

CREATE RULE
Defines a new rewrite rule.

CREATE [OR REPLACE] RULE name AS ON event
 TO table_name [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command; command
 ...) }

See CREATE RULE for more information.

CREATE SCHEMA
Defines a new schema.

CREATE SCHEMA schema_name [AUTHORIZATION username]
 [schema_element [...]]

CREATE SCHEMA AUTHORIZATION rolename [schema_element [...]]

CREATE SCHEMA IF NOT EXISTS schema_name [AUTHORIZATION user_name]

CREATE SCHEMA IF NOT EXISTS AUTHORIZATION user_name

See CREATE SCHEMA for more information.

Greenplum Database Reference Guide Release Notes

890

CREATE SEQUENCE
Defines a new sequence generator.

CREATE [TEMPORARY | TEMP] SEQUENCE name
 [INCREMENT [BY] value]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start]
 [CACHE cache]
 [[NO] CYCLE]
 [OWNED BY { table.column | NONE }]

See CREATE SEQUENCE for more information.

CREATE SERVER
Defines a new foreign server.

CREATE SERVER server_name [TYPE 'server_type'] [VERSION
 'server_version']
 FOREIGN DATA WRAPPER fdw_name
 [OPTIONS ([mpp_execute { 'master' | 'any' | 'all segments' }
 [,]] option 'value' [, ...])]

See CREATE SERVER for more information.

CREATE TABLE
Defines a new table.

CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT
 EXISTS]
 table_name (
 [{ column_name data_type [COLLATE collation] [column_constraint
 [...]]
[ENCODING (storage_directive [, ...])]
 | table_constraint
 | LIKE source_table [like_option ...] }
 | [column_reference_storage_directive [, ...]
 [, ...]
])
[INHERITS (parent_table [, ...])]
[WITH (storage_parameter [=value] [, ...])]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]
[DISTRIBUTED BY (column [opclass], [...])
 | DISTRIBUTED RANDOMLY | DISTRIBUTED REPLICATED]

{ --partitioned table using SUBPARTITION TEMPLATE
[PARTITION BY partition_type (column)
 { [SUBPARTITION BY partition_type (column1)
 SUBPARTITION TEMPLATE (template_spec)]
 [SUBPARTITION BY partition_type (column2)
 SUBPARTITION TEMPLATE (template_spec)]
 [...] }
 (partition_spec)]
} |

{ -- partitioned table without SUBPARTITION TEMPLATE
[PARTITION BY partition_type (column)

Greenplum Database Reference Guide Release Notes

891

 [SUBPARTITION BY partition_type (column1)]
 [SUBPARTITION BY partition_type (column2)]
 [...]
 (partition_spec
 [(subpartition_spec_column1
 [(subpartition_spec_column2
 [...])])],
 [partition_spec
 [(subpartition_spec_column1
 [(subpartition_spec_column2
 [...])])],]
 [...]
)]
}

CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP} | UNLOGGED] TABLE [IF NOT
 EXISTS]
 table_name
 OF type_name [(
 { column_name WITH OPTIONS [column_constraint [...]]
 | table_constraint }
 [, ...]
)]
[WITH (storage_parameter [=value] [, ...])]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

See CREATE TABLE for more information.

CREATE TABLE AS
Defines a new table from the results of a query.

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED]
 TABLE table_name
 [(column_name [, ...])]
 [WITH (storage_parameter [= value] [, ...]) | WITHOUT OIDS]
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
 [TABLESPACE tablespace_name]
 AS query
 [WITH [NO] DATA]
 [DISTRIBUTED BY (column [, ...]) | DISTRIBUTED RANDOMLY |
 DISTRIBUTED REPLICATED]

See CREATE TABLE AS for more information.

CREATE TABLESPACE
Defines a new tablespace.

CREATE TABLESPACE tablespace_name [OWNER username] LOCATION '/path/to/dir'
 [WITH (contentID_1='/path/to/dir1'[, contentID_2='/path/to/dir2' ...])]

See CREATE TABLESPACE for more information.

CREATE TEXT SEARCH CONFIGURATION
Defines a new text search configuration.

CREATE TEXT SEARCH CONFIGURATION name (
 PARSER = parser_name |

Greenplum Database Reference Guide Release Notes

892

 COPY = source_config
)

See CREATE TEXT SEARCH CONFIGURATION for more information.

CREATE TEXT SEARCH DICTIONARY
Defines a new text search dictionary.

CREATE TEXT SEARCH DICTIONARY name (
 TEMPLATE = template
 [, option = value [, ...]]
)

See CREATE TEXT SEARCH DICTIONARY for more information.

CREATE TEXT SEARCH PARSER
Defines a new text search parser.

CREATE TEXT SEARCH PARSER name (
 START = start_function ,
 GETTOKEN = gettoken_function ,
 END = end_function ,
 LEXTYPES = lextypes_function
 [, HEADLINE = headline_function]
)

See CREATE TEXT SEARCH PARSER for more information.

CREATE TEXT SEARCH TEMPLATE
Defines a new text search template.

CREATE TEXT SEARCH TEMPLATE name (
 [INIT = init_function ,]
 LEXIZE = lexize_function
)

See CREATE TEXT SEARCH TEMPLATE for more information.

CREATE TYPE
Defines a new data type.

CREATE TYPE name AS
 (attribute_name data_type [COLLATE collation] [, ...]])

CREATE TYPE name AS ENUM
 (['label' [, ...]])

CREATE TYPE name AS RANGE (
 SUBTYPE = subtype
 [, SUBTYPE_OPCLASS = subtype_operator_class]
 [, COLLATION = collation]
 [, CANONICAL = canonical_function]
 [, SUBTYPE_DIFF = subtype_diff_function]
)

CREATE TYPE name (
 INPUT = input_function,

Greenplum Database Reference Guide Release Notes

893

 OUTPUT = output_function
 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, TYPMOD_IN = type_modifier_input_function]
 [, TYPMOD_OUT = type_modifier_output_function]
 [, INTERNALLENGTH = {internallength | VARIABLE}]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
 [, LIKE = like_type
 [, CATEGORY = category]
 [, PREFERRED = preferred]
 [, DEFAULT = default]
 [, ELEMENT = element]
 [, DELIMITER = delimiter]
 [, COLLATABLE = collatable]
 [, COMPRESSTYPE = compression_type]
 [, COMPRESSLEVEL = compression_level]
 [, BLOCKSIZE = blocksize])

CREATE TYPE name

See CREATE TYPE for more information.

CREATE USER
Defines a new database role with the LOGIN privilege by default.

CREATE USER name [[WITH] option [...]]

See CREATE USER for more information.

CREATE USER MAPPING
Defines a new mapping of a user to a foreign server.

CREATE USER MAPPING FOR { username | USER | CURRENT_USER | PUBLIC }
 SERVER servername
 [OPTIONS (option 'value' [, ...])]

See CREATE USER MAPPING for more information.

CREATE VIEW
Defines a new view.

CREATE [OR REPLACE] [TEMP | TEMPORARY] [RECURSIVE] VIEW name [(column_name
 [, ...])]
 [WITH (view_option_name [= view_option_value] [, ...])]
 AS query
 [WITH [CASCADED | LOCAL] CHECK OPTION]

See CREATE VIEW for more information.

DEALLOCATE
Deallocates a prepared statement.

DEALLOCATE [PREPARE] name

See DEALLOCATE for more information.

Greenplum Database Reference Guide Release Notes

894

DECLARE
Defines a cursor.

DECLARE name [BINARY] [INSENSITIVE] [NO SCROLL] CURSOR
 [{WITH | WITHOUT} HOLD]
 FOR query [FOR READ ONLY]

See DECLARE for more information.

DELETE
Deletes rows from a table.

[WITH [RECURSIVE] with_query [, ...]]
DELETE FROM [ONLY] table [[AS] alias]
 [USING usinglist]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [RETURNING * | output_expression [[AS] output_name] [, …]]

See DELETE for more information.

DISCARD
Discards the session state.

DISCARD { ALL | PLANS | TEMPORARY | TEMP }

See DISCARD for more information.

DROP AGGREGATE
Removes an aggregate function.

DROP AGGREGATE [IF EXISTS] name (aggregate_signature) [CASCADE | RESTRICT]

See DROP AGGREGATE for more information.

DO
Executes an anonymous code block as a transient anonymous function.

DO [LANGUAGE lang_name] code

See DO for more information.

DROP CAST
Removes a cast.

DROP CAST [IF EXISTS] (sourcetype AS targettype) [CASCADE | RESTRICT]

See DROP CAST for more information.

DROP COLLATION
Removes a previously defined collation.

DROP COLLATION [IF EXISTS] name [CASCADE | RESTRICT]

Greenplum Database Reference Guide Release Notes

895

See DROP COLLATION for more information.

DROP CONVERSION
Removes a conversion.

DROP CONVERSION [IF EXISTS] name [CASCADE | RESTRICT]

See DROP CONVERSION for more information.

DROP DATABASE
Removes a database.

DROP DATABASE [IF EXISTS] name

See DROP DATABASE for more information.

DROP DOMAIN
Removes a domain.

DROP DOMAIN [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

See DROP DOMAIN for more information.

DROP EXTENSION
Removes an extension from a Greenplum database.

DROP EXTENSION [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

See DROP EXTENSION for more information.

DROP EXTERNAL TABLE
Removes an external table definition.

DROP EXTERNAL [WEB] TABLE [IF EXISTS] name [CASCADE | RESTRICT]

See DROP EXTERNAL TABLE for more information.

DROP FOREIGN DATA WRAPPER
Removes a foreign-data wrapper.

DROP FOREIGN DATA WRAPPER [IF EXISTS] name [CASCADE | RESTRICT]

See DROP FOREIGN DATA WRAPPER for more information.

DROP FOREIGN TABLE
Removes a foreign table.

DROP FOREIGN TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

See DROP FOREIGN TABLE for more information.

Greenplum Database Reference Guide Release Notes

896

DROP FUNCTION
Removes a function.

DROP FUNCTION [IF EXISTS] name ([[argmode] [argname] argtype
 [, ...]]) [CASCADE | RESTRICT]

See DROP FUNCTION for more information.

DROP GROUP
Removes a database role.

DROP GROUP [IF EXISTS] name [, ...]

See DROP GROUP for more information.

DROP INDEX
Removes an index.

DROP INDEX [CONCURRENTLY] [IF EXISTS] name [, ...] [CASCADE |
 RESTRICT]

See DROP INDEX for more information.

DROP LANGUAGE
Removes a procedural language.

DROP [PROCEDURAL] LANGUAGE [IF EXISTS] name [CASCADE | RESTRICT]

See DROP LANGUAGE for more information.

DROP MATERIALIZED VIEW
Removes a materialized view.

DROP MATERIALIZED VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

See DROP MATERIALIZED VIEW for more information.

DROP OPERATOR
Removes an operator.

DROP OPERATOR [IF EXISTS] name ({lefttype | NONE} ,
 {righttype | NONE}) [CASCADE | RESTRICT]

See DROP OPERATOR for more information.

DROP OPERATOR CLASS
Removes an operator class.

DROP OPERATOR CLASS [IF EXISTS] name USING index_method [CASCADE | RESTRICT]

See DROP OPERATOR CLASS for more information.

Greenplum Database Reference Guide Release Notes

897

DROP OPERATOR FAMILY
Removes an operator family.

DROP OPERATOR FAMILY [IF EXISTS] name USING index_method [CASCADE |
 RESTRICT]

See DROP OPERATOR FAMILY for more information.

DROP OWNED
Removes database objects owned by a database role.

DROP OWNED BY name [, ...] [CASCADE | RESTRICT]

See DROP OWNED for more information.

DROP PROTOCOL
Removes a external table data access protocol from a database.

DROP PROTOCOL [IF EXISTS] name

See DROP PROTOCOL for more information.

DROP RESOURCE GROUP
Removes a resource group.

DROP RESOURCE GROUP group_name

See DROP RESOURCE GROUP for more information.

DROP RESOURCE QUEUE
Removes a resource queue.

DROP RESOURCE QUEUE queue_name

See DROP RESOURCE QUEUE for more information.

DROP ROLE
Removes a database role.

DROP ROLE [IF EXISTS] name [, ...]

See DROP ROLE for more information.

DROP RULE
Removes a rewrite rule.

DROP RULE [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

See DROP RULE for more information.

Greenplum Database Reference Guide Release Notes

898

DROP SCHEMA
Removes a schema.

DROP SCHEMA [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

See DROP SCHEMA for more information.

DROP SEQUENCE
Removes a sequence.

DROP SEQUENCE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

See DROP SEQUENCE for more information.

DROP SERVER
Removes a foreign server descriptor.

DROP SERVER [IF EXISTS] servername [CASCADE | RESTRICT]

See DROP SERVER for more information.

DROP TABLE
Removes a table.

DROP TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

See DROP TABLE for more information.

DROP TABLESPACE
Removes a tablespace.

DROP TABLESPACE [IF EXISTS] tablespacename

See DROP TABLESPACE for more information.

DROP TEXT SEARCH CONFIGURATION
Removes a text search configuration.

DROP TEXT SEARCH CONFIGURATION [IF EXISTS] name [CASCADE | RESTRICT]

See DROP TEXT SEARCH CONFIGURATION for more information.

DROP TEXT SEARCH DICTIONARY
Removes a text search dictionary.

DROP TEXT SEARCH DICTIONARY [IF EXISTS] name [CASCADE | RESTRICT]

See DROP TEXT SEARCH DICTIONARY for more information.

Greenplum Database Reference Guide Release Notes

899

DROP TEXT SEARCH PARSER
Remove a text search parser.

DROP TEXT SEARCH PARSER [IF EXISTS] name [CASCADE | RESTRICT]

See DROP TEXT SEARCH PARSER for more information.

DROP TEXT SEARCH TEMPLATE
Removes a text search template.

DROP TEXT SEARCH TEMPLATE [IF EXISTS] name [CASCADE | RESTRICT]

See DROP TEXT SEARCH TEMPLATE for more information.

DROP TYPE
Removes a data type.

DROP TYPE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

See DROP TYPE for more information.

DROP USER
Removes a database role.

DROP USER [IF EXISTS] name [, ...]

See DROP USER for more information.

DROP USER MAPPING
Removes a user mapping for a foreign server.

DROP USER MAPPING [IF EXISTS] { username | USER | CURRENT_USER | PUBLIC }
 SERVER servername

See DROP USER MAPPING for more information.

DROP VIEW
Removes a view.

DROP VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

See DROP VIEW for more information.

END
Commits the current transaction.

END [WORK | TRANSACTION]

See END for more information.

Greenplum Database Reference Guide Release Notes

900

EXECUTE
Executes a prepared SQL statement.

EXECUTE name [(parameter [, ...])]

See EXECUTE for more information.

EXPLAIN
Shows the query plan of a statement.

EXPLAIN [(option [, ...])] statement
EXPLAIN [ANALYZE] [VERBOSE] statement

See EXPLAIN for more information.

FETCH
Retrieves rows from a query using a cursor.

FETCH [forward_direction { FROM | IN }] cursor_name

See FETCH for more information.

GRANT
Defines access privileges.

GRANT { {SELECT | INSERT | UPDATE | DELETE | REFERENCES |
TRIGGER | TRUNCATE } [, ...] | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 TO { [GROUP] role_name | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { { SELECT | INSERT | UPDATE | REFERENCES } (column_name [, ...])
 [, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
 ON [TABLE] table_name [, ...]
 TO { role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { {USAGE | SELECT | UPDATE} [, ...] | ALL [PRIVILEGES] }
 ON { SEQUENCE sequence_name [, ...]
 | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { {CREATE | CONNECT | TEMPORARY | TEMP} [, ...] | ALL
[PRIVILEGES] }
 ON DATABASE database_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON DOMAIN domain_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN DATA WRAPPER fdw_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN SERVER server_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

Greenplum Database Reference Guide Release Notes

901

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON { FUNCTION function_name ([[argmode] [argname] argtype [, ...]
]) [, ...]
 | ALL FUNCTIONS IN SCHEMA schema_name [, ...] }
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE lang_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | USAGE } [, ...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 TO { [GROUP] role_name | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespace_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON TYPE type_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT parent_role [, ...]
 TO member_role [, ...] [WITH ADMIN OPTION]

GRANT { SELECT | INSERT | ALL [PRIVILEGES] }
 ON PROTOCOL protocolname
 TO username

See GRANT for more information.

INSERT
Creates new rows in a table.

[WITH [RECURSIVE] with_query [, ...]]
INSERT INTO table [(column [, ...])]
 {DEFAULT VALUES | VALUES ({expression | DEFAULT} [, ...]) [, ...]
 | query}
 [RETURNING * | output_expression [[AS] output_name] [, ...]]

See INSERT for more information.

LOAD
Loads or reloads a shared library file.

LOAD 'filename'

See LOAD for more information.

LOCK
Locks a table.

LOCK [TABLE] [ONLY] name [*] [, ...] [IN lockmode MODE] [NOWAIT]

See LOCK for more information.

Greenplum Database Reference Guide Release Notes

902

MOVE
Positions a cursor.

MOVE [forward_direction [FROM | IN]] cursor_name

See MOVE for more information.

PREPARE
Prepare a statement for execution.

PREPARE name [(datatype [, ...])] AS statement

See PREPARE for more information.

REASSIGN OWNED
Changes the ownership of database objects owned by a database role.

REASSIGN OWNED BY old_role [, ...] TO new_role

See REASSIGN OWNED for more information.

REFRESH MATERIALIZED VIEW
Replaces the contents of a materialized view.

REFRESH MATERIALIZED VIEW [CONCURRENTLY] name
 [WITH [NO] DATA]

See REFRESH MATERIALIZED VIEW for more information.

REINDEX
Rebuilds indexes.

REINDEX {INDEX | TABLE | DATABASE | SYSTEM} name

See REINDEX for more information.

RELEASE SAVEPOINT
Destroys a previously defined savepoint.

RELEASE [SAVEPOINT] savepoint_name

See RELEASE SAVEPOINT for more information.

RESET
Restores the value of a system configuration parameter to the default value.

RESET configuration_parameter

RESET ALL

See RESET for more information.

Greenplum Database Reference Guide Release Notes

903

REVOKE
Removes access privileges.

REVOKE [GRANT OPTION FOR] { {SELECT | INSERT | UPDATE | DELETE
 | REFERENCES | TRIGGER | TRUNCATE } [, ...] | ALL [PRIVILEGES] }

 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 FROM { [GROUP] role_name | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { { SELECT | INSERT | UPDATE
 | REFERENCES } (column_name [, ...])
 [, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
 ON [TABLE] table_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {USAGE | SELECT | UPDATE} [,...]
 | ALL [PRIVILEGES] }
 ON { SEQUENCE sequence_name [, ...]
 | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {CREATE | CONNECT
 | TEMPORARY | TEMP} [, ...] | ALL [PRIVILEGES] }
 ON DATABASE database_name [, ...]
 FROM { [GROUP] role_name | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON DOMAIN domain_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN DATA WRAPPER fdw_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN SERVER server_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] {EXECUTE | ALL [PRIVILEGES]}
 ON { FUNCTION funcname ([[argmode] [argname] argtype
 [, ...]]) [, ...]
 | ALL FUNCTIONS IN SCHEMA schema_name [, ...] }
 FROM { [GROUP] role_name | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] {USAGE | ALL [PRIVILEGES]}
 ON LANGUAGE langname [, ...]
 FROM { [GROUP] role_name | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {CREATE | USAGE} [, ...]

Greenplum Database Reference Guide Release Notes

904

 | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 FROM { [GROUP] role_name | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespacename [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON TYPE type_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [ADMIN OPTION FOR] parent_role [, ...]
 FROM [GROUP] member_role [, ...]
 [CASCADE | RESTRICT]

See REVOKE for more information.

ROLLBACK
Aborts the current transaction.

ROLLBACK [WORK | TRANSACTION]

See ROLLBACK for more information.

ROLLBACK TO SAVEPOINT
Rolls back the current transaction to a savepoint.

ROLLBACK [WORK | TRANSACTION] TO [SAVEPOINT] savepoint_name

See ROLLBACK TO SAVEPOINT for more information.

SAVEPOINT
Defines a new savepoint within the current transaction.

SAVEPOINT savepoint_name

See SAVEPOINT for more information.

SELECT
Retrieves rows from a table or view.

[WITH [RECURSIVE1] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [[AS] output_name] [, ...]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY grouping_element [, ...]]
 [HAVING condition [, ...]]
 [WINDOW window_name AS (window_definition) [, ...]]
 [{UNION | INTERSECT | EXCEPT} [ALL | DISTINCT] select]
 [ORDER BY expression [ASC | DESC | USING operator] [NULLS {FIRST | LAST}]
 [, ...]]

Greenplum Database Reference Guide Release Notes

905

 [LIMIT {count | ALL}]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
 [FOR {UPDATE | NO KEY UPDATE | SHARE | KEY SHARE} [OF table_name [, ...]]
 [NOWAIT] [...]]

TABLE { [ONLY] table_name [*] | with_query_name }

See SELECT for more information.

SELECT INTO
Defines a new table from the results of a query.

[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [AS output_name] [, ...]
 INTO [TEMPORARY | TEMP | UNLOGGED] [TABLE] new_table
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition [, ...]]
 [{UNION | INTERSECT | EXCEPT} [ALL | DISTINCT] select]
 [ORDER BY expression [ASC | DESC | USING operator] [NULLS {FIRST |
 LAST}] [, ...]]
 [LIMIT {count | ALL}]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
 [FOR {UPDATE | SHARE} [OF table_name [, ...]] [NOWAIT]
 [...]]

See SELECT INTO for more information.

SET
Changes the value of a Greenplum Database configuration parameter.

SET [SESSION | LOCAL] configuration_parameter {TO | =} value |
 'value' | DEFAULT}

SET [SESSION | LOCAL] TIME ZONE {timezone | LOCAL | DEFAULT}

See SET for more information.

SET CONSTRAINTS
Sets constraint check timing for the current transaction.

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

See SET CONSTRAINTS for more information.

SET ROLE
Sets the current role identifier of the current session.

SET [SESSION | LOCAL] ROLE rolename

SET [SESSION | LOCAL] ROLE NONE

Greenplum Database Reference Guide Release Notes

906

RESET ROLE

See SET ROLE for more information.

SET SESSION AUTHORIZATION
Sets the session role identifier and the current role identifier of the current session.

SET [SESSION | LOCAL] SESSION AUTHORIZATION rolename

SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT

RESET SESSION AUTHORIZATION

See SET SESSION AUTHORIZATION for more information.

SET TRANSACTION
Sets the characteristics of the current transaction.

SET TRANSACTION [transaction_mode] [READ ONLY | READ WRITE]

SET TRANSACTION SNAPSHOT snapshot_id

SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode
 [READ ONLY | READ WRITE]
 [NOT] DEFERRABLE

See SET TRANSACTION for more information.

SHOW
Shows the value of a system configuration parameter.

SHOW configuration_parameter

SHOW ALL

See SHOW for more information.

START TRANSACTION
Starts a transaction block.

START TRANSACTION [transaction_mode] [READ WRITE | READ ONLY]

See START TRANSACTION for more information.

TRUNCATE
Empties a table of all rows.

TRUNCATE [TABLE] [ONLY] name [*] [, ...]
 [RESTART IDENTITY | CONTINUE IDENTITY] [CASCADE | RESTRICT]

See TRUNCATE for more information.

Greenplum Database Reference Guide Release Notes

907

UPDATE
Updates rows of a table.

[WITH [RECURSIVE] with_query [, ...]]
UPDATE [ONLY] table [[AS] alias]
 SET {column = {expression | DEFAULT} |
 (column [, ...]) = ({expression | DEFAULT} [, ...])} [, ...]
 [FROM fromlist]
 [WHERE condition | WHERE CURRENT OF cursor_name]

See UPDATE for more information.

VACUUM
Garbage-collects and optionally analyzes a database.

VACUUM [({ FULL | FREEZE | VERBOSE | ANALYZE } [, ...])] [table [(column
 [, ...])]]

VACUUM [FULL] [FREEZE] [VERBOSE] [table]

VACUUM [FULL] [FREEZE] [VERBOSE] ANALYZE
 [table [(column [, ...])]]

See VACUUM for more information.

VALUES
Computes a set of rows.

VALUES (expression [, ...]) [, ...]
 [ORDER BY sort_expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]

See VALUES for more information.

ABORT
Aborts the current transaction.

Synopsis

ABORT [WORK | TRANSACTION]

Description
ABORT rolls back the current transaction and causes all the updates made by the transaction to be
discarded. This command is identical in behavior to the standard SQL command ROLLBACK, and is
present only for historical reasons.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

Greenplum Database Reference Guide Release Notes

908

Notes
Use COMMIT to successfully terminate a transaction.

Issuing ABORT when not inside a transaction does no harm, but it will provoke a warning message.

Compatibility
This command is a Greenplum Database extension present for historical reasons. ROLLBACK is the
equivalent standard SQL command.

See Also
BEGIN, COMMIT, ROLLBACK

ALTER AGGREGATE
Changes the definition of an aggregate function

Synopsis

ALTER AGGREGATE name (aggregate_signature) RENAME TO new_name

ALTER AGGREGATE name (aggregate_signature) OWNER TO new_owner

ALTER AGGREGATE name (aggregate_signature) SET SCHEMA new_schema

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname
] argtype [, ...]

Description
ALTER AGGREGATE changes the definition of an aggregate function.

You must own the aggregate function to use ALTER AGGREGATE. To change the schema of an aggregate
function, you must also have CREATE privilege on the new schema. To alter the owner, you must also
be a direct or indirect member of the new owning role, and that role must have CREATE privilege on the
aggregate function's schema. (These restrictions enforce that altering the owner does not do anything you
could not do by dropping and recreating the aggregate function. However, a superuser can alter ownership
of any aggregate function anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing aggregate function.

argmode

The mode of an argument: IN or VARIADIC. If omitted, the default is IN.

argname

The name of an argument. Note that ALTER AGGREGATE does not actually pay any
attention to argument names, since only the argument data types are needed to determine
the aggregate function's identity.

argtype

Greenplum Database Reference Guide Release Notes

909

An input data type on which the aggregate function operates. To reference a zero-
argument aggregate function, write * in place of the list of input data types. To reference
an ordered-set aggregate function, write ORDER BY between the direct and aggregated
argument specifications.

new_name

The new name of the aggregate function.

new_owner

The new owner of the aggregate function.

new_schema

The new schema for the aggregate function.

Notes
The recommended syntax for referencing an ordered-set aggregate is to write ORDER BY between the
direct and aggregated argument specifications, in the same style as in CREATE AGGREGATE. However,
it will also work to omit ORDER BY and just run the direct and aggregated argument specifications into
a single list. In this abbreviated form, if VARIADIC "any" was used in both the direct and aggregated
argument lists, write VARIADIC "any" only once.

Examples
To rename the aggregate function myavg for type integer to my_average:

ALTER AGGREGATE myavg(integer) RENAME TO my_average;

To change the owner of the aggregate function myavg for type integer to joe:

ALTER AGGREGATE myavg(integer) OWNER TO joe;

To move the aggregate function myavg for type integer into schema myschema:

ALTER AGGREGATE myavg(integer) SET SCHEMA myschema;

Compatibility
There is no ALTER AGGREGATE statement in the SQL standard.

See Also
CREATE AGGREGATE, DROP AGGREGATE

ALTER COLLATION
Changes the definition of a collation.

Synopsis

ALTER COLLATION name RENAME TO new_name

ALTER COLLATION name OWNER TO new_owner

ALTER COLLATION name SET SCHEMA new_schema

Greenplum Database Reference Guide Release Notes

910

Parameters
name

The name (optionally schema-qualified) of an existing collation.

new_name

The new name of the collation.

new_owner

The new owner of the collation.

new_schema

The new schema for the collation.

Description
You must own the collation to use ALTER COLLATION. To alter the owner, you must also be a direct
or indirect member of the new owning role, and that role must have CREATE privilege on the collation's
schema. (These restrictions enforce that altering the owner doesn't do anything you couldn't do by
dropping and recreating the collation. However, a superuser can alter ownership of any collation anyway.)

Examples
To rename the collation de_DE to german:

ALTER COLLATION "de_DE" RENAME TO german;

To change the owner of the collation en_US to joe:

ALTER COLLATION "en_US" OWNER TO joe;

Compatibility
There is no ALTER COLLATION statement in the SQL standard.

See Also
CREATE COLLATION, DROP COLLATION

ALTER CONVERSION
Changes the definition of a conversion.

Synopsis

ALTER CONVERSION name RENAME TO newname

ALTER CONVERSION name OWNER TO newowner

ALTER CONVERSION name SET SCHEMA new_schema

Description
ALTER CONVERSION changes the definition of a conversion.

You must own the conversion to use ALTER CONVERSION. To alter the owner, you must also be a direct
or indirect member of the new owning role, and that role must have CREATE privilege on the conversion's
schema. (These restrictions enforce that altering the owner does not do anything you could not do by

Greenplum Database Reference Guide Release Notes

911

dropping and recreating the conversion. However, a superuser can alter ownership of any conversion
anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing conversion.

newname

The new name of the conversion.

newowner

The new owner of the conversion.

new_schema

The new schema for the conversion.

Examples
To rename the conversion iso_8859_1_to_utf8 to latin1_to_unicode:

ALTER CONVERSION iso_8859_1_to_utf8 RENAME TO
latin1_to_unicode;

To change the owner of the conversion iso_8859_1_to_utf8 to joe:

ALTER CONVERSION iso_8859_1_to_utf8 OWNER TO joe;

Compatibility
There is no ALTER CONVERSION statement in the SQL standard.

See Also
CREATE CONVERSION, DROP CONVERSION

ALTER DATABASE
Changes the attributes of a database.

Synopsis

ALTER DATABASE name [WITH CONNECTION LIMIT connlimit]

ALTER DATABASE name RENAME TO newname

ALTER DATABASE name OWNER TO new_owner

ALTER DATABASE name SET TABLESPACE new_tablespace

ALTER DATABASE name SET parameter { TO | = } { value | DEFAULT }
ALTER DATABASE name SET parameter FROM CURRENT
ALTER DATABASE name RESET parameter
ALTER DATABASE name RESET ALL

Description
ALTER DATABASE changes the attributes of a database.

Greenplum Database Reference Guide Release Notes

912

The first form changes the allowed connection limit for a database. Only the database owner or a
superuser can change this setting.

The second form changes the name of the database. Only the database owner or a superuser can rename
a database; non-superuser owners must also have the CREATEDB privilege. You cannot rename the
current database. Connect to a different database first.

The third form changes the owner of the database. To alter the owner, you must own the database and
also be a direct or indirect member of the new owning role, and you must have the CREATEDB privilege.
(Note that superusers have all these privileges automatically.)

The fourth form changes the default tablespace of the database. Only the database owner or a superuser
can do this; you must also have create privilege for the new tablespace. This command physically moves
any tables or indexes in the database's old default tablespace to the new tablespace. Note that tables and
indexes in non-default tablespaces are not affected.

The remaining forms change the session default for a configuration parameter for a Greenplum database.
Whenever a new session is subsequently started in that database, the specified value becomes the
session default value. The database-specific default overrides whatever setting is present in the server
configuration file (postgresql.conf). Only the database owner or a superuser can change the session
defaults for a database. Certain parameters cannot be set this way, or can only be set by a superuser.

Parameters
name

The name of the database whose attributes are to be altered.

connlimit

The maximum number of concurrent connections possible. The default of -1 means there
is no limitation.

parameter value

Set this database's session default for the specified configuration parameter to the given
value. If value is DEFAULT or, equivalently, RESET is used, the database-specific setting
is removed, so the system-wide default setting will be inherited in new sessions. Use
RESET ALL to clear all database-specific settings. See Server Configuration Parameters
for information about all user-settable configuration parameters.

newname

The new name of the database.

new_owner

The new owner of the database.

new_tablespace

The new default tablespace of the database.

Notes
It is also possible to set a configuration parameter session default for a specific role (user) rather than to a
database. Role-specific settings override database-specific ones if there is a conflict. See ALTER ROLE.

Examples
To set the default schema search path for the mydatabase database:

ALTER DATABASE mydatabase SET search_path TO myschema,
public, pg_catalog;

Greenplum Database Reference Guide Release Notes

913

Compatibility
The ALTER DATABASE statement is a Greenplum Database extension.

See Also
CREATE DATABASE, DROP DATABASE, SET, CREATE TABLESPACE

ALTER DEFAULT PRIVILEGES
Changes default access privileges.

Synopsis

ALTER DEFAULT PRIVILEGES
 [FOR { ROLE | USER } target_role [, ...]]
 [IN SCHEMA schema_name [, ...]]
 abbreviated_grant_or_revoke

where abbreviated_grant_or_revoke is one of:

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES |
 TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON TABLES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON SEQUENCES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTIONS
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON TYPES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES |
 TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON TABLES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON SEQUENCES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTIONS
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

Greenplum Database Reference Guide Release Notes

914

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON TYPES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

Description
ALTER DEFAULT PRIVILEGES allows you to set the privileges that will be applied to objects created in
the future. (It does not affect privileges assigned to already-existing objects.) Currently, only the privileges
for tables (including views and foreign tables), sequences, functions, and types (including domains) can be
altered.

You can change default privileges only for objects that will be created by yourself or by roles that you are
a member of. The privileges can be set globally (i.e., for all objects created in the current database), or just
for objects created in specified schemas. Default privileges that are specified per-schema are added to
whatever the global default privileges are for the particular object type.

As explained under GRANT, the default privileges for any object type normally grant all grantable
permissions to the object owner, and may grant some privileges to PUBLIC as well. However, this behavior
can be changed by altering the global default privileges with ALTER DEFAULT PRIVILEGES.

Parameters
target_role

The name of an existing role of which the current role is a member. If FOR ROLE is
omitted, the current role is assumed.

schema_name

The name of an existing schema. If specified, the default privileges are altered for objects
later created in that schema. If IN SCHEMA is omitted, the global default privileges are
altered.

role_name

The name of an existing role to grant or revoke privileges for. This parameter, and all the
other parameters in abbreviated_grant_or_revoke, act as described under GRANT or
REVOKE, except that one is setting permissions for a whole class of objects rather than
specific named objects.

Notes
Use psql's \ddp command to obtain information about existing assignments of default privileges. The
meaning of the privilege values is the same as explained for \dp under GRANT.

If you wish to drop a role for which the default privileges have been altered, it is necessary to reverse the
changes in its default privileges or use DROP OWNED BY to get rid of the default privileges entry for the
role.

Examples
Grant SELECT privilege to everyone for all tables (and views) you subsequently create in schema
myschema, and allow role webuser to INSERT into them too:

ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT SELECT ON TABLES TO
 PUBLIC;
ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT INSERT ON TABLES TO
 webuser;

Greenplum Database Reference Guide Release Notes

915

Undo the above, so that subsequently-created tables won't have any more permissions than normal:

ALTER DEFAULT PRIVILEGES IN SCHEMA myschema REVOKE SELECT ON TABLES FROM
 PUBLIC;
ALTER DEFAULT PRIVILEGES IN SCHEMA myschema REVOKE INSERT ON TABLES FROM
 webuser;

Remove the public EXECUTE permission that is normally granted on functions, for all functions
subsequently created by role admin:

ALTER DEFAULT PRIVILEGES FOR ROLE admin REVOKE EXECUTE ON FUNCTIONS FROM
 PUBLIC;

Compatibility
There is no ALTER DEFAULT PRIVILEGES statement in the SQL standard.

See Also
GRANT, REVOKE

ALTER DOMAIN
Changes the definition of a domain.

Synopsis

ALTER DOMAIN name { SET DEFAULT expression | DROP DEFAULT }

ALTER DOMAIN name { SET | DROP } NOT NULL

ALTER DOMAIN name ADD domain_constraint [NOT VALID]

ALTER DOMAIN name DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT |
 CASCADE]

ALTER DOMAIN name RENAME CONSTRAINT constraint_name TO new_constraint_name

ALTER DOMAIN name VALIDATE CONSTRAINT constraint_name

ALTER DOMAIN name OWNER TO new_owner

ALTER DOMAIN name RENAME TO new_name

ALTER DOMAIN name SET SCHEMA new_schema

Description
ALTER DOMAIN changes the definition of an existing domain. There are several sub-forms:

• SET/DROP DEFAULT — These forms set or remove the default value for a domain. Note that defaults
only apply to subsequent INSERT commands. They do not affect rows already in a table using the
domain.

• SET/DROP NOT NULL — These forms change whether a domain is marked to allow NULL values or to
reject NULL values. You may only SET NOT NULL when the columns using the domain contain no null
values.

Greenplum Database Reference Guide Release Notes

916

• ADD domain_constraint [NOT VALID] — This form adds a new constraint to a domain using the
same syntax as CREATE DOMAIN. When a new constraint is added to a domain, all columns using
that domain will be checked against the newly added constraint. These checks can be suppressed
by adding the new constraint using the NOT VALID option; the constraint can later be made valid
using ALTER DOMAIN ... VALIDATE CONSTRAINT. Newly inserted or updated rows are always
checked against all constraints, even those marked NOT VALID. NOT VALID is only accepted for
CHECK constraints.

• DROP CONSTRAINT [IF EXISTS] — This form drops constraints on a domain. If IF EXISTS is
specified and the constraint does not exist, no error is thrown. In this case a notice is issued instead.

• RENAME CONSTRAINT — This form changes the name of a constraint on a domain.
• VALIDATE CONSTRAINT — This form validates a constraint previously added as NOT VALID, that is,

verify that all data in columns using the domain satisfy the specified constraint.
• OWNER — This form changes the owner of the domain to the specified user.
• RENAME — This form changes the name of the domain.
• SET SCHEMA — This form changes the schema of the domain. Any constraints associated with the

domain are moved into the new schema as well.

You must own the domain to use ALTER DOMAIN. To change the schema of a domain, you must also
have CREATE privilege on the new schema. To alter the owner, you must also be a direct or indirect
member of the new owning role, and that role must have CREATE privilege on the domain's schema.
(These restrictions enforce that altering the owner does not do anything you could not do by dropping and
recreating the domain. However, a superuser can alter ownership of any domain anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing domain to alter.

domain_constraint

New domain constraint for the domain.

constraint_name

Name of an existing constraint to drop or rename.

NOT VALID

Do not verify existing column data for constraint validity.

CASCADE

Automatically drop objects that depend on the constraint.

RESTRICT

Refuse to drop the constraint if there are any dependent objects. This is the default
behavior.

new_name

The new name for the domain.

new_constraint_name

The new name for the constraint.

new_owner

The user name of the new owner of the domain.

new_schema

The new schema for the domain.

Greenplum Database Reference Guide Release Notes

917

Examples
To add a NOT NULL constraint to a domain:

ALTER DOMAIN zipcode SET NOT NULL;

To remove a NOT NULL constraint from a domain:

ALTER DOMAIN zipcode DROP NOT NULL;

To add a check constraint to a domain:

ALTER DOMAIN zipcode ADD CONSTRAINT zipchk CHECK (char_length(VALUE) = 5);

To remove a check constraint from a domain:

ALTER DOMAIN zipcode DROP CONSTRAINT zipchk;

To rename a check constraint on a domain:

ALTER DOMAIN zipcode RENAME CONSTRAINT zipchk TO zip_check;

To move the domain into a different schema:

ALTER DOMAIN zipcode SET SCHEMA customers;

Compatibility
ALTER DOMAIN conforms to the SQL standard, except for the OWNER, RENAME, SET SCHEMA, and
VALIDATE CONSTRAINT variants, which are Greenplum Database extensions. The NOT VALID clause of
the ADD CONSTRAINT variant is also a Greenplum Database extension.

See Also
CREATE DOMAIN, DROP DOMAIN

ALTER EXTENSION
Change the definition of an extension that is registered in a Greenplum database.

Synopsis

ALTER EXTENSION name UPDATE [TO new_version]
ALTER EXTENSION name SET SCHEMA new_schema
ALTER EXTENSION name ADD member_object
ALTER EXTENSION name DROP member_object

where member_object is:

 ACCESS METHOD object_name |
 AGGREGATE aggregate_name (aggregate_signature) |
 CAST (source_type AS target_type) |
 COLLATION object_name |
 CONVERSION object_name |
 DOMAIN object_name |
 EVENT TRIGGER object_name |
 FOREIGN DATA WRAPPER object_name |
 FOREIGN TABLE object_name |
 FUNCTION function_name ([[argmode] [argname] argtype [, ...]]) |

Greenplum Database Reference Guide Release Notes

918

 MATERIALIZED VIEW object_name |
 OPERATOR operator_name (left_type, right_type) |
 OPERATOR CLASS object_name USING index_method |
 OPERATOR FAMILY object_name USING index_method |
 [PROCEDURAL] LANGUAGE object_name |
 SCHEMA object_name |
 SEQUENCE object_name |
 SERVER object_name |
 TABLE object_name |
 TEXT SEARCH CONFIGURATION object_name |
 TEXT SEARCH DICTIONARY object_name |
 TEXT SEARCH PARSER object_name |
 TEXT SEARCH TEMPLATE object_name |
 TRANSFORM FOR type_name LANGUAGE lang_name |
 TYPE object_name |
 VIEW object_name

and aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname
] argtype [, ...]

Description
ALTER EXTENSION changes the definition of an installed extension. These are the subforms:

UPDATE

This form updates the extension to a newer version. The extension must supply a suitable
update script (or series of scripts) that can modify the currently-installed version into the
requested version.

SET SCHEMA

This form moves the extension member objects into another schema. The extension must
be relocatable.

ADD member_object

This form adds an existing object to the extension. This is useful in extension update
scripts. The added object is treated as a member of the extension. The object can only be
dropped by dropping the extension.

DROP member_object

This form removes a member object from the extension. This is mainly useful in extension
update scripts. The object is not dropped, only disassociated from the extension.

See Packaging Related Objects into an Extension for more information about these operations.

You must own the extension to use ALTER EXTENSION. The ADD and DROP forms also require ownership
of the object that is being added or dropped.

Parameters
name

The name of an installed extension.

new_version

The new version of the extension. The new_version can be either an identifier or a string
literal. If not specified, the command attempts to update to the default version in the
extension control file.

https://www.postgresql.org/docs/9.6/extend-extensions.html

Greenplum Database Reference Guide Release Notes

919

new_schema

The new schema for the extension.

object_name
aggregate_name
function_name
operator_name

The name of an object to be added to or removed from the extension. Names of tables,
aggregates, domains, foreign tables, functions, operators, operator classes, operator
families, sequences, text search objects, types, and views can be schema-qualified.

source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

argmode

The mode of a function or aggregate argument: IN, OUT, INOUT, or VARIADIC. The
default is IN.

The command ignores the OUT arguments. Only the input arguments are required to
determine the function identity. It is sufficient to list the IN, INOUT, and VARIADIC
arguments.

argname

The name of a function or aggregate argument.

The command ignores argument names, since only the argument data types are required
to determine the function identity.

argtype

The data type of a function or aggregate argument.

left_type
right_type

The data types of the operator's arguments (optionally schema-qualified) . Specify NONE
for the missing argument of a prefix or postfix operator.

PROCEDURAL

This is a noise word.

type_name

The name of the data type of the transform.

lang_name

The name of the language of the transform.

Examples
To update the hstore extension to version 2.0:

ALTER EXTENSION hstore UPDATE TO '2.0';

To change the schema of the hstore extension to utils:

ALTER EXTENSION hstore SET SCHEMA utils;

Greenplum Database Reference Guide Release Notes

920

To add an existing function to the hstore extension:

ALTER EXTENSION hstore ADD FUNCTION populate_record(anyelement, hstore);

Compatibility
ALTER EXTENSION is a Greenplum Database extension.

See Also
CREATE EXTENSION, DROP EXTENSION

ALTER EXTERNAL TABLE
Changes the definition of an external table.

Synopsis

ALTER EXTERNAL TABLE name action [, ...]

where action is one of:

 ADD [COLUMN] new_column type
 DROP [COLUMN] column [RESTRICT|CASCADE]
 ALTER [COLUMN] column TYPE type
 OWNER TO new_owner

Description
ALTER EXTERNAL TABLE changes the definition of an existing external table. These are the supported
ALTER EXTERNAL TABLE actions:

• ADD COLUMN — Adds a new column to the external table definition.
• DROP COLUMN — Drops a column from the external table definition. If you drop readable external

table columns, it only changes the table definition in Greenplum Database. The CASCADE keyword
is required if anything outside the table depends on the column, such as a view that references the
column.

• ALTER COLUMN TYPE — Changes the data type of a table column.
• OWNER — Changes the owner of the external table to the specified user.

Use the ALTER TABLE command to perform these actions on an external table.

• Set (change) the table schema.
• Rename the table.
• Rename a table column.

You must own the external table to use ALTER EXTERNAL TABLE or ALTER TABLE. To change the
schema of an external table, you must also have CREATE privilege on the new schema. To alter the owner,
you must also be a direct or indirect member of the new owning role, and that role must have CREATE
privilege on the external table's schema. A superuser has these privileges automatically.

Changes to the external table definition with either ALTER EXTERNAL TABLE or ALTER TABLE do not
affect the external data.

The ALTER EXTERNAL TABLE and ALTER TABLE commands cannot modify the type external table
(read, write, web), the table FORMAT information, or the location of the external data. To modify this
information, you must drop and recreate the external table definition.

Greenplum Database Reference Guide Release Notes

921

Parameters
name

The name (possibly schema-qualified) of an existing external table definition to alter.

column

Name of an existing column.

new_column

Name of a new column.

type

Data type of the new column, or new data type for an existing column.

new_owner

The role name of the new owner of the external table.

CASCADE

Automatically drop objects that depend on the dropped column, such as a view that
references the column.

RESTRICT

Refuse to drop the column or constraint if there are any dependent objects. This is the
default behavior.

Examples
Add a new column to an external table definition:

ALTER EXTERNAL TABLE ext_expenses ADD COLUMN manager text;

Change the owner of an external table:

ALTER EXTERNAL TABLE ext_data OWNER TO jojo;

Change the data type of an external table:

ALTER EXTERNAL TABLE ext_leads ALTER COLUMN acct_code TYPE integer

Compatibility
ALTER EXTERNAL TABLE is a Greenplum Database extension. There is no ALTER EXTERNAL TABLE
statement in the SQL standard or regular PostgreSQL.

See Also
CREATE EXTERNAL TABLE, DROP EXTERNAL TABLE, ALTER TABLE

ALTER FOREIGN DATA WRAPPER
Changes the definition of a foreign-data wrapper.

Synopsis

ALTER FOREIGN DATA WRAPPER name
 [HANDLER handler_function | NO HANDLER]
 [VALIDATOR validator_function | NO VALIDATOR]
 [OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])]

ALTER FOREIGN DATA WRAPPER name OWNER TO new_owner

Greenplum Database Reference Guide Release Notes

922

ALTER FOREIGN DATA WRAPPER name RENAME TO new_name

Description
ALTER FOREIGN DATA WRAPPER changes the definition of a foreign-data wrapper. The first form of
the command changes the support functions or generic options of the foreign-data wrapper. Greenplum
Database requires at least one clause. The second and third forms of the command change the owner or
name of the foreign-data wrapper.

Only superusers can alter foreign-data wrappers. Additionally, only superusers can own foreign-data
wrappers

Parameters
name

The name of an existing foreign-data wrapper.

HANDLER handler_function

Specifies a new handler function for the foreign-data wrapper.

NO HANDLER

Specifies that the foreign-data wrapper should no longer have a handler function.

Note: You cannot access a foreign table that uses a foreign-data wrapper
with no handler.

VALIDATOR validator_function

Specifies a new validator function for the foreign-data wrapper.

Options to the foreign-data wrapper, servers, and user mappings may become invalid
when you change the validator function. You must make sure that these options are
correct before using the modified foreign-data wrapper. Note that Greenplum Database
checks any options specified in this ALTER FOREIGN DATA WRAPPER command using
the new validator.

NO VALIDATOR

Specifies that the foreign-data wrapper should no longer have a validator function.

OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Change the foreign-data wrapper's options. ADD, SET, and DROP specify the action to
perform. If no operation is explicitly specified, the default operation is ADD. Option names
must be unique. Greenplum Database validates names and values using the foreign-data
wrapper's validator function, if any.

OWNER TO new_owner

Specifies the new owner of the foreign-data wrapper. Only superusers can own foreign-
data wrappers.

RENAME TO new_name

Specifies the new name of the foreign-data wrapper.

Examples
Change the definition of a foreign-data wrapper named dbi by adding a new option named foo, and
removing the option named bar:

ALTER FOREIGN DATA WRAPPER dbi OPTIONS (ADD foo '1', DROP 'bar');

Greenplum Database Reference Guide Release Notes

923

Change the validator function for a foreign-data wrapper named dbi to bob.myvalidator:

ALTER FOREIGN DATA WRAPPER dbi VALIDATOR bob.myvalidator;

Compatibility
ALTER FOREIGN DATA WRAPPER conforms to ISO/IEC 9075-9 (SQL/MED), with the exception that the
HANDLER, VALIDATOR, OWNER TO, and RENAME TO clauses are Greenplum Database extensions.

See Also
CREATE FOREIGN DATA WRAPPER, DROP FOREIGN DATA WRAPPER

ALTER FOREIGN TABLE
Changes the definition of a foreign table.

Synopsis

ALTER FOREIGN TABLE [IF EXISTS] name
 action [, ...]
ALTER FOREIGN TABLE [IF EXISTS] name
 RENAME [COLUMN] column_name TO new_column_name
ALTER FOREIGN TABLE [IF EXISTS] name
 RENAME TO new_name
ALTER FOREIGN TABLE [IF EXISTS] name
 SET SCHEMA new_schema

where action is one of:

 ADD [COLUMN] column_name column_type [COLLATE collation]
 [column_constraint [...]]
 DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
 ALTER [COLUMN] column_name [SET DATA] TYPE data_type
 ALTER [COLUMN] column_name SET DEFAULT expression
 ALTER [COLUMN] column_name DROP DEFAULT
 ALTER [COLUMN] column_name { SET | DROP } NOT NULL
 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column_name SET (attribute_option = value [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name OPTIONS ([ADD | SET | DROP] option
 ['value'] [, ...])
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE REPLICA TRIGGER trigger_name
 ENABLE ALWAYS TRIGGER trigger_name
 OWNER TO new_owner
 OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Description
ALTER FOREIGN TABLE changes the definition of an existing foreign table. There are several subforms of
the command:

ADD COLUMN

This form adds a new column to the foreign table, using the same syntax as CREATE
FOREIGN TABLE. Unlike the case when you add a column to a regular table, nothing

Greenplum Database Reference Guide Release Notes

924

happens to the underlying storage: this action simply declares that some new column is
now accessible through the foreign table.

DROP COLUMN [IF EXISTS]

This form drops a column from a foreign table. You must specify CASCADE if any objects
outside of the table depend on the column; for example, views. If you specify IF EXISTS
and the column does not exist, no error is thrown. Greenplum Database issues a notice
instead.

IF EXISTS

If you specify IF EXISTS and the foreign table does not exist, no error is thrown.
Greenplum Database issues a notice instead.

SET DATA TYPE

This form changes the type of a column of a foreign table.

SET/DROP DEFAULT

These forms set or remove the default value for a column. Default values apply only in
subsequent INSERT or UPDATE commands; they do not cause rows already in the table to
change.

SET/DROP NOT NULL

Mark a column as allowing, or not allowing, null values.

SET STATISTICS

This form sets the per-column statistics-gathering target for subsequent ANALYZE
operations. See the similar form of ALTER TABLE for more details.

SET (attribute_option = value [, ...]])
RESET (attribute_option [, ...])

This form sets or resets per-attribute options. See the similar form of ALTER TABLE for
more details.

DISABLE/ENABLE [REPLICA | ALWAYS] TRIGGER

These forms configure the firing of trigger(s) belonging to the foreign table. See the similar
form of ALTER TABLE for more details.

OWNER

This form changes the owner of the foreign table to the specified user.

RENAME

The RENAME forms change the name of a foreign table or the name of an individual column
in a foreign table.

SET SCHEMA

This form moves the foreign table into another schema.

OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Change options for the foreign table. ADD, SET, and DROP specify the action to perform.
If no operation is explicitly specified, the default operation is ADD. Option names must be
unique. Greenplum Database validates names and values using the server's foreign-data
wrapper.

You can combine all of the actions except RENAME and SET SCHEMA into a list of multiple alterations for
Greenplum Database to apply in parallel. For example, it is possible to add several columns and/or alter
the type of several columns in a single command.

Greenplum Database Reference Guide Release Notes

925

You must own the table to use ALTER FOREIGN TABLE. To change the schema of a foreign table, you
must also have CREATE privilege on the new schema. To alter the owner, you must also be a direct or
indirect member of the new owning role, and that role must have CREATE privilege on the table's schema.
(These restrictions enforce that altering the owner doesn't do anything you couldn't do by dropping and
recreating the table. However, a superuser can alter ownership of any table anyway.) To add a column or
to alter a column type, you must also have USAGE privilege on the data type.

Parameters
name

The name (possibly schema-qualified) of an existing foreign table to alter.

column_name

The name of a new or existing column.

new_column_name

The new name for an existing column.

new_name

The new name for the foreign table.

data_type

The data type of the new column, or new data type for an existing column.

CASCADE

Automatically drop objects that depend on the dropped column (for example, views
referencing the column).

RESTRICT

Refuse to drop the column if there are any dependent objects. This is the default behavior.

trigger_name

Name of a single trigger to disable or enable.

ALL

Disable or enable all triggers belonging to the foreign table. (This requires superuser
privilege if any of the triggers are internally generated triggers. The core system does not
add such triggers to foreign tables, but add-on code could do so.)

USER

Disable or enable all triggers belonging to the foreign table except for internally generated
triggers.

new_owner

The user name of the new owner of the foreign table.

new_schema

The name of the schema to which the foreign table will be moved.

Notes
The key word COLUMN is noise and can be omitted.

Consistency with the foreign server is not checked when a column is added or removed with ADD COLUMN
or DROP COLUMN, a NOT NULL constraint is added, or a column type is changed with SET DATA TYPE. It
is your responsibility to ensure that the table definition matches the remote side.

Refer to CREATE FOREIGN TABLE for a further description of valid parameters.

Greenplum Database Reference Guide Release Notes

926

Examples
To mark a column as not-null:

ALTER FOREIGN TABLE distributors ALTER COLUMN street SET NOT NULL;

To change the options of a foreign table:

ALTER FOREIGN TABLE myschema.distributors
 OPTIONS (ADD opt1 'value', SET opt2 'value2', DROP opt3 'value3');

Compatibility
The forms ADD, DROP, and SET DATA TYPE conform with the SQL standard. The other forms are
Greenplum Database extensions of the SQL standard. The ability to specify more than one manipulation in
a single ALTER FOREIGN TABLE command is also a Greenplum Database extension.

You can use ALTER FOREIGN TABLE ... DROP COLUMN to drop the only column of a foreign table,
leaving a zero-column table. This is an extension of SQL, which disallows zero-column foreign tables.

See Also
ALTER TABLE, CREATE FOREIGN TABLE, DROP FOREIGN TABLE

ALTER FUNCTION
Changes the definition of a function.

Synopsis

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
 action [, ...] [RESTRICT]

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
 RENAME TO new_name

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
 OWNER TO new_owner

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
 SET SCHEMA new_schema

where action is one of:

{CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT}
{IMMUTABLE | STABLE | VOLATILE | [NOT] LEAKPROOF}
{[EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER}
EXECUTE ON { ANY | MASTER | ALL SEGMENTS | INITPLAN }
COST execution_cost
SET configuration_parameter { TO | = } { value | DEFAULT }
SET configuration_parameter FROM CURRENT
RESET configuration_parameter
RESET ALL

Description
ALTER FUNCTION changes the definition of a function.

You must own the function to use ALTER FUNCTION. To change a function's schema, you must also
have CREATE privilege on the new schema. To alter the owner, you must also be a direct or indirect

Greenplum Database Reference Guide Release Notes

927

member of the new owning role, and that role must have CREATE privilege on the function's schema.
(These restrictions enforce that altering the owner does not do anything you could not do by dropping and
recreating the function. However, a superuser can alter ownership of any function anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing function.

argmode

The mode of an argument: either IN, OUT, INOUT, or VARIADIC. If omitted, the default is
IN. Note that ALTER FUNCTION does not actually pay any attention to OUT arguments,
since only the input arguments are needed to determine the function's identity. So it is
sufficient to list the IN, INOUT, and VARIADIC arguments.

argname

The name of an argument. Note that ALTER FUNCTION does not actually pay any
attention to argument names, since only the argument data types are needed to determine
the function's identity.

argtype

The data type(s) of the function's arguments (optionally schema-qualified), if any.

new_name

The new name of the function.

new_owner

The new owner of the function. Note that if the function is marked SECURITY DEFINER, it
will subsequently execute as the new owner.

new_schema

The new schema for the function.

CALLED ON NULL INPUT
RETURNS NULL ON NULL INPUT
STRICT

CALLED ON NULL INPUT changes the function so that it will be invoked when some or
all of its arguments are null. RETURNS NULL ON NULL INPUT or STRICT changes the
function so that it is not invoked if any of its arguments are null; instead, a null result is
assumed automatically. See CREATE FUNCTION for more information.

IMMUTABLE
STABLE
VOLATILE

Change the volatility of the function to the specified setting. See CREATE FUNCTION for
details.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

Change whether the function is a security definer or not. The key word EXTERNAL is
ignored for SQL conformance. See CREATE FUNCTION for more information about this
capability.

LEAKPROOF

Change whether the function is considered leakproof or not. See CREATE FUNCTION for
more information about this capability.

EXECUTE ON ANY
EXECUTE ON MASTER
EXECUTE ON ALL SEGMENTS

Greenplum Database Reference Guide Release Notes

928

EXECUTE ON INITPLAN

The EXECUTE ON attributes specify where (master or segment instance) a function
executes when it is invoked during the query execution process.

EXECUTE ON ANY (the default) indicates that the function can be executed on the master,
or any segment instance, and it returns the same result regardless of where it is executed.
Greenplum Database determines where the function executes.

EXECUTE ON MASTER indicates that the function must execute only on the master
instance.

EXECUTE ON ALL SEGMENTS indicates that the function must execute on all primary
segment instances, but not the master, for each invocation. The overall result of the
function is the UNION ALL of the results from all segment instances.

EXECUTE ON INITPLAN indicates that the function contains an SQL command that
dispatches queries to the segment instances and requires special processing on the
master instance by Greenplum Database when possible.

For more information about the EXECUTE ON attributes, see CREATE FUNCTION.

COST execution_cost

Change the estimated execution cost of the function. See CREATE FUNCTION for more
information.

configuration_parameter
value

Set or change the value of a configuration parameter when the function is called. If value
is DEFAULT or, equivalently, RESET is used, the function-local setting is removed, and
the function executes with the value present in its environment. Use RESET ALL to clear
all function-local settings. SET FROM CURRENT saves the value of the parameter that is
current when ALTER FUNCTION is executed as the value to be applied when the function
is entered.

RESTRICT

Ignored for conformance with the SQL standard.

Notes
Greenplum Database has limitations on the use of functions defined as STABLE or VOLATILE. See
CREATE FUNCTION for more information.

Examples
To rename the function sqrt for type integer to square_root:

ALTER FUNCTION sqrt(integer) RENAME TO square_root;

To change the owner of the function sqrt for type integer to joe:

ALTER FUNCTION sqrt(integer) OWNER TO joe;

To change the schema of the function sqrt for type integer to math:

ALTER FUNCTION sqrt(integer) SET SCHEMA math;

To adjust the search path that is automatically set for a function:

ALTER FUNCTION check_password(text) RESET search_path;

Greenplum Database Reference Guide Release Notes

929

Compatibility
This statement is partially compatible with the ALTER FUNCTION statement in the SQL standard. The
standard allows more properties of a function to be modified, but does not provide the ability to rename a
function, make a function a security definer, or change the owner, schema, or volatility of a function. The
standard also requires the RESTRICT key word, which is optional in Greenplum Database.

See Also
CREATE FUNCTION, DROP FUNCTION

ALTER GROUP
Changes a role name or membership.

Synopsis

ALTER GROUP groupname ADD USER username [, ...]

ALTER GROUP groupname DROP USER username [, ...]

ALTER GROUP groupname RENAME TO newname

Description
ALTER GROUP changes the attributes of a user group. This is an obsolete command, though still accepted
for backwards compatibility, because users and groups are superseded by the more general concept of
roles. See ALTER ROLE for more information.

The first two variants add users to a group or remove them from a group. Any role can play the part of
groupname or username. The preferred method for accomplishing these tasks is to use GRANT and
REVOKE.

Parameters
groupname

The name of the group (role) to modify.

username

Users (roles) that are to be added to or removed from the group. The users (roles) must
already exist.

newname

The new name of the group (role).

Examples
To add users to a group:

ALTER GROUP staff ADD USER karl, john;

To remove a user from a group:

ALTER GROUP workers DROP USER beth;

Compatibility
There is no ALTER GROUP statement in the SQL standard.

Greenplum Database Reference Guide Release Notes

930

See Also
ALTER ROLE, GRANT, REVOKE

ALTER INDEX
Changes the definition of an index.

Synopsis

ALTER INDEX [IF EXISTS] name RENAME TO new_name

ALTER INDEX [IF EXISTS] name SET TABLESPACE tablespace_name

ALTER INDEX [IF EXISTS] name SET (storage_parameter = value [, ...])

ALTER INDEX [IF EXISTS] name RESET (storage_parameter [, ...])

ALTER INDEX ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]

Description
ALTER INDEX changes the definition of an existing index. There are several subforms:

• RENAME — Changes the name of the index. There is no effect on the stored data.
• SET TABLESPACE — Changes the index's tablespace to the specified tablespace and moves the data

file(s) associated with the index to the new tablespace. To change the tablespace of an index, you must
own the index and have CREATE privilege on the new tablespace. All indexes in the current database
in a tablespace can be moved by using the ALL IN TABLESPACE form, which will lock all indexes to
be moved and then move each one. This form also supports OWNED BY, which will only move indexes
owned by the roles specified. If the NOWAIT option is specified then the command will fail if it is unable
to acquire all of the locks required immediately. Note that system catalogs will not be moved by this
command, use ALTER DATABASE or explicit ALTER INDEX invocations instead if desired. See also
CREATE TABLESPACE.

• IF EXISTS — Do not throw an error if the index does not exist. A notice is issued in this case.
• SET — Changes the index-method-specific storage parameters for the index. The built-in index

methods all accept a single parameter: fillfactor. The fillfactor for an index is a percentage that
determines how full the index method will try to pack index pages. Index contents will not be modified
immediately by this command. Use REINDEX to rebuild the index to get the desired effects.

• RESET — Resets storage parameters for the index to their defaults. The built-in index methods all
accept a single parameter: fillfactor. As with SET, a REINDEX may be needed to update the index
entirely.

Parameters
name

The name (optionally schema-qualified) of an existing index to alter.

new_name

New name for the index.

tablespace_name

The tablespace to which the index will be moved.

storage_parameter

The name of an index-method-specific storage parameter.

value

Greenplum Database Reference Guide Release Notes

931

The new value for an index-method-specific storage parameter. This might be a number or
a word depending on the parameter.

Notes
These operations are also possible using ALTER TABLE.

Changing any part of a system catalog index is not permitted.

Examples
To rename an existing index:

ALTER INDEX distributors RENAME TO suppliers;

To move an index to a different tablespace:

ALTER INDEX distributors SET TABLESPACE fasttablespace;

To change an index's fill factor (assuming that the index method supports it):

ALTER INDEX distributors SET (fillfactor = 75);
REINDEX INDEX distributors;

Compatibility
ALTER INDEX is a Greenplum Database extension.

See Also
CREATE INDEX, REINDEX, ALTER TABLE

ALTER LANGUAGE
Changes the name of a procedural language.

Synopsis

ALTER LANGUAGE name RENAME TO newname
ALTER LANGUAGE name OWNER TO new_owner

Description
ALTER LANGUAGE changes the definition of a procedural language for a specific database. Definition
changes supported include renaming the language or assigning a new owner. You must be superuser or
the owner of the language to use ALTER LANGUAGE.

Parameters
name

Name of a language.

newname

The new name of the language.

new_owner

The new owner of the language.

Greenplum Database Reference Guide Release Notes

932

Compatibility
There is no ALTER LANGUAGE statement in the SQL standard.

See Also
CREATE LANGUAGE, DROP LANGUAGE

ALTER MATERIALIZED VIEW
Changes the definition of a materialized view.

Synopsis

ALTER MATERIALIZED VIEW [IF EXISTS] name action [, ...]
ALTER MATERIALIZED VIEW [IF EXISTS] name
 RENAME [COLUMN] column_name TO new_column_name
ALTER MATERIALIZED VIEW [IF EXISTS] name
 RENAME TO new_name
ALTER MATERIALIZED VIEW [IF EXISTS] name
 SET SCHEMA new_schema
ALTER MATERIALIZED VIEW ALL IN TABLESPACE name [OWNED BY role_name
 [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]

where action is one of:

 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column_name SET (attribute_option = value [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED |
 MAIN }
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET (storage_parameter = value [, ...])
 RESET (storage_parameter [, ...])
 OWNER TO new_owner

Description
ALTER MATERIALIZED VIEW changes various auxiliary properties of an existing materialized view.

You must own the materialized view to use ALTER MATERIALIZED VIEW. To change a materialized
view's schema, you must also have CREATE privilege on the new schema. To alter the owner, you must
also be a direct or indirect member of the new owning role, and that role must have CREATE privilege on
the materialized view's schema. (These restrictions enforce that altering the owner doesn't do anything you
couldn't do by dropping and recreating the materialized view. However, a superuser can alter ownership of
any view anyway.)

The statement subforms and actions available for ALTER MATERIALIZED VIEW are a subset of those
available for ALTER TABLE, and have the same meaning when used for materialized views. See the
descriptions for ALTER TABLE for details.

Parameters
name

The name (optionally schema-qualified) of an existing materialized view.

column_name

Name of a new or existing column.

Greenplum Database Reference Guide Release Notes

933

new_column_name

New name for an existing column.

new_owner

The user name of the new owner of the materialized view.

new_name

The new name for the materialized view.

new_schema

The new schema for the materialized view.

Examples
To rename the materialized view foo to bar:

ALTER MATERIALIZED VIEW foo RENAME TO bar;

Compatibility
ALTER MATERIALIZED VIEW is a Greenplum Database extension of the SQL standard.

See Also
CREATE MATERIALIZED VIEW, DROP MATERIALIZED VIEW, REFRESH MATERIALIZED VIEW

ALTER OPERATOR
Changes the definition of an operator.

Synopsis

ALTER OPERATOR name ({left_type | NONE} , {right_type | NONE})
 OWNER TO new_owner

ALTER OPERATOR name ({left_type | NONE} , {right_type | NONE})
 SET SCHEMA new_schema

Description
ALTER OPERATOR changes the definition of an operator. The only currently available functionality is to
change the owner of the operator.

You must own the operator to use ALTER OPERATOR. To alter the owner, you must also be a direct or
indirect member of the new owning role, and that role must have CREATE privilege on the operator's
schema. (These restrictions enforce that altering the owner does not do anything you could not do by
dropping and recreating the operator. However, a superuser can alter ownership of any operator anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing operator.

left_type

The data type of the operator's left operand; write NONE if the operator has no left operand.

right_type

The data type of the operator's right operand; write NONE if the operator has no right
operand.

Greenplum Database Reference Guide Release Notes

934

new_owner

The new owner of the operator.

new_schema

The new schema for the operator.

Examples
Change the owner of a custom operator a @@ b for type text:

ALTER OPERATOR @@ (text, text) OWNER TO joe;

Compatibility
There is no ALTEROPERATOR statement in the SQL standard.

See Also
CREATE OPERATOR, DROP OPERATOR

ALTER OPERATOR CLASS
Changes the definition of an operator class.

Synopsis

ALTER OPERATOR CLASS name USING index_method RENAME TO new_name

ALTER OPERATOR CLASS name USING index_method OWNER TO new_owner

ALTER OPERATOR CLASS name USING index_method SET SCHEMA new_schema

Description
ALTER OPERATOR CLASS changes the definition of an operator class.

You must own the operator class to use ALTER OPERATOR CLASS. To alter the owner, you must also
be a direct or indirect member of the new owning role, and that role must have CREATE privilege on the
operator class's schema. (These restrictions enforce that altering the owner does not do anything you
could not do by dropping and recreating the operator class. However, a superuser can alter ownership of
any operator class anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing operator class.

index_method

The name of the index method this operator class is for.

new_name

The new name of the operator class.

new_owner

The new owner of the operator class

new_schema

The new schema for the operator class.

Greenplum Database Reference Guide Release Notes

935

Compatibility
There is no ALTER OPERATOR CLASS statement in the SQL standard.

See Also
CREATE OPERATOR CLASS, DROP OPERATOR CLASS

ALTER OPERATOR FAMILY
Changes the definition of an operator family.

Synopsis

ALTER OPERATOR FAMILY name USING index_method ADD
 { OPERATOR strategy_number operator_name (op_type, op_type) [FOR
 SEARCH | FOR ORDER BY sort_family_name]
 | FUNCTION support_number [(op_type [, op_type])] funcname
 (argument_type [, ...])
 } [, ...]

ALTER OPERATOR FAMILY name USING index_method DROP
 { OPERATOR strategy_number (op_type, op_type)
 | FUNCTION support_number [(op_type [, op_type])
 } [, ...]

ALTER OPERATOR FAMILY name USING index_method RENAME TO new_name

ALTER OPERATOR FAMILY name USING index_method OWNER TO new_owner

ALTER OPERATOR FAMILY name USING index_method SET SCHEMA new_schema

Description
ALTER OPERATOR FAMILY changes the definition of an operator family. You can add operators and
support functions to the family, remove them from the family, or change the family's name or owner.

When operators and support functions are added to a family with ALTER OPERATOR FAMILY, they are not
part of any specific operator class within the family, but are just "loose" within the family. This indicates that
these operators and functions are compatible with the family's semantics, but are not required for correct
functioning of any specific index. (Operators and functions that are so required should be declared as part
of an operator class, instead; see CREATE OPERATOR CLASS.) You can drop loose members of a family
from the family at any time, but members of an operator class cannot be dropped without dropping the
whole class and any indexes that depend on it. Typically, single-data-type operators and functions are part
of operator classes because they are needed to support an index on that specific data type, while cross-
data-type operators and functions are made loose members of the family.

You must be a superuser to use ALTER OPERATOR FAMILY. (This restriction is made because an
erroneous operator family definition could confuse or even crash the server.)

ALTER OPERATOR FAMILY does not presently check whether the operator family definition includes all
the operators and functions required by the index method, nor whether the operators and functions form a
self-consistent set. It is the user's responsibility to define a valid operator family.

OPERATOR and FUNCTION clauses can appear in any order.

Parameters
name

The name (optionally schema-qualified) of an existing operator family.

Greenplum Database Reference Guide Release Notes

936

index_method

The name of the index method this operator family is for.

strategy_number

The index method's strategy number for an operator associated with the operator family.

operator_name

The name (optionally schema-qualified) of an operator associated with the operator family.

op_type

In an OPERATOR clause, the operand data type(s) of the operator, or NONE to signify a
left-unary or right-unary operator. Unlike the comparable syntax in CREATE OPERATOR
CLASS, the operand data types must always be specified. In an ADD FUNCTION clause,
the operand data type(s) the function is intended to support, if different from the input
data type(s) of the function. For B-tree comparison functions it is not necessary to specify
op_type since the function's input data type(s) are always the correct ones to use. For B-
tree sort support functions and all functions in GiST, SP-GiST, and GIN operator classes, it
is necessary to specify the operand data type(s) the function is to be used with.

sort_family_name

The name (optionally schema-qualified) of an existing btree operator family that
describes the sort ordering associated with an ordering operator.

If neither FOR SEARCH nor FOR ORDER BY is specified, FOR SEARCH is the default.

support_number

The index method's support procedure number for a function associated with the operator
family.

funcname

The name (optionally schema-qualified) of a function that is an index method support
procedure for the operator family.

argument_types

The parameter data type(s) of the function.

new_name

The new name of the operator family.

new_owner

The new owner of the operator family.

new_schema

The new schema for the operator family.

Compatibility
There is no ALTER OPERATOR FAMILY statement in the SQL standard.

Notes
Notice that the DROP syntax only specifies the "slot" in the operator family, by strategy or support number
and input data type(s). The name of the operator or function occupying the slot is not mentioned. Also, for
DROP FUNCTION the type(s) to specify are the input data type(s) the function is intended to support; for
GiST, SP_GiST, and GIN indexes this might have nothing to do with the actual input argument types of the
function.

Because the index machinery does not check access permissions on functions before using them,
including a function or operator in an operator family is tantamount to granting public execute permission
on it. This is usually not an issue for the sorts of functions that are useful in an operator family.

Greenplum Database Reference Guide Release Notes

937

The operators should not be defined by SQL functions. A SQL function is likely to be inlined into the calling
query, which will prevent the optimizer from recognizing that the query matches an index.

Before Greenplum Database 6.0, the OPERATOR clause could include a RECHECK option. This option is no
longer supported. Greenplum Database now determines whether an index operator is "lossy" on-the-fly at
run time. This allows more efficient handling of cases where an operator might or might not be lossy.

Examples
The following example command adds cross-data-type operators and support functions to an operator
family that already contains B-tree operator classes for data types int4 and int2.:

ALTER OPERATOR FAMILY integer_ops USING btree ADD

 -- int4 vs int2
 OPERATOR 1 < (int4, int2) ,
 OPERATOR 2 <= (int4, int2) ,
 OPERATOR 3 = (int4, int2) ,
 OPERATOR 4 >= (int4, int2) ,
 OPERATOR 5 > (int4, int2) ,
 FUNCTION 1 btint42cmp(int4, int2) ,

 -- int2 vs int4
 OPERATOR 1 < (int2, int4) ,
 OPERATOR 2 <= (int2, int4) ,
 OPERATOR 3 = (int2, int4) ,
 OPERATOR 4 >= (int2, int4) ,
 OPERATOR 5 > (int2, int4) ,
 FUNCTION 1 btint24cmp(int2, int4) ;

To remove these entries:

ALTER OPERATOR FAMILY integer_ops USING btree DROP

 -- int4 vs int2
 OPERATOR 1 (int4, int2) ,
 OPERATOR 2 (int4, int2) ,
 OPERATOR 3 (int4, int2) ,
 OPERATOR 4 (int4, int2) ,
 OPERATOR 5 (int4, int2) ,
 FUNCTION 1 (int4, int2) ,

 -- int2 vs int4
 OPERATOR 1 (int2, int4) ,
 OPERATOR 2 (int2, int4) ,
 OPERATOR 3 (int2, int4) ,
 OPERATOR 4 (int2, int4) ,
 OPERATOR 5 (int2, int4) ,
 FUNCTION 1 (int2, int4) ;

See Also
CREATE OPERATOR FAMILY, DROP OPERATOR FAMILY, ALTER OPERATOR CLASS, CREATE
OPERATOR CLASS, DROP OPERATOR CLASS

ALTER PROTOCOL
Changes the definition of a protocol.

Greenplum Database Reference Guide Release Notes

938

Synopsis

ALTER PROTOCOL name RENAME TO newname

ALTER PROTOCOL name OWNER TO newowner

Description
ALTER PROTOCOL changes the definition of a protocol. Only the protocol name or owner can be altered.

You must own the protocol to use ALTER PROTOCOL. To alter the owner, you must also be a direct or
indirect member of the new owning role, and that role must have CREATE privilege on schema of the
conversion.

These restrictions are in place to ensure that altering the owner only makes changes that could by made
by dropping and recreating the protocol. Note that a superuser can alter ownership of any protocol.

Parameters
name

The name (optionally schema-qualified) of an existing protocol.

newname

The new name of the protocol.

newowner

The new owner of the protocol.

Examples
To rename the conversion GPDBauth to GPDB_authentication:

ALTER PROTOCOL GPDBauth RENAME TO GPDB_authentication;

To change the owner of the conversion GPDB_authentication to joe:

ALTER PROTOCOL GPDB_authentication OWNER TO joe;

Compatibility
There is no ALTER PROTOCOL statement in the SQL standard.

See Also
CREATE EXTERNAL TABLE, CREATE PROTOCOL

ALTER RESOURCE GROUP
Changes the limits of a resource group.

Synopsis

ALTER RESOURCE GROUP name SET group_attribute value

where group_attribute is one of:

CONCURRENCY integer
CPU_RATE_LIMIT integer
CPUSET tuple

Greenplum Database Reference Guide Release Notes

939

MEMORY_LIMIT integer
MEMORY_SHARED_QUOTA integer
MEMORY_SPILL_RATIO integer

Description
ALTER RESOURCE GROUP changes the limits of a resource group. Only a superuser can alter a resource
group.

You can set or reset the concurrency limit of a resource group that you create for roles to control the
maximum number of active concurrent statements in that group. You can also reset the memory or
CPU resources of a resource group to control the amount of memory or CPU resources that all queries
submitted through the group can consume on each segment host.

When you alter the CPU resource management mode or limit of a resource group, the new mode or limit is
immediately applied.

When you alter a memory limit of a resource group that you create for roles, the new resource limit is
immediately applied if current resource usage is less than or equal to the new value and there are no
running transactions in the resource group. If the current resource usage exceeds the new memory limit
value, or if there are running transactions in other resource groups that hold some of the resource, then
Greenplum Database defers assigning the new limit until resource usage falls within the range of the new
value.

When you increase the memory limit of a resource group that you create for external components, the new
resource limit is phased in as system memory resources become available. If you decrease the memory
limit of a resource group that you create for external components, the behavior is component-specific. For
example, if you decrease the memory limit of a resource group that you create for a PL/Container runtime,
queries in a running container may fail with an out of memory error.

You can alter one limit type in a single ALTER RESOURCE GROUP call.

Parameters
name

The name of the resource group to alter.

CONCURRENCY integer

The maximum number of concurrent transactions, including active and idle transactions,
that are permitted for resource groups that you assign to roles. Any transactions submitted
after the CONCURRENCY value limit is reached are queued. When a running transaction
completes, the earliest queued transaction is executed.

The CONCURRENCY value must be an integer in the range [0 .. max_connections]. The
default CONCURRENCY value for a resource group that you create for roles is 20.

Note: You cannot set the CONCURRENCY value for the admin_group to zero
(0).

CPU_RATE_LIMIT integer

The percentage of CPU resources to allocate to this resource group. The minimum
CPU percentage for a resource group is 1. The maximum is 100. The sum of the
CPU_RATE_LIMITs of all resource groups defined in the Greenplum Database cluster
must not exceed 100.

If you alter the CPU_RATE_LIMIT of a resource group in which you previously configured
a CPUSET, CPUSET is disabled, the reserved CPU cores are returned to Greenplum
Database, and CPUSET is set to -1.

CPUSET tuple

Greenplum Database Reference Guide Release Notes

940

The CPU cores to reserve for this resource group. The CPU cores that you specify in tuple
must be available in the system and cannot overlap with any CPU cores that you specify
for other resource groups.

tuple is a comma-separated list of single core numbers or core intervals. You must enclose
tuple in single quotes, for example, '1,3-4'.

If you alter the CPUSET value of a resource group for which you previously configured
a CPU_RATE_LIMIT, CPU_RATE_LIMIT is disabled, the reserved CPU resources are
returned to Greenplum Database, and CPU_RATE_LIMIT is set to -1.

You can alter CPUSET for a resource group only after you have enabled resource group-
based resource management for your Greenplum Database cluster.

MEMORY_LIMIT integer

The percentage of Greenplum Database memory resources to reserve for this resource
group. The minimum memory percentage for a resource group is 0. The maximum is 100.
The default value is 0.

When MEMORY_LIMIT is 0, Greenplum Database reserves no memory for the resource
group, but uses global shared memory to fulfill all memory requests in the group. If
MEMORY_LIMIT is 0, MEMORY_SPILL_RATIO must also be 0.

The sum of the MEMORY_LIMITs of all resource groups defined in the Greenplum
Database cluster must not exceed 100. If this sum is less than 100, Greenplum Database
allocates any unreserved memory to a resource group global shared memory pool.

MEMORY_SHARED_QUOTA integer

The percentage of memory resources to share among transactions in the resource group.
The minimum memory shared quota percentage for a resource group is 0. The maximum
is 100. The default MEMORY_SHARED_QUOTA value is 80.

MEMORY_SPILL_RATIO integer

The memory usage threshold for memory-intensive operators in a transaction.
You can specify an integer percentage value from 0 to 100 inclusive. The default
MEMORY_SPILL_RATIO value is 0. When MEMORY_SPILL_RATIO is 0, Greenplum
Database uses the statement_mem server configuration parameter value to control initial
query operator memory.

Notes
Use CREATE ROLE or ALTER ROLE to assign a specific resource group to a role (user).

You cannot submit an ALTER RESOURCE GROUP command in an explicit transaction or sub-transaction.

Examples
Change the active transaction limit for a resource group:

ALTER RESOURCE GROUP rgroup1 SET CONCURRENCY 13;

Update the CPU limit for a resource group:

ALTER RESOURCE GROUP rgroup2 SET CPU_RATE_LIMIT 45;

Update the memory limit for a resource group:

ALTER RESOURCE GROUP rgroup3 SET MEMORY_LIMIT 30;

Greenplum Database Reference Guide Release Notes

941

Update the memory spill ratio for a resource group:

ALTER RESOURCE GROUP rgroup4 SET MEMORY_SPILL_RATIO 25;

Reserve CPU core 1 for a resource group:

ALTER RESOURCE GROUP rgroup5 SET CPUSET '1';

Compatibility
The ALTER RESOURCE GROUP statement is a Greenplum Database extension. This command does not
exist in standard PostgreSQL.

See Also
CREATE RESOURCE GROUP, DROP RESOURCE GROUP, CREATE ROLE, ALTER ROLE

ALTER RESOURCE QUEUE
Changes the limits of a resource queue.

Synopsis

ALTER RESOURCE QUEUE name WITH (queue_attribute=value [, ...])

where queue_attribute is:

 ACTIVE_STATEMENTS=integer
 MEMORY_LIMIT='memory_units'
 MAX_COST=float
 COST_OVERCOMMIT={TRUE|FALSE}
 MIN_COST=float
 PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}

ALTER RESOURCE QUEUE name WITHOUT (queue_attribute [, ...])

where queue_attribute is:

 ACTIVE_STATEMENTS
 MEMORY_LIMIT
 MAX_COST
 COST_OVERCOMMIT
 MIN_COST

Note: A resource queue must have either an ACTIVE_STATEMENTS or a MAX_COST value. Do not
remove both these queue_attributes from a resource queue.

Description
ALTER RESOURCE QUEUE changes the limits of a resource queue. Only a superuser can alter a resource
queue. A resource queue must have either an ACTIVE_STATEMENTS or a MAX_COST value (or it can have
both). You can also set or reset priority for a resource queue to control the relative share of available CPU
resources used by queries associated with the queue, or memory limit of a resource queue to control the
amount of memory that all queries submitted through the queue can consume on a segment host.

Greenplum Database Reference Guide Release Notes

942

ALTER RESOURCE QUEUE WITHOUT removes the specified limits on a resource that were previously set.
A resource queue must have either an ACTIVE_STATEMENTS or a MAX_COST value. Do not remove both
these queue_attributes from a resource queue.

Parameters
name

The name of the resource queue whose limits are to be altered.

ACTIVE_STATEMENTS integer

The number of active statements submitted from users in this resource queue allowed on
the system at any one time. The value for ACTIVE_STATEMENTS should be an integer
greater than 0. To reset ACTIVE_STATEMENTS to have no limit, enter a value of -1.

MEMORY_LIMIT 'memory_units'

Sets the total memory quota for all statements submitted from users in this resource
queue. Memory units can be specified in kB, MB or GB. The minimum memory quota for
a resource queue is 10MB. There is no maximum; however the upper boundary at query
execution time is limited by the physical memory of a segment host. The default value is no
limit (-1).

MAX_COST float

The total query optimizer cost of statements submitted from users in this resource queue
allowed on the system at any one time. The value for MAX_COST is specified as a floating
point number (for example 100.0) or can also be specified as an exponent (for example 1e
+2). To reset MAX_COST to have no limit, enter a value of -1.0.

COST_OVERCOMMIT boolean

If a resource queue is limited based on query cost, then the administrator can allow
cost overcommit (COST_OVERCOMMIT=TRUE, the default). This means that a query that
exceeds the allowed cost threshold will be allowed to run but only when the system is idle.
If COST_OVERCOMMIT=FALSE is specified, queries that exceed the cost limit will always be
rejected and never allowed to run.

MIN_COST float

Queries with a cost under this limit will not be queued and run immediately. Cost is
measured in units of disk page fetches; 1.0 equals one sequential disk page read. The
value for MIN_COST is specified as a floating point number (for example 100.0) or can
also be specified as an exponent (for example 1e+2). To reset MIN_COST to have no limit,
enter a value of -1.0.

PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}

Sets the priority of queries associated with a resource queue. Queries or statements in
queues with higher priority levels will receive a larger share of available CPU resources
in case of contention. Queries in low-priority queues may be delayed while higher priority
queries are executed.

Notes
GPORCA and the Postgres planner utilize different query costing models and may compute different costs
for the same query. The Greenplum Database resource queue resource management scheme neither
differentiates nor aligns costs between GPORCA and the Postgres Planner; it uses the literal cost value
returned from the optimizer to throttle queries.

When resource queue-based resource management is active, use the MEMORY_LIMIT and
ACTIVE_STATEMENTS limits for resource queues rather than configuring cost-based limits. Even when
using GPORCA, Greenplum Database may fall back to using the Postgres Planner for certain queries, so
using cost-based limits can lead to unexpected results.

Greenplum Database Reference Guide Release Notes

943

Examples
Change the active query limit for a resource queue:

ALTER RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=20);

Change the memory limit for a resource queue:

ALTER RESOURCE QUEUE myqueue WITH (MEMORY_LIMIT='2GB');

Reset the maximum and minimum query cost limit for a resource queue to no limit:

ALTER RESOURCE QUEUE myqueue WITH (MAX_COST=-1.0,
 MIN_COST= -1.0);

Reset the query cost limit for a resource queue to 310 (or 30000000000.0) and do not allow overcommit:

ALTER RESOURCE QUEUE myqueue WITH (MAX_COST=3e+10,
 COST_OVERCOMMIT=FALSE);

Reset the priority of queries associated with a resource queue to the minimum level:

ALTER RESOURCE QUEUE myqueue WITH (PRIORITY=MIN);

Remove the MAX_COST and MEMORY_LIMIT limits from a resource queue:

ALTER RESOURCE QUEUE myqueue WITHOUT (MAX_COST, MEMORY_LIMIT);

Compatibility
The ALTER RESOURCE QUEUE statement is a Greenplum Database extension. This command does not
exist in standard PostgreSQL.

See Also
CREATE RESOURCE QUEUE, DROP RESOURCE QUEUE, CREATE ROLE, ALTER ROLE

ALTER ROLE
Changes a database role (user or group).

Synopsis

ALTER ROLE name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEEXTTABLE | NOCREATEEXTTABLE [(attribute='value' [, ...])
 where attributes and values are:
 type='readable'|'writable'
 protocol='gpfdist'|'http'
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'

Greenplum Database Reference Guide Release Notes

944

 | VALID UNTIL 'timestamp'

ALTER ROLE name RENAME TO new_name

ALTER ROLE { name | ALL } [IN DATABASE database_name]
 SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER ROLE { name | ALL } [IN DATABASE database_name]
 SET configuration_parameter FROM CURRENT
ALTER ROLE { name | ALL } [IN DATABASE database_name]
 RESET configuration_parameter
ALTER ROLE { name | ALL } [IN DATABASE database_name] RESET ALL
ALTER ROLE name RESOURCE QUEUE {queue_name | NONE}
ALTER ROLE name RESOURCE GROUP {group_name | NONE}

Description
ALTER ROLE changes the attributes of a Greenplum Database role. There are several variants of this
command.

WITH option

Changes many of the role attributes that can be specified in CREATE ROLE. (All of the
possible attributes are covered, execept that there are no options for adding or removing
memberships; use GRANT and REVOKE for that.) Attributes not mentioned in the command
retain their previous settings. Database superusers can change any of these settings for
any role. Roles having CREATEROLE privilege can change any of these settings, but only
for non-superuser and non-replication roles. Ordinary roles can only change their own
password.

RENAME

Changes the name of the role. Database superusers can rename any role. Roles having
CREATEROLE privilege can rename non-superuser roles. The current session user cannot
be renamed (connect as a different user to rename a role). Because MD5-encrypted
passwords use the role name as cryptographic salt, renaming a role clears its password if
the password is MD5-encrypted.

SET | RESET

Changes a role's session default for a specified configuration parameter, either for all
databases or, when the IN DATABASE clause is specified, only for sessions in the named
database. If ALL is specified instead of a role name, this changes the setting for all roles.
Using ALL with IN DATABASE is effectively the same as using the command ALTER
DATABASE...SET....

Whenever the role subsequently starts a new session, the specified value becomes the
session default, overriding whatever setting is present in the server configuration file
(postgresql.conf) or has been received from the postgres command line. This only
happens at login time; executing SET ROLE or SET SESSION AUTHORIZATION does not
cause new configuration values to be set.

Database-specific settings attached to a role override settings for all databases. Settings
for specific databases or specific roles override settings for all roles.

For a role without LOGIN privilege, session defaults have no effect. Ordinary roles can
change their own session defaults. Superusers can change anyone's session defaults.
Roles having CREATEROLE privilege can change defaults for non-superuser roles.
Ordinary roles can only set defaults for themselves. Certain configuration variables
cannot be set this way, or can only be set if a superuser issues the command. See the
Greenplum Database Reference Guide for information about all user-settable configuration
parameters. Only superusers can change a setting for all roles in all databases.

RESOURCE QUEUE

Greenplum Database Reference Guide Release Notes

945

Assigns the role to a resource queue. The role would then be subject to the limits assigned
to the resource queue when issuing queries. Specify NONE to assign the role to the default
resource queue. A role can only belong to one resource queue. For a role without LOGIN
privilege, resource queues have no effect. See CREATE RESOURCE QUEUE for more
information.

RESOURCE GROUP

Assigns a resource group to the role. The role would then be subject to the concurrent
transaction, memory, and CPU limits configured for the resource group. You can assign a
single resource group to one or more roles. You cannot assign a resource group that you
create for an external component to a role. See CREATE RESOURCE GROUP for additional
information.

Parameters
name

The name of the role whose attributes are to be altered.

new_name

The new name of the role.

database_name

The name of the database in which to set the configuration parameter.

config_parameter=value

Set this role's session default for the specified configuration parameter to the given value.
If value is DEFAULT or if RESET is used, the role-specific parameter setting is removed, so
the role will inherit the system-wide default setting in new sessions. Use RESET ALL to
clear all role-specific settings. SET FROM CURRENT saves the session's current value of
the parameter as the role-specific value. If IN DATABASE is specified, the configuration
parameter is set or removed for the given role and database only. Whenever the role
subsequently starts a new session, the specified value becomes the session default,
overriding whatever setting is present in postgresql.conf or has been received from
the postgres command line.

Role-specific variable settings take effect only at login; SET ROLE and SET SESSION
AUTHORIZATION do not process role-specific variable settings.

See Server Configuration Parameters for information about user-settable configuration
parameters.

group_name

The name of the resource group to assign to this role. Specifying the group_name NONE
removes the role's current resource group assignment and assigns a default resource
group based on the role's capability. SUPERUSER roles are assigned the admin_group
resource group, while the default_group resource group is assigned to non-admin
roles.

You cannot assign a resource group that you create for an external component to a role.

queue_name

The name of the resource queue to which the user-level role is to be assigned. Only roles
with LOGIN privilege can be assigned to a resource queue. To unassign a role from a
resource queue and put it in the default resource queue, specify NONE. A role can only
belong to one resource queue.

SUPERUSER | NOSUPERUSER
CREATEDB | NOCREATEDB
CREATEROLE | NOCREATEROLE
CREATEUSER | NOCREATEUSER

Greenplum Database Reference Guide Release Notes

946

CREATEUSER and NOCREATEUSER are obsolete, but still accepted, spellings of
SUPERUSER and NOSUPERUSER. Note that they are not equivalent to the CREATEROLE
and NOCREATEROLE clauses.

CREATEEXTTABLE | NOCREATEEXTTABLE [(attribute='value')]

If CREATEEXTTABLE is specified, the role being defined is allowed to create external
tables. The default type is readable and the default protocol is gpfdist if not
specified. NOCREATEEXTTABLE (the default) denies the role the ability to create external
tables. Note that external tables that use the file or execute protocols can only be
created by superusers.

INHERIT | NOINHERIT
LOGIN | NOLOGIN
REPLICATION
NOREPLICATION
CONNECTION LIMIT connlimit
PASSWORD password
ENCRYPTED | UNENCRYPTED
VALID UNTIL 'timestamp'

These clauses alter role attributes originally set by CREATE ROLE.

DENY deny_point
DENY BETWEEN deny_point AND deny_point

The DENY and DENY BETWEEN keywords set time-based constraints that are enforced at
login. DENYsets a day or a day and time to deny access. DENY BETWEEN sets an interval
during which access is denied. Both use the parameter deny_point that has following
format:

DAY day [TIME 'time']

The two parts of the deny_point parameter use the following formats:

For day:

{'Sunday' | 'Monday' | 'Tuesday' |'Wednesday' | 'Thursday' |
 'Friday' |
'Saturday' | 0-6 }

For time:

{ 00-23 : 00-59 | 01-12 : 00-59 { AM | PM }}

The DENY BETWEEN clause uses two deny_point parameters.

DENY BETWEEN deny_point AND deny_point

For more information about time-based constraints and examples, see "Managing Roles
and Privileges" in the Greenplum Database Administrator Guide.

DROP DENY FOR deny_point

The DROP DENY FOR clause removes a time-based constraint from the role. It uses the
deny_point parameter described above.

For more information about time-based constraints and examples, see "Managing Roles
and Privileges" in the Greenplum Database Administrator Guide.

Notes
Use CREATE ROLE to add new roles, and DROP ROLE to remove a role.

Use GRANT and REVOKE for adding and removing role memberships.

Greenplum Database Reference Guide Release Notes

947

Caution must be exercised when specifying an unencrypted password with this command. The password
will be transmitted to the server in clear text, and it might also be logged in the client's command history or
the server log. The psql command-line client contains a meta-command \password that can be used to
change a role's password without exposing the clear text password.

It is also possible to tie a session default to a specific database rather than to a role; see ALTER
DATABASE. If there is a conflict, database-role-specific settings override role-specific ones, which in turn
override database-specific ones.

Examples
Change the password for a role:

ALTER ROLE daria WITH PASSWORD 'passwd123';

Remove a role's password:

ALTER ROLE daria WITH PASSWORD NULL;

Change a password expiration date:

ALTER ROLE scott VALID UNTIL 'May 4 12:00:00 2015 +1';

Make a password valid forever:

ALTER ROLE luke VALID UNTIL 'infinity';

Give a role the ability to create other roles and new databases:

ALTER ROLE joelle CREATEROLE CREATEDB;

Give a role a non-default setting of the maintenance_work_mem parameter:

ALTER ROLE admin SET maintenance_work_mem = 100000;

Give a role a non-default, database-specific setting of the client_min_messages parameter:

ALTER ROLE fred IN DATABASE devel SET client_min_messages = DEBUG;

Assign a role to a resource queue:

ALTER ROLE sammy RESOURCE QUEUE poweruser;

Give a role permission to create writable external tables:

ALTER ROLE load CREATEEXTTABLE (type='writable');

Alter a role so it does not allow login access on Sundays:

ALTER ROLE user3 DENY DAY 'Sunday';

Alter a role to remove the constraint that does not allow login access on Sundays:

ALTER ROLE user3 DROP DENY FOR DAY 'Sunday';

Assign a new resource group to a role:

ALTER ROLE parttime_user RESOURCE GROUP rg_light;

Greenplum Database Reference Guide Release Notes

948

Compatibility
The ALTER ROLE statement is a Greenplum Database extension.

See Also
CREATE ROLE, DROP ROLE, ALTER DATABASE, SET, CREATE RESOURCE GROUP, CREATE RESOURCE
QUEUE, GRANT, REVOKE

ALTER SCHEMA
Changes the definition of a schema.

Synopsis

ALTER SCHEMA name RENAME TO newname

ALTER SCHEMA name OWNER TO newowner

Description
ALTER SCHEMA changes the definition of a schema.

You must own the schema to use ALTER SCHEMA. To rename a schema you must also have the CREATE
privilege for the database. To alter the owner, you must also be a direct or indirect member of the new
owning role, and you must have the CREATE privilege for the database. Note that superusers have all
these privileges automatically.

Parameters
name

The name of an existing schema.

newname

The new name of the schema. The new name cannot begin with pg_, as such names are
reserved for system schemas.

newowner

The new owner of the schema.

Compatibility
There is no ALTER SCHEMA statement in the SQL standard.

See Also
CREATE SCHEMA, DROP SCHEMA

ALTER SEQUENCE
Changes the definition of a sequence generator.

Synopsis

ALTER SEQUENCE [IF EXISTS] name [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start]
 [RESTART [[WITH] restart]]

Greenplum Database Reference Guide Release Notes

949

 [CACHE cache] [[NO] CYCLE]
 [OWNED BY {table.column | NONE}]

ALTER SEQUENCE [IF EXISTS] name OWNER TO new_owner

ALTER SEQUENCE [IF EXISTS] name RENAME TO new_name

ALTER SEQUENCE [IF EXISTS] name SET SCHEMA new_schema

Description
ALTER SEQUENCE changes the parameters of an existing sequence generator. Any parameters not
specifically set in the ALTER SEQUENCE command retain their prior settings.

You must own the sequence to use ALTER SEQUENCE. To change a sequence's schema, you must also
have CREATE privilege on the new schema. Note that superusers have all these privileges automatically.

To alter the owner, you must be a direct or indirect member of the new owning role, and that role must
have CREATE privilege on the sequence's schema. (These restrictions enforce that altering the owner does
not do anything you could not do by dropping and recreating the sequence. However, a superuser can alter
ownership of any sequence anyway.)

Parameters
name

The name (optionally schema-qualified) of a sequence to be altered.

IF EXISTS

Do not throw an error if the sequence does not exist. A notice is issued in this case.

increment

The clause INCREMENT BY increment is optional. A positive value will make an
ascending sequence, a negative one a descending sequence. If unspecified, the old
increment value will be maintained.

minvalue
NO MINVALUE

The optional clause MINVALUE minvalue determines the minimum value a sequence
can generate. If NO MINVALUE is specified, the defaults of 1 and -263-1 for ascending and
descending sequences, respectively, will be used. If neither option is specified, the current
minimum value will be maintained.

maxvalue
NO MAXVALUE

The optional clause MAXVALUE maxvalue determines the maximum value for the
sequence. If NO MAXVALUE is specified, the defaults are 263-1 and -1 for ascending and
descending sequences, respectively, will be used. If neither option is specified, the current
maximum value will be maintained.

start

The optional clause START WITH start changes the recorded start value of the sequence.
This has no effect on the current sequence value; it simply sets the value that future
ALTER SEQUENCE RESTART commands will use.

restart

The optional clause RESTART [WITH restart] changes the current value of
the sequence. This is equivalent to calling the setval(sequence, start_val,
is_called) function with is_called = false. The specified value will be returned by
the next call of the nextval(sequence) function. Writing RESTART with no restart value

Greenplum Database Reference Guide Release Notes

950

is equivalent to supplying the start value that was recorded by CREATE SEQUENCE or last
set by ALTER SEQUENCE START WITH.

new_owner

The user name of the new owner of the sequence.

cache

The clause CACHE cache enables sequence numbers to be preallocated and stored in
memory for faster access. The minimum value is 1 (only one value can be generated at a
time, i.e., no cache). If unspecified, the old cache value will be maintained.

CYCLE

The optional CYCLE key word may be used to enable the sequence to wrap around when
the maxvalue or minvalue has been reached by an ascending or descending sequence.
If the limit is reached, the next number generated will be the respective minvalue or
maxvalue.

NO CYCLE

If the optional NO CYCLE key word is specified, any calls to nextval() after the
sequence has reached its maximum value will return an error. If neither CYCLE or NO
CYCLE are specified, the old cycle behavior will be maintained.

OWNED BY table.column
OWNED BY NONE

The OWNED BY option causes the sequence to be associated with a specific table column,
such that if that column (or its whole table) is dropped, the sequence will be automatically
dropped as well. If specified, this association replaces any previously specified association
for the sequence. The specified table must have the same owner and be in the same
schema as the sequence. Specifying OWNED BY NONE removes any existing table column
association.

new_name

The new name for the sequence.

new_schema

The new schema for the sequence.

Notes
To avoid blocking of concurrent transactions that obtain numbers from the same sequence, ALTER
SEQUENCE's effects on the sequence generation parameters are never rolled back; those changes take
effect immediately and are not reversible. However, the OWNED BY, OWNER TO, RENAME TO, and SET
SCHEMA clauses are ordinary catalog updates and can be rolled back.

ALTER SEQUENCE will not immediately affect nextval() results in sessions, other than the current one,
that have preallocated (cached) sequence values. They will use up all cached values prior to noticing the
changed sequence generation parameters. The current session will be affected immediately.

For historical reasons, ALTER TABLE can be used with sequences too; but the only variants of ALTER
TABLE that are allowed with sequences are equivalent to the forms shown above.

Examples
Restart a sequence called serial at 105:

ALTER SEQUENCE serial RESTART WITH 105;

Greenplum Database Reference Guide Release Notes

951

Compatibility
ALTER SEQUENCE conforms to the SQL standard, except for the START WITH, OWNED BY, OWNER TO,
RENAME TO, and SET SCHEMA clauses, which are Greenplum Database extensions.

See Also
CREATE SEQUENCE, DROP SEQUENCE, ALTER TABLE

ALTER SERVER
Changes the definition of a foreign server.

Synopsis

ALTER SERVER server_name [VERSION 'new_version']
 [OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])]

ALTER SERVER server_name OWNER TO new_owner

ALTER SERVER server_name RENAME TO new_name

Description
ALTER SERVER changes the definition of a foreign server. The first form of the command changes the
version string or the generic options of the server. Greenplum Database requires at least one clause. The
second and third forms of the command change the owner or the name of the server.

To alter the server, you must be the owner of the server. To alter the owner you must:

• Own the server.
• Be a direct or indirect member of the new owning role.
• Have USAGE privilege on the server's foreign-data wrapper.

Superusers automatically satisfy all of these criteria.

Parameters
server_name

The name of an existing server.

new_version

The new server version.

OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Change the server's options. ADD, SET, and DROP specify the action to perform. If no
operation is explicitly specified, the default operation is ADD. Option names must be
unique. Greenplum Database validates names and values using the server's foreign-data
wrapper library.

OWNER TO new_owner

Specifies the new owner of the foreign server.

RENAME TO new_name

Specifies the new name of the foreign server.

Greenplum Database Reference Guide Release Notes

952

Examples
Change the definition of a server named foo by adding connection options:

ALTER SERVER foo OPTIONS (host 'foo', dbname 'foodb');

Change the option named host for a server named foo, and set the server version:

ALTER SERVER foo VERSION '9.1' OPTIONS (SET host 'baz');

Compatibility
ALTER SERVER conforms to ISO/IEC 9075-9 (SQL/MED). The OWNER TO and RENAME forms are
Greenplum Database extensions.

See Also
CREATE SERVER, DROP SERVER

ALTER TABLE
Changes the definition of a table.

Synopsis

ALTER TABLE [IF EXISTS] [ONLY] name
 action [, ...]

ALTER TABLE [IF EXISTS] [ONLY] name
 RENAME [COLUMN] column_name TO new_column_name

ALTER TABLE [IF EXISTS] [ONLY] name
 RENAME CONSTRAINT constraint_name TO new_constraint_name

ALTER TABLE [IF EXISTS] name
 RENAME TO new_name

ALTER TABLE [IF EXISTS] name
 SET SCHEMA new_schema

ALTER TABLE ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]

ALTER TABLE [IF EXISTS] [ONLY] name SET
 WITH (REORGANIZE=true|false)
 | DISTRIBUTED BY ({column_name [opclass]} [, ...])
 | DISTRIBUTED RANDOMLY
 | DISTRIBUTED REPLICATED

ALTER TABLE name
 [ALTER PARTITION { partition_name | FOR (RANK(number))
 | FOR (value) } [...]] partition_action

where action is one of:

 ADD [COLUMN] column_name data_type [DEFAULT default_expr]
 [column_constraint [...]]
 [COLLATE collation]
 [ENCODING (storage_directive [,...])]
 DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]

Greenplum Database Reference Guide Release Notes

953

 ALTER [COLUMN] column_name [SET DATA] TYPE type [COLLATE collation]
 [USING expression]
 ALTER [COLUMN] column_name SET DEFAULT expression
 ALTER [COLUMN] column_name DROP DEFAULT
 ALTER [COLUMN] column_name { SET | DROP } NOT NULL
 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column SET (attribute_option = value [, ...])
 ALTER [COLUMN] column RESET (attribute_option [, ...])
 ADD table_constraint [NOT VALID]
 ADD table_constraint_using_index
 VALIDATE CONSTRAINT constraint_name
 DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET WITHOUT OIDS
 SET (storage_parameter = value)
 RESET (storage_parameter [, ...])
 INHERIT parent_table
 NO INHERIT parent_table
 OF type_name
 NOT OF
 OWNER TO new_owner
 SET TABLESPACE new_tablespace

where table_constraint_using_index is:

 [CONSTRAINT constraint_name]
 { UNIQUE | PRIMARY KEY } USING INDEX index_name
 [DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

where partition_action is one of:

 ALTER DEFAULT PARTITION
 DROP DEFAULT PARTITION [IF EXISTS]
 DROP PARTITION [IF EXISTS] { partition_name |
 FOR (RANK(number)) | FOR (value) } [CASCADE]
 TRUNCATE DEFAULT PARTITION
 TRUNCATE PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) }
 RENAME DEFAULT PARTITION TO new_partition_name
 RENAME PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } TO new_partition_name
 ADD DEFAULT PARTITION name [(subpartition_spec)]
 ADD PARTITION [partition_name] partition_element
 [(subpartition_spec)]
 EXCHANGE PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } WITH TABLE table_name
 [WITH | WITHOUT VALIDATION]
 EXCHANGE DEFAULT PARTITION WITH TABLE table_name
 [WITH | WITHOUT VALIDATION]
 SET SUBPARTITION TEMPLATE (subpartition_spec)
 SPLIT DEFAULT PARTITION
 { AT (list_value)
 | START([datatype] range_value) [INCLUSIVE | EXCLUSIVE]
 END([datatype] range_value) [INCLUSIVE | EXCLUSIVE] }
 [INTO (PARTITION new_partition_name,
 PARTITION default_partition_name)]
 SPLIT PARTITION { partition_name | FOR (RANK(number)) |
 FOR (value) } AT (value)
 [INTO (PARTITION partition_name, PARTITION partition_name)]

Greenplum Database Reference Guide Release Notes

954

where partition_element is:

 VALUES (list_value [,...])
 | START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 | END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]

where subpartition_spec is:

subpartition_element [, ...]

and subpartition_element is:

 DEFAULT SUBPARTITION subpartition_name
 | [SUBPARTITION subpartition_name] VALUES (list_value [,...])
 | [SUBPARTITION subpartition_name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([number | datatype] 'interval_value')]
 | [SUBPARTITION subpartition_name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([number | datatype] 'interval_value')]
[WITH (partition_storage_parameter=value [, ...])]
[TABLESPACE tablespace]

where storage_parameter is:

 appendoptimized={TRUE|FALSE}
 blocksize={8192-2097152}
 orientation={COLUMN|ROW}
 compresstype={ZLIB|ZSTD|QUICKLZ|RLE_TYPE|NONE}
 compresslevel={0-9}
 fillfactor={10-100}
 [oids=FALSE]

Description
ALTER TABLE changes the definition of an existing table. There are several subforms:

• ADD COLUMN — Adds a new column to the table, using the same syntax as CREATE TABLE. The
ENCODING clause is valid only for append-optimized, column-oriented tables.

When you add a column to an append-optimized, column-oriented table, Greenplum Database
sets each data compression parameter for the column (compresstype, compresslevel, and
blocksize) based on the following setting, in order of preference.

1. The compression parameter setting specified in the ALTER TABLE command ENCODING clause.
2. If the server configuration parameter gp_add_column_inherits_table_setting is on, use the

table's data compression parameters specified in the WITH clause when the table was created. The
default server configuration parameter default is off, the WITH clause parameters are ignored.

3. The compression parameter setting specified in the server configuration parameter
gp_default_storage_option.

4. The default compression parameter value.

For append-optimized and hash tables, ADD COLUMN requires a table rewrite. For information about
table rewrites performed by ALTER TABLE, see Notes.

• DROP COLUMN [IF EXISTS] — Drops a column from a table. Note that if you drop table columns
that are being used as the Greenplum Database distribution key, the distribution policy for the table

Greenplum Database Reference Guide Release Notes

955

will be changed to DISTRIBUTED RANDOMLY. Indexes and table constraints involving the column are
automatically dropped as well. You need to say CASCADE if anything outside the table depends on the
column (such as views). If IF EXISTS is specified and the column does not exist, no error is thrown; a
notice is issued instead.

• IF EXISTS — Do not throw an error if the table does not exist. A notice is issued in this case.
• SET DATA TYPE — This form changes the data type of a column of a table. Note that you cannot

alter column data types that are being used as distribution or partitioning keys. Indexes and simple
table constraints involving the column will be automatically converted to use the new column type by
reparsing the originally supplied expression. The optional COLLATE clause specifies a collation for the
new column; if omitted, the collation is the default for the new column type. The optional USING clause
specifies how to compute the new column value from the old. If omitted, the default conversion is the
same as an assignment cast from old data type to new. A USING clause must be provided if there is no
implicit or assignment cast from old to new type.

Note: GPORCA supports collation only when all columns in the query use the same collation. If
columns in the query use different collations, then Greenplum uses the Postgres Planner.

Changing a column data type requires a table rewrite. For information about table rewrites performed by
ALTER TABLE, see Notes.

• SET/DROP DEFAULT — Sets or removes the default value for a column. Default values only apply in
subsequent INSERT or UPDATE commands; they do not cause rows already in the table to change.

• SET/DROP NOT NULL — Changes whether a column is marked to allow null values or to reject null
values. You can only use SET NOT NULL when the column contains no null values.

• SET STATISTICS — Sets the per-column statistics-gathering target for subsequent ANALYZE
operations. The target can be set in the range 100 to 10000, or set to -1 to revert to using the system
default statistics target (default_statistics_target).

• SET (attribute_option = value [, ...])

RESET (attribute_option [, ...])— Sets or resets per-attribute options. Currently, the only defined
per-attribute options are n_distinct and n_distinct_inherited, which override the number-
of-distinct-values estimates made by subsequent ANALYZE operations. n_distinct affects the
statistics for the table itself, while n_distinct_inherited affects the statistics gathered for the
table plus its inheritance children. When set to a positive value, ANALYZE will assume that the column
contains exactly the specified number of distinct non-null values. When set to a negative value, which
must be greater than or equal to -1, ANALYZE will assume that the number of distinct non-null values
in the column is linear in the size of the table; the exact count is to be computed by multiplying the
estimated table size by the absolute value of the given number. For example, a value of -1 implies that
all values in the column are distinct, while a value of -0.5 implies that each value appears twice on the
average. This can be useful when the size of the table changes over time, since the multiplication by
the number of rows in the table is not performed until query planning time. Specify a value of 0 to revert
to estimating the number of distinct values normally.

• ADD table_constraint [NOT VALID] — Adds a new constraint to a table (not just a partition) using the
same syntax as CREATE TABLE. The NOT VALID option is currently only allowed for foreign key and
CHECK constraints. If the constraint is marked NOT VALID, Greenplum Database skips the potentially-
lengthy initial check to verify that all rows in the table satisfy the constraint. The constraint will still be
enforced against subsequent inserts or updates (that is, they'll fail unless there is a matching row in the
referenced table, in the case of foreign keys; and they'll fail unless the new row matches the specified
check constraints). But the database will not assume that the constraint holds for all rows in the table,
until it is validated by using the VALIDATE CONSTRAINT option. Constraint checks are skipped at
create table time, so the CREATE TABLE syntax does not include this option.

• VALIDATE CONSTRAINT — This form validates a foreign key constraint that was previously created
as NOT VALID, by scanning the table to ensure there are no rows for which the constraint is not
satisfied. Nothing happens if the constraint is already marked valid. The advantage of separating
validation from initial creation of the constraint is that validation requires a lesser lock on the table than
constraint creation does.

Greenplum Database Reference Guide Release Notes

956

• ADD table_constraint_using_index — Adds a new PRIMARY KEY or UNIQUE constraint to a table
based on an existing unique index. All the columns of the index will be included in the constraint. The
index cannot have expression columns nor be a partial index. Also, it must be a b-tree index with
default sort ordering. These restrictions ensure that the index is equivalent to one that would be built by
a regular ADD PRIMARY KEY or ADD UNIQUE command.

Adding a PRIMARY KEY or UNIQUE constraint to a table based on an existing unique index is not
supported on a partitioned table.

If PRIMARY KEY is specified, and the index's columns are not already marked NOT NULL, then this
command will attempt to do ALTER COLUMN SET NOT NULL against each such column. That requires
a full table scan to verify the column(s) contain no nulls. In all other cases, this is a fast operation.

If a constraint name is provided then the index will be renamed to match the constraint name.
Otherwise the constraint will be named the same as the index.

After this command is executed, the index is "owned" by the constraint, in the same way as if the index
had been built by a regular ADD PRIMARY KEY or ADD UNIQUE command. In particular, dropping the
constraint will make the index disappear too.

• DROP CONSTRAINT [IF EXISTS] — Drops the specified constraint on a table. If IF EXISTS is
specified and the constraint does not exist, no error is thrown. In this case a notice is issued instead.

• DISABLE/ENABLE TRIGGER — Disables or enables trigger(s) belonging to the table. A disabled
trigger is still known to the system, but is not executed when its triggering event occurs. For a deferred
trigger, the enable status is checked when the event occurs, not when the trigger function is actually
executed. One may disable or enable a single trigger specified by name, or all triggers on the table, or
only user-created triggers. Disabling or enabling constraint triggers requires superuser privileges.

Note: triggers are not supported in Greenplum Database. Triggers in general have very limited
functionality due to the parallelism of Greenplum Database.

• CLUSTER ON/SET WITHOUT CLUSTER — Selects or removes the default index for future CLUSTER
operations. It does not actually re-cluster the table. Note that CLUSTER is not the recommended way to
physically reorder a table in Greenplum Database because it takes so long. It is better to recreate the
table with CREATE TABLE AS and order it by the index column(s).

Note: CLUSTER ON is not supported on append-optimized tables.
• SET WITHOUT OIDS — Removes the OID system column from the table.

Warning: Pivotal does not support using SET WITH OIDS or oids=TRUE to assign an OID
system column. On large tables, such as those in a typical Greenplum Database system, using
OIDs for table rows can cause wrap-around of the 32-bit OID counter. Once the counter wraps
around, OIDs can no longer be assumed to be unique, which not only makes them useless to
user applications, but can also cause problems in the Greenplum Database system catalog
tables. In addition, excluding OIDs from a table reduces the space required to store the table
on disk by 4 bytes per row, slightly improving performance. You cannot create OIDS on a
partitioned or column-oriented table (an error is displayed). This syntax is deprecated and will be
removed in a future Greenplum release.

• SET (FILLFACTOR = value) / RESET (FILLFACTOR) — Changes the fillfactor for the table. The
fillfactor for a table is a percentage between 10 and 100. 100 (complete packing) is the default. When
a smaller fillfactor is specified, INSERT operations pack table pages only to the indicated percentage;
the remaining space on each page is reserved for updating rows on that page. This gives UPDATE a
chance to place the updated copy of a row on the same page as the original, which is more efficient
than placing it on a different page. For a table whose entries are never updated, complete packing is
the best choice, but in heavily updated tables smaller fillfactors are appropriate. Note that the table
contents will not be modified immediately by this command. You will need to rewrite the table to get the
desired effects. That can be done with VACUUM or one of the forms of ALTER TABLE that forces a table
rewrite. For information about the forms of ALTER TABLE that perform a table rewrite, see Notes.

• SET DISTRIBUTED — Changes the distribution policy of a table. Changing a hash distribution policy,
or changing to or from a replicated policy, will cause the table data to be physically redistributed on disk,
which can be resource intensive.

Greenplum Database Reference Guide Release Notes

957

• INHERIT parent_table / NO INHERIT parent_table — Adds or removes the target table as a child
of the specified parent table. Queries against the parent will include records of its child table. To be
added as a child, the target table must already contain all the same columns as the parent (it could
have additional columns, too). The columns must have matching data types, and if they have NOT
NULL constraints in the parent then they must also have NOT NULL constraints in the child. There must
also be matching child-table constraints for all CHECK constraints of the parent, except those marked
non-inheritable (that is, created with ALTER TABLE ... ADD CONSTRAINT ... NO INHERIT) in
the parent, which are ignored; all child-table constraints matched must not be marked non-inheritable.
Currently UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints are not considered, but this may
change in the future.

• OF type_name — This form links the table to a composite type as though CREATE TABLE OF had
formed it. The table's list of column names and types must precisely match that of the composite type;
the presence of an oid system column is permitted to differ. The table must not inherit from any other
table. These restrictions ensure that CREATE TABLE OF would permit an equivalent table definition.

• NOT OF — This form dissociates a typed table from its type.
• OWNER — Changes the owner of the table, sequence, or view to the specified user.
• SET TABLESPACE — Changes the table's tablespace to the specified tablespace and moves the data

file(s) associated with the table to the new tablespace. Indexes on the table, if any, are not moved; but
they can be moved separately with additional SET TABLESPACE commands. All tables in the current
database in a tablespace can be moved by using the ALL IN TABLESPACE form, which will lock
all tables to be moved first and then move each one. This form also supports OWNED BY, which will
only move tables owned by the roles specified. If the NOWAIT option is specified then the command
will fail if it is unable to acquire all of the locks required immediately. Note that system catalogs are
not moved by this command, use ALTER DATABASE or explicit ALTER TABLE invocations instead if
desired. The information_schema relations are not considered part of the system catalogs and will
be moved. See also CREATE TABLESPACE. If changing the tablespace of a partitioned table, all child
table partitions will also be moved to the new tablespace.

• RENAME — Changes the name of a table (or an index, sequence, view, or materialized view), the
name of an individual column in a table, or the name of a constraint of the table. There is no effect on
the stored data. Note that Greenplum Database distribution key columns cannot be renamed.

• SET SCHEMA — Moves the table into another schema. Associated indexes, constraints, and
sequences owned by table columns are moved as well.

• ALTER PARTITION | DROP PARTITION | RENAME PARTITION | TRUNCATE PARTITION | ADD
PARTITION | SPLIT PARTITION | EXCHANGE PARTITION | SET SUBPARTITION TEMPLATE —
Changes the structure of a partitioned table. In most cases, you must go through the parent table to
alter one of its child table partitions.

Note: If you add a partition to a table that has subpartition encodings, the new partition inherits the
storage directives for the subpartitions. For more information about the precedence of compression
settings, see Using Compression.

All the forms of ALTER TABLE that act on a single table, except RENAME and SET SCHEMA, can be
combined into a list of multiple alterations to apply together. For example, it is possible to add several
columns and/or alter the type of several columns in a single command. This is particularly useful with large
tables, since only one pass over the table need be made.

You must own the table to use ALTER TABLE. To change the schema or tablespace of a table, you must
also have CREATE privilege on the new schema or tablespace. To add the table as a new child of a parent
table, you must own the parent table as well. To alter the owner, you must also be a direct or indirect
member of the new owning role, and that role must have CREATE privilege on the table's schema. To add a
column or alter a column type or use the OF clause, you must also have USAGE privilege on the data type.
A superuser has these privileges automatically.

Note: Memory usage increases significantly when a table has many partitions, if a table has
compression, or if the blocksize for a table is large. If the number of relations associated with
the table is large, this condition can force an operation on the table to use more memory. For
example, if the table is a CO table and has a large number of columns, each column is a relation.

Greenplum Database Reference Guide Release Notes

958

An operation like ALTER TABLE ALTER COLUMN opens all the columns in the table allocates
associated buffers. If a CO table has 40 columns and 100 partitions, and the columns are
compressed and the blocksize is 2 MB (with a system factor of 3), the system attempts to allocate
24 GB, that is (40 ×100) × (2 ×3) MB or 24 GB.

Parameters
ONLY

Only perform the operation on the table name specified. If the ONLY keyword is not
used, the operation will be performed on the named table and any child table partitions
associated with that table.

Note: Adding or dropping a column, or changing a column's type, in a
parent or descendant table only is not permitted. The parent table and its
descendents must always have the same columns and types.

name

The name (possibly schema-qualified) of an existing table to alter. If ONLY is specified, only
that table is altered. If ONLY is not specified, the table and all its descendant tables (if any)
are updated.

Note: Constraints can only be added to an entire table, not to a partition.
Because of that restriction, the name parameter can only contain a table
name, not a partition name.

column_name

Name of a new or existing column. Note that Greenplum Database distribution key
columns must be treated with special care. Altering or dropping these columns can change
the distribution policy for the table.

new_column_name

New name for an existing column.

new_name

New name for the table.

type

Data type of the new column, or new data type for an existing column. If changing the
data type of a Greenplum distribution key column, you are only allowed to change it to a
compatible type (for example, text to varchar is OK, but text to int is not).

table_constraint

New table constraint for the table. Note that foreign key constraints are currently not
supported in Greenplum Database. Also a table is only allowed one unique constraint and
the uniqueness must be within the Greenplum Database distribution key.

constraint_name

Name of an existing constraint to drop.

CASCADE

Automatically drop objects that depend on the dropped column or constraint (for example,
views referencing the column).

RESTRICT

Refuse to drop the column or constraint if there are any dependent objects. This is the
default behavior.

trigger_name

Name of a single trigger to disable or enable. Note that Greenplum Database does not
support triggers.

Greenplum Database Reference Guide Release Notes

959

ALL

Disable or enable all triggers belonging to the table including constraint related triggers.
This requires superuser privilege if any of the triggers are internally generated constraint
triggers such as those that are used to implement foreign key constraints or deferrable
uniqueness and exclusion constraints.

USER

Disable or enable all triggers belonging to the table except for internally generated
constraint triggers such as those that are used to implement foreign key constraints or
deferrable uniqueness and exclusion constraints.

index_name

The index name on which the table should be marked for clustering. Note that CLUSTER is
not the recommended way to physically reorder a table in Greenplum Database because it
takes so long. It is better to recreate the table with CREATE TABLE AS and order it by the
index column(s).

FILLFACTOR

Set the fillfactor percentage for a table.

value

The new value for the FILLFACTOR parameter, which is a percentage between 10 and
100. 100 is the default.

DISTRIBUTED BY ({column_name [opclass]}) | DISTRIBUTED RANDOMLY |
DISTRIBUTED REPLICATED

Specifies the distribution policy for a table. Changing a hash distribution policy causes the
table data to be physically redistributed, which can be resource intensive. If you declare
the same hash distribution policy or change from hash to random distribution, data will not
be redistributed unless you declare SET WITH (REORGANIZE=true).

Changing to or from a replicated distribution policy causes the table data to be
redistributed.

REORGANIZE=true|false

Use REORGANIZE=true when the hash distribution policy has not changed or when you
have changed from a hash to a random distribution, and you want to redistribute the data
anyways.

parent_table

A parent table to associate or de-associate with this table.

new_owner

The role name of the new owner of the table.

new_tablespace

The name of the tablespace to which the table will be moved.

new_schema

The name of the schema to which the table will be moved.

parent_table_name

When altering a partitioned table, the name of the top-level parent table.

ALTER [DEFAULT] PARTITION

If altering a partition deeper than the first level of partitions, use ALTER PARTITION
clauses to specify which subpartition in the hierarchy you want to alter. For each partition
level in the table hierarchy that is above the target partition, specify the partition that is
related to the target partition in an ALTER PARTITION clause.

DROP [DEFAULT] PARTITION

Greenplum Database Reference Guide Release Notes

960

Drops the specified partition. If the partition has subpartitions, the subpartitions are
automatically dropped as well.

TRUNCATE [DEFAULT] PARTITION

Truncates the specified partition. If the partition has subpartitions, the subpartitions are
automatically truncated as well.

RENAME [DEFAULT] PARTITION

Changes the partition name of a partition (not the relation name). Partitioned tables are
created using the naming convention: <parentname>_<level>_prt_<partition_name>.

ADD DEFAULT PARTITION

Adds a default partition to an existing partition design. When data does not match to an
existing partition, it is inserted into the default partition. Partition designs that do not have a
default partition will reject incoming rows that do not match to an existing partition. Default
partitions must be given a name.

ADD PARTITION

partition_element - Using the existing partition type of the table (range or list), defines the
boundaries of new partition you are adding.

name - A name for this new partition.

VALUES - For list partitions, defines the value(s) that the partition will contain.

START - For range partitions, defines the starting range value for the partition. By default,
start values are INCLUSIVE. For example, if you declared a start date of '2016-01-01',
then the partition would contain all dates greater than or equal to '2016-01-01'. Typically
the data type of the START expression is the same type as the partition key column. If that
is not the case, then you must explicitly cast to the intended data type.

END - For range partitions, defines the ending range value for the partition. By default, end
values are EXCLUSIVE. For example, if you declared an end date of '2016-02-01', then
the partition would contain all dates less than but not equal to '2016-02-01'. Typically the
data type of the END expression is the same type as the partition key column. If that is not
the case, then you must explicitly cast to the intended data type.

WITH - Sets the table storage options for a partition. For example, you may want older
partitions to be append-optimized tables and newer partitions to be regular heap tables.
See CREATE TABLE for a description of the storage options.

TABLESPACE - The name of the tablespace in which the partition is to be created.

subpartition_spec - Only allowed on partition designs that were created without a
subpartition template. Declares a subpartition specification for the new partition you are
adding. If the partitioned table was originally defined using a subpartition template, then the
template will be used to generate the subpartitions automatically.

EXCHANGE [DEFAULT] PARTITION

Exchanges another table into the partition hierarchy into the place of an existing partition.
In a multi-level partition design, you can only exchange the lowest level partitions (those
that contain data).

The Greenplum Database server configuration parameter
gp_enable_exchange_default_partition controls availability of the EXCHANGE
DEFAULT PARTITION clause. The default value for the parameter is off. The clause
is not available and Greenplum Database returns an error if the clause is specified in an
ALTER TABLE command.

For information about the parameter, see Server Configuration Parameters.

Warning: Before you exchange the default partition, you must ensure the
data in the table to be exchanged, the new default partition, is valid for the

Greenplum Database Reference Guide Release Notes

961

default partition. For example, the data in the new default partition must not
contain data that would be valid in other leaf child partitions of the partitioned
table. Otherwise, queries against the partitioned table with the exchanged
default partition that are executed by GPORCA might return incorrect results.

WITH TABLE table_name - The name of the table you are swapping into the partition
design. You can exchange a table where the table data is stored in the database. For
example, the table is created with the CREATE TABLE command. The table must have the
same number of columns, column order, column names, column types, and distribution
policy as the parent table.

With the EXCHANGE PARTITION clause, you can also exchange a readable external table
(created with the CREATE EXTERNAL TABLE command) into the partition hierarchy in the
place of an existing leaf child partition. If you specify a readable external table, you must
also specify the WITHOUT VALIDATION clause to skip table validation against the CHECK
constraint of the partition you are exchanging.

Exchanging a leaf child partition with an external table is not supported if the partitioned
table contains a column with a check constraint or a NOT NULL constraint.

You cannot exchange a partition with a replicated table. Exchanging a partition with a
partitioned table or a child partition of a partitioned table is not supported.

WITH | WITHOUT VALIDATION - Validates that the data in the table matches the CHECK
constraint of the partition you are exchanging. The default is to validate the data against
the CHECK constraint.

Warning: If you specify the WITHOUT VALIDATION clause, you must ensure
that the data in table that you are exchanging for an existing child leaf partition
is valid against the CHECK constraints on the partition. Otherwise, queries
against the partitioned table might return incorrect results.

SET SUBPARTITION TEMPLATE

Modifies the subpartition template for an existing partition. After a new subpartition
template is set, all new partitions added will have the new subpartition design (existing
partitions are not modified).

SPLIT DEFAULT PARTITION

Splits a default partition. In a multi-level partition, only a range partition can be split, not a
list partition, and you can only split the lowest level default partitions (those that contain
data). Splitting a default partition creates a new partition containing the values specified
and leaves the default partition containing any values that do not match to an existing
partition.

AT - For list partitioned tables, specifies a single list value that should be used as the
criteria for the split.

START - For range partitioned tables, specifies a starting value for the new partition.

END - For range partitioned tables, specifies an ending value for the new partition.

INTO - Allows you to specify a name for the new partition. When using the INTO clause to
split a default partition, the second partition name specified should always be that of the
existing default partition. If you do not know the name of the default partition, you can look
it up using the pg_partitions view.

SPLIT PARTITION

Splits an existing partition into two partitions. In a multi-level partition, only a range partition
can be split, not a list partition, and you can only split the lowest level partitions (those that
contain data).

Greenplum Database Reference Guide Release Notes

962

AT - Specifies a single value that should be used as the criteria for the split. The partition
will be divided into two new partitions with the split value specified being the starting range
for the latter partition.

INTO - Allows you to specify names for the two new partitions created by the split.

partition_name

The given name of a partition. The given partition name is the partitionname column
value in the pg_partitions system view.

FOR (RANK(number))

For range partitions, the rank of the partition in the range.

FOR ('value')

Specifies a partition by declaring a value that falls within the partition boundary
specification. If the value declared with FOR matches to both a partition and one of its
subpartitions (for example, if the value is a date and the table is partitioned by month and
then by day), then FOR will operate on the first level where a match is found (for example,
the monthly partition). If your intent is to operate on a subpartition, you must declare so
as follows: ALTER TABLE name ALTER PARTITION FOR ('2016-10-01') DROP
PARTITION FOR ('2016-10-01');

Notes
The table name specified in the ALTER TABLE command cannot be the name of a partition within a table.

Take special care when altering or dropping columns that are part of the Greenplum Database distribution
key as this can change the distribution policy for the table.

Greenplum Database does not currently support foreign key constraints. For a unique constraint to be
enforced in Greenplum Database, the table must be hash-distributed (not DISTRIBUTED RANDOMLY),
and all of the distribution key columns must be the same as the initial columns of the unique constraint
columns.

Adding a CHECK or NOT NULL constraint requires scanning the table to verify that existing rows meet the
constraint, but does not require a table rewrite.

This table lists the ALTER TABLE operations that require a table rewrite when performed on tables defined
with the specified type of table storage.

Table 82: ALTER TABLE Operations that Require Table Rewrite

Operation (See Note) Append-Optimized,
Column-Oriented

Append-Optimized Heap

ALTER COLUMN TYPE Yes Yes Yes

ADD COLUMN No Yes Yes

Note: Dropping a system oid column also requires a table rewrite.

When a column is added with ADD COLUMN, all existing rows in the table are initialized with the
column's default value, or NULL if no DEFAULT clause is specified. Adding a column with a non-
null default or changing the type of an existing column will require the entire table and indexes to
be rewritten. As an exception, if the USING clause does not change the column contents and the
old type is either binary coercible to the new type or an unconstrained domain over the new type, a
table rewrite is not needed, but any indexes on the affected columns must still be rebuilt. Table and/
or index rebuilds may take a significant amount of time for a large table; and will temporarily require
as much as double the disk space.

Greenplum Database Reference Guide Release Notes

963

Important: The forms of ALTER TABLE that perform a table rewrite on an append-optimized table
are not MVCC-safe. After a table rewrite, the table will appear empty to concurrent transactions if
they are using a snapshot taken before the rewrite occurred. See MVCC Caveats for more details.

You can specify multiple changes in a single ALTER TABLE command, which will be done in a single pass
over the table.

The DROP COLUMN form does not physically remove the column, but simply makes it invisible to SQL
operations. Subsequent insert and update operations in the table will store a null value for the column.
Thus, dropping a column is quick but it will not immediately reduce the on-disk size of your table, as the
space occupied by the dropped column is not reclaimed. The space will be reclaimed over time as existing
rows are updated. If you drop the system oid column, however, the table is rewritten immediately.

To force immediate reclamation of space occupied by a dropped column, you can execute one of the forms
of ALTER TABLE that performs a rewrite of the whole table. This results in reconstructing each row with
the dropped column replaced by a null value.

The USING option of SET DATA TYPE can actually specify any expression involving the old values of
the row; that is, it can refer to other columns as well as the one being converted. This allows very general
conversions to be done with the SET DATA TYPE syntax. Because of this flexibility, the USING expression
is not applied to the column's default value (if any); the result might not be a constant expression as
required for a default. This means that when there is no implicit or assignment cast from old to new type,
SET DATA TYPE might fail to convert the default even though a USING clause is supplied. In such cases,
drop the default with DROP DEFAULT, perform the ALTER TYPE, and then use SET DEFAULT to add a
suitable new default. Similar considerations apply to indexes and constraints involving the column.

If a table is partitioned or has any descendant tables, it is not permitted to add, rename, or change the
type of a column, or rename an inherited constraint in the parent table without doing the same to the
descendants. This ensures that the descendants always have columns matching the parent.

To see the structure of a partitioned table, you can use the view pg_partitions. This view can help
identify the particular partitions you may want to alter.

A recursive DROP COLUMN operation will remove a descendant table's column only if the descendant does
not inherit that column from any other parents and never had an independent definition of the column. A
nonrecursive DROP COLUMN (ALTER TABLE ONLY ... DROP COLUMN) never removes any descendant
columns, but instead marks them as independently defined rather than inherited.

The TRIGGER, CLUSTER, OWNER, and TABLESPACE actions never recurse to descendant tables; that is,
they always act as though ONLY were specified. Adding a constraint recurses only for CHECK constraints
that are not marked NO INHERIT.

These ALTER PARTITION operations are supported if no data is changed on a partitioned table that
contains a leaf child partition that has been exchanged to use an external table. Otherwise, an error is
returned.

• Adding or dropping a column.
• Changing the data type of column.

These ALTER PARTITION operations are not supported for a partitioned table that contains a leaf child
partition that has been exchanged to use an external table:

• Setting a subpartition template.
• Altering the partition properties.
• Creating a default partition.
• Setting a distribution policy.
• Setting or dropping a NOT NULL constraint of column.
• Adding or dropping constraints.
• Splitting an external partition.

Changing any part of a system catalog table is not permitted.

https://www.postgresql.org/docs/9.4/mvcc-caveats.html

Greenplum Database Reference Guide Release Notes

964

Examples
Add a column to a table:

ALTER TABLE distributors ADD COLUMN address varchar(30);

Rename an existing column:

ALTER TABLE distributors RENAME COLUMN address TO city;

Rename an existing table:

ALTER TABLE distributors RENAME TO suppliers;

Add a not-null constraint to a column:

To rename an existing constraint:

ALTER TABLE distributors RENAME CONSTRAINT zipchk TO zip_check;

ALTER TABLE distributors ALTER COLUMN street SET NOT NULL;

Add a check constraint to a table and all of its children:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK
(char_length(zipcode) = 5);

To add a check constraint only to a table and not to its children:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) =
 5) NO INHERIT;

(The check constraint will not be inherited by future children, either.)

Remove a check constraint from a table and all of its children:

ALTER TABLE distributors DROP CONSTRAINT zipchk;

Remove a check constraint from one table only:

ALTER TABLE ONLY distributors DROP CONSTRAINT zipchk;

(The check constraint remains in place for any child tables that inherit distributors.)

Move a table to a different schema:

ALTER TABLE myschema.distributors SET SCHEMA yourschema;

Change the distribution policy of a table to replicated:

ALTER TABLE myschema.distributors SET DISTRIBUTED REPLICATED;

Add a new partition to a partitioned table:

ALTER TABLE sales ADD PARTITION
 START (date '2017-02-01') INCLUSIVE
 END (date '2017-03-01') EXCLUSIVE;

Greenplum Database Reference Guide Release Notes

965

Add a default partition to an existing partition design:

ALTER TABLE sales ADD DEFAULT PARTITION other;

Rename a partition:

ALTER TABLE sales RENAME PARTITION FOR ('2016-01-01') TO
jan08;

Drop the first (oldest) partition in a range sequence:

ALTER TABLE sales DROP PARTITION FOR (RANK(1));

Exchange a table into your partition design:

ALTER TABLE sales EXCHANGE PARTITION FOR ('2016-01-01') WITH
TABLE jan08;

Split the default partition (where the existing default partition's name is other) to add a new monthly
partition for January 2017:

ALTER TABLE sales SPLIT DEFAULT PARTITION
START ('2017-01-01') INCLUSIVE
END ('2017-02-01') EXCLUSIVE
INTO (PARTITION jan09, PARTITION other);

Split a monthly partition into two with the first partition containing dates January 1-15 and the second
partition containing dates January 16-31:

ALTER TABLE sales SPLIT PARTITION FOR ('2016-01-01')
AT ('2016-01-16')
INTO (PARTITION jan081to15, PARTITION jan0816to31);

For a multi-level partitioned table that consists of three levels, year, quarter, and region, exchange a leaf
partition region with the table region_new.

ALTER TABLE sales ALTER PARTITION year_1 ALTER PARTITION quarter_4 EXCHANGE
 PARTITION region WITH TABLE region_new ;

In the previous command, the two ALTER PARTITION clauses identify which region partition to
exchange. Both clauses are required to identify the specific partition to exchange.

Compatibility
The forms ADD (without USING INDEX), DROP, SET DEFAULT, and SET DATA TYPE (without USING)
conform with the SQL standard. The other forms are Greenplum Database extensions of the SQL
standard. Also, the ability to specify more than one manipulation in a single ALTER TABLE command is an
extension.

ALTER TABLE DROP COLUMN can be used to drop the only column of a table, leaving a zero-column
table. This is an extension of SQL, which disallows zero-column tables.

See Also
CREATE TABLE, DROP TABLE

ALTER TABLESPACE
Changes the definition of a tablespace.

Greenplum Database Reference Guide Release Notes

966

Synopsis

ALTER TABLESPACE name RENAME TO new_name

ALTER TABLESPACE name OWNER TO new_owner

ALTER TABLESPACE name SET (tablespace_option = value [, ...])

ALTER TABLESPACE name RESET (tablespace_option [, ...])

Description
ALTER TABLESPACE changes the definition of a tablespace.

You must own the tablespace to use ALTER TABLESPACE. To alter the owner, you must also be a direct
or indirect member of the new owning role. (Note that superusers have these privileges automatically.)

Parameters
name

The name of an existing tablespace.

new_name

The new name of the tablespace. The new name cannot begin with pg_ or gp_ (reserved
for system tablespaces).

new_owner

The new owner of the tablespace.

tablespace_parameter

A tablespace parameter to be set or reset. Currently, the only available parameters are
seq_page_cost and random_page_cost. Setting either value for a particular tablespace
will override the planner's usual estimate of the cost of reading pages from tables in that
tablespace, as established by the configuration parameters of the same name (see seq-
page-cost, random-page-cost). This may be useful if one tablespace is located on a disk
which is faster or slower than the remainder of the I/O subsystem.

Examples
Rename tablespace index_space to fast_raid:

ALTER TABLESPACE index_space RENAME TO fast_raid;

Change the owner of tablespace index_space:

ALTER TABLESPACE index_space OWNER TO mary;

Compatibility
There is no ALTER TABLESPACE statement in the SQL standard.

See Also
CREATE TABLESPACE, DROP TABLESPACE

ALTER TEXT SEARCH CONFIGURATION
Changes the definition of a text search configuration.

Greenplum Database Reference Guide Release Notes

967

Synopsis

ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING FOR token_type [, ...] WITH dictionary_name [, ...]
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING REPLACE old_dictionary WITH new_dictionary
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING FOR token_type [, ...] REPLACE old_dictionary
 WITH new_dictionary
ALTER TEXT SEARCH CONFIGURATION name
 DROP MAPPING [IF EXISTS] FOR token_type [, ...]
ALTER TEXT SEARCH CONFIGURATION name RENAME TO new_name
ALTER TEXT SEARCH CONFIGURATION name OWNER TO new_owner
ALTER TEXT SEARCH CONFIGURATION name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH CONFIGURATION changes the definition of a text search configuration. You can
modify its mappings from token types to dictionaries, or change the configuration's name or owner.

You must be the owner of the configuration to use ALTER TEXT SEARCH CONFIGURATION.

Parameters
name

The name (optionally schema-qualified) of an existing text search configuration.

token_type

The name of a token type that is emitted by the configuration's parser.

dictionary_name

The name of a text search dictionary to be consulted for the specified token type(s). If
multiple dictionaries are listed, they are consulted in the specified order.

old_dictionary

The name of a text search dictionary to be replaced in the mapping.

new_dictionary

The name of a text search dictionary to be substituted for old_dictionary.

new_name

The new name of the text search configuration.

new_owner

The new owner of the text search configuration.

new_schema

The new schema for the text search configuration.

The ADD MAPPING FOR form installs a list of dictionaries to be consulted for the specified token type(s); it
is an error if there is already a mapping for any of the token types. The ALTER MAPPING FOR form does
the same, but first removing any existing mapping for those token types. The ALTER MAPPING REPLACE
forms substitute new_dictionary for old_dictionary anywhere the latter appears. This is done for only the
specified token types when FOR appears, or for all mappings of the configuration when it doesn't. The
DROP MAPPING form removes all dictionaries for the specified token type(s), causing tokens of those
types to be ignored by the text search configuration. It is an error if there is no mapping for the token types,
unless IF EXISTS appears.

Greenplum Database Reference Guide Release Notes

968

Examples
The following example replaces the english dictionary with the swedish dictionary anywhere that
english is used within my_config.

ALTER TEXT SEARCH CONFIGURATION my_config
 ALTER MAPPING REPLACE english WITH swedish;

Compatibility
There is no ALTER TEXT SEARCH CONFIGURATION statement in the SQL standard.

See Also
CREATE TEXT SEARCH CONFIGURATION, DROP TEXT SEARCH CONFIGURATION

ALTER TEXT SEARCH DICTIONARY
Changes the definition of a text search dictionary.

Synopsis

ALTER TEXT SEARCH DICTIONARY name (
 option [= value] [, ...]
)
ALTER TEXT SEARCH DICTIONARY name RENAME TO new_name
ALTER TEXT SEARCH DICTIONARY name OWNER TO new_owner
ALTER TEXT SEARCH DICTIONARY name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH DICTIONARY changes the definition of a text search dictionary. You can change
the dictionary's template-specific options, or change the dictionary's name or owner.

You must be the owner of the dictionary to use ALTER TEXT SEARCH DICTIONARY.

Parameters
name

The name (optionally schema-qualified) of an existing text search dictionary.

option

The name of a template-specific option to be set for this dictionary.

value

The new value to use for a template-specific option. If the equal sign and value are
omitted, then any previous setting for the option is removed from the dictionary, allowing
the default to be used.

new_name

The new name of the text search dictionary.

new_owner

The new owner of the text search dictionary.

new_schema

The new schema for the text search dictionary.

Template-specific options can appear in any order.

Greenplum Database Reference Guide Release Notes

969

Examples
The following example command changes the stopword list for a Snowball-based dictionary. Other
parameters remain unchanged.

ALTER TEXT SEARCH DICTIONARY my_dict (StopWords = newrussian);

The following example command changes the language option to dutch, and removes the stopword
option entirely.

ALTER TEXT SEARCH DICTIONARY my_dict (language = dutch, StopWords);

The following example command "updates" the dictionary's definition without actually changing anything.

ALTER TEXT SEARCH DICTIONARY my_dict (dummy);

(The reason this works is that the option removal code doesn't complain if there is no such option.) This
trick is useful when changing configuration files for the dictionary: the ALTER will force existing database
sessions to re-read the configuration files, which otherwise they would never do if they had read them
earlier.

Compatibility
There is no ALTER TEXT SEARCH DICTIONARY statement in the SQL standard.

See Also
CREATE TEXT SEARCH DICTIONARY, DROP TEXT SEARCH DICTIONARY

ALTER TEXT SEARCH PARSER

Description
Changes the definition of a text search parser.

Synopsis

ALTER TEXT SEARCH PARSER name RENAME TO new_name
ALTER TEXT SEARCH PARSER name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH PARSER changes the definition of a text search parser. Currently, the only
supported functionality is to change the parser's name.

You must be a superuser to use ALTER TEXT SEARCH PARSER.

Parameters
name

The name (optionally schema-qualified) of an existing text search parser.

new_name

The new name of the text search parser.

new_schema

The new schema for the text search parser.

Compatibility
There is no ALTER TEXT SEARCH PARSER statement in the SQL standard.

Greenplum Database Reference Guide Release Notes

970

See Also
CREATE TEXT SEARCH PARSER, DROP TEXT SEARCH PARSER

ALTER TEXT SEARCH TEMPLATE

Description
Changes the definition of a text search template.

Synopsis

ALTER TEXT SEARCH TEMPLATE name RENAME TO new_name
ALTER TEXT SEARCH TEMPLATE name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH TEMPLATE changes the definition of a text search parser. Currently, the only
supported functionality is to change the parser's name.

You must be a superuser to use ALTER TEXT SEARCH TEMPLATE.

Parameters
name

The name (optionally schema-qualified) of an existing text search template.

new_name

The new name of the text search template.

new_schema

The new schema for the text search template.

Compatibility
There is no ALTER TEXT SEARCH TEMPLATE statement in the SQL standard.

See Also
CREATE TEXT SEARCH TEMPLATE, DROP TEXT SEARCH TEMPLATE

ALTER TYPE
Changes the definition of a data type.

Synopsis

ALTER TYPE name action [, ...]
ALTER TYPE name OWNER TO new_owner
ALTER TYPE name RENAME ATTRIBUTE attribute_name TO new_attribute_name
 [CASCADE | RESTRICT]
ALTER TYPE name RENAME TO new_name
ALTER TYPE name SET SCHEMA new_schema
ALTER TYPE name ADD VALUE [IF NOT EXISTS] new_enum_value [{ BEFORE |
 AFTER } existing_enum_value]
ALTER TYPE name SET DEFAULT ENCODING (storage_directive)

where action is one of:

Greenplum Database Reference Guide Release Notes

971

 ADD ATTRIBUTE attribute_name data_type [COLLATE collation] [CASCADE |
 RESTRICT]
 DROP ATTRIBUTE [IF EXISTS] attribute_name [CASCADE | RESTRICT]
 ALTER ATTRIBUTE attribute_name [SET DATA] TYPE data_type
 [COLLATE collation] [CASCADE | RESTRICT]

where storage_directive is:

 COMPRESSTYPE={ZLIB | ZSTD | QUICKLZ | RLE_TYPE | NONE}
 COMPRESSLEVEL={0-19}
 BLOCKSIZE={8192-2097152}

Description
ALTER TYPE changes the definition of an existing type. There are several subforms:

• ADD ATTRIBUTE — Adds a new attribute to a composite type, using the same syntax as CREATE
TYPE.

• DROP ATTRIBUTE [IF EXISTS] — Drops an attribute from a composite type. If IF EXISTS is
specified and the attribute does not exist, no error is thrown. In this case a notice is issued instead.

• SET DATA TYPE — Changes the type of an attribute of a composite type.
• OWNER — Changes the owner of the type.
• RENAME — Changes the name of the type or the name of an individual attribute of a composite type.
• SET SCHEMA — Moves the type into another schema.
• ADD VALUE [IF NOT EXISTS] [BEFORE | AFTER] — Adds a new value to an enum type.

The new value's place in the enum's ordering can be specified as being BEFORE or AFTER one of the
existing values. Otherwise, the new item is added at the end of the list of values.

If IF NOT EXISTS is specified, it is not an error if the type already contains the new value; a notice is
issued but no other action is taken. Otherwise, an error will occur if the new value is already present.

• CASCADE — Automatically propagate the operation to typed tables of the type being altered, and their
descendants.

• RESTRICT — Refuse the operation if the type being altered is the type of a typed table. This is the
default.

The ADD ATTRIBUTE, DROP ATTRIBUTE, and ALTER ATTRIBUTE actions can be combined into a list of
multiple alterations to apply in parallel. For example, it is possible to add several attributes and/or alter the
type of several attributes in a single command.

You can change the name, the owner, and the schema of a type. You can also add or update storage
options for a scalar type.

Note: Greenplum Database does not support adding storage options for row or composite types.

You must own the type to use ALTER TYPE. To change the schema of a type, you must also have CREATE
privilege on the new schema. To alter the owner, you must also be a direct or indirect member of the new
owning role, and that role must have CREATE privilege on the type's schema. (These restrictions enforce
that altering the owner does not do anything that could be done by dropping and recreating the type.
However, a superuser can alter ownership of any type.) To add an attribute or alter an attribute type, you
must also have USAGE privilege on the data type.

ALTER TYPE ... ADD VALUE (the form that adds a new value to an enum type) cannot be executed
inside a transaction block.

Comparisons involving an added enum value will sometimes be slower than comparisons involving only
original members of the enum type. This will usually only occur if BEFORE or AFTER is used to set the
new value's sort position somewhere other than at the end of the list. However, sometimes it will happen
even though the new value is added at the end (this occurs if the OID counter "wrapped around" since
the original creation of the enum type). The slowdown is usually insignificant; but if it matters, optimal

Greenplum Database Reference Guide Release Notes

972

performance can be regained by dropping and recreating the enum type, or by dumping and reloading the
database.

Parameters
name

The name (optionally schema-qualified) of an existing type to alter.

new_name

The new name for the type.

new_owner

The user name of the new owner of the type.

new_schema

The new schema for the type.

attribute_name

The name of the attribute to add, alter, or drop.

new_attribute_name

The new name of the attribute to be renamed.

data_type

The data type of the attribute to add, or the new type of the attribute to alter.

new_enum_value

The new value to be added to an enum type's list of values. Like all enum literals, it needs
to be quoted.

existing_enum_value

The existing enum value that the new value should be added immediately before or after in
the enum type's sort ordering. Like all enum literals, it needs to be quoted.

storage_directive

Identifies default storage options for the type when specified in a table column definition.
Options include COMPRESSTYPE, COMPRESSLEVEL, and BLOCKSIZE.

COMPRESSTYPE — Set to ZLIB (the default), ZSTD, RLE_TYPE, or QUICKLZ1 to specify
the type of compression used.

Note: 1QuickLZ compression is available only in the commercial release of
Pivotal Greenplum Database.

COMPRESSLEVEL — For Zstd compression, set to an integer value from 1 (fastest
compression) to 19 (highest compression ratio). For zlib compression, the valid range
is from 1 to 9. The QuickLZ compression level can only be set to 1. For RLE_TYPE, the
compression level can be set to an integer value from 1 (fastest compression) to 4 (highest
compression ratio). The default compression level is 1.

BLOCKSIZE — Set to the size, in bytes, for each block in the column. The BLOCKSIZE
must be between 8192 and 2097152 bytes, and be a multiple of 8192. The default block
size is 32768.

Note: storage_directives defined at the table- or column-level override the
default storage options defined for a type.

Examples
To rename the data type named electronic_mail:

ALTER TYPE electronic_mail RENAME TO email;

Greenplum Database Reference Guide Release Notes

973

To change the owner of the user-defined type email to joe:

ALTER TYPE email OWNER TO joe;

To change the schema of the user-defined type email to customers:

ALTER TYPE email SET SCHEMA customers;

To set or alter the compression type and compression level of the user-defined type named int33:

ALTER TYPE int33 SET DEFAULT ENCODING (compresstype=zlib, compresslevel=7);

To add a new attribute to a type:

ALTER TYPE compfoo ADD ATTRIBUTE f3 int;

To add a new value to an enum type in a particular sort position:

ALTER TYPE colors ADD VALUE 'orange' AFTER 'red';

Compatibility
The variants to add and drop attributes are part of the SQL standard; the other variants are Greenplum
Database extensions.

See Also
CREATE TYPE, DROP TYPE

ALTER USER
Changes the definition of a database role (user).

Synopsis

ALTER USER name RENAME TO newname

ALTER USER name SET config_parameter {TO | =} {value | DEFAULT}

ALTER USER name RESET config_parameter

ALTER USER name RESOURCE QUEUE {queue_name | NONE}

ALTER USER name RESOURCE GROUP {group_name | NONE}

ALTER USER name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | CREATEEXTTABLE | NOCREATEEXTTABLE
 [(attribute='value'[, ...])]
 where attributes and value are:
 type='readable'|'writable'
 protocol='gpfdist'|'http'
 | INHERIT | NOINHERIT

Greenplum Database Reference Guide Release Notes

974

 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | [DENY deny_point]
 | [DENY BETWEEN deny_point AND deny_point]
 | [DROP DENY FOR deny_point]

Description
ALTER USER is an alias for ALTER ROLE. See ALTER ROLE for more information.

Compatibility
The ALTER USER statement is a Greenplum Database extension. The SQL standard leaves the definition
of users to the implementation.

See Also
ALTER ROLE

ALTER USER MAPPING
Changes the definition of a user mapping for a foreign server.

Synopsis

ALTER USER MAPPING FOR { username | USER | CURRENT_USER | PUBLIC }
 SERVER servername
 OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Description
ALTER USER MAPPING changes the definition of a user mapping for a foreign server.

The owner of a foreign server can alter user mappings for that server for any user. Also, a user granted
USAGE privilege on the server can alter a user mapping for their own user name.

Parameters
username

User name of the mapping. CURRENT_USER and USER match the name of the current
user. PUBLIC is used to match all present and future user names in the system.

servername

Server name of the user mapping.

OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Change options for the user mapping. The new options override any previously specified
options. ADD, SET, and DROP specify the action to perform. If no operation is explicitly
specified, the default operation is ADD. Option names must be unique. Greenplum
Database validates names and values using the server's foreign-data wrapper.

Greenplum Database Reference Guide Release Notes

975

Examples
Change the password for user mapping bob, server foo:

ALTER USER MAPPING FOR bob SERVER foo OPTIONS (SET password 'public');

Compatibility
ALTER USER MAPPING conforms to ISO/IEC 9075-9 (SQL/MED). There is a subtle syntax issue: The
standard omits the FOR key word. Since both CREATE USER MAPPING and DROP USER MAPPING
use FOR in analogous positions, Greenplum Database diverges from the standard here in the interest of
consistency and interoperability.

See Also
CREATE USER MAPPING, DROP USER MAPPING

ALTER VIEW
Changes properties of a view.

Synopsis

ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name SET
 DEFAULT expression

ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name DROP DEFAULT

ALTER VIEW [IF EXISTS] name OWNER TO new_owner

ALTER VIEW [IF EXISTS] name RENAME TO new_name

ALTER VIEW [IF EXISTS] name SET SCHEMA new_schema

ALTER VIEW [IF EXISTS] name SET (view_option_name [= view_option_value]
 [, ...])

ALTER VIEW [IF EXISTS] name RESET (view_option_name [, ...])

Description
ALTER VIEW changes various auxiliary properties of a view. (If you want to modify the view's defining
query, use CREATE OR REPLACE VIEW.

To execute this command you must be the owner of the view. To change a view's schema you must
also have CREATE privilege on the new schema. To alter the owner, you must also be a direct or indirect
member of the new owning role, and that role must have CREATE privilege on the view's schema. These
restrictions enforce that altering the owner does not do anything you could not do by dropping and
recreating the view. However, a superuser can alter ownership of any view.

Parameters
name

The name (optionally schema-qualified) of an existing view.

IF EXISTS

Do not throw an error if the view does not exist. A notice is issued in this case.

SET/DROP DEFAULT

Greenplum Database Reference Guide Release Notes

976

These forms set or remove the default value for a column. A view column's default
value is substituted into any INSERT or UPDATE command whose target is the view,
before applying any rules or triggers for the view. The view's default will therefore take
precedence over any default values from underlying relations.

new_owner

The new owner for the view.

new_name

The new name of the view.

new_schema

The new schema for the view.

SET (view_option_name [= view_option_value] [, ...])
RESET (view_option_name [, ...])

Sets or resets a view option. Currently supported options are:
check_option (string)

Changes the check option of the view. The value must be local or cascaded.

security_barrier (boolean)

Changes the security-barrier property of the view. The value must be a Boolean value,
such as true or false.

Notes
For historical reasons, ALTER TABLE can be used with views, too; however, the only variants of ALTER
TABLE that are allowed with views are equivalent to the statements shown above.

Rename the view myview to newview:

ALTER VIEW myview RENAME TO newview;

Examples
To rename the view foo to bar:

ALTER VIEW foo RENAME TO bar;

To attach a default column value to an updatable view:

CREATE TABLE base_table (id int, ts timestamptz);
CREATE VIEW a_view AS SELECT * FROM base_table;
ALTER VIEW a_view ALTER COLUMN ts SET DEFAULT now();
INSERT INTO base_table(id) VALUES(1); -- ts will receive a NULL
INSERT INTO a_view(id) VALUES(2); -- ts will receive the current time

Compatibility
ALTER VIEW is a Greenplum Database extension of the SQL standard.

See Also
CREATE VIEW, DROP VIEW in the Greenplum Database Utility Guide

ANALYZE
Collects statistics about a database.

Greenplum Database Reference Guide Release Notes

977

Synopsis

ANALYZE [VERBOSE] [table [(column [, ...])]]

ANALYZE [VERBOSE] {root_partition|leaf_partition} [(column [, ...])]

ANALYZE [VERBOSE] ROOTPARTITION {ALL | root_partition [(column [, ...])]}

Description
ANALYZE collects statistics about the contents of tables in the database, and stores the results in the
system table pg_statistic. Subsequently, Greenplum Database uses these statistics to help determine the
most efficient execution plans for queries. For information about the table statistics that are collected, see
Notes.

With no parameter, ANALYZE collects statistics for every table in the current database. You can specify a
table name to collect statistics for a single table. You can specify a set of column names, in which case the
statistics only for those columns are collected.

ANALYZE does not collect statistics on external tables.

For partitioned tables, ANALYZE collects additional statistics, HyperLogLog (HLL) statistics, on the leaf
child partitions. HLL statistics are used are used to derive number of distinct values (NDV) for queries
against partitioned tables.

• When aggregating NDV estimates across multiple leaf child partitions, HLL statistics generate a more
accurate NDV estimates than the standard table statistics.

• When updating HLL statistics, ANALYZE operations are required only on leaf child partitions that have
changed. For example, ANALYZE is required if the leaf child partition data has changed, or if the leaf
child partition has been exchanged with another table. For more information about updating partitioned
table statistics, see Notes.

Important: If you intend to execute queries on partitioned tables with GPORCA enabled (the
default), then you must collect statistics on the root partition of the partitioned table with the
ANALYZE or ANALYZE ROOTPARTITION command. For information about collecting statistics on
partitioned tables and when the ROOTPARTITION keyword is required, see Notes. For information
about GPORCA, see Overview of GPORCA in the Greenplum Database Administrator Guide.

Note: You can also use the Greenplum Database utility analyzedb to update table statistics.
The analyzedb utility can update statistics for multiple tables concurrently. The utility can also
check table statistics and update statistics only if the statistics are not current or do not exist. For
information about the utility, see the Greenplum Database Utility Guide.

Parameters
{ root_partition | leaf_partition } [(column [, ...])]

Collect statistics for partitioned tables including HLL statistics. HLL statistics are collected
only on leaf child partitions.

ANALYZE root_partition, collects statistics on all leaf child partitions and the root
partition.

ANALYZE leaf_partition, collects statistics on the leaf child partition.

By default, if you specify a leaf child partition, and all other leaf child partitions have
statistics, ANALYZE updates the root partition statistics. If not all leaf child partitions
have statistics, ANALYZE logs information about the leaf child partitions that do not have
statistics. For information about when root partition statistics are collected, see Notes.

ROOTPARTITION [ALL]

Collect statistics only on the root partition of partitioned tables based on the data in the
partitioned table. If possible, ANALYZE uses leaf child partition statistics to generate

Greenplum Database Reference Guide Release Notes

978

root partition statistics. Otherwise, ANALYZE collects the statistics by sampling leaf child
partition data. Statistics are not collected on the leaf child partitions, the data is only
sampled. HLL statistics are not collected.

For information about when the ROOTPARTITION keyword is required, see Notes.

When you specify ROOTPARTITION, you must specify either ALL or the name of a
partitioned table.

If you specify ALL with ROOTPARTITION, Greenplum Database collects statistics for the
root partition of all partitioned tables in the database. If there are no partitioned tables in
the database, a message stating that there are no partitioned tables is returned. For tables
that are not partitioned tables, statistics are not collected.

If you specify a table name with ROOTPARTITION and the table is not a partitioned table,
no statistics are collected for the table and a warning message is returned.

The ROOTPARTITION clause is not valid with VACUUM ANALYZE. The command VACUUM
ANALYZE ROOTPARTITION returns an error.

The time to run ANALYZE ROOTPARTITION is similar to the time to analyze a non-
partitioned table with the same data since ANALYZE ROOTPARTITION only samples the
leaf child partition data.

For the partitioned table sales_curr_yr, this example command collects statistics only on
the root partition of the partitioned table. ANALYZE ROOTPARTITION sales_curr_yr;

This example ANALYZE command collects statistics on the root partition of all the
partitioned tables in the database.

ANALYZE ROOTPARTITION ALL;

VERBOSE

Enables display of progress messages. Enables display of progress messages. When
specified, ANALYZE emits this information

• The table that is being processed.
• The query that is executed to generate the sample table.
• The column for which statistics is being computed.
• The queries that are issued to collect the different statistics for a single column.
• The statistics that are collected.

table

The name (possibly schema-qualified) of a specific table to analyze. If omitted, all regular
tables (but not foreign tables) in the current database are analyzed.

column

The name of a specific column to analyze. Defaults to all columns.

Notes
Foreign tables are analyzed only when explicitly selected. Not all foreign data wrappers support ANALYZE.
If the table's wrapper does not support ANALYZE, the command prints a warning and does nothing.

It is a good idea to run ANALYZE periodically, or just after making major changes in the contents of a
table. Accurate statistics helps Greenplum Database choose the most appropriate query plan, and thereby
improve the speed of query processing. A common strategy for read-mostly databases is to run VACUUM
and ANALYZE once a day during a low-usage time of day. (This will not be sufficient if there is heavy
update activity.) You can check for tables with missing statistics using the gp_stats_missing view,
which is in the gp_toolkit schema:

SELECT * from gp_toolkit.gp_stats_missing;

Greenplum Database Reference Guide Release Notes

979

ANALYZE requires SHARE UPDATE EXCLUSIVE lock on the target table. This lock conflicts with
these locks: SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, ACCESS
EXCLUSIVE.

If you run ANALYZE on a table that does not contain data, statistics are not collected for the table. For
example, if you perform a TRUNCATE operation on a table that has statistics, and then run ANALYZE on the
table, the statistics do not change.

For a partitioned table, specifying which portion of the table to analyze, the root partition or subpartitions
(leaf child partition tables) can be useful if the partitioned table has a large number of partitions that have
been analyzed and only a few leaf child partitions have changed.

Note: When you create a partitioned table with the CREATE TABLE command, Greenplum
Database creates the table that you specify (the root partition or parent table), and also creates a
hierarchy of tables based on the partition hierarchy that you specified (the child tables).

• When you run ANALYZE on the root partitioned table, statistics are collected for all the leaf child
partitions. Leaf child partitions are the lowest-level tables in the hierarchy of child tables created by
Greenplum Database for use by the partitioned table.

• When you run ANALYZE on a leaf child partition, statistics are collected only for that leaf child partition
and the root partition. If data in the leaf partition has changed (for example, you made significant
updates to the leaf child partition data or you exchanged the leaf child partition), then you can run
ANALYZE on the leaf child partition to collect table statistics. By default, if all other leaf child partitions
have statistics, the command updates the root partition statistics.

For example, if you collected statistics on a partitioned table with a large number partitions and then
updated data in only a few leaf child partitions, you can run ANALYZE only on those partitions to update
statistics on the partitions and the statistics on the root partition.

• When you run ANALYZE on a child table that is not a leaf child partition, statistics are not collected.

For example, you can create a partitioned table with partitions for the years 2006 to 2016 and
subpartitions for each month in each year. If you run ANALYZE on the child table for the year 2013 no
statistics are collected. If you run ANALYZE on the leaf child partition for March of 2013, statistics are
collected only for that leaf child partition.

For a partitioned table that contains a leaf child partition that has been exchanged to use an external table,
ANALYZE does not collect statistics for the external table partition:

• If ANALYZE is run on an external table partition, the partition is not analyzed.
• If ANALYZE or ANALYZE ROOTPARTITION is run on the root partition, external table partitions are not

sampled and root table statistics do not include external table partition.
• If the VERBOSE clause is specified, an informational message is displayed: skipping external

table.

The Greenplum Database server configuration parameter optimizer_analyze_root_partition
affects when statistics are collected on the root partition of a partitioned table. If the parameter is on
(the default), the ROOTPARTITION keyword is not required to collect statistics on the root partition when
you run ANALYZE. Root partition statistics are collected when you run ANALYZE on the root partition, or
when you run ANALYZE on a child leaf partition of the partitioned table and the other child leaf partitions
have statistics. If the parameter is off, you must run ANALZYE ROOTPARTITION to collect root partition
statistics.

The statistics collected by ANALYZE usually include a list of some of the most common values in each
column and a histogram showing the approximate data distribution in each column. One or both of these
may be omitted if ANALYZE deems them uninteresting (for example, in a unique-key column, there are no
common values) or if the column data type does not support the appropriate operators.

For large tables, ANALYZE takes a random sample of the table contents, rather than examining every
row. This allows even very large tables to be analyzed in a small amount of time. Note, however, that
the statistics are only approximate, and will change slightly each time ANALYZE is run, even if the
actual table contents did not change. This may result in small changes in the planner's estimated costs

Greenplum Database Reference Guide Release Notes

980

shown by EXPLAIN. In rare situations, this non-determinism will cause the query optimizer to choose a
different query plan between runs of ANALYZE. To avoid this, raise the amount of statistics collected by
ANALYZE by adjusting the default_statistics_target configuration parameter, or on a column-by-column
basis by setting the per-column statistics target with ALTER TABLE ... ALTER COLUMN ... SET
(n_distinct ...) (see ALTER TABLE). The target value sets the maximum number of entries in the
most-common-value list and the maximum number of bins in the histogram. The default target value is 100,
but this can be adjusted up or down to trade off accuracy of planner estimates against the time taken for
ANALYZE and the amount of space occupied in pg_statistic. In particular, setting the statistics target to
zero disables collection of statistics for that column. It may be useful to do that for columns that are never
used as part of the WHERE, GROUP BY, or ORDER BY clauses of queries, since the planner will have no use
for statistics on such columns.

The largest statistics target among the columns being analyzed determines the number of table rows
sampled to prepare the statistics. Increasing the target causes a proportional increase in the time and
space needed to do ANALYZE.

One of the values estimated by ANALYZE is the number of distinct values that appear in each column.
Because only a subset of the rows are examined, this estimate can sometimes be quite inaccurate, even
with the largest possible statistics target. If this inaccuracy leads to bad query plans, a more accurate value
can be determined manually and then installed with ALTER TABLE ... ALTER COLUMN ... SET
STATISTICS DISTINCT (see ALTER TABLE).

When Greenplum Database performs an ANALYZE operation to collect statistics for a table and detects
that all the sampled table data pages are empty (do not contain valid data), Greenplum Database displays
a message that a VACUUM FULL operation should be performed. If the sampled pages are empty, the
table statistics will be inaccurate. Pages become empty after a large number of changes to the table,
for example deleting a large number of rows. A VACUUM FULL operation removes the empty pages and
allows an ANALYZE operation to collect accurate statistics.

If there are no statistics for the table, the server configuration parameter
gp_enable_relsize_collection controls whether the Postgres Planner uses a default statistics file
or estimates the size of a table using the pg_relation_size function. By default, the Postgres Planner
uses the default statistics file to estimate the number of rows if statistics are not available.

Examples
Collect statistics for the table mytable:

ANALYZE mytable;

Compatibility
There is no ANALYZE statement in the SQL standard.

See Also
ALTER TABLE, EXPLAIN, VACUUM, analyzedb utility in the Greenplum Database Utility Guide.

BEGIN
Starts a transaction block.

Synopsis

BEGIN [WORK | TRANSACTION] [transaction_mode]

Greenplum Database Reference Guide Release Notes

981

where transaction_mode is:

 ISOLATION LEVEL {READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ |
 SERIALIZABLE}
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Description
BEGIN initiates a transaction block, that is, all statements after a BEGIN command will be executed in a
single transaction until an explicit COMMIT or ROLLBACK is given. By default (without BEGIN), Greenplum
Database executes transactions in autocommit mode, that is, each statement is executed in its own
transaction and a commit is implicitly performed at the end of the statement (if execution was successful,
otherwise a rollback is done).

Statements are executed more quickly in a transaction block, because transaction start/commit requires
significant CPU and disk activity. Execution of multiple statements inside a transaction is also useful
to ensure consistency when making several related changes: other sessions will be unable to see the
intermediate states wherein not all the related updates have been done.

If the isolation level, read/write mode, or deferrable mode is specified, the new transaction has those
characteristics, as if SET TRANSACTION was executed.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

SERIALIZABLE
READ COMMITTED
READ UNCOMMITTED

The SQL standard defines four transaction isolation levels: READ UNCOMMITTED, READ
COMMITTED, REPEATABLE READ, and SERIALIZABLE.

READ UNCOMMITTED allows transactions to see changes made by uncomitted concurrent
transactions. This is not possible in Greenplum Database, so READ UNCOMMITTED is
treated the same as READ COMMITTED.

READ COMMITTED, the default isolation level in Greenplum Database, guarantees that a
statement can only see rows committed before it began. The same statement executed
twice in a transaction can produce different results if another concurrent transaction
commits after the statement is executed the first time.

The REPEATABLE READ isolation level guarantees that a transaction can only see rows
committed before it began. REPEATABLE READ is the strictest transaction isolation level
Greenplum Database supports. Applications that use the REPEATABLE READ isolation
level must be prepared to retry transactions due to serialization failures.

The SERIALIZABLE transaction isolation level guarantees that executing multiple
concurrent transactions produces the same effects as running the same transactions one
at a time. If you specify SERIALIZABLE, Greenplum Database falls back to REPEATABLE
READ.

Specifying DEFERRABLE has no effect in Greenplum Database, but the syntax is supported
for compatibility with PostgreSQL. A transaction can only be deferred if it is READ ONLY
and SERIALIZABLE, and Greenplum Database does not support SERIALIAZABLE
transactions.

Greenplum Database Reference Guide Release Notes

982

Notes
START TRANSACTION has the same functionality as BEGIN.

Use COMMIT or ROLLBACK to terminate a transaction block.

Issuing BEGIN when already inside a transaction block will provoke a warning message. The state of
the transaction is not affected. To nest transactions within a transaction block, use savepoints (see
SAVEPOINT).

Examples
To begin a transaction block:

BEGIN;

To begin a transaction block with the repeatable read isolation level:

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;

Compatibility
BEGIN is a Greenplum Database language extension. It is equivalent to the SQL-standard command
START TRANSACTION.

DEFERRABLE transaction_mode is a Greenplum Database language extension.

Incidentally, the BEGIN key word is used for a different purpose in embedded SQL. You are advised to be
careful about the transaction semantics when porting database applications.

See Also
COMMIT, ROLLBACK, START TRANSACTION, SAVEPOINT

CHECKPOINT
Forces a transaction log checkpoint.

Synopsis

CHECKPOINT

Description
A checkpoint is a point in the transaction log sequence at which all data files have been updated to reflect
the information in the log. All data files will be flushed to disk.

The CHECKPOINT command forces an immediate checkpoint when the command is issued, without waiting
for a regular checkpoint scheduled by the system. CHECKPOINT is not intended for use during normal
operation.

If executed during recovery, the CHECKPOINT command will force a restartpoint rather than writing a new
checkpoint.

Only superusers may call CHECKPOINT.

Compatibility
The CHECKPOINT command is a Greenplum Database extension.

Greenplum Database Reference Guide Release Notes

983

CLOSE
Closes a cursor.

Synopsis

CLOSE cursor_name

Description
CLOSE frees the resources associated with an open cursor. After the cursor is closed, no subsequent
operations are allowed on it. A cursor should be closed when it is no longer needed.

Every non-holdable open cursor is implicitly closed when a transaction is terminated by COMMIT or
ROLLBACK. A holdable cursor is implicitly closed if the transaction that created it aborts via ROLLBACK. If
the creating transaction successfully commits, the holdable cursor remains open until an explicit CLOSE is
executed, or the client disconnects.

Parameters
cursor_name

The name of an open cursor to close.

Notes
Greenplum Database does not have an explicit OPEN cursor statement. A cursor is considered open when
it is declared. Use the DECLARE statement to declare (and open) a cursor.

You can see all available cursors by querying the pg_cursors system view.

If a cursor is closed after a savepoint which is later rolled back, the CLOSE is not rolled back; that is the
cursor remains closed.

Examples
Close the cursor portala:

CLOSE portala;

Compatibility
CLOSE is fully conforming with the SQL standard.

See Also
DECLARE, FETCH, MOVE

CLUSTER
Physically reorders a heap storage table on disk according to an index. Not a recommended operation in
Greenplum Database.

Synopsis

CLUSTER indexname ON tablename

CLUSTER [VERBOSE] tablename

Greenplum Database Reference Guide Release Notes

984

CLUSTER [VERBOSE]

Description
CLUSTER orders a heap storage table based on an index. CLUSTER is not supported on append-optmized
storage tables. Clustering an index means that the records are physically ordered on disk according to the
index information. If the records you need are distributed randomly on disk, then the database has to seek
across the disk to get the records requested. If those records are stored more closely together, then the
fetching from disk is more sequential. A good example for a clustered index is on a date column where the
data is ordered sequentially by date. A query against a specific date range will result in an ordered fetch
from the disk, which leverages faster sequential access.

Clustering is a one-time operation: when the table is subsequently updated, the changes are not clustered.
That is, no attempt is made to store new or updated rows according to their index order. If you wish,
you can periodically recluster by issuing the command again. Setting the table's FILLFACTOR storage
parameter to less than 100% can aid in preserving cluster ordering during updates, because updated rows
are kept on the same page if enough space is available there.

When a table is clustered using this command, Greenplum Database remembers on which index it was
clustered. The form CLUSTER tablename reclusters the table on the same index that it was clustered
before. You can use the CLUSTER or SET WITHOUT CLUSTER forms of ALTER TABLE to set the index
to use for future cluster operations, or to clear any previous setting. CLUSTER without any parameter
reclusters all previously clustered tables in the current database that the calling user owns, or all tables if
called by a superuser. This form of CLUSTER cannot be executed inside a transaction block.

When a table is being clustered, an ACCESS EXCLUSIVE lock is acquired on it. This prevents any other
database operations (both reads and writes) from operating on the table until the CLUSTER is finished.

Parameters
indexname

The name of an index.

VERBOSE

Prints a progress report as each table is clustered.

tablename

The name (optionally schema-qualified) of a table.

Notes
In cases where you are accessing single rows randomly within a table, the actual order of the data in
the table is unimportant. However, if you tend to access some data more than others, and there is an
index that groups them together, you will benefit from using CLUSTER. If you are requesting a range of
indexed values from a table, or a single indexed value that has multiple rows that match, CLUSTER will help
because once the index identifies the table page for the first row that matches, all other rows that match
are probably already on the same table page, and so you save disk accesses and speed up the query.

CLUSTER can re-sort the table using either an index scan on the specified index, or (if the index is a b-
tree) a sequential scan followed by sorting. It will attempt to choose the method that will be faster, based
on planner cost parameters and available statistical information.

When an index scan is used, a temporary copy of the table is created that contains the table data in the
index order. Temporary copies of each index on the table are created as well. Therefore, you need free
space on disk at least equal to the sum of the table size and the index sizes.

When a sequential scan and sort is used, a temporary sort file is also created, so that the peak temporary
space requirement is as much as double the table size, plus the index sizes. This method is often faster

Greenplum Database Reference Guide Release Notes

985

than the index scan method, but if the disk space requirement is intolerable, you can disable this choice by
temporarily setting the enable_sort configuration parameter to off.

It is advisable to set maintenance_work_mem configuration parameter to a reasonably large value (but not
more than the amount of RAM you can dedicate to the CLUSTER operation) before clustering.

Because the query optimizer records statistics about the ordering of tables, it is advisable to run ANALYZE
on the newly clustered table. Otherwise, the planner may make poor choices of query plans.

Because CLUSTER remembers which indexes are clustered, you can cluster the tables you want clustered
manually the first time, then set up a periodic maintenance script that executes CLUSTER without any
parameters, so that the desired tables are periodically reclustered.

Note: CLUSTER is not supported with append-optimized tables.

Examples
Cluster the table employees on the basis of its index emp_ind:

CLUSTER emp_ind ON emp;

Cluster a large table by recreating it and loading it in the correct index order:

CREATE TABLE newtable AS SELECT * FROM table ORDER BY column;
DROP table;
ALTER TABLE newtable RENAME TO table;
CREATE INDEX column_ix ON table (column);
VACUUM ANALYZE table;

Compatibility
There is no CLUSTER statement in the SQL standard.

See Also
CREATE TABLE AS, CREATE INDEX

COMMENT
Defines or changes the comment of an object.

Synopsis

COMMENT ON
{ TABLE object_name |
 COLUMN relation_name.column_name |
 AGGREGATE agg_name (agg_signature) |
 CAST (source_type AS target_type) |
 COLLATION object_name
 CONSTRAINT constraint_name ON table_name |
 CONVERSION object_name |
 DATABASE object_name |
 DOMAIN object_name |
 EXTENSION object_name |
 FOREIGN DATA WRAPPER object_name |
 FOREIGN TABLE object_name |
 FUNCTION func_name ([[argmode] [argname] argtype [, ...]]) |
 INDEX object_name |
 LARGE OBJECT large_object_oid |
 MATERIALIZED VIEW object_name |
 OPERATOR operator_name (left_type, right_type) |

Greenplum Database Reference Guide Release Notes

986

 OPERATOR CLASS object_name USING index_method |
 [PROCEDURAL] LANGUAGE object_name |
 RESOURCE GROUP object_name |
 RESOURCE QUEUE object_name |
 ROLE object_name |
 RULE rule_name ON table_name |
 SCHEMA object_name |
 SEQUENCE object_name |
 SERVER object_name |
 TABLESPACE object_name |
 TRIGGER trigger_name ON table_name |
 TYPE object_name |
 VIEW object_name }
IS 'text'

where agg_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname
] argtype [, ...]

Description
COMMENT stores a comment about a database object. Only one comment string is stored for each object.
To remove a comment, write NULL in place of the text string. Comments are automatically dropped when
the object is dropped.

For most kinds of object, only the object's owner can set the comment. Roles don't have owners, so the
rule for COMMENT ON ROLE is that you must be superuser to comment on a superuser role, or have the
CREATEROLE privilege to comment on non-superuser roles. Of course, a superuser can comment on
anything.

Comments can be easily retrieved with the psql meta-commands \dd, \d+, and \l+. Other user
interfaces to retrieve comments can be built atop the same built-in functions that psql uses, namely
obj_description, col_description, and shobj_description.

Parameters
object_name
relation_name.column_name
agg_name
constraint_name
func_name
operator_name
rule_name
trigger_name

The name of the object to be commented. Names of tables, aggregates, collations,
conversions, domains, foreign tables, functions, indexes, operators, operator classes,
operator families, sequences, text search objects, types, views, and materialized views can
be schema-qualified. When commenting on a column, relation_name must refer to a table,
view, materialized view, composite type, or foreign table.

Note: Greenplum Database does not support triggers.

source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

Greenplum Database Reference Guide Release Notes

987

argmode

The mode of a function or aggregate argument: either IN, OUT, INOUT, or VARIADIC. If
omitted, the default is IN. Note that COMMENT does not actually pay any attention to OUT
arguments, since only the input arguments are needed to determine the function's identity.
So it is sufficient to list the IN, INOUT, and VARIADIC arguments.

argname

The name of a function or aggregate argument. Note that COMMENT ON FUNCTION does
not actually pay any attention to argument names, since only the argument data types are
needed to determine the function's identity.

argtype

The data type of a function or aggregate argument.

large_object_oid

The OID of the large object.

Note: Greenplum Database does not support the PostgreSQL large object
facility for streaming user data that is stored in large-object structures.

left_type
right_type

The data type(s) of the operator's arguments (optionally schema-qualified). Write NONE for
the missing argument of a prefix or postfix operator.

PROCEDURAL

This is a noise word.

text

The new comment, written as a string literal; or NULL to drop the comment.

Notes
There is presently no security mechanism for viewing comments: any user connected to a database can
see all the comments for objects in that database. For shared objects such as databases, roles, and
tablespaces, comments are stored globally so any user connected to any database in the cluster can see
all the comments for shared objects. Therefore, do not put security-critical information in comments.

Examples
Attach a comment to the table mytable:

COMMENT ON TABLE mytable IS 'This is my table.';

Remove it again:

COMMENT ON TABLE mytable IS NULL;

Some more examples:

COMMENT ON AGGREGATE my_aggregate (double precision) IS 'Computes sample
 variance';
COMMENT ON CAST (text AS int4) IS 'Allow casts from text to int4';
COMMENT ON COLLATION "fr_CA" IS 'Canadian French';
COMMENT ON COLUMN my_table.my_column IS 'Employee ID number';
COMMENT ON CONVERSION my_conv IS 'Conversion to UTF8';
COMMENT ON CONSTRAINT bar_col_cons ON bar IS 'Constrains column col';
COMMENT ON DATABASE my_database IS 'Development Database';
COMMENT ON DOMAIN my_domain IS 'Email Address Domain';
COMMENT ON EXTENSION hstore IS 'implements the hstore data type';

https://www.postgresql.org/docs/9.4/largeobjects.html
https://www.postgresql.org/docs/9.4/largeobjects.html

Greenplum Database Reference Guide Release Notes

988

COMMENT ON FOREIGN DATA WRAPPER mywrapper IS 'my foreign data wrapper';
COMMENT ON FOREIGN TABLE my_foreign_table IS 'Employee Information in other
 database';
COMMENT ON FUNCTION my_function (timestamp) IS 'Returns Roman Numeral';
COMMENT ON INDEX my_index IS 'Enforces uniqueness on employee ID';
COMMENT ON LANGUAGE plpython IS 'Python support for stored procedures';
COMMENT ON LARGE OBJECT 346344 IS 'Planning document';
COMMENT ON OPERATOR ^ (text, text) IS 'Performs intersection of two texts';
COMMENT ON OPERATOR - (NONE, integer) IS 'Unary minus';
COMMENT ON OPERATOR CLASS int4ops USING btree IS '4 byte integer operators
 for btrees';
COMMENT ON OPERATOR FAMILY integer_ops USING btree IS 'all integer operators
 for btrees';
COMMENT ON ROLE my_role IS 'Administration group for finance tables';
COMMENT ON RULE my_rule ON my_table IS 'Logs updates of employee records';
COMMENT ON SCHEMA my_schema IS 'Departmental data';
COMMENT ON SEQUENCE my_sequence IS 'Used to generate primary keys';
COMMENT ON SERVER myserver IS 'my foreign server';
COMMENT ON TABLE my_schema.my_table IS 'Employee Information';
COMMENT ON TABLESPACE my_tablespace IS 'Tablespace for indexes';
COMMENT ON TEXT SEARCH CONFIGURATION my_config IS 'Special word filtering';
COMMENT ON TEXT SEARCH DICTIONARY swedish IS 'Snowball stemmer for Swedish
 language';
COMMENT ON TEXT SEARCH PARSER my_parser IS 'Splits text into words';
COMMENT ON TEXT SEARCH TEMPLATE snowball IS 'Snowball stemmer';
COMMENT ON TRIGGER my_trigger ON my_table IS 'Used for RI';
COMMENT ON TYPE complex IS 'Complex number data type';
COMMENT ON VIEW my_view IS 'View of departmental costs';

Compatibility
There is no COMMENT statement in the SQL standard.

COMMIT
Commits the current transaction.

Synopsis

COMMIT [WORK | TRANSACTION]

Description
COMMIT commits the current transaction. All changes made by the transaction become visible to others
and are guaranteed to be durable if a crash occurs.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

Notes
Use ROLLBACK to abort a transaction.

Issuing COMMIT when not inside a transaction does no harm, but it will provoke a warning message.

Greenplum Database Reference Guide Release Notes

989

Examples
To commit the current transaction and make all changes permanent:

COMMIT;

Compatibility
The SQL standard only specifies the two forms COMMIT and COMMIT WORK. Otherwise, this command is
fully conforming.

See Also
BEGIN, END, START TRANSACTION, ROLLBACK

COPY
Copies data between a file and a table.

Synopsis

COPY table_name [(column_name [, ...])]
 FROM {'filename' | PROGRAM 'command' | STDIN}
 [[WITH] (option [, ...])]
 [ON SEGMENT]

COPY { table_name [(column_name [, ...])] | (query)}
 TO {'filename' | PROGRAM 'command' | STDOUT}
 [[WITH] (option [, ...])]
 [ON SEGMENT]

where option can be one of:

FORMAT format_name
OIDS [boolean]
FREEZE [boolean]
DELIMITER 'delimiter_character'
NULL 'null string'
HEADER [boolean]
QUOTE 'quote_character'
ESCAPE 'escape_character'
FORCE_QUOTE { (column_name [, ...]) | * }
FORCE_NOT_NULL (column_name [, ...])
ENCODING 'encoding_name'
FILL MISSING FIELDS
LOG ERRORS [SEGMENT REJECT LIMIT count [ROWS | PERCENT]]
IGNORE EXTERNAL PARTITIONS

Description
COPY moves data between Greenplum Database tables and standard file-system files. COPY TO copies
the contents of a table to a file (or multiple files based on the segment ID if copying ON SEGMENT), while
COPY FROM copies data from a file to a table (appending the data to whatever is in the table already).
COPY TO can also copy the results of a SELECT query.

If a list of columns is specified, COPY will only copy the data in the specified columns to or from the file. If
there are any columns in the table that are not in the column list, COPY FROM will insert the default values
for those columns.

Greenplum Database Reference Guide Release Notes

990

COPY with a file name instructs the Greenplum Database master host to directly read from or write to a file.
The file must be accessible to the master host and the name must be specified from the viewpoint of the
master host.

When COPY is used with the ON SEGMENT clause, the COPY TO causes segments to create individual
segment-oriented files, which remain on the segment hosts. The filename argument for ON SEGMENT takes
the string literal <SEGID> (required) and uses either the absolute path or the <SEG_DATA_DIR> string
literal. When the COPY operation is run, the segment IDs and the paths of the segment data directories are
substituted for the string literal values.

Using COPY TO with a replicated table (DISTRIBUTED REPLICATED) as source creates a file with rows
from a single segment so that the target file contains no duplicate rows. Using COPY TO with the ON
SEGMENT clause with a replicated table as source creates target files on segment hosts containing all table
rows.

The ON SEGMENT clause allows you to copy table data to files on segment hosts for use in operations such
as migrating data between clusters or performing a backup. Segment data created by the ON SEGMENT
clause can be restored by tools such as gpfdist, which is useful for high speed data loading.

Warning: Use of the ON SEGMENT clause is recommended for expert users only.

When PROGRAM is specified, the server executes the given command and reads from the standard output
of the program, or writes to the standard input of the program. The command must be specified from the
viewpoint of the server, and be executable by the gpadmin user.

When STDIN or STDOUT is specified, data is transmitted via the connection between the client and the
master. STDIN and STDOUT cannot be used with the ON SEGMENT clause.

If SEGMENT REJECT LIMIT is used, then a COPY FROM operation will operate in single row error isolation
mode. In this release, single row error isolation mode only applies to rows in the input file with format
errors — for example, extra or missing attributes, attributes of a wrong data type, or invalid client encoding
sequences. Constraint errors such as violation of a NOT NULL, CHECK, or UNIQUE constraint will still be
handled in 'all-or-nothing' input mode. The user can specify the number of error rows acceptable (on a per-
segment basis), after which the entire COPY FROM operation will be aborted and no rows will be loaded.
The count of error rows is per-segment, not per entire load operation. If the per-segment reject limit is not
reached, then all rows not containing an error will be loaded and any error rows discarded. To keep error
rows for further examination, specify the LOG ERRORS clause to capture error log information. The error
information and the row is stored internally in Greenplum Database.

Outputs

On successful completion, a COPY command returns a command tag of the form, where count is the
number of rows copied:

COPY count

If running a COPY FROM command in single row error isolation mode, the following notice message will be
returned if any rows were not loaded due to format errors, where count is the number of rows rejected:

NOTICE: Rejected count badly formatted rows.

Parameters
table_name

The name (optionally schema-qualified) of an existing table.

column_name

An optional list of columns to be copied. If no column list is specified, all columns of the
table will be copied.

When copying in text format, the default, a row of data in a column of type bytea can be
up to 256MB.

Greenplum Database Reference Guide Release Notes

991

query

A SELECT or VALUES command whose results are to be copied. Note that parentheses are
required around the query.

filename

The path name of the input or output file. An input file name can be an absolute or relative
path, but an output file name must be an absolute path. Windows users might need to use
an E'' string and double any backslashes used in the path name.

PROGRAM 'command'

Specify a command to execute. In COPY FROM, the input is read from standard output of
the command, and in COPY TO, the output is written to the standard input of the command.
The command must be specified from the viewpoint of the Greenplum Database master
host system, and must be executable by the Greenplum Database administrator user
(gpadmin).

The command is invoked by a shell. When passing arguments to the shell, strip or escape
any special characters that have a special meaning for the shell. For security reasons, it is
best to use a fixed command string, or at least avoid passing any user input in the string.

When ON SEGMENT is specified, the command must be executable on all Greenplum
Database primary segment hosts by the Greenplum Database administrator user
(gpadmin). The command is executed by each Greenplum segment instance. The
<SEGID> is required in the command.

See the ON SEGMENT clause for information about command syntax requirements and the
data that is copied when the clause is specified.

STDIN

Specifies that input comes from the client application. The ON SEGMENT clause is not
supported with STDIN.

STDOUT

Specifies that output goes to the client application. The ON SEGMENT clause is not
supported with STDOUT.

boolean

Specifies whether the selected option should be turned on or off. You can write TRUE, ON,
or 1 to enable the option, and FALSE, OFF, or 0 to disable it. The boolean value can also
be omitted, in which case TRUE is assumed.

FORMAT

Selects the data format to be read or written: text, csv (Comma Separated Values), or
binary. The default is text.

OIDS

Specifies copying the OID for each row. (An error is raised if OIDS is specified for a table
that does not have OIDs, or in the case of copying a query.)

FREEZE

Requests copying the data with rows already frozen, just as they would be after running
the VACUUM FREEZE command. This is intended as a performance option for initial data
loading. Rows will be frozen only if the table being loaded has been created or truncated
in the current subtransaction, there are no cursors open, and there are no older snapshots
held by this transaction.

Note that all other sessions will immediately be able to see the data once it has been
successfully loaded. This violates the normal rules of MVCC visibility and users specifying
this option should be aware of the potential problems this might cause.

DELIMITER

Greenplum Database Reference Guide Release Notes

992

Specifies the character that separates columns within each row (line) of the file. The
default is a tab character in text format, a comma in CSV format. This must be a single
one-byte character. This option is not allowed when using binary format.

NULL

Specifies the string that represents a null value. The default is \N (backslash-N) in text
format, and an unquoted empty string in CSV format. You might prefer an empty string
even in text format for cases where you don't want to distinguish nulls from empty
strings. This option is not allowed when using binary format.

Note: When using COPY FROM, any data item that matches this string will be
stored as a null value, so you should make sure that you use the same string
as you used with COPY TO.

HEADER

Specifies that a file contains a header line with the names of each column in the file. On
output, the first line contains the column names from the table, and on input, the first line is
ignored. This option is allowed only when using CSV format.

QUOTE

Specifies the quoting character to be used when a data value is quoted. The default is
double-quote. This must be a single one-byte character. This option is allowed only when
using CSV format.

ESCAPE

Specifies the character that should appear before a data character that matches the
QUOTE value. The default is the same as the QUOTE value (so that the quoting character is
doubled if it appears in the data). This must be a single one-byte character. This option is
allowed only when using CSV format.

FORCE_QUOTE

Forces quoting to be used for all non-NULL values in each specified column. NULL output
is never quoted. If * is specified, non-NULL values will be quoted in all columns. This
option is allowed only in COPY TO, and only when using CSV format.

FORCE_NOT_NULL

Do not match the specified columns' values against the null string. In the default case
where the null string is empty, this means that empty values will be read as zero-length
strings rather than nulls, even when they are not quoted. This option is allowed only in
COPY FROM, and only when using CSV format.

ENCODING

Specifies that the file is encoded in the encoding_name. If this option is omitted, the
current client encoding is used. See the Notes below for more details.

ON SEGMENT

Specify individual, segment data files on the segment hosts. Each file contains the table
data that is managed by the primary segment instance. For example, when copying data to
files from a table with a COPY TO...ON SEGMENT command, the command creates a file
on the segment host for each segment instance on the host. Each file contains the table
data that is managed by the segment instance.

The COPY command does not copy data from or to mirror segment instances and segment
data files.

The keywords STDIN and STDOUT are not supported with ON SEGMENT.

Greenplum Database Reference Guide Release Notes

993

The <SEG_DATA_DIR> and <SEGID> string literals are used to specify an absolute path
and file name with the following syntax:

COPY table [TO|FROM] '<SEG_DATA_DIR>/gpdumpname<SEGID>_suffix' ON
 SEGMENT;

<SEG_DATA_DIR>

The string literal representing the absolute path of the segment instance data directory for
ON SEGMENT copying. The angle brackets (< and >) are part of the string literal used to
specify the path. COPY replaces the string literal with the segment path(s) when COPY is
run. An absolute path can be used in place of the <SEG_DATA_DIR> string literal.

<SEGID>

The string literal representing the content ID number of the segment instance to be
copied when copying ON SEGMENT. <SEGID> is a required part of the file name when ON
SEGMENT is specified. The angle brackets are part of the string literal used to specify the
file name.

With COPY TO, the string literal is replaced by the content ID of the segment instance
when the COPY command is run.

With COPY FROM, specify the segment instance content ID in the name of the file and
place that file on the segment instance host. There must be a file for each primary segment
instance on each host. When the COPY FROM command is run, the data is copied from the
file to the segment instance.

When the PROGRAM command clause is specified, the <SEGID> string literal is required in
the command, the <SEG_DATA_DIR> string literal is optional. See Examples.

For a COPY FROM...ON SEGMENT command, the table distribution policy is checked
when data is copied into the table. By default, an error is returned if a data row violates
the table distribution policy. You can disable the distribution policy check with the server
configuration parameter gp_enable_segment_copy_checking. See Notes.

NEWLINE

Specifies the newline used in your data files — LF (Line feed, 0x0A), CR (Carriage return,
0x0D), or CRLF (Carriage return plus line feed, 0x0D 0x0A). If not specified, a Greenplum
Database segment will detect the newline type by looking at the first row of data it receives
and using the first newline type encountered.

CSV

Selects Comma Separated Value (CSV) mode. See CSV Format.

FILL MISSING FIELDS

In COPY FROM more for both TEXT and CSV, specifying FILL MISSING FIELDS will
set missing trailing field values to NULL (instead of reporting an error) when a row of data
has missing data fields at the end of a line or row. Blank rows, fields with a NOT NULL
constraint, and trailing delimiters on a line will still report an error.

LOG ERRORS

This is an optional clause that can precede a SEGMENT REJECT LIMIT clause to capture
error log information about rows with formatting errors.

Error log information is stored internally and is accessed with the Greenplum Database
built-in SQL function gp_read_error_log().

See Notes for information about the error log information and built-in functions for viewing
and managing error log information.

SEGMENT REJECT LIMIT count [ROWS | PERCENT]

Runs a COPY FROM operation in single row error isolation mode. If the input rows have
format errors they will be discarded provided that the reject limit count is not reached on

Greenplum Database Reference Guide Release Notes

994

any Greenplum Database segment instance during the load operation. The reject limit
count can be specified as number of rows (the default) or percentage of total rows (1-100).
If PERCENT is used, each segment starts calculating the bad row percentage only after the
number of rows specified by the parameter gp_reject_percent_threshold has been
processed. The default for gp_reject_percent_threshold is 300 rows. Constraint
errors such as violation of a NOT NULL, CHECK, or UNIQUE constraint will still be handled
in 'all-or-nothing' input mode. If the limit is not reached, all good rows will be loaded and
any error rows discarded.

Note: Greenplum Database limits the initial number of rows that can contain
formatting errors if the SEGMENT REJECT LIMIT is not triggered first or is
not specified. If the first 1000 rows are rejected, the COPY operation is stopped
and rolled back.

The limit for the number of initial rejected rows can be changed
with the Greenplum Database server configuration parameter
gp_initial_bad_row_limit. See Server Configuration Parameters for
information about the parameter.

IGNORE EXTERNAL PARTITIONS

When copying data from partitioned tables, data are not copied from leaf child partitions
that are external tables. A message is added to the log file when data are not copied.

If this clause is not specified and Greenplum Database attempts to copy data from a leaf
child partition that is an external table, an error is returned.

See the next section "Notes" for information about specifying an SQL query to copy data
from leaf child partitions that are external tables.

Notes
COPY can only be used with tables, not with external tables or views. However, you can write COPY
(SELECT * FROM viewname) TO ...

COPY only deals with the specific table named; it does not copy data to or from child tables. Thus for
example COPY table TO shows the same data as SELECT * FROM ONLY table. But COPY (SELECT
* FROM table) TO ... can be used to dump all of the data in an inheritance hierarchy.

Similarly, to copy data from a partitioned table with a leaf child partition that is an external table, use an
SQL query to select the data to copy. For example, if the table my_sales contains a leaf child partition
that is an external table, this command COPY my_sales TO stdout returns an error. This command
sends the data to stdout:

COPY (SELECT * from my_sales) TO stdout

The BINARY keyword causes all data to be stored/read as binary format rather than as text. It is somewhat
faster than the normal text mode, but a binary-format file is less portable across machine architectures and
Greenplum Database versions. Also, you cannot run COPY FROM in single row error isolation mode if the
data is in binary format.

You must have SELECT privilege on the table whose values are read by COPY TO, and INSERT privilege
on the table into which values are inserted by COPY FROM. It is sufficient to have column privileges on the
columns listed in the command.

Files named in a COPY command are read or written directly by the database server, not by the client
application. Therefore, they must reside on or be accessible to the Greenplum Database master host
machine, not the client. They must be accessible to and readable or writable by the Greenplum Database
system user (the user ID the server runs as), not the client. Only database superusers are permitted
to name files with COPY, because this allows reading or writing any file that the server has privileges to
access.

Greenplum Database Reference Guide Release Notes

995

COPY FROM will invoke any triggers and check constraints on the destination table. However, it will not
invoke rewrite rules. Note that in this release, violations of constraints are not evaluated for single row error
isolation mode.

COPY input and output is affected by DateStyle. To ensure portability to other Greenplum Database
installations that might use non-default DateStyle settings, DateStyle should be set to ISO before
using COPY TO. It is also a good idea to avoid dumping data with IntervalStyle set to sql_standard,
because negative interval values might be misinterpreted by a server that has a different setting for
IntervalStyle.

Input data is interpreted according to ENCODING option or the current client encoding, and output data is
encoded in ENCODING or the current client encoding, even if the data does not pass through the client but
is read from or written to a file directly by the server.

When copying XML data from a file in text mode, the server configuration parameter xmloption affects
the validation of the XML data that is copied. If the value is content (the default), XML data is validated
as an XML content fragment. If the parameter value is document, XML data is validated as an XML
document. If the XML data is not valid, COPY returns an error.

By default, COPY stops operation at the first error. This should not lead to problems in the event of a COPY
TO, but the target table will already have received earlier rows in a COPY FROM. These rows will not be
visible or accessible, but they still occupy disk space. This may amount to a considerable amount of
wasted disk space if the failure happened well into a large COPY FROM operation. You may wish to invoke
VACUUM to recover the wasted space. Another option would be to use single row error isolation mode to
filter out error rows while still loading good rows.

When a COPY FROM...ON SEGMENT command is run, the server configuration parameter
gp_enable_segment_copy_checking controls whether the table distribution policy (from the
table DISTRIBUTED clause) is checked when data is copied into the table. The default is to check the
distribution policy. An error is returned if the row of data violates the distribution policy for the segment
instance. For information about the parameter, see Server Configuration Parameters.

Data from a table that is generated by a COPY TO...ON SEGMENT command can be used to restore table
data with COPY FROM...ON SEGMENT. However, data restored to the segments is distributed according
to the table distribution policy at the time the files were generated with the COPY TO command. The COPY
command might return table distribution policy errors, if you attempt to restore table data and the table
distribution policy was changed after the COPY FROM...ON SEGMENT was run.

Note: If you run COPY FROM...ON SEGMENT and the server configuration parameter
gp_enable_segment_copy_checking is false, manual redistribution of table data might be
required. See the ALTER TABLE clause WITH REORGANIZE.

When you specify the LOG ERRORS clause, Greenplum Database captures errors that occur while reading
the external table data. You can view and manage the captured error log data.

• Use the built-in SQL function gp_read_error_log('table_name'). It requires SELECT privilege on
table_name. This example displays the error log information for data loaded into table ext_expenses
with a COPY command:

SELECT * from gp_read_error_log('ext_expenses');

For information about the error log format, see Viewing Bad Rows in the Error Log in the Greenplum
Database Administrator Guide.

The function returns FALSE if table_name does not exist.
• If error log data exists for the specified table, the new error log data is appended to existing error log

data. The error log information is not replicated to mirror segments.

Greenplum Database Reference Guide Release Notes

996

• Use the built-in SQL function gp_truncate_error_log('table_name') to delete the error log
data for table_name. It requires the table owner privilege This example deletes the error log information
captured when moving data into the table ext_expenses:

SELECT gp_truncate_error_log('ext_expenses');

The function returns FALSE if table_name does not exist.

Specify the * wildcard character to delete error log information for existing tables in the current
database. Specify the string *.* to delete all database error log information, including error log
information that was not deleted due to previous database issues. If * is specified, database owner
privilege is required. If *.* is specified, operating system super-user privilege is required.

When a Greenplum Database user who is not a superuser runs a COPY command, the command can be
controlled by a resource queue. The resource queue must be configured with the ACTIVE_STATEMENTS
parameter that specifies a maximum limit on the number of queries that can be executed by roles assigned
to that queue. Greenplum Database does not apply a cost value or memory value to a COPY command,
resource queues with only cost or memory limits do not affect the running of COPY commands.

A non-superuser can run only these types of COPY commands:

• COPY FROM command where the source is stdin
• COPY TO command where the destination is stdout

For information about resource queues, see "Resource Management with Resource Queues" in the
Greenplum Database Administrator Guide.

File Formats
File formats supported by COPY.

Text Format

When the text format is used, the data read or written is a text file with one line per table row. Columns in
a row are separated by the delimiter_character (tab by default). The column values themselves are strings
generated by the output function, or acceptable to the input function, of each attribute's data type. The
specified null string is used in place of columns that are null. COPY FROM will raise an error if any line of
the input file contains more or fewer columns than are expected. If OIDS is specified, the OID is read or
written as the first column, preceding the user data columns.

The data file has two reserved characters that have special meaning to COPY:

• The designated delimiter character (tab by default), which is used to separate fields in the data file.
• A UNIX-style line feed (\n or 0x0a), which is used to designate a new row in the data file. It is strongly

recommended that applications generating COPY data convert data line feeds to UNIX-style line feeds
rather than Microsoft Windows style carriage return line feeds (\r\n or 0x0a 0x0d).

If your data contains either of these characters, you must escape the character so COPY treats it as data
and not as a field separator or new row.

By default, the escape character is a \ (backslash) for text-formatted files and a " (double quote) for csv-
formatted files. If you want to use a different escape character, you can do so using the ESCAPE AS
clause. Make sure to choose an escape character that is not used anywhere in your data file as an actual
data value. You can also disable escaping in text-formatted files by using ESCAPE 'OFF'.

For example, suppose you have a table with three columns and you want to load the following three fields
using COPY.

• percentage sign = %
• vertical bar = |
• backslash = \

Greenplum Database Reference Guide Release Notes

997

Your designated delimiter_character is | (pipe character), and your designated escape character is *
(asterisk). The formatted row in your data file would look like this:

percentage sign = % | vertical bar = *| | backslash = \

Notice how the pipe character that is part of the data has been escaped using the asterisk character
(*). Also notice that we do not need to escape the backslash since we are using an alternative escape
character.

The following characters must be preceded by the escape character if they appear as part of a column
value: the escape character itself, newline, carriage return, and the current delimiter character. You can
specify a different escape character using the ESCAPE AS clause.

CSV Format

This format option is used for importing and exporting the Comma Separated Value (CSV) file format
used by many other programs, such as spreadsheets. Instead of the escaping rules used by Greenplum
Database standard text format, it produces and recognizes the common CSV escaping mechanism.

The values in each record are separated by the DELIMITER character. If the value contains the delimiter
character, the QUOTE character, the ESCAPE character (which is double quote by default), the NULL
string, a carriage return, or line feed character, then the whole value is prefixed and suffixed by the QUOTE
character. You can also use FORCE_QUOTE to force quotes when outputting non-NULL values in specific
columns.

The CSV format has no standard way to distinguish a NULL value from an empty string. Greenplum
Database COPY handles this by quoting. A NULL is output as the NULL parameter string and is not quoted,
while a non-NULL value matching the NULL string is quoted. For example, with the default settings, a NULL
is written as an unquoted empty string, while an empty string data value is written with double quotes ("").
Reading values follows similar rules. You can use FORCE_NOT_NULL to prevent NULL input comparisons
for specific columns.

Because backslash is not a special character in the CSV format, \., the end-of-data marker, could also
appear as a data value. To avoid any misinterpretation, a \. data value appearing as a lone entry on a line
is automatically quoted on output, and on input, if quoted, is not interpreted as the end-of-data marker. If
you are loading a file created by another application that has a single unquoted column and might have a
value of \., you might need to quote that value in the input file.

Note: In CSV format, all characters are significant. A quoted value surrounded by white space, or
any characters other than DELIMITER, will include those characters. This can cause errors if you
import data from a system that pads CSV lines with white space out to some fixed width. If such
a situation arises you might need to preprocess the CSV file to remove the trailing white space,
before importing the data into Greenplum Database.

CSV format will both recognize and produce CSV files with quoted values containing embedded
carriage returns and line feeds. Thus the files are not strictly one line per table row like text-format
files

Note: Many programs produce strange and occasionally perverse CSV files, so the file format is
more a convention than a standard. Thus you might encounter some files that cannot be imported
using this mechanism, and COPY might produce files that other programs cannot process.

Binary Format

The binary format option causes all data to be stored/read as binary format rather than as text. It is
somewhat faster than the text and CSV formats, but a binary-format file is less portable across machine
architectures and Greenplum Database versions. Also, the binary format is very data type specific; for
example it will not work to output binary data from a smallint column and read it into an integer
column, even though that would work fine in text format.

The binary file format consists of a file header, zero or more tuples containing the row data, and a file
trailer. Headers and data are in network byte order.

Greenplum Database Reference Guide Release Notes

998

• File Header — The file header consists of 15 bytes of fixed fields, followed by a variable-length header
extension area. The fixed fields are:

• Signature — 11-byte sequence PGCOPY\n\377\r\n\0 — note that the zero byte is a required part
of the signature. (The signature is designed to allow easy identification of files that have been
munged by a non-8-bit-clean transfer. This signature will be changed by end-of-line-translation
filters, dropped zero bytes, dropped high bits, or parity changes.)

• Flags field — 32-bit integer bit mask to denote important aspects of the file format. Bits are
numbered from 0 (LSB) to 31 (MSB). Note that this field is stored in network byte order (most
significant byte first), as are all the integer fields used in the file format. Bits 16-31 are reserved to
denote critical file format issues; a reader should abort if it finds an unexpected bit set in this range.
Bits 0-15 are reserved to signal backwards-compatible format issues; a reader should simply ignore
any unexpected bits set in this range. Currently only one flag is defined, and the rest must be zero
(Bit 16: 1 if data has OIDs, 0 if not).

• Header extension area length — 32-bit integer, length in bytes of remainder of header, not
including self. Currently, this is zero, and the first tuple follows immediately. Future changes to the
format might allow additional data to be present in the header. A reader should silently skip over any
header extension data it does not know what to do with. The header extension area is envisioned to
contain a sequence of self-identifying chunks. The flags field is not intended to tell readers what is in
the extension area. Specific design of header extension contents is left for a later release.

• Tuples — Each tuple begins with a 16-bit integer count of the number of fields in the tuple. (Presently,
all tuples in a table will have the same count, but that might not always be true.) Then, repeated for
each field in the tuple, there is a 32-bit length word followed by that many bytes of field data. (The
length word does not include itself, and can be zero.) As a special case, -1 indicates a NULL field value.
No value bytes follow in the NULL case.

There is no alignment padding or any other extra data between fields.

Presently, all data values in a binary-format file are assumed to be in binary format (format code one). It
is anticipated that a future extension may add a header field that allows per-column format codes to be
specified.

If OIDs are included in the file, the OID field immediately follows the field-count word. It is a normal
field except that it is not included in the field-count. In particular it has a length word — this will allow
handling of 4-byte vs. 8-byte OIDs without too much pain, and will allow OIDs to be shown as null if that
ever proves desirable.

• File Trailer — The file trailer consists of a 16-bit integer word containing -1. This is easily distinguished
from a tuple's field-count word. A reader should report an error if a field-count word is neither -1 nor the
expected number of columns. This provides an extra check against somehow getting out of sync with
the data.

Examples
Copy a table to the client using the vertical bar (|) as the field delimiter:

COPY country TO STDOUT (DELIMITER '|');

Copy data from a file into the country table:

COPY country FROM '/home/usr1/sql/country_data';

Copy into a file just the countries whose names start with 'A':

COPY (SELECT * FROM country WHERE country_name LIKE 'A%') TO
'/home/usr1/sql/a_list_countries.copy';

Greenplum Database Reference Guide Release Notes

999

Copy data from a file into the sales table using single row error isolation mode and log errors:

COPY sales FROM '/home/usr1/sql/sales_data' LOG ERRORS
 SEGMENT REJECT LIMIT 10 ROWS;

To copy segment data for later use, use the ON SEGMENT clause. Use of the COPY TO ON SEGMENT
command takes the form:

COPY table TO '<SEG_DATA_DIR>/gpdumpname<SEGID>_suffix' ON SEGMENT;

The <SEGID> is required. However, you can substitute an absolute path for the <SEG_DATA_DIR> string
literal in the path.

When you pass in the string literal <SEG_DATA_DIR> and <SEGID> to COPY, COPY will fill in the
appropriate values when the operation is run.

For example, if you have mytable with the segments and mirror segments like this:

contentid | dbid | file segment location
 0 | 1 | /home/usr1/data1/gpsegdir0
 0 | 3 | /home/usr1/data_mirror1/gpsegdir0
 1 | 4 | /home/usr1/data2/gpsegdir1
 1 | 2 | /home/usr1/data_mirror2/gpsegdir1

running the command:

COPY mytable TO '<SEG_DATA_DIR>/gpbackup<SEGID>.txt' ON SEGMENT;

would result in the following files:

/home/usr1/data1/gpsegdir0/gpbackup0.txt
/home/usr1/data2/gpsegdir1/gpbackup1.txt

The content ID in the first column is the identifier inserted into the file path (for example, gpsegdir0/
gpbackup0.txt above) Files are created on the segment hosts, rather than on the master, as they
would be in a standard COPY operation. No data files are created for the mirror segments when using ON
SEGMENT copying.

If an absolute path is specified, instead of <SEG_DATA_DIR>, such as in the statement

COPY mytable TO '/tmp/gpdir/gpbackup_<SEGID>.txt' ON SEGMENT;

files would be placed in /tmp/gpdir on every segment. The gpfdist tool can also be used to restore
data files generated with COPY TO with the ON SEGMENT option if redistribution is necessary.

Note: Tools such as gpfdist can be used to restore data. The backup/restore tools will not work
with files that were manually generated with COPY TO ON SEGMENT.

This example uses a SELECT statement to copy data to files on each segment:

COPY (SELECT * FROM testtbl) TO '/tmp/mytst<SEGID>' ON SEGMENT;

This example copies the data from the lineitem table and uses the PROGRAM clause to add the data to
the /tmp/lineitem_program.csv file with cat utility. The file is placed on the Greenplum Database
master.

COPY LINEITEM TO PROGRAM 'cat > /tmp/lineitem.csv' CSV;

Greenplum Database Reference Guide Release Notes

1000

This example uses the PROGRAM and ON SEGMENT clauses to copy data to files on the segment hosts. On
the segment hosts, the COPY command replaces <SEGID> with the segment content ID to create a file for
each segment instance on the segment host.

COPY LINEITEM TO PROGRAM 'cat > /tmp/lineitem_program<SEGID>.csv' ON SEGMENT
 CSV;

This example uses the PROGRAM and ON SEGMENT clauses to copy data from files on the segment hosts.
The COPY command replaces <SEGID> with the segment content ID when copying data from the files.
On the segment hosts, there must be a file for each segment instance where the file name contains the
segment content ID on the segment host.

COPY LINEITEM_4 FROM PROGRAM 'cat /tmp/lineitem_program<SEGID>.csv' ON
 SEGMENT CSV;

Compatibility
There is no COPY statement in the SQL standard.

The following syntax was used in earlier versions of Greenplum Database and is still supported:

COPY table_name [(column_name [, ...])] FROM {'filename' | PROGRAM 'command'
 | STDIN}
 [[WITH]
 [ON SEGMENT]
 [BINARY]
 [OIDS]
 [HEADER]
 [DELIMITER [AS] 'delimiter_character']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [CSV [QUOTE [AS] 'quote']
 [FORCE NOT NULL column_name [, ...]]
 [FILL MISSING FIELDS]
 [[LOG ERRORS]
 SEGMENT REJECT LIMIT count [ROWS | PERCENT]]

COPY { table_name [(column_name [, ...])] | (query)} TO {'filename' |
 PROGRAM 'command' | STDOUT}
 [[WITH]
 [ON SEGMENT]
 [BINARY]
 [OIDS]
 [HEADER]
 [DELIMITER [AS] 'delimiter_character']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [CSV [QUOTE [AS] 'quote']
 [FORCE QUOTE column_name [, ...]] | *]
 [IGNORE EXTERNAL PARTITIONS]

Note that in this syntax, BINARY and CSV are treated as independent keywords, not as arguments of a
FORMAT option.

See Also
CREATE EXTERNAL TABLE

Greenplum Database Reference Guide Release Notes

1001

CREATE AGGREGATE
Defines a new aggregate function.

Synopsis

CREATE AGGREGATE name ([argmode] [argname] arg_data_type [, ...]) (
 SFUNC = statefunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, COMBINEFUNC = combinefunc]
 [, SERIALFUNC = serialfunc]
 [, DESERIALFUNC = deserialfunc]
 [, INITCOND = initial_condition]
 [, MSFUNC = msfunc]
 [, MINVFUNC = minvfunc]
 [, MSTYPE = mstate_data_type]
 [, MSSPACE = mstate_data_size]
 [, MFINALFUNC = mffunc]
 [, MFINALFUNC_EXTRA]
 [, MINITCOND = minitial_condition]
 [, SORTOP = sort_operator]
)

 CREATE AGGREGATE name ([[argmode] [argname] arg_data_type
 [, ...]]
 ORDER BY [argmode] [argname] arg_data_type [, ...]) (
 SFUNC = statefunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, COMBINEFUNC = combinefunc]
 [, SERIALFUNC = serialfunc]
 [, DESERIALFUNC = deserialfunc]
 [, INITCOND = initial_condition]
 [, HYPOTHETICAL]
)

 or the old syntax

 CREATE AGGREGATE name (
 BASETYPE = base_type,
 SFUNC = statefunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, COMBINEFUNC = combinefunc]
 [, SERIALFUNC = serialfunc]
 [, DESERIALFUNC = deserialfunc]
 [, INITCOND = initial_condition]
 [, MSFUNC = msfunc]
 [, MINVFUNC = minvfunc]
 [, MSTYPE = mstate_data_type]
 [, MSSPACE = mstate_data_size]
 [, MFINALFUNC = mffunc]
 [, MFINALFUNC_EXTRA]
 [, MINITCOND = minitial_condition]

Greenplum Database Reference Guide Release Notes

1002

 [, SORTOP = sort_operator]
)

Description
CREATE AGGREGATE defines a new aggregate function. Some basic and commonly-used aggregate
functions such as count, min, max, sum, avg and so on are already provided in Greenplum Database.
If you define new types or need an aggregate function not already provided, you can use CREATE
AGGREGATE to provide the desired features.

If a schema name is given (for example, CREATE AGGREGATE myschema.myagg ...) then the
aggregate function is created in the specified schema. Otherwise it is created in the current schema.

An aggregate function is identified by its name and input data types. Two aggregate functions in the
same schema can have the same name if they operate on different input types. The name and input data
types of an aggregate function must also be distinct from the name and input data types of every ordinary
function in the same schema. This behavior is identical to overloading of ordinary function names. See
CREATE FUNCTION.

A simple aggregate function is made from one, two, or three ordinary functions (which must be
IMMUTABLE functions):

• a state transition function statefunc
• an optional final calculation function ffunc
• an optional combine function combinefunc

These functions are used as follows:

statefunc(internal-state, next-data-values) ---> next-internal-state
ffunc(internal-state) ---> aggregate-value
combinefunc(internal-state, internal-state) ---> next-internal-state

Greenplum Database creates a temporary variable of data type state_data_type to hold the current internal
state of the aggregate function. At each input row, the aggregate argument values are calculated and the
state transition function is invoked with the current state value and the new argument values to calculate
a new internal state value. After all the rows have been processed, the final function is invoked once to
calculate the aggregate return value. If there is no final function then the ending state value is returned as-
is.

Note: If you write a user-defined aggregate in C, and you declare the state value (state_data_type)
as type internal, there is a risk of an out-of-memory error occurring. If internal state values
are not properly managed and a query acquires too much memory for state values, an out-
of-memory error could occur. To prevent this, use mpool_alloc(mpool, size) to have
Greenplum manage and allocate memory for non-temporary state values, that is, state values that
have a lifespan for the entire aggregation. The argument mpool of the mpool_alloc() function is
aggstate->hhashtable->group_buf. For an example, see the implementation of the numeric
data type aggregates in src/backend/utils/adt/numeric.c in the Greenplum Database
open source code.

You can specify combinefunc as a method for optimizing aggregate execution. By specifying
combinefunc, the aggregate can be executed in parallel on segments first and then on the master.
When a two-level execution is performed, the statefunc is executed on the segments to generate partial
aggregate results, and combinefunc is executed on the master to aggregate the partial results from
segments. If single-level aggregation is performed, all the rows are sent to the master and the statefunc
is applied to the rows.

Single-level aggregation and two-level aggregation are equivalent execution strategies. Either type of
aggregation can be implemented in a query plan. When you implement the functions combinefunc and
statefunc, you must ensure that the invocation of the statefunc on the segment instances followed by

Greenplum Database Reference Guide Release Notes

1003

combinefunc on the master produce the same result as single-level aggregation that sends all the rows
to the master and then applies only the statefunc to the rows.

An aggregate function can provide an optional initial condition, an initial value for the internal state value.
This is specified and stored in the database as a value of type text, but it must be a valid external
representation of a constant of the state value data type. If it is not supplied then the state value starts out
NULL.

If statefunc is declared STRICT, then it cannot be called with NULL inputs. With such a transition
function, aggregate execution behaves as follows. Rows with any null input values are ignored (the
function is not called and the previous state value is retained). If the initial state value is NULL, then at the
first row with all non-null input values, the first argument value replaces the state value, and the transition
function is invoked at subsequent rows with all non-null input values. This is useful for implementing
aggregates like max. Note that this behavior is only available when state_data_type is the same as the
first arg_data_type. When these types are different, you must supply a non-null initial condition or use a
nonstrict transition function.

If statefunc is not declared STRICT, then it will be called unconditionally at each input row, and must deal
with NULL inputs and NULL state values for itself. This allows the aggregate author to have full control over
the aggregate's handling of NULL values.

If the final function (ffunc) is declared STRICT, then it will not be called when the ending state value
is NULL; instead a NULL result will be returned automatically. (This is the normal behavior of STRICT
functions.) In any case the final function has the option of returning a NULL value. For example, the final
function for avg returns NULL when it sees there were zero input rows.

Sometimes it is useful to declare the final function as taking not just the state value, but extra parameters
corresponding to the aggregate's input values. The main reason for doing this is if the final function is
polymorphic and the state value's data type would be inadequate to pin down the result type. These
extra parameters are always passed as NULL (and so the final function must not be strict when the
FINALFUNC_EXTRA option is used), but nonetheless they are valid parameters. The final function could for
example make use of get_fn_expr_argtype to identify the actual argument type in the current call.

An aggregate can optionally support moving-aggregate mode, as described in Moving-Aggregate Mode in
the PostgreSQL documentation. This requires specifying the msfunc, minvfunc, and mstype functions,
and optionally the mspace, mfinalfunc, mfinalfunc_extra, and minitcond functions. Except for
minvfunc, these functions work like the corresponding simple-aggregate functions without m; they define
a separate implementation of the aggregate that includes an inverse transition function.

The syntax with ORDER BY in the parameter list creates a special type of aggregate called an ordered-
set aggregate; or if HYPOTHETICAL is specified, then a hypothetical-set aggregate is created. These
aggregates operate over groups of sorted values in order-dependent ways, so that specification of an
input sort order is an essential part of a call. Also, they can have direct arguments, which are arguments
that are evaluated only once per aggregation rather than once per input row. Hypothetical-set aggregates
are a subclass of ordered-set aggregates in which some of the direct arguments are required to match,
in number and data types, the aggregated argument columns. This allows the values of those direct
arguments to be added to the collection of aggregate-input rows as an additional "hypothetical" row.

Single argument aggregate functions, such as min or max, can sometimes be optimized by looking into an
index instead of scanning every input row. If this aggregate can be so optimized, indicate it by specifying a
sort operator. The basic requirement is that the aggregate must yield the first element in the sort ordering
induced by the operator; in other words:

SELECT agg(col) FROM tab;

must be equivalent to:

SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;

https://www.postgresql.org/docs/9.4/xaggr.html#XAGGR-MOVING-AGGREGATES

Greenplum Database Reference Guide Release Notes

1004

Further assumptions are that the aggregate function ignores NULL inputs, and that it delivers a NULL
result if and only if there were no non-null inputs. Ordinarily, a data type's < operator is the proper sort
operator for MIN, and > is the proper sort operator for MAX. Note that the optimization will never actually
take effect unless the specified operator is the "less than" or "greater than" strategy member of a B-tree
index operator class.

To be able to create an aggregate function, you must have USAGE privilege on the argument types, the
state type(s), and the return type, as well as EXECUTE privilege on the transition and final functions.

Parameters
name

The name (optionally schema-qualified) of the aggregate function to create.

argmode

The mode of an argument: IN or VARIADIC. (Aggregate functions do not support
OUT arguments.) If omitted, the default is IN. Only the last argument can be marked
VARIADIC.

argname

The name of an argument. This is currently only useful for documentation purposes. If
omitted, the argument has no name.

arg_data_type

An input data type on which this aggregate function operates. To create a zero-argument
aggregate function, write * in place of the list of argument specifications. (An example of
such an aggregate is count(*).)

base_type

In the old syntax for CREATE AGGREGATE, the input data type is specified by a basetype
parameter rather than being written next to the aggregate name. Note that this syntax
allows only one input parameter. To define a zero-argument aggregate function with
this syntax, specify the basetype as "ANY" (not *). Ordered-set aggregates cannot be
defined with the old syntax.

statefunc

The name of the state transition function to be called for each input row. For a normal N-
argument aggregate function, the state transition function statefunc must take N+1
arguments, the first being of type state_data_type and the rest matching the declared input
data types of the aggregate. The function must return a value of type state_data_type. This
function takes the current state value and the current input data values, and returns the
next state value.

For ordered-set (including hypothetical-set) aggregates, the state transition function
statefunc receives only the current state value and the aggregated arguments, not the
direct arguments. Otherwise it is the same.

state_data_type

The data type for the aggregate's state value.

state_data_size

The approximate average size (in bytes) of the aggregate's state value. If this parameter
is omitted or is zero, a default estimate is used based on the state_data_type. The planner
uses this value to estimate the memory required for a grouped aggregate query. Large
values of this parameter discourage use of hash aggregation.

ffunc

The name of the final function called to compute the aggregate result after all input rows
have been traversed. The function must take a single argument of type state_data_type.
The return data type of the aggregate is defined as the return type of this function. If

Greenplum Database Reference Guide Release Notes

1005

ffunc is not specified, then the ending state value is used as the aggregate result, and
the return type is state_data_type.

For ordered-set (including hypothetical-set) aggregates, the final function receives not only
the final state value, but also the values of all the direct arguments.

If FINALFUNC_EXTRA is specified, then in addition to the final state value and any direct
arguments, the final function receives extra NULL values corresponding to the aggregate's
regular (aggregated) arguments. This is mainly useful to allow correct resolution of the
aggregate result type when a polymorphic aggregate is being defined.

combinefunc

The name of a combine function. This is a function of two arguments, both of type
state_data_type. It must return a value of state_data_type. A combine function takes two
transition state values and returns a new transition state value representing the combined
aggregation. In Greenplum Database, if the result of the aggregate function is computed
in a segmented fashion, the combine function is invoked on the individual internal states in
order to combine them into an ending internal state.

Note that this function is also called in hash aggregate mode within a segment. Therefore,
if you call this aggregate function without a combine function, hash aggregate is never
chosen. Since hash aggregate is efficient, consider defining a combine function whenever
possible.

serialfunc

An aggregate function whose state_data_type is internal can participate in parallel
aggregation only if it has a serialfunc function, which must serialize the aggregate state
into a bytea value for transmission to another process. This function must take a single
argument of type internal and return type bytea. A corresponding deserialfunc is also
required.

deserialfunc

Deserialize a previously serialized aggregate state back into state_data_type. This function
must take two arguments of types bytea and internal, and produce a result of type
internal. (Note: the second, internal argument is unused, but is required for type
safety reasons.)

initial_condition

The initial setting for the state value. This must be a string constant in the form accepted
for the data type state_data_type. If not specified, the state value starts out null.

msfunc

The name of the forward state transition function to be called for each input row in
moving-aggregate mode. This is exactly like the regular transition function, except that
its first argument and result are of type mstate_data_type, which might be different from
state_data_type.

minvfunc

The name of the inverse state transition function to be used in moving-aggregate mode.
This function has the same argument and result types as msfunc, but it is used to remove
a value from the current aggregate state, rather than add a value to it. The inverse
transition function must have the same strictness attribute as the forward state transition
function.

mstate_data_type

The data type for the aggregate's state value, when using moving-aggregate mode.

mstate_data_size

The approximate average size (in bytes) of the aggregate's state value, when using
moving-aggregate mode. This works the same as state_data_size.

Greenplum Database Reference Guide Release Notes

1006

mffunc

The name of the final function called to compute the aggregate's result after all input rows
have been traversed, when using moving-aggregate mode. This works the same as ffunc,
except that its first argument's type is mstate_data_type and extra dummy arguments
are specified by writing MFINALFUNC_EXTRA. The aggregate result type determined
by mffunc or mstate_data_type must match that determined by the aggregate's regular
implementation.

minitial_condition

The initial setting for the state value, when using moving-aggregate mode. This works the
same as initial_condition.

sort_operator

The associated sort operator for a MIN- or MAX-like aggregate. This is just an operator
name (possibly schema-qualified). The operator is assumed to have the same input data
types as the aggregate (which must be a single-argument normal aggregate).

HYPOTHETICAL

For ordered-set aggregates only, this flag specifies that the aggregate arguments are to
be processed according to the requirements for hypothetical-set aggregates: that is, the
last few direct arguments must match the data types of the aggregated (WITHIN GROUP)
arguments. The HYPOTHETICAL flag has no effect on run-time behavior, only on parse-
time resolution of the data types and collations of the aggregate's arguments.

Notes
The ordinary functions used to define a new aggregate function must be defined first. Note that in this
release of Greenplum Database, it is required that the statefunc, ffunc, and combinefunc functions used to
create the aggregate are defined as IMMUTABLE.

If the value of the Greenplum Database server configuration parameter gp_enable_multiphase_agg is
off, only single-level aggregation is performed.

Any compiled code (shared library files) for custom functions must be placed in the same location on
every host in your Greenplum Database array (master and all segments). This location must also be in the
LD_LIBRARY_PATH so that the server can locate the files.

In previous versions of Greenplum Database, there was a concept of ordered aggregates. Since version 6,
any aggregate can be called as an ordered aggregate, using the syntax:

name (arg [, ...] [ORDER BY sortspec [, ...]])

The ORDERED keyword is accepted for backwards compatibility, but is ignored.

In previous versions of Greenplum Database, the COMBINEFUNC option was called PREFUNC. It is still
accepted for backwards compatibility, as a synonym for COMBINEFUNC.

Example
The following simple example creates an aggregate function that computes the sum of two columns.

Before creating the aggregate function, create two functions that are used as the statefunc and
combinefunc functions of the aggregate function.

This function is specified as the statefunc function in the aggregate function.

CREATE FUNCTION mysfunc_accum(numeric, numeric, numeric)
 RETURNS numeric
 AS 'select $1 + $2 + $3'
 LANGUAGE SQL
 IMMUTABLE

Greenplum Database Reference Guide Release Notes

1007

 RETURNS NULL ON NULL INPUT;

This function is specified as the combinefunc function in the aggregate function.

CREATE FUNCTION mycombine_accum(numeric, numeric)
 RETURNS numeric
 AS 'select $1 + $2'
 LANGUAGE SQL
 IMMUTABLE
 RETURNS NULL ON NULL INPUT;

This CREATE AGGREGATE command creates the aggregate function that adds two columns.

CREATE AGGREGATE agg_prefunc(numeric, numeric) (
 SFUNC = mysfunc_accum,
 STYPE = numeric,
 COMBINEFUNC = mycombine_accum,
 INITCOND = 0);

The following commands create a table, adds some rows, and runs the aggregate function.

create table t1 (a int, b int) DISTRIBUTED BY (a);
insert into t1 values
 (10, 1),
 (20, 2),
 (30, 3);
select agg_prefunc(a, b) from t1;

This EXPLAIN command shows two phase aggregation.

explain select agg_prefunc(a, b) from t1;

QUERY PLAN
--
Aggregate (cost=1.10..1.11 rows=1 width=32)
 -> Gather Motion 2:1 (slice1; segments: 2) (cost=1.04..1.08 rows=1
 width=32)
 -> Aggregate (cost=1.04..1.05 rows=1 width=32)
 -> Seq Scan on t1 (cost=0.00..1.03 rows=2 width=8)
 (4 rows)

Compatibility
CREATE AGGREGATE is a Greenplum Database language extension. The SQL standard does not provide
for user-defined aggregate functions.

See Also
ALTER AGGREGATE, DROP AGGREGATE, CREATE FUNCTION

CREATE CAST
Defines a new cast.

Synopsis

CREATE CAST (sourcetype AS targettype)
 WITH FUNCTION funcname (argtype [, ...])
 [AS ASSIGNMENT | AS IMPLICIT]

Greenplum Database Reference Guide Release Notes

1008

CREATE CAST (sourcetype AS targettype)
 WITHOUT FUNCTION
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (sourcetype AS targettype)
 WITH INOUT
 [AS ASSIGNMENT | AS IMPLICIT]

Description
CREATE CAST defines a new cast. A cast specifies how to perform a conversion between two data types.
For example,

SELECT CAST(42 AS float8);

converts the integer constant 42 to type float8 by invoking a previously specified function, in this case
float8(int4). If no suitable cast has been defined, the conversion fails.

Two types may be binary coercible, which means that the types can be converted into one another without
invoking any function. This requires that corresponding values use the same internal representation. For
instance, the types text and varchar are binary coercible in both directions. Binary coercibility is not
necessarily a symmetric relationship. For example, the cast from xml to text can be performed for free
in the present implementation, but the reverse direction requires a function that performs at least a syntax
check. (Two types that are binary coercible both ways are also referred to as binary compatible.)

You can define a cast as an I/O conversion cast by using the WITH INOUT syntax. An I/O conversion cast
is performed by invoking the output function of the source data type, and passing the resulting string to
the input function of the target data type. In many common cases, this feature avoids the need to write a
separate cast function for conversion. An I/O conversion cast acts the same as a regular function-based
cast; only the implementation is different.

By default, a cast can be invoked only by an explicit cast request, that is an explicit CAST(x AS
typename) or x:: typename construct.

If the cast is marked AS ASSIGNMENT then it can be invoked implicitly when assigning a value to a column
of the target data type. For example, supposing that foo.f1 is a column of type text, then:

INSERT INTO foo (f1) VALUES (42);

will be allowed if the cast from type integer to type text is marked AS ASSIGNMENT, otherwise not. The
term assignment cast is typically used to describe this kind of cast.

If the cast is marked AS IMPLICIT then it can be invoked implicitly in any context, whether assignment
or internally in an expression. The term implicit cast is typically used to describe this kind of cast. For
example, consider this query:

SELECT 2 + 4.0;

The parser initially marks the constants as being of type integer and numeric, respectively. There is
no integer + numeric operator in the system catalogs, but there is a numeric + numeric operator.
This query succeeds if a cast from integer to numeric exists (it does) and is marked AS IMPLICIT,
which in fact it is. The parser applies only the implicit cast and resolves the query as if it had been written
as the following:

SELECT CAST (2 AS numeric) + 4.0;

The catalogs also provide a cast from numeric to integer. If that cast were marked AS IMPLICIT,
which it is not, then the parser would be faced with choosing between the above interpretation and
the alternative of casting the numeric constant to integer and applying the integer + integer

Greenplum Database Reference Guide Release Notes

1009

operator. Lacking any knowledge of which choice to prefer, the parser would give up and declare the query
ambiguous. The fact that only one of the two casts is implicit is the way in which we teach the parser to
prefer resolution of a mixed numeric-and-integer expression as numeric; the parser has no built-in
knowledge about that.

It is wise to be conservative about marking casts as implicit. An overabundance of implicit casting paths
can cause Greenplum Database to choose surprising interpretations of commands, or to be unable to
resolve commands at all because there are multiple possible interpretations. A good rule of thumb is to
make a cast implicitly invokable only for information-preserving transformations between types in the same
general type category. For example, the cast from int2 to int4 can reasonably be implicit, but the cast
from float8 to int4 should probably be assignment-only. Cross-type-category casts, such as text to
int4, are best made explicit-only.

Note: Sometimes it is necessary for usability or standards-compliance reasons to provide multiple
implicit casts among a set of types, resulting in ambiguity that cannot be avoided as described
above. The parser uses a fallback heuristic based on type categories and preferred types that helps
to provide desired behavior in such cases. See CREATE TYPE for more information.

To be able to create a cast, you must own the source or the target data type and have USAGE privilege on
the other type. To create a binary-coercible cast, you must be superuser. (This restriction is made because
an erroneous binary-coercible cast conversion can easily crash the server.)

Parameters
sourcetype

The name of the source data type of the cast.

targettype

The name of the target data type of the cast.

funcname(argtype [, ...])

The function used to perform the cast. The function name may be schema-qualified. If it is
not, Greenplum Database looks for the function in the schema search path. The function's
result data type must match the target type of the cast.

Cast implementation functions may have one to three arguments. The first argument
type must be identical to or binary-coercible from the cast's source type. The second
argument, if present, must be type integer; it receives the type modifier associated
with the destination type, or -1 if there is none. The third argument, if present, must be
type boolean; it receives true if the cast is an explicit cast, false otherwise. The SQL
specification demands different behaviors for explicit and implicit casts in some cases. This
argument is supplied for functions that must implement such casts. It is not recommended
that you design your own data types this way.

The return type of a cast function must be identical to or binary-coercible to the cast's
target type.

Ordinarily a cast must have different source and target data types. However, you
are permitted to declare a cast with identical source and target types if it has a cast
implementation function that takes more than one argument. This is used to represent
type-specific length coercion functions in the system catalogs. The named function is used
to coerce a value of the type to the type modifier value given by its second argument.

When a cast has different source and target types and a function that takes more than one
argument, the cast converts from one type to another and applies a length coercion in a
single step. When no such entry is available, coercion to a type that uses a type modifier
involves two steps, one to convert between data types and a second to apply the modifier.

A cast to or from a domain type currently has no effect. Casting to or from a domain uses
the casts associated with its underlying type.

WITHOUT FUNCTION

Greenplum Database Reference Guide Release Notes

1010

Indicates that the source type is binary-coercible to the target type, so no function is
required to perform the cast.

WITH INOUT

Indicates that the cast is an I/O conversion cast, performed by invoking the output function
of the source data type, and passing the resulting string to the input function of the target
data type.

AS ASSIGNMENT

Indicates that the cast may be invoked implicitly in assignment contexts.

AS IMPLICIT

Indicates that the cast may be invoked implicitly in any context.

Notes
Note that in this release of Greenplum Database, user-defined functions used in a user-defined cast must
be defined as IMMUTABLE. Any compiled code (shared library files) for custom functions must be placed
in the same location on every host in your Greenplum Database array (master and all segments). This
location must also be in the LD_LIBRARY_PATH so that the server can locate the files.

Remember that if you want to be able to convert types both ways you need to declare casts both ways
explicitly.

It is normally not necessary to create casts between user-defined types and the standard string types
(text, varchar, and char(n), as well as user-defined types that are defined to be in the string
category). Greenplum Database provides automatic I/O conversion casts for these. The automatic casts
to string types are treated as assignment casts, while the automatic casts from string types are explicit-
only. You can override this behavior by declaring your own cast to replace an automatic cast, but usually
the only reason to do so is if you want the conversion to be more easily invokable than the standard
assignment-only or explicit-only setting. Another possible reason is that you want the conversion to behave
differently from the type's I/O function - think twice before doing this. (A small number of the built-in types
do indeed have different behaviors for conversions, mostly because of requirements of the SQL standard.)

It is recommended that you follow the convention of naming cast implementation functions after the target
data type, as the built-in cast implementation functions are named. Many users are used to being able to
cast data types using a function-style notation, that is typename(x).

There are two cases in which a function-call construct is treated as a cast request without having matched
it to an actual function. If a function call name(x) does not exactly match any existing function, but name
is the name of a data type and pg_cast provides a binary-coercible cast to this type from the type of x,
then the call will be construed as a binary-coercible cast. Greenplum Database makes this exception so
that binary-coercible casts can be invoked using functional syntax, even though they lack any function.
Likewise, if there is no pg_cast entry but the cast would be to or from a string type, the call is construed
as an I/O conversion cast. This exception allows I/O conversion casts to be invoked using functional
syntax.

There is an exception to the exception above: I/O conversion casts from composite types to string types
cannot be invoked using functional syntax, but must be written in explicit cast syntax (either CAST or ::
notation). This exception exists because after the introduction of automatically-provided I/O conversion
casts, it was found to be too easy to accidentally invoke such a cast when you intended a function or
column reference.

Examples
To create an assignment cast from type bigint to type int4 using the function int4(bigint) (This
cast is already predefined in the system.):

CREATE CAST (bigint AS int4) WITH FUNCTION int4(bigint) AS ASSIGNMENT;

Greenplum Database Reference Guide Release Notes

1011

Compatibility
The CREATE CAST command conforms to the SQL standard, except that SQL does not make provisions
for binary-coercible types or extra arguments to implementation functions. AS IMPLICIT is a Greenplum
Database extension, too.

See Also
CREATE FUNCTION, CREATE TYPE, DROP CAST

CREATE COLLATION
Defines a new collation using the specified operating system locale settings, or by copying an existing
collation.

Synopsis

CREATE COLLATION name (
 [LOCALE = locale,]
 [LC_COLLATE = lc_collate,]
 [LC_CTYPE = lc_ctype])

CREATE COLLATION name FROM existing_collation

Description
To be able to create a collation, you must have CREATE privilege on the destination schema.

Parameters
name

The name of the collation. The collation name can be schema-qualified. If it is not, the
collation is defined in the current schema. The collation name must be unique within
that schema. (The system catalogs can contain collations with the same name for other
encodings, but these are ignored if the database encoding does not match.)

locale

This is a shortcut for setting LC_COLLATE and LC_CTYPE at once. If you specify this, you
cannot specify either of those parameters.

lc_collate

Use the specified operating system locale for the LC_COLLATE locale category. The locale
must be applicable to the current database encoding. (See CREATE DATABASE for the
precise rules.)

lc_ctype

Use the specified operating system locale for the LC_CTYPE locale category. The locale
must be applicable to the current database encoding. (See CREATE DATABASE for the
precise rules.)

existing_collation

The name of an existing collation to copy. The new collation will have the same properties
as the existing one, but it will be an independent object.

Notes
To be able to create a collation, you must have CREATE privilege on the destination schema.

Use DROP COLLATION to remove user-defined collations.

Greenplum Database Reference Guide Release Notes

1012

See Collation Support in the PostgreSQL documentation for more information about collation support in
Greenplum Database.

Examples
To create a collation from the operating system locale fr_FR.utf8 (assuming the current database
encoding is UTF8):

CREATE COLLATION french (LOCALE = 'fr_FR.utf8');

To create a collation from an existing collation:

CREATE COLLATION german FROM "de_DE";

This can be convenient to be able to use operating-system-independent collation names in applications.

Compatibility
There is a CREATE COLLATION statement in the SQL standard, but it is limited to copying an existing
collation. The syntax to create a new collation is a Greenplum Database extension.

See Also
ALTER COLLATION, DROP COLLATION

CREATE CONVERSION
Defines a new encoding conversion.

Synopsis

CREATE [DEFAULT] CONVERSION name FOR source_encoding TO
 dest_encoding FROM funcname

Description
CREATE CONVERSION defines a new conversion between character set encodings. Conversion names
may be used in the convert function to specify a particular encoding conversion. Also, conversions that
are marked DEFAULT can be used for automatic encoding conversion between client and server. For this
purpose, two conversions, from encoding A to B and from encoding B to A, must be defined.

To create a conversion, you must have EXECUTE privilege on the function and CREATE privilege on the
destination schema.

Parameters
DEFAULT

Indicates that this conversion is the default for this particular source to destination
encoding. There should be only one default encoding in a schema for the encoding pair.

name

The name of the conversion. The conversion name may be schema-qualified. If it is not,
the conversion is defined in the current schema. The conversion name must be unique
within a schema.

source_encoding

The source encoding name.

dest_encoding

https://www.postgresql.org/docs/9.4/collation.html

Greenplum Database Reference Guide Release Notes

1013

The destination encoding name.

funcname

The function used to perform the conversion. The function name may be schema-qualified.
If it is not, the function will be looked up in the path. The function must have the following
signature:

conv_proc(
 integer, -- source encoding ID
 integer, -- destination encoding ID
 cstring, -- source string (null terminated C string)
 internal, -- destination (fill with a null terminated C
 string)
 integer -- source string length
) RETURNS void;

Notes
Note that in this release of Greenplum Database, user-defined functions used in a user-defined conversion
must be defined as IMMUTABLE. Any compiled code (shared library files) for custom functions must be
placed in the same location on every host in your Greenplum Database array (master and all segments).
This location must also be in the LD_LIBRARY_PATH so that the server can locate the files.

Examples
To create a conversion from encoding UTF8 to LATIN1 using myfunc:

CREATE CONVERSION myconv FOR 'UTF8' TO 'LATIN1' FROM myfunc;

Compatibility
There is no CREATE CONVERSION statement in the SQL standard, but there is a CREATE TRANSLATION
statement that is very similar in purpose and syntax.

See Also
ALTER CONVERSION, CREATE FUNCTION, DROP CONVERSION

CREATE DATABASE
Creates a new database.

Synopsis

CREATE DATABASE name [[WITH] [OWNER [=] user_name]
 [TEMPLATE [=] template]
 [ENCODING [=] encoding]
 [LC_COLLATE [=] lc_collate]
 [LC_CTYPE [=] lc_ctype]
 [TABLESPACE [=] tablespace]
 [CONNECTION LIMIT [=] connlimit]]

Description
CREATE DATABASE creates a new database. To create a database, you must be a superuser or have the
special CREATEDB privilege.

Greenplum Database Reference Guide Release Notes

1014

The creator becomes the owner of the new database by default. Superusers can create databases
owned by other users by using the OWNER clause. They can even create databases owned by users with
no special privileges. Non-superusers with CREATEDB privilege can only create databases owned by
themselves.

By default, the new database will be created by cloning the standard system database template1.
A different template can be specified by writing TEMPLATE name. In particular, by writing TEMPLATE
template0, you can create a clean database containing only the standard objects predefined by
Greenplum Database. This is useful if you wish to avoid copying any installation-local objects that may
have been added to template1.

Parameters
name

The name of a database to create.

user_name

The name of the database user who will own the new database, or DEFAULT to use the
default owner (the user executing the command).

template

The name of the template from which to create the new database, or DEFAULT to use the
default template (template1).

encoding

Character set encoding to use in the new database. Specify a string constant (such as
'SQL_ASCII'), an integer encoding number, or DEFAULT to use the default encoding. For
more information, see Character Set Support.

lc_collate

The collation order (LC_COLLATE) to use in the new database. This affects the sort order
applied to strings, e.g. in queries with ORDER BY, as well as the order used in indexes on
text columns. The default is to use the collation order of the template database. See the
Notes section for additional restrictions.

lc_ctype

The character classification (LC_CTYPE) to use in the new database. This affects the
categorization of characters, e.g. lower, upper and digit. The default is to use the character
classification of the template database. See below for additional restrictions.

tablespace

The name of the tablespace that will be associated with the new database, or DEFAULT
to use the template database's tablespace. This tablespace will be the default tablespace
used for objects created in this database.

connlimit

The maximum number of concurrent connections possible. The default of -1 means there
is no limitation.

Notes
CREATE DATABASE cannot be executed inside a transaction block.

When you copy a database by specifying its name as the template, no other sessions can be connected to
the template database while it is being copied. New connections to the template database are locked out
until CREATE DATABASE completes.

The CONNECTION LIMIT is not enforced against superusers.

The character set encoding specified for the new database must be compatible with the chosen locale
settings (LC_COLLATE and LC_CTYPE). If the locale is C (or equivalently POSIX), then all encodings are

Greenplum Database Reference Guide Release Notes

1015

allowed, but for other locale settings there is only one encoding that will work properly. CREATE DATABASE
will allow superusers to specify SQL_ASCII encoding regardless of the locale settings, but this choice
is deprecated and may result in misbehavior of character-string functions if data that is not encoding-
compatible with the locale is stored in the database.

The encoding and locale settings must match those of the template database, except when template0
is used as template. This is because COLLATE and CTYPE affect the ordering in indexes, so that any
indexes copied from the template database would be invalid in the new database with different settings.
template0, however, is known to not contain any data or indexes that would be affected.

Examples
To create a new database:

CREATE DATABASE gpdb;

To create a database sales owned by user salesapp with a default tablespace of salesspace:

CREATE DATABASE sales OWNER salesapp TABLESPACE salesspace;

To create a database music which supports the ISO-8859-1 character set:

CREATE DATABASE music ENCODING 'LATIN1' TEMPLATE template0;

In this example, the TEMPLATE template0 clause would only be required if template1's encoding is
not ISO-8859-1. Note that changing encoding might require selecting new LC_COLLATE and LC_CTYPE
settings as well.

Compatibility
There is no CREATE DATABASE statement in the SQL standard. Databases are equivalent to catalogs,
whose creation is implementation-defined.

See Also
ALTER DATABASE, DROP DATABASE

CREATE DOMAIN
Defines a new domain.

Synopsis

CREATE DOMAIN name [AS] data_type [DEFAULT expression]
 [COLLATE collation]
 [CONSTRAINT constraint_name
 | NOT NULL | NULL
 | CHECK (expression) [...]]

Description
CREATE DOMAIN creates a new domain. A domain is essentially a data type with optional constraints
(restrictions on the allowed set of values). The user who defines a domain becomes its owner. The domain
name must be unique among the data types and domains existing in its schema.

If a schema name is given (for example, CREATE DOMAIN myschema.mydomain ...) then the domain
is created in the specified schema. Otherwise it is created in the current schema.

Greenplum Database Reference Guide Release Notes

1016

Domains are useful for abstracting common constraints on fields into a single location for maintenance. For
example, several tables might contain email address columns, all requiring the same CHECK constraint to
verify the address syntax. It is easier to define a domain rather than setting up a column constraint for each
table that has an email column.

To be able to create a domain, you must have USAGE privilege on the underlying type.

Parameters
name

The name (optionally schema-qualified) of a domain to be created.

data_type

The underlying data type of the domain. This may include array specifiers.

DEFAULT expression

Specifies a default value for columns of the domain data type. The value is any variable-
free expression (but subqueries are not allowed). The data type of the default expression
must match the data type of the domain. If no default value is specified, then the default
value is the null value. The default expression will be used in any insert operation that does
not specify a value for the column. If a default value is defined for a particular column, it
overrides any default associated with the domain. In turn, the domain default overrides any
default value associated with the underlying data type.

COLLATE collation

An optional collation for the domain. If no collation is specified, the underlying data type's
default collation is used. The underlying type must be collatable if COLLATE is specified.

CONSTRAINT constraint_name

An optional name for a constraint. If not specified, the system generates a name.

NOT NULL

Values of this domain are normally prevented from being null. However, it is still possible
for a domain with this constraint to take a null value if it is assigned a matching domain
type that has become null, e.g. via a left outer join, or a command such as INSERT INTO
tab (domcol) VALUES ((SELECT domcol FROM tab WHERE false)).

NULL

Values of this domain are allowed to be null. This is the default. This clause is only
intended for compatibility with nonstandard SQL databases. Its use is discouraged in new
applications.

CHECK (expression)

CHECK clauses specify integrity constraints or tests which values of the domain must
satisfy. Each constraint must be an expression producing a Boolean result. It should use
the key word VALUE to refer to the value being tested. Currently, CHECK expressions
cannot contain subqueries nor refer to variables other than VALUE.

Examples
Create the us_zip_code data type. A regular expression test is used to verify that the value looks like a
valid US zip code.

CREATE DOMAIN us_zip_code AS TEXT CHECK
 (VALUE ~ '^\d{5}$' OR VALUE ~ '^\d{5}-\d{4}$');

Compatibility
CREATE DOMAIN conforms to the SQL standard.

Greenplum Database Reference Guide Release Notes

1017

See Also
ALTER DOMAIN, DROP DOMAIN

CREATE EXTENSION
Registers an extension in a Greenplum database.

Synopsis

CREATE EXTENSION [IF NOT EXISTS] extension_name
 [WITH] [SCHEMA schema_name]
 [VERSION version]
 [FROM old_version]
 [CASCADE]

Description
CREATE EXTENSION loads a new extension into the current database. There must not be an extension of
the same name already loaded.

Loading an extension essentially amounts to running the extension script file. The script typically creates
new SQL objects such as functions, data types, operators and index support methods. The CREATE
EXTENSION command also records the identities of all the created objects, so that they can be dropped
again if DROP EXTENSION is issued.

Loading an extension requires the same privileges that would be required to create the component
extension objects. For most extensions this means superuser or database owner privileges are required.
The user who runs CREATE EXTENSION becomes the owner of the extension for purposes of later
privilege checks, as well as the owner of any objects created by the extension script.

Parameters
IF NOT EXISTS

Do not throw an error if an extension with the same name already exists. A notice is issued
in this case. There is no guarantee that the existing extension is similar to the extension
that would have been installed.

extension_name

The name of the extension to be installed. The name must be unique within the database.
An extension is created from the details in the extension control file SHAREDIR/
extension/extension_name.control.

SHAREDIR is the installation shared-data directory, for example /usr/local/
greenplum-db/share/postgresql. The command pg_config --sharedir
displays the directory.

SCHEMA schema_name

The name of the schema in which to install the extension objects. This assumes that the
extension allows its contents to be relocated. The named schema must already exist. If
not specified, and the extension control file does not specify a schema, the current default
object creation schema is used.

If the extension specifies a schema parameter in its control file, then that schema
cannot be overridden with a SCHEMA clause. Normally, an error is raised if a SCHEMA
clause is given and it conflicts with the extension schema parameter. However, if the
CASCADE clause is also given, then schema_name is ignored when it conflicts. The given
schema_name is used for the installation of any needed extensions that do not a specify
schema in their control files.

Greenplum Database Reference Guide Release Notes

1018

The extension itself is not within any schema. Extensions have unqualified names that
must be unique within the database. But objects belonging to the extension can be within a
schema.

VERSION version

The version of the extension to install. This can be written as either an identifier or a string
literal. The default version is value that is specified in the extension control file.

FROM old_version

Specify FROM old_version only if you are attempting to install an extension that
replaces an old-style module that is a collection of objects that is not packaged into an
extension. If specified, CREATE EXTENSION runs an alternative installation script that
absorbs the existing objects into the extension, instead of creating new objects. Ensure
that SCHEMA clause specifies the schema containing these pre-existing objects.

The value to use for old_version is determined by the extension author, and might vary
if there is more than one version of the old-style module that can be upgraded into an
extension. For the standard additional modules supplied with pre-9.1 PostgreSQL, specify
unpackaged for the old_version when updating a module to extension style.

CASCADE

Automatically install dependent extensions are not already installed. Dependent extensions
are checked recursively and those dependencies are also installed automatically. If the
SCHEMA clause is specified, the schema applies to the extension and all dependent
extensions that are installed. Other options that are specified are not applied to the
automatically-installed dependent extensions. In particular, default versions are always
selected when installing dependent extensions.

Notes
The extensions currently available for loading can be identified from the pg_available_extensions or
pg_available_extension_versions system views.

Before you use CREATE EXTENSION to load an extension into a database, the supporting extension
files must be installed including an extension control file and at least one least one SQL script file. The
support files must be installed in the same location on all Greenplum Database hosts. For information
about creating new extensions, see PostgreSQL information about Packaging Related Objects into an
Extension.

Compatibility
CREATE EXTENSION is a Greenplum Database extension.

See Also
ALTER EXTENSION, DROP EXTENSION

CREATE EXTERNAL TABLE
Defines a new external table.

Synopsis

CREATE [READABLE] EXTERNAL [TEMPORARY | TEMP] TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('file://seghost[:port]/path/file' [, ...])
 | ('gpfdist://filehost[:port]/file_pattern[#transform=trans_name]'
 [, ...]

https://www.postgresql.org/docs/9.6/extend-extensions.html
https://www.postgresql.org/docs/9.6/extend-extensions.html

Greenplum Database Reference Guide Release Notes

1019

 | ('gpfdists://filehost[:port]/file_pattern[#transform=trans_name]'
 [, ...])
 | ('pxf://path-to-data?PROFILE=profile_name[&SERVER=server_name]
[&custom-option=value[...]]'))
 | ('s3://S3_endpoint[:port]/bucket_name/[S3_prefix] [region=S3-
region] [config=config_file]')
 [ON MASTER]
 FORMAT 'TEXT'
 [([HEADER]
 [DELIMITER [AS] 'delimiter' | 'OFF']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CSV'
 [([HEADER]
 [QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE NOT NULL column [, ...]]
 [ESCAPE [AS] 'escape']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CUSTOM' (Formatter=<formatter_specifications>)
 [ENCODING 'encoding']
 [[LOG ERRORS [PERSISTENTLY]] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

CREATE [READABLE] EXTERNAL WEB [TEMPORARY | TEMP] TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION ('http://webhost[:port]/path/file' [, ...])
 | EXECUTE 'command' [ON ALL
 | MASTER
 | number_of_segments
 | HOST ['segment_hostname']
 | SEGMENT segment_id]
 FORMAT 'TEXT'
 [([HEADER]
 [DELIMITER [AS] 'delimiter' | 'OFF']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CSV'
 [([HEADER]
 [QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE NOT NULL column [, ...]]
 [ESCAPE [AS] 'escape']
 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']
 [FILL MISSING FIELDS])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'encoding']
 [[LOG ERRORS [PERSISTENTLY]] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

CREATE WRITABLE EXTERNAL [TEMPORARY | TEMP] TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION('gpfdist://outputhost[:port]/filename[#transform=trans_name]'
 [, ...])
 | ('gpfdists://outputhost[:port]/file_pattern[#transform=trans_name]'
 [, ...])
 FORMAT 'TEXT'

Greenplum Database Reference Guide Release Notes

1020

 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]] | *]
 [ESCAPE [AS] 'escape'])]

 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'write_encoding']
 [DISTRIBUTED BY ({column [opclass]}, [...]) | DISTRIBUTED RANDOMLY]

CREATE WRITABLE EXTERNAL [TEMPORARY | TEMP] TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 LOCATION('s3://S3_endpoint[:port]/bucket_name/[S3_prefix] [region=S3-
region] [config=config_file]')
 [ON MASTER]
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]] | *]
 [ESCAPE [AS] 'escape'])]

CREATE WRITABLE EXTERNAL WEB [TEMPORARY | TEMP] TABLE table_name
 (column_name data_type [, ...] | LIKE other_table)
 EXECUTE 'command' [ON ALL]
 FORMAT 'TEXT'
 [([DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [ESCAPE [AS] 'escape' | 'OFF'])]
 | 'CSV'
 [([QUOTE [AS] 'quote']
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [FORCE QUOTE column [, ...]] | *]
 [ESCAPE [AS] 'escape'])]
 | 'CUSTOM' (Formatter=<formatter specifications>)
 [ENCODING 'write_encoding']
 [DISTRIBUTED BY ({column [opclass]}, [...]) | DISTRIBUTED RANDOMLY]

Description
CREATE EXTERNAL TABLE or CREATE EXTERNAL WEB TABLE creates a new readable external table
definition in Greenplum Database. Readable external tables are typically used for fast, parallel data
loading. Once an external table is defined, you can query its data directly (and in parallel) using SQL
commands. For example, you can select, join, or sort external table data. You can also create views for
external tables. DML operations (UPDATE, INSERT, DELETE, or TRUNCATE) are not allowed on readable
external tables, and you cannot create indexes on readable external tables.

CREATE WRITABLE EXTERNAL TABLE or CREATE WRITABLE EXTERNAL WEB TABLE creates a new
writable external table definition in Greenplum Database. Writable external tables are typically used for
unloading data from the database into a set of files or named pipes. Writable external web tables can also
be used to output data to an executable program. Writable external tables can also be used as output
targets for Greenplum parallel MapReduce calculations. Once a writable external table is defined, data can

Greenplum Database Reference Guide Release Notes

1021

be selected from database tables and inserted into the writable external table. Writable external tables only
allow INSERT operations – SELECT, UPDATE, DELETE or TRUNCATE are not allowed.

The main difference between regular external tables and external web tables is their data sources. Regular
readable external tables access static flat files, whereas external web tables access dynamic data sources
– either on a web server or by executing OS commands or scripts.

See Working with External Data for detailed information about working with external tables.

Parameters
READABLE | WRITABLE

Specifies the type of external table, readable being the default. Readable external tables
are used for loading data into Greenplum Database. Writable external tables are used for
unloading data.

WEB

Creates a readable or writable external web table definition in Greenplum Database. There
are two forms of readable external web tables – those that access files via the http://
protocol or those that access data by executing OS commands. Writable external web
tables output data to an executable program that can accept an input stream of data.
External web tables are not rescannable during query execution.

The s3 protocol does not support external web tables. You can, however, create an
external web table that executes a third-party tool to read data from or write data to S3
directly.

TEMPORARY | TEMP

If specified, creates a temporary readable or writable external table definition in Greenplum
Database. Temporary external tables exist in a special schema; you cannot specify a
schema name when you create the table. Temporary external tables are automatically
dropped at the end of a session.

An existing permanent table with the same name is not visible to the current session while
the temporary table exists, unless you reference the permanent table with its schema-
qualified name.

table_name

The name of the new external table.

column_name

The name of a column to create in the external table definition. Unlike regular tables,
external tables do not have column constraints or default values, so do not specify those.

LIKE other_table

The LIKE clause specifies a table from which the new external table automatically copies
all column names, data types and Greenplum distribution policy. If the original table
specifies any column constraints or default column values, those will not be copied over to
the new external table definition.

data_type

The data type of the column.

LOCATION ('protocol://[host[:port]]/path/file' [, ...])

If you use the pxf protocol to access an external data source, refer to pxf:// Protocol for
information about the pxf protocol.

If you use the s3 protocol to read or write to S3, refer to About the S3 Protocol URL for
additional information about the s3 protocol LOCATION clause syntax.

For readable external tables, specifies the URI of the external data source(s) to be used
to populate the external table or web table. Regular readable external tables allow the

Greenplum Database Reference Guide Release Notes

1022

gpfdist or file protocols. External web tables allow the http protocol. If port is
omitted, port 8080 is assumed for http and gpfdist protocols. If using the gpfdist
protocol, the path is relative to the directory from which gpfdist is serving files (the
directory specified when you started the gpfdist program). Also, gpfdist can use
wildcards or other C-style pattern matching (for example, a whitespace character is
[[:space:]]) to denote multiple files in a directory. For example:

'gpfdist://filehost:8081/*'
'gpfdist://masterhost/my_load_file'
'file://seghost1/dbfast1/external/myfile.txt'
'http://intranet.example.com/finance/expenses.csv'

For writable external tables, specifies the URI location of the gpfdist process or S3
protocol that will collect data output from the Greenplum segments and write it to one or
more named files. For gpfdist the path is relative to the directory from which gpfdist
is serving files (the directory specified when you started the gpfdist program). If multiple
gpfdist locations are listed, the segments sending data will be evenly divided across the
available output locations. For example:

'gpfdist://outputhost:8081/data1.out',
'gpfdist://outputhost:8081/data2.out'

With two gpfdist locations listed as in the above example, half of the segments would
send their output data to the data1.out file and the other half to the data2.out file.

With the option #transform=trans_name, you can specify a transform to apply when
loading or extracting data. The trans_name is the name of the transform in the YAML
configuration file you specify with the you run the gpfdist utility. For information about
specifying a transform, see gpfdist in the Greenplum Utility Guide.

ON MASTER

Restricts all table-related operations to the Greenplum master segment. Permitted only
on readable and writable external tables created with the s3 or custom protocols. The
gpfdist, gpfdists, pxf, and file protocols do not support ON MASTER.

Note: Be aware of potential resource impacts when reading from or
writing to external tables you create with the ON MASTER clause. You may
encounter performance issues when you restrict table operations solely to the
Greenplum master segment.

EXECUTE 'command' [ON ...]

Allowed for readable external web tables or writable external tables only. For readable
external web tables, specifies the OS command to be executed by the segment instances.
The command can be a single OS command or a script. The ON clause is used to specify
which segment instances will execute the given command.

• ON ALL is the default. The command will be executed by every active (primary)
segment instance on all segment hosts in the Greenplum Database system. If the
command executes a script, that script must reside in the same location on all of the
segment hosts and be executable by the Greenplum superuser (gpadmin).

• ON MASTER runs the command on the master host only.

Note: Logging is not supported for external web tables when the ON
MASTER clause is specified.

• ON number means the command will be executed by the specified number of
segments. The particular segments are chosen randomly at runtime by the Greenplum
Database system. If the command executes a script, that script must reside in the same
location on all of the segment hosts and be executable by the Greenplum superuser
(gpadmin).

Greenplum Database Reference Guide Release Notes

1023

• HOST means the command will be executed by one segment on each segment host
(once per segment host), regardless of the number of active segment instances per
host.

• HOST segment_hostname means the command will be executed by all active (primary)
segment instances on the specified segment host.

• SEGMENT segment_id means the command will be executed only once by the
specified segment. You can determine a segment instance's ID by looking at the
content number in the system catalog table gp_segment_configuration. The content ID
of the Greenplum Database master is always -1.

For writable external tables, the command specified in the EXECUTE clause must be
prepared to have data piped into it. Since all segments that have data to send will write
their output to the specified command or program, the only available option for the ON
clause is ON ALL.

FORMAT 'TEXT | CSV' (options)

When the FORMAT clause identfies delimited text (TEXT) or comma separated values
(CSV) format, formatting options are similar to those available with the PostgreSQL
COPY command. If the data in the file does not use the default column delimiter, escape
character, null string and so on, you must specify the additional formatting options so that
the data in the external file is read correctly by Greenplum Database. For information about
using a custom format, see "Loading and Unloading Data" in the Greenplum Database
Administrator Guide.

If you use the pxf protocol to access an external data source, refer to Accessing External
Data with PXF for information about using PXF.

FORMAT 'CUSTOM' (formatter=formatter_specification)

Specifies a custom data format. The formatter_specification specifies the function to use
to format the data, followed by comma-separated parameters to the formatter function.
The length of the formatter specification, the string including Formatter=, can be up to
approximately 50K bytes.

If you use the pxf protocol to access an external data source, refer to Accessing External
Data with PXF for information about using PXF.

For general information about using a custom format, see "Loading and Unloading Data" in
the Greenplum Database Administrator Guide.

DELIMITER

Specifies a single ASCII character that separates columns within each row (line) of data.
The default is a tab character in TEXT mode, a comma in CSV mode. In TEXT mode for
readable external tables, the delimiter can be set to OFF for special use cases in which
unstructured data is loaded into a single-column table.

For the s3 protocol, the delimiter cannot be a newline character (\n) or a carriage return
character (\r).

NULL

Specifies the string that represents a NULL value. The default is \N (backslash-N) in TEXT
mode, and an empty value with no quotations in CSV mode. You might prefer an empty
string even in TEXT mode for cases where you do not want to distinguish NULL values
from empty strings. When using external and web tables, any data item that matches this
string will be considered a NULL value.

As an example for the text format, this FORMAT clause can be used to specify that the
string of two single quotes ('') is a NULL value.

FORMAT 'text' (delimiter ',' null '\'\'\'\'')

ESCAPE

Greenplum Database Reference Guide Release Notes

1024

Specifies the single character that is used for C escape sequences (such as \n,\t,\100,
and so on) and for escaping data characters that might otherwise be taken as row or
column delimiters. Make sure to choose an escape character that is not used anywhere in
your actual column data. The default escape character is a \ (backslash) for text-formatted
files and a " (double quote) for csv-formatted files, however it is possible to specify another
character to represent an escape. It is also possible to disable escaping in text-formatted
files by specifying the value 'OFF' as the escape value. This is very useful for data such
as text-formatted web log data that has many embedded backslashes that are not intended
to be escapes.

NEWLINE

Specifies the newline used in your data files – LF (Line feed, 0x0A), CR (Carriage return,
0x0D), or CRLF (Carriage return plus line feed, 0x0D 0x0A). If not specified, a Greenplum
Database segment will detect the newline type by looking at the first row of data it receives
and using the first newline type encountered.

HEADER

For readable external tables, specifies that the first line in the data file(s) is a header row
(contains the names of the table columns) and should not be included as data for the table.
If using multiple data source files, all files must have a header row.

For the s3 protocol, the column names in the header row cannot contain a newline
character (\n) or a carriage return (\r).

The pxf protocol does not support the HEADER formatting option.

QUOTE

Specifies the quotation character for CSV mode. The default is double-quote (").

FORCE NOT NULL

In CSV mode, processes each specified column as though it were quoted and hence not a
NULL value. For the default null string in CSV mode (nothing between two delimiters), this
causes missing values to be evaluated as zero-length strings.

FORCE QUOTE

In CSV mode for writable external tables, forces quoting to be used for all non-NULL values
in each specified column. If * is specified then non-NULL values will be quoted in all
columns. NULL output is never quoted.

FILL MISSING FIELDS

In both TEXT and CSV mode for readable external tables, specifying FILL MISSING
FIELDS will set missing trailing field values to NULL (instead of reporting an error) when a
row of data has missing data fields at the end of a line or row. Blank rows, fields with a NOT
NULL constraint, and trailing delimiters on a line will still report an error.

ENCODING 'encoding'

Character set encoding to use for the external table. Specify a string constant (such
as 'SQL_ASCII'), an integer encoding number, or DEFAULT to use the default client
encoding. See Character Set Support.

LOG ERRORS [PERSISTENTLY]

This is an optional clause that can precede a SEGMENT REJECT LIMIT clause to log
information about rows with formatting errors. The error log data is stored internally. If error
log data exists for a specified external table, new data is appended to existing error log
data. The error log data is not replicated to mirror segments.

The data is deleted when the external table is dropped unless you specify the keyword
PERSISTENTLY. If the keyword is specified, the log data persists after the external table is
dropped.

Greenplum Database Reference Guide Release Notes

1025

The error log data is accessed with the Greenplum Database built-
in SQL function gp_read_error_log(), or with the SQL function
gp_read_persistent_error_log() if the PERSISTENTLY keyword is specified.

If you use the PERSISTENTLY keyword, you must install the functions that manage the
persistent error log information.

See Notes for information about the error log information and built-in functions for viewing
and managing error log information.

SEGMENT REJECT LIMIT count [ROWS | PERCENT]

Runs a COPY FROM operation in single row error isolation mode. If the input rows have
format errors they will be discarded provided that the reject limit count is not reached on
any Greenplum segment instance during the load operation. The reject limit count can be
specified as number of rows (the default) or percentage of total rows (1-100). If PERCENT
is used, each segment starts calculating the bad row percentage only after the number of
rows specified by the parameter gp_reject_percent_threshold has been processed.
The default for gp_reject_percent_threshold is 300 rows. Constraint errors such
as violation of a NOT NULL, CHECK, or UNIQUE constraint will still be handled in "all-or-
nothing" input mode. If the limit is not reached, all good rows will be loaded and any error
rows discarded.

Note: When reading an external table, Greenplum Database limits the initial
number of rows that can contain formatting errors if the SEGMENT REJECT
LIMIT is not triggered first or is not specified. If the first 1000 rows are
rejected, the COPY operation is stopped and rolled back.

The limit for the number of initial rejected rows can be changed
with the Greenplum Database server configuration parameter
gp_initial_bad_row_limit. See Server Configuration Parameters for
information about the parameter.

DISTRIBUTED BY ({column [opclass]}, [...])
DISTRIBUTED RANDOMLY

Used to declare the Greenplum Database distribution policy for a writable external table.
By default, writable external tables are distributed randomly. If the source table you are
exporting data from has a hash distribution policy, defining the same distribution key
column(s) and operator class(es), oplcass, for the writable external table will improve
unload performance by eliminating the need to move rows over the interconnect. When
you issue an unload command such as INSERT INTO wex_table SELECT * FROM
source_table, the rows that are unloaded can be sent directly from the segments to the
output location if the two tables have the same hash distribution policy.

Examples
Start the gpfdist file server program in the background on port 8081 serving files from directory /var/
data/staging:

gpfdist -p 8081 -d /var/data/staging -l /home/gpadmin/log &

Create a readable external table named ext_customer using the gpfdist protocol and any text
formatted files (*.txt) found in the gpfdist directory. The files are formatted with a pipe (|) as the
column delimiter and an empty space as NULL. Also access the external table in single row error isolation
mode:

CREATE EXTERNAL TABLE ext_customer
 (id int, name text, sponsor text)
 LOCATION ('gpfdist://filehost:8081/*.txt')
 FORMAT 'TEXT' (DELIMITER '|' NULL ' ')

Greenplum Database Reference Guide Release Notes

1026

 LOG ERRORS SEGMENT REJECT LIMIT 5;

Create the same readable external table definition as above, but with CSV formatted files:

CREATE EXTERNAL TABLE ext_customer
 (id int, name text, sponsor text)
 LOCATION ('gpfdist://filehost:8081/*.csv')
 FORMAT 'CSV' (DELIMITER ',');

Create a readable external table named ext_expenses using the file protocol and several CSV
formatted files that have a header row:

CREATE EXTERNAL TABLE ext_expenses (name text, date date,
amount float4, category text, description text)
LOCATION (
'file://seghost1/dbfast/external/expenses1.csv',
'file://seghost1/dbfast/external/expenses2.csv',
'file://seghost2/dbfast/external/expenses3.csv',
'file://seghost2/dbfast/external/expenses4.csv',
'file://seghost3/dbfast/external/expenses5.csv',
'file://seghost3/dbfast/external/expenses6.csv'
)
FORMAT 'CSV' (HEADER);

Create a readable external web table that executes a script once per segment host:

CREATE EXTERNAL WEB TABLE log_output (linenum int, message
text) EXECUTE '/var/load_scripts/get_log_data.sh' ON HOST
 FORMAT 'TEXT' (DELIMITER '|');

Create a writable external table named sales_out that uses gpfdist to write output data to a file named
sales.out. The files are formatted with a pipe (|) as the column delimiter and an empty space as NULL.

CREATE WRITABLE EXTERNAL TABLE sales_out (LIKE sales)
 LOCATION ('gpfdist://etl1:8081/sales.out')
 FORMAT 'TEXT' (DELIMITER '|' NULL ' ')
 DISTRIBUTED BY (txn_id);

Create a writable external web table that pipes output data received by the segments to an executable
script named to_adreport_etl.sh:

CREATE WRITABLE EXTERNAL WEB TABLE campaign_out
(LIKE campaign)
 EXECUTE '/var/unload_scripts/to_adreport_etl.sh'
 FORMAT 'TEXT' (DELIMITER '|');

Use the writable external table defined above to unload selected data:

INSERT INTO campaign_out SELECT * FROM campaign WHERE
customer_id=123;

Notes
When you specify the LOG ERRORS clause, Greenplum Database captures errors that occur while reading
the external table data. For information about the error log format, see Viewing Bad Rows in the Error Log.

You can view and manage the captured error log data. The functions to manage log data depend on
whether the data is persistent (the PERSISTENTLY keyword is used with the LOG ERRORS clause).

Greenplum Database Reference Guide Release Notes

1027

• Functions that manage non-persistent error log data from external tables that were defined without the
PERSISTENTLY keyword.

• The built-in SQL function gp_read_error_log('table_name') displays error log information for
an external table. This example displays the error log data from the external table ext_expenses.

SELECT * from gp_read_error_log('ext_expenses');

The function returns no data if you created the external table with the LOG ERRORS
PERSISTENTLY clause, or if the external table does not exist.

• The built-in SQL function gp_truncate_error_log('table_name') deletes the error log
data for table_name. This example deletes the error log data captured from the external table
ext_expenses:

SELECT gp_truncate_error_log('ext_expenses');

Dropping the table also deletes the table's log data. The function does not truncate log data if the
external table is defined with the LOG ERRORS PERSISTENTLY clause.

The function returns FALSE if the table does not exist.
• Functions that manage persistent error log data from external tables that were defined with the

PERSISTENTLY keyword.

Note: The functions that manage persistent error log data from external tables are defined in
the file $GPHOME/share/postgresql/contrib/gpexterrorhandle.sql. The functions
must be installed in the databases that use persistent error log data from an external table. This
psql command installs the functions into the database testdb.

psql -d test -U gpadmin -f $GPHOME/share/postgresql/contrib/
gpexterrorhandle.sql

• The SQL function gp_read_persistent_error_log('table_name') displays persistent log
data for an external table.

The function returns no data if you created the external table without the PERSISTENTLY keyword.
The function returns persistent log data for an external table even after the table has been dropped.

• The SQL function gp_truncate_persistent_error_log('table_name') truncates
persistent log data for a table.

For persistent log data, you must manually delete the data. Dropping the external table does not
delete persistent log data.

• These items apply to both non-persistent and persistent error log data and the related functions.

• The gp_read_* functions require SELECT privilege on the table.
• The gp_truncate_* functions require owner privilege on the table.
• You can use the * wildcard character to delete error log information for existing tables in the current

database. Specify the string *.* to delete all database error log information, including error log
information that was not deleted due to previous database issues. If * is specified, database owner
privilege is required. If *.* is specified, operating system super-user privilege is required. Non-
persistent and persistent error log data must be deleted with their respective gp_truncate_*
functions.

When multiple Greenplum Database external tables are defined with the gpfdist, gpfdists, or file
protocol and access the same named pipe a Linux system, Greenplum Database restricts access to the
named pipe to a single reader. An error is returned if a second reader attempts to access the named pipe.

Compatibility
CREATE EXTERNAL TABLE is a Greenplum Database extension. The SQL standard makes no provisions
for external tables.

Greenplum Database Reference Guide Release Notes

1028

See Also
CREATE TABLE AS, CREATE TABLE, COPY, SELECT INTO, INSERT

CREATE FOREIGN DATA WRAPPER
Defines a new foreign-data wrapper.

Synopsis

CREATE FOREIGN DATA WRAPPER name
 [HANDLER handler_function | NO HANDLER]
 [VALIDATOR validator_function | NO VALIDATOR]
 [OPTIONS ([mpp_execute { 'master' | 'any' | 'all segments' }
 [,]] option 'value' [, ...])]

Description
CREATE FOREIGN DATA WRAPPER creates a new foreign-data wrapper in the current database. The user
who defines the foreign-data wrapper becomes its owner.

Only superusers can create foreign-data wrappers.

Parameters
name

The name of the foreign-data wrapper to create. The name must be unique within the
database.

HANDLER handler_function

The name of a previously registered function that Greenplum Database calls to retrieve the
execution functions for foreign tables. hander_function must take no arguments, and its
return type must be fdw_handler.

It is possible to create a foreign-data wrapper with no handler function, but you can only
declare, not access, foreign tables using such a wrapper.

VALIDATOR validator_function

The name of a previously registered function that Greenplum Database calls to check the
options provided to the foreign-data wrapper. This function also checks the options for
foreign servers, user mappings, and foreign tables that use the foreign-data wrapper. If no
validator function or NO VALIDATOR is specified, Greenplum Database does not check
options at creation time. (Depending upon the implementation, foreign-data wrappers may
ignore or reject invalid options at runtime.)

validator_function must take two arguments: one of type text[], which contains the array
of options as stored in the system catalogs, and one of type oid, which identifies the OID
of the system catalog containing the options.

The return type is ignored; validator_function should report invalid options using the
ereport(ERROR) function.

OPTIONS (option 'value' [, ...])

The options for the new foreign-data wrapper. Option names must be unique. The option
names and values are foreign-data wrapper-specific and are validated using the foreign-
data wrappers' validator_function.

mpp_execute { 'master' | 'any' | 'all segments' }

An option that identifies the host from which the foreign data-wrapper requests data:

Greenplum Database Reference Guide Release Notes

1029

• master (the default)—Request data from the master host.
• any—Request data from either the master host or any one segment, depending on

which path costs less.
• all segments—Request data from all segments. To support this option value, the

foreign data-wrapper must have a policy that matches the segments to data.

The mpp_execute option can be specified in multiple commands: CREATE FOREIGN
TABLE, CREATE SERVER, and CREATE FOREIGN DATA WRAPPER. The foreign table
setting takes precedence over the foreign server setting, followed by the foreign data
wrapper setting.

Notes
The foreign-data wrapper functionality is still under development. Optimization of queries is primitive (and
mostly left to the wrapper).

Examples
Create a useless foreign-data wrapper named dummy:

CREATE FOREIGN DATA WRAPPER dummy;

Create a foreign-data wrapper named file with a handler function named file_fdw_handler:

CREATE FOREIGN DATA WRAPPER file HANDLER file_fdw_handler;

Create a foreign-data wrapper named mywrapper that includes an option:

CREATE FOREIGN DATA WRAPPER mywrapper OPTIONS (debug 'true');

Compatibility
CREATE FOREIGN DATA WRAPPER conforms to ISO/IEC 9075-9 (SQL/MED), with the exception that the
HANDLER and VALIDATOR clauses are extensions, and the standard clauses LIBRARY and LANGUAGE are
not implemented in Greenplum Database.

Note, however, that the SQL/MED functionality as a whole is not yet conforming.

See Also
ALTER FOREIGN DATA WRAPPER, DROP FOREIGN DATA WRAPPER, CREATE SERVER, CREATE USER
MAPPING

CREATE FOREIGN TABLE
Defines a new foreign table.

Synopsis

CREATE FOREIGN TABLE [IF NOT EXISTS] table_name ([
 column_name data_type [OPTIONS (option 'value' [, ...])]
 [COLLATE collation] [column_constraint [...]]
 [, ...]
])
 SERVER server_name
 [OPTIONS ([mpp_execute { 'master' | 'any' | 'all segments' }
 [,]] option 'value' [, ...])]

Greenplum Database Reference Guide Release Notes

1030

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 DEFAULT default_expr }

Description
CREATE FOREIGN TABLE creates a new foreign table in the current database. The user who creates the
foreign table becomes its owner.

If you schema-qualify the table name (for example, CREATE FOREIGN TABLE
myschema.mytable ...), Greenplum Database creates the table in the specified schema. Otherwise,
the foreign table is created in the current schema. The name of the foreign table must be distinct from the
name of any other foreign table, table, sequence, index, or view in the same schema.

Because CREATE FOREIGN TABLE automatically creates a data type that represents the composite type
corresponding to one row of the foreign table, foreign tables cannot have the same name as any existing
data type in the same schema.

To create a foreign table, you must have USAGE privilege on the foreign server, as well as USAGE privilege
on all column types used in the table.

Parameters
IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. Greenplum
Database issues a notice in this case. Note that there is no guarantee that the existing
relation is anything like the one that would have been created.

table_name

The name (optionally schema-qualified) of the foreign table to create.

column_name

The name of a column to create in the new foreign table.

data_type

The data type of the column, including array specifiers.

NOT NULL

The column is not allowed to contain null values.

NULL

The column is allowed to contain null values. This is the default.

This clause is provided only for compatibility with non-standard SQL databases. Its use is
discouraged in new applications.

DEFAULT default_expr

The DEFAULT clause assigns a default value for the column whose definition it appears
within. The value is any variable-free expression; Greenplum Database does not allow
subqueries and cross-references to other columns in the current table. The data type of the
default expression must match the data type of the column.

Greenplum Database uses the default expression in any insert operation that does not
specify a value for the column. If there is no default for a column, then the default is null.

server_name

Greenplum Database Reference Guide Release Notes

1031

The name of an existing server to use for the foreign table. For details on defining a server,
see CREATE SERVER.

OPTIONS (option 'value' [, ...])

The options for the new foreign table or one of its columns. While option names must be
unique, a table option and a column option may have the same name. The option names
and values are foreign-data wrapper-specific. Greenplum Database validates the options
and values using the foreign-data wrapper's validator_function.

mpp_execute { 'master' | 'any' | 'all segments' }

An option that identifies the host from which the foreign data-wrapper requests data:

• master (the default)—Request data from the master host.
• any—Request data from either the master host or any one segment, depending on

which path costs less.
• all segments—Request data from all segments. To support this option value, the

foreign data-wrapper must have a policy that matches the segments to data.

Use of the foreign table mpp_execute option, and the specific modes supported, is
foreign data-wrapper-specific.

The mpp_execute option can be specified in multiple commands: CREATE FOREIGN
TABLE, CREATE SERVER, and CREATE FOREIGN DATA WRAPPER. The foreign table
setting takes precedence over the foreign server setting, followed by the foreign data
wrapper setting.

Notes
The Pivotal Query Optimizer, GPORCA, does not support foreign tables. A query on a foreign table always
falls back to the Postgres Planner.

Examples
Create a foreign table named films with the server named film_server:

CREATE FOREIGN TABLE films (
 code char(5) NOT NULL,
 title varchar(40) NOT NULL,
 did integer NOT NULL,
 date_prod date,
 kind varchar(10),
 len interval hour to minute
)
SERVER film_server;

Compatibility
CREATE FOREIGN TABLE largely conforms to the SQL standard; however, much as with CREATE TABLE,
Greenplum Database permits NULL constraints and zero-column foreign tables. The ability to specify a
default value is a Greenplum Database extension, as is the mpp_execute option.

See Also
ALTER FOREIGN TABLE, DROP FOREIGN TABLE, CREATE TABLE, CREATE SERVER

CREATE FUNCTION
Defines a new function.

Greenplum Database Reference Guide Release Notes

1032

Synopsis

CREATE [OR REPLACE] FUNCTION name
 ([[argmode] [argname] argtype [{ DEFAULT | = } default_expr]
 [, ...]])
 [RETURNS rettype
 | RETURNS TABLE (column_name column_type [, ...])]
 { LANGUAGE langname
 | WINDOW
 | IMMUTABLE | STABLE | VOLATILE | [NOT] LEAKPROOF
 | CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
 | [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 | EXECUTE ON { ANY | MASTER | ALL SEGMENTS | INITPLAN }
 | COST execution_cost
 | SET configuration_parameter { TO value | = value | FROM CURRENT }
 | AS 'definition'
 | AS 'obj_file', 'link_symbol' } ...
 [WITH ({ DESCRIBE = describe_function
 } [, ...])]

Description
CREATE FUNCTION defines a new function. CREATE OR REPLACE FUNCTION either creates a new
function, or replaces an existing definition.

The name of the new function must not match any existing function with the same input argument types in
the same schema. However, functions of different argument types may share a name (overloading).

To update the definition of an existing function, use CREATE OR REPLACE FUNCTION. It is not possible
to change the name or argument types of a function this way (this would actually create a new, distinct
function). Also, CREATE OR REPLACE FUNCTION will not let you change the return type of an existing
function. To do that, you must drop and recreate the function. When using OUT parameters, that means
you cannot change the types of any OUT parameters except by dropping the function. If you drop and then
recreate a function, you will have to drop existing objects (rules, views, triggers, and so on) that refer to
the old function. Use CREATE OR REPLACE FUNCTION to change a function definition without breaking
objects that refer to the function.

The user that creates the function becomes the owner of the function.

To be able to create a function, you must have USAGE privilege on the argument types and the return type.

For more information about creating functions, see the User Defined Functions section of the PostgreSQL
documentation.

Limited Use of VOLATILE and STABLE Functions

To prevent data from becoming out-of-sync across the segments in Greenplum Database, any function
classified as STABLE or VOLATILE cannot be executed at the segment level if it contains SQL or modifies
the database in any way. For example, functions such as random() or timeofday() are not allowed to
execute on distributed data in Greenplum Database because they could potentially cause inconsistent data
between the segment instances.

To ensure data consistency, VOLATILE and STABLE functions can safely be used in statements that are
evaluated on and execute from the master. For example, the following statements are always executed on
the master (statements without a FROM clause):

SELECT setval('myseq', 201);
SELECT foo();

https://www.postgresql.org/docs/9.4/xfunc.html

Greenplum Database Reference Guide Release Notes

1033

In cases where a statement has a FROM clause containing a distributed table and the function used in the
FROM clause simply returns a set of rows, execution may be allowed on the segments:

SELECT * FROM foo();

One exception to this rule are functions that return a table reference (rangeFuncs) or functions that
use the refCursor data type. Note that you cannot return a refcursor from any kind of function in
Greenplum Database.

Function Volatility and EXECUTE ON Attributes

Volatility attributes (IMMUTABLE, STABLE, VOLATILE) and EXECUTE ON attributes specify two different
aspects of function execution. In general, volatility indicates when the function is executed, and EXECUTE
ON indicates where it is executed.

For example, a function defined with the IMMUTABLE attribute can be executed at query planning time,
while a function with the VOLATILE attribute must be executed for every row in the query. A function
with the EXECUTE ON MASTER attribute is executed only on the master segment and a function with the
EXECUTE ON ALL SEGMENTS attribute is executed on all primary segment instances (not the master).

See Using Functions and Operators in the Greenplum Database Administrator Guide.

Functions And Replicated Tables

A user-defined function that executes only SELECT commands on replicated tables can run on segments.
Replicated tables, created with the DISTRIBUTED REPLICATED clause, store all of their rows on every
segment. It is safe for a function to read them on the segments, but updates to replicated tables must
execute on the master instance.

Parameters
name

The name (optionally schema-qualified) of the function to create.

argmode

The mode of an argument: either IN, OUT, INOUT, or VARIADIC. If omitted, the default is
IN. Only OUT arguments can follow an argument declared as VARIADIC. Also, OUT and
INOUT arguments cannot be used together with the RETURNS TABLE notation.

argname

The name of an argument. Some languages (currently only SQL and PL/pgSQL) let you
use the name in the function body. For other languages the name of an input argument is
just extra documentation, so far as the function itself is concerned; but you can use input
argument names when calling a function to improve readability. In any case, the name of
an output argument is significant, since it defines the column name in the result row type.
(If you omit the name for an output argument, the system will choose a default column
name.)

argtype

The data type(s) of the function's arguments (optionally schema-qualified), if any. The
argument types may be base, composite, or domain types, or may reference the type of a
table column.

Depending on the implementation language it may also be allowed to specify pseudotypes
such as cstring. Pseudotypes indicate that the actual argument type is either
incompletely specified, or outside the set of ordinary SQL data types.

The type of a column is referenced by writing tablename.columnname%TYPE. Using this
feature can sometimes help make a function independent of changes to the definition of a
table.

default_expr

Greenplum Database Reference Guide Release Notes

1034

An expression to be used as the default value if the parameter is not specified. The
expression must be coercible to the argument type of the parameter. Only IN and INOUT
parameters can have a default value. Each input parameter in the argument list that
follows a parameter with a default value must have a default value as well.

rettype

The return data type (optionally schema-qualified). The return type can be a base,
composite, or domain type, or may reference the type of a table column. Depending on the
implementation language it may also be allowed to specify pseudotypes such as cstring.
If the function is not supposed to return a value, specify void as the return type.

When there are OUT or INOUT parameters, the RETURNS clause may be omitted. If
present, it must agree with the result type implied by the output parameters: RECORD if
there are multiple output parameters, or the same type as the single output parameter.

The SETOF modifier indicates that the function will return a set of items, rather than a
single item.

The type of a column is referenced by writing tablename.columnname%TYPE.

column_name

The name of an output column in the RETURNS TABLE syntax. This is effectively another
way of declaring a named OUT parameter, except that RETURNS TABLE also implies
RETURNS SETOF.

column_type

The data type of an output column in the RETURNS TABLE syntax.

langname

The name of the language that the function is implemented in. May be SQL, C, internal,
or the name of a user-defined procedural language. See CREATE LANGUAGE for the
procedural languages supported in Greenplum Database. For backward compatibility, the
name may be enclosed by single quotes.

WINDOW

WINDOW indicates that the function is a window function rather than a plain function. This
is currently only useful for functions written in C. The WINDOW attribute cannot be changed
when replacing an existing function definition.

IMMUTABLE
STABLE
VOLATILE
LEAKPROOF

These attributes inform the query optimizer about the behavior of the function. At most one
choice may be specified. If none of these appear, VOLATILE is the default assumption.
Since Greenplum Database currently has limited use of VOLATILE functions, if a function
is truly IMMUTABLE, you must declare it as so to be able to use it without restrictions.

IMMUTABLE indicates that the function cannot modify the database and always returns
the same result when given the same argument values. It does not do database lookups
or otherwise use information not directly present in its argument list. If this option is given,
any call of the function with all-constant arguments can be immediately replaced with the
function value.

STABLE indicates that the function cannot modify the database, and that within a single
table scan it will consistently return the same result for the same argument values, but
that its result could change across SQL statements. This is the appropriate selection for
functions whose results depend on database lookups, parameter values (such as the
current time zone), and so on. Also note that the current_timestamp family of functions
qualify as stable, since their values do not change within a transaction.

Greenplum Database Reference Guide Release Notes

1035

VOLATILE indicates that the function value can change even within a single table scan, so
no optimizations can be made. Relatively few database functions are volatile in this sense;
some examples are random(), timeofday(). But note that any function that has side-
effects must be classified volatile, even if its result is quite predictable, to prevent calls from
being optimized away; an example is setval().

LEAKPROOF indicates that the function has no side effects. It reveals no information about
its arguments other than by its return value. For example, a function that throws an error
message for some argument values but not others, or that includes the argument values in
any error message, is not leakproof. The query planner may push leakproof functions (but
not others) into views created with the security_barrier option. See CREATE VIEW
and CREATE RULE. This option can only be set by the superuser.

CALLED ON NULL INPUT
RETURNS NULL ON NULL INPUT
STRICT

CALLED ON NULL INPUT (the default) indicates that the function will be called normally
when some of its arguments are null. It is then the function author's responsibility to check
for null values if necessary and respond appropriately. RETURNS NULL ON NULL INPUT
or STRICT indicates that the function always returns null whenever any of its arguments
are null. If this parameter is specified, the function is not executed when there are null
arguments; instead a null result is assumed automatically.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

SECURITY INVOKER (the default) indicates that the function is to be executed with the
privileges of the user that calls it. SECURITY DEFINER specifies that the function is to
be executed with the privileges of the user that created it. The key word EXTERNAL is
allowed for SQL conformance, but it is optional since, unlike in SQL, this feature applies to
all functions not just external ones.

EXECUTE ON ANY
EXECUTE ON MASTER
EXECUTE ON ALL SEGMENTS
EXECUTE ON INITPLAN

The EXECUTE ON attributes specify where (master or segment instance) a function
executes when it is invoked during the query execution process.

EXECUTE ON ANY (the default) indicates that the function can be executed on the master,
or any segment instance, and it returns the same result regardless of where it is executed.
Greenplum Database determines where the function executes.

EXECUTE ON MASTER indicates that the function must execute only on the master
instance.

EXECUTE ON ALL SEGMENTS indicates that the function must execute on all primary
segment instances, but not the master, for each invocation. The overall result of the
function is the UNION ALL of the results from all segment instances.

EXECUTE ON INITPLAN indicates that the function contains an SQL command that
dispatches queries to the segment instances and requires special processing on the
master instance by Greenplum Database when possible.

Note: EXECUTE ON INITPLAN is only supported in functions that are used
in the FROM clause of a CREATE TABLE AS or INSERT command such as the
get_data() function in these commands.

CREATE TABLE t AS SELECT * FROM get_data();

INSERT INTO t1 SELECT * FROM get_data();

Greenplum Database Reference Guide Release Notes

1036

Greenplum Database does not support the EXECUTE ON INITPLAN attribute
in a function that is used in the WITH clause of a query, a CTE (common table
expression). For example, specifying EXECUTE ON INITPLAN in function
get_data() in this CTE is not supported.

WITH tbl_a AS (SELECT * FROM get_data())
 SELECT * from tbl_a
 UNION
 SELECT * FROM tbl_b;

For information about using EXECUTE ON attributes, see Notes.

COST execution_cost

A positive number identifying the estimated execution cost for the function, in
cpu_operator_cost units. If the function returns a set, execution_cost identifies the cost
per returned row. If the cost is not specified, C-language and internal functions default to 1
unit, while functions in other languages default to 100 units. The planner tries to evaluate
the function less often when you specify larger execution_cost values.

configuration_parameter
value

The SET clause applies a value to a session configuration parameter when the function
is entered. The configuration parameter is restored to its prior value when the function
exits. SET FROM CURRENT saves the value of the parameter that is current when CREATE
FUNCTION is executed as the value to be applied when the function is entered.

definition

A string constant defining the function; the meaning depends on the language. It may
be an internal function name, the path to an object file, an SQL command, or text in a
procedural language.

obj_file, link_symbol

This form of the AS clause is used for dynamically loadable C language functions when
the function name in the C language source code is not the same as the name of the SQL
function. The string obj_file is the name of the file containing the dynamically loadable
object, and link_symbol is the name of the function in the C language source code. If the
link symbol is omitted, it is assumed to be the same as the name of the SQL function being
defined. The C names of all functions must be different, so you must give overloaded SQL
functions different C names (for example, use the argument types as part of the C names).
It is recommended to locate shared libraries either relative to $libdir (which is located at
$GPHOME/lib) or through the dynamic library path (set by the dynamic_library_path
server configuration parameter). This simplifies version upgrades if the new installation is
at a different location.

describe_function

The name of a callback function to execute when a query that calls this function is parsed.
The callback function returns a tuple descriptor that indicates the result type.

Notes
Any compiled code (shared library files) for custom functions must be placed in the same location on
every host in your Greenplum Database array (master and all segments). This location must also be in the
LD_LIBRARY_PATH so that the server can locate the files. It is recommended to locate shared libraries
either relative to $libdir (which is located at $GPHOME/lib) or through the dynamic library path (set
by the dynamic_library_path server configuration parameter) on all master segment instances in the
Greenplum array.

https://www.postgresql.org/docs/9.4/runtime-config-query.html#GUC-CPU-OPERATOR-COST

Greenplum Database Reference Guide Release Notes

1037

The full SQL type syntax is allowed for input arguments and return value. However, some details of the
type specification (such as the precision field for type numeric) are the responsibility of the underlying
function implementation and are not recognized or enforced by the CREATE FUNCTION command.

Greenplum Database allows function overloading. The same name can be used for several different
functions so long as they have distinct input argument types. However, the C names of all functions must
be different, so you must give overloaded C functions different C names (for example, use the argument
types as part of the C names).

Two functions are considered the same if they have the same names and input argument types, ignoring
any OUT parameters. Thus for example these declarations conflict:

CREATE FUNCTION foo(int) ...
CREATE FUNCTION foo(int, out text) ...

Functions that have different argument type lists are not considered to conflict at creation time, but if
argument defaults are provided, they might conflict in use. For example, consider:

CREATE FUNCTION foo(int) ...
CREATE FUNCTION foo(int, int default 42) ...

The call foo(10), will fail due to the ambiguity about which function should be called.

When repeated CREATE FUNCTION calls refer to the same object file, the file is only loaded once. To
unload and reload the file, use the LOAD command.

You must have the USAGE privilege on a language to be able to define a function using that language.

It is often helpful to use dollar quoting to write the function definition string, rather than the normal single
quote syntax. Without dollar quoting, any single quotes or backslashes in the function definition must be
escaped by doubling them. A dollar-quoted string constant consists of a dollar sign ($), an optional tag of
zero or more characters, another dollar sign, an arbitrary sequence of characters that makes up the string
content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. Inside the dollar-quoted
string, single quotes, backslashes, or any character can be used without escaping. The string content is
always written literally. For example, here are two different ways to specify the string "Dianne's horse"
using dollar quoting:

$$Dianne's horse$$
$SomeTag$Dianne's horse$SomeTag$

If a SET clause is attached to a function, the effects of a SET LOCAL command executed inside the
function for the same variable are restricted to the function; the configuration parameter's prior value is
still restored when the function exits. However, an ordinary SET command (without LOCAL) overrides the
CREATE FUNCTION SET clause, much as it would for a previous SET LOCAL command. The effects of
such a command will persist after the function exits, unless the current transaction is rolled back.

If a function with a VARIADIC argument is declared as STRICT, the strictness check tests that the variadic
array as a whole is non-null. PL/pgSQL will still call the function if the array has null elements.

When replacing an existing function with CREATE OR REPLACE FUNCTION, there are restrictions on
changing parameter names. You cannot change the name already assigned to any input parameter
(although you can add names to parameters that had none before). If there is more than one output
parameter, you cannot change the names of the output parameters, because that would change the
column names of the anonymous composite type that describes the function's result. These restrictions are
made to ensure that existing calls of the function do not stop working when it is replaced.

Using Functions with Queries on Distributed Data

Greenplum Database Reference Guide Release Notes

1038

In some cases, Greenplum Database does not support using functions in a query where the data in a table
specified in the FROM clause is distributed over Greenplum Database segments. As an example, this SQL
query contains the function func():

SELECT func(a) FROM table1;

The function is not supported for use in the query if all of the following conditions are met:

• The data of table table1 is distributed over Greenplum Database segments.
• The function func() reads or modifies data from distributed tables.
• The function func() returns more than one row or takes an argument (a) that comes from table1.

If any of the conditions are not met, the function is supported. Specifically, the function is supported if any
of the following conditions apply:

• The function func() does not access data from distributed tables, or accesses data that is only on the
Greenplum Database master.

• The table table1 is a master only table.
• The function func() returns only one row and only takes input arguments that are constant values.

The function is supported if it can be changed to require no input arguments.

Using EXECUTE ON attributes

Most functions that execute queries to access tables can only execute on the master. However, functions
that execute only SELECT queries on replicated tables can run on segments. If the function accesses a
hash-distributed table or a randomly distributed table, the function should be defined with the EXECUTE
ON MASTER attribute. Otherwise, the function might return incorrect results when the function is used in
a complicated query. Without the attribute, planner optimization might determine it would be beneficial to
push the function invocation to segment instances.

These are limitations for functions defined with the EXECUTE ON MASTER or EXECUTE ON ALL
SEGMENTS attribute:

• The function must be a set-returning function.
• The function cannot be in the FROM clause of a query.
• The function cannot be in the SELECT list of a query with a FROM clause.
• A query that includes the function falls back from GPORCA to the Postgres Planner.

The attribute EXECUTE ON INITPLAN indicates that the function contains an SQL command that
dispatches queries to the segment instances and requires special processing on the master instance by
Greenplum Database. When possible, Greenplum Database handles the function on the master instance in
the following manner.

1. First, Greenplum Database executes the function as part of an InitPlan node on the master instance
and holds the function output temporarily.

2. Then, in the MainPlan of the query plan, the function is called in an EntryDB (a special query executor
(QE) that runs on the master instance) and Greenplum Database returns the data that was captured
when the function was executed as part of the InitPlan node. The function is not executed in the
MainPlan.

This simple example uses the function get_data() in a CTAS command to create a table using data from
the table country. The function contains a SELECT command that retrieves data from the table country
and uses the EXECUTE ON INITPLAN attribute.

CREATE TABLE country(
 c_id integer, c_name text, region int)
 DISTRIBUTED RANDOMLY;

INSERT INTO country VALUES (11,'INDIA', 1), (22,'CANADA', 2), (33,'USA',
 3);

Greenplum Database Reference Guide Release Notes

1039

CREATE OR REPLACE FUNCTION get_data()
 RETURNS TABLE (
 c_id integer, c_name text
)
AS $$
 SELECT
 c.c_id, c.c_name
 FROM
 country c;
$$
LANGUAGE SQL EXECUTE ON INITPLAN;

CREATE TABLE t AS SELECT * FROM get_data() DISTRIBUTED RANDOMLY;

If you view the query plan of the CTAS command with EXPLAIN ANALYZE VERBOSE, the plan shows that
the function is run as part of an InitPlan node, and one of the listed slices is labeled as entry db. The
query plan of a simple CTAS command without the function does not have an InitPlan node or an entry
db slice.

If the function did not contain the EXECUTE ON INITPLAN attribute, the CTAS command returns the error
function cannot execute on a QE slice.

When a function uses the EXECUTE ON INITPLAN attribute, a command that uses the function such
as CREATE TABLE t AS SELECT * FROM get_data() gathers the results of the function onto
the master segment and then redistributes the results to segment instances when inserting the data. If
the function returns a large amount of data, the master might become a bottleneck when gathering and
redistributing data. Performance might improve if you rewrite the function to run the CTAS command in the
user defined function and use the table name as an input parameter. In this example, the function executes
a CTAS command and does not require the EXECUTE ON INITPLAN attribute. Running the SELECT
command creates the table t1 using the function that executes the CTAS command.

CREATE OR REPLACE FUNCTION my_ctas(_tbl text) RETURNS VOID AS
$$
BEGIN
 EXECUTE format('CREATE TABLE %s AS SELECT c.c_id, c.c_name FROM country c
 DISTRIBUTED RANDOMLY', _tbl);
END
$$
LANGUAGE plpgsql;

SELECT my_ctas('t1');

Examples
A very simple addition function:

CREATE FUNCTION add(integer, integer) RETURNS integer
 AS 'select $1 + $2;'
 LANGUAGE SQL
 IMMUTABLE
 RETURNS NULL ON NULL INPUT;

Increment an integer, making use of an argument name, in PL/pgSQL:

CREATE OR REPLACE FUNCTION increment(i integer) RETURNS
integer AS $$
 BEGIN
 RETURN i + 1;
 END;
$$ LANGUAGE plpgsql;

Greenplum Database Reference Guide Release Notes

1040

Increase the default segment host memory per query for a PL/pgSQL function:

CREATE OR REPLACE FUNCTION function_with_query() RETURNS
SETOF text AS $$
 BEGIN
 RETURN QUERY
 EXPLAIN ANALYZE SELECT * FROM large_table;
 END;
$$ LANGUAGE plpgsql
SET statement_mem='256MB';

Use polymorphic types to return an ENUM array:

CREATE TYPE rainbow AS
 ENUM('red','orange','yellow','green','blue','indigo','violet');
CREATE FUNCTION return_enum_as_array(anyenum, anyelement, anyelement)
 RETURNS TABLE (ae anyenum, aa anyarray) AS $$
 SELECT $1, array[$2, $3]
$$ LANGUAGE SQL STABLE;

SELECT * FROM return_enum_as_array('red'::rainbow, 'green'::rainbow,
 'blue'::rainbow);

Return a record containing multiple output parameters:

CREATE FUNCTION dup(in int, out f1 int, out f2 text)
 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
 LANGUAGE SQL;

SELECT * FROM dup(42);

You can do the same thing more verbosely with an explicitly named composite type:

CREATE TYPE dup_result AS (f1 int, f2 text);
CREATE FUNCTION dup(int) RETURNS dup_result
 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
 LANGUAGE SQL;

SELECT * FROM dup(42);

Another way to return multiple columns is to use a TABLE function:

CREATE FUNCTION dup(int) RETURNS TABLE(f1 int, f2 text)
 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
 LANGUAGE SQL;

SELECT * FROM dup(4);

This function is defined with the EXECUTE ON ALL SEGMENTS to run on all primary segment instances.
The SELECT command executes the function that returns the time it was run on each segment instance.

CREATE FUNCTION run_on_segs (text) returns setof text as $$
 begin
 return next ($1 || ' - ' || now()::text);
 end;
 $$ language plpgsql VOLATILE EXECUTE ON ALL SEGMENTS;

SELECT run_on_segs('my test');

Greenplum Database Reference Guide Release Notes

1041

This function looks up a part name in the parts table. The parts table is replicated, so the function can
execute on the master or on the primary segments.

CREATE OR REPLACE FUNCTION get_part_name(partno int) RETURNS text AS
$$
DECLARE
 result text := ' ';
BEGIN
 SELECT part_name INTO result FROM parts WHERE part_id = partno;
 RETURN result;
END;
$$ LANGUAGE plpgsql;

If you execute SELECT get_part_name(100); at the master the function executes on the master. (The
master instance directs the query to a single primary segment.) If orders is a distributed table and you
execute the following query, the get_part_name() function executes on the primary segments.

SELECT order_id, get_part_name(orders.part_no) FROM orders;

Compatibility
CREATE FUNCTION is defined in SQL:1999 and later. The Greenplum Database version is similar but not
fully compatible. The attributes are not portable, neither are the different available languages.

For compatibility with some other database systems, argmode can be written either before or after
argname. But only the first way is standard-compliant.

For parameter defaults, the SQL standard specifies only the syntax with the DEFAULT key word. The
syntax with = is used in T-SQL and Firebird.

See Also
ALTER FUNCTION, DROP FUNCTION, LOAD

CREATE GROUP
Defines a new database role.

Synopsis

CREATE GROUP name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | CREATEEXTTABLE | NOCREATEEXTTABLE
 [(attribute='value'[, ...])]
 where attributes and value are:
 type='readable'|'writable'
 protocol='gpfdist'|'http'
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | ROLE rolename [, ...]

Greenplum Database Reference Guide Release Notes

1042

 | ADMIN rolename [, ...]
 | RESOURCE QUEUE queue_name
 | RESOURCE GROUP group_name
 | [DENY deny_point]
 | [DENY BETWEEN deny_point AND deny_point]

Description
CREATE GROUP is an alias for CREATE ROLE.

Compatibility
There is no CREATE GROUP statement in the SQL standard.

See Also
CREATE ROLE

CREATE INDEX
Defines a new index.

Synopsis

CREATE [UNIQUE] INDEX [name] ON table_name [USING method]
 ({column_name | (expression)} [COLLATE parameter] [opclass] [ASC |
 DESC] [NULLS { FIRST | LAST }] [, ...])
 [WITH (storage_parameter = value [, ...])]
 [TABLESPACE tablespace]
 [WHERE predicate]

Description
CREATE INDEX constructs an index on the specified column(s) of the specified table or materialized view.
Indexes are primarily used to enhance database performance (though inappropriate use can result in
slower performance).

The key field(s) for the index are specified as column names, or alternatively as expressions written in
parentheses. Multiple fields can be specified if the index method supports multicolumn indexes.

An index field can be an expression computed from the values of one or more columns of the table row.
This feature can be used to obtain fast access to data based on some transformation of the basic data. For
example, an index computed on upper(col) would allow the clause WHERE upper(col) = 'JIM' to
use an index.

Greenplum Database provides the index methods B-tree, bitmap, GiST, SP-GiST, and GIN. Users can also
define their own index methods, but that is fairly complicated.

When the WHERE clause is present, a partial index is created. A partial index is an index that contains
entries for only a portion of a table, usually a portion that is more useful for indexing than the rest of
the table. For example, if you have a table that contains both billed and unbilled orders where the
unbilled orders take up a small fraction of the total table and yet is most often selected, you can improve
performance by creating an index on just that portion.

The expression used in the WHERE clause may refer only to columns of the underlying table, but it can use
all columns, not just the ones being indexed. Subqueries and aggregate expressions are also forbidden in
WHERE. The same restrictions apply to index fields that are expressions.

All functions and operators used in an index definition must be immutable. Their results must depend
only on their arguments and never on any outside influence (such as the contents of another table or a

Greenplum Database Reference Guide Release Notes

1043

parameter value). This restriction ensures that the behavior of the index is well-defined. To use a user-
defined function in an index expression or WHERE clause, remember to mark the function IMMUTABLE
when you create it.

Parameters
UNIQUE

Checks for duplicate values in the table when the index is created and each time data
is added. Duplicate entries will generate an error. Unique indexes only apply to B-tree
indexes. In Greenplum Database, unique indexes are allowed only if the columns of the
index key are the same as (or a superset of) the Greenplum distribution key. On partitioned
tables, a unique index is only supported within an individual partition - not across all
partitions.

name

The name of the index to be created. The index is always created in the same schema
as its parent table. If the name is omitted, Greenplum Database chooses a suitable name
based on the parent table's name and the indexed column name(s).

table_name

The name (optionally schema-qualified) of the table to be indexed.

method

The name of the index method to be used. Choices are btree, bitmap, gist, spgist,
and gin. The default method is btree.

Currently, only the B-tree, GiST, and GIN index methods support multicolumn indexes. Up
to 32 fields can be specified by default. Only B-tree currently supports unique indexes.

GPORCA supports only B-tree, bitmap, GiST, and GIN indexes. GPORCA ignores indexes
created with unsupported indexing methods.

column_name

The name of a column of the table on which to create the index. Only the B-tree, bitmap,
GiST, and GIN index methods support multicolumn indexes.

expression

An expression based on one or more columns of the table. The expression usually must be
written with surrounding parentheses, as shown in the syntax. However, the parentheses
may be omitted if the expression has the form of a function call.

collation

The name of the collation to use for the index. By default, the index uses the collation
declared for the column to be indexed or the result collation of the expression to be
indexed. Indexes with non-default collations can be useful for queries that involve
expressions using non-default collations.

opclass

The name of an operator class. The operator class identifies the operators to be used by
the index for that column. For example, a B-tree index on four-byte integers would use the
int4_ops class (this operator class includes comparison functions for four-byte integers).
In practice the default operator class for the column's data type is usually sufficient. The
main point of having operator classes is that for some data types, there could be more than
one meaningful ordering. For example, a complex-number data type could be sorted by
either absolute value or by real part. We could do this by defining two operator classes for
the data type and then selecting the proper class when making an index.

ASC

Specifies ascending sort order (which is the default).

DESC

Greenplum Database Reference Guide Release Notes

1044

Specifies descending sort order.

NULLS FIRST

Specifies that nulls sort before non-nulls. This is the default when DESC is specified.

NULLS LAST

Specifies that nulls sort after non-nulls. This is the default when DESC is not specified.

storage_parameter

The name of an index-method-specific storage parameter. Each index method has its own
set of allowed storage parameters.

FILLFACTOR - B-tree, bitmap, GiST, and SP-GiST index methods all accept this
parameter. The FILLFACTOR for an index is a percentage that determines how full
the index method will try to pack index pages. For B-trees, leaf pages are filled to this
percentage during initial index build, and also when extending the index at the right (adding
new largest key values). If pages subsequently become completely full, they will be split,
leading to gradual degradation in the index's efficiency. B-trees use a default fillfactor
of 90, but any integer value from 10 to 100 can be selected. If the table is static then
fillfactor 100 is best to minimize the index's physical size, but for heavily updated tables
a smaller fillfactor is better to minimize the need for page splits. The other index methods
use fillfactor in different but roughly analogous ways; the default fillfactor varies between
methods.

BUFFERING - In addition to FILLFACTOR, GiST indexes additionally accept the
BUFFERING parameter. BUFFERING determines whether Greenplum Database builds
the index using the buffering build technique described in GiST buffering build in the
PostgreSQL documentation. With OFF it is disabled, with ON it is enabled, and with AUTO
it is initially disabled, but turned on on-the-fly once the index size reaches effective-cache-
size. The default is AUTO.

FASTUPDATE - The GIN index method accepts the FASTUPDATE storage parameter.
FASTUPDATE is a Boolean parameter that disables or enables the GIN index fast update
technique. A value of ON enables fast update (the default), and OFF disables it. See GIN
fast update technique in the PostgreSQL documentation for more information.

Note: Turning FASTUPDATE off via ALTER INDEX prevents future insertions
from going into the list of pending index entries, but does not in itself flush
previous entries. You might want to VACUUM the table afterward to ensure
the pending list is emptied.

tablespace_name

The tablespace in which to create the index. If not specified, the default tablespace is
used, or temp_tablespaces for indexes on temporary tables.

predicate

The constraint expression for a partial index.

Notes
An operator class can be specified for each column of an index. The operator class identifies the operators
to be used by the index for that column. For example, a B-tree index on four-byte integers would use the
int4_ops class; this operator class includes comparison functions for four-byte integers. In practice the
default operator class for the column's data type is usually sufficient. The main point of having operator
classes is that for some data types, there could be more than one meaningful ordering. For example, we
might want to sort a complex-number data type either by absolute value or by real part. We could do this
by defining two operator classes for the data type and then selecting the proper class when making an
index.

For index methods that support ordered scans (currently, only B-tree), the optional clauses ASC, DESC,
NULLS FIRST, and/or NULLS LAST can be specified to modify the sort ordering of the index. Since an

https://www.postgresql.org/docs/9.4/gist-implementation.html
https://www.postgresql.org/docs/9.4/gin-implementation.html#GIN-FAST-UPDATE
https://www.postgresql.org/docs/9.4/gin-implementation.html#GIN-FAST-UPDATE

Greenplum Database Reference Guide Release Notes

1045

ordered index can be scanned either forward or backward, it is not normally useful to create a single-
column DESC index — that sort ordering is already available with a regular index. The value of these
options is that multicolumn indexes can be created that match the sort ordering requested by a mixed-
ordering query, such as SELECT ... ORDER BY x ASC, y DESC. The NULLS options are useful if you
need to support "nulls sort low" behavior, rather than the default "nulls sort high", in queries that depend on
indexes to avoid sorting steps.

For most index methods, the speed of creating an index is dependent on the setting of
maintenance_work_mem. Larger values will reduce the time needed for index creation, so long as
you don't make it larger than the amount of memory really available, which would drive the machine into
swapping.

When an index is created on a partitioned table, the index is propagated to all the child tables created by
Greenplum Database. Creating an index on a table that is created by Greenplum Database for use by a
partitioned table is not supported.

UNIQUE indexes are allowed only if the index columns are the same as (or a superset of) the Greenplum
distribution key columns.

UNIQUE indexes are not allowed on append-optimized tables.

A UNIQUE index can be created on a partitioned table. However, uniqueness is enforced only within a
partition; uniqueness is not enforced between partitions. For example, for a partitioned table with partitions
that are based on year and a subpartitions that are based on quarter, uniqueness is enforced only on each
individual quarter partition. Uniqueness is not enforced between quarter partitions

Indexes are not used for IS NULL clauses by default. The best way to use indexes in such cases is to
create a partial index using an IS NULL predicate.

bitmap indexes perform best for columns that have between 100 and 100,000 distinct values. For a
column with more than 100,000 distinct values, the performance and space efficiency of a bitmap index
decline. The size of a bitmap index is proportional to the number of rows in the table times the number of
distinct values in the indexed column.

Columns with fewer than 100 distinct values usually do not benefit much from any type of index. For
example, a gender column with only two distinct values for male and female would not be a good candidate
for an index.

Prior releases of Greenplum Database also had an R-tree index method. This method has been removed
because it had no significant advantages over the GiST method. If USING rtree is specified, CREATE
INDEX will interpret it as USING gist.

For more information on the GiST index type, refer to the PostgreSQL documentation.

The use of hash indexes has been disabled in Greenplum Database.

Examples
To create a B-tree index on the column title in the table films:

CREATE UNIQUE INDEX title_idx ON films (title);

To create a bitmap index on the column gender in the table employee:

CREATE INDEX gender_bmp_idx ON employee USING bitmap
(gender);

To create an index on the expression lower(title), allowing efficient case-insensitive searches:

CREATE INDEX ON films ((lower(title)));

https://www.postgresql.org/docs/9.4/indexes-types.html

Greenplum Database Reference Guide Release Notes

1046

(In this example we have chosen to omit the index name, so the system will choose a name, typically
films_lower_idx.)

To create an index with non-default collation:

CREATE INDEX title_idx_german ON films (title COLLATE "de_DE");

To create an index with non-default fill factor:

CREATE UNIQUE INDEX title_idx ON films (title) WITH
(fillfactor = 70);

To create a GIN index with fast updates disabled:

CREATE INDEX gin_idx ON documents_table USING gin (locations) WITH
 (fastupdate = off);

To create an index on the column code in the table films and have the index reside in the tablespace
indexspace:

CREATE INDEX code_idx ON films(code) TABLESPACE indexspace;

To create a GiST index on a point attribute so that we can efficiently use box operators on the result of the
conversion function:

CREATE INDEX pointloc ON points USING gist (box(location,location));
SELECT * FROM points WHERE box(location,location) && '(0,0),(1,1)'::box;

Compatibility
CREATE INDEX is a Greenplum Database language extension. There are no provisions for indexes in the
SQL standard.

Greenplum Database does not support the concurrent creation of indexes (CONCURRENTLY keyword not
supported).

See Also
ALTER INDEX, DROP INDEX, CREATE TABLE, CREATE OPERATOR CLASS

CREATE LANGUAGE
Defines a new procedural language.

Synopsis

CREATE [OR REPLACE] [PROCEDURAL] LANGUAGE name

CREATE [OR REPLACE] [TRUSTED] [PROCEDURAL] LANGUAGE name
 HANDLER call_handler [INLINE inline_handler]
 [VALIDATOR valfunction]

Description
CREATE LANGUAGE registers a new procedural language with a Greenplum database. Subsequently,
functions and trigger procedures can be defined in this new language.

Greenplum Database Reference Guide Release Notes

1047

Note: Procedural languages for Greenplum Database have been made into "extensions," and
should therefore be installed with CREATE EXTENSION, not CREATE LANGUAGE. Using CREATE
LANGUAGE directly should be restricted to extension installation scripts. If you have a "bare"
language in your database, perhaps as a result of an upgrade, you can convert it to an extension
using CREATE EXTENSION langname FROM unpackaged.

Superusers can register a new language with a Greenplum database. A database owner can also register
within that database any language listed in the pg_pltemplate catalog in which the tmpldbacreate
field is true. The default configuration allows only trusted languages to be registered by database owners.
The creator of a language becomes its owner and can later drop it, rename it, or assign ownership to a
new owner.

CREATE OR REPLACE LANGUAGE will either create a new language, or replace an existing definition.
If the language already exists, its parameters are updated according to the values specified or taken
from pg_pltemplate, but the language's ownership and permissions settings do not change, and any
existing functions written in the language are assumed to still be valid. In addition to the normal privilege
requirements for creating a language, the user must be superuser or owner of the existing language.
The REPLACE case is mainly meant to be used to ensure that the language exists. If the language has a
pg_pltemplate entry then REPLACE will not actually change anything about an existing definition, except in
the unusual case where the pg_pltemplate entry has been modified since the language was created.

CREATE LANGUAGE effectively associates the language name with handler function(s) that are responsible
for executing functions written in that language. For a function written in a procedural language (a language
other than C or SQL), the database server has no built-in knowledge about how to interpret the function's
source code. The task is passed to a special handler that knows the details of the language. The handler
could either do all the work of parsing, syntax analysis, execution, and so on or it could serve as a bridge
between Greenplum Database and an existing implementation of a programming language. The handler
itself is a C language function compiled into a shared object and loaded on demand, just like any other
C function. Therese procedural language packages are included in the standard Greenplum Database
distribution: PL/pgSQL, PL/Perl, and PL/Python. Language handlers have also been added for PL/
Java and PL/R, but those languages are not pre-installed with Greenplum Database. See the topic on
Procedural Languages in the PostgreSQL documentation for more information on developing functions
using these procedural languages.

The PL/Perl, PL/Java, and PL/R libraries require the correct versions of Perl, Java, and R to be installed,
respectively.

On RHEL and SUSE platforms, download the appropriate extensions from Pivotal Network, then install
the extensions using the Greenplum Package Manager (gppkg) utility to ensure that all dependencies are
installed as well as the extensions. See the Greenplum Database Utility Guide for details about gppkg.

There are two forms of the CREATE LANGUAGE command. In the first form, the user specifies the name
of the desired language and the Greenplum Database server uses the pg_pltemplate system catalog
to determine the correct parameters. In the second form, the user specifies the language parameters
as well as the language name. You can use the second form to create a language that is not defined in
pg_pltemplate.

When the server finds an entry in the pg_pltemplate catalog for the given language name, it will use the
catalog data even if the command includes language parameters. This behavior simplifies loading of old
dump files, which are likely to contain out-of-date information about language support functions.

Parameters
TRUSTED

TRUSTED specifies that the language does not grant access to data that the user would
not otherwise have. If this key word is omitted when registering the language, only users
with the Greenplum Database superuser privilege can use this language to create new
functions.

PROCEDURAL

https://www.postgresql.org/docs/9.4/xplang.html
https://network.pivotal.io/products/pivotal-gpdb

Greenplum Database Reference Guide Release Notes

1048

This is a noise word.

name

The name of the new procedural language. The name must be unique among the
languages in the database. Built-in support is included for plpgsql, plperl, and
plpythonu. The languages plpgsql (PL/pgSQL) and plpythonu (PL/Python) are
installed by default in Greenplum Database.

HANDLER call_handler

Ignored if the server has an entry for the specified language name in pg_pltemplate.
The name of a previously registered function that will be called to execute the procedural
language functions. The call handler for a procedural language must be written
in a compiled language such as C with version 1 call convention and registered
with Greenplum Database as a function taking no arguments and returning the
language_handler type, a placeholder type that is simply used to identify the function
as a call handler.

INLINE inline_handler

The name of a previously registered function that is called to execute an anonymous
code block in this language that is created with the DO command. If an inline_handler
function is not specified, the language does not support anonymous code blocks. The
handler function must take one argument of type internal, which is the DO command
internal representation. The function typically return void. The return value of the handler
is ignored.

VALIDATOR valfunction

Ignored if the server has an entry for the specified language name in pg_pltemplate.
The name of a previously registered function that will be called to execute the procedural
language functions. The call handler for a procedural language must be written
in a compiled language such as C with version 1 call convention and registered
with Greenplum Database as a function taking no arguments and returning the
language_handler type, a placeholder type that is simply used to identify the function
as a call handler.

Notes
The PL/pgSQL language is already registered in all databases by default. The PL/Python language
extension is installed but not registered.

The system catalog pg_language records information about the currently installed languages.

To create functions in a procedural language, a user must have the USAGE privilege for the language. By
default, USAGE is granted to PUBLIC (everyone) for trusted languages. This may be revoked if desired.

Procedural languages are local to individual databases. You create and drop languages for individual
databases.

The call handler function and the validator function (if any) must already exist if the server does not have
an entry for the language in pg_pltemplate. But when there is an entry, the functions need not already
exist; they will be automatically defined if not present in the database.

Any shared library that implements a language must be located in the same LD_LIBRARY_PATH location
on all segment hosts in your Greenplum Database array.

Examples
The preferred way of creating any of the standard procedural languages is to use CREATE EXTENSION
instead of CREATE LANGUAGE. For example:

CREATE EXTENSION plperl;

Greenplum Database Reference Guide Release Notes

1049

For a language not known in the pg_pltemplate catalog:

CREATE FUNCTION plsample_call_handler() RETURNS
language_handler
 AS '$libdir/plsample'
 LANGUAGE C;
CREATE LANGUAGE plsample
 HANDLER plsample_call_handler;

Compatibility
CREATE LANGUAGE is a Greenplum Database extension.

See Also
ALTER LANGUAGE, CREATE EXTENSION, CREATE FUNCTION, DROP EXTENSION, DROP LANGUAGE,
GRANT DO

CREATE MATERIALIZED VIEW
Defines a new materialized view.

Synopsis

CREATE MATERIALIZED VIEW table_name
 [(column_name [, ...])]
 [WITH (storage_parameter [= value] [, ...])]
 [TABLESPACE tablespace_name]
 AS query
 [WITH [NO] DATA]
 [DISTRIBUTED {| BY column [opclass], [...] | RANDOMLY | REPLICATED }]

Description
CREATE MATERIALIZED VIEW defines a materialized view of a query. The query is executed and used
to populate the view at the time the command is issued (unless WITH NO DATA is used) and can be
refreshed using REFRESH MATERIALIZED VIEW.

CREATE MATERIALIZED VIEW is similar to CREATE TABLE AS, except that it also remembers the query
used to initialize the view, so that it can be refreshed later upon demand. To refresh materialized view data,
use the REFRESH MATERIALIZED VIEW command. A materialized view has many of the same properties
as a table, but there is no support for temporary materialized views or automatic generation of OIDs.

Parameters
table_name

The name (optionally schema-qualified) of the materialized view to be created.

column_name

The name of a column in the materialized view. The column names are assigned based
on position. The first column name is assigned to the first column of the query result, and
so on. If a column name is not provided, it is taken from the output column names of the
query.

WITH (storage_parameter [= value] [, ...])

This clause specifies optional storage parameters for the materialized view. All parameters
supported for CREATE TABLE are also supported for CREATE MATERIALIZED VIEW with
the exception of OIDS. See CREATE TABLE for more information.

Greenplum Database Reference Guide Release Notes

1050

TABLESPACE tablespace_name

The tablespace_name is the name of the tablespace in which the new materialized view is
to be created. If not specified, server configuration parameter default_tablespace is
consulted.

query

A SELECT or VALUES command. This query will run within a security-restricted operation;
in particular, calls to functions that themselves create temporary tables will fail.

WITH [NO] DATA

This clause specifies whether or not the materialized view should be populated with data
at creation time. WITH DATA is the default, populate the materialized view. For WITH
NO DATA, the materialized view is not populated with data, is flagged as unscannable,
and cannot be queried until REFRESH MATERIALIZED VIEW is used to populate the
materialized view. An error is returned if a query attempts to access an unscannable
materialized view.

DISTRIBUTED BY (column [opclass], [...])
DISTRIBUTED RANDOMLY
DISTRIBUTED REPLICATED

Used to declare the Greenplum Database distribution policy for the materialized view data.
For information about a table distribution policy, see CREATE TABLE.

Notes
Materialized views are read only. The system will not allow an INSERT, UPDATE, or DELETE on a
materialized view. Use REFRESH MATERIALIZED VIEW to update the materialized view data.

If you want the data to be ordered upon generation, you must use an ORDER BY clause in the materialized
view query. However, if a materialized view query contains an ORDER BY or SORT clause, the data is not
guaranteed to be ordered or sorted if SELECT is performed on the materialized view.

Examples
Create a view consisting of all comedy films:

CREATE MATERIALIZED VIEW comedies AS SELECT * FROM films
WHERE kind = 'comedy';

This will create a view containing the columns that are in the film table at the time of view creation.
Though * was used to create the materialized view, columns added later to the table will not be part of the
view.

Create a view that gets the top ten ranked baby names:

CREATE MATERIALIZED VIEW topten AS SELECT name, rank, gender, year FROM
names, rank WHERE rank < '11' AND names.id=rank.id;

Compatibility
CREATE MATERIALIZED VIEW is a Greenplum Database extension of the SQL standard.

See Also
SELECT, VALUES, CREATE VIEW, ALTER MATERIALIZED VIEW, DROP MATERIALIZED VIEW,
REFRESH MATERIALIZED VIEW

Greenplum Database Reference Guide Release Notes

1051

CREATE OPERATOR
Defines a new operator.

Synopsis

CREATE OPERATOR name (
 PROCEDURE = funcname
 [, LEFTARG = lefttype] [, RIGHTARG = righttype]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, MERGES])

Description
CREATE OPERATOR defines a new operator. The user who defines an operator becomes its owner.

The operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following
list: + - * / < > = ~ ! @ # % ^ & | ` ?

There are a few restrictions on your choice of name:

• -- and /* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

• A multicharacter operator name cannot end in + or -, unless the name also contains at least one of
these characters: ~ ! @ # % ^ & | ` ?

For example, @- is an allowed operator name, but *- is not. This restriction allows Greenplum Database to
parse SQL-compliant commands without requiring spaces between tokens.

The use of => as an operator name is deprecated. It may be disallowed altogether in a future release.

The operator != is mapped to <> on input, so these two names are always equivalent.

At least one of LEFTARG and RIGHTARG must be defined. For binary operators, both must be defined.
For right unary operators, only LEFTARG should be defined, while for left unary operators only RIGHTARG
should be defined.

The funcname procedure must have been previously defined using CREATE FUNCTION, must be
IMMUTABLE, and must be defined to accept the correct number of arguments (either one or two) of the
indicated types.

The other clauses specify optional operator optimization clauses. These clauses should be provided
whenever appropriate to speed up queries that use the operator. But if you provide them, you must be sure
that they are correct. Incorrect use of an optimization clause can result in server process crashes, subtly
wrong output, or other unexpected results. You can always leave out an optimization clause if you are not
sure about it.

To be able to create an operator, you must have USAGE privilege on the argument types and the return
type, as well as EXECUTE privilege on the underlying function. If a commutator or negator operator is
specified, you must own these operators.

Parameters
name

The (optionally schema-qualified) name of the operator to be defined. Two operators in the
same schema can have the same name if they operate on different data types.

funcname

The function used to implement this operator (must be an IMMUTABLE function).

Greenplum Database Reference Guide Release Notes

1052

lefttype

The data type of the operator's left operand, if any. This option would be omitted for a left-
unary operator.

righttype

The data type of the operator's right operand, if any. This option would be omitted for a
right-unary operator.

com_op

The optional COMMUTATOR clause names an operator that is the commutator of the
operator being defined. We say that operator A is the commutator of operator B if (x A
y) equals (y B x) for all possible input values x, y. Notice that B is also the commutator
of A. For example, operators < and > for a particular data type are usually each others
commutators, and operator + is usually commutative with itself. But operator - is usually
not commutative with anything. The left operand type of a commutable operator is the
same as the right operand type of its commutator, and vice versa. So the name of the
commutator operator is all that needs to be provided in the COMMUTATOR clause.

neg_op

The optional NEGATOR clause names an operator that is the negator of the operator being
defined. We say that operator A is the negator of operator B if both return Boolean results
and (x A y) equals NOT (x B y) for all possible inputs x, y. Notice that B is also the negator
of A. For example, < and >= are a negator pair for most data types. An operator's negator
must have the same left and/or right operand types as the operator to be defined, so only
the operator name need be given in the NEGATOR clause.

res_proc

The optional RESTRICT names a restriction selectivity estimation function for the operator.
Note that this is a function name, not an operator name. RESTRICT clauses only make
sense for binary operators that return boolean. The idea behind a restriction selectivity
estimator is to guess what fraction of the rows in a table will satisfy a WHERE-clause
condition of the form:

column OP constant

for the current operator and a particular constant value. This assists the optimizer by giving
it some idea of how many rows will be eliminated by WHERE clauses that have this form.

You can usually just use one of the following system standard estimator functions for many
of your own operators:

eqsel for =

neqsel for <>

scalarltsel for < or <=

scalargtsel for > or >=

join_proc

The optional JOIN clause names a join selectivity estimation function for the operator.
Note that this is a function name, not an operator name. JOIN clauses only make sense
for binary operators that return boolean. The idea behind a join selectivity estimator is to
guess what fraction of the rows in a pair of tables will satisfy a WHERE-clause condition of
the form

table1.column1 OP table2.column2

for the current operator. This helps the optimizer by letting it figure out which of several
possible join sequences is likely to take the least work.

Greenplum Database Reference Guide Release Notes

1053

You can usually just use one of the following system standard join selectivity estimator
functions for many of your own operators:

eqjoinsel for =

neqjoinsel for <>

scalarltjoinsel for < or <=

scalargtjoinsel for > or >=

areajoinsel for 2D area-based comparisons

positionjoinsel for 2D position-based comparisons

contjoinsel for 2D containment-based comparisons

HASHES

The optional HASHES clause tells the system that it is permissible to use the hash join
method for a join based on this operator. HASHES only makes sense for a binary operator
that returns boolean. The hash join operator can only return true for pairs of left and right
values that hash to the same hash code. If two values are put in different hash buckets, the
join will never compare them, implicitly assuming that the result of the join operator must
be false. Because of this, it never makes sense to specify HASHES for operators that do not
represent equality.

In most cases, it is only practical to support hashing for operators that take the same data
type on both sides. However, you can design compatible hash functions for two or more
data types, which are functions that will generate the same hash codes for "equal" values,
even if the values are differently represented.

To be marked HASHES, the join operator must appear in a hash index operator class.
Attempts to use the operator in hash joins will fail at run time if no such operator class
exists. The system needs the operator class to find the data-type-specific hash function
for the operator's input data type. You must also supply a suitable hash function before
you can create the operator class. Exercise care when preparing a hash function, as there
are machine-dependent ways in which it could fail to function correctly. For example, on
machines that meet the IEEE floating-point standard, negative zero and positive zero are
different values (different bit patterns) but are defined to compare as equal. If a float value
could contain a negative zero, define it to generate the same hash value as positive zero.

A hash-joinable operator must have a commutator (itself, if the two operand data types
are the same, or a related equality operator if they are different) that appears in the same
operator family. Otherwise, planner errors can occur when the operator is used. For better
optimization, a hash operator family that supports multiple data types should provide
equality operators for every combination of the data types.

Note: The function underlying a hash-joinable operator must be marked
immutable or stable; an operator marked as volatile will not be used. If a hash-
joinable operator has an underlying function that is marked strict, the function
must also be complete, returning true or false, and not null, for any two non-
null inputs.

MERGES

The MERGES clause, if present, tells the system that it is permissible to use the merge-join
method for a join based on this operator. MERGES only makes sense for a binary operator
that returns boolean, and in practice the operator must represent equality for some data
type or pair of data types.

Merge join is based on the idea of sorting the left- and right-hand tables into order and
then scanning them in parallel. This means both data types must be capable of being fully
ordered, and the join operator must be one that can only succeed for pairs of values that
fall at equivalent places in the sort order. In practice, this means that the join operator must

Greenplum Database Reference Guide Release Notes

1054

behave like an equality operator. However, you can merge-join two distinct data types so
long as they are logically compatible. For example, the smallint-versus-integer
equality operator is merge-joinable. Only sorting operators that bring both data types into a
logically compatible sequence are needed.

To be marked MERGES, the join operator must appear as an equality member of a btree
index operator family. This is not enforced when you create the operator, because the
referencing operator family does not exist until later. However, the operator will not actually
be used for merge joins unless a matching operator family can be found. The MERGE flag
thus acts as a suggestion to the planner to look for a matching operator family.

A merge-joinable operator must have a commutator that appears in the same operator
family. This would be itself, if the two operand data types are the same, or a related
equality operator if the data types are different. Without an appropriate commutator,
planner errors can occur when the operator is used. Also, although not strictly required, a
btree operator family that supports multiple data types should be able to provide equality
operators for every combination of the data types; this allows better optimization.

Note: SORT1, SORT2, LTCMP, and GTCMP were formerly used to specify
the names of sort operators associated with a merge-joinable operator.
Information about associated operators is now found by looking at B-tree
operator families; specifying any of these operators will be ignored, except
that it will implicitly set MERGES to true.

Notes
Any functions used to implement the operator must be defined as IMMUTABLE.

It is not possible to specify an operator's lexical precedence in CREATE OPERATOR, because the parser's
precedence behavior is hard-wired. See Operator Precedence in the PostgreSQL documentation for
precedence details.

Use DROP OPERATOR to delete user-defined operators from a database. Use ALTER OPERATOR to modify
operators in a database.

Examples
Here is an example of creating an operator for adding two complex numbers, assuming we have already
created the definition of type complex. First define the function that does the work, then define the
operator:

CREATE FUNCTION complex_add(complex, complex)
 RETURNS complex
 AS 'filename', 'complex_add'
 LANGUAGE C IMMUTABLE STRICT;
CREATE OPERATOR + (
 leftarg = complex,
 rightarg = complex,
 procedure = complex_add,
 commutator = +
);

To use this operator in a query:

SELECT (a + b) AS c FROM test_complex;

Compatibility
CREATE OPERATOR is a Greenplum Database language extension. The SQL standard does not provide
for user-defined operators.

https://www.postgresql.org/docs/9.4/sql-syntax-lexical.html#SQL-PRECEDENCE

Greenplum Database Reference Guide Release Notes

1055

See Also
CREATE FUNCTION, CREATE TYPE, ALTER OPERATOR, DROP OPERATOR

CREATE OPERATOR CLASS
Defines a new operator class.

Synopsis

CREATE OPERATOR CLASS name [DEFAULT] FOR TYPE data_type
 USING index_method [FAMILY family_name] AS
 { OPERATOR strategy_number operator_name [(op_type, op_type)] [FOR
 SEARCH | FOR ORDER BY sort_family_name]
 | FUNCTION support_number funcname (argument_type [, ...])
 | STORAGE storage_type
 } [, ...]

Description
CREATE OPERATOR CLASS creates a new operator class. An operator class defines how a particular
data type can be used with an index. The operator class specifies that certain operators will fill particular
roles or strategies for this data type and this index method. The operator class also specifies the support
procedures to be used by the index method when the operator class is selected for an index column.
All the operators and functions used by an operator class must be defined before the operator class is
created. Any functions used to implement the operator class must be defined as IMMUTABLE.

CREATE OPERATOR CLASS does not presently check whether the operator class definition includes all the
operators and functions required by the index method, nor whether the operators and functions form a self-
consistent set. It is the user's responsibility to define a valid operator class.

You must be a superuser to create an operator class.

Parameters
name

The (optionally schema-qualified) name of the operator class to be defined. Two operator
classes in the same schema can have the same name only if they are for different index
methods.

DEFAULT

Makes the operator class the default operator class for its data type. At most one operator
class can be the default for a specific data type and index method.

data_type

The column data type that this operator class is for.

index_method

The name of the index method this operator class is for. Choices are btree, bitmap, and
gist.

family_name

The name of the existing operator family to add this operator class to. If not specified, a
family named the same as the operator class is used (creating it, if it doesn't already exist).

strategy_number

The operators associated with an operator class are identified by strategy numbers, which
serve to identify the semantics of each operator within the context of its operator class.
For example, B-trees impose a strict ordering on keys, lesser to greater, and so operators
like less than and greater than or equal to are interesting with respect to a B-tree. These

Greenplum Database Reference Guide Release Notes

1056

strategies can be thought of as generalized operators. Each operator class specifies which
actual operator corresponds to each strategy for a particular data type and interpretation
of the index semantics. The corresponding strategy numbers for each index method are as
follows:

Table 83: B-tree and Bitmap Strategies

Operation Strategy Number

less than 1

less than or equal 2

equal 3

greater than or equal 4

greater than 5

Table 84: GiST Two-Dimensional Strategies (R-Tree)

Operation Strategy Number

strictly left of 1

does not extend to right of 2

overlaps 3

does not extend to left of 4

strictly right of 5

same 6

contains 7

contained by 8

does not extend above 9

strictly below 10

strictly above 11

does not extend below 12

sort_family_name

The name (optionally schema-qualified) of an existing btree operator family that
describes the sort ordering associated with an ordering operator.

If neither FOR SEARCH nor FOR ORDER BY is specified, FOR SEARCH is the default.

operator_name

The name (optionally schema-qualified) of an operator associated with the operator class.

op_type

In an OPERATOR clause, the operand data type(s) of the operator, or NONE to signify a left-
unary or right-unary operator. The operand data types can be omitted in the normal case
where they are the same as the operator class's data type.

In a FUNCTION clause, the operand data type(s) the function is intended to support, if
different from the input data type(s) of the function (for B-tree comparison functions and
hash functions) or the class's data type (for B-tree sort support functions and all functions

Greenplum Database Reference Guide Release Notes

1057

in GiST, SP-GiST, and GIN operator classes). These defaults are correct, and so op_type
need not be specified in FUNCTION clauses, except for the case of a B-tree sort support
function that is meant to support cross-data-type comparisons.

support_number

Index methods require additional support routines in order to work. These operations
are administrative routines used internally by the index methods. As with strategies, the
operator class identifies which specific functions should play each of these roles for a given
data type and semantic interpretation. The index method defines the set of functions it
needs, and the operator class identifies the correct functions to use by assigning them to
the support function numbers as follows:

Table 85: B-tree and Bitmap Support Functions

Function Support Number

Compare two keys and return an integer
less than zero, zero, or greater than zero,
indicating whether the first key is less than,
equal to, or greater than the second.

1

Table 86: GiST Support Functions

Function Support Number

consistent - determine whether key satisfies
the query qualifier.

1

union - compute union of a set of keys. 2

compress - compute a compressed
representation of a key or value to be
indexed.

3

decompress - compute a decompressed
representation of a compressed key.

4

penalty - compute penalty for inserting new
key into subtree with given subtree's key.

5

picksplit - determine which entries of a
page are to be moved to the new page and
compute the union keys for resulting pages.

6

equal - compare two keys and return true if
they are equal.

7

funcname

The name (optionally schema-qualified) of a function that is an index method support
procedure for the operator class.

argument_types

The parameter data type(s) of the function.

storage_type

The data type actually stored in the index. Normally this is the same as the column data
type, but some index methods (currently GiST and GIN) allow it to be different. The
STORAGE clause must be omitted unless the index method allows a different type to be
used.

Greenplum Database Reference Guide Release Notes

1058

Notes
Because the index machinery does not check access permissions on functions before using them,
including a function or operator in an operator class is the same as granting public execute permission on
it. This is usually not an issue for the sorts of functions that are useful in an operator class.

The operators should not be defined by SQL functions. A SQL function is likely to be inlined into the calling
query, which will prevent the optimizer from recognizing that the query matches an index.

Any functions used to implement the operator class must be defined as IMMUTABLE.

Before Greenplum Database 6.0, the OPERATOR clause could include a RECHECK option. This option is no
longer supported. Greenplum Database now determines whether an index operator is "lossy" on-the-fly at
run time. This allows more efficient handling of cases where an operator might or might not be lossy.

Examples
The following example command defines a GiST index operator class for the data type _int4 (array of
int4). See the intarray contrib module for the complete example.

CREATE OPERATOR CLASS gist__int_ops
 DEFAULT FOR TYPE _int4 USING gist AS
 OPERATOR 3 &&,
 OPERATOR 6 = (anyarray, anyarray),
 OPERATOR 7 @>,
 OPERATOR 8 <@,
 OPERATOR 20 @@ (_int4, query_int),
 FUNCTION 1 g_int_consistent (internal, _int4, int, oid, internal),
 FUNCTION 2 g_int_union (internal, internal),
 FUNCTION 3 g_int_compress (internal),
 FUNCTION 4 g_int_decompress (internal),
 FUNCTION 5 g_int_penalty (internal, internal, internal),
 FUNCTION 6 g_int_picksplit (internal, internal),
 FUNCTION 7 g_int_same (_int4, _int4, internal);

Compatibility
CREATE OPERATOR CLASS is a Greenplum Database extension. There is no CREATE OPERATOR CLASS
statement in the SQL standard.

See Also
ALTER OPERATOR CLASS, DROP OPERATOR CLASS, CREATE FUNCTION

CREATE OPERATOR FAMILY
Defines a new operator family.

Synopsis

CREATE OPERATOR FAMILY name USING index_method

Description
CREATE OPERATOR FAMILY creates a new operator family. An operator family defines a collection of
related operator classes, and perhaps some additional operators and support functions that are compatible
with these operator classes but not essential for the functioning of any individual index. (Operators and
functions that are essential to indexes should be grouped within the relevant operator class, rather than
being "loose" in the operator family. Typically, single-data-type operators are bound to operator classes,

Greenplum Database Reference Guide Release Notes

1059

while cross-data-type operators can be loose in an operator family containing operator classes for both
data types.)

The new operator family is initially empty. It should be populated by issuing subsequent CREATE
OPERATOR CLASS commands to add contained operator classes, and optionally ALTER OPERATOR
FAMILYcommands to add "loose" operators and their corresponding support functions.

If a schema name is given then the operator family is created in the specified schema. Otherwise it is
created in the current schema. Two operator families in the same schema can have the same name only if
they are for different index methods.

The user who defines an operator family becomes its owner. Presently, the creating user must be a
superuser. (This restriction is made because an erroneous operator family definition could confuse or even
crash the server.)

Parameters
name

The (optionally schema-qualified) name of the operator family to be defined. The name can
be schema-qualified.

index_method

The name of the index method this operator family is for.

Compatibility
CREATE OPERATOR FAMILY is a Greenplum Database extension. There is no CREATE OPERATOR
FAMILY statement in the SQL standard.

See Also
ALTER OPERATOR FAMILY, DROP OPERATOR FAMILY, CREATE FUNCTION, ALTER OPERATOR
CLASS, CREATE OPERATOR CLASS, DROP OPERATOR CLASS

CREATE PROTOCOL
Registers a custom data access protocol that can be specified when defining a Greenplum Database
external table.

Synopsis

CREATE [TRUSTED] PROTOCOL name (
 [readfunc='read_call_handler'] [, writefunc='write_call_handler']
 [, validatorfunc='validate_handler'])

Description
CREATE PROTOCOL associates a data access protocol name with call handlers that are responsible for
reading from and writing data to an external data source. You must be a superuser to create a protocol.

The CREATE PROTOCOL command must specify either a read call handler or a write call handler. The call
handlers specified in the CREATE PROTOCOL command must be defined in the database.

The protocol name can be specified in a CREATE EXTERNAL TABLE command.

For information about creating and enabling a custom data access protocol, see "Example Custom Data
Access Protocol" in the Greenplum Database Administrator Guide.

Parameters
TRUSTED

Greenplum Database Reference Guide Release Notes

1060

If not specified, only superusers and the protocol owner can create external tables using
the protocol. If specified, superusers and the protocol owner can GRANT permissions on
the protocol to other database roles.

name

The name of the data access protocol. The protocol name is case sensitive. The name
must be unique among the protocols in the database.

readfunc= 'read_call_handler'

The name of a previously registered function that Greenplum Database calls to read data
from an external data source. The command must specify either a read call handler or a
write call handler.

writefunc= 'write_call_handler'

The name of a previously registered function that Greenplum Database calls to write data
to an external data source. The command must specify either a read call handler or a write
call handler.

validatorfunc='validate_handler'

An optional validator function that validates the URL specified in the CREATE EXTERNAL
TABLE command.

Notes
Greenplum Database handles external tables of type file, gpfdist, and gpfdists internally. See
Configuring and Using S3 External Tables for information about enabling the S3 protocol. Refer to pxf://
Protocol for information about using the pxf protocol.

Any shared library that implements a data access protocol must be located in the same location on all
Greenplum Database segment hosts. For example, the shared library can be in a location specified by the
operating system environment variable LD_LIBRARY_PATH on all hosts. You can also specify the location
when you define the handler function. For example, when you define the s3 protocol in the CREATE
PROTOCOL command, you specify $libdir/gps3ext.so as the location of the shared object, where
$libdir is located at $GPHOME/lib.

Compatibility
CREATE PROTOCOL is a Greenplum Database extension.

See Also
ALTER PROTOCOL, CREATE EXTERNAL TABLE, DROP PROTOCOL, GRANT

CREATE RESOURCE GROUP
Defines a new resource group.

Synopsis

CREATE RESOURCE GROUP name WITH (group_attribute=value [, ...])

where group_attribute is:

CPU_RATE_LIMIT=integer | CPUSET=tuple
[MEMORY_LIMIT=integer]
[CONCURRENCY=integer]
[MEMORY_SHARED_QUOTA=integer]
[MEMORY_SPILL_RATIO=integer]
[MEMORY_AUDITOR= {vmtracker | cgroup}]

Greenplum Database Reference Guide Release Notes

1061

Description
Creates a new resource group for Greenplum Database resource management. You can create resource
groups to manage resources for roles or to manage the resources of a Greenplum Database external
component such as PL/Container.

A resource group that you create to manage a user role identifies concurrent transaction, memory, and
CPU limits for the role when resource groups are enabled. You may assign such resource groups to one or
more roles.

A resource group that you create to manage the resources of a Greenplum Database external component
such as PL/Container identifies the memory and CPU limits for the component when resource groups are
enabled. These resource groups use cgroups for both CPU and memory management. Assignment of
resource groups to external components is component-specific. For example, you assign a PL/Container
resource group when you configure a PL/Container runtime. You cannot assign a resource group that you
create for external components to a role, nor can you assign a resource group that you create for roles to
an external component.

You must have SUPERUSER privileges to create a resource group. The maximum number of resource
groups allowed in your Greenplum Database cluster is 100.

Greenplum Database pre-defines two default resource groups: admin_group and default_group.
These group names, as well as the group name none, are reserved.

To set appropriate limits for resource groups, the Greenplum Database administrator must be familiar with
the queries typically executed on the system, as well as the users/roles executing those queries and the
external components they may be using, such as PL/Containers.

After creating a resource group for a role, assign the group to one or more roles using the ALTER ROLE or
CREATE ROLE commands.

After you create a resource group to manage the CPU and memory resources of an external component,
configure the external component to use the resource group. For example, configure the PL/Container
runtime resource_group_id.

Parameters
name

The name of the resource group.

CONCURRENCY integer

The maximum number of concurrent transactions, including active and idle transactions,
that are permitted for this resource group. The CONCURRENCY value must be an integer in
the range [0 .. max_connections]. The default CONCURRENCY value for resource groups
defined for roles is 20.

You must set CONCURRENCY to zero (0) for resource groups that you create for external
components.

Note: You cannot set the CONCURRENCY value for the admin_group to zero
(0).

CPU_RATE_LIMIT integer
CPUSET tuple

Required. You must specify only one of CPU_RATE_LIMIT or CPUSET when you create a
resource group.

CPU_RATE_LIMIT is the percentage of CPU resources to allocate to this resource group.
The minimum CPU percentage you can specify for a resource group is 1. The maximum is
100. The sum of the CPU_RATE_LIMIT values specified for all resource groups defined in
the Greenplum Database cluster must be less than or equal to 100.

Greenplum Database Reference Guide Release Notes

1062

CPUSET identifies the CPU cores to reserve for this resource group. The CPU cores that
you specify in tuple must be available in the system and cannot overlap with any CPU
cores that you specify for other resource groups.

tuple is a comma-separated list of single core numbers or core number intervals. You must
enclose tuple in single quotes, for example, '1,3-4'.

Note: You can configure CPUSET for a resource group only after you have
enabled resource group-based resource management for your Greenplum
Database cluster.

MEMORY_LIMIT integer

The total percentage of Greenplum Database memory resources to reserve for this
resource group. The minimum memory percentage you can specify for a resource group is
0. The maximum is 100. The default value is 0.

When you specify a MEMORY_LIMIT of 0, Greenplum Database reserves no memory for
the resource group, but uses global shared memory to fulfill all memory requests in the
group. If MEMORY_LIMIT is 0, MEMORY_SPILL_RATIO must also be 0.

The sum of the MEMORY_LIMIT values specified for all resource groups defined in the
Greenplum Database cluster must be less than or equal to 100.

MEMORY_SHARED_QUOTA integer

The quota of shared memory in the resource group. Resource groups with a
MEMORY_SHARED_QUOTA threshold set aside a percentage of memory allotted to the
resource group to share across transactions. This shared memory is allocated on a first-
come, first-served basis as available. A transaction may use none, some, or all of this
memory. The minimum memory shared quota percentage you can specify for a resource
group is 0. The maximum is 100. The default MEMORY_SHARED_QUOTA value is 80.

MEMORY_SPILL_RATIO integer

The memory usage threshold for memory-intensive operators in a transaction. When this
threshold is reached, a transaction spills to disk. You can specify an integer percentage
value from 0 to 100 inclusive. The default MEMORY_SPILL_RATIO value is 0. When
MEMORY_SPILL_RATIO is 0, Greenplum Database uses the statement_mem server
configuration parameter value to control initial query operator memory.

MEMORY_AUDITOR {vmtracker | cgroup}

The memory auditor for the resource group. Greenplum Database employs virtual memory
tracking for role resources and cgroup memory tracking for resources used by external
components. The default MEMORY_AUDITOR is vmtracker. When you create a resource
group with vmtracker memory auditing, Greenplum Database tracks that resource
group's memory internally.

When you create a resource group specifying the cgroup MEMORY_AUDITOR, Greenplum
Database defers the accounting of memory used by that resource group to cgroups.
CONCURRENCY must be zero (0) for a resource group that you create for external
components such as PL/Container. You cannot assign a resource group that you create for
external components to a Greenplum Database role.

Notes
You cannot submit a CREATE RESOURCE GROUP command in an explicit transaction or sub-transaction.

Use the gp_toolkit.gp_resgroup_config system view to display the limit settings of all resource
groups:

SELECT * FROM gp_toolkit.gp_resgroup_config;

Greenplum Database Reference Guide Release Notes

1063

Examples
Create a resource group with CPU and memory limit percentages of 35:

CREATE RESOURCE GROUP rgroup1 WITH (CPU_RATE_LIMIT=35, MEMORY_LIMIT=35);

Create a resource group with a concurrent transaction limit of 20, a memory limit of 15, and a CPU limit of
25:

CREATE RESOURCE GROUP rgroup2 WITH (CONCURRENCY=20,
 MEMORY_LIMIT=15, CPU_RATE_LIMIT=25);

Create a resource group to manage PL/Container resources specifying a memory limit of 10, and a CPU
limit of 10:

CREATE RESOURCE GROUP plc_run1 WITH (MEMORY_LIMIT=10, CPU_RATE_LIMIT=10,
 CONCURRENCY=0, MEMORY_AUDITOR=cgroup);

Create a resource group with a memory limit percentage of 11 to which you assign CPU cores 1 to 3:

CREATE RESOURCE GROUP rgroup3 WITH (CPUSET='1-3', MEMORY_LIMIT=11);

Compatibility
CREATE RESOURCE GROUP is a Greenplum Database extension. There is no provision for resource
groups or resource management in the SQL standard.

See Also
ALTER ROLE, CREATE ROLE, ALTER RESOURCE GROUP, DROP RESOURCE GROUP

CREATE RESOURCE QUEUE
Defines a new resource queue.

Synopsis

CREATE RESOURCE QUEUE name WITH (queue_attribute=value [, ...])

where queue_attribute is:

 ACTIVE_STATEMENTS=integer
 [MAX_COST=float [COST_OVERCOMMIT={TRUE|FALSE}]]
 [MIN_COST=float]
 [PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}]
 [MEMORY_LIMIT='memory_units']

 | MAX_COST=float [COST_OVERCOMMIT={TRUE|FALSE}]
 [ACTIVE_STATEMENTS=integer]
 [MIN_COST=float]
 [PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}]
 [MEMORY_LIMIT='memory_units']

Description
Creates a new resource queue for Greenplum Database resource management. A resource queue must
have either an ACTIVE_STATEMENTS or a MAX_COST value (or it can have both). Only a superuser can
create a resource queue.

Greenplum Database Reference Guide Release Notes

1064

Resource queues with an ACTIVE_STATEMENTS threshold set a maximum limit on the number of queries
that can be executed by roles assigned to that queue. It controls the number of active queries that are
allowed to run at the same time. The value for ACTIVE_STATEMENTS should be an integer greater than 0.

Resource queues with a MAX_COST threshold set a maximum limit on the total cost of queries that
can be executed by roles assigned to that queue. Cost is measured in the estimated total cost for the
query as determined by the query planner (as shown in the EXPLAIN output for a query). Therefore,
an administrator must be familiar with the queries typically executed on the system in order to set an
appropriate cost threshold for a queue. Cost is measured in units of disk page fetches; 1.0 equals one
sequential disk page read. The value for MAX_COST is specified as a floating point number (for example
100.0) or can also be specified as an exponent (for example 1e+2). If a resource queue is limited based
on a cost threshold, then the administrator can allow COST_OVERCOMMIT=TRUE (the default). This means
that a query that exceeds the allowed cost threshold will be allowed to run but only when the system is idle.
If COST_OVERCOMMIT=FALSE is specified, queries that exceed the cost limit will always be rejected and
never allowed to run. Specifying a value for MIN_COST allows the administrator to define a cost for small
queries that will be exempt from resource queueing.

Note: GPORCA and the Postgres Planner utilize different query costing models and may
compute different costs for the same query. The Greenplum Database resource queue resource
management scheme neither differentiates nor aligns costs between GPORCA and the Postgres
Planner; it uses the literal cost value returned from the optimizer to throttle queries.

When resource queue-based resource management is active, use the MEMORY_LIMIT and
ACTIVE_STATEMENTS limits for resource queues rather than configuring cost-based limits. Even
when using GPORCA, Greenplum Database may fall back to using the Postgres Planner for certain
queries, so using cost-based limits can lead to unexpected results.

If a value is not defined for ACTIVE_STATEMENTS or MAX_COST, it is set to -1 by default (meaning no
limit). After defining a resource queue, you must assign roles to the queue using the ALTER ROLE or
CREATE ROLE command.

You can optionally assign a PRIORITY to a resource queue to control the relative share of available CPU
resources used by queries associated with the queue in relation to other resource queues. If a value is not
defined for PRIORITY, queries associated with the queue have a default priority of MEDIUM.

Resource queues with an optional MEMORY_LIMIT threshold set a maximum limit on the amount of
memory that all queries submitted through a resource queue can consume on a segment host. This
determines the total amount of memory that all worker processes of a query can consume on a segment
host during query execution. Greenplum recommends that MEMORY_LIMIT be used in conjunction with
ACTIVE_STATEMENTS rather than with MAX_COST. The default amount of memory allotted per query on
statement-based queues is: MEMORY_LIMIT / ACTIVE_STATEMENTS. The default amount of memory
allotted per query on cost-based queues is: MEMORY_LIMIT * (query_cost / MAX_COST).

The default memory allotment can be overridden on a per-query basis using the statement_mem server
configuration parameter, provided that MEMORY_LIMIT or max_statement_mem is not exceeded. For
example, to allocate more memory to a particular query:

=> SET statement_mem='2GB';
=> SELECT * FROM my_big_table WHERE column='value' ORDER BY id;
=> RESET statement_mem;

The MEMORY_LIMIT value for all of your resource queues should not exceed the amount of physical
memory of a segment host. If workloads are staggered over multiple queues, memory allocations can be
oversubscribed. However, queries can be cancelled during execution if the segment host memory limit
specified in gp_vmem_protect_limit is exceeded.

For information about statement_mem, max_statement, and gp_vmem_protect_limit, see Server
Configuration Parameters.

Greenplum Database Reference Guide Release Notes

1065

Parameters
name

The name of the resource queue.

ACTIVE_STATEMENTS integer

Resource queues with an ACTIVE_STATEMENTS threshold limit the number of queries that
can be executed by roles assigned to that queue. It controls the number of active queries
that are allowed to run at the same time. The value for ACTIVE_STATEMENTS should be
an integer greater than 0.

MEMORY_LIMIT 'memory_units'

Sets the total memory quota for all statements submitted from users in this resource
queue. Memory units can be specified in kB, MB or GB. The minimum memory quota for
a resource queue is 10MB. There is no maximum, however the upper boundary at query
execution time is limited by the physical memory of a segment host. The default is no limit
(-1).

MAX_COST float

Resource queues with a MAX_COST threshold set a maximum limit on the total cost of
queries that can be executed by roles assigned to that queue. Cost is measured in the
estimated total cost for the query as determined by the Greenplum Database query
optimizer (as shown in the EXPLAIN output for a query). Therefore, an administrator must
be familiar with the queries typically executed on the system in order to set an appropriate
cost threshold for a queue. Cost is measured in units of disk page fetches; 1.0 equals one
sequential disk page read. The value for MAX_COST is specified as a floating point number
(for example 100.0) or can also be specified as an exponent (for example 1e+2).

COST_OVERCOMMIT boolean

If a resource queue is limited based on MAX_COST, then the administrator can
allow COST_OVERCOMMIT (the default). This means that a query that exceeds the
allowed cost threshold will be allowed to run but only when the system is idle. If
COST_OVERCOMMIT=FALSE is specified, queries that exceed the cost limit will always be
rejected and never allowed to run.

MIN_COST float

The minimum query cost limit of what is considered a small query. Queries with a cost
under this limit will not be queued and run immediately. Cost is measured in the estimated
total cost for the query as determined by the query planner (as shown in the EXPLAIN
output for a query). Therefore, an administrator must be familiar with the queries typically
executed on the system in order to set an appropriate cost for what is considered a small
query. Cost is measured in units of disk page fetches; 1.0 equals one sequential disk page
read. The value for MIN_COST is specified as a floating point number (for example 100.0)
or can also be specified as an exponent (for example 1e+2).

PRIORITY={MIN|LOW|MEDIUM|HIGH|MAX}

Sets the priority of queries associated with a resource queue. Queries or statements in
queues with higher priority levels will receive a larger share of available CPU resources
in case of contention. Queries in low-priority queues may be delayed while higher priority
queries are executed. If no priority is specified, queries associated with the queue have a
priority of MEDIUM.

Notes
Use the gp_toolkit.gp_resqueue_status system view to see the limit settings and current status of
a resource queue:

SELECT * from gp_toolkit.gp_resqueue_status WHERE
 rsqname='queue_name';

Greenplum Database Reference Guide Release Notes

1066

There is also another system view named pg_stat_resqueues which shows statistical metrics for
a resource queue over time. To use this view, however, you must enable the stats_queue_level
server configuration parameter. See "Managing Workload and Resources" in the Greenplum Database
Administrator Guide for more information about using resource queues.

CREATE RESOURCE QUEUE cannot be run within a transaction.

Also, an SQL statement that is run during the execution of an EXPLAIN ANALYZE command is excluded
from resource queues.

Examples
Create a resource queue with an active query limit of 20:

CREATE RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=20);

Create a resource queue with an active query limit of 20 and a total memory limit of 2000MB (each query
will be allocated 100MB of segment host memory at execution time):

CREATE RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=20,
 MEMORY_LIMIT='2000MB');

Create a resource queue with a query cost limit of 3000.0:

CREATE RESOURCE QUEUE myqueue WITH (MAX_COST=3000.0);

Create a resource queue with a query cost limit of 310 (or 30000000000.0) and do not allow overcommit.
Allow small queries with a cost under 500 to run immediately:

CREATE RESOURCE QUEUE myqueue WITH (MAX_COST=3e+10,
 COST_OVERCOMMIT=FALSE, MIN_COST=500.0);

Create a resource queue with both an active query limit and a query cost limit:

CREATE RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=30,
 MAX_COST=5000.00);

Create a resource queue with an active query limit of 5 and a maximum priority setting:

CREATE RESOURCE QUEUE myqueue WITH (ACTIVE_STATEMENTS=5,
 PRIORITY=MAX);

Compatibility
CREATE RESOURCE QUEUE is a Greenplum Database extension. There is no provision for resource
queues or resource management in the SQL standard.

See Also
ALTER ROLE, CREATE ROLE, ALTER RESOURCE QUEUE, DROP RESOURCE QUEUE

CREATE ROLE
Defines a new database role (user or group).

Synopsis

CREATE ROLE name [[WITH] option [...]]

Greenplum Database Reference Guide Release Notes

1067

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | CREATEEXTTABLE | NOCREATEEXTTABLE
 [(attribute='value'[, ...])]
 where attributes and value are:
 type='readable'|'writable'
 protocol='gpfdist'|'http'
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE rolename [, ...]
 | ROLE rolename [, ...]
 | ADMIN rolename [, ...]
 | USER rolename [, ...]
 | SYSID uid [, ...]
 | RESOURCE QUEUE queue_name
 | RESOURCE GROUP group_name
 | [DENY deny_point]
 | [DENY BETWEEN deny_point AND deny_point]

Description
CREATE ROLE adds a new role to a Greenplum Database system. A role is an entity that can own
database objects and have database privileges. A role can be considered a user, a group, or both
depending on how it is used. You must have CREATEROLE privilege or be a database superuser to use this
command.

Note that roles are defined at the system-level and are valid for all databases in your Greenplum Database
system.

Parameters
name

The name of the new role.

SUPERUSER
NOSUPERUSER

If SUPERUSER is specified, the role being defined will be a superuser, who can override all
access restrictions within the database. Superuser status is dangerous and should be used
only when really needed. You must yourself be a superuser to create a new superuser.
NOSUPERUSER is the default.

CREATEDB
NOCREATEDB

If CREATEDB is specified, the role being defined will be allowed to create new databases.
NOCREATEDB (the default) will deny a role the ability to create databases.

CREATEROLE
NOCREATEROLE

If CREATEROLE is specified, the role being defined will be allowed to create new roles, alter
other roles, and drop other roles. NOCREATEROLE (the default) will deny a role the ability to
create roles or modify roles other than their own.

CREATEUSER

Greenplum Database Reference Guide Release Notes

1068

NOCREATEUSER

These clauses are obsolete, but still accepted, spellings of SUPERUSER and
NOSUPERUSER. Note that they are not equivalent to the CREATEROLE and NOCREATEROLE
clauses.

CREATEEXTTABLE
NOCREATEEXTTABLE

If CREATEEXTTABLE is specified, the role being defined is allowed to create external
tables. The default type is readable and the default protocol is gpfdist, if not
specified. Valid types are gpfdist, gpfdists, http, and https. NOCREATEEXTTABLE
(the default type) denies the role the ability to create external tables. Note that external
tables that use the file or execute protocols can only be created by superusers.

Use the GRANT...ON PROTOCOL command to allow users to create and use external
tables with a custom protocol type, including the s3 and pxf protocols included with
Greenplum Database.

INHERIT
NOINHERIT

If specified, INHERIT (the default) allows the role to use whatever database privileges
have been granted to all roles it is directly or indirectly a member of. With NOINHERIT,
membership in another role only grants the ability to SET ROLE to that other role.

LOGIN
NOLOGIN

If specified, LOGIN allows a role to log in to a database. A role having the LOGIN attribute
can be thought of as a user. Roles with NOLOGIN are useful for managing database
privileges, and can be thought of as groups. If not specified, NOLOGIN is the default,
except when CREATE ROLE is invoked through its alternative spelling CREATE USER.

REPLICATION
NOREPLICATION

These clauses determine whether a role is allowed to initiate streaming replication or put
the system in and out of backup mode. A role having the REPLICATION attribute is a very
highly privileged role, and should only be used on roles actually used for replication. If not
specified, NOREPLICATION is the default .

CONNECTION LIMIT connlimit

The number maximum of concurrent connections this role can make. The default of -1
means there is no limitation.

PASSWORD password

Sets the user password for roles with the LOGIN attribute. If you do not plan to use
password authentication you can omit this option. If no password is specified, the
password will be set to null and password authentication will always fail for that user. A null
password can optionally be written explicitly as PASSWORD NULL.

ENCRYPTED
UNENCRYPTED

These key words control whether the password is stored encrypted in the system
catalogs. (If neither is specified, the default behavior is determined by the configuration
parameter password_encryption.) If the presented password string is already in MD5-
encrypted format, then it is stored encrypted as-is, regardless of whether ENCRYPTED
or UNENCRYPTED is specified (since the system cannot decrypt the specified encrypted
password string). This allows reloading of encrypted passwords during dump/restore.

VALID UNTIL 'timestamp'

The VALID UNTIL clause sets a date and time after which the role's password is no longer
valid. If this clause is omitted the password will never expire.

Greenplum Database Reference Guide Release Notes

1069

IN ROLE rolename

Adds the new role as a member of the named roles. Note that there is no option to add the
new role as an administrator; use a separate GRANT command to do that.

ROLE rolename

Adds the named roles as members of this role, making this new role a group.

ADMIN rolename

The ADMIN clause is like ROLE, but the named roles are added to the new role WITH
ADMIN OPTION, giving them the right to grant membership in this role to others.

RESOURCE GROUP group_name

The name of the resource group to assign to the new role. The role will be subject to the
concurrent transaction, memory, and CPU limits configured for the resource group. You
can assign a single resource group to one or more roles.

If you do not specify a resource group for a new role, the role is automatically assigned
the default resource group for the role's capability, admin_group for SUPERUSER roles,
default_group for non-admin roles.

You can assign the admin_group resource group to any role having the SUPERUSER
attribute.

You can assign the default_group resource group to any role.

You cannot assign a resource group that you create for an external component to a role.

RESOURCE QUEUE queue_name

The name of the resource queue to which the new user-level role is to be assigned. Only
roles with LOGIN privilege can be assigned to a resource queue. The special keyword
NONE means that the role is assigned to the default resource queue. A role can only belong
to one resource queue.

Roles with the SUPERUSER attribute are exempt from resource queue limits. For a
superuser role, queries always run immediately regardless of limits imposed by an
assigned resource queue.

DENY deny_point
DENY BETWEEN deny_point AND deny_point

The DENY and DENY BETWEEN keywords set time-based constraints that are enforced at
login. DENY sets a day or a day and time to deny access. DENY BETWEEN sets an interval
during which access is denied. Both use the parameter deny_point that has the following
format:

DAY day [TIME 'time']

The two parts of the deny_point parameter use the following formats:

For day:

{'Sunday' | 'Monday' | 'Tuesday' |'Wednesday' | 'Thursday' |
 'Friday' |
'Saturday' | 0-6 }

For time:

{ 00-23 : 00-59 | 01-12 : 00-59 { AM | PM }}

The DENY BETWEEN clause uses two deny_point parameters:

DENY BETWEEN deny_point AND deny_point

Greenplum Database Reference Guide Release Notes

1070

For more information and examples about time-based constraints, see "Managing Roles
and Privileges" in the Greenplum Database Administrator Guide.

Notes
The preferred way to add and remove role members (manage groups) is to use GRANT and REVOKE.

The VALID UNTIL clause defines an expiration time for a password only, not for the role. The expiration
time is not enforced when logging in using a non-password-based authentication method.

The INHERIT attribute governs inheritance of grantable privileges (access privileges for database objects
and role memberships). It does not apply to the special role attributes set by CREATE ROLE and ALTER
ROLE. For example, being a member of a role with CREATEDB privilege does not immediately grant
the ability to create databases, even if INHERIT is set. These privileges/attributes are never inherited:
SUPERUSER, CREATEDB, CREATEROLE, CREATEEXTTABLE, LOGIN, RESOURCE GROUP, and RESOURCE
QUEUE. The attributes must be set on each user-level role.

The INHERIT attribute is the default for reasons of backwards compatibility. In prior releases of Greenplum
Database, users always had access to all privileges of groups they were members of. However,
NOINHERIT provides a closer match to the semantics specified in the SQL standard.

Be careful with the CREATEROLE privilege. There is no concept of inheritance for the privileges of a
CREATEROLE-role. That means that even if a role does not have a certain privilege but is allowed to create
other roles, it can easily create another role with different privileges than its own (except for creating roles
with superuser privileges). For example, if a role has the CREATEROLE privilege but not the CREATEDB
privilege, it can create a new role with the CREATEDB privilege. Therefore, regard roles that have the
CREATEROLE privilege as almost-superuser-roles.

The CONNECTION LIMIT option is never enforced for superusers.

Caution must be exercised when specifying an unencrypted password with this command. The password
will be transmitted to the server in clear-text, and it might also be logged in the client's command history or
the server log. The client program createuser, however, transmits the password encrypted. Also, psql
contains a command \password that can be used to safely change the password later.

Examples
Create a role that can log in, but don't give it a password:

CREATE ROLE jonathan LOGIN;

Create a role that belongs to a resource queue:

CREATE ROLE jonathan LOGIN RESOURCE QUEUE poweruser;

Create a role with a password that is valid until the end of 2016 (CREATE USER is the same as CREATE
ROLE except that it implies LOGIN):

CREATE USER joelle WITH PASSWORD 'jw8s0F4' VALID UNTIL '2017-01-01';

Create a role that can create databases and manage other roles:

CREATE ROLE admin WITH CREATEDB CREATEROLE;

Create a role that does not allow login access on Sundays:

CREATE ROLE user3 DENY DAY 'Sunday';

Greenplum Database Reference Guide Release Notes

1071

Create a role that can create readable and writable external tables of type 'gpfdist':

CREATE ROLE jan WITH CREATEEXTTABLE(type='readable', protocol='gpfdist')
 CREATEEXTTABLE(type='writable', protocol='gpfdist');

Create a role, assigning a resource group:

CREATE ROLE bill RESOURCE GROUP rg_light;

Compatibility
The SQL standard defines the concepts of users and roles, but it regards them as distinct concepts
and leaves all commands defining users to be specified by the database implementation. In Greenplum
Database users and roles are unified into a single type of object. Roles therefore have many more optional
attributes than they do in the standard.

CREATE ROLE is in the SQL standard, but the standard only requires the syntax:

CREATE ROLE name [WITH ADMIN rolename]

Allowing multiple initial administrators, and all the other options of CREATE ROLE, are Greenplum
Database extensions.

The behavior specified by the SQL standard is most closely approximated by giving users the NOINHERIT
attribute, while roles are given the INHERIT attribute.

See Also
SET ROLE, ALTER ROLE, DROP ROLE, GRANT, REVOKE, CREATE RESOURCE QUEUE CREATE
RESOURCE GROUP

CREATE RULE
Defines a new rewrite rule.

Synopsis

CREATE [OR REPLACE] RULE name AS ON event
 TO table_name [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command; command
 ...) }

Description
CREATE RULE defines a new rule applying to a specified table or view. CREATE OR REPLACE RULE will
either create a new rule, or replace an existing rule of the same name for the same table.

The Greenplum Database rule system allows one to define an alternate action to be performed on
insertions, updates, or deletions in database tables. A rule causes additional or alternate commands to
be executed when a given command on a given table is executed. An INSTEAD rule can replace a given
command by another, or cause a command to not be executed at all. Rules can be used to implement
SQL views as well. It is important to realize that a rule is really a command transformation mechanism, or
command macro. The transformation happens before the execution of the command starts. It does not
operate independently for each physical row as does a trigger.

ON SELECT rules must be unconditional INSTEAD rules and must have actions that consist of a single
SELECT command. Thus, an ON SELECT rule effectively turns the table into a view, whose visible contents
are the rows returned by the rule's SELECT command rather than whatever had been stored in the table (if

Greenplum Database Reference Guide Release Notes

1072

anything). It is considered better style to write a CREATE VIEW command than to create a real table and
define an ON SELECT rule for it.

You can create the illusion of an updatable view by defining ON INSERT, ON UPDATE, and ON DELETE
rules to replace update actions on the view with appropriate updates on other tables. If you want to support
INSERT RETURNING and so on, be sure to put a suitable RETURNING clause into each of these rules.

There is a catch if you try to use conditional rules for view updates: there must be an unconditional
INSTEAD rule for each action you wish to allow on the view. If the rule is conditional, or is not INSTEAD,
then the system will still reject attempts to perform the update action, because it thinks it might end up
trying to perform the action on the dummy table of the view in some cases. If you want to handle all the
useful cases in conditional rules, add an unconditional DO INSTEAD NOTHING rule to ensure that the
system understands it will never be called on to update the dummy table. Then make the conditional rules
non-INSTEAD; in the cases where they are applied, they add to the default INSTEAD NOTHING action.
(This method does not currently work to support RETURNING queries, however.)

Note:

A view that is simple enough to be automatically updatable (see CREATE VIEW) does not require
a user-created rule in order to be updatable. While you can create an explicit rule anyway, the
automatic update transformation will generally outperform an explicit rule.

Parameters
name

The name of a rule to create. This must be distinct from the name of any other rule for
the same table. Multiple rules on the same table and same event type are applied in
alphabetical name order.

event

The event is one of SELECT, INSERT, UPDATE, or DELETE.

table_name

The name (optionally schema-qualified) of the table or view the rule applies to.

condition

Any SQL conditional expression (returning boolean). The condition expression may not
refer to any tables except NEW and OLD, and may not contain aggregate functions. NEW and
OLD refer to values in the referenced table. NEW is valid in ON INSERT and ON UPDATE
rules to refer to the new row being inserted or updated. OLD is valid in ON UPDATE and ON
DELETE rules to refer to the existing row being updated or deleted.

INSTEAD

INSTEAD NOTHING indicates that the commands should be executed instead of the
original command.

ALSO

ALSO indicates that the commands should be executed in addition to the original
command. If neither ALSO nor INSTEAD is specified, ALSO is the default.

command

The command or commands that make up the rule action. Valid commands are SELECT,
INSERT, UPDATE, or DELETE. The special table names NEW and OLD may be used to refer
to values in the referenced table. NEW is valid in ON INSERT and ONUPDATE rules to refer
to the new row being inserted or updated. OLD is valid in ON UPDATE and ON DELETE
rules to refer to the existing row being updated or deleted.

Notes
You must be the owner of a table to create or change rules for it.

Greenplum Database Reference Guide Release Notes

1073

It is very important to take care to avoid circular rules. Recursive rules are not validated at rule create time,
but will report an error at execution time.

Examples
Create a rule that inserts rows into the child table b2001 when a user tries to insert into the partitioned
parent table rank:

CREATE RULE b2001 AS ON INSERT TO rank WHERE gender='M' and
year='2001' DO INSTEAD INSERT INTO b2001 VALUES (NEW.id,
NEW.rank, NEW.year, NEW.gender, NEW.count);

Compatibility
CREATE RULE is a Greenplum Database language extension, as is the entire query rewrite system.

See Also
ALTER RULEDROP RULE, CREATE TABLE, CREATE VIEW

CREATE SCHEMA
Defines a new schema.

Synopsis

CREATE SCHEMA schema_name [AUTHORIZATION username]
 [schema_element [...]]

CREATE SCHEMA AUTHORIZATION rolename [schema_element [...]]

CREATE SCHEMA IF NOT EXISTS schema_name [AUTHORIZATION user_name]

CREATE SCHEMA IF NOT EXISTS AUTHORIZATION user_name

Description
CREATE SCHEMA enters a new schema into the current database. The schema name must be distinct from
the name of any existing schema in the current database.

A schema is essentially a namespace: it contains named objects (tables, data types, functions, and
operators) whose names may duplicate those of other objects existing in other schemas. Named objects
are accessed either by qualifying their names with the schema name as a prefix, or by setting a search
path that includes the desired schema(s). A CREATE command specifying an unqualified object name
creates the object in the current schema (the one at the front of the search path, which can be determined
with the function current_schema).

Optionally, CREATE SCHEMA can include subcommands to create objects within the new schema. The
subcommands are treated essentially the same as separate commands issued after creating the schema,
except that if the AUTHORIZATION clause is used, all the created objects will be owned by that role.

Parameters
schema_name

The name of a schema to be created. If this is omitted, the user name is used as the
schema name. The name cannot begin with pg_, as such names are reserved for system
catalog schemas.

user_name

Greenplum Database Reference Guide Release Notes

1074

The name of the role who will own the schema. If omitted, defaults to the role executing the
command. Only superusers may create schemas owned by roles other than themselves.

schema_element

An SQL statement defining an object to be created within the schema. Currently, only
CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE SEQUENCE, CREATE
TRIGGER and GRANT are accepted as clauses within CREATE SCHEMA. Other kinds of
objects may be created in separate commands after the schema is created.

Note: Greenplum Database does not support triggers.

IF NOT EXISTS

Do nothing (except issuing a notice) if a schema with the same name already exists.
schema_element subcommands cannot be included when this option is used.

Notes
To create a schema, the invoking user must have the CREATE privilege for the current database or be a
superuser.

Examples
Create a schema:

CREATE SCHEMA myschema;

Create a schema for role joe (the schema will also be named joe):

CREATE SCHEMA AUTHORIZATION joe;

Create a schema named test that will be owned by user joe, unless there already is a schema named
test. (It does not matter whether joe owns the pre-existing schema.)

CREATE SCHEMA IF NOT EXISTS test AUTHORIZATION joe;

Compatibility
The SQL standard allows a DEFAULT CHARACTER SET clause in CREATE SCHEMA, as well as more
subcommand types than are presently accepted by Greenplum Database.

The SQL standard specifies that the subcommands in CREATE SCHEMA may appear in any order.
The present Greenplum Database implementation does not handle all cases of forward references in
subcommands; it may sometimes be necessary to reorder the subcommands in order to avoid forward
references.

According to the SQL standard, the owner of a schema always owns all objects within it. Greenplum
Database allows schemas to contain objects owned by users other than the schema owner. This can
happen only if the schema owner grants the CREATE privilege on the schema to someone else, or a
superuser chooses to create objects in it.

The IF NOT EXISTS option is a Greenplum Database extension.

See Also
ALTER SCHEMA, DROP SCHEMA

CREATE SEQUENCE
Defines a new sequence generator.

Greenplum Database Reference Guide Release Notes

1075

Synopsis

CREATE [TEMPORARY | TEMP] SEQUENCE name
 [INCREMENT [BY] value]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start]
 [CACHE cache]
 [[NO] CYCLE]
 [OWNED BY { table.column | NONE }]

Description
CREATE SEQUENCE creates a new sequence number generator. This involves creating and initializing a
new special single-row table. The generator will be owned by the user issuing the command.

If a schema name is given, then the sequence is created in the specified schema. Otherwise it is created in
the current schema. Temporary sequences exist in a special schema, so a schema name may not be given
when creating a temporary sequence. The sequence name must be distinct from the name of any other
sequence, table, index, view, or foreign table in the same schema.

After a sequence is created, you use the nextval() function to operate on the sequence. For example, to
insert a row into a table that gets the next value of a sequence:

INSERT INTO distributors VALUES (nextval('myserial'), 'acme');

You can also use the function setval() to operate on a sequence, but only for queries that do not
operate on distributed data. For example, the following query is allowed because it resets the sequence
counter value for the sequence generator process on the master:

SELECT setval('myserial', 201);

But the following query will be rejected in Greenplum Database because it operates on distributed data:

INSERT INTO product VALUES (setval('myserial', 201), 'gizmo');

In a regular (non-distributed) database, functions that operate on the sequence go to the local sequence
table to get values as they are needed. In Greenplum Database, however, keep in mind that each
segment is its own distinct database process. Therefore the segments need a single point of truth to go
for sequence values so that all segments get incremented correctly and the sequence moves forward in
the right order. A sequence server process runs on the master and is the point-of-truth for a sequence in a
Greenplum distributed database. Segments get sequence values at runtime from the master.

Because of this distributed sequence design, there are some limitations on the functions that operate on a
sequence in Greenplum Database:

• lastval() and currval() functions are not supported.
• setval() can only be used to set the value of the sequence generator on the master, it cannot be

used in subqueries to update records on distributed table data.
• nextval() sometimes grabs a block of values from the master for a segment to use, depending on

the query. So values may sometimes be skipped in the sequence if all of the block turns out not to be
needed at the segment level. Note that a regular PostgreSQL database does this too, so this is not
something unique to Greenplum Database.

Although you cannot update a sequence directly, you can use a query like:

SELECT * FROM sequence_name;

Greenplum Database Reference Guide Release Notes

1076

to examine the parameters and current state of a sequence. In particular, the last_value field of the
sequence shows the last value allocated by any session.

Parameters
TEMPORARY | TEMP

If specified, the sequence object is created only for this session, and is automatically
dropped on session exit. Existing permanent sequences with the same name are not
visible (in this session) while the temporary sequence exists, unless they are referenced
with schema-qualified names.

name

The name (optionally schema-qualified) of the sequence to be created.

increment

Specifies which value is added to the current sequence value to create a new value. A
positive value will make an ascending sequence, a negative one a descending sequence.
The default value is 1.

minvalue
NO MINVALUE

Determines the minimum value a sequence can generate. If this clause is not supplied or
NO MINVALUE is specified, then defaults will be used. The defaults are 1 and -263-1 for
ascending and descending sequences, respectively.

maxvalue
NO MAXVALUE

Determines the maximum value for the sequence. If this clause is not supplied or NO
MAXVALUE is specified, then default values will be used. The defaults are 263-1 and -1 for
ascending and descending sequences, respectively.

start

Allows the sequence to begin anywhere. The default starting value is minvalue for
ascending sequences and maxvalue for descending ones.

cache

Specifies how many sequence numbers are to be preallocated and stored in memory for
faster access. The minimum (and default) value is 1 (no cache).

CYCLE
NO CYCLE

Allows the sequence to wrap around when the maxvalue (for ascending) or minvalue (for
descending) has been reached. If the limit is reached, the next number generated will
be the minvalue (for ascending) or maxvalue (for descending). If NO CYCLE is specified,
any calls to nextval() after the sequence has reached its maximum value will return an
error. If not specified, NO CYCLE is the default.

OWNED BY table.column
OWNED BY NONE

Causes the sequence to be associated with a specific table column, such that if that
column (or its whole table) is dropped, the sequence will be automatically dropped as
well. The specified table must have the same owner and be in the same schema as the
sequence. OWNED BY NONE, the default, specifies that there is no such association.

Notes
Sequences are based on bigint arithmetic, so the range cannot exceed the range of an eight-byte integer
(-9223372036854775808 to 9223372036854775807).

Greenplum Database Reference Guide Release Notes

1077

Although multiple sessions are guaranteed to allocate distinct sequence values, the values may be
generated out of sequence when all the sessions are considered. For example, session A might reserve
values 1..10 and return nextval=1, then session B might reserve values 11..20 and return nextval=11
before session A has generated nextval=2. Thus, you should only assume that the nextval() values
are all distinct, not that they are generated purely sequentially. Also, last_value will reflect the latest value
reserved by any session, whether or not it has yet been returned by nextval().

Examples
Create a sequence named myseq:

CREATE SEQUENCE myseq START 101;

Insert a row into a table that gets the next value of the sequence named idseq:

INSERT INTO distributors VALUES (nextval('idseq'), 'acme');

Reset the sequence counter value on the master:

SELECT setval('myseq', 201);

Illegal use of setval() in Greenplum Database (setting sequence values on distributed data):

INSERT INTO product VALUES (setval('myseq', 201), 'gizmo');

Compatibility
CREATE SEQUENCE conforms to the SQL standard, with the following exceptions:

• The AS data_type expression specified in the SQL standard is not supported.
• Obtaining the next value is done using the nextval() function instead of the NEXT VALUE FOR

expression specified in the SQL standard.
• The OWNED BY clause is a Greenplum Database extension.

See Also
ALTER SEQUENCE, DROP SEQUENCE

CREATE SERVER
Defines a new foreign server.

Synopsis

CREATE SERVER server_name [TYPE 'server_type'] [VERSION
 'server_version']
 FOREIGN DATA WRAPPER fdw_name
 [OPTIONS ([mpp_execute { 'master' | 'any' | 'all segments' }
 [,]] option 'value' [, ...])]

Description
CREATE SERVER defines a new foreign server. The user who defines the server becomes its owner.

A foreign server typically encapsulates connection information that a foreign-data wrapper uses to access
an external data source. Additional user-specific connection information may be specified by means of user
mappings.

Greenplum Database Reference Guide Release Notes

1078

Creating a server requires the USAGE privilege on the foreign-data wrapper specified.

Parameters
server_name

The name of the foreign server to create. The server name must be unique within the
database.

server_type

Optional server type, potentially useful to foreign-data wrappers.

server_version

Optional server version, potentially useful to foreign-data wrappers.

fdw_name

Name of the foreign-data wrapper that manages the server.

OPTIONS (option 'value' [, ...])

The options for the new foreign server. The options typically define the connection details
of the server, but the actual names and values are dependent upon the server's foreign-
data wrapper.

mpp_execute { 'master' | 'any' | 'all segments' }

An option that identifies the host from which the foreign data-wrapper requests data:

• master (the default)—Request data from the master host.
• any—Request data from either the master host or any one segment, depending on

which path costs less.
• all segments—Request data from all segments. To support this option value, the

foreign data-wrapper must have a policy that matches the segments to data.

The mpp_execute option can be specified in multiple commands: CREATE FOREIGN
TABLE, CREATE SERVER, and CREATE FOREIGN DATA WRAPPER. The foreign table
setting takes precedence over the foreign server setting, followed by the foreign data
wrapper setting.

Notes
When using the dblink module (see dblink), you can use the foreign server name as an argument of the
dblink_connect() function to provide the connection parameters. You must have the USAGE privilege
on the foreign server to use it in this manner.

Examples
Create a foreign server named myserver that uses the foreign-data wrapper named pgsql and includes
connection options:

CREATE SERVER myserver FOREIGN DATA WRAPPER pgsql
 OPTIONS (host 'foo', dbname 'foodb', port '5432');

Compatibility
CREATE SERVER conforms to ISO/IEC 9075-9 (SQL/MED).

See Also
ALTER SERVER, DROP SERVER, CREATE FOREIGN DATA WRAPPER, CREATE USER MAPPING

Greenplum Database Reference Guide Release Notes

1079

CREATE TABLE
Defines a new table.

Note: Referential integrity syntax (foreign key constraints) is accepted but not enforced.

Synopsis

CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT
 EXISTS]
 table_name (
 [{ column_name data_type [COLLATE collation] [column_constraint
 [...]]
[ENCODING (storage_directive [, ...])]
 | table_constraint
 | LIKE source_table [like_option ...] }
 | [column_reference_storage_directive [, ...]
 [, ...]
])
[INHERITS (parent_table [, ...])]
[WITH (storage_parameter [=value] [, ...])]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]
[DISTRIBUTED BY (column [opclass], [...])
 | DISTRIBUTED RANDOMLY | DISTRIBUTED REPLICATED]

{ --partitioned table using SUBPARTITION TEMPLATE
[PARTITION BY partition_type (column)
 { [SUBPARTITION BY partition_type (column1)
 SUBPARTITION TEMPLATE (template_spec)]
 [SUBPARTITION BY partition_type (column2)
 SUBPARTITION TEMPLATE (template_spec)]
 [...] }
 (partition_spec)]
} |

{ -- partitioned table without SUBPARTITION TEMPLATE
[PARTITION BY partition_type (column)
 [SUBPARTITION BY partition_type (column1)]
 [SUBPARTITION BY partition_type (column2)]
 [...]
 (partition_spec
 [(subpartition_spec_column1
 [(subpartition_spec_column2
 [...])])],
 [partition_spec
 [(subpartition_spec_column1
 [(subpartition_spec_column2
 [...])])],]
 [...]
)]
}

CREATE [[GLOBAL | LOCAL] {TEMPORARY | TEMP} | UNLOGGED] TABLE [IF NOT
 EXISTS]
 table_name
 OF type_name [(
 { column_name WITH OPTIONS [column_constraint [...]]
 | table_constraint }
 [, ...]
)]

Greenplum Database Reference Guide Release Notes

1080

[WITH (storage_parameter [=value] [, ...])]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL
 | NULL
 | CHECK (expression) [NO INHERIT]
 | DEFAULT default_expr
 | UNIQUE index_parameters
 | PRIMARY KEY index_parameters
 | REFERENCES reftable [(refcolumn)]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE key_action] [ON UPDATE key_action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) [NO INHERIT]
 | UNIQUE (column_name [, ...]) index_parameters
 | PRIMARY KEY (column_name [, ...]) index_parameters
 | FOREIGN KEY (column_name [, ...])
 REFERENCES reftable [(refcolumn [, ...])]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE key_action] [ON UPDATE key_action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and like_option is:

{INCLUDING|EXCLUDING} {DEFAULTS|CONSTRAINTS|INDEXES|STORAGE|COMMENTS|ALL}

and index_parameters in UNIQUE and PRIMARY KEY constraints are:

[WITH (storage_parameter [=value] [, ...])]
[USING INDEX TABLESPACE tablespace_name]

and storage_directive for a column is:

 compresstype={ZLIB|ZSTD|QUICKLZ|RLE_TYPE|NONE}
 [compresslevel={0-9}]
 [blocksize={8192-2097152}]

and storage_parameter for the table is:

 appendoptimized={TRUE|FALSE}
 blocksize={8192-2097152}
 orientation={COLUMN|ROW}
 checksum={TRUE|FALSE}
 compresstype={ZLIB|ZSTD|QUICKLZ|RLE_TYPE|NONE}
 compresslevel={0-9}
 fillfactor={10-100}
 [oids=FALSE]

and key_action is:

 ON DELETE
 | ON UPDATE
 | NO ACTION

Greenplum Database Reference Guide Release Notes

1081

 | RESTRICT
 | CASCADE
 | SET NULL
 | SET DEFAULT

and partition_type is:

 LIST | RANGE

and partition_specification is:

partition_element [, ...]

and partition_element is:

 DEFAULT PARTITION name
 | [PARTITION name] VALUES (list_value [,...])
 | [PARTITION name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]
 | [PARTITION name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]
[WITH (partition_storage_parameter=value [, ...])]
[column_reference_storage_directive [, ...]]
[TABLESPACE tablespace]

where subpartition_spec or template_spec is:

subpartition_element [, ...]

and subpartition_element is:

 DEFAULT SUBPARTITION name
 | [SUBPARTITION name] VALUES (list_value [,...])
 | [SUBPARTITION name]
 START ([datatype] 'start_value') [INCLUSIVE | EXCLUSIVE]
 [END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]
 | [SUBPARTITION name]
 END ([datatype] 'end_value') [INCLUSIVE | EXCLUSIVE]
 [EVERY ([datatype] [number | INTERVAL] 'interval_value')]
[WITH (partition_storage_parameter=value [, ...])]
[column_reference_storage_directive [, ...]]
[TABLESPACE tablespace]

where storage_parameter for a partition is:

 appendoptimized={TRUE|FALSE}
 blocksize={8192-2097152}
 orientation={COLUMN|ROW}
 checksum={TRUE|FALSE}
 compresstype={ZLIB|ZSTD|QUICKLZ|RLE_TYPE|NONE}
 compresslevel={1-19}
 fillfactor={10-100}
 [oids=FALSE]

Greenplum Database Reference Guide Release Notes

1082

Description
CREATE TABLE creates an initially empty table in the current database. The user who issues the
command owns the table.

To be able to create a table, you must have USAGE privilege on all column types or the type in the OF
clause, respectively.

If you specify a schema name, Greenplum creates the table in the specified schema. Otherwise
Greenplum creates the table in the current schema. Temporary tables exist in a special schema, so you
cannot specify a schema name when creating a temporary table. Table names must be distinct from the
name of any other table, external table, sequence, index, view, or foreign table in the same schema.

CREATE TABLE also automatically creates a data type that represents the composite type corresponding
to one row of the table. Therefore, tables cannot have the same name as any existing data type in the
same schema.

The optional constraint clauses specify conditions that new or updated rows must satisfy for an insert or
update operation to succeed. A constraint is an SQL object that helps define the set of valid values in
the table in various ways. Constraints apply to tables, not to partitions. You cannot add a constraint to a
partition or subpartition.

Referential integrity constraints (foreign keys) are accepted but not enforced. The information is kept in the
system catalogs but is otherwise ignored.

There are two ways to define constraints: table constraints and column constraints. A column constraint is
defined as part of a column definition. A table constraint definition is not tied to a particular column, and it
can encompass more than one column. Every column constraint can also be written as a table constraint;
a column constraint is only a notational convenience for use when the constraint only affects one column.

When creating a table, there is an additional clause to declare the Greenplum Database distribution
policy. If a DISTRIBUTED BY, DISTRIBUTED RANDOMLY, or DISTRIBUTED REPLICATED clause is
not supplied, then Greenplum Database assigns a hash distribution policy to the table using either the
PRIMARY KEY (if the table has one) or the first column of the table as the distribution key. Columns of
geometric or user-defined data types are not eligible as Greenplum distribution key columns. If a table
does not have a column of an eligible data type, the rows are distributed based on a round-robin or
random distribution. To ensure an even distribution of data in your Greenplum Database system, you
want to choose a distribution key that is unique for each record, or if that is not possible, then choose
DISTRIBUTED RANDOMLY.

If the DISTRIBUTED REPLICATED clause is supplied, Greenplum Database distributes all rows of the
table to all segments in the Greenplum Database system. This option can be used in cases where user-
defined functions must execute on the segments, and the functions require access to all rows of the table.
Replicated functions can also be used to improve query performance by preventing broadcast motions
for the table. The DISTRIBUTED REPLICATED clause cannot be used with the PARTITION BY clause
or the INHERITS clause. A replicated table also cannot be inherited by another table. The hidden system
columns (ctid, cmin, cmax, xmin, xmax, and gp_segment_id) cannot be referenced in user queries
on replicated tables because they have no single, unambiguous value. Greenplum Database returns a
column does not exist error for the query.

The PARTITION BY clause allows you to divide the table into multiple sub-tables (or parts) that,
taken together, make up the parent table and share its schema. Though the sub-tables exist as
independent tables, the Greenplum Database restricts their use in important ways. Internally, partitioning
is implemented as a special form of inheritance. Each child table partition is created with a distinct
CHECK constraint which limits the data the table can contain, based on some defining criteria. The CHECK
constraints are also used by the query optimizer to determine which table partitions to scan in order to
satisfy a given query predicate. These partition constraints are managed automatically by the Greenplum
Database.

Parameters
GLOBAL | LOCAL

Greenplum Database Reference Guide Release Notes

1083

These keywords are present for SQL standard compatibility, but have no effect in
Greenplum Database and are deprecated.

TEMPORARY | TEMP

If specified, the table is created as a temporary table. Temporary tables are automatically
dropped at the end of a session, or optionally at the end of the current transaction (see
ON COMMIT). Existing permanent tables with the same name are not visible to the current
session while the temporary table exists, unless they are referenced with schema-qualified
names. Any indexes created on a temporary table are automatically temporary as well.

UNLOGGED

If specified, the table is created as an unlogged table. Data written to unlogged tables
is not written to the write-ahead (WAL) log, which makes them considerably faster than
ordinary tables. However, the contents of an unlogged table are not replicated to mirror
segment instances. Also an unlogged table is not crash-safe. After a segment instance
crash or unclean shutdown, the data for the unlogged table on that segment is truncated.
Any indexes created on an unlogged table are automatically unlogged as well.

table_name

The name (optionally schema-qualified) of the table to be created.

OF type_name

Creates a typed table, which takes its structure from the specified composite type (name
optionally schema-qualified). A typed table is tied to its type; for example the table will be
dropped if the type is dropped (with DROP TYPE ... CASCADE).

When a typed table is created, the data types of the columns are determined by the
underlying composite type and are not specified by the CREATE TABLE command. But the
CREATE TABLE command can add defaults and constraints to the table and can specify
storage parameters.

column_name

The name of a column to be created in the new table.

data_type

The data type of the column. This may include array specifiers.

For table columns that contain textual data, Specify the data type VARCHAR or TEXT.
Specifying the data type CHAR is not recommended. In Greenplum Database, the data
types VARCHAR or TEXT handles padding added to the data (space characters added after
the last non-space character) as significant characters, the data type CHAR does not. See
Notes.

COLLATE collation

The COLLATE clause assigns a collation to the column (which must be of a collatable data
type). If not specified, the column data type's default collation is used.

Note: GPORCA supports collation only when all columns in the query use
the same collation. If columns in the query use different collations, then
Greenplum uses the Postgres Planner.

DEFAULT default_expr

The DEFAULT clause assigns a default data value for the column whose column definition
it appears within. The value is any variable-free expression (subqueries and cross-
references to other columns in the current table are not allowed). The data type of the
default expression must match the data type of the column. The default expression will
be used in any insert operation that does not specify a value for the column. If there is no
default for a column, then the default is null.

ENCODING (storage_directive [, ...])

Greenplum Database Reference Guide Release Notes

1084

For a column, the optional ENCODING clause specifies the type of compression and block
size for the column data. See storage_options for compresstype, compresslevel, and
blocksize values.

The clause is valid only for append-optimized, column-oriented tables.

Column compression settings are inherited from the table level to the partition level to the
subpartition level. The lowest-level settings have priority.

INHERITS (parent_table [, …])

The optional INHERITS clause specifies a list of tables from which the new table
automatically inherits all columns. Use of INHERITS creates a persistent relationship
between the new child table and its parent table(s). Schema modifications to the parent(s)
normally propagate to children as well, and by default the data of the child table is included
in scans of the parent(s).

In Greenplum Database, the INHERITS clause is not used when creating partitioned
tables. Although the concept of inheritance is used in partition hierarchies, the inheritance
structure of a partitioned table is created using the PARTITION BY clause.

If the same column name exists in more than one parent table, an error is reported unless
the data types of the columns match in each of the parent tables. If there is no conflict,
then the duplicate columns are merged to form a single column in the new table. If the
column name list of the new table contains a column name that is also inherited, the data
type must likewise match the inherited column(s), and the column definitions are merged
into one. If the new table explicitly specifies a default value for the column, this default
overrides any defaults from inherited declarations of the column. Otherwise, any parents
that specify default values for the column must all specify the same default, or an error will
be reported.

CHECK constraints are merged in essentially the same way as columns: if multiple
parent tables or the new table definition contain identically-named constraints,
these constraints must all have the same check expression, or an error will be reported.
Constraints having the same name and expression will be merged into one copy. A
constraint marked NO INHERIT in a parent will not be considered. Notice that an
unnamed CHECK constraint in the new table will never be merged, since a unique name
will always be chosen for it.

Column STORAGE settings are also copied from parent tables.

LIKE source_table like_option ...]

The LIKE clause specifies a table from which the new table automatically copies all
column names, their data types, not-null constraints, and distribution policy. Storage
properties like append-optimized or partition structure are not copied. Unlike INHERITS,
the new table and original table are completely decoupled after creation is complete.

Default expressions for the copied column definitions will only be copied if INCLUDING
DEFAULTS is specified. The default behavior is to exclude default expressions, resulting in
the copied columns in the new table having null defaults.

Not-null constraints are always copied to the new table. CHECK constraints will be copied
only if INCLUDING CONSTRAINTS is specified. No distinction is made between column
constraints and table constraints.

Indexes, PRIMARY KEY, and UNIQUE constraints on the original table will be created on
the new table only if the INCLUDING INDEXES clause is specified. Names for the new
indexes and constraints are chosen according to the default rules, regardless of how the
originals were named. (This behavior avoids possible duplicate-name failures for the new
indexes.)

Any indexes on the original table will not be created on the new table, unless the
INCLUDING INDEXES clause is specified.

Greenplum Database Reference Guide Release Notes

1085

STORAGE settings for the copied column definitions will be copied only if INCLUDING
STORAGE is specified. The default behavior is to exclude STORAGE settings, resulting in the
copied columns in the new table having type-specific default settings.

Comments for the copied columns, constraints, and indexes will be copied only if
INCLUDING COMMENTS is specified. The default behavior is to exclude comments,
resulting in the copied columns and constraints in the new table having no comments.

INCLUDING ALL is an abbreviated form of INCLUDING DEFAULTS INCLUDING
CONSTRAINTS INCLUDING INDEXES INCLUDING STORAGE INCLUDING COMMENTS.

Note that unlike INHERITS, columns and constraints copied by LIKE are not merged with
similarly named columns and constraints. If the same name is specified explicitly or in
another LIKE clause, an error is signaled.

The LIKE clause can also be used to copy columns from views, foreign tables, or
composite types. Inapplicable options (e.g., INCLUDING INDEXES from a view) are
ignored.

CONSTRAINT constraint_name

An optional name for a column or table constraint. If the constraint is violated, the
constraint name is present in error messages, so constraint names like column must be
positive can be used to communicate helpful constraint information to client applications.
(Double-quotes are needed to specify constraint names that contain spaces.) If a
constraint name is not specified, the system generates a name.

Note: The specified constraint_name is used for the constraint, but a system-
generated unique name is used for the index name. In some prior releases,
the provided name was used for both the constraint name and the index
name.

NULL | NOT NULL

Specifies if the column is or is not allowed to contain null values. NULL is the default.

CHECK (expression) [NO INHERIT]

The CHECK clause specifies an expression producing a Boolean result which new or
updated rows must satisfy for an insert or update operation to succeed. Expressions
evaluating to TRUE or UNKNOWN succeed. Should any row of an insert or update operation
produce a FALSE result an error exception is raised and the insert or update does not alter
the database. A check constraint specified as a column constraint should reference that
column's value only, while an expression appearing in a table constraint can reference
multiple columns.

A constraint marked with NO INHERIT will not propagate to child tables.

Currently, CHECK expressions cannot contain subqueries nor refer to variables other than
columns of the current row.

UNIQUE (column_constraint)
UNIQUE (column_name [, ...]) (table_constraint)

The UNIQUE constraint specifies that a group of one or more columns of a table may
contain only unique values. The behavior of the unique table constraint is the same as
that for column constraints, with the additional capability to span multiple columns. For the
purpose of a unique constraint, null values are not considered equal. The column(s) that
are unique must contain all the columns of the Greenplum distribution key. In addition, the
<key> must contain all the columns in the partition key if the table is partitioned. Note that
a <key> constraint in a partitioned table is not the same as a simple UNIQUE INDEX.

For information about unique constraint management and limitations, see Notes.

PRIMARY KEY (column constraint)
PRIMARY KEY (column_name [, ...]) (table constraint)

Greenplum Database Reference Guide Release Notes

1086

The PRIMARY KEY constraint specifies that a column or columns of a table may contain
only unique (non-duplicate), non-null values. Only one primary key can be specified for a
table, whether as a column constraint or a table constraint.

For a table to have a primary key, it must be hash distributed (not randomly distributed),
and the primary key, the column(s) that are unique, must contain all the columns of the
Greenplum distribution key. In addition, the <key> must contain all the columns in the
partition key if the table is partitioned. Note that a <key> constraint in a partitioned table is
not the same as a simple UNIQUE INDEX.

PRIMARY KEY enforces the same data constraints as a combination of UNIQUE and NOT
NULL, but identifying a set of columns as the primary key also provides metadata about the
design of the schema, since a primary key implies that other tables can rely on this set of
columns as a unique identifier for rows.

For information about primary key management and limitations, see Notes.

REFERENCES reftable [(refcolumn)]
[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
[ON DELETE | ON UPDATE] [key_action]
FOREIGN KEY (column_name [, ...])

The REFERENCES and FOREIGN KEY clauses specify referential integrity constraints
(foreign key constraints). Greenplum accepts referential integrity constraints as specified
in PostgreSQL syntax but does not enforce them. See the PostgreSQL documentation for
information about referential integrity constraints.

DEFERRABLE
NOT DEFERRABLE

The [NOT] DEFERRABLE clause controls whether the constraint can be deferred. A
constraint that is not deferrable will be checked immediately after every command.
Checking of constraints that are deferrable can be postponed until the end of the
transaction (using the SET CONSTRAINTS command). NOT DEFERRABLE is the default.
Currently, only UNIQUE and PRIMARY KEY constraints are deferrable. NOT NULL and
CHECK constraints are not deferrable. REFERENCES (foreign key) constraints accept this
clause but are not enforced.

INITIALLY IMMEDIATE
INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default time to check the constraint.
If the constraint is INITIALLY IMMEDIATE, it is checked after each statement. This is
the default. If the constraint is INITIALLY DEFERRED, it is checked only at the end of
the transaction. The constraint check time can be altered with the SET CONSTRAINTS
command.

WITH (storage_parameter=value)

The WITH clause can specify storage parameters for tables, and for indexes associated
with a UNIQUE or PRIMARY constraint. Note that you can also set storage parameters
on a particular partition or subpartition by declaring the WITH clause in the partition
specification. The lowest-level settings have priority.

The defaults for some of the table storage options can be specified with the server
configuration parameter gp_default_storage_options. For information about setting
default storage options, see Notes.

The following storage options are available:

appendoptimized — Set to TRUE to create the table as an append-optimized table. If
FALSE or not declared, the table will be created as a regular heap-storage table.

blocksize — Set to the size, in bytes, for each block in a table. The blocksize must be
between 8192 and 2097152 bytes, and be a multiple of 8192. The default is 32768.

Greenplum Database Reference Guide Release Notes

1087

orientation — Set to column for column-oriented storage, or row (the default) for row-
oriented storage. This option is only valid if appendoptimized=TRUE. Heap-storage
tables can only be row-oriented.

checksum — This option is valid only for append-optimized tables
(appendoptimized=TRUE). The value TRUE is the default and enables CRC checksum
validation for append-optimized tables. The checksum is calculated during block creation
and is stored on disk. Checksum validation is performed during block reads. If the
checksum calculated during the read does not match the stored checksum, the transaction
is aborted. If you set the value to FALSE to disable checksum validation, checking the table
data for on-disk corruption will not be performed.

compresstype — Set to ZLIB (the default), ZSTD, RLE_TYPE, or QUICKLZ1 to specify the
type of compression used. The value NONE disables compression. Zstd provides for both
speed or a good compression ratio, tunable with the compresslevel option. QuickLZ and
zlib are provided for backwards-compatibility. Zstd outperforms these compression types
on usual workloads. The compresstype option is only valid if appendoptimized=TRUE.

Note: 1QuickLZ compression is available only in the commercial release of
Pivotal Greenplum Database.

The value RLE_TYPE, which is supported only if orientation=column is specified,
enables the run-length encoding (RLE) compression algorithm. RLE compresses data
better than the Zstd, zlib, or QuickLZ compression algorithms when the same data value
occurs in many consecutive rows.

For columns of type BIGINT, INTEGER, DATE, TIME, or TIMESTAMP, delta compression
is also applied if the compresstype option is set to RLE_TYPE compression. The delta
compression algorithm is based on the delta between column values in consecutive
rows and is designed to improve compression when data is loaded in sorted order or the
compression is applied to column data that is in sorted order.

For information about using table compression, see "Choosing the Table Storage Model" in
the Greenplum Database Administrator Guide.

compresslevel — For Zstd compression of append-optimized tables, set to an integer
value from 1 (fastest compression) to 19 (highest compression ratio). For zlib compression,
the valid range is from 1 to 9. QuickLZ compression level can only be set to 1. If not
declared, the default is 1. For RLE_TYPE, the compression level can be an integer value
from 1 (fastest compression) to 4 (highest compression ratio).

The compresslevel option is valid only if appendoptimized=TRUE.

fillfactor — The fillfactor for a table is a percentage between 10 and 100. 100 (complete
packing) is the default. When a smaller fillfactor is specified, INSERT operations pack table
pages only to the indicated percentage; the remaining space on each page is reserved for
updating rows on that page. This gives UPDATE a chance to place the updated copy of a
row on the same page as the original, which is more efficient than placing it on a different
page. For a table whose entries are never updated, complete packing is the best choice,
but in heavily updated tables smaller fillfactors are appropriate. This parameter cannot be
set for TOAST tables.

oids=FALSE — This setting is the default, and it ensures that rows do not have object
identifiers assigned to them. Pivotal does not support using WITH OIDS or oids=TRUE
to assign an OID system column. On large tables, such as those in a typical Greenplum
Database system, using OIDs for table rows can cause wrap-around of the 32-bit OID
counter. Once the counter wraps around, OIDs can no longer be assumed to be unique,
which not only makes them useless to user applications, but can also cause problems in
the Greenplum Database system catalog tables. In addition, excluding OIDs from a table
reduces the space required to store the table on disk by 4 bytes per row, slightly improving
performance. You cannot create OIDS on a partitioned or column-oriented table (an

Greenplum Database Reference Guide Release Notes

1088

error is displayed). This syntax is deprecated and will be removed in a future Greenplum
release.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled using
ON COMMIT. The three options are:

PRESERVE ROWS - No special action is taken at the ends of transactions for temporary
tables. This is the default behavior.

DELETE ROWS - All rows in the temporary table will be deleted at the end of each
transaction block. Essentially, an automatic TRUNCATE is done at each commit.

DROP - The temporary table will be dropped at the end of the current transaction block.

TABLESPACE tablespace

The name of the tablespace in which the new table is to be created. If not specified, the
database's default tablespace is used, or temp_tablespaces if the table is temporary.

USING INDEX TABLESPACE tablespace

This clause allows selection of the tablespace in which the index associated with a
UNIQUE or PRIMARY KEY constraint will be created. If not specified, the database's default
tablespace is used, or temp_tablespaces if the table is temporary.

DISTRIBUTED BY (column [opclass], [...])
DISTRIBUTED RANDOMLY
DISTRIBUTED REPLICATED

Used to declare the Greenplum Database distribution policy for the table. DISTRIBUTED
BY uses hash distribution with one or more columns declared as the distribution key.
For the most even data distribution, the distribution key should be the primary key of the
table or a unique column (or set of columns). If that is not possible, then you may choose
DISTRIBUTED RANDOMLY, which will send the data round-robin to the segment instances.
Additionally, an operator class, opclass, can be specified, to use a non-default hash
function.

The Greenplum Database server configuration parameter
gp_create_table_random_default_distribution controls the default table
distribution policy if the DISTRIBUTED BY clause is not specified when you create a table.
Greenplum Database follows these rules to create a table if a distribution policy is not
specified.

If the value of the parameter is off (the default), Greenplum Database chooses the table
distribution key based on the command:

• If a LIKE or INHERITS clause is specified, then Greenplum copies the distribution key
from the source or parent table.

• If a PRIMARY KEY or UNIQUE constraints are specified, then Greenplum chooses the
largest subset of all the key columns as the distribution key.

• If neither constraints nor a LIKE or INHERITS clause is specified, then Greenplum
chooses the first suitable column as the distribution key. (Columns with geometric or
user-defined data types are not eligible as Greenplum distribution key columns.)

If the value of the parameter is set to on, Greenplum Database follows these rules:

• If PRIMARY KEY or UNIQUE columns are not specified, the distribution of the table is
random (DISTRIBUTED RANDOMLY). Table distribution is random even if the table
creation command contains the LIKE or INHERITS clause.

• If PRIMARY KEY or UNIQUE columns are specified, a DISTRIBUTED BY clause must
also be specified. If a DISTRIBUTED BY clause is not specified as part of the table
creation command, the command fails.

Greenplum Database Reference Guide Release Notes

1089

For more information about setting the default table distribution policy, see
gp_create_table_random_default_distribution.

The DISTRIBUTED REPLICATED clause replicates the entire table to all Greenplum
Database segment instances. It can be used when it is necessary to execute user-defined
functions on segments when the functions require access to all rows in the table, or to
improve query performance by preventing broadcast motions.

PARTITION BY

Declares one or more columns by which to partition the table.

When creating a partitioned table, Greenplum Database creates the root partitioned table
(the root partition) with the specified table name. Greenplum Database also creates a
hierarchy of tables, child tables, that are the subpartitions based on the partitioning options
that you specify. The Greenplum Database pg_partition* system views contain information
about the subpartition tables.

For each partition level (each hierarchy level of tables), a partitioned table can have a
maximum of 32,767 partitions.

Note: Greenplum Database stores partitioned table data in the leaf child
tables, the lowest-level tables in the hierarchy of child tables for use by the
partitioned table.

partition_type

Declares partition type: LIST (list of values) or RANGE (a numeric or date range).

partition_specification

Declares the individual partitions to create. Each partition can be defined individually or, for
range partitions, you can use the EVERY clause (with a START and optional END clause) to
define an increment pattern to use to create the individual partitions.

DEFAULT PARTITION name — Declares a default partition. When data does not match
to an existing partition, it is inserted into the default partition. Partition designs that do not
have a default partition will reject incoming rows that do not match to an existing partition.

PARTITION name — Declares a name to use for the partition. Partitions are created using
the following naming convention: parentname_level#_prt_givenname.

VALUES — For list partitions, defines the value(s) that the partition will contain.

START — For range partitions, defines the starting range value for the partition. By default,
start values are INCLUSIVE. For example, if you declared a start date of '2016-01-01',
then the partition would contain all dates greater than or equal to '2016-01-01'. Typically
the data type of the START expression is the same type as the partition key column. If that
is not the case, then you must explicitly cast to the intended data type.

END — For range partitions, defines the ending range value for the partition. By default,
end values are EXCLUSIVE. For example, if you declared an end date of '2016-02-01',
then the partition would contain all dates less than but not equal to '2016-02-01'.
Typically the data type of the END expression is the same type as the partition key column.
If that is not the case, then you must explicitly cast to the intended data type.

EVERY — For range partitions, defines how to increment the values from START to END to
create individual partitions. Typically the data type of the EVERY expression is the same
type as the partition key column. If that is not the case, then you must explicitly cast to the
intended data type.

WITH — Sets the table storage options for a partition. For example, you may want older
partitions to be append-optimized tables and newer partitions to be regular heap tables.

TABLESPACE — The name of the tablespace in which the partition is to be created.

SUBPARTITION BY

Greenplum Database Reference Guide Release Notes

1090

Declares one or more columns by which to subpartition the first-level partitions of the table.
The format of the subpartition specification is similar to that of a partition specification
described above.

SUBPARTITION TEMPLATE

Instead of declaring each subpartition definition individually for each partition, you can
optionally declare a subpartition template to be used to create the subpartitions (lower level
child tables). This subpartition specification would then apply to all parent partitions.

Notes
• In Greenplum Database (a Postgres-based system) the data types VARCHAR or TEXT handle padding

added to the textual data (space characters added after the last non-space character) as significant
characters; the data type CHAR does not.

In Greenplum Database, values of type CHAR(n) are padded with trailing spaces to the specified width
n. The values are stored and displayed with the spaces. However, the padding spaces are treated as
semantically insignificant. When the values are distributed, the trailing spaces are disregarded. The
trailing spaces are also treated as semantically insignificant when comparing two values of data type
CHAR, and the trailing spaces are removed when converting a character value to one of the other string
types.

• Pivotal does not support using WITH OIDS or oids=TRUE to assign an OID system column. This
syntax is deprecated and will be removed in a future Greenplum release. As an alternative, use a
SERIAL or other sequence generator as the table's primary key. However, if your application does
make use of OIDs to identify specific rows of a table, it is recommended to create a unique constraint
on the OID column of that table, to ensure that OIDs in the table will indeed uniquely identify rows even
after counter wrap-around. Avoid assuming that OIDs are unique across tables; if you need a database-
wide unique identifier, use the combination of table OID and row OID for that purpose.

• Greenplum Database has some special conditions for primary key and unique constraints with regards
to columns that are the distribution key in a Greenplum table. For a unique constraint to be enforced
in Greenplum Database, the table must be hash-distributed (not DISTRIBUTED RANDOMLY), and the
constraint columns must be the same as (or a superset of) the table's distribution key columns.

Replicated tables (DISTRIBUTED REPLICATED) can have both PRIMARY KEY and UNIQUEcolumn
constraints.

A primary key constraint is simply a combination of a unique constraint and a not-null constraint.

Greenplum Database automatically creates a UNIQUE index for each UNIQUE or PRIMARY KEY
constraint to enforce uniqueness. Thus, it is not necessary to create an index explicitly for primary key
columns. UNIQUE and PRIMARY KEY constraints are not allowed on append-optimized tables because
the UNIQUE indexes that are created by the constraints are not allowed on append-optimized tables.

Foreign key constraints are not supported in Greenplum Database.

For inherited tables, unique constraints, primary key constraints, indexes and table privileges are not
inherited in the current implementation.

• For append-optimized tables, UPDATE and DELETE are not allowed in a repeatable read or serializable
transaction and will cause the transaction to abort. CLUSTER, DECLARE...FOR UPDATE, and triggers
are not supported with append-optimized tables.

• To insert data into a partitioned table, you specify the root partitioned table, the table created with the
CREATE TABLE command. You also can specify a leaf child table of the partitioned table in an INSERT
command. An error is returned if the data is not valid for the specified leaf child table. Specifying a child
table that is not a leaf child table in the INSERT command is not supported. Execution of other DML
commands such as UPDATE and DELETE on any child table of a partitioned table is not supported.
These commands must be executed on the root partitioned table, the table created with the CREATE
TABLE command.

• The default values for these table storage options can be specified with the server configuration
parameter gp_default_storage_option.

Greenplum Database Reference Guide Release Notes

1091

• appendoptimized

• blocksize

• checksum

• compresstype

• compresslevel

• orientation

The defaults can be set for the system, a database, or a user. For information about setting storage
options, see the server configuration parameter gp_default_storage_options.

Important: The current Postgres Planner allows list partitions with multi-column (composite)
partition keys. GPORCA does not support composite keys, so using composite partition keys is not
recommended.

Examples
Create a table named rank in the schema named baby and distribute the data using the columns rank,
gender, and year:

CREATE TABLE baby.rank (id int, rank int, year smallint,
gender char(1), count int) DISTRIBUTED BY (rank, gender,
year);

Create table films and table distributors (the primary key will be used as the Greenplum distribution key by
default):

CREATE TABLE films (
code char(5) CONSTRAINT firstkey PRIMARY KEY,
title varchar(40) NOT NULL,
did integer NOT NULL,
date_prod date,
kind varchar(10),
len interval hour to minute
);

CREATE TABLE distributors (
did integer PRIMARY KEY DEFAULT nextval('serial'),
name varchar(40) NOT NULL CHECK (name <> '')
);

Create a gzip-compressed, append-optimized table:

CREATE TABLE sales (txn_id int, qty int, date date)
WITH (appendoptimized=true, compresslevel=5)
DISTRIBUTED BY (txn_id);

Create a simple, single level partitioned table:

CREATE TABLE sales (id int, year int, qtr int, c_rank int, code char(1),
 region text)
DISTRIBUTED BY (id)
PARTITION BY LIST (code)
(PARTITION sales VALUES ('S'),
 PARTITION returns VALUES ('R')
);

Greenplum Database Reference Guide Release Notes

1092

Create a three level partitioned table that defines subpartitions without the SUBPARTITION TEMPLATE
clause:

CREATE TABLE sales (id int, year int, qtr int, c_rank int, code char(1),
 region text)
DISTRIBUTED BY (id)
PARTITION BY LIST (code)
 SUBPARTITION BY RANGE (c_rank)
 SUBPARTITION by LIST (region)

(PARTITION sales VALUES ('S')
 (SUBPARTITION cr1 START (1) END (2)
 (SUBPARTITION ca VALUES ('CA')),
 SUBPARTITION cr2 START (3) END (4)
 (SUBPARTITION ca VALUES ('CA'))),

 PARTITION returns VALUES ('R')
 (SUBPARTITION cr1 START (1) END (2)
 (SUBPARTITION ca VALUES ('CA')),
 SUBPARTITION cr2 START (3) END (4)
 (SUBPARTITION ca VALUES ('CA')))
);

Create the same partitioned table as the previous table using the SUBPARTITION TEMPLATE clause:

CREATE TABLE sales1 (id int, year int, qtr int, c_rank int, code char(1),
 region text)
DISTRIBUTED BY (id)
PARTITION BY LIST (code)

 SUBPARTITION BY RANGE (c_rank)
 SUBPARTITION TEMPLATE (
 SUBPARTITION cr1 START (1) END (2),
 SUBPARTITION cr2 START (3) END (4))

 SUBPARTITION BY LIST (region)
 SUBPARTITION TEMPLATE (
 SUBPARTITION ca VALUES ('CA'))

(PARTITION sales VALUES ('S'),
 PARTITION returns VALUES ('R')
) ;

Create a three level partitioned table using subpartition templates and default partitions at each level:

CREATE TABLE sales (id int, year int, qtr int, c_rank int, code char(1),
 region text)
DISTRIBUTED BY (id)
PARTITION BY RANGE (year)

 SUBPARTITION BY RANGE (qtr)
 SUBPARTITION TEMPLATE (
 START (1) END (5) EVERY (1),
 DEFAULT SUBPARTITION bad_qtr)

 SUBPARTITION BY LIST (region)
 SUBPARTITION TEMPLATE (
 SUBPARTITION usa VALUES ('usa'),
 SUBPARTITION europe VALUES ('europe'),
 SUBPARTITION asia VALUES ('asia'),
 DEFAULT SUBPARTITION other_regions)

Greenplum Database Reference Guide Release Notes

1093

(START (2009) END (2011) EVERY (1),
 DEFAULT PARTITION outlying_years);

Compatibility
CREATE TABLE command conforms to the SQL standard, with the following exceptions:

• Temporary Tables — In the SQL standard, temporary tables are defined just once and automatically
exist (starting with empty contents) in every session that needs them. Greenplum Database instead
requires each session to issue its own CREATE TEMPORARY TABLE command for each temporary
table to be used. This allows different sessions to use the same temporary table name for different
purposes, whereas the standard's approach constrains all instances of a given temporary table name to
have the same table structure.

The standard's distinction between global and local temporary tables is not in Greenplum Database.
Greenplum Database will accept the GLOBAL and LOCAL keywords in a temporary table declaration, but
they have no effect and are deprecated.

If the ON COMMIT clause is omitted, the SQL standard specifies that the default behavior as ON
COMMIT DELETE ROWS. However, the default behavior in Greenplum Database is ON COMMIT
PRESERVE ROWS. The ON COMMIT DROP option does not exist in the SQL standard.

• Column Check Constraints — The SQL standard says that CHECK column constraints may only refer
to the column they apply to; only CHECK table constraints may refer to multiple columns. Greenplum
Database does not enforce this restriction; it treats column and table check constraints alike.

• NULL Constraint — The NULL constraint is a Greenplum Database extension to the SQL standard that
is included for compatibility with some other database systems (and for symmetry with the NOT NULL
constraint). Since it is the default for any column, its presence is not required.

• Inheritance — Multiple inheritance via the INHERITS clause is a Greenplum Database language
extension. SQL:1999 and later define single inheritance using a different syntax and different
semantics. SQL:1999-style inheritance is not yet supported by Greenplum Database.

• Partitioning — Table partitioning via the PARTITION BY clause is a Greenplum Database language
extension.

• Zero-column tables — Greenplum Database allows a table of no columns to be created (for example,
CREATE TABLE foo();). This is an extension from the SQL standard, which does not allow zero-
column tables. Zero-column tables are not in themselves very useful, but disallowing them creates odd
special cases for ALTER TABLE DROP COLUMN, so Greenplum decided to ignore this spec restriction.

• LIKE — While a LIKE clause exists in the SQL standard, many of the options that Greenplum
Database accepts for it are not in the standard, and some of the standard's options are not
implemented by Greenplum Database.

• WITH clause — The WITH clause is a Greenplum Database extension; neither storage parameters nor
OIDs are in the standard.

• Tablespaces — The Greenplum Database concept of tablespaces is not part of the SQL standard. The
clauses TABLESPACE and USING INDEX TABLESPACE are extensions.

• Data Distribution — The Greenplum Database concept of a parallel or distributed database is not part
of the SQL standard. The DISTRIBUTED clauses are extensions.

See Also
ALTER TABLE, DROP TABLE, CREATE EXTERNAL TABLE, CREATE TABLE AS

CREATE TABLE AS
Defines a new table from the results of a query.

Greenplum Database Reference Guide Release Notes

1094

Synopsis

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED]
 TABLE table_name
 [(column_name [, ...])]
 [WITH (storage_parameter [= value] [, ...]) | WITHOUT OIDS]
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
 [TABLESPACE tablespace_name]
 AS query
 [WITH [NO] DATA]
 [DISTRIBUTED BY (column [, ...]) | DISTRIBUTED RANDOMLY |
 DISTRIBUTED REPLICATED]

where storage_parameter is:

 appendoptimized={TRUE|FALSE}
 blocksize={8192-2097152}
 orientation={COLUMN|ROW}
 compresstype={ZLIB|ZSTD|QUICKLZ}
 compresslevel={1-19 | 1}
 fillfactor={10-100}
 [oids=FALSE]

Description
CREATE TABLE AS creates a table and fills it with data computed by a SELECT command. The table
columns have the names and data types associated with the output columns of the SELECT, however you
can override the column names by giving an explicit list of new column names.

CREATE TABLE AS creates a new table and evaluates the query just once to fill the new table initially. The
new table will not track subsequent changes to the source tables of the query.

Parameters
GLOBAL | LOCAL

Ignored for compatibility. These keywords are deprecated; refer to CREATE TABLE for
details.

TEMPORARY | TEMP

If specified, the new table is created as a temporary table. Temporary tables are
automatically dropped at the end of a session, or optionally at the end of the current
transaction (see ON COMMIT). Existing permanent tables with the same name are not
visible to the current session while the temporary table exists, unless they are referenced
with schema-qualified names. Any indexes created on a temporary table are automatically
temporary as well.

UNLOGGED

If specified, the table is created as an unlogged table. Data written to unlogged tables
is not written to the write-ahead (WAL) log, which makes them considerably faster than
ordinary tables. However, the contents of an unlogged table are not replicated to mirror
segment instances. Also an unlogged table is not crash-safe. After a segment instance
crash or unclean shutdown, the data for the unlogged table on that segment is truncated.
Any indexes created on an unlogged table are automatically unlogged as well.

table_name

The name (optionally schema-qualified) of the new table to be created.

column_name

Greenplum Database Reference Guide Release Notes

1095

The name of a column in the new table. If column names are not provided, they are taken
from the output column names of the query.

WITH (storage_parameter=value)

The WITH clause can be used to set storage options for the table or its indexes. Note that
you can also set different storage parameters on a particular partition or subpartition by
declaring the WITH clause in the partition specification. The following storage options are
available:

appendoptimized — Set to TRUE to create the table as an append-optimized table. If
FALSE or not declared, the table will be created as a regular heap-storage table.

blocksize — Set to the size, in bytes for each block in a table. The blocksize must be
between 8192 and 2097152 bytes, and be a multiple of 8192. The default is 32768.

orientation — Set to column for column-oriented storage, or row (the default) for row-
oriented storage. This option is only valid if appendoptimized=TRUE. Heap-storage
tables can only be row-oriented.

compresstype — Set to ZLIB (the default), ZSTD, or QUICKLZ1 to specify the type of
compression used. The value NONE disables compression. Zstd provides for both speed or
a good compression ratio, tunable with the compresslevel option. QuickLZ and zlib are
provided for backwards-compatibility. Zstd outperforms these compression types on usual
workloads. The compresstype option is valid only if appendoptimized=TRUE.

Note: 1QuickLZ compression is available only in the commercial release of
Pivotal Greenplum Database.

compresslevel — For Zstd compression of append-optimized tables, set to an
integer value from 1 (fastest compression) to 19 (highest compression ratio). For zlib
compression, the valid range is from 1 to 9. QuickLZ compression level can only be
set to 1. If not declared, the default is 1. The compresslevel option is valid only if
appendoptimized=TRUE.

fillfactor — See CREATE INDEX for more information about this index storage parameter.

oids=FALSE — This setting is the default, and it ensures that rows do not have object
identifiers assigned to them. Pivotal does not support using WITH OIDS or oids=TRUE
to assign an OID system column. On large tables, such as those in a typical Greenplum
Database system, using OIDs for table rows can cause wrap-around of the 32-bit OID
counter. Once the counter wraps around, OIDs can no longer be assumed to be unique,
which not only makes them useless to user applications, but can also cause problems in
the Greenplum Database system catalog tables. In addition, excluding OIDs from a table
reduces the space required to store the table on disk by 4 bytes per row, slightly improving
performance. You cannot create OIDS on a partitioned or column-oriented table (an
error is displayed). This syntax is deprecated and will be removed in a future Greenplum
release.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled using
ON COMMIT. The three options are:

PRESERVE ROWS — No special action is taken at the ends of transactions for temporary
tables. This is the default behavior.

DELETE ROWS — All rows in the temporary table will be deleted at the end of each
transaction block. Essentially, an automatic TRUNCATE is done at each commit.

DROP — The temporary table will be dropped at the end of the current transaction block.

TABLESPACE tablespace_name

Greenplum Database Reference Guide Release Notes

1096

The tablespace_name parameter is the name of the tablespace in which the new
table is to be created. If not specified, the database's default tablespace is used, or
temp_tablespaces if the table is temporary.

AS query

A SELECT, TABLE, or VALUES command, or an EXECUTE command that runs a prepared
SELECT or VALUES query.

DISTRIBUTED BY ({column [opclass]}, [...])
DISTRIBUTED RANDOMLY
DISTRIBUTED REPLICATED

Used to declare the Greenplum Database distribution policy for the table. DISTRIBUTED
BY uses hash distribution with one or more columns declared as the distribution key.
For the most even data distribution, the distribution key should be the primary key of the
table or a unique column (or set of columns). If that is not possible, then you may choose
DISTRIBUTED RANDOMLY, which will send the data round-robin to the segment instances.

DISTRIBUTED REPLICATED replicates all rows in the table to all Greenplum Database
segments. It cannot be used with partitioned tables or with tables that inhert from other
tables.

The Greenplum Database server configuration parameter
gp_create_table_random_default_distribution controls the default table
distribution policy if the DISTRIBUTED BY clause is not specified when you create a table.
Greenplum Database follows these rules to create a table if a distribution policy is not
specified.

• If the Postgres Planner creates the table, and the value of the parameter is off, the
table distribution policy is determined based on the command.

• If the Postgres Planner creates the table, and the value of the parameter is on, the
table distribution policy is random.

• If GPORCA creates the table, the table distribution policy is random. The parameter
value has no effect.

For more information about setting the default table distribution policy, see
gp_create_table_random_default_distribution. For information about
the Postgres Planner and GPORCA, see Querying Data in the Greenplum Database
Administrator Guide.

Notes
This command is functionally similar to SELECT INTO, but it is preferred since it is less likely to be
confused with other uses of the SELECT INTO syntax. Furthermore, CREATE TABLE AS offers a superset
of the functionality offered by SELECT INTO.

CREATE TABLE AS can be used for fast data loading from external table data sources. See CREATE
EXTERNAL TABLE.

Examples
Create a new table films_recent consisting of only recent entries from the table films:

CREATE TABLE films_recent AS SELECT * FROM films WHERE
date_prod >= '2007-01-01';

Create a new temporary table films_recent, consisting of only recent entries from the table films, using
a prepared statement. The new table will be dropped at commit:

PREPARE recentfilms(date) AS SELECT * FROM films WHERE
date_prod > $1;

Greenplum Database Reference Guide Release Notes

1097

CREATE TEMP TABLE films_recent ON COMMIT DROP AS
EXECUTE recentfilms('2007-01-01');

Compatibility
CREATE TABLE AS conforms to the SQL standard, with the following exceptions:

• The standard requires parentheses around the subquery clause; in Greenplum Database, these
parentheses are optional.

• The standard defines a WITH [NO] DATA clause; this is not currently implemented by Greenplum
Database. The behavior provided by Greenplum Database is equivalent to the standard's WITH DATA
case. WITH NO DATA can be simulated by appending LIMIT 0 to the query.

• Greenplum Database handles temporary tables differently from the standard; see CREATE TABLE for
details.

• The WITH clause is a Greenplum Database extension; neither storage parameters nor OIDs are in the
standard. The syntax for creating OID system columns is deprecated and will be removed in a future
Greenplum release.

• The Greenplum Database concept of tablespaces is not part of the standard. The TABLESPACE clause
is an extension.

See Also
CREATE EXTERNAL TABLE, CREATE EXTERNAL TABLE, EXECUTE, SELECT, SELECT INTO, VALUES

CREATE TABLESPACE
Defines a new tablespace.

Synopsis

CREATE TABLESPACE tablespace_name [OWNER username] LOCATION '/path/to/dir'
 [WITH (contentID_1='/path/to/dir1'[, contentID_2='/path/to/dir2' ...])]

Description
CREATE TABLESPACE registers and configures a new tablespace for your Greenplum Database system.
The tablespace name must be distinct from the name of any existing tablespace in the system. A
tablespace is a Greenplum Database system object (a global object), you can use a tablespace from any
database if you have appropriate privileges.

A tablespace allows superusers to define an alternative host file system location where the data files
containing database objects (such as tables and indexes) reside.

A user with appropriate privileges can pass a tablespace name to CREATE DATABASE, CREATE TABLE,
or CREATE INDEX to have the data files for these objects stored within the specified tablespace.

In Greenplum Database, the file system location must exist on all hosts including the hosts running the
master, standby mirror, each primary segment, and each mirror segment.

Parameters
tablespacename

The name of a tablespace to be created. The name cannot begin with pg_ or gp_, as such
names are reserved for system tablespaces.

OWNER username

Greenplum Database Reference Guide Release Notes

1098

The name of the user who will own the tablespace. If omitted, defaults to the user
executing the command. Only superusers can create tablespaces, but they can assign
ownership of tablespaces to non-superusers.

LOCATION '/path/to/dir'

The absolute path to the directory (host system file location) that will be the root directory
for the tablespace. When registering a tablepace, the directory should be empty and must
be owned by the Greenplum Database system user. The directory must be specified by
an absolute path name of no more than 100 characters. (The location is used to create
a symlink target in the pg_tblspc directory, and symlink targets are truncated to 100
characters when sending to tar from utilities such as pg_basebackup.)

For each segment instance, you can specify a different directory for the tablespace in the
WITH clause.

contentID_i='/path/to/dir_i'

The value ID_i is the content ID for the segment instance. /path/to/dir_i is the absolute path
to the host system file location that the segment instance uses as the root directory for the
tablespace. You cannot specify the content ID of the master instance (-1). You can specify
the same directory for multiple segments.

If a segment instance is not listed in the WITH clause, Greenplum Database uses the
directory specified in the LOCATION clause.

When registering a tablepace, the directories should be empty and must be owned by the
Greenplum Database system user. Each directory must be specified by an absolute path
name of no more than 100 characters.

Notes
Tablespaces are only supported on systems that support symbolic links.

CREATE TABLESPACE cannot be executed inside a transaction block.

When creating tablespaces, ensure that file system locations have sufficient I/O speed and available disk
space.

CREATE TABLESPACE creates symbolic links from the pg_tblspc directory in the master and segment
instance data directory to the directories specified in the command.

The system catalog table pg_tablespace stores tablespace information. This command displays the
tablespace OID values, names, and owner.

SELECT oid, spcname, spcowner FROM pg_tablespace ;

The Greenplum Database built-in function gp_tablespace_location(tablespace_oid) displays the
tablespace host system file locations for all segment instances. This command lists the segment database
IDs and host system file locations for the tablespace with OID 16385.

SELECT * FROM gp_tablespace_location(16385)

Examples
Create a new tablespace and specify the file system location for the master and all segment instances:

CREATE TABLESPACE mytblspace LOCATION '/gpdbtspc/mytestspace' ;

Greenplum Database Reference Guide Release Notes

1099

Create a new tablespace and specify a location for segment instances with content ID 0 and 1. For the
master and segment instances not listed in the WITH clause, the file system location for the tablespace is
specified in the LOCATION clause.

CREATE TABLESPACE mytblspace LOCATION '/gpdbtspc/mytestspace' WITH
 (content0='/temp/mytest', content1='/temp/mytest');

The example specifies the same location for the two segment instances. You can a specify different
location for each segment.

Compatibility
CREATE TABLESPACE is a Greenplum Database extension.

See Also
CREATE DATABASE, CREATE TABLE, CREATE INDEX, DROP TABLESPACE, ALTER TABLESPACE

CREATE TEXT SEARCH CONFIGURATION
Defines a new text search configuration.

Synopsis

CREATE TEXT SEARCH CONFIGURATION name (
 PARSER = parser_name |
 COPY = source_config
)

Description
CREATE TEXT SEARCH CONFIGURATION creates a new text search configuration. A text search
configuration specifies a text search parser that can divide a string into tokens, plus dictionaries that can be
used to determine which tokens are of interest for searching.

If only the parser is specified, then the new text search configuration initially has no mappings from
token types to dictionaries, and therefore will ignore all words. Subsequent ALTER TEXT SEARCH
CONFIGURATION commands must be used to create mappings to make the configuration useful.
Alternatively, an existing text search configuration can be copied.

If a schema name is given then the text search configuration is created in the specified schema. Otherwise
it is created in the current schema.

The user who defines a text search configuration becomes its owner.

Refer to Using Full Text Search for further information.

Parameters
name

The name of the text search configuration to be created. The name can be schema-
qualified.

parser_name

The name of the text search parser to use for this configuration.

source_config

The name of an existing text search configuration to copy.

Greenplum Database Reference Guide Release Notes

1100

Notes
The PARSER and COPY options are mutually exclusive, because when an existing configuration is copied,
its parser selection is copied too.

Compatibility
There is no CREATE TEXT SEARCH CONFIGURATION statement in the SQL standard.

See Also
ALTER TEXT SEARCH CONFIGURATION, DROP TEXT SEARCH CONFIGURATION

CREATE TEXT SEARCH DICTIONARY
Defines a new text search dictionary.

Synopsis

CREATE TEXT SEARCH DICTIONARY name (
 TEMPLATE = template
 [, option = value [, ...]]
)

Description
CREATE TEXT SEARCH DICTIONARY creates a new text search dictionary. A text search dictionary
specifies a way of recognizing interesting or uninteresting words for searching. A dictionary depends on a
text search template, which specifies the functions that actually perform the work. Typically the dictionary
provides some options that control the detailed behavior of the template's functions.

If a schema name is given then the text search dictionary is created in the specified schema. Otherwise it
is created in the current schema.

The user who defines a text search dictionary becomes its owner.

Refer to Using Full Text Search for further information.

Parameters
name

The name of the text search dictionary to be created. The name can be schema-qualified.

template

The name of the text search template that will define the basic behavior of this dictionary.

option

The name of a template-specific option to be set for this dictionary.

value

The value to use for a template-specific option. If the value is not a simple identifier or
number, it must be quoted (but you can always quote it, if you wish).

The options can appear in any order.

Examples
The following example command creates a Snowball-based dictionary with a nonstandard list of stop
words.

CREATE TEXT SEARCH DICTIONARY my_russian (

Greenplum Database Reference Guide Release Notes

1101

 template = snowball,
 language = russian,
 stopwords = myrussian
);

Compatibility
There is no CREATE TEXT SEARCH DICTIONARY statement in the SQL standard.

See Also
ALTER TEXT SEARCH DICTIONARY, DROP TEXT SEARCH DICTIONARY

CREATE TEXT SEARCH PARSER

Description
Defines a new text search parser.

Synopsis

CREATE TEXT SEARCH PARSER name (
 START = start_function ,
 GETTOKEN = gettoken_function ,
 END = end_function ,
 LEXTYPES = lextypes_function
 [, HEADLINE = headline_function]
)

Description
CREATE TEXT SEARCH PARSER creates a new text search parser. A text search parser defines a
method for splitting a text string into tokens and assigning types (categories) to the tokens. A parser is not
particularly useful by itself, but must be bound into a text search configuration along with some text search
dictionaries to be used for searching.

If a schema name is given then the text search parser is created in the specified schema. Otherwise it is
created in the current schema.

You must be a superuser to use CREATE TEXT SEARCH PARSER. (This restriction is made because an
erroneous text search parser definition could confuse or even crash the server.)

Refer to Using Full Text Search for further information.

Parameters
name

The name of the text search parser to be created. The name can be schema-qualified.

start_function

The name of the start function for the parser.

gettoken_function

The name of the get-next-token function for the parser.

end_function

The name of the end function for the parser.

lextypes_function

Greenplum Database Reference Guide Release Notes

1102

The name of the lextypes function for the parser (a function that returns information about
the set of token types it produces).

headline_function

The name of the headline function for the parser (a function that summarizes a set of
tokens).

The function names can be schema-qualified if necessary. Argument types are not given, since the
argument list for each type of function is predetermined. All except the headline function are required.

The arguments can appear in any order, not only the one shown above.

Compatibility
There is no CREATE TEXT SEARCH PARSER statement in the SQL standard.

See Also
ALTER TEXT SEARCH PARSER, DROP TEXT SEARCH PARSER

CREATE TEXT SEARCH TEMPLATE

Description
Defines a new text search template.

Synopsis

CREATE TEXT SEARCH TEMPLATE name (
 [INIT = init_function ,]
 LEXIZE = lexize_function
)

Description
CREATE TEXT SEARCH TEMPLATE creates a new text search template. Text search templates define the
functions that implement text search dictionaries. A template is not useful by itself, but must be instantiated
as a dictionary to be used. The dictionary typically specifies parameters to be given to the template
functions.

If a schema name is given then the text search template is created in the specified schema. Otherwise it is
created in the current schema.

You must be a superuser to use CREATE TEXT SEARCH TEMPLATE. This restriction is made because
an erroneous text search template definition could confuse or even crash the server. The reason for
separating templates from dictionaries is that a template encapsulates the "unsafe" aspects of defining a
dictionary. The parameters that can be set when defining a dictionary are safe for unprivileged users to set,
and so creating a dictionary need not be a privileged operation.

Refer to Using Full Text Search for further information.

Parameters
name

The name of the text search template to be created. The name can be schema-qualified.

init_function

The name of the init function for the template.

lexize_function

Greenplum Database Reference Guide Release Notes

1103

The name of the lexize function for the template.

The function names can be schema-qualified if necessary. Argument types are not given, since the
argument list for each type of function is predetermined. The lexize function is required, but the init function
is optional.

The arguments can appear in any order, not only the order shown above.

Compatibility
There is no CREATE TEXT SEARCH TEMPLATE statement in the SQL standard.

See Also
CREATE TEXT SEARCH TEMPLATE, DROP TEXT SEARCH TEMPLATE

CREATE TYPE
Defines a new data type.

Synopsis

CREATE TYPE name AS
 (attribute_name data_type [COLLATE collation] [, ...]])

CREATE TYPE name AS ENUM
 (['label' [, ...]])

CREATE TYPE name AS RANGE (
 SUBTYPE = subtype
 [, SUBTYPE_OPCLASS = subtype_operator_class]
 [, COLLATION = collation]
 [, CANONICAL = canonical_function]
 [, SUBTYPE_DIFF = subtype_diff_function]
)

CREATE TYPE name (
 INPUT = input_function,
 OUTPUT = output_function
 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, TYPMOD_IN = type_modifier_input_function]
 [, TYPMOD_OUT = type_modifier_output_function]
 [, INTERNALLENGTH = {internallength | VARIABLE}]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
 [, LIKE = like_type
 [, CATEGORY = category]
 [, PREFERRED = preferred]
 [, DEFAULT = default]
 [, ELEMENT = element]
 [, DELIMITER = delimiter]
 [, COLLATABLE = collatable]
 [, COMPRESSTYPE = compression_type]
 [, COMPRESSLEVEL = compression_level]
 [, BLOCKSIZE = blocksize])

CREATE TYPE name

Greenplum Database Reference Guide Release Notes

1104

Description
CREATE TYPE registers a new data type for use in the current database. The user who defines a type
becomes its owner.

If a schema name is given then the type is created in the specified schema. Otherwise it is created in the
current schema. The type name must be distinct from the name of any existing type or domain in the same
schema. The type name must also be distinct from the name of any existing table in the same schema.

There are five forms of CREATE TYPE, as shown in the syntax synopsis above. They respectively create
a composite type, an enum type, a range type, a base type, or a shell type. The first four of these are
discussed in turn below. A shell type is simply a placeholder for a type to be defined later; it is created by
issuing CREATE TYPE with no parameters except for the type name. Shell types are needed as forward
references when creating range types and base types, as discussed in those sections.

Composite Types

The first form of CREATE TYPE creates a composite type. The composite type is specified by a list of
attribute names and data types. An attribute's collation can be specified too, if its data type is collatable. A
composite type is essentially the same as the row type of a table, but using CREATE TYPE avoids the need
to create an actual table when all that is wanted is to define a type. A stand-alone composite type is useful,
for example, as the argument or return type of a function.

To be able to create a composite type, you must have USAGE privilege on all attribute types.

Enumerated Types

The second form of CREATE TYPE creates an enumerated (ENUM) type, as described in Enumerated
Types in the PostgreSQL documentation. ENUM types take a list of quoted labels, each of which must be
less than NAMEDATALEN bytes long (64 in a standard build).

It is possible to create an enumerated type with zero labels, but such a type cannot be used to hold values
before at least one label is added using ALTER TYPE.

Range Types

The third form of CREATE TYPE creates a new range type, as described in Range Types.

The range type's subtype can be any type with an associated b-tree operator class (to determine the
ordering of values for the range type). Normally the subtype's default b-tree operator class is used to
determine ordering; to use a non-default operator class, specify its name with subtype_opclass. If the
subtype is collatable, and you want to use a non-default collation in the range's ordering, specify the
desired collation with the collation option.

The optional canonical function must take one argument of the range type being defined, and return a
value of the same type. This is used to convert range values to a canonical form, when applicable. See
Section Defining New Range Types for more information. Creating a canonical function is a bit tricky, since
it must be defined before the range type can be declared. To do this, you must first create a shell type,
which is a placeholder type that has no properties except a name and an owner. This is done by issuing
the command CREATE TYPE name, with no additional parameters. Then the function can be declared
using the shell type as argument and result, and finally the range type can be declared using the same
name. This automatically replaces the shell type entry with a valid range type.

The optional subtype_diff function must take two values of the subtype type as argument, and return a
double precision value representing the difference between the two given values. While this is optional,
providing it allows much greater efficiency of GiST indexes on columns of the range type. See Defining
New Range Types for more information.

Base Types

The fourth form of CREATE TYPE creates a new base type (scalar type). You must be a superuser to
create a new base type. The parameters may appear in any order, not only that shown in the syntax, and
most are optional. You must register two or more functions (using CREATE FUNCTION) before defining
the type. The support functions input_function and output_function are required, while the functions

https://www.postgresql.org/docs/9.4/datatype-enum.html
https://www.postgresql.org/docs/9.4/datatype-enum.html

Greenplum Database Reference Guide Release Notes

1105

receive_function, send_function, type_modifier_input_function, type_modifier_output_function, and
analyze_function are optional. Generally these functions have to be coded in C or another low-level
language. In Greenplum Database, any function used to implement a data type must be defined as
IMMUTABLE.

The input_function converts the type's external textual representation to the internal representation used by
the operators and functions defined for the type. output_function performs the reverse transformation. The
input function may be declared as taking one argument of type cstring, or as taking three arguments of
types cstring, oid, integer. The first argument is the input text as a C string, the second argument
is the type's own OID (except for array types, which instead receive their element type's OID), and the
third is the typmod of the destination column, if known (-1 will be passed if not). The input function must
return a value of the data type itself. Usually, an input function should be declared STRICT; if it is not, it
will be called with a NULL first parameter when reading a NULL input value. The function must still return
NULL in this case, unless it raises an error. (This case is mainly meant to support domain input functions,
which may need to reject NULL inputs.) The output function must be declared as taking one argument of
the new data type. The output function must return type cstring. Output functions are not invoked for
NULL values.

The optional receive_function converts the type's external binary representation to the internal
representation. If this function is not supplied, the type cannot participate in binary input. The binary
representation should be chosen to be cheap to convert to internal form, while being reasonably
portable. (For example, the standard integer data types use network byte order as the external binary
representation, while the internal representation is in the machine's native byte order.) The receive function
should perform adequate checking to ensure that the value is valid. The receive function may be declared
as taking one argument of type internal, or as taking three arguments of types internal, oid,
integer. The first argument is a pointer to a StringInfo buffer holding the received byte string; the
optional arguments are the same as for the text input function. The receive function must return a value of
the data type itself. Usually, a receive function should be declared STRICT; if it is not, it will be called with
a NULL first parameter when reading a NULL input value. The function must still return NULL in this case,
unless it raises an error. (This case is mainly meant to support domain receive functions, which may need
to reject NULL inputs.) Similarly, the optional send_function converts from the internal representation to the
external binary representation. If this function is not supplied, the type cannot participate in binary output.
The send function must be declared as taking one argument of the new data type. The send function must
return type bytea. Send functions are not invoked for NULL values.

The optional type_modifier_input_function and type_modifier_output_function are required if the type
supports modifiers. Modifiers are optional constraints attached to a type declaration, such as char(5)
or numeric(30,2). While Greenplum Database allows user-defined types to take one or more
simple constants or identifiers as modifiers, this information must fit into a single non-negative integer
value for storage in the system catalogs. Greenplum Database passes the declared modifier(s) to the
type_modifier_input_function in the form of a cstring array. The modifier input function must check
the values for validity, throwing an error if they are incorrect. If the values are correct, the modifier input
function returns a single non-negative integer value that Greenplum Database stores as the column
typmod. Type modifiers are rejected if the type was not defined with a type_modifier_input_function. The
type_modifier_output_function converts the internal integer typmod value back to the correct form for user
display. The modifier output function must return a cstring value that is the exact string to append to the
type name. For example, numeric's function might return (30,2). The type_modifier_output_function
is optional. When not specified, the default display format is the stored typmod integer value enclosed in
parentheses.

You should at this point be wondering how the input and output functions can be declared to have results
or arguments of the new type, when they have to be created before the new type can be created. The
answer is that the type should first be defined as a shell type, which is a placeholder type that has no
properties except a name and an owner. This is done by issuing the command CREATE TYPE name, with
no additional parameters. Then the I/O functions can be defined referencing the shell type. Finally, CREATE
TYPE with a full definition replaces the shell entry with a complete, valid type definition, after which the new
type can be used normally.

Greenplum Database Reference Guide Release Notes

1106

The like_type parameter provides an alternative method for specifying the basic representation properties
of a data type: copy them from some existing type. The values internallength, passedbyvalue,
alignment, and storage are copied from the named type. (It is possible, though usually undesirable, to
override some of these values by specifying them along with the LIKE clause.) Specifying representation
this way is especially useful when the low-level implementation of the new type "piggybacks" on an existing
type in some fashion.

While the details of the new type's internal representation are only known to the I/O functions and other
functions you create to work with the type, there are several properties of the internal representation
that must be declared to Greenplum Database. Foremost of these is internallength. Base data types
can be fixed-length, in which case internallength is a positive integer, or variable length, indicated by
setting internallength to VARIABLE. (Internally, this is represented by setting typlen to -1.) The internal
representation of all variable-length types must start with a 4-byte integer giving the total length of this
value of the type.

The optional flag PASSEDBYVALUE indicates that values of this data type are passed by value, rather than
by reference. You may not pass by value types whose internal representation is larger than the size of the
Datum type (4 bytes on most machines, 8 bytes on a few).

The alignment parameter specifies the storage alignment required for the data type. The allowed values
equate to alignment on 1, 2, 4, or 8 byte boundaries. Note that variable-length types must have an
alignment of at least 4, since they necessarily contain an int4 as their first component.

The storage parameter allows selection of storage strategies for variable-length data types. (Only plain
is allowed for fixed-length types.) plain specifies that data of the type will always be stored in-line and not
compressed. extended specifies that the system will first try to compress a long data value, and will move
the value out of the main table row if it's still too long. external allows the value to be moved out of the
main table, but the system will not try to compress it. main allows compression, but discourages moving
the value out of the main table. (Data items with this storage strategy may still be moved out of the main
table if there is no other way to make a row fit, but they will be kept in the main table preferentially over
extended and external items.)

A default value may be specified, in case a user wants columns of the data type to default to something
other than the null value. Specify the default with the DEFAULT key word. (Such a default may be
overridden by an explicit DEFAULT clause attached to a particular column.)

To indicate that a type is an array, specify the type of the array elements using the ELEMENT key word. For
example, to define an array of 4-byte integers (int4), specify ELEMENT = int4. More details about array
types appear below.

The category and preferred parameters can be used to help control which implicit cast Greenplum
Database applies in ambiguous situations. Each data type belongs to a category named by a single ASCII
character, and each type is either "preferred" or not within its category. The parser will prefer casting
to preferred types (but only from other types within the same category) when this rule helps resolve
overloaded functions or operators. For types that have no implicit casts to or from any other types, it is
sufficient to retain the default settings. However, for a group of related types that have implicit casts, it is
often helpful to mark them all as belonging to a category and select one or two of the "most general" types
as being preferred within the category. The category parameter is especially useful when you add a user-
defined type to an existing built-in category, such as the numeric or string types. It is also possible to create
new entirely-user-defined type categories. Select any ASCII character other than an upper-case letter to
name such a category.

To indicate the delimiter to be used between values in the external representation of arrays of this type,
delimiter can be set to a specific character. The default delimiter is the comma (,). Note that the
delimiter is associated with the array element type, not the array type itself.

If the optional Boolean parameter collatable is true, column definitions and expressions of the type may
carry collation information through use of the COLLATE clause. It is up to the implementations of the
functions operating on the type to actually make use of the collation information; this does not happen
automatically merely by marking the type collatable.

Greenplum Database Reference Guide Release Notes

1107

Array Types

Whenever a user-defined type is created, Greenplum Database automatically creates an associated array
type, whose name consists of the element type's name prepended with an underscore, and truncated
if necessary to keep it less than NAMEDATALEN bytes long. (If the name so generated collides with an
existing type name, the process is repeated until a non-colliding name is found.) This implicitly-created
array type is variable length and uses the built-in input and output functions array_in and array_out.
The array type tracks any changes in its element type's owner or schema, and is dropped if the element
type is.

You might reasonably ask why there is an ELEMENT option, if the system makes the correct array type
automatically. The only case where it's useful to use ELEMENT is when you are making a fixed-length type
that happens to be internally an array of a number of identical things, and you want to allow these things
to be accessed directly by subscripting, in addition to whatever operations you plan to provide for the
type as a whole. For example, type point is represented as just two floating-point numbers, each can be
accessed using point[0] and point[1]. Note that this facility only works for fixed-length types whose
internal form is exactly a sequence of identical fixed-length fields. A subscriptable variable-length type must
have the generalized internal representation used by array_in and array_out. For historical reasons
(i.e., this is clearly wrong but it's far too late to change it), subscripting of fixed-length array types starts
from zero, rather than from one as for variable-length arrays.

Parameters
name

The name (optionally schema-qualified) of a type to be created.

attribute_name

The name of an attribute (column) for the composite type.

data_type

The name of an existing data type to become a column of the composite type.

collation

The name of an existing collation to be associated with a column of a composite type, or
with a range type.

label

A string literal representing the textual label associated with one value of an enum type.

subtype

The name of the element type that the range type will represent ranges of.

subtype_operator_class

The name of a b-tree operator class for the subtype.

canonical_function

The name of the canonicalization function for the range type.

subtype_diff_function

The name of a difference function for the subtype.

input_function

The name of a function that converts data from the type's external textual form to its
internal form.

output_function

The name of a function that converts data from the type's internal form to its external
textual form.

receive_function

Greenplum Database Reference Guide Release Notes

1108

The name of a function that converts data from the type's external binary form to its
internal form.

send_function

The name of a function that converts data from the type's internal form to its external
binary form.

type_modifier_input_function

The name of a function that converts an array of modifier(s) for the type to internal form.

type_modifier_output_function

The name of a function that converts the internal form of the type's modifier(s) to external
textual form.

internallength

A numeric constant that specifies the length in bytes of the new type's internal
representation. The default assumption is that it is variable-length.

alignment

The storage alignment requirement of the data type. Must be one of char, int2, int4, or
double. The default is int4.

storage

The storage strategy for the data type. Must be one of plain, external, extended, or
main. The default is plain.

like_type

The name of an existing data type that the new type will have the same representation
as. The values internallength, passedbyvalue, alignment, and storage, are copied from
that type, unless overridden by explicit specification elsewhere in this CREATE TYPE
command.

category

The category code (a single ASCII character) for this type. The default is 'U', signifying a
user-defined type. You can find the other standard category codes in pg_type Category
Codes. You may also assign unused ASCII characters to custom categories that you
create.

preferred

true if this type is a preferred type within its type category, else false. The default
value is false. Be careful when you create a new preferred type within an existing type
category; this could cause surprising behaviour changes.

default

The default value for the data type. If this is omitted, the default is null.

element

The type being created is an array; this specifies the type of the array elements.

delimiter

The delimiter character to be used between values in arrays made of this type.

collatable

True if this type's operations can use collation information. The default is false.

compression_type

Set to ZLIB (the default), ZSTD, RLE_TYPE, or QUICKLZ1 to specify the type of
compression used in columns of this type.

Note: 1QuickLZ compression is available only in the commercial release of
Pivotal Greenplum Database.

Greenplum Database Reference Guide Release Notes

1109

compression_level

For Zstd compression, set to an integer value from 1 (fastest compression) to 19 (highest
compression ratio). For zlib compression, the valid range is from 1 to 9. The QuickLZ
compression level can only be set to 1. For RLE_TYPE, the compression level can be set
to an integer value from 1 (fastest compression) to 4 (highest compression ratio). The
default compression level is 1.

blocksize

Set to the size, in bytes, for each block in the column. The BLOCKSIZE must be between
8192 and 2097152 bytes, and be a multiple of 8192. The default block size is 32768.

Notes
User-defined type names cannot begin with the underscore character (_) and can only be 62 characters
long (or in general NAMEDATALEN - 2, rather than the NAMEDATALEN - 1 characters allowed for other
names). Type names beginning with underscore are reserved for internally-created array type names.

Greenplum Database does not support adding storage options for row or composite types.

Storage options defined at the table- and column- level override the default storage options defined for a
scalar type.

Because there are no restrictions on use of a data type once it's been created, creating a base type or
range type is tantamount to granting public execute permission on the functions mentioned in the type
definition. (The creator of the type is therefore required to own these functions.) This is usually not an
issue for the sorts of functions that are useful in a type definition. But you might want to think twice before
designing a type in a way that would require 'secret' information to be used while converting it to or from
external form.

Examples
This example creates a composite type and uses it in a function definition:

CREATE TYPE compfoo AS (f1 int, f2 text);

CREATE FUNCTION getfoo() RETURNS SETOF compfoo AS $$
 SELECT fooid, fooname FROM foo
$$ LANGUAGE SQL;

This example creates the enumerated type mood and uses it in a table definition.

CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
 name text,
 current_mood mood
);
INSERT INTO person VALUES ('Moe', 'happy');
SELECT * FROM person WHERE current_mood = 'happy';
 name | current_mood
------+--------------
 Moe | happy
(1 row)

This example creates a range type:

CREATE TYPE float8_range AS RANGE (subtype = float8, subtype_diff =
 float8mi);

Greenplum Database Reference Guide Release Notes

1110

This example creates the base data type box and then uses the type in a table definition:

CREATE TYPE box;

CREATE FUNCTION my_box_in_function(cstring) RETURNS box AS
... ;

CREATE FUNCTION my_box_out_function(box) RETURNS cstring AS
... ;

CREATE TYPE box (
 INTERNALLENGTH = 16,
 INPUT = my_box_in_function,
 OUTPUT = my_box_out_function
);

CREATE TABLE myboxes (
 id integer,
 description box
);

If the internal structure of box were an array of four float4 elements, we might instead use:

CREATE TYPE box (
 INTERNALLENGTH = 16,
 INPUT = my_box_in_function,
 OUTPUT = my_box_out_function,
 ELEMENT = float4
);

which would allow a box value's component numbers to be accessed by subscripting. Otherwise the type
behaves the same as before.

This example creates a large object type and uses it in a table definition:

CREATE TYPE bigobj (
 INPUT = lo_filein, OUTPUT = lo_fileout,
 INTERNALLENGTH = VARIABLE
);

CREATE TABLE big_objs (
 id integer,
 obj bigobj
);

Compatibility
The first form of the CREATE TYPE command, which creates a composite type, conforms to the SQL
standard. The other forms are Greenplum Database extensions. The CREATE TYPE statement in the SQL
standard also defines other forms that are not implemented in Greenplum Database.

The ability to create a composite type with zero attributes is a Greenplum Database-specific deviation from
the standard (analogous to the same case in CREATE TABLE).

See Also
ALTER TYPE, CREATE DOMAIN, CREATE FUNCTION, DROP TYPE

CREATE USER
Defines a new database role with the LOGIN privilege by default.

Greenplum Database Reference Guide Release Notes

1111

Synopsis

CREATE USER name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | CREATEUSER | NOCREATEUSER
 | CREATEEXTTABLE | NOCREATEEXTTABLE
 [(attribute='value'[, ...])]
 where attributes and value are:
 type='readable'|'writable'
 protocol='gpfdist'|'http'
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'timestamp'
 | IN ROLE role_name [, ...]
 | IN GROUP role_name
 | ROLE role_name [, ...]
 | ADMIN role_name [, ...]
 | USER role_name [, ...]
 | SYSID uid
 | RESOURCE QUEUE queue_name
 | RESOURCE GROUP group_name
 | [DENY deny_point]
 | [DENY BETWEEN deny_point AND deny_point]

Description
CREATE USER is an alias for CREATE ROLE.

The only difference between CREATE ROLE and CREATE USER is that LOGIN is assumed by default with
CREATE USER, whereas NOLOGIN is assumed by default with CREATE ROLE.

Compatibility
There is no CREATE USER statement in the SQL standard.

See Also
CREATE ROLE

CREATE USER MAPPING
Defines a new mapping of a user to a foreign server.

Synopsis

CREATE USER MAPPING FOR { username | USER | CURRENT_USER | PUBLIC }
 SERVER servername
 [OPTIONS (option 'value' [, ...])]

Greenplum Database Reference Guide Release Notes

1112

Description
CREATE USER MAPPING defines a mapping of a user to a foreign server. You must be the owner of the
server to define user mappings for it.

Parameters
username

The name of an existing user that is mapped to the foreign server. CURRENT_USER and
USER match the name of the current user. PUBLIC is used to match all present and future
user names in the system.

servername

The name of an existing server for which Greenplum Database is to create the user
mapping.

OPTIONS (option 'value' [, ...])

The options for the new user mapping. The options typically define the actual user name
and password of the mapping. Option names must be unique. The option names and
values are specific to the server's foreign-data wrapper.

Examples
Create a user mapping for user bob, server foo:

CREATE USER MAPPING FOR bob SERVER foo OPTIONS (user 'bob', password
 'secret');

Compatibility
CREATE USER MAPPING conforms to ISO/IEC 9075-9 (SQL/MED).

See Also
ALTER USER MAPPING, DROP USER MAPPING, CREATE FOREIGN DATA WRAPPER, CREATE SERVER

CREATE VIEW
Defines a new view.

Synopsis

CREATE [OR REPLACE] [TEMP | TEMPORARY] [RECURSIVE] VIEW name [(column_name
 [, ...])]
 [WITH (view_option_name [= view_option_value] [, ...])]
 AS query
 [WITH [CASCADED | LOCAL] CHECK OPTION]

Description
CREATE VIEW defines a view of a query. The view is not physically materialized. Instead, the query is run
every time the view is referenced in a query.

CREATE OR REPLACE VIEW is similar, but if a view of the same name already exists, it is replaced. The
new query must generate the same columns that were generated by the existing view query (that is, the
same column names in the same order, and with the same data types), but it may add additional columns
to the end of the list. The calculations giving rise to the output columns may be completely different.

Greenplum Database Reference Guide Release Notes

1113

If a schema name is given then the view is created in the specified schema. Otherwise it is created in the
current schema. Temporary views exist in a special schema, so a schema name may not be given when
creating a temporary view. The name of the view must be distinct from the name of any other view, table,
sequence, index or foreign table in the same schema.

Parameters
TEMPORARY | TEMP

If specified, the view is created as a temporary view. Temporary views are automatically
dropped at the end of the current session. Existing permanent relations with the same
name are not visible to the current session while the temporary view exists, unless they are
referenced with schema-qualified names. If any of the tables referenced by the view are
temporary, the view is created as a temporary view (whether TEMPORARY is specified or
not).

RECURSIVE

Creates a recursive view. The syntax

CREATE RECURSIVE VIEW [schema .] view_name (column_names) AS
 SELECT ...;

is equivalent to

CREATE VIEW [schema .] view_name AS WITH RECURSIVE view_name
 (column_names) AS (SELECT ...) SELECT column_names
 FROM view_name;

A view column name list must be specified for a recursive view.

name

The name (optionally schema-qualified) of a view to be created.

column_name

An optional list of names to be used for columns of the view. If not given, the column
names are deduced from the query.

WITH (view_option_name [= view_option_value] [, ...])

This clause specifies optional parameters for a view; the following parameters are
supported:

check_option (string)

This parameter may be either local or cascaded, and is equivalent to specifying WITH
[CASCADED | LOCAL] CHECK OPTION (see below). This option can be changed on
existing views using ALTER VIEW.

security_barrier (boolean)

This should be used if the view is intended to provide row-level security.

query

A SELECT or VALUES command which will provide the columns and rows of the view.

Notes
Views in Greenplum Database are read only. The system will not allow an insert, update, or delete on a
view. You can get the effect of an updatable view by creating rewrite rules on the view into appropriate
actions on other tables. For more information see CREATE RULE.

Greenplum Database Reference Guide Release Notes

1114

Be careful that the names and data types of the view's columns will be assigned the way you want. For
example:

CREATE VIEW vista AS SELECT 'Hello World';

is bad form in two ways: the column name defaults to ?column?, and the column data type defaults to
unknown. If you want a string literal in a view's result, use something like:

CREATE VIEW vista AS SELECT text 'Hello World' AS hello;

Access to tables referenced in the view is determined by permissions of the view owner not the current
user (even if the current user is a superuser). This can be confusing in the case of superusers, since
superusers typically have access to all objects. In the case of a view, even superusers must be explicitly
granted access to tables referenced in the view if they are not the owner of the view.

However, functions called in the view are treated the same as if they had been called directly from the
query using the view. Therefore the user of a view must have permissions to call any functions used by the
view.

If you create a view with an ORDER BY clause, the ORDER BY clause is ignored when you do a SELECT
from the view.

When CREATE OR REPLACE VIEW is used on an existing view, only the view's defining SELECT rule
is changed. Other view properties, including ownership, permissions, and non-SELECT rules, remain
unchanged. You must own the view to replace it (this includes being a member of the owning role).

Examples
Create a view consisting of all comedy films:

CREATE VIEW comedies AS SELECT * FROM films
WHERE kind = 'comedy';

This will create a view containing the columns that are in the film table at the time of view creation.
Though * was used to create the view, columns added later to the table will not be part of the view.

Create a view that gets the top ten ranked baby names:

CREATE VIEW topten AS SELECT name, rank, gender, year FROM
names, rank WHERE rank < '11' AND names.id=rank.id;

Create a recursive view consisting of the numbers from 1 to 100:

CREATE RECURSIVE VIEW public.nums_1_100 (n) AS
 VALUES (1)
UNION ALL
 SELECT n+1 FROM nums_1_100 WHERE n < 100;

Notice that although the recursive view's name is schema-qualified in this CREATE VIEW command, its
internal self-reference is not schema-qualified. This is because the implicitly-created CTE's name cannot
be schema-qualified.

Compatibility
The SQL standard specifies some additional capabilities for the CREATE VIEW statement that are not in
Greenplum Database. The optional clauses for the full SQL command in the standard are:

Greenplum Database Reference Guide Release Notes

1115

• CHECK OPTION — This option has to do with updatable views. All INSERT and UPDATE commands on
the view will be checked to ensure data satisfy the view-defining condition (that is, the new data would
be visible through the view). If they do not, the update will be rejected.

• LOCAL — Check for integrity on this view.
• CASCADED — Check for integrity on this view and on any dependent view. CASCADED is assumed if

neither CASCADED nor LOCAL is specified.

CREATE OR REPLACE VIEW is a Greenplum Database language extension. So is the concept of a
temporary view.

See Also
SELECT, DROP VIEW, CREATE MATERIALIZED VIEW

DEALLOCATE
Deallocates a prepared statement.

Synopsis

DEALLOCATE [PREPARE] name

Description
DEALLOCATE is used to deallocate a previously prepared SQL statement. If you do not explicitly deallocate
a prepared statement, it is deallocated when the session ends.

For more information on prepared statements, see PREPARE.

Parameters
PREPARE

Optional key word which is ignored.

name

The name of the prepared statement to deallocate.

Examples
Deallocated the previously prepared statement named insert_names:

DEALLOCATE insert_names;

Compatibility
The SQL standard includes a DEALLOCATE statement, but it is only for use in embedded SQL.

See Also
EXECUTE, PREPARE

DECLARE
Defines a cursor.

Synopsis

DECLARE name [BINARY] [INSENSITIVE] [NO SCROLL] CURSOR

Greenplum Database Reference Guide Release Notes

1116

 [{WITH | WITHOUT} HOLD]
 FOR query [FOR READ ONLY]

Description
DECLARE allows a user to create cursors, which can be used to retrieve a small number of rows at a time
out of a larger query. Cursors can return data either in text or in binary format using FETCH.

Note: This page describes usage of cursors at the SQL command level. If you are trying to use
cursors inside a PL/pgSQL function, the rules are different, see PL/Sql.

Normal cursors return data in text format, the same as a SELECT would produce. Since data is stored
natively in binary format, the system must do a conversion to produce the text format. Once the information
comes back in text form, the client application may need to convert it to a binary format to manipulate it. In
addition, data in the text format is often larger in size than in the binary format. Binary cursors return the
data in a binary representation that may be more easily manipulated. Nevertheless, if you intend to display
the data as text anyway, retrieving it in text form will save you some effort on the client side.

As an example, if a query returns a value of one from an integer column, you would get a string of 1
with a default cursor whereas with a binary cursor you would get a 4-byte field containing the internal
representation of the value (in big-endian byte order).

Binary cursors should be used carefully. Many applications, including psql, are not prepared to handle
binary cursors and expect data to come back in the text format.

Note:

When the client application uses the 'extended query' protocol to issue a FETCH command, the
Bind protocol message specifies whether data is to be retrieved in text or binary format. This choice
overrides the way that the cursor is defined. The concept of a binary cursor as such is thus obsolete
when using extended query protocol — any cursor can be treated as either text or binary.

A cursor can be specified in the WHERE CURRENT OF clause of the UPDATE or DELETE statement to
update or delete table data. The UPDATE or DELETE statement can only be executed on the server, for
example in an interactive psql session or a script. Language extensions such as PL/pgSQL do not have
support for updatable cursors.

Parameters
name

The name of the cursor to be created.

BINARY

Causes the cursor to return data in binary rather than in text format.

INSENSITIVE

Indicates that data retrieved from the cursor should be unaffected by updates to the tables
underlying the cursor while the cursor exists. In Greenplum Database, all cursors are
insensitive. This key word currently has no effect and is present for compatibility with the
SQL standard.

NO SCROLL

A cursor cannot be used to retrieve rows in a nonsequential fashion. This is the default
behavior in Greenplum Database, since scrollable cursors (SCROLL) are not supported.

WITH HOLD
WITHOUT HOLD

WITH HOLD specifies that the cursor may continue to be used after the transaction that
created it successfully commits. WITHOUT HOLD specifies that the cursor cannot be used
outside of the transaction that created it. WITHOUT HOLD is the default.

Greenplum Database Reference Guide Release Notes

1117

WITH HOLD cannot not be specified when the query includes a FOR UPDATE or FOR
SHARE clause.

query

A SELECT or VALUES command which will provide the rows to be returned by the cursor.

If the cursor is used in the WHERE CURRENT OF clause of the UPDATE or DELETE
command, the SELECT command must satisfy the following conditions:

• Cannot reference a view or external table.
• References only one table.

The table must be updatable. For example, the following are not updatable: table
functions, set-returning functions, append-only tables, columnar tables.

• Cannot contain any of the following:

• A grouping clause
• A set operation such as UNION ALL or UNION DISTINCT
• A sorting clause
• A windowing clause
• A join or a self-join

Specifying the FOR UPDATE clause in the SELECT command prevents other sessions
from changing the rows between the time they are fetched and the time they are
updated. Without the FOR UPDATE clause, a subsequent use of the UPDATE or DELETE
command with the WHERE CURRENT OF clause has no effect if the row was changed
since the cursor was created.

Note: Specifying the FOR UPDATE clause in the SELECT command locks
the entire table, not just the selected rows.

FOR READ ONLY

FOR READ ONLY indicates that the cursor is used in a read-only mode.

Notes
Unless WITH HOLD is specified, the cursor created by this command can only be used within the current
transaction. Thus, DECLARE without WITH HOLD is useless outside a transaction block: the cursor
would survive only to the completion of the statement. Therefore Greenplum Database reports an error
if this command is used outside a transaction block. Use BEGIN and COMMIT (or ROLLBACK) to define a
transaction block.

If WITH HOLD is specified and the transaction that created the cursor successfully commits, the cursor can
continue to be accessed by subsequent transactions in the same session. (But if the creating transaction
is aborted, the cursor is removed.) A cursor created with WITH HOLD is closed when an explicit CLOSE
command is issued on it, or the session ends. In the current implementation, the rows represented by a
held cursor are copied into a temporary file or memory area so that they remain available for subsequent
transactions.

If you create a cursor with the DECLARE command in a transaction, you cannot use the SET command in
the transaction until you close the cursor with the CLOSE command.

Scrollable cursors are not currently supported in Greenplum Database. You can only use FETCH to move
the cursor position forward, not backwards.

DECLARE...FOR UPDATE is not supported with append-optimized tables.

You can see all available cursors by querying the pg_cursors system view.

Greenplum Database Reference Guide Release Notes

1118

Examples
Declare a cursor:

DECLARE mycursor CURSOR FOR SELECT * FROM mytable;

Compatibility
SQL standard allows cursors only in embedded SQL and in modules. Greenplum Database permits
cursors to be used interactively.

Greenplum Database does not implement an OPEN statement for cursors. A cursor is considered to be
open when it is declared.

The SQL standard allows cursors to move both forward and backward. All Greenplum Database cursors
are forward moving only (not scrollable).

Binary cursors are a Greenplum Database extension.

See Also
CLOSE, DELETE, FETCH, MOVE, SELECT, UPDATE

DELETE
Deletes rows from a table.

Synopsis

[WITH [RECURSIVE] with_query [, ...]]
DELETE FROM [ONLY] table [[AS] alias]
 [USING usinglist]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [RETURNING * | output_expression [[AS] output_name] [, …]]

Description
DELETE deletes rows that satisfy the WHERE clause from the specified table. If the WHERE clause is absent,
the effect is to delete all rows in the table. The result is a valid, but empty table.

By default, DELETE will delete rows in the specified table and all its child tables. If you wish to delete only
from the specific table mentioned, you must use the ONLY clause.

There are two ways to delete rows in a table using information contained in other tables in the database:
using sub-selects, or specifying additional tables in the USING clause. Which technique is more
appropriate depends on the specific circumstances.

If the WHERE CURRENT OF clause is specified, the row that is deleted is the one most recently fetched
from the specified cursor.

The WHERE CURRENT OF clause is not supported with replicated tables.

The optional RETURNING clause causes DELETE to compute and return value(s) based on each row
actually deleted. Any expression using the table's columns, and/or columns of other tables mentioned in
USING, can be computed. The syntax of the RETURNING list is identical to that of the output list of SELECT.

Note: The RETURNING clause is not supported when deleting from append-optimized tables.

You must have the DELETE privilege on the table to delete from it.

Greenplum Database Reference Guide Release Notes

1119

Note: As the default, Greenplum Database acquires an EXCLUSIVE lock on tables for DELETE
operations on heap tables. When the Global Deadlock Detector is enabled, the lock mode for
DELETE operations on heap tables is ROW EXCLUSIVE. See Global Deadlock Detector.

Outputs

On successful completion, a DELETE command returns a command tag of the form

DELETE count

The count is the number of rows deleted. If count is 0, no rows were deleted by the query (this is not
considered an error).

If the DELETE command contains a RETURNING clause, the result will be similar to that of a SELECT
statement containing the columns and values defined in the RETURNING list, computed over the row(s)
deleted by the command.

Parameters
with_query

The WITH clause allows you to specify one or more subqueries that can be referenced by
name in the DELETE query.

For a DELETE command that includes a WITH clause, the clause can only contain SELECT
statements, the WITH clause cannot contain a data-modifying command (INSERT,
UPDATE, or DELETE).

See WITH Queries (Common Table Expressions) and SELECT for details.

ONLY

If specified, delete rows from the named table only. When not specified, any tables
inheriting from the named table are also processed.

table

The name (optionally schema-qualified) of an existing table.

alias

A substitute name for the target table. When an alias is provided, it completely hides the
actual name of the table. For example, given DELETE FROM foo AS f, the remainder of
the DELETE statement must refer to this table as f not foo.

usinglist

A list of table expressions, allowing columns from other tables to appear in the WHERE
condition. This is similar to the list of tables that can be specified in the FROM Clause of
a SELECT statement; for example, an alias for the table name can be specified. Do not
repeat the target table in the usinglist, unless you wish to set up a self-join.

condition

An expression returning a value of type boolean, which determines the rows that are to
be deleted.

cursor_name

The name of the cursor to use in a WHERE CURRENT OF condition. The row to be deleted
is the one most recently fetched from this cursor. The cursor must be a simple non-
grouping query on the DELETE target table.

WHERE CURRENT OF cannot be specified together with a Boolean condition.

The DELETE...WHERE CURRENT OF cursor statement can only be executed on the
server, for example in an interactive psql session or a script. Language extensions such as
PL/pgSQL do not have support for updatable cursors.

See DECLARE for more information about creating cursors.

Greenplum Database Reference Guide Release Notes

1120

output_expression

An expression to be computed and returned by the DELETE command after each row
is deleted. The expression can use any column names of the table or table(s) listed in
USING. Write * to return all columns.

output_name

A name to use for a returned column.

Notes
Greenplum Database lets you reference columns of other tables in the WHERE condition by specifying the
other tables in the USING clause. For example, to the name Hannah from the rank table, one might do:

DELETE FROM rank USING names WHERE names.id = rank.id AND
name = 'Hannah';

What is essentially happening here is a join between rank and names, with all successfully joined rows
being marked for deletion. This syntax is not standard. However, this join style is usually easier to write and
faster to execute than a more standard sub-select style, such as:

DELETE FROM rank WHERE id IN (SELECT id FROM names WHERE name
= 'Hannah');

When using DELETE to remove all the rows of a table (for example: DELETE * FROM table;),
Greenplum Database adds an implicit TRUNCATE command (when user permissions allow). The added
TRUNCATE command frees the disk space occupied by the deleted rows without requiring a VACUUM of the
table. This improves scan performance of subsequent queries, and benefits ELT workloads that frequently
insert and delete from temporary tables.

Execution of UPDATE and DELETE commands directly on a specific partition (child table) of a partitioned
table is not supported. Instead, these commands must be executed on the root partitioned table, the table
created with the CREATE TABLE command.

For a partitioned table, all the child tables are locked during the DELETE operation when the Global
Deadlock Detector is not enabled (the default). Only some of the leaf child tables are locked when the
Global Deadlock Detector is enabled. For information about the Global Deadlock Detector, see Global
Deadlock Detector.

Examples
Delete all films but musicals:

DELETE FROM films WHERE kind <> 'Musical';

Clear the table films:

DELETE FROM films;

Delete completed tasks, returning full details of the deleted rows:

DELETE FROM tasks WHERE status = 'DONE' RETURNING *;

Delete using a join:

DELETE FROM rank USING names WHERE names.id = rank.id AND
name = 'Hannah';

Greenplum Database Reference Guide Release Notes

1121

Compatibility
This command conforms to the SQL standard, except that the USING and RETURNING clauses are
Greenplum Database extensions, as is the ability to use WITH with DELETE.

See Also
DECLARE, TRUNCATE

DISCARD
Discards the session state.

Synopsis

DISCARD { ALL | PLANS | TEMPORARY | TEMP }

Description
DISCARD releases internal resources associated with a database session. This command is useful for
partially or fully resetting the session's state. There are several subcommands to release different types of
resources. DISCARD ALL is not supported by Greenplum Database.

Parameters
PLANS

Releases all cached query plans, forcing re-planning to occur the next time the associated
prepared statement is used.

SEQUENCES

Discards all cached sequence-related state, including any preallocated sequence values
that have not yet been returned by nextval(). (See CREATE SEQUENCE for a description
of preallocated sequence values.)

TEMPORARY/TEMP

Drops all temporary tables created in the current session.

ALL

Releases all temporary resources associated with the current session and resets the
session to its initial state.

Note: Greenplum Database does not support DISCARD ALL and returns a
notice message if you attempt to run the command.

As an alternative, you can the run following commands to release temporary session
resources:

SET SESSION AUTHORIZATION DEFAULT;
RESET ALL;
DEALLOCATE ALL;
CLOSE ALL;
SELECT pg_advisory_unlock_all();
DISCARD PLANS;
DISCARD SEQUENCES;
DISCARD TEMP;

Compatibility
DISCARD is a Greenplum Database extension.

Greenplum Database Reference Guide Release Notes

1122

DO
Executes an anonymous code block as a transient anonymous function.

Synopsis

DO [LANGUAGE lang_name] code

Description
DO executes an anonymous code block, or in other words a transient anonymous function in a procedural
language.

The code block is treated as though it were the body of a function with no parameters, returning void. It is
parsed and executed a single time.

The optional LANGUAGE clause can appear either before or after the code block.

Anonymous blocks are procedural language structures that provide the capability to create and execute
procedural code on the fly without persistently storing the code as database objects in the system catalogs.
The concept of anonymous blocks is similar to UNIX shell scripts, which enable several manually entered
commands to be grouped and executed as one step. As the name implies, anonymous blocks do not have
a name, and for this reason they cannot be referenced from other objects. Although built dynamically,
anonymous blocks can be easily stored as scripts in the operating system files for repetitive execution.

Anonymous blocks are standard procedural language blocks. They carry the syntax and obey the rules
that apply to the procedural language, including declaration and scope of variables, execution, exception
handling, and language usage.

The compilation and execution of anonymous blocks are combined in one step, while a user-defined
function needs to be re-defined before use each time its definition changes.

Parameters
code

The procedural language code to be executed. This must be specified as a string
literal, just as with the CREATE FUNCTION command. Use of a dollar-quoted literal is
recommended. Optional keywords have no effect. These procedural languages are
supported: PL/pgSQL (plpgsql), PL/Python (plpythonu), and PL/Perl (plperl and
plperlu).

lang_name

The name of the procedural language that the code is written in. The default is plpgsql.
The language must be installed on the Greenplum Database system and registered in the
database.

Notes
The PL/pgSQL language is installed on the Greenplum Database system and is registered in a user
created database. The PL/Python and PL/Perl languages are installed by default, but not registered. Other
languages are not installed or registered. The system catalog pg_language contains information about
the registered languages in a database.

The user must have USAGE privilege for the procedural language, or must be a superuser if the language is
untrusted. This is the same privilege requirement as for creating a function in the language.

Anonymous blocks do not support function volatility or EXECUTE ON attributes.

Greenplum Database Reference Guide Release Notes

1123

Examples
This PL/pgSQL example grants all privileges on all views in schema public to role webuser:

DO $$DECLARE r record;
BEGIN
 FOR r IN SELECT table_schema, table_name FROM information_schema.tables
 WHERE table_type = 'VIEW' AND table_schema = 'public'
 LOOP
 EXECUTE 'GRANT ALL ON ' || quote_ident(r.table_schema) || '.' ||
 quote_ident(r.table_name) || ' TO webuser';
 END LOOP;
END$$;

This PL/pgSQL example determines if a Greenplum Database user is a superuser. In the example, the
anonymous block retrieves the input value from a temporary table.

CREATE TEMP TABLE list AS VALUES ('gpadmin') DISTRIBUTED RANDOMLY;

DO $$
DECLARE
 name TEXT := 'gpadmin' ;
 superuser TEXT := '' ;
 t1_row pg_authid%ROWTYPE;
BEGIN
 SELECT * INTO t1_row FROM pg_authid, list
 WHERE pg_authid.rolname = name ;
 IF t1_row.rolsuper = 'f' THEN
 superuser := 'not ';
 END IF ;
 RAISE NOTICE 'user % is %a superuser', t1_row.rolname, superuser ;
END $$ LANGUAGE plpgsql ;

Note: The example PL/pgSQL uses SELECT with the INTO clause. It is different from the SQL
command SELECT INTO.

Compatibility
There is no DO statement in the SQL standard.

See Also
CREATE LANGUAGE

DROP AGGREGATE
Removes an aggregate function.

Synopsis

DROP AGGREGATE [IF EXISTS] name (aggregate_signature) [CASCADE | RESTRICT]

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname
] argtype [, ...]

Greenplum Database Reference Guide Release Notes

1124

Description
DROP AGGREGATE will delete an existing aggregate function. To execute this command the current user
must be the owner of the aggregate function.

Parameters
IF EXISTS

Do not throw an error if the aggregate does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing aggregate function.

argmode

The mode of an argument: IN or VARIADIC. If omitted, the default is IN.

argname

The name of an argument. Note that DROP AGGREGATE does not actually pay any
attention to argument names, since only the argument data types are needed to determine
the aggregate function's identity.

argtype

An input data type on which the aggregate function operates. To reference a zero-
argument aggregate function, write * in place of the list of input data types. To reference
an ordered-set aggregate function, write ORDER BY between the direct and aggregated
argument specifications.

CASCADE

Automatically drop objects that depend on the aggregate function.

RESTRICT

Refuse to drop the aggregate function if any objects depend on it. This is the default.

Notes
Alternative syntaxes for referencing ordered-set aggregates are described under ALTER AGGREGATE.

Examples
To remove the aggregate function myavg for type integer:

DROP AGGREGATE myavg(integer);

To remove the hypothetical-set aggregate function myrank, which takes an arbitrary list of ordering
columns and a matching list of direct arguments:

DROP AGGREGATE myrank(VARIADIC "any" ORDER BY VARIADIC "any");

Compatibility
There is no DROP AGGREGATE statement in the SQL standard.

See Also
ALTER AGGREGATE, CREATE AGGREGATE

DROP CAST
Removes a cast.

Greenplum Database Reference Guide Release Notes

1125

Synopsis

DROP CAST [IF EXISTS] (sourcetype AS targettype) [CASCADE | RESTRICT]

Description
DROP CAST will delete a previously defined cast. To be able to drop a cast, you must own the source or
the target data type. These are the same privileges that are required to create a cast.

Parameters
IF EXISTS

Do not throw an error if the cast does not exist. A notice is issued in this case.

sourcetype

The name of the source data type of the cast.

targettype

The name of the target data type of the cast.

CASCADE
RESTRICT

These keywords have no effect since there are no dependencies on casts.

Examples
To drop the cast from type text to type int:

DROP CAST (text AS int);

Compatibility
There DROP CAST command conforms to the SQL standard.

See Also
CREATE CAST

DROP COLLATION
Removes a previously defined collation.

Synopsis

DROP COLLATION [IF EXISTS] name [CASCADE | RESTRICT]

Parameters
IF EXISTS

Do not throw an error if the collation does not exist. A notice is issued in this case.

name

The name of the collation. The collation name can be schema-qualified.

CASCADE

Automatically drop objects that depend on the collation.

RESTRICT

Refuse to drop the collation if any objects depend on it. This is the default.

Greenplum Database Reference Guide Release Notes

1126

Notes
DROP COLLATION removes a previously defined collation. To be able to drop a collation, you must own
the collation.

Examples
To drop the collation named german:

DROP COLLATION german;

Compatibility
The DROP COLLATION command conforms to the SQL standard, apart from the IF EXISTS option, which
is a Greenplum Database extension.

See Also
ALTER COLLATION, CREATE COLLATION

DROP CONVERSION
Removes a conversion.

Synopsis

DROP CONVERSION [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP CONVERSION removes a previously defined conversion. To be able to drop a conversion, you must
own the conversion.

Parameters
IF EXISTS

Do not throw an error if the conversion does not exist. A notice is issued in this case.

name

The name of the conversion. The conversion name may be schema-qualified.

CASCADE
RESTRICT

These keywords have no effect since there are no dependencies on conversions.

Examples
Drop the conversion named myname:

DROP CONVERSION myname;

Compatibility
There is no DROP CONVERSION statement in the SQL standard. The standard has CREATE
TRANSLATION and DROP TRANSLATION statements that are similar to the Greenplum Database CREATE
CONVERSION and DROP CONVERSION statements.

Greenplum Database Reference Guide Release Notes

1127

See Also
ALTER CONVERSION, CREATE CONVERSION

DROP DATABASE
Removes a database.

Synopsis

DROP DATABASE [IF EXISTS] name

Description
DROP DATABASE drops a database. It removes the catalog entries for the database and deletes the
directory containing the data. It can only be executed by the database owner. Also, it cannot be executed
while you or anyone else are connected to the target database. (Connect to postgres or any other
database to issue this command.)

Warning: DROP DATABASE cannot be undone. Use it with care!

Parameters
IF EXISTS

Do not throw an error if the database does not exist. A notice is issued in this case.

name

The name of the database to remove.

Notes
DROP DATABASE cannot be executed inside a transaction block.

This command cannot be executed while connected to the target database. Thus, it might be more
convenient to use the program dropdb instead, which is a wrapper around this command.

Examples
Drop the database named testdb:

DROP DATABASE testdb;

Compatibility
There is no DROP DATABASE statement in the SQL standard.

See Also
ALTER DATABASE, CREATE DATABASE

DROP DOMAIN
Removes a domain.

Synopsis

DROP DOMAIN [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Greenplum Database Reference Guide Release Notes

1128

Description
DROP DOMAIN removes a previously defined domain. You must be the owner of a domain to drop it.

Parameters
IF EXISTS

Do not throw an error if the domain does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing domain.

CASCADE

Automatically drop objects that depend on the domain (such as table columns).

RESTRICT

Refuse to drop the domain if any objects depend on it. This is the default.

Examples
Drop the domain named zipcode:

DROP DOMAIN zipcode;

Compatibility
This command conforms to the SQL standard, except for the IF EXISTS option, which is a Greenplum
Database extension.

See Also
ALTER DOMAIN, CREATE DOMAIN

DROP EXTENSION
Removes an extension from a Greenplum database.

Synopsis

DROP EXTENSION [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP EXTENSION removes extensions from the database. Dropping an extension causes its component
objects to be dropped as well.

Note: The required supporting extension files what were installed to create the extension are not
deleted. The files must be manually removed from the Greenplum Database hosts.

You must own the extension to use DROP EXTENSION.

This command fails if any of the extension objects are in use in the database. For example, if a table is
defined with columns of the extension type. Add the CASCADE option to forcibly remove those dependent
objects.

Important: Before issuing a DROP EXTENSION with the CASCADE keyword, you should be aware
of all object that depend on the extension to avoid unintended consequences.

Parameters
IF EXISTS

Greenplum Database Reference Guide Release Notes

1129

Do not throw an error if the extension does not exist. A notice is issued.

name

The name of an installed extension.

CASCADE

Automatically drop objects that depend on the extension, and in turn all objects that
depend on those objects. See the PostgreSQL information about Dependency Tracking.

RESTRICT

Refuse to drop an extension if any objects depend on it, other than the extension member
objects. This is the default.

Compatibility
DROP EXTENSION is a Greenplum Database extension.

See Also
CREATE EXTENSION, ALTER EXTENSION

DROP EXTERNAL TABLE
Removes an external table definition.

Synopsis

DROP EXTERNAL [WEB] TABLE [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP EXTERNAL TABLE drops an existing external table definition from the database system. The
external data sources or files are not deleted. To execute this command you must be the owner of the
external table.

Parameters
WEB

Optional keyword for dropping external web tables.

IF EXISTS

Do not throw an error if the external table does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing external table.

CASCADE

Automatically drop objects that depend on the external table (such as views).

RESTRICT

Refuse to drop the external table if any objects depend on it. This is the default.

Examples
Remove the external table named staging if it exists:

DROP EXTERNAL TABLE IF EXISTS staging;

https://www.postgresql.org/docs/9.6/ddl-depend.html

Greenplum Database Reference Guide Release Notes

1130

Compatibility
There is no DROP EXTERNAL TABLE statement in the SQL standard.

See Also
CREATE EXTERNAL TABLE

DROP FOREIGN DATA WRAPPER
Removes a foreign-data wrapper.

Synopsis

DROP FOREIGN DATA WRAPPER [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP FOREIGN DATA WRAPPER removes an existing foreign-data wrapper from the current database. A
foreign-data wrapper may be removed only by its owner.

Parameters
IF EXISTS

Do not throw an error if the foreign-data wrapper does not exist. Greenplum Database
issues a notice in this case.

name

The name of an existing foreign-data wrapper.

CASCADE

Automatically drop objects that depend on the foreign-data wrapper (such as servers).

RESTRICT

Refuse to drop the foreign-data wrapper if any object depends on it. This is the default.

Examples
Drop the foreign-data wrapper named dbi:

DROP FOREIGN DATA WRAPPER dbi;

Compatibility
DROP FOREIGN DATA WRAPPER conforms to ISO/IEC 9075-9 (SQL/MED). The IF EXISTS clause is a
Greenplum Database extension.

See Also
CREATE FOREIGN DATA WRAPPER, ALTER FOREIGN DATA WRAPPER

DROP FOREIGN TABLE
Removes a foreign table.

Greenplum Database Reference Guide Release Notes

1131

Synopsis

DROP FOREIGN TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP FOREIGN TABLE removes an existing foreign table. Only the owner of a foreign table can remove it.

Parameters
IF EXISTS

Do not throw an error if the foreign table does not exist. Greenplum Database issues a
notice in this case.

name

The name (optionally schema-qualified) of the foreign table to drop.

CASCADE

Automatically drop objects that depend on the foreign table (such as views).

RESTRICT

Refuse to drop the foreign table if any objects depend on it. This is the default.

Examples
Drop the foreign tables named films and distributors:

DROP FOREIGN TABLE films, distributors;

Compatibility
DROP FOREIGN TABLE conforms to ISO/IEC 9075-9 (SQL/MED), except that the standard only allows
one foreign table to be dropped per command. The IF EXISTS clause is a Greenplum Database
extension.

See Also
ALTER FOREIGN TABLE, CREATE FOREIGN TABLE

DROP FUNCTION
Removes a function.

Synopsis

DROP FUNCTION [IF EXISTS] name ([[argmode] [argname] argtype
 [, ...]]) [CASCADE | RESTRICT]

Description
DROP FUNCTION removes the definition of an existing function. To execute this command the user must
be the owner of the function. The argument types to the function must be specified, since several different
functions may exist with the same name and different argument lists.

Parameters
IF EXISTS

Greenplum Database Reference Guide Release Notes

1132

Do not throw an error if the function does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing function.

argmode

The mode of an argument: either IN, OUT, INOUT, or VARIADIC. If omitted, the default
is IN. Note that DROP FUNCTION does not actually pay any attention to OUT arguments,
since only the input arguments are needed to determine the function's identity. So it is
sufficient to list the IN, INOUT, and VARIADIC arguments.

argname

The name of an argument. Note that DROP FUNCTION does not actually pay any attention
to argument names, since only the argument data types are needed to determine the
function's identity.

argtype

The data type(s) of the function's arguments (optionally schema-qualified), if any.

CASCADE

Automatically drop objects that depend on the function such as operators.

RESTRICT

Refuse to drop the function if any objects depend on it. This is the default.

Examples
Drop the square root function:

DROP FUNCTION sqrt(integer);

Compatibility
A DROP FUNCTION statement is defined in the SQL standard, but it is not compatible with this command.

See Also
CREATE FUNCTION, ALTER FUNCTION

DROP GROUP
Removes a database role.

Synopsis

DROP GROUP [IF EXISTS] name [, ...]

Description
DROP GROUP is an alias for DROP ROLE. See DROP ROLE for more information.

Compatibility
There is no DROP GROUP statement in the SQL standard.

See Also
DROP ROLE

Greenplum Database Reference Guide Release Notes

1133

DROP INDEX
Removes an index.

Synopsis

DROP INDEX [CONCURRENTLY] [IF EXISTS] name [, ...] [CASCADE |
 RESTRICT]

Description
DROP INDEX drops an existing index from the database system. To execute this command you must be
the owner of the index.

Parameters
CONCURRENTLY

Drop the index without locking out concurrent selects, inserts, updates, and deletes on
the index's table. A normal DROP INDEX acquires an exclusive lock on the table, blocking
other accesses until the index drop can be completed. With this option, the command
instead waits until conflicting transactions have completed.

There are several caveats to be aware of when using this option. Only one index name
can be specified, and the CASCADE option is not supported. (Thus, an index that supports
a UNIQUE or PRIMARY KEY constraint cannot be dropped this way.) Also, regular
DROP INDEX commands can be performed within a transaction block, but DROP INDEX
CONCURRENTLY cannot.

IF EXISTS

Do not throw an error if the index does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing index.

CASCADE

Automatically drop objects that depend on the index.

RESTRICT

Refuse to drop the index if any objects depend on it. This is the default.

Examples
Remove the index title_idx:

DROP INDEX title_idx;

Compatibility
DROP INDEX is a Greenplum Database language extension. There are no provisions for indexes in the
SQL standard.

See Also
ALTER INDEX, CREATE INDEX, REINDEX

Greenplum Database Reference Guide Release Notes

1134

DROP LANGUAGE
Removes a procedural language.

Synopsis

DROP [PROCEDURAL] LANGUAGE [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP LANGUAGE will remove the definition of the previously registered procedural language. You must be
a superuser or owner of the language to drop a language.

Parameters
PROCEDURAL

Optional keyword - has no effect.

IF EXISTS

Do not throw an error if the language does not exist. A notice is issued in this case.

name

The name of an existing procedural language. For backward compatibility, the name may
be enclosed by single quotes.

CASCADE

Automatically drop objects that depend on the language (such as functions written in that
language).

RESTRICT

Refuse to drop the language if any objects depend on it. This is the default.

Examples
Remove the procedural language plsample:

DROP LANGUAGE plsample;

Compatibility
There is no DROP LANGUAGE statement in the SQL standard.

See Also
ALTER LANGUAGE, CREATE LANGUAGE

DROP MATERIALIZED VIEW
Removes a materialized view.

Synopsis

DROP MATERIALIZED VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Greenplum Database Reference Guide Release Notes

1135

Description
DROP MATERIALIZED VIEW drops an existing materialized view. To execute this command, you must be
the owner of the materialized view.

Parameters
IF EXISTS

Do not throw an error if the materialized view does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of a materialized view to be dropped.

CASCADE

Automatically drop objects that depend on the materialized view (such as other
materialized views, or regular views).

RESTRICT

Refuse to drop the materialized view if any objects depend on it. This is the default.

Examples
This command removes the materialized view called order_summary.

DROP MATERIALIZED VIEW order_summary;

Compatibility
DROP MATERIALIZED VIEW is a Greenplum Database extension of the SQL standard.

See Also
ALTER MATERIALIZED VIEW, CREATE MATERIALIZED VIEW, REFRESH MATERIALIZED VIEW

DROP OPERATOR
Removes an operator.

Synopsis

DROP OPERATOR [IF EXISTS] name ({lefttype | NONE} ,
 {righttype | NONE}) [CASCADE | RESTRICT]

Description
DROP OPERATOR drops an existing operator from the database system. To execute this command you
must be the owner of the operator.

Parameters
IF EXISTS

Do not throw an error if the operator does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing operator.

lefttype

The data type of the operator's left operand; write NONE if the operator has no left operand.

righttype

Greenplum Database Reference Guide Release Notes

1136

The data type of the operator's right operand; write NONE if the operator has no right
operand.

CASCADE

Automatically drop objects that depend on the operator.

RESTRICT

Refuse to drop the operator if any objects depend on it. This is the default.

Examples
Remove the power operator a^b for type integer:

DROP OPERATOR ^ (integer, integer);

Remove the left unary bitwise complement operator ~b for type bit:

DROP OPERATOR ~ (none, bit);

Remove the right unary factorial operator x! for type bigint:

DROP OPERATOR ! (bigint, none);

Compatibility
There is no DROP OPERATOR statement in the SQL standard.

See Also
ALTER OPERATOR, CREATE OPERATOR

DROP OPERATOR CLASS
Removes an operator class.

Synopsis

DROP OPERATOR CLASS [IF EXISTS] name USING index_method [CASCADE | RESTRICT]

Description
DROP OPERATOR drops an existing operator class. To execute this command you must be the owner of
the operator class.

Parameters
IF EXISTS

Do not throw an error if the operator class does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing operator class.

index_method

The name of the index access method the operator class is for.

CASCADE

Automatically drop objects that depend on the operator class.

RESTRICT

Greenplum Database Reference Guide Release Notes

1137

Refuse to drop the operator class if any objects depend on it. This is the default.

Examples
Remove the B-tree operator class widget_ops:

DROP OPERATOR CLASS widget_ops USING btree;

This command will not succeed if there are any existing indexes that use the operator class. Add CASCADE
to drop such indexes along with the operator class.

Compatibility
There is no DROP OPERATOR CLASS statement in the SQL standard.

See Also
ALTER OPERATOR CLASS, CREATE OPERATOR CLASS

DROP OPERATOR FAMILY
Removes an operator family.

Synopsis

DROP OPERATOR FAMILY [IF EXISTS] name USING index_method [CASCADE |
 RESTRICT]

Description
DROP OPERATOR FAMILY drops an existing operator family. To execute this command you must be the
owner of the operator family.

DROP OPERATOR FAMILY includes dropping any operator classes contained in the family, but it does
not drop any of the operators or functions referenced by the family. If there are any indexes depending on
operator classes within the family, you will need to specify CASCADE for the drop to complete.

Parameters
IF EXISTS

Do not throw an error if the operator family does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing operator family.

index_method

The name of the index access method the operator family is for.

CASCADE

Automatically drop objects that depend on the operator family.

RESTRICT

Refuse to drop the operator family if any objects depend on it. This is the default.

Examples
Remove the B-tree operator family float_ops:

DROP OPERATOR FAMILY float_ops USING btree;

Greenplum Database Reference Guide Release Notes

1138

This command will not succeed if there are any existing indexes that use the operator family. Add
CASCADE to drop such indexes along with the operator family.

Compatibility
There is no DROP OPERATOR FAMILY statement in the SQL standard.

See Also
ALTER OPERATOR FAMILY, CREATE OPERATOR FAMILY, ALTER OPERATOR CLASS, CREATE
OPERATOR CLASS, DROP OPERATOR CLASS

DROP OWNED
Removes database objects owned by a database role.

Synopsis

DROP OWNED BY name [, ...] [CASCADE | RESTRICT]

Description
DROP OWNED drops all the objects in the current database that are owned by one of the specified
roles. Any privileges granted to the given roles on objects in the current database or on shared objects
(databases, tablespaces) will also be revoked.

Parameters
name

The name of a role whose objects will be dropped, and whose privileges will be revoked.

CASCADE

Automatically drop objects that depend on the affected objects.

RESTRICT

Refuse to drop the objects owned by a role if any other database objects depend on one of
the affected objects. This is the default.

Notes
DROP OWNED is often used to prepare for the removal of one or more roles. Because DROP OWNED only
affects the objects in the current database, it is usually necessary to execute this command in each
database that contains objects owned by a role that is to be removed.

Using the CASCADE option may make the command recurse to objects owned by other users.

The REASSIGN OWNED command is an alternative that reassigns the ownership of all the database objects
owned by one or more roles. However, REASSIGN OWNED does not deal with privileges for other objects.

Examples
Remove any database objects owned by the role named sally:

DROP OWNED BY sally;

Compatibility
The DROP OWNED command is a Greenplum Database extension.

Greenplum Database Reference Guide Release Notes

1139

See Also
REASSIGN OWNED, DROP ROLE

DROP PROTOCOL
Removes a external table data access protocol from a database.

Synopsis

DROP PROTOCOL [IF EXISTS] name

Description
DROP PROTOCOL removes the specified protocol from a database. A protocol name can be specified in the
CREATE EXTERNAL TABLE command to read data from or write data to an external data source.

You must be a superuser or the protocol owner to drop a protocol.

Warning: If you drop a data access prococol, external tables that have been defined with the
protocol will no longer be able to access the external data source.

Parameters
IF EXISTS

Do not throw an error if the protocol does not exist. A notice is issued in this case.

name

The name of an existing data access protocol.

Notes
If you drop a data access protocol, the call handlers that defined in the database that are associated with
the protocol are not dropped. You must drop the functions manually.

Shared libraries that were used by the protocol should also be removed from the Greenplum Database
hosts.

Compatibility
DROP PROTOCOL is a Greenplum Database extension.

See Also
CREATE EXTERNAL TABLE, CREATE PROTOCOL

DROP RESOURCE GROUP
Removes a resource group.

Synopsis

DROP RESOURCE GROUP group_name

Description
This command removes a resource group from Greenplum Database. Only a superuser can drop a
resource group. When you drop a resource group, the memory and CPU resources reserved by the group
are returned to Greenplum Database.

Greenplum Database Reference Guide Release Notes

1140

To drop a role resource group, the group cannot be assigned to any roles, nor can it have any statements
pending or running in the group. If you drop a resource group that you created for an external component,
the behavior is determined by the external component. For example, dropping a resource group that you
assigned to a PL/Container runtime kills running containers in the group.

You cannot drop the pre-defined admin_group and default_group resource groups.

Parameters
group_name

The name of the resource group to remove.

Notes
You cannot submit a DROP RESOURCE GROUP command in an explicit transaction or sub-transaction.

Use ALTER ROLE to remove a resource group assigned to a specific user/role.

Perform the following query to view all of the currently active queries for all resource groups:

SELECT usename, query, waiting, pid,
 rsgid, rsgname, rsgqueueduration
 FROM pg_stat_activity;

To view the resource group assignments, perform the following query on the pg_roles and
pg_resgroup system catalog tables:

SELECT rolname, rsgname
 FROM pg_roles, pg_resgroup
 WHERE pg_roles.rolresgroup=pg_resgroup.oid;

Examples
Remove the resource group assigned to a role. This operation then assigns the default resource group
default_group to the role:

ALTER ROLE bob RESOURCE GROUP NONE;

Remove the resource group named adhoc:

DROP RESOURCE GROUP adhoc;

Compatibility
The DROP RESOURCE GROUP statement is a Greenplum Database extension.

See Also
ALTER RESOURCE GROUP, CREATE RESOURCE GROUP, ALTER ROLE

DROP RESOURCE QUEUE
Removes a resource queue.

Synopsis

DROP RESOURCE QUEUE queue_name

Greenplum Database Reference Guide Release Notes

1141

Description
This command removes a resource queue from Greenplum Database. To drop a resource queue, the
queue cannot have any roles assigned to it, nor can it have any statements waiting in the queue. Only a
superuser can drop a resource queue.

Parameters
queue_name

The name of a resource queue to remove.

Notes
Use ALTER ROLE to remove a user from a resource queue.

To see all the currently active queries for all resource queues, perform the following query of the
pg_locks table joined with the pg_roles and pg_resqueue tables:

SELECT rolname, rsqname, locktype, objid, pid,
mode, granted FROM pg_roles, pg_resqueue, pg_locks WHERE
pg_roles.rolresqueue=pg_locks.objid AND
pg_locks.objid=pg_resqueue.oid;

To see the roles assigned to a resource queue, perform the following query of the pg_roles and
pg_resqueue system catalog tables:

SELECT rolname, rsqname FROM pg_roles, pg_resqueue WHERE
pg_roles.rolresqueue=pg_resqueue.oid;

Examples
Remove a role from a resource queue (and move the role to the default resource queue, pg_default):

ALTER ROLE bob RESOURCE QUEUE NONE;

Remove the resource queue named adhoc:

DROP RESOURCE QUEUE adhoc;

Compatibility
The DROP RESOURCE QUEUE statement is a Greenplum Database extension.

See Also
ALTER RESOURCE QUEUE, CREATE RESOURCE QUEUE, ALTER ROLE

DROP ROLE
Removes a database role.

Synopsis

DROP ROLE [IF EXISTS] name [, ...]

Greenplum Database Reference Guide Release Notes

1142

Description
DROP ROLE removes the specified role(s). To drop a superuser role, you must be a superuser yourself. To
drop non-superuser roles, you must have CREATEROLE privilege.

A role cannot be removed if it is still referenced in any database; an error will be raised if so. Before
dropping the role, you must drop all the objects it owns (or reassign their ownership) and revoke any
privileges the role has been granted on other objects. The REASSIGN OWNED and DROP OWNED
commands can be useful for this purpose.

However, it is not necessary to remove role memberships involving the role; DROP ROLE automatically
revokes any memberships of the target role in other roles, and of other roles in the target role. The other
roles are not dropped nor otherwise affected.

Parameters
IF EXISTS

Do not throw an error if the role does not exist. A notice is issued in this case.

name

The name of the role to remove.

Examples
Remove the roles named sally and bob:

DROP ROLE sally, bob;

Compatibility
The SQL standard defines DROP ROLE, but it allows only one role to be dropped at a time, and it specifies
different privilege requirements than Greenplum Database uses.

See Also
REASSIGN OWNED, DROP OWNED, CREATE ROLE, ALTER ROLE, SET ROLE

DROP RULE
Removes a rewrite rule.

Synopsis

DROP RULE [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

Description
DROP RULE drops a rewrite rule from a table or view.

Parameters
IF EXISTS

Do not throw an error if the rule does not exist. A notice is issued in this case.

name

The name of the rule to remove.

table_name

The name (optionally schema-qualified) of the table or view that the rule applies to.

Greenplum Database Reference Guide Release Notes

1143

CASCADE

Automatically drop objects that depend on the rule.

RESTRICT

Refuse to drop the rule if any objects depend on it. This is the default.

Examples
Remove the rewrite rule sales_2006 on the table sales:

DROP RULE sales_2006 ON sales;

Compatibility
DROP RULE is a Greenplum Database language extension, as is the entire query rewrite system.

See Also
ALTER RULE, CREATE RULE

DROP SCHEMA
Removes a schema.

Synopsis

DROP SCHEMA [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP SCHEMA removes schemas from the database. A schema can only be dropped by its owner or a
superuser. Note that the owner can drop the schema (and thereby all contained objects) even if he does
not own some of the objects within the schema.

Parameters
IF EXISTS

Do not throw an error if the schema does not exist. A notice is issued in this case.

name

The name of the schema to remove.

CASCADE

Automatically drops any objects contained in the schema (tables, functions, etc.).

RESTRICT

Refuse to drop the schema if it contains any objects. This is the default.

Examples
Remove the schema mystuff from the database, along with everything it contains:

DROP SCHEMA mystuff CASCADE;

Compatibility
DROP SCHEMA is fully conforming with the SQL standard, except that the standard only allows one schema
to be dropped per command. Also, the IF EXISTS option is a Greenplum Database extension.

Greenplum Database Reference Guide Release Notes

1144

See Also
CREATE SCHEMA, ALTER SCHEMA

DROP SEQUENCE
Removes a sequence.

Synopsis

DROP SEQUENCE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP SEQUENCE removes a sequence generator table. You must own the sequence to drop it (or be a
superuser).

Parameters
IF EXISTS

Do not throw an error if the sequence does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the sequence to remove.

CASCADE

Automatically drop objects that depend on the sequence.

RESTRICT

Refuse to drop the sequence if any objects depend on it. This is the default.

Examples
Remove the sequence myserial:

DROP SEQUENCE myserial;

Compatibility
DROP SEQUENCE is fully conforming with the SQL standard, except that the standard only allows one
sequence to be dropped per command. Also, the IF EXISTS option is a Greenplum Database extension.

See Also
ALTER SEQUENCE, CREATE SEQUENCE

DROP SERVER
Removes a foreign server descriptor.

Synopsis

DROP SERVER [IF EXISTS] servername [CASCADE | RESTRICT]

Greenplum Database Reference Guide Release Notes

1145

Description
DROP SERVER removes an existing foreign server descriptor. The user executing this command must be
the owner of the server.

Parameters
IF EXISTS

Do not throw an error if the server does not exist. Greenplum Database issues a notice in
this case.

servername

The name of an existing server.

CASCADE

Automatically drop objects that depend on the server (such as user mappings).

RESTRICT

Refuse to drop the server if any object depends on it. This is the default.

Examples
Drop the server named foo if it exists:

DROP SERVER IF EXISTS foo;

Compatibility
DROP SERVER conforms to ISO/IEC 9075-9 (SQL/MED). The IF EXISTS clause is a Greenplum
Database extension.

See Also
CREATE SERVER, ALTER SERVER

DROP TABLE
Removes a table.

Synopsis

DROP TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP TABLE removes tables from the database. Only the table owner, the schema owner, and superuser
can drop a table. To empty a table of rows without removing the table definition, use DELETE or
TRUNCATE.

DROP TABLE always removes any indexes, rules, triggers, and constraints that exist for the target table.
However, to drop a table that is referenced by a view, CASCADE must be specified. CASCADE will remove a
dependent view entirely.

Parameters
IF EXISTS

Do not throw an error if the table does not exist. A notice is issued in this case.

Greenplum Database Reference Guide Release Notes

1146

name

The name (optionally schema-qualified) of the table to remove.

CASCADE

Automatically drop objects that depend on the table (such as views).

RESTRICT

Refuse to drop the table if any objects depend on it. This is the default.

Examples
Remove the table mytable:

DROP TABLE mytable;

Compatibility
DROP TABLE is fully conforming with the SQL standard, except that the standard only allows one table to
be dropped per command. Also, the IF EXISTS option is a Greenplum Database extension.

See Also
CREATE TABLE, ALTER TABLE, TRUNCATE

DROP TABLESPACE
Removes a tablespace.

Synopsis

DROP TABLESPACE [IF EXISTS] tablespacename

Description
DROP TABLESPACE removes a tablespace from the system.

A tablespace can only be dropped by its owner or a superuser. The tablespace must be empty of all
database objects before it can be dropped. It is possible that objects in other databases may still reside in
the tablespace even if no objects in the current database are using the tablespace. Also, if the tablespace
is listed in the temp_tablespaces setting of any active session, DROP TABLESPACE might fail due to
temporary files residing in the tablespace.

Parameters
IF EXISTS

Do not throw an error if the tablespace does not exist. A notice is issued in this case.

tablespacename

The name of the tablespace to remove.

Notes
Run DROP TABLESPACE during a period of low activity to avoid issues due to concurrent creation of tables
and temporary objects. When a tablespace is dropped, there is a small window in which a table could be
created in the tablespace that is currently being dropped. If this occurs, Greenplum Database returns a
warning. This is an example of the DROP TABLESPACE warning.

testdb=# DROP TABLESPACE mytest;

Greenplum Database Reference Guide Release Notes

1147

WARNING: tablespace with oid "16415" is not empty (seg1
 192.168.8.145:25433 pid=29023)
WARNING: tablespace with oid "16415" is not empty (seg0
 192.168.8.145:25432 pid=29022)
WARNING: tablespace with oid "16415" is not empty
DROP TABLESPACE

The table data in the tablespace directory is not dropped. You can use the ALTER TABLE command to
change the tablespace defined for the table and move the data to an existing tablespace.

Examples
Remove the tablespace mystuff:

DROP TABLESPACE mystuff;

Compatibility
DROP TABLESPACE is a Greenplum Database extension.

See Also
CREATE TABLESPACE, ALTER TABLESPACE

DROP TEXT SEARCH CONFIGURATION
Removes a text search configuration.

Synopsis

DROP TEXT SEARCH CONFIGURATION [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH CONFIGURATION drops an existing text search configuration. To execute this
command you must be the owner of the configuration.

Parameters
IF EXISTS

Do not throw an error if the text search configuration does not exist. A notice is issued in
this case.

name

The name (optionally schema-qualified) of an existing text search configuration.

CASCADE

Automatically drop objects that depend on the text search configuration.

RESTRICT

Refuse to drop the text search configuration if any objects depend on it. This is the default.

Examples
Remove the text search configuration my_english:

DROP TEXT SEARCH CONFIGURATION my_english;

Greenplum Database Reference Guide Release Notes

1148

This command will not succeed if there are any existing indexes that reference the configuration in
to_tsvector calls. Add CASCADE to drop such indexes along with the text search configuration.

Compatibility
There is no DROP TEXT SEARCH CONFIGURATION statement in the SQL standard.

See Also
ALTER TEXT SEARCH CONFIGURATION, CREATE TEXT SEARCH CONFIGURATION

DROP TEXT SEARCH DICTIONARY
Removes a text search dictionary.

Synopsis

DROP TEXT SEARCH DICTIONARY [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH DICTIONARY drops an existing text search dictionary. To execute this command
you must be the owner of the dictionary.

Parameters
IF EXISTS

Do not throw an error if the text search dictionary does not exist. A notice is issued in this
case.

name

The name (optionally schema-qualified) of an existing text search dictionary.

CASCADE

Automatically drop objects that depend on the text search dictionary.

RESTRICT

Refuse to drop the text search dictionary if any objects depend on it. This is the default.

Examples
Remove the text search dictionary english:

DROP TEXT SEARCH DICTIONARY english;

This command will not succeed if there are any existing text search configurations that use the dictionary.
Add CASCADE to drop such configurations along with the dictionary.

Compatibility
There is no CREATE TEXT SEARCH DICTIONARY statement in the SQL standard.

See Also
ALTER TEXT SEARCH DICTIONARY, CREATE TEXT SEARCH DICTIONARY

Greenplum Database Reference Guide Release Notes

1149

DROP TEXT SEARCH PARSER

Description
Remove a text search parser.

Synopsis

DROP TEXT SEARCH PARSER [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH PARSER drops an existing text search parser. You must be a superuser to use this
command.

Parameters
IF EXISTS

Do not throw an error if the text search parser does not exist. A notice is issued in this
case.

name

The name (optionally schema-qualified) of an existing text search parser.

CASCADE

Automatically drop objects that depend on the text search parser.

RESTRICT

Refuse to drop the text search parser if any objects depend on it. This is the default.

Examples
Remove the text search parser my_parser:

DROP TEXT SEARCH PARSER my_parser;

This command will not succeed if there are any existing text search configurations that use the parser. Add
CASCADE to drop such configurations along with the parser.

Compatibility
There is no DROP TEXT SEARCH PARSER statement in the SQL standard.

See Also
ALTER TEXT SEARCH PARSER, CREATE TEXT SEARCH PARSER

DROP TEXT SEARCH TEMPLATE

Description
Removes a text search template.

Synopsis

DROP TEXT SEARCH TEMPLATE [IF EXISTS] name [CASCADE | RESTRICT]

Greenplum Database Reference Guide Release Notes

1150

Description
DROP TEXT SEARCH TEMPLATE drops an existing text search template. You must be a superuser to use
this command.

You must be a superuser to use ALTER TEXT SEARCH TEMPLATE.

Parameters
IF EXISTS

Do not throw an error if the text search template does not exist. A notice is issued in this
case.

name

The name (optionally schema-qualified) of an existing text search template.

CASCADE

Automatically drop objects that depend on the text search template.

RESTRICT

Refuse to drop the text search template if any objects depend on it. This is the default.

Compatibility
There is no DROP TEXT SEARCH TEMPLATE statement in the SQL standard.

See Also
ALTER TEXT SEARCH TEMPLATE, CREATE TEXT SEARCH TEMPLATE

DROP TYPE
Removes a data type.

Synopsis

DROP TYPE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP TYPE will remove a user-defined data type. Only the owner of a type can remove it.

Parameters
IF EXISTS

Do not throw an error if the type does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the data type to remove.

CASCADE

Automatically drop objects that depend on the type (such as table columns, functions,
operators).

RESTRICT

Refuse to drop the type if any objects depend on it. This is the default.

Greenplum Database Reference Guide Release Notes

1151

Examples
Remove the data type box;

DROP TYPE box;

Compatibility
This command is similar to the corresponding command in the SQL standard, apart from the IF EXISTS
option, which is a Greenplum Database extension. But note that much of the CREATE TYPE command and
the data type extension mechanisms in Greenplum Database differ from the SQL standard.

See Also
ALTER TYPE, CREATE TYPE

DROP USER
Removes a database role.

Synopsis

DROP USER [IF EXISTS] name [, ...]

Description
DROP USER is an alias for DROP ROLE. See DROP ROLE for more information.

Compatibility
There is no DROP USER statement in the SQL standard. The SQL standard leaves the definition of users to
the implementation.

See Also
DROP ROLE

DROP USER MAPPING
Removes a user mapping for a foreign server.

Synopsis

DROP USER MAPPING [IF EXISTS] { username | USER | CURRENT_USER | PUBLIC }
 SERVER servername

Description
DROP USER MAPPING removes an existing user mapping from a foreign server. To execute this
command, the current user must be the owner of the server containing the mapping.

Parameters
IF EXISTS

Do not throw an error if the user mapping does not exist. Greenplum Database issues a
notice in this case.

Greenplum Database Reference Guide Release Notes

1152

username

User name of the mapping. CURRENT_USER and USER match the name of the current
user. PUBLIC is used to match all present and future user names in the system.

servername

Server name of the user mapping.

Examples
Drop the user mapping named bob, server foo if it exists:

DROP USER MAPPING IF EXISTS FOR bob SERVER foo;

Compatibility
DROP SERVER conforms to ISO/IEC 9075-9 (SQL/MED). The IF EXISTS clause is a Greenplum
Database extension.

See Also
CREATE USER MAPPING, ALTER USER MAPPING

DROP VIEW
Removes a view.

Synopsis

DROP VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP VIEW will remove an existing view. Only the owner of a view can remove it.

Parameters
IF EXISTS

Do not throw an error if the view does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the view to remove.

CASCADE

Automatically drop objects that depend on the view (such as other views).

RESTRICT

Refuse to drop the view if any objects depend on it. This is the default.

Examples
Remove the view topten;

DROP VIEW topten;

Greenplum Database Reference Guide Release Notes

1153

Compatibility
DROP VIEW is fully conforming with the SQL standard, except that the standard only allows one view to be
dropped per command. Also, the IF EXISTS option is a Greenplum Database extension.

See Also
CREATE VIEW

END
Commits the current transaction.

Synopsis

END [WORK | TRANSACTION]

Description
END commits the current transaction. All changes made by the transaction become visible to others and
are guaranteed to be durable if a crash occurs. This command is a Greenplum Database extension that is
equivalent to COMMIT.

Parameters
WORK
TRANSACTION

Optional keywords. They have no effect.

Examples
Commit the current transaction:

END;

Compatibility
END is a Greenplum Database extension that provides functionality equivalent to COMMIT, which is
specified in the SQL standard.

See Also
BEGIN, ROLLBACK, COMMIT

EXECUTE
Executes a prepared SQL statement.

Synopsis

EXECUTE name [(parameter [, ...])]

Description
EXECUTE is used to execute a previously prepared statement. Since prepared statements only exist for the
duration of a session, the prepared statement must have been created by a PREPARE statement executed
earlier in the current session.

Greenplum Database Reference Guide Release Notes

1154

If the PREPARE statement that created the statement specified some parameters, a compatible set of
parameters must be passed to the EXECUTE statement, or else an error is raised. Note that (unlike
functions) prepared statements are not overloaded based on the type or number of their parameters; the
name of a prepared statement must be unique within a database session.

For more information on the creation and usage of prepared statements, see PREPARE.

Parameters
name

The name of the prepared statement to execute.

parameter

The actual value of a parameter to the prepared statement. This must be an expression
yielding a value that is compatible with the data type of this parameter, as was determined
when the prepared statement was created.

Examples
Create a prepared statement for an INSERT statement, and then execute it:

PREPARE fooplan (int, text, bool, numeric) AS INSERT INTO
foo VALUES($1, $2, $3, $4);
EXECUTE fooplan(1, 'Hunter Valley', 't', 200.00);

Compatibility
The SQL standard includes an EXECUTE statement, but it is only for use in embedded SQL. This version of
the EXECUTE statement also uses a somewhat different syntax.

See Also
DEALLOCATE, PREPARE

EXPLAIN
Shows the query plan of a statement.

Synopsis

EXPLAIN [(option [, ...])] statement
EXPLAIN [ANALYZE] [VERBOSE] statement

where option can be one of:

 ANALYZE [boolean]
 VERBOSE [boolean]
 COSTS [boolean]
 BUFFERS [boolean]
 TIMING [boolean]
 FORMAT { TEXT | XML | JSON | YAML }

Description
EXPLAIN displays the query plan that the Greenplum or Postgres Planner generates for the supplied
statement. Query plans are a tree plan of nodes. Each node in the plan represents a single operation, such
as table scan, join, aggregation or a sort.

Greenplum Database Reference Guide Release Notes

1155

Plans should be read from the bottom up as each node feeds rows into the node directly above it. The
bottom nodes of a plan are usually table scan operations (sequential, index or bitmap index scans). If
the query requires joins, aggregations, or sorts (or other operations on the raw rows) then there will be
additional nodes above the scan nodes to perform these operations. The topmost plan nodes are usually
the Greenplum Database motion nodes (redistribute, explicit redistribute, broadcast, or gather motions).
These are the operations responsible for moving rows between the segment instances during query
processing.

The output of EXPLAIN has one line for each node in the plan tree, showing the basic node type plus the
following cost estimates that the planner made for the execution of that plan node:

• cost — the planner's guess at how long it will take to run the statement (measured in cost units that
are arbitrary, but conventionally mean disk page fetches). Two cost numbers are shown: the start-up
cost before the first row can be returned, and the total cost to return all the rows. Note that the total cost
assumes that all rows will be retrieved, which may not always be the case (if using LIMIT for example).

• rows — the total number of rows output by this plan node. This is usually less than the actual number
of rows processed or scanned by the plan node, reflecting the estimated selectivity of any WHERE
clause conditions. Ideally the top-level nodes estimate will approximate the number of rows actually
returned, updated, or deleted by the query.

• width — total bytes of all the rows output by this plan node.

It is important to note that the cost of an upper-level node includes the cost of all its child nodes. The
topmost node of the plan has the estimated total execution cost for the plan. This is this number that the
planner seeks to minimize. It is also important to realize that the cost only reflects things that the query
optimizer cares about. In particular, the cost does not consider the time spent transmitting result rows to
the client.

EXPLAIN ANALYZE causes the statement to be actually executed, not only planned. The EXPLAIN
ANALYZE plan shows the actual results along with the planner's estimates. This is useful for seeing
whether the planner's estimates are close to reality. In addition to the information shown in the EXPLAIN
plan, EXPLAIN ANALYZE will show the following additional information:

• The total elapsed time (in milliseconds) that it took to run the query.
• The number of workers (segments) involved in a plan node operation. Only segments that return rows

are counted.
• The maximum number of rows returned by the segment that produced the most rows for an operation.

If multiple segments produce an equal number of rows, the one with the longest time to end is the one
chosen.

• The segment id number of the segment that produced the most rows for an operation.
• For relevant operations, the work_mem used by the operation. If work_mem was not sufficient to

perform the operation in memory, the plan will show how much data was spilled to disk and how many
passes over the data were required for the lowest performing segment. For example:

Work_mem used: 64K bytes avg, 64K bytes max (seg0).
Work_mem wanted: 90K bytes avg, 90K bytes max (seg0) to abate workfile
I/O affecting 2 workers.
[seg0] pass 0: 488 groups made from 488 rows; 263 rows written to
workfile
[seg0] pass 1: 263 groups made from 263 rows

• The time (in milliseconds) it took to retrieve the first row from the segment that produced the most rows,
and the total time taken to retrieve all rows from that segment. The <time> to first row may be omitted if
it is the same as the <time> to end.

Important: Keep in mind that the statement is actually executed when ANALYZE is used. Although
EXPLAIN ANALYZE will discard any output that a SELECT would return, other side effects of the

Greenplum Database Reference Guide Release Notes

1156

statement will happen as usual. If you wish to use EXPLAIN ANALYZE on a DML statement without
letting the command affect your data, use this approach:

BEGIN;
EXPLAIN ANALYZE ...;
ROLLBACK;

Only the ANALYZE and VERBOSE options can be specified, and only in that order, without surrounding the
option list in parentheses.

Parameters
ANALYZE

Carry out the command and show the actual run times and other statistics. This parameter
defaults to FALSE if you omit it; specify ANALYZE true to enable it.

VERBOSE

Display additional information regarding the plan. Specifically, include the output column
list for each node in the plan tree, schema-qualify table and function names, always label
variables in expressions with their range table alias, and always print the name of each
trigger for which statistics are displayed. This parameter defaults to FALSEif you omit it;
specify VERBOSE true to enable it.

COSTS

Include information on the estimated startup and total cost of each plan node, as well
as the estimated number of rows and the estimated width of each row. This parameter
defaults to TRUE if you omit it; specify COSTS false to disable it.

BUFFERS

Include information on buffer usage. Specifically, include the number of shared blocks hit,
read, dirtied, and written, the number of local blocks hit, read, dirtied, and written, and the
number of temp blocks read and written. A hit means that a read was avoided because
the block was found already in cache when needed. Shared blocks contain data from
regular tables and indexes; local blocks contain data from temporary tables and indexes;
while temp blocks contain short-term working data used in sorts, hashes, Materialize plan
nodes, and similar cases. The number of blocks dirtied indicates the number of previously
unmodified blocks that were changed by this query; while the number of blocks written
indicates the number of previously-dirtied blocks evicted from cache by this backend
during query processing. The number of blocks shown for an upper-level node includes
those used by all its child nodes. In text format, only non-zero values are printed. This
parameter may only be used when ANALYZE is also enabled. This parameter defaults to
FALSE if you omit it; specify BUFFERS true to enable it.

TIMING

Include actual startup time and time spent in each node in the output. The overhead
of repeatedly reading the system clock can slow down the query significantly on some
systems, so it may be useful to set this parameter to FALSE when only actual row counts,
and not exact times, are needed. Run time of the entire statement is always measured,
even when node-level timing is turned off with this option. This parameter may only be
used when ANALYZE is also enabled. It defaults to TRUE.

FORMAT

Specify the output format, which can be TEXT, XML, JSON, or YAML. Non-text output
contains the same information as the text output format, but is easier for programs to
parse. This parameter defaults to TEXT.

boolean

Greenplum Database Reference Guide Release Notes

1157

Specifies whether the selected option should be turned on or off. You can write TRUE, ON,
or 1 to enable the option, and FALSE, OFF, or 0 to disable it. The boolean value can also
be omitted, in which case TRUE is assumed.

statement

Any SELECT, INSERT, UPDATE, DELETE, VALUES, EXECUTE, DECLARE, or CREATE
TABLE AS statement, whose execution plan you wish to see.

Notes
In order to allow the query optimizer to make reasonably informed decisions when optimizing queries, the
ANALYZE statement should be run to record statistics about the distribution of data within the table. If you
have not done this (or if the statistical distribution of the data in the table has changed significantly since
the last time ANALYZE was run), the estimated costs are unlikely to conform to the real properties of the
query, and consequently an inferior query plan may be chosen.

An SQL statement that is run during the execution of an EXPLAIN ANALYZE command is excluded from
Greenplum Database resource queues.

For more information about query profiling, see "Query Profiling" in the Greenplum Database Administrator
Guide. For more information about resource queues, see "Resource Management with Resource Queues"
in the Greenplum Database Administrator Guide.

Examples
To illustrate how to read an EXPLAIN query plan, consider the following example for a very simple query:

EXPLAIN SELECT * FROM names WHERE name = 'Joelle';
 QUERY PLAN

 Gather Motion 3:1 (slice1; segments: 3) (cost=0.00..431.27 rows=1
 width=58)
 -> Seq Scan on names (cost=0.00..431.27 rows=1 width=58)
 Filter: (name = 'Joelle'::text)
 Optimizer: Pivotal Optimizer (GPORCA) version 3.23.0
(4 rows)

If we read the plan from the bottom up, the query optimizer starts by doing a sequential scan of the
names table. Notice that the WHERE clause is being applied as a filter condition. This means that the scan
operation checks the condition for each row it scans, and outputs only the ones that pass the condition.

The results of the scan operation are passed up to a gather motion operation. In Greenplum Database, a
gather motion is when segments send rows up to the master. In this case we have 3 segment instances
sending to 1 master instance (3:1). This operation is working on slice1 of the parallel query execution
plan. In Greenplum Database a query plan is divided into slices so that portions of the query plan can be
worked on in parallel by the segments.

The estimated startup cost for this plan is 00.00 (no cost) and a total cost of 431.27. The planner is
estimating that this query will return one row.

Here is the same query, with cost estimates suppressed:

EXPLAIN (COSTS FALSE) SELECT * FROM names WHERE name = 'Joelle';
 QUERY PLAN
--
 Gather Motion 3:1 (slice1; segments: 3)
 -> Seq Scan on names
 Filter: (name = 'Joelle'::text)
 Optimizer: Pivotal Optimizer (GPORCA) version 3.23.0
(4 rows)

Greenplum Database Reference Guide Release Notes

1158

Here is the same query, with JSON formatting:

EXPLAIN (FORMAT JSON) SELECT * FROM names WHERE name = 'Joelle';
 QUERY PLAN

 [+
 { +
 "Plan": { +
 "Node Type": "Gather Motion", +
 "Senders": 3, +
 "Receivers": 1, +
 "Slice": 1, +
 "Segments": 3, +
 "Gang Type": "primary reader", +
 "Startup Cost": 0.00, +
 "Total Cost": 431.27, +
 "Plan Rows": 1, +
 "Plan Width": 58, +
 "Plans": [+
 { +
 "Node Type": "Seq Scan", +
 "Parent Relationship": "Outer", +
 "Slice": 1, +
 "Segments": 3, +
 "Gang Type": "primary reader", +
 "Relation Name": "names", +
 "Alias": "names", +
 "Startup Cost": 0.00, +
 "Total Cost": 431.27, +
 "Plan Rows": 1, +
 "Plan Width": 58, +
 "Filter": "(name = 'Joelle'::text)"+
 } +
] +
 }, +
 "Settings": { +
 "Optimizer": "Pivotal Optimizer (GPORCA) version 3.23.0" +
 } +
 } +
]
(1 row)

If there is an index and we use a query with an indexable WHERE condition, EXPLAIN might show a
different plan. This query generates a plan with an index scan, with YAML formatting:

EXPLAIN (FORMAT YAML) SELECT * FROM NAMES WHERE LOCATION='Sydney,
 Australia';
 QUERY PLAN
--
 - Plan: +
 Node Type: "Gather Motion" +
 Senders: 3 +
 Receivers: 1 +
 Slice: 1 +
 Segments: 3 +
 Gang Type: "primary reader" +
 Startup Cost: 0.00 +
 Total Cost: 10.81 +
 Plan Rows: 10000 +
 Plan Width: 70 +
 Plans: +
 - Node Type: "Index Scan" +
 Parent Relationship: "Outer" +

Greenplum Database Reference Guide Release Notes

1159

 Slice: 1 +
 Segments: 3 +
 Gang Type: "primary reader" +
 Scan Direction: "Forward" +
 Index Name: "names_idx_loc" +
 Relation Name: "names" +
 Alias: "names" +
 Startup Cost: 0.00 +
 Total Cost: 7.77 +
 Plan Rows: 10000 +
 Plan Width: 70 +
 Index Cond: "(location = 'Sydney, Australia'::text)"+
 Settings: +
 Optimizer: "Pivotal Optimizer (GPORCA) version 3.23.0"
(1 row)

Compatibility
There is no EXPLAIN statement defined in the SQL standard.

See Also
ANALYZE

FETCH
Retrieves rows from a query using a cursor.

Synopsis

FETCH [forward_direction { FROM | IN }] cursor_name

where forward_direction can be empty or one of:

 NEXT
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL

Description
FETCH retrieves rows using a previously-created cursor.

Note: This page describes usage of cursors at the SQL command level. If you are trying to use
cursors inside a PL/pgSQL function, the rules are different. See PL/pgSQL function.

A cursor has an associated position, which is used by FETCH. The cursor position can be before the first
row of the query result, on any particular row of the result, or after the last row of the result. When created,
a cursor is positioned before the first row. After fetching some rows, the cursor is positioned on the row
most recently retrieved. If FETCH runs off the end of the available rows then the cursor is left positioned
after the last row. FETCH ALL will always leave the cursor positioned after the last row.

Greenplum Database Reference Guide Release Notes

1160

The forms NEXT, FIRST, LAST, ABSOLUTE, RELATIVE fetch a single row after moving the cursor
appropriately. If there is no such row, an empty result is returned, and the cursor is left positioned before
the first row or after the last row as appropriate.

The forms using FORWARD retrieve the indicated number of rows moving in the forward direction, leaving
the cursor positioned on the last-returned row (or after all rows, if the count exceeds the number of rows
available). Note that it is not possible to move a cursor position backwards in Greenplum Database, since
scrollable cursors are not supported. You can only move a cursor forward in position using FETCH.

RELATIVE 0 and FORWARD 0 request fetching the current row without moving the cursor, that is, re-
fetching the most recently fetched row. This will succeed unless the cursor is positioned before the first row
or after the last row, in which case no row is returned.

Outputs

On successful completion, a FETCH command returns a command tag of the form

FETCH count

The count is the number of rows fetched (possibly zero). Note that in psql, the command tag will not
actually be displayed, since psql displays the fetched rows instead.

Parameters
forward_direction

Defines the fetch direction and number of rows to fetch. Only forward fetches are allowed
in Greenplum Database. It can be one of the following:

NEXT

Fetch the next row. This is the default if direction is omitted.

FIRST

Fetch the first row of the query (same as ABSOLUTE 1). Only allowed if it is the first FETCH
operation using this cursor.

LAST

Fetch the last row of the query (same as ABSOLUTE -1).

ABSOLUTE count

Fetch the specified row of the query. Position after last row if count is out of range. Only
allowed if the row specified by count moves the cursor position forward.

RELATIVE count

Fetch the specified row of the query count rows ahead of the current cursor position.
RELATIVE 0 re-fetches the current row, if any. Only allowed if count moves the cursor
position forward.

count

Fetch the next count number of rows (same as FORWARD count).

ALL

Fetch all remaining rows (same as FORWARD ALL).

FORWARD

Fetch the next row (same as NEXT).

FORWARD count

Fetch the next count number of rows. FORWARD 0 re-fetches the current row.

FORWARD ALL

Fetch all remaining rows.

cursor_name

Greenplum Database Reference Guide Release Notes

1161

The name of an open cursor.

Notes
Greenplum Database does not support scrollable cursors, so you can only use FETCH to move the cursor
position forward.

ABSOLUTE fetches are not any faster than navigating to the desired row with a relative move: the
underlying implementation must traverse all the intermediate rows anyway.

DECLARE is used to define a cursor. Use MOVE to change cursor position without retrieving data.

Examples
-- Start the transaction:

BEGIN;

-- Set up a cursor:

DECLARE mycursor CURSOR FOR SELECT * FROM films;

-- Fetch the first 5 rows in the cursor mycursor:

FETCH FORWARD 5 FROM mycursor;
 code | title | did | date_prod | kind | len
-------+-------------------------+-----+------------+----------+-------
 BL101 | The Third Man | 101 | 1949-12-23 | Drama | 01:44
 BL102 | The African Queen | 101 | 1951-08-11 | Romantic | 01:43
 JL201 | Une Femme est une Femme | 102 | 1961-03-12 | Romantic | 01:25
 P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08
 P_302 | Becket | 103 | 1964-02-03 | Drama | 02:28

-- Close the cursor and end the transaction:

CLOSE mycursor;
COMMIT;

Change the kind column of the table films in the row at the c_films cursor's current position:

UPDATE films SET kind = 'Dramatic' WHERE CURRENT OF c_films;

Compatibility
SQL standard allows cursors only in embedded SQL and in modules. Greenplum Database permits
cursors to be used interactively.

The variant of FETCH described here returns the data as if it were a SELECT result rather than placing it in
host variables. Other than this point, FETCH is fully upward-compatible with the SQL standard.

The FETCH forms involving FORWARD, as well as the forms FETCH count and FETCHALL, in which
FORWARD is implicit, are Greenplum Database extensions. BACKWARD is not supported.

The SQL standard allows only FROM preceding the cursor name; the option to use IN, or to leave them out
altogether, is an extension.

See Also
DECLARE, CLOSE, MOVE

Greenplum Database Reference Guide Release Notes

1162

GRANT
Defines access privileges.

Synopsis

GRANT { {SELECT | INSERT | UPDATE | DELETE | REFERENCES |
TRIGGER | TRUNCATE } [, ...] | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 TO { [GROUP] role_name | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { { SELECT | INSERT | UPDATE | REFERENCES } (column_name [, ...])
 [, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
 ON [TABLE] table_name [, ...]
 TO { role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { {USAGE | SELECT | UPDATE} [, ...] | ALL [PRIVILEGES] }
 ON { SEQUENCE sequence_name [, ...]
 | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { {CREATE | CONNECT | TEMPORARY | TEMP} [, ...] | ALL
[PRIVILEGES] }
 ON DATABASE database_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON DOMAIN domain_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN DATA WRAPPER fdw_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN SERVER server_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON { FUNCTION function_name ([[argmode] [argname] argtype [, ...]
]) [, ...]
 | ALL FUNCTIONS IN SCHEMA schema_name [, ...] }
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE lang_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | USAGE } [, ...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 TO { [GROUP] role_name | PUBLIC} [, ...] [WITH GRANT OPTION]

GRANT { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespace_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON TYPE type_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

Greenplum Database Reference Guide Release Notes

1163

GRANT parent_role [, ...]
 TO member_role [, ...] [WITH ADMIN OPTION]

GRANT { SELECT | INSERT | ALL [PRIVILEGES] }
 ON PROTOCOL protocolname
 TO username

Description
Greenplum Database unifies the concepts of users and groups into a single kind of entity called a role. It
is therefore not necessary to use the keyword GROUP to identify whether a grantee is a user or a group.
GROUP is still allowed in the command, but it is a noise word.

The GRANT command has two basic variants: one that grants privileges on a database object (table,
column, view, foreign table, sequence, database, foreign-data wrapper, foreign server, function, procedural
language, schema, or tablespace), and one that grants membership in a role.

GRANT on Database Objects

This variant of the GRANT command gives specific privileges on a database object to one or more roles.
These privileges are added to those already granted, if any.

There is also an option to grant privileges on all objects of the same type within one or more schemas. This
functionality is currently supported only for tables, sequences, and functions (but note that ALL TABLES is
considered to include views and foreign tables).

The keyword PUBLIC indicates that the privileges are to be granted to all roles, including those that may
be created later. PUBLIC may be thought of as an implicitly defined group-level role that always includes
all roles. Any particular role will have the sum of privileges granted directly to it, privileges granted to any
role it is presently a member of, and privileges granted to PUBLIC.

If WITH GRANT OPTION is specified, the recipient of the privilege may in turn grant it to others. Without a
grant option, the recipient cannot do that. Grant options cannot be granted to PUBLIC.

There is no need to grant privileges to the owner of an object (usually the role that created it), as the owner
has all privileges by default. (The owner could, however, choose to revoke some of their own privileges for
safety.)

The right to drop an object, or to alter its definition in any way is not treated as a grantable privilege; it is
inherent in the owner, and cannot be granted or revoked. (However, a similar effect can be obtained by
granting or revoking membership in the role that owns the object; see below.) The owner implicitly has all
grant options for the object, too.

Greenplum Database grants default privileges on some types of objects to PUBLIC. No privileges are
granted to PUBLIC by default on tables, table columns, sequences, foreign data wrappers, foreign servers,
large objects, schemas, or tablespaces. For other types of objects, the default privileges granted to
PUBLIC are as follows:

• CONNECT and TEMPORARY (create temporary tables) privileges for databases,
• EXECUTE privilege for functions, and
• USAGE privilege for languages and data types (including domains).

The object owner can, of course, REVOKE both default and expressly granted privileges. (For maximum
security, issue the REVOKE in the same transaction that creates the object; then there is no window in
which another user can use the object.)

>
GRANT on Roles

This variant of the GRANT command grants membership in a role to one or more other roles. Membership
in a role is significant because it conveys the privileges granted to a role to each of its members.

Greenplum Database Reference Guide Release Notes

1164

If WITH ADMIN OPTION is specified, the member may in turn grant membership in the role to others,
and revoke membership in the role as well. Without the admin option, ordinary users cannot do that. A
role is not considered to hold WITH ADMIN OPTION on itself, but it may grant or revoke membership in
itself from a database session where the session user matches the role. Database superusers can grant
or revoke membership in any role to anyone. Roles having CREATEROLE privilege can grant or revoke
membership in any role that is not a superuser.

Unlike the case with privileges, membership in a role cannot be granted to PUBLIC.

GRANT on Protocols

You can also use the GRANT command to specify which users can access a trusted protocol. (If the
protocol is not trusted, you cannot give any other user permission to use it to read or write data.)

• To allow a user to create a readable external table with a trusted protocol:

GRANT SELECT ON PROTOCOL protocolname TO username

• To allow a user to create a writable external table with a trusted protocol:

GRANT INSERT ON PROTOCOL protocolname TO username

• To allow a user to create both readable and writable external table with a trusted protocol:

GRANT ALL ON PROTOCOL protocolname TO username

You can also use this command to grant users permissions to create and use s3 and pxf external tables.
However, external tables of type http, https, gpfdist, and gpfdists, are implemented internally
in Greenplum Database instead of as custom protocols. For these types, use the CREATE ROLE or
ALTER ROLE command to set the CREATEEXTTABLE or NOCREATEEXTTABLE attribute for each user. See
CREATE ROLE for syntax and examples.

Parameters
SELECT

Allows SELECT from any column, or the specific columns listed, of the specified table,
view, or sequence. Also allows the use of COPY TO. This privilege is also needed to
reference existing column values in UPDATE or DELETE.

INSERT

Allows INSERT of a new row into the specified table. If specific columns are listed, only
those columns may be assigned to in the INSERT command (other columns will receive
default values). Also allows COPY FROM.

UPDATE

Allows UPDATE of any column, or the specific columns listed, of the specified table.
SELECT ... FOR UPDATE and SELECT ... FOR SHARE also require this privilege on
at least one column, (as well as the SELECT privilege). For sequences, this privilege allows
the use of the nextval() and setval() functions.

DELETE

Allows DELETE of a row from the specified table.

REFERENCES

This keyword is accepted, although foreign key constraints are currently not supported
in Greenplum Database. To create a foreign key constraint, it is necessary to have this
privilege on both the referencing and referenced columns. The privilege may be granted for
all columns of a table, or just specific columns.

TRIGGER

Allows the creation of a trigger on the specified table.

Greenplum Database Reference Guide Release Notes

1165

Note: Greenplum Database does not support triggers.

TRUNCATE

Allows TRUNCATE of all rows from the specified table.

CREATE

For databases, allows new schemas to be created within the database.

For schemas, allows new objects to be created within the schema. To rename an existing
object, you must own the object and have this privilege for the containing schema.

For tablespaces, allows tables and indexes to be created within the tablespace, and allows
databases to be created that have the tablespace as their default tablespace. (Note that
revoking this privilege will not alter the placement of existing objects.)

CONNECT

Allows the user to connect to the specified database. This privilege is checked at
connection startup (in addition to checking any restrictions imposed by pg_hba.conf).

TEMPORARY
TEMP

Allows temporary tables to be created while using the database.

EXECUTE

Allows the use of the specified function and the use of any operators that are implemented
on top of the function. This is the only type of privilege that is applicable to functions. (This
syntax works for aggregate functions, as well.)

USAGE

For procedural languages, allows the use of the specified language for the creation of
functions in that language. This is the only type of privilege that is applicable to procedural
languages.

For schemas, allows access to objects contained in the specified schema (assuming that
the objects' own privilege requirements are also met). Essentially this allows the grantee to
look up objects within the schema.

For sequences, this privilege allows the use of the currval() and nextval() function.

For types and domains, this privilege allows the use of the type or domain in the creation of
tables, functions, and other schema objects. (Note that it does not control general "usage"
of the type, such as values of the type appearing in queries. It only prevents objects from
being created that depend on the type. The main purpose of the privilege is controlling
which users create dependencies on a type, which could prevent the owner from changing
the type later.)

For foreign-data wrappers, this privilege enables the grantee to create new servers using
that foreign-data wrapper.

For servers, this privilege enables the grantee to create foreign tables using the server,
and also to create, alter, or drop their own user's user mappings associated with that
server.

ALL PRIVILEGES

Grant all of the available privileges at once. The PRIVILEGES key word is optional in
Greenplum Database, though it is required by strict SQL.

PUBLIC

A special group-level role that denotes that the privileges are to be granted to all roles,
including those that may be created later.

WITH GRANT OPTION

The recipient of the privilege may in turn grant it to others.

Greenplum Database Reference Guide Release Notes

1166

WITH ADMIN OPTION

The member of a role may in turn grant membership in the role to others.

Notes
A user may perform SELECT, INSERT, and so forth, on a column if they hold that privilege for either the
specific column or the whole table. Granting the privilege at the table level and then revoking it for one
column does not do what you might wish: the table-level grant is unaffected by a column-level operation.

Database superusers can access all objects regardless of object privilege settings. One exception to this
rule is view objects. Access to tables referenced in the view is determined by permissions of the view
owner not the current user (even if the current user is a superuser).

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed as though it
were issued by the owner of the affected object. In particular, privileges granted via such a command will
appear to have been granted by the object owner. For role membership, the membership appears to have
been granted by the containing role itself.

GRANT and REVOKE can also be done by a role that is not the owner of the affected object, but is a
member of the role that owns the object, or is a member of a role that holds privileges WITH GRANT
OPTION on the object. In this case the privileges will be recorded as having been granted by the role that
actually owns the object or holds the privileges WITH GRANT OPTION.

Granting permission on a table does not automatically extend permissions to any sequences used by the
table, including sequences tied to SERIAL columns. Permissions on a sequence must be set separately.

The GRANT command cannot be used to set privileges for the protocols file, gpfdist, or gpfdists.
These protocols are implemented internally in Greenplum Database. Instead, use the CREATE ROLE or
ALTER ROLE command to set the CREATEEXTTABLE attribute for the role.

Use psql's \dp meta-command to obtain information about existing privileges for tables and columns.
There are other \d meta-commands that you can use to display the privileges of non-table objects.

Examples
Grant insert privilege to all roles on table mytable:

GRANT INSERT ON mytable TO PUBLIC;

Grant all available privileges to role sally on the view topten. Note that while the above will indeed
grant all privileges if executed by a superuser or the owner of topten, when executed by someone else it
will only grant those permissions for which the granting role has grant options.

GRANT ALL PRIVILEGES ON topten TO sally;

Grant membership in role admins to user joe:

GRANT admins TO joe;

Compatibility
The PRIVILEGES key word is required in the SQL standard, but optional in Greenplum Database. The
SQL standard does not support setting the privileges on more than one object per command.

Greenplum Database allows an object owner to revoke their own ordinary privileges: for example, a table
owner can make the table read-only to theirself by revoking their own INSERT, UPDATE, DELETE, and
TRUNCATE privileges. This is not possible according to the SQL standard. Greenplum Database treats the
owner's privileges as having been granted by the owner to the owner; therefore they can revoke them too.
In the SQL standard, the owner's privileges are granted by an assumed system entity.

Greenplum Database Reference Guide Release Notes

1167

The SQL standard provides for a USAGE privilege on other kinds of objects: character sets, collations,
translations.

In the SQL standard, sequences only have a USAGE privilege, which controls the use of the NEXT VALUE
FOR expression, which is equivalent to the function nextval in Greenplum Database. The sequence
privileges SELECT and UPDATE are Greenplum Database extensions. The application of the sequence
USAGE privilege to the currval function is also a Greenplum Database extension (as is the function
itself).

Privileges on databases, tablespaces, schemas, and languages are Greenplum Database extensions.

See Also
REVOKE, CREATE ROLE, ALTER ROLE

INSERT
Creates new rows in a table.

Synopsis

[WITH [RECURSIVE] with_query [, ...]]
INSERT INTO table [(column [, ...])]
 {DEFAULT VALUES | VALUES ({expression | DEFAULT} [, ...]) [, ...]
 | query}
 [RETURNING * | output_expression [[AS] output_name] [, ...]]

Description
INSERT inserts new rows into a table. One can insert one or more rows specified by value expressions, or
zero or more rows resulting from a query.

The target column names may be listed in any order. If no list of column names is given at all, the default
is the columns of the table in their declared order. The values supplied by the VALUES clause or query are
associated with the explicit or implicit column list left-to-right.

Each column not present in the explicit or implicit column list will be filled with a default value, either its
declared default value or null if there is no default.

If the expression for any column is not of the correct data type, automatic type conversion will be
attempted.

The optional RETURNING clause causes INSERT to compute and return value(s) based on each row
actually inserted. This is primarily useful for obtaining values that were supplied by defaults, such as a
serial sequence number. However, any expression using the table's columns is allowed. The syntax of the
RETURNING list is identical to that of the output list of SELECT.

You must have INSERT privilege on a table in order to insert into it. When a column list is specified,
you need INSERT privilege only on the listed columns. Use of the RETURNING clause requires SELECT
privilege on all columns mentioned in RETURNING. If you provide a query to insert rows from a query, you
must have SELECT privilege on any table or column referenced in the query.

Outputs

On successful completion, an INSERT command returns a command tag of the form:

INSERT oid count

The count is the number of rows inserted. If count is exactly one, and the target table has OIDs, then oid is
the OID assigned to the inserted row. Otherwise oid is zero.

Greenplum Database Reference Guide Release Notes

1168

Parameters
with_query

The WITH clause allows you to specify one or more subqueries that can be referenced by
name in the INSERT query.

For an INSERT command that includes a WITH clause, the clause can only contain
SELECT statements, the WITH clause cannot contain a data-modifying command (INSERT,
UPDATE, or DELETE).

It is possible for the query (SELECT statement) to also contain a WITH clause. In such a
case both sets of with_query can be referenced within the INSERT query, but the second
one takes precedence since it is more closely nested.

See WITH Queries (Common Table Expressions) and SELECT for details.

table

The name (optionally schema-qualified) of an existing table.

column

The name of a column in table. The column name can be qualified with a subfield name or
array subscript, if needed. (Inserting into only some fields of a composite column leaves
the other fields null.)

DEFAULT VALUES

All columns will be filled with their default values.

expression

An expression or value to assign to the corresponding column.

DEFAULT

The corresponding column will be filled with its default value.

query

A query (SELECT statement) that supplies the rows to be inserted. Refer to the SELECT
statement for a description of the syntax.

output_expression

An expression to be computed and returned by the INSERT command after each row
is inserted. The expression can use any column names of the table. Write * to return all
columns of the inserted row(s).

output_name

A name to use for a returned column.

Notes
To insert data into a partitioned table, you specify the root partitioned table, the table created with the
CREATE TABLE command. You also can specify a leaf child table of the partitioned table in an INSERT
command. An error is returned if the data is not valid for the specified leaf child table. Specifying a child
table that is not a leaf child table in the INSERT command is not supported. Execution of other DML
commands such as UPDATE and DELETE on any child table of a partitioned table is not supported. These
commands must be executed on the root partitioned table, the table created with the CREATE TABLE
command.

For a partitioned table, all the child tables are locked during the INSERT operation when the Global
Deadlock Detector is not enabled (the default). Only some of the leaf child tables are locked when the
Global Deadlock Detector is enabled. For information about the Global Deadlock Detector, see Global
Deadlock Detector.

For append-optimized tables, Greenplum Database supports a maximum of 127 concurrent INSERT
transactions into a single append-optimized table.

Greenplum Database Reference Guide Release Notes

1169

For writable S3 external tables, the INSERT operation uploads to one or more files in the configured S3
bucket, as described in s3:// Protocol. Pressing Ctrl-c cancels the INSERT and stops uploading to S3.

Examples
Insert a single row into table films:

INSERT INTO films VALUES ('UA502', 'Bananas', 105,
'1971-07-13', 'Comedy', '82 minutes');

In this example, the length column is omitted and therefore it will have the default value:

INSERT INTO films (code, title, did, date_prod, kind) VALUES
('T_601', 'Yojimbo', 106, '1961-06-16', 'Drama');

This example uses the DEFAULT clause for the date_prod column rather than specifying a value:

INSERT INTO films VALUES ('UA502', 'Bananas', 105, DEFAULT,
'Comedy', '82 minutes');

To insert a row consisting entirely of default values:

INSERT INTO films DEFAULT VALUES;

To insert multiple rows using the multirow VALUES syntax:

INSERT INTO films (code, title, did, date_prod, kind) VALUES
 ('B6717', 'Tampopo', 110, '1985-02-10', 'Comedy'),
 ('HG120', 'The Dinner Game', 140, DEFAULT, 'Comedy');

This example inserts some rows into table films from a table tmp_films with the same column layout as
films:

INSERT INTO films SELECT * FROM tmp_films WHERE date_prod <
'2004-05-07';

Insert a single row into table distributors, returning the sequence number generated by the DEFAULT
clause:

INSERT INTO distributors (did, dname) VALUES (DEFAULT, 'XYZ Widgets')
 RETURNING did;

Compatibility
INSERT conforms to the SQL standard. The case in which a column name list is omitted, but not all the
columns are filled from the VALUES clause or query, is disallowed by the standard.

Possible limitations of the query clause are documented under SELECT.

See Also
COPY, SELECT, CREATE EXTERNAL TABLE, s3:// Protocol

LOAD
Loads or reloads a shared library file.

Greenplum Database Reference Guide Release Notes

1170

Synopsis

LOAD 'filename'

Description
This command loads a shared library file into the Greenplum Database server address space. If the file
had been loaded previously, it is first unloaded. This command is primarily useful to unload and reload a
shared library file that has been changed since the server first loaded it. To make use of the shared library,
function(s) in it need to be declared using the CREATE FUNCTION command.

The file name is specified in the same way as for shared library names in CREATE FUNCTION; in
particular, one may rely on a search path and automatic addition of the system's standard shared library
file name extension.

Note that in Greenplum Database the shared library file (.so file) must reside in the same path location on
every host in the Greenplum Database array (masters, segments, and mirrors).

Only database superusers can load shared library files.

Parameters
filename

The path and file name of a shared library file. This file must exist in the same location on
all hosts in your Greenplum Database array.

Examples
Load a shared library file:

LOAD '/usr/local/greenplum-db/lib/myfuncs.so';

Compatibility
LOAD is a Greenplum Database extension.

See Also
CREATE FUNCTION

LOCK
Locks a table.

Synopsis

LOCK [TABLE] [ONLY] name [*] [, ...] [IN lockmode MODE] [NOWAIT]

where lockmode is one of:

 ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE
 | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE

Description
LOCK TABLE obtains a table-level lock, waiting if necessary for any conflicting locks to be released. If
NOWAIT is specified, LOCK TABLE does not wait to acquire the desired lock: if it cannot be acquired
immediately, the command is aborted and an error is emitted. Once obtained, the lock is held for the

Greenplum Database Reference Guide Release Notes

1171

remainder of the current transaction. There is no UNLOCK TABLE command; locks are always released at
transaction end.

When acquiring locks automatically for commands that reference tables, Greenplum Database always
uses the least restrictive lock mode possible. LOCK TABLE provides for cases when you might need more
restrictive locking. For example, suppose an application runs a transaction at the Read Committed isolation
level and needs to ensure that data in a table remains stable for the duration of the transaction. To achieve
this you could obtain SHARE lock mode over the table before querying. This will prevent concurrent data
changes and ensure subsequent reads of the table see a stable view of committed data, because SHARE
lock mode conflicts with the ROW EXCLUSIVE lock acquired by writers, and your LOCK TABLE name IN
SHARE MODE statement will wait until any concurrent holders of ROW EXCLUSIVE mode locks commit or
roll back. Thus, once you obtain the lock, there are no uncommitted writes outstanding; furthermore none
can begin until you release the lock.

To achieve a similar effect when running a transaction at the REPEATABLE READ or SERIALIZABLE
isolation level, you have to execute the LOCK TABLE statement before executing any SELECT or data
modification statement. A REPEATABLE READ or SERIALIZABLE transaction's view of data will be frozen
when its first SELECT or data modification statement begins. A LOCK TABLE later in the transaction will still
prevent concurrent writes — but it won't ensure that what the transaction reads corresponds to the latest
committed values.

If a transaction of this sort is going to change the data in the table, then it should use SHARE ROW
EXCLUSIVE lock mode instead of SHARE mode. This ensures that only one transaction of this type runs at
a time. Without this, a deadlock is possible: two transactions might both acquire SHARE mode, and then be
unable to also acquire ROW EXCLUSIVE mode to actually perform their updates. Note that a transaction's
own locks never conflict, so a transaction can acquire ROW EXCLUSIVE mode when it holds SHARE mode
— but not if anyone else holds SHARE mode. To avoid deadlocks, make sure all transactions acquire locks
on the same objects in the same order, and if multiple lock modes are involved for a single object, then
transactions should always acquire the most restrictive mode first.

Parameters
name

The name (optionally schema-qualified) of an existing table to lock. If ONLY is specified,
only that table is locked. If ONLY is not specified, the table and all its descendant tables (if
any) are locked. Optionally, * can be specified after the table name to explicitly indicate
that descendant tables are included.

If multiple tables are given, tables are locked one-by-one in the order specified in the LOCK
TABLE command.

lockmode

The lock mode specifies which locks this lock conflicts with. If no lock mode is specified,
then ACCESS EXCLUSIVE, the most restrictive mode, is used. Lock modes are as follows:

• ACCESS SHARE — Conflicts with the ACCESS EXCLUSIVE lock mode only. The
SELECT command acquires a lock of this mode on referenced tables. In general, any
query that only reads a table and does not modify it will acquire this lock mode.

• ROW SHARE — Conflicts with the EXCLUSIVE and ACCESS EXCLUSIVE lock modes.
The SELECT FOR SHARE command automatically acquires a lock of this mode on
the target table(s) (in addition to ACCESS SHARE locks on any other tables that are
referenced but not selected FOR SHARE).

• ROW EXCLUSIVE — Conflicts with the SHARE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. The commands INSERT and COPY
automatically acquire this lock mode on the target table (in addition to ACCESS SHARE
locks on any other referenced tables) See Note.

• SHARE UPDATE EXCLUSIVE — Conflicts with the SHARE UPDATE EXCLUSIVE,
SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes.

Greenplum Database Reference Guide Release Notes

1172

This mode protects a table against concurrent schema changes and VACUUM runs.
Acquired by VACUUM (without FULL) on heap tables and ANALYZE.

• SHARE — Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE
ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode
protects a table against concurrent data changes. Acquired automatically by CREATE
INDEX.

• SHARE ROW EXCLUSIVE — Conflicts with the ROW EXCLUSIVE, SHARE UPDATE
EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS
EXCLUSIVE lock modes. This lock mode is not automatically acquired by any
Greenplum Database command.

• EXCLUSIVE — Conflicts with the ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE
EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS
EXCLUSIVE lock modes. This mode allows only concurrent ACCESS SHARE locks, i.e.,
only reads from the table can proceed in parallel with a transaction holding this lock
mode. This lock mode is automatically acquired for UPDATE, SELECT FOR UPDATE,
and DELETE in Greenplum Database (which is more restrictive locking than in regular
PostgreSQL). See Note.

• ACCESS EXCLUSIVE — Conflicts with locks of all modes (ACCESS SHARE, ROW
SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHAREROW
EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE). This mode guarantees that the
holder is the only transaction accessing the table in any way. Acquired automatically
by the ALTER TABLE, DROP TABLE, TRUNCATE, REINDEX, CLUSTER, and VACUUM
FULL commands. This is the default lock mode for LOCK TABLE statements that do not
specify a mode explicitly. This lock is also briefly acquired by VACUUM (without FULL) on
append-optimized tables during processing.

Note: By default Greenplum Database acquires the more restrictive
EXCLUSIVE lock (rather than ROW EXCLUSIVE in PostgreSQL) for UPDATE,
DELETE, and SELECT...FOR UPDATE operations on heap tables. When
the Global Deadlock Detector is enabled the lock mode for UPDATE and
DELETE operations on heap tables is ROW EXCLUSIVE. See Global Deadlock
Detector. Greenplum always holds a table-level lock with SELECT...FOR
UPDATE statements.

NOWAIT

Specifies that LOCK TABLE should not wait for any conflicting locks to be released: if
the specified lock(s) cannot be acquired immediately without waiting, the transaction is
aborted.

Notes
LOCK TABLE ... IN ACCESS SHARE MODE requires SELECT privileges on the target table. All other
forms of LOCK require table-level UPDATE, DELETE, or TRUNCATE privileges.

LOCK TABLE is useless outside of a transaction block: the lock would be held only to the completion of the
LOCK statement. Therefore, Greenplum Database reports an error if LOCK is used outside of a transaction
block. Use BEGIN and END to define a transaction block.

LOCK TABLE only deals with table-level locks, and so the mode names involving ROW are all misnomers.
These mode names should generally be read as indicating the intention of the user to acquire row-level
locks within the locked table. Also, ROW EXCLUSIVE mode is a shareable table lock. Keep in mind that all
the lock modes have identical semantics so far as LOCK TABLE is concerned, differing only in the rules
about which modes conflict with which. For information on how to acquire an actual row-level lock, see the
FOR UPDATE/FOR SHARE clause in the SELECT reference documentation.

Greenplum Database Reference Guide Release Notes

1173

Examples
Obtain a SHARE lock on the films table when going to perform inserts into the films_user_comments
table:

BEGIN WORK;
LOCK TABLE films IN SHARE MODE;
SELECT id FROM films
 WHERE name = 'Star Wars: Episode I - The Phantom Menace';
-- Do ROLLBACK if record was not returned
INSERT INTO films_user_comments VALUES
 (_id_, 'GREAT! I was waiting for it for so long!');
COMMIT WORK;

Take a SHARE ROW EXCLUSIVE lock on a table when performing a delete operation:

BEGIN WORK;
LOCK TABLE films IN SHARE ROW EXCLUSIVE MODE;
DELETE FROM films_user_comments WHERE id IN
 (SELECT id FROM films WHERE rating < 5);
DELETE FROM films WHERE rating < 5;
COMMIT WORK;

Compatibility
There is no LOCK TABLE in the SQL standard, which instead uses SET TRANSACTION to specify
concurrency levels on transactions. Greenplum Database supports that too.

Except for ACCESS SHARE, ACCESS EXCLUSIVE, and SHARE UPDATE EXCLUSIVE lock modes, the
Greenplum Database lock modes and the LOCK TABLE syntax are compatible with those present in
Oracle.

See Also
BEGIN, SET TRANSACTION, SELECT

MOVE
Positions a cursor.

Synopsis

MOVE [forward_direction [FROM | IN]] cursor_name

where forward_direction can be empty or one of:

 NEXT
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL

Greenplum Database Reference Guide Release Notes

1174

Description
MOVE repositions a cursor without retrieving any data. MOVE works exactly like the FETCH command,
except it only positions the cursor and does not return rows.

Note that it is not possible to move a cursor position backwards in Greenplum Database, since scrollable
cursors are not supported. You can only move a cursor forward in position using MOVE.

Outputs

On successful completion, a MOVE command returns a command tag of the form

MOVE count

The count is the number of rows that a FETCH command with the same parameters would have returned
(possibly zero).

Parameters
forward_direction

The parameters for the MOVE command are identical to those of the FETCH command;
refer to FETCH for details on syntax and usage.

cursor_name

The name of an open cursor.

Examples
-- Start the transaction:

BEGIN;

-- Set up a cursor:

DECLARE mycursor CURSOR FOR SELECT * FROM films;

-- Move forward 5 rows in the cursor mycursor:

MOVE FORWARD 5 IN mycursor;
MOVE 5

--Fetch the next row after that (row 6):

FETCH 1 FROM mycursor;
 code | title | did | date_prod | kind | len
-------+--------+-----+------------+--------+-------
 P_303 | 48 Hrs | 103 | 1982-10-22 | Action | 01:37
(1 row)

-- Close the cursor and end the transaction:

CLOSE mycursor;
COMMIT;

Compatibility
There is no MOVE statement in the SQL standard.

See Also
DECLARE, FETCH, CLOSE

Greenplum Database Reference Guide Release Notes

1175

PREPARE
Prepare a statement for execution.

Synopsis

PREPARE name [(datatype [, ...])] AS statement

Description
PREPARE creates a prepared statement. A prepared statement is a server-side object that can be used
to optimize performance. When the PREPARE statement is executed, the specified statement is parsed,
analyzed, and rewritten. When an EXECUTE command is subsequently issued, the prepared statement
is planned and executed. This division of labor avoids repetitive parse analysis work, while allowing the
execution plan to depend on the specific parameter values supplied.

Prepared statements can take parameters, values that are substituted into the statement when it is
executed. When creating the prepared statement, refer to parameters by position, using $1, $2, etc. A
corresponding list of parameter data types can optionally be specified. When a parameter's data type is
not specified or is declared as unknown, the type is inferred from the context in which the parameter is first
used (if possible). When executing the statement, specify the actual values for these parameters in the
EXECUTE statement.

Prepared statements only last for the duration of the current database session. When the session ends, the
prepared statement is forgotten, so it must be recreated before being used again. This also means that a
single prepared statement cannot be used by multiple simultaneous database clients; however, each client
can create their own prepared statement to use. Prepared statements can be manually cleaned up using
the DEALLOCATE command.

Prepared statements have the largest performance advantage when a single session is being used to
execute a large number of similar statements. The performance difference will be particularly significant
if the statements are complex to plan or rewrite, for example, if the query involves a join of many tables
or requires the application of several rules. If the statement is relatively simple to plan and rewrite but
relatively expensive to execute, the performance advantage of prepared statements will be less noticeable.

Parameters
name

An arbitrary name given to this particular prepared statement. It must be unique within a
single session and is subsequently used to execute or deallocate a previously prepared
statement.

datatype

The data type of a parameter to the prepared statement. If the data type of a particular
parameter is unspecified or is specified as unknown, it will be inferred from the context in
which the parameter is first used. To refer to the parameters in the prepared statement
itself, use $1, $2, etc.

statement

Any SELECT, INSERT, UPDATE, DELETE, or VALUES statement.

Notes
A prepared statement can be executed with either a generic plan or a custom plan. A generic plan is the
same across all executions, while a custom plan is generated for a specific execution using the parameter
values given in that call. Use of a generic plan avoids planning overhead, but in some situations a custom

Greenplum Database Reference Guide Release Notes

1176

plan will be much more efficient to execute because the planner can make use of knowledge of the
parameter values. If the prepared statement has no parameters, a generic plan is always used.

By default (with the default value, auto, for the server configuration parameter plan_cache_mode), the
server automatically chooses whether to use a generic or custom plan for a prepared statement that has
parameters. The current rule for this is that the first five executions are done with custom plans and the
average estimated cost of those plans is calculated. Then a generic plan is created and its estimated cost
is compared to the average custom-plan cost. Subsequent executions use the generic plan if its cost is not
so much higher than the average custom-plan cost as to make repeated replanning seem preferable.

This heuristic can be overridden, forcing the server to use either generic or custom plans, by setting
plan_cache_mode to force_generic_plan or force_custom_plan respectively. This setting is
primarily useful if the generic plan's cost estimate is badly off for some reason, allowing it to be chosen
even though its actual cost is much more than that of a custom plan.

To examine the query plan Greenplum Database is using for a prepared statement, use EXPLAIN, for
example

EXPLAIN EXECUTE <name>(<parameter_values>);

If a generic plan is in use, it will contain parameter symbols $n, while a custom plan will have the supplied
parameter values substituted into it.

For more information on query planning and the statistics collected by Greenplum Database for that
purpose, see the ANALYZE documentation.

Although the main point of a prepared statement is to avoid repeated parse analysis and planning of the
statement, Greenplum will force re-analysis and re-planning of the statement before using it whenever
database objects used in the statement have undergone definitional (DDL) changes since the previous
use of the prepared statement. Also, if the value of search_path changes from one use to the next, the
statement will be re-parsed using the new search_path. (This latter behavior is new as of Greenplum 6.)
These rules make use of a prepared statement semantically almost equivalent to re-submitting the same
query text over and over, but with a performance benefit if no object definitions are changed, especially if
the best plan remains the same across uses. An example of a case where the semantic equivalence is not
perfect is that if the statement refers to a table by an unqualified name, and then a new table of the same
name is created in a schema appearing earlier in the search_path, no automatic re-parse will occur
since no object used in the statement changed. However, if some other change forces a re-parse, the new
table will be referenced in subsequent uses.

You can see all prepared statements available in the session by querying the
pg_prepared_statements system view.

Examples
Create a prepared statement for an INSERT statement, and then execute it:

PREPARE fooplan (int, text, bool, numeric) AS INSERT INTO
foo VALUES($1, $2, $3, $4);
EXECUTE fooplan(1, 'Hunter Valley', 't', 200.00);

Create a prepared statement for a SELECT statement, and then execute it. Note that the data type of the
second parameter is not specified, so it is inferred from the context in which $2 is used:

PREPARE usrrptplan (int) AS SELECT * FROM users u, logs l
WHERE u.usrid=$1 AND u.usrid=l.usrid AND l.date = $2;
EXECUTE usrrptplan(1, current_date);

Greenplum Database Reference Guide Release Notes

1177

Compatibility
The SQL standard includes a PREPARE statement, but it can only be used in embedded SQL, and it uses a
different syntax.

See Also
EXECUTE, DEALLOCATE

REASSIGN OWNED
Changes the ownership of database objects owned by a database role.

Synopsis

REASSIGN OWNED BY old_role [, ...] TO new_role

Description
REASSIGN OWNED changes the ownership of database objects owned by any of the old_roles to new_role.

Parameters
old_role

The name of a role. The ownership of all the objects in the current database, and of
all shared objects (databases, tablespaces), owned by this role will be reassigned to
new_role.

new_role

The name of the role that will be made the new owner of the affected objects.

Notes
REASSIGN OWNED is often used to prepare for the removal of one or more roles. Because REASSIGN
OWNED does not affect objects in other databases, it is usually necessary to execute this command in each
database that contains objects owned by a role that is to be removed.

REASSIGN OWNED requires privileges on both the source role(s) and the target role.

The DROP OWNED command is an alternative that simply drops all of the database objects owned by one or
more roles. DROP OWNED requires privileges only on the source role(s).

The REASSIGN OWNED command does not affect any privileges granted to the old_roles on objects that
are not owned by them. Likewise, it does not affect default privileges created with ALTER DEFAULT
PRIVILEGES. Use DROP OWNED to revoke such privileges.

Examples
Reassign any database objects owned by the role named sally and bob to admin;

REASSIGN OWNED BY sally, bob TO admin;

Compatibility
The REASSIGN OWNED command is a Greenplum Database extension.

See Also
DROP OWNED, DROP ROLE, ALTER DATABASE

Greenplum Database Reference Guide Release Notes

1178

REFRESH MATERIALIZED VIEW
Replaces the contents of a materialized view.

Synopsis

REFRESH MATERIALIZED VIEW [CONCURRENTLY] name
 [WITH [NO] DATA]

Description
REFRESH MATERIALIZED VIEW completely replaces the contents of a materialized view. The old
contents are discarded. To execute this command you must be the owner of the materialized view.
With the default, WITH DATA, the materialized view query is executed to provide the new data, and the
materialized view is left in a scannable state. If WITH NO DATA is specified, no new data is generated
and the materialized view is left in an unscannable state. A query returns an error if the query attempts to
access the materialized view.

Parameters
CONCURRENTLY

Refresh the materialized view without locking out concurrent selects on the materialized
view. Without this option, a refresh that affects a lot of rows tends to use fewer resources
and completes more quickly, but could block other connections which are trying to read
from the materialized view. This option might be faster in cases where a small number of
rows are affected.

This option is only allowed if there is at least one UNIQUE index on the materialized view
which uses only column names and includes all rows; that is, it must not index on any
expressions nor include a WHERE clause.

This option cannot be used when the materialized view is not already populated, and it
cannot be used with the WITH NO DATA clause.

Even with this option, only one REFRESH at a time may run against any one materialized
view.

name

The name (optionally schema-qualified) of the materialized view to refresh.

WITH [NO] DATA

WITH DATA is the default and specifies that the materialized view query is executed to
provide new data, and the materialized view is left in a scannable state. If WITH NO DATA
is specified, no new data is generated and the materialized view is left in an unscannable
state. An error is returned if a query attempts to access an unscannable materialized view.

WITH NO DATA cannot be used with CONCURRENLY.

Notes
While the default index for future CLUSTER operations is retained, REFRESH MATERIALIZED VIEW does
not order the generated rows based on this property. If you want the data to be ordered upon generation,
you must use an ORDER BY clause in the materialized view query. However, if a materialized view query
contains an ORDER BY or SORT clause, the data is not guaranteed to be ordered or sorted if SELECT is
performed on the materialized view.

Greenplum Database Reference Guide Release Notes

1179

Examples
This command replaces the contents of the materialized view order_summary using the query from the
materialized view's definition, and leaves it in a scannable state.

REFRESH MATERIALIZED VIEW order_summary;

This command frees storage associated with the materialized view annual_statistics_basis and
leaves it in an unscannable state.

REFRESH MATERIALIZED VIEW annual_statistics_basis WITH NO DATA;

Compatibility
REFRESH MATERIALIZED VIEW is a Greenplum Database extension of the SQL standard.

See Also
ALTER MATERIALIZED VIEW, CREATE MATERIALIZED VIEW, DROP MATERIALIZED VIEW

REINDEX
Rebuilds indexes.

Synopsis

REINDEX {INDEX | TABLE | DATABASE | SYSTEM} name

Description
REINDEX rebuilds an index using the data stored in the index's table, replacing the old copy of the index.
There are several scenarios in which to use REINDEX:

• An index has become bloated, that is, it contains many empty or nearly-empty pages. This can occur
with B-tree indexes in Greenplum Database under certain uncommon access patterns. REINDEX
provides a way to reduce the space consumption of the index by writing a new version of the index
without the dead pages.

• You have altered the FILLFACTOR storage parameter for an index, and wish to ensure that the change
has taken full effect.

Parameters
INDEX

Recreate the specified index.

TABLE

Recreate all indexes of the specified table. If the table has a secondary TOAST table, that
is reindexed as well.

DATABASE

Recreate all indexes within the current database. Indexes on shared system catalogs are
also processed. This form of REINDEX cannot be executed inside a transaction block.

SYSTEM

Recreate all indexes on system catalogs within the current database. Indexes on shared
system catalogs are included. Indexes on user tables are not processed. This form of
REINDEX cannot be executed inside a transaction block.

name

Greenplum Database Reference Guide Release Notes

1180

The name of the specific index, table, or database to be reindexed. Index and table names
may be schema-qualified. Presently, REINDEX DATABASE and REINDEX SYSTEM can
only reindex the current database, so their parameter must match the current database's
name.

Notes
REINDEX is similar to a drop and recreate of the index in that the index contents are rebuilt from scratch.
However, the locking considerations are rather different. REINDEX locks out writes but not reads of the
index's parent table. It also takes an exclusive lock on the specific index being processed, which will block
reads that attempt to use that index. In contrast, DROP INDEX momentarily takes an exclusive lock on
the parent table, blocking both writes and reads. The subsequent CREATE INDEX locks out writes but not
reads; since the index is not there, no read will attempt to use it, meaning that there will be no blocking but
reads may be forced into expensive sequential scans.

Reindexing a single index or table requires being the owner of that index or table. Reindexing a database
requires being the owner of the database (note that the owner can therefore rebuild indexes of tables
owned by other users). Of course, superusers can always reindex anything.

REINDEX does not update the reltuples and relpages statistics for the index. To update those
statistics, run ANALYZE on the table after reindexing.

If you suspect that shared global system catalog indexes are corrupted, they can only be reindexed in
Greenplum utility mode. The typical symptom of a corrupt shared index is "index is not a btree" errors,
or else the server crashes immediately at startup due to reliance on the corrupted indexes. Contact
Greenplum Customer Support for assistance in this situation.

Examples
Rebuild a single index:

REINDEX INDEX my_index;

Rebuild all the indexes on the table my_table:

REINDEX TABLE my_table;

Compatibility
There is no REINDEX command in the SQL standard.

See Also
CREATE INDEX, DROP INDEX, VACUUM

RELEASE SAVEPOINT
Destroys a previously defined savepoint.

Synopsis

RELEASE [SAVEPOINT] savepoint_name

Description
RELEASE SAVEPOINT destroys a savepoint previously defined in the current transaction.

Greenplum Database Reference Guide Release Notes

1181

Destroying a savepoint makes it unavailable as a rollback point, but it has no other user visible behavior.
It does not undo the effects of commands executed after the savepoint was established. (To do that, see
ROLLBACK TO SAVEPOINT.) Destroying a savepoint when it is no longer needed may allow the system to
reclaim some resources earlier than transaction end.

RELEASE SAVEPOINT also destroys all savepoints that were established after the named savepoint was
established.

Parameters
savepoint_name

The name of the savepoint to destroy.

Examples
To establish and later destroy a savepoint:

BEGIN;
 INSERT INTO table1 VALUES (3);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (4);
 RELEASE SAVEPOINT my_savepoint;
COMMIT;

The above transaction will insert both 3 and 4.

Compatibility
This command conforms to the SQL standard. The standard specifies that the key word SAVEPOINT is
mandatory, but Greenplum Database allows it to be omitted.

See Also
BEGIN, SAVEPOINT, ROLLBACK TO SAVEPOINT, COMMIT

RESET
Restores the value of a system configuration parameter to the default value.

Synopsis

RESET configuration_parameter

RESET ALL

Description
RESET restores system configuration parameters to their default values. RESET is an alternative spelling
for SET configuration_parameter TO DEFAULT.

The default value is defined as the value that the parameter would have had, had no SET ever been issued
for it in the current session. The actual source of this value might be a compiled-in default, the master
postgresql.conf configuration file, command-line options, or per-database or per-user default settings.
See Server Configuration Parameters for more information.

Parameters
configuration_parameter

Greenplum Database Reference Guide Release Notes

1182

The name of a system configuration parameter. See Server Configuration Parameters for
details.

ALL

Resets all settable configuration parameters to their default values.

Examples
Set the statement_mem configuration parameter to its default value:

RESET statement_mem;

Compatibility
RESET is a Greenplum Database extension.

See Also
SET

REVOKE
Removes access privileges.

Synopsis

REVOKE [GRANT OPTION FOR] { {SELECT | INSERT | UPDATE | DELETE
 | REFERENCES | TRIGGER | TRUNCATE } [, ...] | ALL [PRIVILEGES] }

 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 FROM { [GROUP] role_name | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { { SELECT | INSERT | UPDATE
 | REFERENCES } (column_name [, ...])
 [, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
 ON [TABLE] table_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {USAGE | SELECT | UPDATE} [,...]
 | ALL [PRIVILEGES] }
 ON { SEQUENCE sequence_name [, ...]
 | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {CREATE | CONNECT
 | TEMPORARY | TEMP} [, ...] | ALL [PRIVILEGES] }
 ON DATABASE database_name [, ...]
 FROM { [GROUP] role_name | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON DOMAIN domain_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

Greenplum Database Reference Guide Release Notes

1183

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN DATA WRAPPER fdw_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN SERVER server_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] {EXECUTE | ALL [PRIVILEGES]}
 ON { FUNCTION funcname ([[argmode] [argname] argtype
 [, ...]]) [, ...]
 | ALL FUNCTIONS IN SCHEMA schema_name [, ...] }
 FROM { [GROUP] role_name | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] {USAGE | ALL [PRIVILEGES]}
 ON LANGUAGE langname [, ...]
 FROM { [GROUP] role_name | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { {CREATE | USAGE} [, ...]
 | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 FROM { [GROUP] role_name | PUBLIC} [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR] { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespacename [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON TYPE type_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [ADMIN OPTION FOR] parent_role [, ...]
 FROM [GROUP] member_role [, ...]
 [CASCADE | RESTRICT]

Description
REVOKE command revokes previously granted privileges from one or more roles. The key word PUBLIC
refers to the implicitly defined group of all roles.

See the description of the GRANT command for the meaning of the privilege types.

Note that any particular role will have the sum of privileges granted directly to it, privileges granted to any
role it is presently a member of, and privileges granted to PUBLIC. Thus, for example, revoking SELECT
privilege from PUBLIC does not necessarily mean that all roles have lost SELECT privilege on the object:
those who have it granted directly or via another role will still have it. Similarly, revoking SELECT from
a user might not prevent that user from using SELECT if PUBLIC or another membership role still has
SELECT rights.

If GRANT OPTION FOR is specified, only the grant option for the privilege is revoked, not the privilege
itself. Otherwise, both the privilege and the grant option are revoked.

Greenplum Database Reference Guide Release Notes

1184

If a role holds a privilege with grant option and has granted it to other roles then the privileges held by
those other roles are called dependent privileges. If the privilege or the grant option held by the first role is
being revoked and dependent privileges exist, those dependent privileges are also revoked if CASCADE is
specified, else the revoke action will fail. This recursive revocation only affects privileges that were granted
through a chain of roles that is traceable to the role that is the subject of this REVOKE command. Thus, the
affected roles may effectively keep the privilege if it was also granted through other roles.

When you revoke privileges on a table, Greenplum Database revokes the corresponding column privileges
(if any) on each column of the table, as well. On the other hand, if a role has been granted privileges on a
table, then revoking the same privileges from individual columns will have no effect.

When revoking membership in a role, GRANT OPTION is instead called ADMIN OPTION, but the behavior
is similar.

Parameters
See GRANT.

Notes
A user may revoke only those privileges directly granted by that user. If, for example, user A grants a
privilege with grant option to user B, and user B has in turn granted it to user C, then user A cannot
revoke the privilege directly from C. Instead, user A could revoke the grant option from user B and use the
CASCADE option so that the privilege is in turn revoked from user C. For another example, if both A and B
grant the same privilege to C, A can revoke his own grant but not B's grant, so C effectively still has the
privilege.

When a non-owner of an object attempts to REVOKE privileges on the object, the command fails outright if
the user has no privileges whatsoever on the object. As long as some privilege is available, the command
proceeds, but it will revoke only those privileges for which the user has grant options. The REVOKE ALL
PRIVILEGES forms issue a warning message if no grant options are held, while the other forms issue
a warning if grant options for any of the privileges specifically named in the command are not held. (In
principle these statements apply to the object owner as well, but since Greenplum Database always treats
the owner as holding all grant options, the cases can never occur.)

If a superuser chooses to issue a GRANT or REVOKE command, Greenplum Database performs the
command as though it were issued by the owner of the affected object. Since all privileges ultimately come
from the object owner (possibly indirectly via chains of grant options), it is possible for a superuser to
revoke all privileges, but this might require use of CASCADE as stated above.

REVOKE may also be invoked by a role that is not the owner of the affected object, but is a member of
the role that owns the object, or is a member of a role that holds privileges WITH GRANT OPTION on
the object. In this case, Greenplum Database performs the command as though it were issued by the
containing role that actually owns the object or holds the privileges WITH GRANT OPTION. For example, if
table t1 is owned by role g1, of which role u1 is a member, then u1 can revoke privileges on t1 that are
recorded as being granted by g1. This includes grants made by u1 as well as by other members of role g1.

If the role that executes REVOKE holds privileges indirectly via more than one role membership path, it is
unspecified which containing role will be used to perform the command. In such cases it is best practice to
use SET ROLE to become the specific role as which you want to do the REVOKE. Failure to do so may lead
to revoking privileges other than the ones you intended, or not revoking any privileges at all.

Use psql's \dp meta-command to obtain information about existing privileges for tables and columns.
There are other \d meta-commands that you can use to display the privileges of non-table objects.

Examples
Revoke insert privilege for the public on table films:

REVOKE INSERT ON films FROM PUBLIC;

Greenplum Database Reference Guide Release Notes

1185

Revoke all privileges from role sally on view topten. Note that this actually means revoke all privileges
that the current role granted (if not a superuser).

REVOKE ALL PRIVILEGES ON topten FROM sally;

Revoke membership in role admins from user joe:

REVOKE admins FROM joe;

Compatibility
The compatibility notes of the GRANT command also apply to REVOKE.

Either RESTRICT or CASCADE is required according to the standard, but Greenplum Database assumes
RESTRICT by default.

See Also
GRANT

ROLLBACK
Aborts the current transaction.

Synopsis

ROLLBACK [WORK | TRANSACTION]

Description
ROLLBACK rolls back the current transaction and causes all the updates made by the transaction to be
discarded.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

Notes
Use COMMIT to successfully end the current transaction.

Issuing ROLLBACK when not inside a transaction does no harm, but it will provoke a warning message.

Examples
To discard all changes made in the current transaction:

ROLLBACK;

Compatibility
The SQL standard only specifies the two forms ROLLBACK and ROLLBACK WORK. Otherwise, this
command is fully conforming.

Greenplum Database Reference Guide Release Notes

1186

See Also
BEGIN, COMMIT, SAVEPOINT, ROLLBACK TO SAVEPOINT

ROLLBACK TO SAVEPOINT
Rolls back the current transaction to a savepoint.

Synopsis

ROLLBACK [WORK | TRANSACTION] TO [SAVEPOINT] savepoint_name

Description
This command will roll back all commands that were executed after the savepoint was established. The
savepoint remains valid and can be rolled back to again later, if needed.

ROLLBACK TO SAVEPOINT implicitly destroys all savepoints that were established after the named
savepoint.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

savepoint_name

The name of a savepoint to roll back to.

Notes
Use RELEASE SAVEPOINT to destroy a savepoint without discarding the effects of commands executed
after it was established.

Specifying a savepoint name that has not been established is an error.

Cursors have somewhat non-transactional behavior with respect to savepoints. Any cursor that is opened
inside a savepoint will be closed when the savepoint is rolled back. If a previously opened cursor is
affected by a FETCH command inside a savepoint that is later rolled back, the cursor remains at the
position that FETCH left it pointing to (that is, cursor motion caused by FETCH is not rolled back). Closing a
cursor is not undone by rolling back, either. However, other side-effects caused by the cursor's query (such
as side-effects of volatile functions called by the query) are rolled back if they occur during a savepoint
that is later rolled back. A cursor whose execution causes a transaction to abort is put in a cannot-execute
state, so while the transaction can be restored using ROLLBACK TO SAVEPOINT, the cursor can no longer
be used.

Examples
To undo the effects of the commands executed after my_savepoint was established:

ROLLBACK TO SAVEPOINT my_savepoint;

Cursor positions are not affected by a savepoint rollback:

BEGIN;
DECLARE foo CURSOR FOR SELECT 1 UNION SELECT 2;
SAVEPOINT foo;
FETCH 1 FROM foo;
column

Greenplum Database Reference Guide Release Notes

1187

 1
ROLLBACK TO SAVEPOINT foo;
FETCH 1 FROM foo;
column

 2
COMMIT;

Compatibility
The SQL standard specifies that the key word SAVEPOINT is mandatory, but Greenplum Database (and
Oracle) allow it to be omitted. SQL allows only WORK, not TRANSACTION, as a noise word after ROLLBACK.
Also, SQL has an optional clause AND [NO] CHAIN which is not currently supported by Greenplum
Database. Otherwise, this command conforms to the SQL standard.

See Also
BEGIN, COMMIT, SAVEPOINT, RELEASE SAVEPOINT, ROLLBACK

SAVEPOINT
Defines a new savepoint within the current transaction.

Synopsis

SAVEPOINT savepoint_name

Description
SAVEPOINT establishes a new savepoint within the current transaction.

A savepoint is a special mark inside a transaction that allows all commands that are executed after it was
established to be rolled back, restoring the transaction state to what it was at the time of the savepoint.

Parameters
savepoint_name

The name of the new savepoint.

Notes
Use ROLLBACK TO SAVEPOINT to rollback to a savepoint. Use RELEASE SAVEPOINT to destroy a
savepoint, keeping the effects of commands executed after it was established.

Savepoints can only be established when inside a transaction block. There can be multiple savepoints
defined within a transaction.

Examples
To establish a savepoint and later undo the effects of all commands executed after it was established:

BEGIN;
 INSERT INTO table1 VALUES (1);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (2);
 ROLLBACK TO SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (3);
COMMIT;

Greenplum Database Reference Guide Release Notes

1188

The above transaction will insert the values 1 and 3, but not 2.

To establish and later destroy a savepoint:

BEGIN;
 INSERT INTO table1 VALUES (3);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (4);
 RELEASE SAVEPOINT my_savepoint;
COMMIT;

The above transaction will insert both 3 and 4.

Compatibility
SQL requires a savepoint to be destroyed automatically when another savepoint with the same name is
established. In Greenplum Database, the old savepoint is kept, though only the more recent one will be
used when rolling back or releasing. (Releasing the newer savepoint will cause the older one to again
become accessible to ROLLBACK TO SAVEPOINT and RELEASE SAVEPOINT.) Otherwise, SAVEPOINT is
fully SQL conforming.

See Also
BEGIN, COMMIT, ROLLBACK, RELEASE SAVEPOINT, ROLLBACK TO SAVEPOINT

SELECT
Retrieves rows from a table or view.

Synopsis

[WITH [RECURSIVE1] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [[AS] output_name] [, ...]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY grouping_element [, ...]]
 [HAVING condition [, ...]]
 [WINDOW window_name AS (window_definition) [, ...]]
 [{UNION | INTERSECT | EXCEPT} [ALL | DISTINCT] select]
 [ORDER BY expression [ASC | DESC | USING operator] [NULLS {FIRST | LAST}]
 [, ...]]
 [LIMIT {count | ALL}]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
 [FOR {UPDATE | NO KEY UPDATE | SHARE | KEY SHARE} [OF table_name [, ...]]
 [NOWAIT] [...]]

TABLE { [ONLY] table_name [*] | with_query_name }

where with_query: is:

 with_query_name [(column_name [, ...])] AS (select | values | insert
 | update | delete)

where from_item can be one of:

[ONLY] table_name [*] [[AS] alias [(column_alias [, ...])]]
(select) [AS] alias [(column_alias [, ...])]
with_query_name [[AS] alias [(column_alias [, ...])]]

Greenplum Database Reference Guide Release Notes

1189

function_name ([argument [, ...]])
 [WITH ORDINALITY] [[AS] alias [(column_alias
 [, ...])]]
function_name ([argument [, ...]]) [AS] alias (column_definition
 [, ...])
function_name ([argument [, ...]]) AS (column_definition [, ...])
ROWS FROM(function_name ([argument [, ...]]) [AS (column_definition
 [, ...])] [, ...])
 [WITH ORDINALITY] [[AS] alias [(column_alias
 [, ...])]]
from_item [NATURAL] join_type from_item
 [ON join_condition | USING (join_column [, ...])]

where grouping_element can be one of:

 ()
 expression
 ROLLUP (expression [,...])
 CUBE (expression [,...])
 GROUPING SETS ((grouping_element [, ...]))

where window_definition is:

 [existing_window_name]
 [PARTITION BY expression [, ...]]
 [ORDER BY expression [ASC | DESC | USING operator]
 [NULLS {FIRST | LAST}] [, ...]]
 [{ RANGE | ROWS} frame_start
 | {RANGE | ROWS} BETWEEN frame_start AND frame_end

where frame_start and frame_end can be one of:

 UNBOUNDED PRECEDING
 value PRECEDING
 CURRENT ROW
 value FOLLOWING
 UNBOUNDED FOLLOWING

Note: 1The RECURSIVE keyword is A Beta feature.

Description
SELECT retrieves rows from zero or more tables. The general processing of SELECT is as follows:

1. All queries in the WITH clause are computed. These effectively serve as temporary tables that can be
referenced in the FROM list.

2. All elements in the FROM list are computed. (Each element in the FROM list is a real or virtual table.) If
more than one element is specified in the FROM list, they are cross-joined together.

3. If the WHERE clause is specified, all rows that do not satisfy the condition are eliminated from the output.
4. If the GROUP BY clause is specified, or if there are aggregate function calls, the output is combined into

groups of rows that match on one or more values, and the results of aggregate functions are computed.
If the HAVING clause is present, it eliminates groups that do not satisfy the given condition.

5. The actual output rows are computed using the SELECT output expressions for each selected row or
row group.

6. SELECT DISTINCT eliminates duplicate rows from the result. SELECT DISTINCT ON eliminates rows
that match on all the specified expressions. SELECT ALL (the default) will return all candidate rows,
including duplicates.

7. If a window expression is specified (and optional WINDOW clause), the output is organized according to
the positional (row) or value-based (range) window frame.

Greenplum Database Reference Guide Release Notes

1190

8. The actual output rows are computed using the SELECT output expressions for each selected row.
9. Using the operators UNION, INTERSECT, and EXCEPT, the output of more than one SELECT statement

can be combined to form a single result set. The UNION operator returns all rows that are in one or
both of the result sets. The INTERSECT operator returns all rows that are strictly in both result sets.
The EXCEPT operator returns the rows that are in the first result set but not in the second. In all three
cases, duplicate rows are eliminated unless ALL is specified. The noise word DISTINCT can be added
to explicitly specify eliminating duplicate rows. Notice that DISTINCT is the default behavior here, even
though ALL is the default for SELECT itself.

10.If the ORDER BY clause is specified, the returned rows are sorted in the specified order. If ORDER BY is
not given, the rows are returned in whatever order the system finds fastest to produce.

11.If the LIMIT (or FETCH FIRST) or OFFSET clause is specified, the SELECT statement only returns a
subset of the result rows.

12.If FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE, or FOR KEY SHARE is specified, the SELECT
statement locks the entire table against concurrent updates.

You must have SELECT privilege on each column used in a SELECT command. The use of FOR NO KEY
UPDATE, FOR UPDATE, FOR SHARE, or FOR KEY SHARE requires UPDATE privilege as well (for at least
one column of each table so selected).

Parameters
The WITH Clause

The optional WITH clause allows you to specify one or more subqueries that can be referenced by name
in the primary query. The subqueries effectively act as temporary tables or views for the duration of the
primary query. Each subquery can be a SELECT, INSERT, UPDATE, or DELETE statement. When writing
a data-modifying statement (INSERT, UPDATE, or DELETE) in WITH, it is usual to include a RETURNING
clause. It is the output of RETURNING, not the underlying table that the statement modifies, that forms the
temporary table that is read by the primary query. If RETURNING is omitted, the statement is still executed,
but it produces no output so it cannot be referenced as a table by the primary query.

For a SELECT command that includes a WITH clause, the clause can contain at most a single clause that
modifies table data (INSERT, UPDATE or DELETE command).

A with_query_name without schema qualification must be specified for each query in the WITH clause.
Optionally, a list of column names can be specified; if the list of column names is omitted, the names are
inferred from the subquery. The primary query and the WITH queries are all (notionally) executed at the
same time.

If RECURSIVE is specified, it allows a SELECT subquery to reference itself by name. Such a subquery has
the general form

non_recursive_term UNION [ALL | DISTINCT] recursive_term

where the recursive self-reference appears on the right-hand side of the UNION. Only one recursive self-
reference is permitted per query. Recursive data-modifying statements are not supported, but you can use
the results of a recursive SELECT query in a data-modifying statement.

If the RECURSIVE keyword is specified, the WITH queries need not be ordered: a query can reference
another query that is later in the list. However, circular references, or mutual recursion, are not supported.

Without the RECURSIVE keyword, WITH queries can only reference sibling WITH queries that are earlier in
the WITH list.

WITH RECURSIVE limitations. These items are not supported:

• A recursive WITH clause that contains the following in the recursive_term.

• Subqueries with a self-reference
• DISTINCT clause
• GROUP BY clause

Greenplum Database Reference Guide Release Notes

1191

• A window function
• A recursive WITH clause where the with_query_name is a part of a set operation.

Following is an example of the set operation limitation. This query returns an error because the set
operation UNION contains a reference to the table foo.

WITH RECURSIVE foo(i) AS (
 SELECT 1
 UNION ALL
 SELECT i+1 FROM (SELECT * FROM foo UNION SELECT 0) bar
)
SELECT * FROM foo LIMIT 5;

This recursive CTE is allowed because the set operation UNION does not have a reference to the CTE
foo.

WITH RECURSIVE foo(i) AS (
 SELECT 1
 UNION ALL
 SELECT i+1 FROM (SELECT * FROM bar UNION SELECT 0) bar, foo
 WHERE foo.i = bar.a
)
SELECT * FROM foo LIMIT 5;

A key property of WITH queries is that they are evaluated only once per execution of the primary query,
even if the primary query refers to them more than once. In particular, data-modifying statements are
guaranteed to be executed once and only once, regardless of whether the primary query reads all or any of
their output.

The primary query and the WITH queries are all (notionally) executed at the same time. This implies that
the effects of a data-modifying statement in WITH cannot be seen from other parts of the query, other than
by reading its RETURNING output. If two such data-modifying statements attempt to modify the same row,
the results are unspecified.

See WITH Queries (Common Table Expressions) in the Greenplum Database Administrator Guide for
additional information.

The SELECT List

The SELECT list (between the key words SELECT and FROM) specifies expressions that form the output
rows of the SELECT statement. The expressions can (and usually do) refer to columns computed in the
FROM clause.

An expression in the SELECT list can be a constant value, a column reference, an operator invocation, a
function call, an aggregate expression, a window expression, a scalar subquery, and so on. A number of
constructs can be classified as an expression but do not follow any general syntax rules. These generally
have the semantics of a function or operator. For information about SQL value expressions and function
calls, see "Querying Data" in the Greenplum Database Administrator Guide.

Just as in a table, every output column of a SELECT has a name. In a simple SELECT this name is just
used to label the column for display, but when the SELECT is a sub-query of a larger query, the name is
seen by the larger query as the column name of the virtual table produced by the sub-query. To specify
the name to use for an output column, write AS output_name after the column's expression. (You can omit
AS, but only if the desired output name does not match any SQL keyword. For protection against possible
future keyword additions, you can always either write AS or double-quote the output name.) If you do not
specify a column name, Greenplum Database chooses a name is automatically. If the column's expression
is a simple column reference then the chosen name is the same as that column's name. In more complex
cases, a function or type name may be used, or the system may fall back on a generated name such as ?
column? or columnN.

Greenplum Database Reference Guide Release Notes

1192

An output column's name can be used to refer to the column's value in ORDER BY and GROUP BY clauses,
but not in the WHERE or HAVING clauses; there you must write out the expression instead.

Instead of an expression, * can be written in the output list as a shorthand for all the columns of the
selected rows. Also, you can write table_name.* as a shorthand for the columns coming from just that
table. In these cases it is not possible to specify new names with AS; the output column names will be the
same as the table columns' names.

The DISTINCT Clause

If SELECT DISTINCT is specified, all duplicate rows are removed from the result set (one row is kept from
each group of duplicates). SELECT ALL specifies the opposite: all rows are kept; that is the default.

SELECT DISTINCT ON (expression [, ...]) keeps only the first row of each set of rows where
the given expressions evaluate to equal. The DISTINCT ON expressions are interpreted using the same
rules as for ORDER BY (see above). Note that the "first row" of each set is unpredictable unless ORDER BY
is used to ensure that the desired row appears first. For example:

SELECT DISTINCT ON (location) location, time, report
 FROM weather_reports
 ORDER BY location, time DESC;

retrieves the most recent weather report for each location. But if we had not used ORDER BY to force
descending order of time values for each location, we'd have gotten a report from an unpredictable time for
each location.

The DISTINCT ON expression(s) must match the leftmost ORDER BY expression(s). The ORDER BY
clause will normally contain additional expression(s) that determine the desired precedence of rows within
each DISTINCT ON group.

The FROM Clause

The FROM clause specifies one or more source tables for the SELECT. If multiple sources are specified, the
result is the Cartesian product (cross join) of all the sources. But usually qualification conditions are added
(via WHERE) to restrict the returned rows to a small subset of the Cartesian product. The FROM clause can
contain the following elements:

table_name

The name (optionally schema-qualified) of an existing table or view. If ONLY is specified,
only that table is scanned. If ONLY is not specified, the table and all its descendant tables
(if any) are scanned.

alias

A substitute name for the FROM item containing the alias. An alias is used for brevity or
to eliminate ambiguity for self-joins (where the same table is scanned multiple times).
When an alias is provided, it completely hides the actual name of the table or function; for
example given FROM foo AS f, the remainder of the SELECT must refer to this FROM
item as f not foo. If an alias is written, a column alias list can also be written to provide
substitute names for one or more columns of the table.

select

A sub-SELECT can appear in the FROM clause. This acts as though its output were
created as a temporary table for the duration of this single SELECT command. Note that
the sub-SELECT must be surrounded by parentheses, and an alias must be provided
for it. A VALUES command can also be used here. See "Non-standard Clauses" in
the Compatibility section for limitations of using correlated sub-selects in Greenplum
Database.

with_query_name

Greenplum Database Reference Guide Release Notes

1193

A with_query is referenced in the FROM clause by specifying its with_query_name, just
as though the name were a table name. The with_query_name cannot contain a schema
qualifier. An alias can be provided in the same way as for a table.

The with_query hides a table of the same name for the purposes of the primary query. If
necessary, you can refer to a table of the same name by qualifying the table name with the
schema.

function_name

Function calls can appear in the FROM clause. (This is especially useful for functions that
return result sets, but any function can be used.) This acts as though its output were
created as a temporary table for the duration of this single SELECT command. An alias
may also be used. If an alias is written, a column alias list can also be written to provide
substitute names for one or more attributes of the function's composite return type. If the
function has been defined as returning the record data type, then an alias or the key word
AS must be present, followed by a column definition list in the form (column_name
data_type [, ...]). The column definition list must match the actual number and
types of columns returned by the function.

join_type

One of:

• [INNER] JOIN
• LEFT [OUTER] JOIN
• RIGHT [OUTER] JOIN
• FULL [OUTER] JOIN
• CROSS JOIN

For the INNER and OUTER join types, a join condition must be specified, namely exactly
one of NATURAL, ON join_condition, or USING (join_column [, ...]). See
below for the meaning. For CROSS JOIN, none of these clauses may appear.

A JOIN clause combines two FROM items, which for convenience we will refer to as
"tables", though in reality they can be any type of FROM item. Use parentheses if necessary
to determine the order of nesting. In the absence of parentheses, JOINs nest left-to-right.
In any case JOIN binds more tightly than the commas separating FROM-list items.

CROSS JOIN and INNER JOIN produce a simple Cartesian product, the same result
as you get from listing the two tables at the top level of FROM, but restricted by the join
condition (if any). CROSS JOIN is equivalent to INNER JOIN ON(TRUE), that is, no rows
are removed by qualification. These join types are just a notational convenience, since
they do nothing you could not do with plain FROM and WHERE.

LEFT OUTER JOIN returns all rows in the qualified Cartesian product (i.e., all combined
rows that pass its join condition), plus one copy of each row in the left-hand table for which
there was no right-hand row that passed the join condition. This left-hand row is extended
to the full width of the joined table by inserting null values for the right-hand columns. Note
that only the JOIN clause's own condition is considered while deciding which rows have
matches. Outer conditions are applied afterwards.

Conversely, RIGHT OUTER JOIN returns all the joined rows, plus one row for each
unmatched right-hand row (extended with nulls on the left). This is just a notational
convenience, since you could convert it to a LEFT OUTER JOIN by switching the left and
right tables.

FULL OUTER JOIN returns all the joined rows, plus one row for each unmatched left-hand
row (extended with nulls on the right), plus one row for each unmatched right-hand row
(extended with nulls on the left).

ON join_condition

Greenplum Database Reference Guide Release Notes

1194

join_condition is an expression resulting in a value of type boolean (similar to a WHERE
clause) that specifies which rows in a join are considered to match.

USING (join_column [, ...])

A clause of the form USING (a, b, ...) is shorthand for ON left_table.a =
right_table.a AND left_table.b = right_table.b Also, USING implies
that only one of each pair of equivalent columns will be included in the join output, not
both.

NATURAL

NATURAL is shorthand for a USING list that mentions all columns in the two tables that
have the same names. If there are no common column names, NATURAL is equivalent to
ON TRUE.

The WHERE Clause

The optional WHERE clause has the general form:

WHERE condition

where condition is any expression that evaluates to a result of type boolean. Any row that does not satisfy
this condition will be eliminated from the output. A row satisfies the condition if it returns true when the
actual row values are substituted for any variable references.

The GROUP BY Clause

The optional GROUP BY clause has the general form:

GROUP BY grouping_element [, ...]

where grouping_element can be one of:

()
expression
ROLLUP (expression [,...])
CUBE (expression [,...])
GROUPING SETS ((grouping_element [, ...]))

GROUP BY will condense into a single row all selected rows that share the same values for the grouped
expressions. expression can be an input column name, or the name or ordinal number of an output column
(SELECT list item), or an arbitrary expression formed from input-column values. In case of ambiguity, a
GROUP BY name will be interpreted as an input-column name rather than an output column name.

Aggregate functions, if any are used, are computed across all rows making up each group, producing a
separate value for each group. (If there are aggregate functions but no GROUP BY clause, the query is
treated as having a single group comprising all the selected rows.) The set of rows fed to each aggregate
function can be further filtered by attaching a FILTER clause to the aggregate function call. When a
FILTER clause is present, only those rows matching it are included in the input to that aggregate function.
See Aggregate Expressions.

When GROUP BY is present, or any aggregate functions are present, it is not valid for the SELECT list
expressions to refer to ungrouped columns except within aggregate functions or when the ungrouped
column is functionally dependent on the grouped columns, since there would otherwise be more than one
possible value to return for an ungrouped column. A functional dependency exists if the grouped columns
(or a subset thereof) are the primary key of the table containing the ungrouped column.

Keep in mind that all aggregate functions are evaluated before evaluating any "scalar" expressions in the
HAVING clause or SELECT list. This means that, for example, a CASE expression cannot be used to skip
evaluation of an aggregate function; see Expression Evaluation Rules.

Greenplum Database has the following additional OLAP grouping extensions (often referred to as
supergroups):

Greenplum Database Reference Guide Release Notes

1195

ROLLUP

A ROLLUP grouping is an extension to the GROUP BY clause that creates aggregate
subtotals that roll up from the most detailed level to a grand total, following a list of
grouping columns (or expressions). ROLLUP takes an ordered list of grouping columns,
calculates the standard aggregate values specified in the GROUP BY clause, then creates
progressively higher-level subtotals, moving from right to left through the list. Finally, it
creates a grand total. A ROLLUP grouping can be thought of as a series of grouping sets.
For example:

GROUP BY ROLLUP (a,b,c)

is equivalent to:

GROUP BY GROUPING SETS((a,b,c), (a,b), (a), ())

Notice that the n elements of a ROLLUP translate to n+1 grouping sets. Also, the order in
which the grouping expressions are specified is significant in a ROLLUP.

CUBE

A CUBE grouping is an extension to the GROUP BY clause that creates subtotals for all of
the possible combinations of the given list of grouping columns (or expressions). In terms
of multidimensional analysis, CUBE generates all the subtotals that could be calculated for
a data cube with the specified dimensions. For example:

GROUP BY CUBE (a,b,c)

is equivalent to:

GROUP BY GROUPING SETS((a,b,c), (a,b), (a,c), (b,c), (a),
(b), (c), ())

Notice that n elements of a CUBE translate to 2n grouping sets. Consider using CUBE in
any situation requiring cross-tabular reports. CUBE is typically most suitable in queries that
use columns from multiple dimensions rather than columns representing different levels
of a single dimension. For instance, a commonly requested cross-tabulation might need
subtotals for all the combinations of month, state, and product.

GROUPING SETS

You can selectively specify the set of groups that you want to create using a GROUPING
SETS expression within a GROUP BY clause. This allows precise specification across
multiple dimensions without computing a whole ROLLUP or CUBE. For example:

GROUP BY GROUPING SETS((a,c), (a,b))

If using the grouping extension clauses ROLLUP, CUBE, or GROUPING SETS, two
challenges arise. First, how do you determine which result rows are subtotals, and then the
exact level of aggregation for a given subtotal. Or, how do you differentiate between result
rows that contain both stored NULL values and "NULL" values created by the ROLLUP or
CUBE. Secondly, when duplicate grouping sets are specified in the GROUP BY clause, how
do you determine which result rows are duplicates? There are two additional grouping
functions you can use in the SELECT list to help with this:

• grouping(column [, ...]) — The grouping function can be applied to one or more
grouping attributes to distinguish super-aggregated rows from regular grouped rows.
This can be helpful in distinguishing a "NULL" representing the set of all values in
a super-aggregated row from a NULL value in a regular row. Each argument in this
function produces a bit — either 1 or 0, where 1 means the result row is super-
aggregated, and 0 means the result row is from a regular grouping. The grouping

Greenplum Database Reference Guide Release Notes

1196

function returns an integer by treating these bits as a binary number and then
converting it to a base-10 integer.

• group_id() — For grouping extension queries that contain duplicate grouping sets,
the group_id function is used to identify duplicate rows in the output. All unique
grouping set output rows will have a group_id value of 0. For each duplicate grouping
set detected, the group_id function assigns a group_id number greater than 0. All
output rows in a particular duplicate grouping set are identified by the same group_id
number.

The WINDOW Clause

The optional WINDOW clause specifies the behavior of window functions appearing in the query's SELECT
list or ORDER BY clause. These functions can reference the WINDOW clause entries by name in their OVER
clauses. A WINDOW clause entry does not have to be referenced anywhere, however; if it is not used in the
query it is simply ignored. It is possible to use window functions without any WINDOW clause at all, since
a window function call can specify its window definition directly in its OVER clause. However, the WINDOW
clause saves typing when the same window definition is needed for more than one window function.

For example:

SELECT vendor, rank() OVER (mywindow) FROM sale
GROUP BY vendor
WINDOW mywindow AS (ORDER BY sum(prc*qty));

A WINDOW clause has this general form:

WINDOW window_name AS (window_definition)

where window_name is a name that can be referenced from OVER clauses or subsequent window
definitions, and window_definition is:

[existing_window_name]
[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS {FIRST | LAST}]
 [, ...]]
[frame_clause]

existing_window_name

If an existing_window_name is specified it must refer to an earlier entry in the WINDOW
list; the new window copies its partitioning clause from that entry, as well as its ordering
clause if any. The new window cannot specify its own PARTITION BY clause, and it can
specify ORDER BY only if the copied window does not have one. The new window always
uses its own frame clause; the copied window must not specify a frame clause.

PARTITION BY

The PARTITION BY clause organizes the result set into logical groups based on the
unique values of the specified expression. The elements of the PARTITION BY clause
are interpreted in much the same fashion as elements of a GROUP BY clause, except that
they are always simple expressions and never the name or number of an output column.
Another difference is that these expressions can contain aggregate function calls, which
are not allowed in a regular GROUP BY clause. They are allowed here because windowing
occurs after grouping and aggregation. When used with window functions, the functions
are applied to each partition independently. For example, if you follow PARTITION BY
with a column name, the result set is partitioned by the distinct values of that column. If
omitted, the entire result set is considered one partition.

Similarly, the elements of the ORDER BY list are interpreted in much the same fashion as
elements of an ORDER BY clause, except that the expressions are always taken as simple
expressions and never the name or number of an output column.

Greenplum Database Reference Guide Release Notes

1197

ORDER BY

The elements of the ORDER BY clause define how to sort the rows in each partition of the
result set. If omitted, rows are returned in whatever order is most efficient and may vary.
Note: Columns of data types that lack a coherent ordering, such as time, are not good
candidates for use in the ORDER BY clause of a window specification. Time, with or without
time zone, lacks a coherent ordering because addition and subtraction do not have the
expected effects. For example, the following is not generally true: x::time < x::time
+ '2 hour'::interval

frame_clause

The optional frame_clause defines the window frame for window functions that depend
on the frame (not all do). The window frame is a set of related rows for each row of the
query (called the current row). The frame_clause can be one of

{ RANGE | ROWS } frame_start
{ RANGE | ROWS } BETWEEN frame_start AND frame_end

where frame_start and frame_end can be one of

• UNBOUNDED PRECEDING

• value PRECEDING

• CURRENT ROW

• value FOLLOWING

• UNBOUNDED FOLLOWING

If frame_end is omitted it defaults to CURRENT ROW. Restrictions are that frame_start
cannot be UNBOUNDED FOLLOWING, frame_end cannot be UNBOUNDED PRECEDING,
and the frame_end choice cannot appear earlier in the above list than the frame_start
choice — for example RANGE BETWEEN CURRENT ROW AND value PRECEDING is not
allowed.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW; it sets the frame to be
all rows from the partition start up through the current row's last peer (a row that ORDER
BY considers equivalent to the current row, or all rows if there is no ORDER BY). In general,
UNBOUNDED PRECEDING means that the frame starts with the first row of the partition,
and similarly UNBOUNDED FOLLOWING means that the frame ends with the last row of
the partition (regardless of RANGE or ROWS mode). In ROWS mode, CURRENT ROW means
that the frame starts or ends with the current row; but in RANGE mode it means that the
frame starts or ends with the current row's first or last peer in the ORDER BY ordering. The
value PRECEDING and value FOLLOWING cases are currently only allowed in ROWS mode.
They indicate that the frame starts or ends with the row that many rows before or after the
current row. value must be an integer expression not containing any variables, aggregate
functions, or window functions. The value must not be null or negative; but it can be zero,
which selects the current row itself.

Beware that the ROWS options can produce unpredictable results if the ORDER BY ordering
does not order the rows uniquely. The RANGE options are designed to ensure that rows
that are peers in the ORDER BY ordering are treated alike; all peer rows will be in the same
frame.

Use either a ROWS or RANGE clause to express the bounds of the window. The window
bound can be one, many, or all rows of a partition. You can express the bound of the
window either in terms of a range of data values offset from the value in the current row
(RANGE), or in terms of the number of rows offset from the current row (ROWS). When using
the RANGE clause, you must also use an ORDER BY clause. This is because the calculation
performed to produce the window requires that the values be sorted. Additionally, the
ORDER BY clause cannot contain more than one expression, and the expression must

Greenplum Database Reference Guide Release Notes

1198

result in either a date or a numeric value. When using the ROWS or RANGE clauses, if you
specify only a starting row, the current row is used as the last row in the window.

PRECEDING — The PRECEDING clause defines the first row of the window using the
current row as a reference point. The starting row is expressed in terms of the number of
rows preceding the current row. For example, in the case of ROWS framing, 5 PRECEDING
sets the window to start with the fifth row preceding the current row. In the case of
RANGE framing, it sets the window to start with the first row whose ordering column value
precedes that of the current row by 5 in the given order. If the specified order is ascending
by date, this will be the first row within 5 days before the current row. UNBOUNDED
PRECEDING sets the first row in the window to be the first row in the partition.

BETWEEN — The BETWEEN clause defines the first and last row of the window, using
the current row as a reference point. First and last rows are expressed in terms of the
number of rows preceding and following the current row, respectively. For example,
BETWEEN 3 PRECEDING AND 5 FOLLOWING sets the window to start with the third
row preceding the current row, and end with the fifth row following the current row. Use
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING to set the first and
last rows in the window to be the first and last row in the partition, respectively. This is
equivalent to the default behavior if no ROW or RANGE clause is specified.

FOLLOWING — The FOLLOWING clause defines the last row of the window using the
current row as a reference point. The last row is expressed in terms of the number of
rows following the current row. For example, in the case of ROWS framing, 5 FOLLOWING
sets the window to end with the fifth row following the current row. In the case of RANGE
framing, it sets the window to end with the last row whose ordering column value follows
that of the current row by 5 in the given order. If the specified order is ascending by date,
this will be the last row within 5 days after the current row. Use UNBOUNDED FOLLOWING
to set the last row in the window to be the last row in the partition.

If you do not specify a ROW or a RANGE clause, the window bound starts with the first
row in the partition (UNBOUNDED PRECEDING) and ends with the current row (CURRENT
ROW) if ORDER BY is used. If an ORDER BY is not specified, the window starts with the
first row in the partition (UNBOUNDED PRECEDING) and ends with last row in the partition
(UNBOUNDED FOLLOWING).

The HAVING Clause

The optional HAVING clause has the general form:

HAVING condition

where condition is the same as specified for the WHERE clause. HAVING eliminates group rows that do not
satisfy the condition. HAVING is different from WHERE: WHERE filters individual rows before the application
of GROUP BY, while HAVING filters group rows created by GROUP BY. Each column referenced in condition
must unambiguously reference a grouping column, unless the reference appears within an aggregate
function or the ungrouped column is functionally dependent on the grouping columns.

The presence of HAVING turns a query into a grouped query even if there is no GROUP BY clause. This
is the same as what happens when the query contains aggregate functions but no GROUP BY clause. All
the selected rows are considered to form a single group, and the SELECT list and HAVING clause can only
reference table columns from within aggregate functions. Such a query will emit a single row if the HAVING
condition is true, zero rows if it is not true.

The UNION Clause

The UNION clause has this general form:

select_statement UNION [ALL | DISTINCT] select_statement

Greenplum Database Reference Guide Release Notes

1199

where select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR NO KEY UPDATE,
FOR UPDATE, FOR SHARE, or FOR KEY SHARE clause. (ORDER BY and LIMIT can be attached to a
subquery expression if it is enclosed in parentheses. Without parentheses, these clauses will be taken to
apply to the result of the UNION, not to its right-hand input expression.)

The UNION operator computes the set union of the rows returned by the involved SELECT statements.
A row is in the set union of two result sets if it appears in at least one of the result sets. The two SELECT
statements that represent the direct operands of the UNION must produce the same number of columns,
and corresponding columns must be of compatible data types.

The result of UNION does not contain any duplicate rows unless the ALL option is specified. ALL prevents
elimination of duplicates. (Therefore, UNION ALL is usually significantly quicker than UNION; use ALL
when you can.) DISTINCT can be written to explicitly specify the default behavior of eliminating duplicate
rows.

Multiple UNION operators in the same SELECT statement are evaluated left to right, unless otherwise
indicated by parentheses.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE, and FOR KEY SHARE cannot be specified
either for a UNION result or for any input of a UNION.

The INTERSECT Clause

The INTERSECT clause has this general form:

select_statement INTERSECT [ALL | DISTINCT] select_statement

where select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR NO KEY UPDATE,
FOR UPDATE, FOR SHARE, or FOR KEY SHARE clause.

The INTERSECT operator computes the set intersection of the rows returned by the involved SELECT
statements. A row is in the intersection of two result sets if it appears in both result sets.

The result of INTERSECT does not contain any duplicate rows unless the ALL option is specified. With
ALL, a row that has m duplicates in the left table and n duplicates in the right table will appear min(m, n)
times in the result set. DISTINCT can be written to explicitly specify the default behavior of eliminating
duplicate rows.

Multiple INTERSECT operators in the same SELECT statement are evaluated left to right, unless
parentheses dictate otherwise. INTERSECT binds more tightly than UNION. That is, A UNION B
INTERSECT C will be read as A UNION (B INTERSECT C).

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE, and FOR KEY SHARE cannot be specified
either for an INTERSECT result or for any input of an INTERSECT.

The EXCEPT Clause

The EXCEPT clause has this general form:

select_statement EXCEPT [ALL | DISTINCT] select_statement

where select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR NO KEY UPDATE,
FOR UPDATE, FOR SHARE, or FOR KEY SHARE clause.

The EXCEPT operator computes the set of rows that are in the result of the left SELECT statement but not
in the result of the right one.

The result of EXCEPT does not contain any duplicate rows unless the ALL option is specified. With ALL, a
row that has m duplicates in the left table and n duplicates in the right table will appear max(m-n,0) times
in the result set. DISTINCT can be written to explicitly specify the default behavior of eliminating duplicate
rows.

Multiple EXCEPT operators in the same SELECT statement are evaluated left to right, unless parentheses
dictate otherwise. EXCEPT binds at the same level as UNION.

Greenplum Database Reference Guide Release Notes

1200

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE, and FOR KEY SHARE cannot be specified
either for an EXCEPT result or for any input of an EXCEPT.

The ORDER BY Clause

The optional ORDER BY clause has this general form:

ORDER BY expression [ASC | DESC | USING operator] [NULLS {FIRST | LAST}]
 [,...]

where expression can be the name or ordinal number of an output column (SELECT list item), or it can be
an arbitrary expression formed from input-column values.

The ORDER BY clause causes the result rows to be sorted according to the specified expressions. If two
rows are equal according to the left-most expression, they are compared according to the next expression
and so on. If they are equal according to all specified expressions, they are returned in an implementation-
dependent order.

The ordinal number refers to the ordinal (left-to-right) position of the output column. This feature makes it
possible to define an ordering on the basis of a column that does not have a unique name. This is never
absolutely necessary because it is always possible to assign a name to an output column using the AS
clause.

It is also possible to use arbitrary expressions in the ORDER BY clause, including columns that do not
appear in the SELECT output list. Thus the following statement is valid:

SELECT name FROM distributors ORDER BY code;

A limitation of this feature is that an ORDER BY clause applying to the result of a UNION, INTERSECT, or
EXCEPT clause may only specify an output column name or number, not an expression.

If an ORDER BY expression is a simple name that matches both an output column name and an input
column name, ORDER BY will interpret it as the output column name. This is the opposite of the choice
that GROUP BY will make in the same situation. This inconsistency is made to be compatible with the SQL
standard.

Optionally one may add the key word ASC (ascending) or DESC (descending) after any expression in the
ORDER BY clause. If not specified, ASC is assumed by default. Alternatively, a specific ordering operator
name may be specified in the USING clause. ASC is usually equivalent to USING < and DESC is usually
equivalent to USING >. (But the creator of a user-defined data type can define exactly what the default sort
ordering is, and it might correspond to operators with other names.)

If NULLS LAST is specified, null values sort after all non-null values; if NULLS FIRST is specified, null
values sort before all non-null values. If neither is specified, the default behavior is NULLS LAST when ASC
is specified or implied, and NULLS FIRST when DESC is specified (thus, the default is to act as though
nulls are larger than non-nulls). When USING is specified, the default nulls ordering depends upon whether
the operator is a less-than or greater-than operator.

Note that ordering options apply only to the expression they follow; for example ORDER BY x, y DESC
does not mean the same thing as ORDER BY x DESC, y DESC.

Character-string data is sorted according to the locale-specific collation order that was established when
the database was created.

Character-string data is sorted according to the collation that applies to the column being sorted. That
can be overridden as needed by including a COLLATE clause in the expression, for example ORDER BY
mycolumn COLLATE "en_US". For information about defining collations, see CREATE COLLATION.

The LIMIT Clause

The LIMIT clause consists of two independent sub-clauses:

LIMIT {count | ALL}

Greenplum Database Reference Guide Release Notes

1201

OFFSET start

where count specifies the maximum number of rows to return, while start specifies the number of rows to
skip before starting to return rows. When both are specified, start rows are skipped before starting to count
the count rows to be returned.

If the count expression evaluates to NULL, it is treated as LIMIT ALL, that is, no limit. If start
evaluates to NULL, it is treated the same as OFFSET 0.

SQL:2008 introduced a different syntax to achieve the same result, which Greenplum Database also
supports. It is:

OFFSET start [ROW | ROWS]
 FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY

In this syntax, the start or count value is required by the standard to be a literal constant, a parameter, or
a variable name; as a Greenplum Database extension, other expressions are allowed, but will generally
need to be enclosed in parentheses to avoid ambiguity. If count is omitted in a FETCH clause, it defaults
to 1. ROW and ROWS as well as FIRST and NEXT are noise words that don't influence the effects of these
clauses. According to the standard, the OFFSET clause must come before the FETCH clause if both are
present; but Greenplum Database allows either order.

When using LIMIT, it is a good idea to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query's rows — you may be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? You don't know what
ordering unless you specify ORDER BY.

The query optimizer takes LIMIT into account when generating a query plan, so you are very likely to get
different plans (yielding different row orders) depending on what you use for LIMIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. This is not a defect; it is an
inherent consequence of the fact that SQL does not promise to deliver the results of a query in any
particular order unless ORDER BY is used to constrain the order.

The Locking Clause

FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE and FOR KEY SHARE are locking clauses; they affect
how SELECT locks rows as they are obtained from the table.

The locking clause has the general form

FOR lock_strength [OF table_name [, ...]] [NOWAIT]

where lock_strength can be one of

• FOR UPDATE - Locks the table with an EXCLUSIVE lock.
• FOR NO KEY UPDATE - Locks the table with an EXCLUSIVE lock.
• FOR SHARE - Locks the table with a ROW SHARE lock.
• FOR KEY SHARE - Locks the table with a ROW SHARE lock.

Note: By default Greenplum Database acquires the more restrictive EXCLUSIVE lock (rather than
ROW EXCLUSIVE in PostgreSQL) for UPDATE, DELETE, and SELECT...FOR UPDATE operations
on heap tables. When the Global Deadlock Detector is enabled the lock mode for UPDATE and
DELETE operations on heap tables is ROW EXCLUSIVE. See Global Deadlock Detector. Greenplum
always holds a table-level lock with SELECT...FOR UPDATE statements.

For more information on each row-level lock mode, refer to Explicit Locking in the PostgreSQL
documentation.

To prevent the operation from waiting for other transactions to commit, use the NOWAIT option.
With NOWAIT, the statement reports an error, rather than waiting, if a selected row cannot be locked
immediately. Note that NOWAIT only affects whether the SELECT statement waits to obtain row-level locks.

https://www.postgresql.org/docs/9.4/explicit-locking.html

Greenplum Database Reference Guide Release Notes

1202

A required table-level lock is always taken in the ordinary way. For example, a SELECT FOR UPDATE
NOWAIT statement will always wait for the required table-level lock; it behaves as if NOWAIT was omitted.
You can use LOCK with the NOWAIT option first, if you need to acquire the table-level lock without waiting.

If specific tables are named in a locking clause, then only rows coming from those tables are locked; any
other tables used in the SELECT are simply read as usual. A locking clause without a table list affects
all tables used in the statement. If a locking clause is applied to a view or sub-query, it affects all tables
used in the view or sub-query. However, these clauses do not apply to WITH queries referenced by the
primary query. If you want row locking to occur within a WITH query, specify a locking clause within the
WITH query.

Multiple locking clauses can be written if it is necessary to specify different locking behavior for different
tables. If the same table is mentioned (or implicitly affected) by both more than one locking clause, then it
is processed as if it was only specified by the strongest one. Similarly, a table is processed as NOWAIT if
that is specified in any of the clauses affecting it.

The locking clauses cannot be used in contexts where returned rows cannot be clearly identified with
individual table rows; for example they cannot be used with aggregation.

When a locking clause appears at the top level of a SELECT query, the rows that are locked are exactly
those that are returned by the query; in the case of a join query, the rows locked are those that contribute
to returned join rows. In addition, rows that satisfied the query conditions as of the query snapshot will be
locked, although they will not be returned if they were updated after the snapshot and no longer satisfy the
query conditions. If a LIMIT is used, locking stops once enough rows have been returned to satisfy the
limit (but note that rows skipped over by OFFSET will get locked). Similarly, if a locking clause is used in a
cursor's query, only rows actually fetched or stepped past by the cursor will be locked.

When locking clause appears in a sub-SELECT, the rows locked are those returned to the outer query by
the sub-query. This might involve fewer rows than inspection of the sub-query alone would suggest, since
conditions from the outer query might be used to optimize execution of the sub-query. For example,

SELECT * FROM (SELECT * FROM mytable FOR UPDATE) ss WHERE col1 = 5;

will lock only rows having col1 = 5, even though that condition is not textually within the sub-query.

It is possible for a SELECT command running at the READ COMMITTED transaction isolation level and
using ORDER BY and a locking clause to return rows out of order. This is because ORDER BY is applied
first. The command sorts the result, but might then block trying to obtain a lock on one or more of the rows.
Once the SELECT unblocks, some of the ordering column values might have been modified, leading to
those rows appearing to be out of order (though they are in order in terms of the original column values).
This can be worked around at need by placing the FOR UPDATE/SHARE clause in a sub-query, for
example

SELECT * FROM (SELECT * FROM mytable FOR UPDATE) ss ORDER BY column1;

Note that this will result in locking all rows of mytable, whereas FOR UPDATE at the top level would lock
only the actually returned rows. This can make for a significant performance difference, particularly if
the ORDER BY is combined with LIMIT or other restrictions. So this technique is recommended only if
concurrent updates of the ordering columns are expected and a strictly sorted result is required.

At the REPEATABLE READ or SERIALIZABLE transaction isolation level this would cause a serialization
failure (with a SQLSTATE of 40001), so there is no possibility of receiving rows out of order under these
isolation levels.

The TABLE Command
The command

TABLE name

Greenplum Database Reference Guide Release Notes

1203

is completely equivalent to

SELECT * FROM name

It can be used as a top-level command or as a space-saving syntax variant in parts of complex queries.

Examples
To join the table films with the table distributors:

SELECT f.title, f.did, d.name, f.date_prod, f.kind FROM
distributors d, films f WHERE f.did = d.did

To sum the column length of all films and group the results by kind:

SELECT kind, sum(length) AS total FROM films GROUP BY kind;

To sum the column length of all films, group the results by kind and show those group totals that are
less than 5 hours:

SELECT kind, sum(length) AS total FROM films GROUP BY kind
HAVING sum(length) < interval '5 hours';

Calculate the subtotals and grand totals of all sales for movie kind and distributor.

SELECT kind, distributor, sum(prc*qty) FROM sales
GROUP BY ROLLUP(kind, distributor)
ORDER BY 1,2,3;

Calculate the rank of movie distributors based on total sales:

SELECT distributor, sum(prc*qty),
 rank() OVER (ORDER BY sum(prc*qty) DESC)
FROM sale
GROUP BY distributor ORDER BY 2 DESC;

The following two examples are identical ways of sorting the individual results according to the contents of
the second column (name):

SELECT * FROM distributors ORDER BY name;
SELECT * FROM distributors ORDER BY 2;

The next example shows how to obtain the union of the tables distributors and actors, restricting the
results to those that begin with the letter W in each table. Only distinct rows are wanted, so the key word
ALL is omitted:

SELECT distributors.name FROM distributors WHERE
distributors.name LIKE 'W%' UNION SELECT actors.name FROM
actors WHERE actors.name LIKE 'W%';

This example shows how to use a function in the FROM clause, both with and without a column definition
list:

CREATE FUNCTION distributors(int) RETURNS SETOF distributors
AS $$ SELECT * FROM distributors WHERE did = $1; $$ LANGUAGE
SQL;
SELECT * FROM distributors(111);

CREATE FUNCTION distributors_2(int) RETURNS SETOF record AS

Greenplum Database Reference Guide Release Notes

1204

$$ SELECT * FROM distributors WHERE did = $1; $$ LANGUAGE
SQL;
SELECT * FROM distributors_2(111) AS (dist_id int, dist_name
text);

This example uses a simple WITH clause:

WITH test AS (
 SELECT random() as x FROM generate_series(1, 3)
)
SELECT * FROM test
UNION ALL
SELECT * FROM test;

This example uses the WITH clause to display per-product sales totals in only the top sales regions.

WITH regional_sales AS
 SELECT region, SUM(amount) AS total_sales
 FROM orders
 GROUP BY region
), top_regions AS (
 SELECT region
 FROM regional_sales
 WHERE total_sales > (SELECT SUM(total_sales) FROM
 regional_sales)
)
SELECT region, product, SUM(quantity) AS product_units,
 SUM(amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

The example could have been written without the WITH clause but would have required two levels of
nested sub-SELECT statements.

This example uses the WITH RECURSIVE clause to find all subordinates (direct or indirect) of the
employee Mary, and their level of indirectness, from a table that shows only direct subordinates:

WITH RECURSIVE employee_recursive(distance, employee_name, manager_name) AS
 (
 SELECT 1, employee_name, manager_name
 FROM employee
 WHERE manager_name = 'Mary'
 UNION ALL
 SELECT er.distance + 1, e.employee_name, e.manager_name
 FROM employee_recursive er, employee e
 WHERE er.employee_name = e.manager_name
)
SELECT distance, employee_name FROM employee_recursive;

The typical form of recursive queries: an initial condition, followed by UNION [ALL], followed by the
recursive part of the query. Be sure that the recursive part of the query will eventually return no tuples, or
else the query will loop indefinitely. See WITH Queries (Common Table Expressions) in the Greenplum
Database Administrator Guide for more examples.

Compatibility
The SELECT statement is compatible with the SQL standard, but there are some extensions and some
missing features.

Omitted FROM Clauses

Greenplum Database Reference Guide Release Notes

1205

Greenplum Database allows one to omit the FROM clause. It has a straightforward use to compute the
results of simple expressions. For example:

SELECT 2+2;

Some other SQL databases cannot do this except by introducing a dummy one-row table from which to do
the SELECT.

Note that if a FROM clause is not specified, the query cannot reference any database tables. For example,
the following query is invalid:

SELECT distributors.* WHERE distributors.name = 'Westward';

In earlier releases, setting a server configuration parameter, add_missing_from, to true allowed Greenplum
Database to add an implicit entry to the query's FROM clause for each table referenced by the query. This is
no longer allowed.

Omitting the AS Key Word

In the SQL standard, the optional key word AS can be omitted before an output column name whenever
the new column name is a valid column name (that is, not the same as any reserved keyword). Greenplum
Database is slightly more restrictive: AS is required if the new column name matches any keyword at all,
reserved or not. Recommended practice is to use AS or double-quote output column names, to prevent any
possible conflict against future keyword additions.

In FROM items, both the standard and Greenplum Database allow AS to be omitted before an alias that is
an unreserved keyword. But this is impractical for output column names, because of syntactic ambiguities.

ONLY and Inheritance

The SQL standard requires parentheses around the table name when writing ONLY, for example:

SELECT * FROM ONLY (tab1), ONLY (tab2) WHERE ...

Greenplum Database considers these parentheses to be optional.

Greenplum Database allows a trailing * to be written to explicitly specify the non-ONLY behavior of
including child tables. The standard does not allow this.

(These points apply equally to all SQL commands supporting the ONLY option.)

Namespace Available to GROUP BY and ORDER BY

In the SQL-92 standard, an ORDER BY clause may only use output column names or numbers, while a
GROUP BY clause may only use expressions based on input column names. Greenplum Database extends
each of these clauses to allow the other choice as well (but it uses the standard's interpretation if there
is ambiguity). Greenplum Database also allows both clauses to specify arbitrary expressions. Note that
names appearing in an expression are always taken as input-column names, not as output column names.

SQL:1999 and later use a slightly different definition which is not entirely upward compatible with SQL-92.
In most cases, however, Greenplum Database interprets an ORDER BY or GROUP BY expression the same
way SQL:1999 does.

Functional Dependencies

Greenplum Database recognizes functional dependency (allowing columns to be omitted from GROUP BY)
only when a table's primary key is included in the GROUP BY list. The SQL standard specifies additional
conditions that should be recognized.

LIMIT and OFFSET

The clauses LIMIT and OFFSET are Greenplum Database-specific syntax, also used by MySQL. The
SQL:2008 standard has introduced the clauses OFFSET .. FETCH {FIRST|NEXT} ... for the same
functionality, as shown above. This syntax is also used by IBM DB2. (Applications for Oracle frequently use

Greenplum Database Reference Guide Release Notes

1206

a workaround involving the automatically generated rownum column, which is not available in Greenplum
Database, to implement the effects of these clauses.)

FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE, and FOR KEY SHARE

Although FOR UPDATE appears in the SQL standard, the standard allows it only as an option of DECLARE
CURSOR. Greenplum Database allows it in any SELECT query as well as in sub-SELECTs, but this is
an extension. The FOR NO KEY UPDATE, FOR SHARE, and FOR KEY SHARE variants, as well as the
NOWAIT option, do not appear in the standard.

Data-Modifying Statements in WITH

Greenplum Database allows INSERT, UPDATE, and DELETE to be used as WITH queries. This is not found
in the SQL standard.

Nonstandard Clauses

The clause DISTINCT ON is not defined in the SQL standard.

Limited Use of STABLE and VOLATILE Functions

To prevent data from becoming out-of-sync across the segments in Greenplum Database, any function
classified as STABLE or VOLATILE cannot be executed at the segment database level if it contains SQL or
modifies the database in any way. See CREATE FUNCTION for more information.

See Also
EXPLAIN

SELECT INTO
Defines a new table from the results of a query.

Synopsis

[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [AS output_name] [, ...]
 INTO [TEMPORARY | TEMP | UNLOGGED] [TABLE] new_table
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition [, ...]]
 [{UNION | INTERSECT | EXCEPT} [ALL | DISTINCT] select]
 [ORDER BY expression [ASC | DESC | USING operator] [NULLS {FIRST |
 LAST}] [, ...]]
 [LIMIT {count | ALL}]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
 [FOR {UPDATE | SHARE} [OF table_name [, ...]] [NOWAIT]
 [...]]

Description
SELECT INTO creates a new table and fills it with data computed by a query. The data is not returned
to the client, as it is with a normal SELECT. The new table's columns have the names and data types
associated with the output columns of the SELECT.

Parameters
The majority of parameters for SELECT INTO are the same as SELECT.

Greenplum Database Reference Guide Release Notes

1207

TEMPORARY
TEMP

If specified, the table is created as a temporary table.

UNLOGGED

If specified, the table is created as an unlogged table. Data written to unlogged tables
is not written to the write-ahead (WAL) log, which makes them considerably faster than
ordinary tables. However, the contents of an unlogged table are not replicated to mirror
segment instances. Also an unlogged table is not crash-safe. After a segment instance
crash or unclean shutdown, the data for the unlogged table on that segment is truncated.
Any indexes created on an unlogged table are automatically unlogged as well.

new_table

The name (optionally schema-qualified) of the table to be created.

Examples
Create a new table films_recent consisting of only recent entries from the table films:

SELECT * INTO films_recent FROM films WHERE date_prod >=
'2016-01-01';

Compatibility
The SQL standard uses SELECT INTO to represent selecting values into scalar variables of a host
program, rather than creating a new table. The Greenplum Database usage of SELECT INTO to represent
table creation is historical. It is best to use CREATE TABLE AS for this purpose in new applications.

See Also
SELECT, CREATE TABLE AS

SET
Changes the value of a Greenplum Database configuration parameter.

Synopsis

SET [SESSION | LOCAL] configuration_parameter {TO | =} value |
 'value' | DEFAULT}

SET [SESSION | LOCAL] TIME ZONE {timezone | LOCAL | DEFAULT}

Description
The SET command changes server configuration parameters. Any configuration parameter classified as
a session parameter can be changed on-the-fly with SET. SET affects only the value used by the current
session.

If SET or SET SESSION is issued within a transaction that is later aborted, the effects of the SET command
disappear when the transaction is rolled back. Once the surrounding transaction is committed, the effects
will persist until the end of the session, unless overridden by another SET.

The effects of SET LOCAL last only till the end of the current transaction, whether committed or not. A
special case is SET followed by SET LOCAL within a single transaction: the SET LOCAL value will be seen
until the end of the transaction, but afterwards (if the transaction is committed) the SET value will take
effect.

Greenplum Database Reference Guide Release Notes

1208

If SET LOCAL is used within a function that includes a SET option for the same configuration parameter
(see CREATE FUNCTION), the effects of the SET LOCAL command disappear at function exit; the value
in effect when the function was called is restored anyway. This allows SET LOCAL to be used for dynamic
or repeated changes of a parameter within a function, while retaining the convenience of using the SET
option to save and restore the caller's value. Note that a regular SET command overrides any surrounding
function's SET option; its effects persist unless rolled back.

If you create a cursor with the DECLARE command in a transaction, you cannot use the SET command in
the transaction until you close the cursor with the CLOSE command.

See Server Configuration Parameters for information about server parameters.

Parameters
SESSION

Specifies that the command takes effect for the current session. This is the default.

LOCAL

Specifies that the command takes effect for only the current transaction. After COMMIT or
ROLLBACK, the session-level setting takes effect again. Note that SET LOCAL will appear
to have no effect if it is executed outside of a transaction.

configuration_parameter

The name of a Greenplum Database configuration parameter. Only parameters classified
as session can be changed with SET. See Server Configuration Parameters for details.

value

New value of parameter. Values can be specified as string constants, identifiers, numbers,
or comma-separated lists of these. DEFAULT can be used to specify resetting the
parameter to its default value. If specifying memory sizing or time units, enclose the value
in single quotes.

TIME ZONE

SET TIME ZONE value is an alias for SET timezone TO value. The syntax SET TIME
ZONE allows special syntax for the time zone specification. Here are examples of valid
values:

'PST8PDT'

'Europe/Rome'

-7 (time zone 7 hours west from UTC)

INTERVAL '-08:00' HOUR TO MINUTE (time zone 8 hours west from UTC).

LOCAL
DEFAULT

Set the time zone to your local time zone (that is, server's default value of timezone). See
the Time zone section of the PostgreSQL documentation for more information about time
zones in Greenplum Database.

Examples
Set the schema search path:

SET search_path TO my_schema, public;

Increase the segment host memory per query to 200 MB:

SET statement_mem TO '200MB';

https://www.postgresql.org/docs/9.4/datatype-datetime.html#DATATYPE-TIMEZONES

Greenplum Database Reference Guide Release Notes

1209

Set the style of date to traditional POSTGRES with "day before month" input convention:

SET datestyle TO postgres, dmy;

Set the time zone for San Mateo, California (Pacific Time):

SET TIME ZONE 'PST8PDT';

Set the time zone for Italy:

SET TIME ZONE 'Europe/Rome';

Compatibility
SET TIME ZONE extends syntax defined in the SQL standard. The standard allows only numeric time
zone offsets while Greenplum Database allows more flexible time-zone specifications. All other SET
features are Greenplum Database extensions.

See Also
RESET, SHOW

SET CONSTRAINTS
Sets constraint check timing for the current transaction.

Note: Referential integrity syntax (foreign key constraints) is accepted but not enforced.

Synopsis

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

Description
SET CONSTRAINTS sets the behavior of constraint checking within the current transaction. IMMEDIATE
constraints are checked at the end of each statement. DEFERRED constraints are not checked until
transaction commit. Each constraint has its own IMMEDIATE or DEFERRED mode.

Upon creation, a constraint is given one of three characteristics: DEFERRABLE INITIALLY DEFERRED,
DEFERRABLE INITIALLY IMMEDIATE, or NOT DEFERRABLE. The third class is always IMMEDIATE and
is not affected by the SET CONSTRAINTS command. The first two classes start every transaction in the
indicated mode, but their behavior can be changed within a transaction by SET CONSTRAINTS.

SET CONSTRAINTS with a list of constraint names changes the mode of just those constraints (which must
all be deferrable). Each constraint name can be schema-qualified. The current schema search path is used
to find the first matching name if no schema name is specified. SET CONSTRAINTS ALL changes the
mode of all deferrable constraints.

When SET CONSTRAINTS changes the mode of a constraint from DEFERRED to IMMEDIATE, the new
mode takes effect retroactively: any outstanding data modifications that would have been checked at the
end of the transaction are instead checked during the execution of the SET CONSTRAINTS command. If
any such constraint is violated, the SET CONSTRAINTS fails (and does not change the constraint mode).
Thus, SET CONSTRAINTS can be used to force checking of constraints to occur at a specific point in a
transaction.

Currently, only UNIQUE, PRIMARY KEY, REFERENCES (foreign key), and EXCLUDE constraints are affected
by this setting. NOT NULL and CHECK constraints are always checked immediately when a row is inserted

Greenplum Database Reference Guide Release Notes

1210

or modified (not at the end of the statement). Uniqueness and exclusion constraints that have not been
declared DEFERRABLE are also checked immediately.

The firing of triggers that are declared as "constraint triggers" is also controlled by this setting — they fire at
the same time that the associated constraint should be checked.

Notes
Because Greenplum Database does not require constraint names to be unique within a schema (but only
per-table), it is possible that there is more than one match for a specified constraint name. In this case SET
CONSTRAINTS will act on all matches. For a non-schema-qualified name, once a match or matches have
been found in some schema in the search path, schemas appearing later in the path are not searched.

This command only alters the behavior of constraints within the current transaction. Issuing this outside of
a transaction block emits a warning and otherwise has no effect.

Compatibility
This command complies with the behavior defined in the SQL standard, except for the limitation that, in
Greenplum Database, it does not apply to NOT NULL and CHECK constraints. Also, Greenplum Database
checks non-deferrable uniqueness constraints immediately, not at end of statement as the standard would
suggest.

SET ROLE
Sets the current role identifier of the current session.

Synopsis

SET [SESSION | LOCAL] ROLE rolename

SET [SESSION | LOCAL] ROLE NONE

RESET ROLE

Description
This command sets the current role identifier of the current SQL-session context to be rolename. The role
name may be written as either an identifier or a string literal. After SET ROLE, permissions checking for
SQL commands is carried out as though the named role were the one that had logged in originally.

The specified rolename must be a role that the current session user is a member of. If the session user is a
superuser, any role can be selected.

The NONE and RESET forms reset the current role identifier to be the current session role identifier. These
forms may be executed by any user.

Parameters
SESSION

Specifies that the command takes effect for the current session. This is the default.

LOCAL

Specifies that the command takes effect for only the current transaction. After COMMIT or
ROLLBACK, the session-level setting takes effect again. Note that SET LOCAL will appear
to have no effect if it is executed outside of a transaction.

rolename

The name of a role to use for permissions checking in this session.

Greenplum Database Reference Guide Release Notes

1211

NONE
RESET

Reset the current role identifier to be the current session role identifier (that of the role
used to log in).

Notes
Using this command, it is possible to either add privileges or restrict privileges. If the session user role has
the INHERITS attribute, then it automatically has all the privileges of every role that it could SET ROLE to;
in this case SET ROLE effectively drops all the privileges assigned directly to the session user and to the
other roles it is a member of, leaving only the privileges available to the named role. On the other hand, if
the session user role has the NOINHERITS attribute, SET ROLE drops the privileges assigned directly to
the session user and instead acquires the privileges available to the named role.

In particular, when a superuser chooses to SET ROLE to a non-superuser role, she loses her superuser
privileges.

SET ROLE has effects comparable to SET SESSION AUTHORIZATION, but the privilege checks involved
are quite different. Also, SET SESSION AUTHORIZATION determines which roles are allowable for later
SET ROLE commands, whereas changing roles with SET ROLE does not change the set of roles allowed
to a later SET ROLE.

SET ROLE does not process session variables specified by the role's ALTER ROLE settings; the session
variables are only processed during login.

Examples

SELECT SESSION_USER, CURRENT_USER;
 session_user | current_user
--------------+--------------
 peter | peter

SET ROLE 'paul';

SELECT SESSION_USER, CURRENT_USER;
 session_user | current_user
--------------+--------------
 peter | paul

Compatibility
Greenplum Database allows identifier syntax (rolename), while the SQL standard requires the role name to
be written as a string literal. SQL does not allow this command during a transaction; Greenplum Database
does not make this restriction. The SESSION and LOCAL modifiers are a Greenplum Database extension,
as is the RESET syntax.

See Also
SET SESSION AUTHORIZATION

SET SESSION AUTHORIZATION
Sets the session role identifier and the current role identifier of the current session.

Synopsis

SET [SESSION | LOCAL] SESSION AUTHORIZATION rolename

SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT

Greenplum Database Reference Guide Release Notes

1212

RESET SESSION AUTHORIZATION

Description
This command sets the session role identifier and the current role identifier of the current SQL-session
context to be rolename. The role name may be written as either an identifier or a string literal. Using this
command, it is possible, for example, to temporarily become an unprivileged user and later switch back to
being a superuser.

The session role identifier is initially set to be the (possibly authenticated) role name provided by the client.
The current role identifier is normally equal to the session user identifier, but may change temporarily in the
context of setuid functions and similar mechanisms; it can also be changed by SET ROLE. The current
user identifier is relevant for permission checking.

The session user identifier may be changed only if the initial session user (the authenticated user) had the
superuser privilege. Otherwise, the command is accepted only if it specifies the authenticated user name.

The DEFAULT and RESET forms reset the session and current user identifiers to be the originally
authenticated user name. These forms may be executed by any user.

Parameters
SESSION

Specifies that the command takes effect for the current session. This is the default.

LOCAL

Specifies that the command takes effect for only the current transaction. After COMMIT or
ROLLBACK, the session-level setting takes effect again. Note that SET LOCAL will appear
to have no effect if it is executed outside of a transaction.

rolename

The name of the role to assume.

NONE
RESET

Reset the session and current role identifiers to be that of the role used to log in.

Examples

SELECT SESSION_USER, CURRENT_USER;
 session_user | current_user
--------------+--------------
 peter | peter

SET SESSION AUTHORIZATION 'paul';

SELECT SESSION_USER, CURRENT_USER;
 session_user | current_user
--------------+--------------
 paul | paul

Compatibility
The SQL standard allows some other expressions to appear in place of the literal rolename, but these
options are not important in practice. Greenplum Database allows identifier syntax (rolename), which SQL
does not. SQL does not allow this command during a transaction; Greenplum Database does not make
this restriction. The SESSION and LOCAL modifiers are a Greenplum Database extension, as is the RESET
syntax.

Greenplum Database Reference Guide Release Notes

1213

See Also
SET ROLE

SET TRANSACTION
Sets the characteristics of the current transaction.

Synopsis

SET TRANSACTION [transaction_mode] [READ ONLY | READ WRITE]

SET TRANSACTION SNAPSHOT snapshot_id

SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode
 [READ ONLY | READ WRITE]
 [NOT] DEFERRABLE

where transaction_mode is one of:

 ISOLATION LEVEL {SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ
 UNCOMMITTED}

Description
The SET TRANSACTION command sets the characteristics of the current transaction. It has no effect on
any subsequent transactions.

The available transaction characteristics are the transaction isolation level, the transaction access mode
(read/write or read-only), and the deferrable mode.

Note: Deferrable transactions require the transaction to be serializable. Greenplum Database does
not support serializable transactions, so including the DEFERRABLE clause has no effect.

Greenplum Database does not support the SET TRANSACTION SNAPSHOT command.

The isolation level of a transaction determines what data the transaction can see when other transactions
are running concurrently.

• READ COMMITTED — A statement can only see rows committed before it began. This is the default.
• REPEATABLE READ — All statements in the current transaction can only see rows committed before

the first query or data-modification statement executed in the transaction.

The SQL standard defines two additional levels, READ UNCOMMITTED and SERIALIZABLE. In Greenplum
Database READ UNCOMMITTED is treated as READ COMMITTED. If you specify SERIALIZABLE,
Greenplum Database falls back to REPEATABLE READ.

The transaction isolation level cannot be changed after the first query or data-modification statement
(SELECT, INSERT, DELETE, UPDATE, FETCH, or COPY) of a transaction has been executed.

The transaction access mode determines whether the transaction is read/write or read-only. Read/write
is the default. When a transaction is read-only, the following SQL commands are disallowed: INSERT,
UPDATE, DELETE, and COPY FROM if the table they would write to is not a temporary table; all CREATE,
ALTER, and DROP commands; GRANT, REVOKE, TRUNCATE; and EXPLAIN ANALYZE and EXECUTE if the
command they would execute is among those listed. This is a high-level notion of read-only that does not
prevent all writes to disk.

The DEFERRABLE transaction property has no effect unless the transaction is also SERIALIZABLE and
READ ONLY. When all of these properties are set on a transaction, the transaction may block when first
acquiring its snapshot, after which it is able to run without the normal overhead of a SERIALIZABLE
transaction and without any risk of contributing to or being cancelled by a serialization failure. Because

Greenplum Database Reference Guide Release Notes

1214

Greenplum Database does not support serializable transactions, the DEFERRABLE transaction property
has no effect in Greenplum Database.

Parameters
SESSION CHARACTERISTICS

Sets the default transaction characteristics for subsequent transactions of a session.

READ UNCOMMITTED
READ COMMITTED
REPEATABLE READ
SERIALIZABLE

The SQL standard defines four transaction isolation levels: READ UNCOMMITTED, READ
COMMITTED, REPEATABLE READ, and SERIALIZABLE.

READ UNCOMMITTED allows transactions to see changes made by uncomitted concurrent
transactions. This is not possible in Greenplum Database, so READ UNCOMMITTED is
treated the same as READ COMMITTED.

READ COMMITTED, the default isolation level in Greenplum Database, guarantees that a
statement can only see rows committed before it began. The same statement executed
twice in a transaction can produce different results if another concurrent transaction
commits after the statement is executed the first time.

The REPEATABLE READ isolation level guarantees that a transaction can only see rows
committed before it began. REPEATABLE READ is the strictest transaction isolation level
Greenplum Database supports. Applications that use the REPEATABLE READ isolation
level must be prepared to retry transactions due to serialization failures.

The SERIALIZABLE transaction isolation level guarantees that all statements of
the current transaction can only see rows committed before the first query or data-
modification statement was executed in this transaction. If a pattern of reads and writes
among concurrent serializable transactions would create a situation which could not
have occurred for any serial (one-at-a-time) execution of those transactions, one of the
transactions will be rolled back with a serialization_failure error. Greenplum
Database does not fully support SERIALIZABLE as defined by the standard, so if you
specify SERIALIZABLE, Greenplum Database falls back to REPEATABLE READ. See
Compatibility for more information about transaction serializability in Greenplum Database.

READ WRITE
READ ONLY

Determines whether the transaction is read/write or read-only. Read/write is the default.
When a transaction is read-only, the following SQL commands are disallowed: INSERT,
UPDATE, DELETE, and COPY FROM if the table they would write to is not a temporary table;
all CREATE, ALTER, and DROP commands; GRANT, REVOKE, TRUNCATE; and EXPLAIN
ANALYZE and EXECUTE if the command they would execute is among those listed.

[NOT] DEFERRABLE

The DEFERRABLE transaction property has no effect in Greenplum Database because
SERIALIZABLE transactions are not supported. If DEFERRABLE is specified and the
transaction is also SERIALIZABLE and READ ONLY, the transaction may block when
first acquiring its snapshot, after which it is able to run without the normal overhead of a
SERIALIZABLE transaction and without any risk of contributing to or being cancelled by a
serialization failure. This mode is well suited for long-running reports or backups.

Notes
If SET TRANSACTION is executed without a prior START TRANSACTION or BEGIN, a warning is issued
and the command has no effect.

Greenplum Database Reference Guide Release Notes

1215

It is possible to dispense with SET TRANSACTION by instead specifying the desired transaction modes in
BEGIN or START TRANSACTION.

The session default transaction modes can also be set by setting the configuration parameters
default_transaction_isolation, default_transaction_read_only, and default_transaction_deferrable.

Examples
Set the transaction isolation level for the current transaction:

BEGIN;
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

Compatibility
Both commands are defined in the SQL standard. SERIALIZABLE is the default transaction isolation level
in the standard. In Greenplum Database the default is READ COMMITTED. Due to lack of predicate locking,
Greenplum Database does not fully support the SERIALIZABLE level, so it falls back to the REPEATABLE
READ level when SERIAL is specified. Essentially, a predicate-locking system prevents phantom reads
by restricting what is written, whereas a multi-version concurrency control model (MVCC) as used in
Greenplum Database prevents them by restricting what is read.

PostgreSQL provides a true serializable isolation level, called serializable snapshot isolation (SSI), which
monitors concurrent transactions and rolls back transactions that could introduce serialization anomalies.
Greenplum Database does not implement this isolation mode.

In the SQL standard, there is one other transaction characteristic that can be set with these commands: the
size of the diagnostics area. This concept is specific to embedded SQL, and therefore is not implemented
in the Greenplum Database server.

The DEFERRABLE transaction mode is a Greenplum Database language extension.

The SQL standard requires commas between successive transaction_modes, but for historical reasons
Greenplum Database allows the commas to be omitted.

See Also
BEGIN, LOCK

SHOW
Shows the value of a system configuration parameter.

Synopsis

SHOW configuration_parameter

SHOW ALL

Description
SHOW displays the current settings of Greenplum Database system configuration parameters. You can set
these parameters with the SET statement, or by editing the postgresql.conf configuration file of the
Greenplum Database master. Note that some parameters viewable by SHOW are read-only — their values
can be viewed but not set. See the Greenplum Database Reference Guide for details.

Parameters
configuration_parameter

Greenplum Database Reference Guide Release Notes

1216

The name of a system configuration parameter.

ALL

Shows the current value of all configuration parameters.

Examples
Show the current setting of the parameter DateStyle:

SHOW DateStyle;
 DateStyle

 ISO, MDY
(1 row)

Show the current setting of the parameter geqo:

SHOW geqo;
 geqo

 off
(1 row)

Show the current setting of all parameters:

SHOW ALL;
 name | setting | description
------------------+---------
+--
 application_name | psql | Sets the application name to be reported in
 sta...
 .
 .
 .
 xmlbinary | base64 | Sets how binary values are to be encoded in
 XML.
 xmloption | content | Sets whether XML data in implicit parsing and
 s...
(331 rows)

Compatibility
SHOW is a Greenplum Database extension.

See Also
SET, RESET

START TRANSACTION
Starts a transaction block.

Synopsis

START TRANSACTION [transaction_mode] [READ WRITE | READ ONLY]

where transaction_mode is:

 ISOLATION LEVEL {SERIALIZABLE | READ COMMITTED | READ UNCOMMITTED}

Greenplum Database Reference Guide Release Notes

1217

Description
START TRANSACTION begins a new transaction block. If the isolation level or read/write mode is specified,
the new transaction has those characteristics, as if SET TRANSACTION was executed. This is the same as
the BEGIN command.

Parameters
READ UNCOMMITTED
READ COMMITTED
REPEATABLE READ
SERIALIZABLE

The SQL standard defines four transaction isolation levels: READ UNCOMMITTED, READ
COMMITTED, REPEATABLE READ, and SERIALIZABLE.

READ UNCOMMITTED allows transactions to see changes made by uncomitted concurrent
transactions. This is not possible in Greenplum Database, so READ UNCOMMITTED is
treated the same as READ COMMITTED.

READ COMMITTED, the default isolation level in Greenplum Database, guarantees that a
statement can only see rows committed before it began. The same statement executed
twice in a transaction can produce different results if another concurrent transaction
commits after the statement is executed the first time.

The REPEATABLE READ isolation level guarantees that a transaction can only see rows
committed before it began. REPEATABLE READ is the strictest transaction isolation level
Greenplum Database supports. Applications that use the REPEATABLE READ isolation
level must be prepared to retry transactions due to serialization failures.

The SERIALIZABLE transaction isolation level guarantees that executing multiple
concurrent transactions produces the same effects as running the same transactions one
at a time. If you specify SERIALIZABLE, Greenplum Database falls back to REPEATABLE
READ.

READ WRITE
READ ONLY

Determines whether the transaction is read/write or read-only. Read/write is the default.
When a transaction is read-only, the following SQL commands are disallowed: INSERT,
UPDATE, DELETE, and COPY FROM if the table they would write to is not a temporary table;
all CREATE, ALTER, and DROP commands; GRANT, REVOKE, TRUNCATE; and EXPLAIN
ANALYZE and EXECUTE if the command they would execute is among those listed.

Examples
To begin a transaction block:

START TRANSACTION;

Compatibility
In the standard, it is not necessary to issue START TRANSACTION to start a transaction block: any SQL
command implicitly begins a block. Greenplum Database behavior can be seen as implicitly issuing a
COMMIT after each command that does not follow START TRANSACTION (or BEGIN), and it is therefore
often called 'autocommit'. Other relational database systems may offer an autocommit feature as a
convenience.

The SQL standard requires commas between successive transaction_modes, but for historical reasons
Greenplum Database allows the commas to be omitted.

See also the compatibility section of SET TRANSACTION.

Greenplum Database Reference Guide Release Notes

1218

See Also
BEGIN, SET TRANSACTION

TRUNCATE
Empties a table of all rows.

Synopsis

TRUNCATE [TABLE] [ONLY] name [*] [, ...]
 [RESTART IDENTITY | CONTINUE IDENTITY] [CASCADE | RESTRICT]

Description
TRUNCATE quickly removes all rows from a table or set of tables. It has the same effect as an unqualified
DELETE on each table, but since it does not actually scan the tables it is faster. This is most useful on large
tables.

You must have the TRUNCATE privilege on the table to truncate table rows.

TRUNCATE acquires an access exclusive lock on the tables it operates on, which blocks all other
concurrent operations on the table. When RESTART IDENTITY is specified, any sequences that are to
be restarted are likewise locked exclusively. If concurrent access to a table is required, then the DELETE
command should be used instead.

Parameters
name

The name (optionally schema-qualified) of a table to truncate. If ONLY is specified before
the table name, only that table is truncated. If ONLY is not specified, the table and all its
descendant tables (if any) are truncated. Optionally, * can be specified after the table
name to explicitly indicate that descendant tables are included.

CASCADE

Because this key word applies to foreign key references (which are not supported in
Greenplum Database) it has no effect.

RESTART IDENTITY

Automatically restart sequences owned by columns of the truncated table(s).

CONTINUE IDENTITY

Do not change the values of sequences. This is the default.

RESTRICT

Because this key word applies to foreign key references (which are not supported in
Greenplum Database) it has no effect.

Notes
TRUNCATE will not run any user-defined ON DELETE triggers that might exist for the tables.

TRUNCATE will not truncate any tables that inherit from the named table. Only the named table is truncated,
not its child tables.

TRUNCATE will not truncate any sub-tables of a partitioned table. If you specify a sub-table of a partitioned
table, TRUNCATE will not remove rows from the sub-table and its child tables.

TRUNCATE is not MVCC-safe. After truncation, the table will appear empty to concurrent transactions, if
they are using a snapshot taken before the truncation occurred.

Greenplum Database Reference Guide Release Notes

1219

TRUNCATE is transaction-safe with respect to the data in the tables: the truncation will be safely rolled back
if the surrounding transaction does not commit.

TRUNCATE acquires an ACCESS EXCLUSIVE lock on each table it operates on, which blocks all other
concurrent operations on the table. If concurrent access to a table is required, then the DELETE command
should be used instead.

When RESTART IDENTITY is specified, the implied ALTER SEQUENCE RESTART operations are also
done transactionally; that is, they will be rolled back if the surrounding transaction does not commit.
This is unlike the normal behavior of ALTER SEQUENCE RESTART. Be aware that if any additional
sequence operations are done on the restarted sequences before the transaction rolls back, the effects
of these operations on the sequences will be rolled back, but not their effects on currval(); that is,
after the transaction currval() will continue to reflect the last sequence value obtained inside the failed
transaction, even though the sequence itself may no longer be consistent with that. This is similar to the
usual behavior of currval() after a failed transaction.

Examples
Empty the tables films and distributors:

TRUNCATE films, distributors;

The same, and also reset any associated sequence generators:

TRUNCATE films, distributors RESTART IDENTITY;

Compatibility
The SQL:2008 standard includes a TRUNCATE command with the syntax TRUNCATE TABLE tablename.
The clauses CONTINUE IDENTITY/RESTART IDENTITY also appear in that standard, but have
slightly different though related meanings. Some of the concurrency behavior of this command is left
implementation-defined by the standard, so the above notes should be considered and compared with
other implementations if necessary.

See Also
DELETE, DROP TABLE

UPDATE
Updates rows of a table.

Synopsis

[WITH [RECURSIVE] with_query [, ...]]
UPDATE [ONLY] table [[AS] alias]
 SET {column = {expression | DEFAULT} |
 (column [, ...]) = ({expression | DEFAULT} [, ...])} [, ...]
 [FROM fromlist]
 [WHERE condition | WHERE CURRENT OF cursor_name]

Description
UPDATE changes the values of the specified columns in all rows that satisfy the condition. Only the
columns to be modified need be mentioned in the SET clause; columns not explicitly modified retain their
previous values.

Greenplum Database Reference Guide Release Notes

1220

By default, UPDATE will update rows in the specified table and all its subtables. If you wish to only update
the specific table mentioned, you must use the ONLY clause.

There are two ways to modify a table using information contained in other tables in the database: using
sub-selects, or specifying additional tables in the FROM clause. Which technique is more appropriate
depends on the specific circumstances.

If the WHERE CURRENT OF clause is specified, the row that is updated is the one most recently fetched
from the specified cursor.

The WHERE CURRENT OF clause is not supported with replicated tables.

You must have the UPDATE privilege on the table, or at least on the column(s) that are listed to be updated.
You must also have the SELECT privilege on any column whose values are read in the expressions or
condition.

Note: As the default, Greenplum Database acquires an EXCLUSIVE lock on tables for UPDATE
operations on heap tables. When the Global Deadlock Detector is enabled, the lock mode for
UPDATE operations on heap tables is ROW EXCLUSIVE. See Global Deadlock Detector.

Outputs

On successful completion, an UPDATE command returns a command tag of the form:

UPDATE count

where count is the number of rows updated. If count is 0, no rows matched the condition (this is not
considered an error).

Parameters
with_query

The WITH clause allows you to specify one or more subqueries that can be referenced by
name in the UPDATE query.

For an UPDATE command that includes a WITH clause, the clause can only contain
SELECT commands, the WITH clause cannot contain a data-modifying command (INSERT,
UPDATE, or DELETE).

It is possible for the query (SELECT statement) to also contain a WITH clause. In such a
case both sets of with_query can be referenced within the UPDATE query, but the second
one takes precedence since it is more closely nested.

See WITH Queries (Common Table Expressions) and SELECT for details.

ONLY

If specified, update rows from the named table only. When not specified, any tables
inheriting from the named table are also processed.

table

The name (optionally schema-qualified) of an existing table.

alias

A substitute name for the target table. When an alias is provided, it completely hides the
actual name of the table. For example, given UPDATE foo AS f, the remainder of the
UPDATE statement must refer to this table as f not foo.

column

The name of a column in table. The column name can be qualified with a subfield name or
array subscript, if needed. Do not include the table's name in the specification of a target
column.

expression

Greenplum Database Reference Guide Release Notes

1221

An expression to assign to the column. The expression may use the old values of this and
other columns in the table.

DEFAULT

Set the column to its default value (which will be NULL if no specific default expression has
been assigned to it).

fromlist

A list of table expressions, allowing columns from other tables to appear in the WHERE
condition and the update expressions. This is similar to the list of tables that can be
specified in the FROM clause of a SELECT statement. Note that the target table must not
appear in the fromlist, unless you intend a self-join (in which case it must appear with an
alias in the fromlist).

condition

An expression that returns a value of type boolean. Only rows for which this expression
returns true will be updated.

cursor_name

The name of the cursor to use in a WHERE CURRENT OF condition. The row to be updated
is the one most recently fetched from the cursor. The cursor must be a non-grouping query
on the UPDATE command target table. See DECLARE for more information about creating
cursors.

WHERE CURRENT OF cannot be specified together with a Boolean condition.

Note that WHERE CURRENT OF cannot be specified together with a Boolean condition.
The UPDATE...WHERE CURRENT OF statement can only be executed on the server, for
example in an interactive psql session or a script. Language extensions such as PL/pgSQL
do not have support for updatable cursors.

See DECLARE for more information about creating cursors.

output_expression

An expression to be computed and returned by the UPDATE command after each row
is updated. The expression may use any column names of the table or table(s) listed in
FROM. Write * to return all columns.

output_name

A name to use for a returned column.

Notes
SET is not allowed on the Greenplum distribution key columns of a table.

When a FROM clause is present, what essentially happens is that the target table is joined to the tables
mentioned in the from list, and each output row of the join represents an update operation for the target
table. When using FROM you should ensure that the join produces at most one output row for each row to
be modified. In other words, a target row should not join to more than one row from the other table(s). If it
does, then only one of the join rows will be used to update the target row, but which one will be used is not
readily predictable.

Because of this indeterminacy, referencing other tables only within sub-selects is safer, though often
harder to read and slower than using a join.

Executing UPDATE and DELETE commands directly on a specific partition (child table) of a partitioned table
is not supported. Instead, execute these commands on the root partitioned table, the table created with the
CREATE TABLE command.

For a partitioned table, all the child tables are locked during the UPDATE operation when the Global
Deadlock Detector is not enabled (the default). Only some of the leaf child tables are locked when the

Greenplum Database Reference Guide Release Notes

1222

Global Deadlock Detector is enabled. For information about the Global Deadlock Detector, see Global
Deadlock Detector.

Examples
Change the word Drama to Dramatic in the column kind of the table films:

UPDATE films SET kind = 'Dramatic' WHERE kind = 'Drama';

Adjust temperature entries and reset precipitation to its default value in one row of the table weather:

UPDATE weather SET temp_lo = temp_lo+1, temp_hi =
temp_lo+15, prcp = DEFAULT
WHERE city = 'San Francisco' AND date = '2016-07-03';

Use the alternative column-list syntax to do the same update:

UPDATE weather SET (temp_lo, temp_hi, prcp) = (temp_lo+1,
temp_lo+15, DEFAULT)
WHERE city = 'San Francisco' AND date = '2016-07-03';

Increment the sales count of the salesperson who manages the account for Acme Corporation, using the
FROM clause syntax (assuming both tables being joined are distributed in Greenplum Database on the id
column):

UPDATE employees SET sales_count = sales_count + 1 FROM
accounts
WHERE accounts.name = 'Acme Corporation'
AND employees.id = accounts.id;

Perform the same operation, using a sub-select in the WHERE clause:

UPDATE employees SET sales_count = sales_count + 1 WHERE id =
 (SELECT id FROM accounts WHERE name = 'Acme Corporation');

Attempt to insert a new stock item along with the quantity of stock. If the item already exists, instead
update the stock count of the existing item. To do this without failing the entire transaction, use savepoints.

BEGIN;
-- other operations
SAVEPOINT sp1;
INSERT INTO wines VALUES('Chateau Lafite 2003', '24');
-- Assume the above fails because of a unique key violation,
-- so now we issue these commands:
ROLLBACK TO sp1;
UPDATE wines SET stock = stock + 24 WHERE winename = 'Chateau
Lafite 2003';
-- continue with other operations, and eventually
COMMIT;

Compatibility
This command conforms to the SQL standard, except that the FROM clause is a Greenplum Database
extension.

According to the standard, the column-list syntax should allow a list of columns to be assigned from a
single row-valued expression, such as a sub-select:

UPDATE accounts SET (contact_last_name, contact_first_name) =
 (SELECT last_name, first_name FROM salesmen

Greenplum Database Reference Guide Release Notes

1223

 WHERE salesmen.id = accounts.sales_id);

This is not currently implemented — the source must be a list of independent expressions.

Some other database systems offer a FROM option in which the target table is supposed to be listed again
within FROM. That is not how Greenplum Database interprets FROM. Be careful when porting applications
that use this extension.

See Also
DECLARE, DELETE, SELECT, INSERT

VACUUM
Garbage-collects and optionally analyzes a database.

Synopsis

VACUUM [({ FULL | FREEZE | VERBOSE | ANALYZE } [, ...])] [table [(column
 [, ...])]]

VACUUM [FULL] [FREEZE] [VERBOSE] [table]

VACUUM [FULL] [FREEZE] [VERBOSE] ANALYZE
 [table [(column [, ...])]]

Description
VACUUM reclaims storage occupied by deleted tuples. In normal Greenplum Database operation, tuples
that are deleted or obsoleted by an update are not physically removed from their table; they remain
present on disk until a VACUUM is done. Therefore it is necessary to do VACUUM periodically, especially on
frequently-updated tables.

With no parameter, VACUUM processes every table in the current database. With a parameter, VACUUM
processes only that table.

VACUUM ANALYZE performs a VACUUM and then an ANALYZE for each selected table. This is a handy
combination form for routine maintenance scripts. See ANALYZE for more details about its processing.

VACUUM (without FULL) marks deleted and obsoleted data in tables and indexes for future reuse and
reclaims space for re-use only if the space is at the end of the table and an exclusive table lock can be
easily obtained. Unused space at the start or middle of a table remains as is. With heap tables, this form
of the command can operate in parallel with normal reading and writing of the table, as an exclusive lock
is not obtained. However, extra space is not returned to the operating system (in most cases); it's just kept
available for re-use within the same table. VACUUM FULL rewrites the entire contents of the table into a
new disk file with no extra space, allowing unused space to be returned to the operating system. This form
is much slower and requires an exclusive lock on each table while it is being processed.

With append-optimized tables, VACUUM compacts a table by first vacuuming the indexes, then compacting
each segment file in turn, and finally vacuuming auxiliary relations and updating statistics. On each
segment, visible rows are copied from the current segment file to a new segment file, and then the current
segment file is scheduled to be dropped and the new segment file is made available. Plain VACUUM of
an append-optimized table allows scans, inserts, deletes, and updates of the table while a segment file
is compacted. However, an Access Exclusive lock is taken briefly to drop the current segment file and
activate the new segment file.

VACUUM FULL does more extensive processing, including moving of tuples across blocks to try to compact
the table to the minimum number of disk blocks. This form is much slower and requires an Access
Exclusive lock on each table while it is being processed. The Access Exclusive lock guarantees that the
holder is the only transaction accessing the table in any way.

Greenplum Database Reference Guide Release Notes

1224

When the option list is surrounded by parentheses, the options can be written in any order. Without
parentheses, options must be specified in exactly the order shown above. The parenthesized syntax was
added in Greenplum Database 6.0; the unparenthesized syntax is deprecated.

Important: For information on the use of VACUUM, VACUUM FULL, and VACUUM ANALYZE, see
Notes.

Outputs

When VERBOSE is specified, VACUUM emits progress messages to indicate which table is currently being
processed. Various statistics about the tables are printed as well.

Parameters
FULL

Selects a full vacuum, which may reclaim more space, but takes much longer and
exclusively locks the table. This method also requires extra disk space, since it writes a
new copy of the table and doesn't release the old copy until the operation is complete.
Usually this should only be used when a significant amount of space needs to be
reclaimed from within the table.

FREEZE

Specifying FREEZE is equivalent to performing VACUUM with the
vacuum_freeze_min_age server configuration parameter set to zero. See Server
Configuration Parameters for information about vacuum_freeze_min_age.

VERBOSE

Prints a detailed vacuum activity report for each table.

ANALYZE

Updates statistics used by the planner to determine the most efficient way to execute a
query.

table

The name (optionally schema-qualified) of a specific table to vacuum. Defaults to all tables
in the current database.

column

The name of a specific column to analyze. Defaults to all columns. If a column list is
specified, ANALYZE is implied.

Notes
VACUUM cannot be executed inside a transaction block.

Vacuum active databases frequently (at least nightly), in order to remove expired rows. After adding or
deleting a large number of rows, running the VACUUM ANALYZE command for the affected table might be
useful. This updates the system catalogs with the results of all recent changes, and allows the Greenplum
Database query optimizer to make better choices in planning queries.

Important: PostgreSQL has a separate optional server process called the autovacuum daemon,
whose purpose is to automate the execution of VACUUM and ANALYZE commands. Greenplum
Database enables the autovacuum daemon to perform VACUUM operations only on the Greenplum
Database template database template0. Autovacuum is enabled for template0 because
connections are not allowed to template0. The autovacuum daemon performs VACUUM operations
on template0 to manage transaction IDs (XIDs) and help avoid transaction ID wraparound issues
in template0.

Manual VACUUM operations must be performed in user-defined databases to manage transaction
IDs (XIDs) in those databases.

Greenplum Database Reference Guide Release Notes

1225

VACUUM causes a substantial increase in I/O traffic, which can cause poor performance for other active
sessions. Therefore, it is advisable to vacuum the database at low usage times.

VACUUM commands skip external and foreign tables.

VACUUM FULL reclaims all expired row space, however it requires an exclusive lock on each table being
processed, is a very expensive operation, and might take a long time to complete on large, distributed
Greenplum Database tables. Perform VACUUM FULL operations during database maintenance periods.

The FULL option is not recommended for routine use, but might be useful in special cases. An example is
when you have deleted or updated most of the rows in a table and would like the table to physically shrink
to occupy less disk space and allow faster table scans. VACUUM FULL will usually shrink the table more
than a plain VACUUM would.

As an alternative to VACUUM FULL, you can re-create the table with a CREATE TABLE AS statement and
drop the old table.

For append-optimized tables, VACUUM requires enough available disk space to accommodate the new
segment file during the VACUUM process. If the ratio of hidden rows to total rows in a segment file is less
than a threshold value (10, by default), the segment file is not compacted. The threshold value can be
configured with the gp_appendonly_compaction_threshold server configuration parameter. VACUUM
FULL ignores the threshold and rewrites the segment file regardless of the ratio. VACUUM can be disabled
for append-optimized tables using the gp_appendonly_compaction server configuration parameter.
See Server Configuration Parameters for information about the server configuration parameters.

If a concurrent serializable transaction is detected when an append-optimized table is being vacuumed,
the current and subsequent segment files are not compacted. If a segment file has been compacted but
a concurrent serializable transaction is detected in the transaction that drops the original segment file, the
drop is skipped. This could leave one or two segment files in an "awaiting drop" state after the vacuum has
completed.

For more information about concurrency control in Greenplum Database, see "Routine System
Maintenance Tasks" in Greenplum Database Administrator Guide.

Examples
To clean a single table onek, analyze it for the optimizer and print a detailed vacuum activity report:

VACUUM (VERBOSE, ANALYZE) onek;

Vacuum all tables in the current database:

VACUUM;

Vacuum a specific table only:

VACUUM (VERBOSE, ANALYZE) mytable;

Vacuum all tables in the current database and collect statistics for the query optimizer:

VACUUM ANALYZE;

Compatibility
There is no VACUUM statement in the SQL standard.

See Also
ANALYZE

Greenplum Database Reference Guide Release Notes

1226

VALUES
Computes a set of rows.

Synopsis

VALUES (expression [, ...]) [, ...]
 [ORDER BY sort_expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]

Description
VALUES computes a row value or set of row values specified by value expressions. It is most commonly
used to generate a "constant table" within a larger command, but it can be used on its own.

When more than one row is specified, all the rows must have the same number of elements. The data
types of the resulting table's columns are determined by combining the explicit or inferred types of the
expressions appearing in that column, using the same rules as for UNION.

Within larger commands, VALUES is syntactically allowed anywhere that SELECT is. Because it is treated
like a SELECT by the grammar, it is possible to use the ORDER BY, LIMIT (or equivalent FETCH FIRST),
and OFFSET clauses with a VALUES command.

Parameters
expression

A constant or expression to compute and insert at the indicated place in the resulting table
(set of rows). In a VALUES list appearing at the top level of an INSERT, an expression can
be replaced by DEFAULT to indicate that the destination column's default value should be
inserted. DEFAULT cannot be used when VALUES appears in other contexts.

sort_expression

An expression or integer constant indicating how to sort the result rows. This expression
may refer to the columns of the VALUES result as column1, column2, etc. For more
details, see "The ORDER BY Clause" in the parameters for SELECT.

operator

A sorting operator. For more details, see "The ORDER BY Clause" in the parameters for
SELECT.

LIMIT count
OFFSET start

The maximum number of rows to return. For more details, see "The LIMIT Clause" in the
parameters for SELECT.

Notes
VALUES lists with very large numbers of rows should be avoided, as you may encounter out-of-memory
failures or poor performance. VALUES appearing within INSERT is a special case (because the desired
column types are known from the INSERT's target table, and need not be inferred by scanning the VALUES
list), so it can handle larger lists than are practical in other contexts.

Greenplum Database Reference Guide Release Notes

1227

Examples
A bare VALUES command:

VALUES (1, 'one'), (2, 'two'), (3, 'three');

This will return a table of two columns and three rows. It is effectively equivalent to:

SELECT 1 AS column1, 'one' AS column2
UNION ALL
SELECT 2, 'two'
UNION ALL
SELECT 3, 'three';

More usually, VALUES is used within a larger SQL command. The most common use is in INSERT:

INSERT INTO films (code, title, did, date_prod, kind)
 VALUES ('T_601', 'Yojimbo', 106, '1961-06-16', 'Drama');

In the context of INSERT, entries of a VALUES list can be DEFAULT to indicate that the column default
should be used here instead of specifying a value:

INSERT INTO films VALUES
 ('UA502', 'Bananas', 105, DEFAULT, 'Comedy', '82
minutes'),
 ('T_601', 'Yojimbo', 106, DEFAULT, 'Drama', DEFAULT);

VALUES can also be used where a sub-SELECT might be written, for example in a FROM clause:

SELECT f.* FROM films f, (VALUES('MGM', 'Horror'), ('UA',
'Sci-Fi')) AS t (studio, kind) WHERE f.studio = t.studio AND
f.kind = t.kind;
UPDATE employees SET salary = salary * v.increase FROM
(VALUES(1, 200000, 1.2), (2, 400000, 1.4)) AS v (depno,
target, increase) WHERE employees.depno = v.depno AND
employees.sales >= v.target;

Note that an AS clause is required when VALUES is used in a FROM clause, just as is true for SELECT. It
is not required that the AS clause specify names for all the columns, but it is good practice to do so. The
default column names for VALUES are column1, column2, etc. in Greenplum Database, but these names
might be different in other database systems.

When VALUES is used in INSERT, the values are all automatically coerced to the data type of the
corresponding destination column. When it is used in other contexts, it may be necessary to specify the
correct data type. If the entries are all quoted literal constants, coercing the first is sufficient to determine
the assumed type for all:

SELECT * FROM machines WHERE ip_address IN
(VALUES('192.168.0.1'::inet), ('192.168.0.10'),
('192.0.2.43'));

Note: For simple IN tests, it is better to rely on the list-of-scalars form of IN than to write a VALUES
query as shown above. The list of scalars method requires less writing and is often more efficient.

Compatibility
VALUES conforms to the SQL standard. LIMIT and OFFSET are Greenplum Database extensions; see
also under SELECT.

Greenplum Database Reference Guide Release Notes

1228

See Also
INSERT, SELECT

Greenplum Database Reference Guide Release Notes

1229

Data Types
Greenplum Database has a rich set of native data types available to users. Users may also define new
data types using the CREATE TYPE command. This reference shows all of the built-in data types. In
addition to the types listed here, there are also some internally used data types, such as oid (object
identifier), but those are not documented in this guide.

Additional modules that you register may also install new data types. The hstore module, for example,
introduces a new data type and associated functions for working with key-value pairs. See hstore. The
citext module adds a case-insensitive text data type. See citext.

The following data types are specified by SQL: bit, bit varying, boolean, character varying, varchar,
character, char, date, double precision, integer, interval, numeric, decimal, real, smallint, time (with or
without time zone), and timestamp (with or without time zone).

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL (and
Greenplum Database), such as geometric paths, or have several possibilities for formats, such as the date
and time types. Some of the input and output functions are not invertible. That is, the result of an output
function may lose accuracy when compared to the original input.

Table 87: Greenplum Database Built-in Data Types

Name Alias Size Range Description

bigint int8 8 bytes -922337203
6854775808
to 922337203
6854775807

large range integer

bigserial serial8 8 bytes 1 to 922337203
6854775807

large
autoincrementing
integer

bit [(n)] n bits bit string constant fixed-length bit
string

bit varying
[(n)]Footnote.

varbit actual number of
bits

bit string constant variable-length bit
string

boolean bool 1 byte true/false, t/f, yes/
no, y/n, 1/0

logical boolean
(true/false)

box 32 bytes ((x1,y1),(x2,y2)) rectangular box
in the plane -
not allowed in
distribution key
columns.

byteaFootnote. 1 byte + binary
string

sequence of octets variable-length
binary string

character
[(n)]Footnote.

char [(n)] 1 byte + n strings up to n
characters in length

fixed-length, blank
padded

9 For variable length data types, if the data is greater than or equal to 127 bytes, the storage overhead is 4
bytes instead of 1.

https://www.postgresql.org/docs/9.4/sql-syntax.html#SQL-SYNTAX-BIT-STRINGS
https://www.postgresql.org/docs/9.4/sql-syntax.html#SQL-SYNTAX-BIT-STRINGS
https://www.postgresql.org/docs/9.4/datatype-binary.html#DATATYPE-BINARY-SQLESC

Greenplum Database Reference Guide Release Notes

1230

Name Alias Size Range Description

character varying
[(n)]Footnote.

varchar [(n)] 1 byte + string size strings up to n
characters in length

variable-length with
limit

cidr 12 or 24 bytes IPv4 and IPv6
networks

circle 24 bytes <(x,y),r> (center
and radius)

circle in the plane
- not allowed in
distribution key
columns.

date 4 bytes 4713 BC - 294,277
AD

calendar date
(year, month, day)

decimal [(p,
s)]Footnote.

numeric [(p, s)] variable no limit user-specified
precision, exact

double precision float8

float

8 bytes 15 decimal digits
precision

variable-precision,
inexact

inet 12 or 24 bytes IPv4 and IPv6
hosts and networks

integer int, int4 4 bytes -2147483648 to
+2147483647

usual choice for
integer

interval [fields]
[(p)]

16 bytes -178000000 years
to 178000000
years

time span

json 1 byte + json size json of any length variable unlimited
length

jsonb 1 byte + binary
string

json of any length
in a decomposed
binary format

variable unlimited
length

lseg 32 bytes ((x1,y1),(x2,y2)) line segment in the
plane - not allowed
in distribution key
columns.

macaddr 6 bytes MAC addresses

money 8 bytes -92233720368547758.
08 to
+92233720368547758.
07

currency amount

pathFootnote. 16+16n bytes [(x1,y1),...] geometric path
in the plane -
not allowed in
distribution key
columns.

Greenplum Database Reference Guide Release Notes

1231

Name Alias Size Range Description

point 16 bytes (x,y) geometric point
in the plane -
not allowed in
distribution key
columns.

polygon 40+16n bytes ((x1,y1),...) closed geometric
path in the plane
- not allowed in
distribution key
columns.

real float4 4 bytes 6 decimal digits
precision

variable-precision,
inexact

serial serial4 4 bytes 1 to 2147483647 autoincrementing
integer

smallint int2 2 bytes -32768 to +32767 small range integer

textFootnote. 1 byte + string size strings of any
length

variable unlimited
length

time [(p)] [without
time zone]

8 bytes 00:00:00[.000000] -
24:00:00[.000000]

time of day only

time [(p)] with time
zone

timetz 12 bytes 00:00:00+1359 -
24:00:00-1359

time of day only,
with time zone

timestamp [(p)]
[without time
zone]

8 bytes 4713 BC - 294,277
AD

both date and time

timestamp [(p)]
with time zone

timestamptz 8 bytes 4713 BC - 294,277
AD

both date and time,
with time zone

uuid 16 bytes Universally
Unique Identifiers
according to RFC
4122, ISO/IEC
9834-8:2005

xmlFootnote. 1 byte + xml size xml of any length variable unlimited
length

txid_snapshot user-level
transaction ID
snapshot

Date/Time Types
Greenplum supports the full set of SQL date and time types, shown in Table 88: Date/Time Types. The
operations available on these data types are described in Date/Time Functions and Operators in the
PostgreSQL documentation. Dates are counted according to the Gregorian calendar, even in years before
that calendar was introduced (see History of Units in the PostgreSQL documentation for more information).

https://www.postgresql.org/docs/9.4/functions-datetime.html
https://www.postgresql.org/docs/9.4/datetime-units-history.html

Greenplum Database Reference Guide Release Notes

1232

Table 88: Date/Time Types

Name Storage Size Description Low Value High Value Resolution

timestamp
[(p)] [without
time zone]

8 bytes both date and
time (no time
zone)

4713 BC 294276 AD 1 microsecond /
14 digits

timestamp
[(p)] with time
zone

8 bytes both date and
time, with time
zone

4713 BC 294276 AD 1 microsecond /
14 digits

date 4 bytes date (no time of
day)

4713 BC 5874897 AD 1 day

time [(p)]
[without time
zone]

8 bytes time of day (no
date)

00:00:00 24:00:00 1 microsecond /
14 digits

time [(p)] with
time zone

12 bytes times of day
only, with time
zone

00:00:00+1459 24:00:00-1459 1 microsecond /
14 digits

interval [fields]
[(p)]

16 bytes time interval -178000000
years

178000000
years

1 microsecond /
14 digits

Note: The SQL standard requires that writing just timestamp be equivalent to timestamp
without time zone, and Greenplum honors that behavior. timestamptz is accepted as an
abbreviation for timestamp with time zone; this is a PostgreSQL extension.

time, timestamp, and interval accept an optional precision value p which specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p is from 0 to 6 for the timestamp and interval types.

Note: When timestamp values are stored as eight-byte integers (currently the default),
microsecond precision is available over the full range of values. When timestamp values are
stored as double precision floating-point numbers instead (a deprecated compile-time option), the
effective limit of precision might be less than 6. timestamp values are stored as seconds before
or after midnight 2000-01-01. When timestamp values are implemented using floating-point
numbers, microsecond precision is achieved for dates within a few years of 2000-01-01, but the
precision degrades for dates further away. Note that using floating-point datetimes allows a larger
range of timestamp values to be represented than shown above: from 4713 BC up to 5874897
AD.

The same compile-time option also determines whether time and interval values are stored
as floating-point numbers or eight-byte integers. In the floating-point case, large interval values
degrade in precision as the size of the interval increases.

For the time types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or from 0
to 10 when floating-point storage is used.

The interval type has an additional option, which is to restrict the set of stored fields by writing one of
these phrases:

YEAR
MONTH
DAY
HOUR
MINUTE
SECOND
YEAR TO MONTH

Greenplum Database Reference Guide Release Notes

1233

DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

Note that if both fields and p are specified, the fields must include SECOND, since the precision applies only
to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, time, timestamp
without time zone, and timestamp with time zone should provide a complete range of date/
time functionality required by any application.

The types abstime and reltime are lower precision types which are used internally. You are
discouraged from using these types in applications; these internal types might disappear in a future
release.

Greenplum Database 6 and later releases do not automatically cast text from the deprecated timestamp
format YYYYMMDDHH24MISS. The format could not be parsed unambiguously in previous Greenplum
Database releases.

For example, this command returns an error in Greenplum Database 6. In previous releases, a timestamp
is returned.

select to_timestamp('20190905140000');

In Greenplum Database 6, this command returns a timestamp.

select to_timestamp('20190905140000','YYYYMMDDHH24MISS');

Date/Time Input
Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation, or
YMD to select year-month-day interpretation.

Greenplum is more flexible in handling date/time input than the SQL standard requires. See Appendix B.
Date/Time Support in the PostgreSQL documentation for the exact parsing rules of date/time input and for
the recognized text fields including months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings. SQL
requires the following syntax

type [(p)] 'value'

where p is an optional precision specification giving the number of fractional digits in the seconds
field. Precision can be specified for time, timestamp, and interval types. The allowed values are
mentioned above. If no precision is specified in a constant specification, it defaults to the precision of the
literal value.

Dates
Table 89: Date Input shows some possible inputs for the date type.

https://www.postgresql.org/docs/9.4/datetime-appendix.html
https://www.postgresql.org/docs/9.4/datetime-appendix.html

Greenplum Database Reference Guide Release Notes

1234

Table 89: Date Input

Example Description

1999-01-08 ISO 8601; January 8 in any mode (recommended
format)

January 8, 1999 unambiguous in any datestyle input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in
DMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian date

January 8, 99 BC year 99 BC

Times
The time-of-day types are time [(p)] without time zone and time [(p)] with time
zone. time alone is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 90: Time
Input and Table 91: Time Zone Input.) If a time zone is specified in the input for time without time
zone, it is silently ignored. You can also specify a date but it will be ignored, except when you use a time
zone name that involves a daylight-savings rule, such as America/New_York. In this case specifying the
date is required in order to determine whether standard or daylight-savings time applies. The appropriate
time zone offset is recorded in the time with time zone value.

Table 90: Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value

04:05 PM same as 16:05; input hour must be <= 12

Greenplum Database Reference Guide Release Notes

1235

Example Description

04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by abbreviation

2003-04-12 04:05:06 America/New_York time zone specified by full name

Table 91: Time Zone Input

Example Description

PST Abbreviation (for Pacific Standard Time)

America/New_York Full time zone name

PST8PDT POSIX-style time zone specification

-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form of zulu

Refer to Time Zones for more information on how to specify time zones.

Time Stamps
Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the time
zone, but this is not the preferred ordering.) Thus: 1999-01-08 04:05:06 and: 1999-01-08
04:05:06 -8:00 are valid values, which follow the ISO 8601 standard. In addition, the common format:
January 8 04:05:06 1999 PST is supported.

The SQL standard differentiates timestamp without time zone and timestamp with time
zone literals by the presence of a + or - symbol and time zone offset after the time. Hence, according to
the standard, TIMESTAMP '2004-10-19 10:23:54' is a timestamp without time zone, while
TIMESTAMP '2004-10-19 10:23:54+02' is a timestamp with time zone. Greenplum never
examines the content of a literal string before determining its type, and therefore will treat both of the above
as timestamp without time zone. To ensure that a literal is treated as timestamp with time
zone, give it the correct explicit type: TIMESTAMP WITH TIME ZONE '2004-10-19 10:23:54+02'
In a literal that has been determined to be timestamp without time zone, Greenplum will silently
ignore any time zone indication. That is, the resulting value is derived from the date/time fields in the input
value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordinated
Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit time zone
specified is converted to UTC using the appropriate offset for that time zone. If no time zone is stated in the
input string, then it is assumed to be in the time zone indicated by the system's TimeZone parameter, and
is converted to UTC using the offset for the timezone zone.

When a timestamp with time zone value is output, it is always converted from UTC to the
current timezone zone, and displayed as local time in that zone. To see the time in another time zone,

Greenplum Database Reference Guide Release Notes

1236

either change timezone or use the AT TIME ZONE construct (see AT TIME ZONE in the PostgreSQL
documentation).

Conversions between timestamp without time zone and timestamp with time zone normally
assume that the timestamp without time zone value should be taken or given as timezone local
time. A different time zone can be specified for the conversion using AT TIME ZONE.

Special Values
Greenplum supports several special date/time input values for convenience, as shown in Table 92: Special
Date/Time Inputs. The values infinity and -infinity are specially represented inside the system
and will be displayed unchanged; but the others are simply notational shorthands that will be converted to
ordinary date/time values when read. (In particular, now and related strings are converted to a specific time
value as soon as they are read.) All of these values need to be enclosed in single quotes when used as
constants in SQL commands.

Table 92: Special Date/Time Inputs

Input String Valid Types Description

epoch date, timestamp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date, timestamp later than all other time stamps

-infinity date, timestamp earlier than all other time stamps

now date, time, timestamp current transaction's start time

today date, timestamp midnight today

tomorrow date, timestamp midnight tomorrow

yesterday date, timestamp midnight yesterday

allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LOCALTIMESTAMP. The latter four accept an optional subsecond precision specification. (See Current
Date/Time in the PostgreSQL documentation.) Note that these are SQL functions and are not recognized
in data input strings.

Date/Time Output
The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL standard
requires the use of the ISO 8601 format. The name of the SQL output format is a historical accident.) Table
93: Date/Time Output Styles shows examples of each output style. The output of the date and time types
is generally only the date or time part in accordance with the given examples. However, the POSTGRES
style outputs date-only values in ISO format.

Table 93: Date/Time Output Styles

Style Specification Description Example

ISO ISO 8601, SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00
PST

https://www.postgresql.org/docs/9.4/functions-datetime.html#FUNCTIONS-DATETIME-ZONECONVERT
https://www.postgresql.org/docs/9.4/functions-datetime.html#FUNCTIONS-DATETIME-CURRENT
https://www.postgresql.org/docs/9.4/functions-datetime.html#FUNCTIONS-DATETIME-CURRENT

Greenplum Database Reference Guide Release Notes

1237

Style Specification Description Example

Postgres original style Wed Dec 17 07:37:16 1997
PST

German regional style 17.12.1997 07:37:16.00
PST

Note: ISO 8601 specifies the use of uppercase letter T to separate the date and time. Greenplum
accepts that format on input, but on output it uses a space rather than T, as shown above. This is
for readability and for consistency with RFC 3339 as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Table 89: Date Input for how this setting also affects
interpretation of input values.) Table 94: Date Order Conventions shows examples.

Table 94: Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/month/year 17/12/1997 15:37:16.00
CET

SQL, MDY month/day/year 12/17/1997 07:37:16.00
PST

Postgres, DMY day/month/year Wed 17 Dec 07:37:16 1997
PST

The date/time style can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresql.conf configuration file, or the PGDATESTYLE environment variable on the
server or client.

The formatting function to_char (see Data Type Formatting Functions) is also available as a more flexible
way to format date/time output.

Time Zones
Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be prone
to arbitrary changes, particularly with respect to daylight-savings rules. Greenplum uses the widely-used
IANA (Olson) time zone database for information about historical time zone rules. For times in the future,
the assumption is that the latest known rules for a given time zone will continue to be observed indefinitely
far into the future.

Greenplum endeavors to be compatible with the SQL standard definitions for typical usage. However, the
SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

1. Although the date type cannot have an associated time zone, the time type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can vary
through the year with daylight-saving time boundaries.

2. The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible to
adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We do not recommend using the type time with time zone (though it is supported
by Greenplum for legacy applications and for compliance with the SQL standard). Greenplum assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in the
zone specified by the TimeZone configuration parameter before being displayed to the client.

https://www.postgresql.org/docs/9.4/functions-formatting.html

Greenplum Database Reference Guide Release Notes

1238

Greenplum allows you to specify time zones in three different forms:

1. A full time zone name, for example America/New_York. The recognized time zone names are listed
in the pg_timezone_names view. Greenplum uses the widely-used IANA time zone data for this
purpose, so the same time zone names are also recognized by other software.

2. A time zone abbreviation, for example PST. Such a specification merely defines a particular offset from
UTC, in contrast to full time zone names which can imply a set of daylight savings transition-date rules
as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view. You cannot set
the configuration parameters TimeZone or log_timezone to a time zone abbreviation, but you can use
abbreviations in date/time input values and with the AT TIME ZONE operator.

3. In addition to the timezone names and abbreviations, Greenplum will accept POSIX-style time zone
specifications of the form STDoffset or STDoffsetDST, where STD is a zone abbreviation, offset is a
numeric offset in hours west from UTC, and DST is an optional daylight-savings zone abbreviation,
assumed to stand for one hour ahead of the given offset. For example, if EST5EDT were not already
a recognized zone name, it would be accepted and would be functionally equivalent to United States
East Coast time. In this syntax, a zone abbreviation can be a string of letters, or an arbitrary string
surrounded by angle brackets (<>). When a daylight-savings zone abbreviation is present, it is
assumed to be used according to the same daylight-savings transition rules used in the IANA time zone
database's entry. In a standard Greenplum installation, is the same as US/Eastern, so that POSIX-
style time zone specifications follow USA daylight-savings rules. If needed, you can adjust this behavior
by replacing the file.

In short, this is the difference between abbreviations and full names: abbreviations represent a specific
offset from UTC, whereas many of the full names imply a local daylight-savings time rule, and so have
two possible UTC offsets. As an example, 2014-06-04 12:00 America/New_York represents noon
local time in New York, which for this particular date was Eastern Daylight Time (UTC-4). So 2014-06-04
12:00 EDT specifies that same time instant. But 2014-06-04 12:00 EST specifies noon Eastern
Standard Time (UTC-5), regardless of whether daylight savings was nominally in effect on that date.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MSK has meant UTC+3 in some years and UTC+4
in others. Greenplum interprets such abbreviations according to whatever they meant (or had most recently
meant) on the specified date; but, as with the EST example above, this is not necessarily the same as local
civil time on that date.

One should be wary that the POSIX-style time zone feature can lead to silently accepting bogus input,
since there is no check on the reasonableness of the zone abbreviations. For example, SET TIMEZONE
TO FOOBAR0 will work, leaving the system effectively using a rather peculiar abbreviation for UTC.
Another issue to keep in mind is that in POSIX time zone names, positive offsets are used for locations of
Greenwich. Everywhere else, Greenplum follows the ISO-8601 convention that positive timezone offsets
are of Greenwich.

In all cases, timezone names and abbreviations are recognized case-insensitively.

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from
configuration files (see Configuring Localization Settings).

The TimeZone configuration parameter can be set in the file , or in any of the other standard ways for
setting configuration parameters. There are also some special ways to set it:

1. The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative spelling
of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

2. The PGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to the
server upon connection.

Interval Input
interval values can be written using the following verbose syntax:

Greenplum Database Reference Guide Release Notes

1239

@ quantity unit quantity unit... direction

where quantity is a number (possibly signed); unit is microsecond, millisecond, second, minute,
hour, day, week, month, year, decade, century, millennium, or abbreviations or plurals of these
units; direction can be ago or empty. The at sign (@) is optional noise. The amounts of the different units
are implicitly added with appropriate sign accounting. ago negates all the fields. This syntax is also used
for interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example, '1 12:59:10' is read the same as '1 day 12 hours 59 min 10 sec'. Also, a
combination of years and months can be specified with a dash; for example '200-10' is read the same
as '200 years 10 months'. (These shorter forms are in fact the only ones allowed by the SQL
standard, and are used for output when IntervalStyle is set to sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the format with
designators of the standard's section 4.4.3.2 or the alternative format of section 4.4.3.3. The
format with designators looks like this:

P quantity unit quantity unit ... T quantity unit ...

The string must start with a P, and may include a T that introduces the time-of-day units. The available unit
abbreviations are given in Table 95: ISO 8601 Interval Unit Abbreviations. Units may be omitted, and may
be specified in any order, but units smaller than a day must appear after T. In particular, the meaning of M
depends on whether it is before or after T.

Table 95: ISO 8601 Interval Unit Abbreviations

Abbreviation Meaning

Y Years

M Months (in the date part)

W Weeks

D Days

H Hours

M Minutes (in the time part)

S Seconds

In the alternative format:

P years-months-days T hours:minutes:seconds

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to ISO 8601 dates.

When writing an interval constant with a fields specification, or when assigning a string to an interval
column that was defined with a fields specification, the interpretation of unmarked quantities depends
on the fields. For example INTERVAL '1' YEAR is read as 1 year, whereas INTERVAL '1' means 1
second. Also, field values to the right of the least significant field allowed by the fields specification
are silently discarded. For example, writing INTERVAL '1 day 2:03:04' HOUR TO MINUTE results in
dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign applies to all fields; for example the negative sign in the interval literal '-1 2:03:04'

Greenplum Database Reference Guide Release Notes

1240

applies to both the days and hour/minute/second parts. Greenplum allows the fields to have different signs,
and traditionally treats each field in the textual representation as independently signed, so that the hour/
minute/second part is considered positive in this example. If IntervalStyle is set to sql_standard then
a leading sign is considered to apply to all fields (but only if no additional signs appear). Otherwise the
traditional Greenplum interpretation is used. To avoid ambiguity, it's recommended to attach an explicit
sign to each field if any field is negative.

In the verbose input format, and in some fields of the more compact input formats, field values can have
fractional parts; for example '1.5 week' or '01:02:03.45'. Such input is converted to the appropriate
number of months, days, and seconds for storage. When this would result in a fractional number of months
or days, the fraction is added to the lower-order fields using the conversion factors 1 month = 30 days and
1 day = 24 hours. For example, '1.5 month' becomes 1 month and 15 days. Only seconds will ever be
shown as fractional on output.

Table 96: Interval Input shows some examples of valid interval input.

Table 96: Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

1 year 2 months 3 days 4 hours 5 minutes 6
seconds

Traditional Postgres format: 1 year 2 months 3 days
4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 format with designators: same
meaning as above

P0001-02-03T04:05:06 ISO 8601 alternative format: same meaning
as above

Internally interval values are stored as months, days, and seconds. This is done because the number
of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment
is involved. The months and days fields are integers while the seconds field can store fractions.
Because intervals are usually created from constant strings or timestamp subtraction, this storage
method works well in most cases, but can cause unexpected results: SELECT EXTRACT(hours
from '80 minutes'::interval); date_part ----------- 1 SELECT EXTRACT(days
from '80 hours'::interval); date_part ----------- 0 Functions justify_days and
justify_hours are available for adjusting days and hours that overflow their normal ranges.

Interval Output
The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, or iso_8601, using the command SET intervalstyle. The default is the
postgres format. Table 97: Interval Output Style Examples shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard's specification for interval
literal strings, if the interval value meets the standard's restrictions (either year-month only or day-time
only, with no mixing of positive and negative components). Otherwise the output looks like a standard year-
month literal string followed by a day-time literal string, with explicit signs added to disambiguate mixed-
sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to ISO.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4 when
the DateStyle parameter was set to non-ISO output.

Greenplum Database Reference Guide Release Notes

1241

The output of the iso_8601 style matches the format with designators described in section 4.4.3.2
of the ISO 8601 standard.

Table 97: Interval Output Style Examples

Style Specification Year-Month Interval Day-Time Interval Mixed Interval

sql_standard 1-2 3 4:05:06 -1-2 +3 -4:05:06

postgres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3 days
-04:05:06

postgres_verbose @ 1 year 2 mons @ 3 days 4 hours 5 mins
6 secs

@ 1 year 2 mons -3
days 4 hours 5 mins 6
secs ago

iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-6S

Pseudo-Types
Greenplum Database supports special-purpose data type entries that are collectively called pseudo-types.
A pseudo-type cannot be used as a column data type, but it can be used to declare a function's argument
or result type. Each of the available pseudo-types is useful in situations where a function's behavior does
not correspond to simply taking or returning a value of a specific SQL data type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementation
languages. The procedural languages all forbid use of a pseudo-type as an argument type, and allow only
void and record as a result type.

A function with the pseudo-type record as a return data type returns an unspecified row type. The record
represents an array of possibly-anonymous composite types. Since composite datums carry their own type
identification, no extra knowledge is needed at the array level.

The pseudo-type void indicates that a function returns no value.

Note: Greenplum Database does not support triggers and the pseudo-type trigger.

The types anyelement, anyarray, anynonarray, and anyenum are pseudo-types called polymorphic types.
Some procedural languages also support polymorphic functions using the types anyarray, anyelement,
anyenum, and anynonarray.

The pseudo-type anytable is a Greenplum Database type that specifies a table expression—an expression
that computes a table. Greenplum Database allows this type only as an argument to a user-defined
function. See Table Value Expressions for more about the anytable pseudo-type.

For more information about pseudo-types, see the PostgreSQL documentation about Pseudo-Types.

Polymorphic Types
Four pseudo-types of special interest are anyelement, anyarray, anynonarray, and anyenum, which are
collectively called polymorphic types. Any function declared using these types is said to be a polymorphic
function. A polymorphic function can operate on many different data types, with the specific data types
being determined by the data types actually passed to it at runtime.

Polymorphic arguments and results are tied to each other and are resolved to a specific data type when
a query calling a polymorphic function is parsed. Each position (either argument or return value) declared
as anyelement is allowed to have any specific actual data type, but in any given call they must all be the
same actual type. Each position declared as anyarray can have any array data type, but similarly they
must all be the same type. If there are positions declared anyarray and others declared anyelement,
the actual array type in the anyarray positions must be an array whose elements are the same type
appearing in the anyelement positions. anynonarray is treated exactly the same as anyelement, but adds

https://www.postgresql.org/docs/9.4/datatype-pseudo.html

Greenplum Database Reference Guide Release Notes

1242

the additional constraint that the actual type must not be an array type. anyenum is treated exactly the
same as anyelement, but adds the additional constraint that the actual type must be an enum type.

When more than one argument position is declared with a polymorphic type, the net effect is that
only certain combinations of actual argument types are allowed. For example, a function declared as
equal(anyelement, anyelement) takes any two input values, so long as they are of the same data
type.

When the return value of a function is declared as a polymorphic type, there must be at least one argument
position that is also polymorphic, and the actual data type supplied as the argument determines the actual
result type for that call. For example, if there were not already an array subscripting mechanism, one
could define a function that implements subscripting as subscript(anyarray, integer) returns
anyelement. This declaration constrains the actual first argument to be an array type, and allows the
parser to infer the correct result type from the actual first argument's type. Another example is that a
function declared as myfunc(anyarray) returns anyenum will only accept arrays of enum types.

Note that anynonarray and anyenum do not represent separate type variables; they are the
same type as anyelement, just with an additional constraint. For example, declaring a function as
myfunc(anyelement, anyenum) is equivalent to declaring it as myfunc(anyenum, anyenum): both
actual arguments must be the same enum type.

A variadic function (one taking a variable number of arguments) is polymorphic when its last parameter is
declared as VARIADIC anyarray. For purposes of argument matching and determining the actual result
type, such a function behaves the same as if you had declared the appropriate number of anynonarray
parameters.

For more information about polymorphic types, see the PostgreSQL documentation about Polymorphic
Arguments and Return Types.

Table Value Expressions
The anytable pseudo-type declares a function argument that is a table value expression. The notation
for a table value expression is a SELECT statement enclosed in a TABLE() function. You can specify a
distribution policy for the table by adding SCATTER RANDOMLY, or a SCATTER BY clause with a column list
to specify the distribution key.

The SELECT statement is executed when the function is called and the result rows are distributed to
segments so that each segment executes the function with a subset of the result table.

For example, this table expression selects three columns from a table named customer and sets the
distribution key to the first column:

TABLE(SELECT cust_key, name, address FROM customer SCATTER BY 1)

The SELECT statement may include joins on multiple base tables, WHERE clauses, aggregates, and any
other valid query syntax.

The anytable type is only permitted in functions implemented in the C or C++ languages. The body of the
function can access the table using the Greenplum Database Server Programming Interface (SPI) or the
Greenplum Partner Connector (GPPC) API.

The anytable type is used in some user-defined functions in the Pivotal GPText API. The following GPText
example uses the TABLE function with the SCATTER BY clause in the GPText function gptext.index()
to populate the index mydb.mytest.articles with data from the messages table:

SELECT * FROM gptext.index(TABLE(SELECT * FROM mytest.messages
 SCATTER BY distrib_id), 'mydb.mytest.messages');

For information about the function gptext.index(), see the Pivotal GPText documentation.

https://www.postgresql.org/docs/9.4/xfunc-c.html#AEN56822
https://www.postgresql.org/docs/9.4/xfunc-c.html#AEN56822

Greenplum Database Reference Guide Release Notes

1243

Text Search Data Types
Greenplum Database provides two data types that are designed to support full text search, which is the
activity of searching through a collection of natural-language documents to locate those that best match a
query. The tsvector type represents a document in a form optimized for text search; the tsquery type
similarly represents a text query. Using Full Text Search provides a detailed explanation of this facility, and
Text Search Functions and Operators summarizes the related functions and operators.

The tsvector and tsquery types cannot be part of the distribution key of a Greenplum Database table.

tsvector
A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized to
merge different variants of the same word (see Using Full Text Search for details). Sorting and duplicate-
elimination are done automatically during input, as shown in this example:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
 tsvector
--
 'a' 'and' 'ate' 'cat' 'fat' 'mat' 'on' 'rat' 'sat'

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $$the lexeme ' ' contains spaces$$::tsvector;
 tsvector

 ' ' 'contains' 'lexeme' 'spaces' 'the'

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having to
double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the lexeme 'Joe''s' contains a quote$$::tsvector;
 tsvector
--
 'Joe''s' 'a' 'contains' 'lexeme' 'quote' 'the'

Optionally, integer positions can be attached to lexemes:

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11
 rat:12'::tsvector;
 tsvector

 'a':1,6,10 'and':8 'ate':9 'cat':3 'fat':2,11 'mat':7 'on':5 'rat':12
 'sat':4

A position normally indicates the source word's location in the document. Positional information can be
used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently set to
16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A, B, C, or D. D is the
default and hence is not shown on output:

SELECT 'a:1A fat:2B,4C cat:5D'::tsvector;
 tsvector

 'a':1A 'cat':5 'fat':2B,4C

Weights are typically used to reflect document structure, for example by marking title words differently from
body words. Text search ranking functions can assign different priorities to the different weight markers.

Greenplum Database Reference Guide Release Notes

1244

It is important to understand that the tsvector type itself does not perform any normalization; it assumes
the words it is given are normalized appropriately for the application. For example,

select 'The Fat Rats'::tsvector;
 tsvector

 'Fat' 'Rats' 'The'

For most English-text-searching applications the above words would be considered non-normalized, but
tsvector doesn't care. Raw document text should usually be passed through to_tsvector to normalize
the words appropriately for searching:

SELECT to_tsvector('english', 'The Fat Rats');
 to_tsvector

 'fat':2 'rat':3

tsquery
A tsquery value stores lexemes that are to be searched for, and combines them honoring the Boolean
operators & (AND), | (OR), and ! (NOT). Parentheses can be used to enforce grouping of the operators:

SELECT 'fat & rat'::tsquery;
 tsquery

 'fat' & 'rat'

SELECT 'fat & (rat | cat)'::tsquery;
 tsquery

 'fat' & ('rat' | 'cat')

SELECT 'fat & rat & ! cat'::tsquery;
 tsquery

 'fat' & 'rat' & !'cat'

In the absence of parentheses, ! (NOT) binds most tightly, and & (AND) binds more tightly than | (OR).

Optionally, lexemes in a tsquery can be labeled with one or more weight letters, which restricts them to
match only tsvector lexemes with matching weights:

SELECT 'fat:ab & cat'::tsquery;
 tsquery

 'fat':AB & 'cat'

Also, lexemes in a tsquery can be labeled with * to specify prefix matching:

SELECT 'super:*'::tsquery;
 tsquery

 'super':*

This query will match any word in a tsvector that begins with "super". Note that prefixes are first
processed by text search configurations, which means this comparison returns true:

SELECT to_tsvector('postgraduate') @@ to_tsquery('postgres:*');
 ?column?

Greenplum Database Reference Guide Release Notes

1245

 t
(1 row)

because postgres gets stemmed to postgr:

SELECT to_tsquery('postgres:*');
 to_tsquery

 'postgr':*
(1 row)

which then matches postgraduate.

Quoting rules for lexemes are the same as described previously for lexemes in tsvector; and, as with
tsvector, any required normalization of words must be done before converting to the tsquery type. The
to_tsquery function is convenient for performing such normalization:

SELECT to_tsquery('Fat:ab & Cats');
 to_tsquery

 'fat':AB & 'cat'

Range Types
Range types are data types representing a range of values of some element type (called the range's
subtype). For instance, ranges of timestamp might be used to represent the ranges of time that a
meeting room is reserved. In this case the data type is tsrange (short for “timestamp range”), and
timestamp is the subtype. The subtype must have a total order so that it is well-defined whether element
values are within, before, or after a range of values.

Range types are useful because they represent many element values in a single range value, and because
concepts such as overlapping ranges can be expressed clearly. The use of time and date ranges for
scheduling purposes is the clearest example; but price ranges, measurement ranges from an instrument,
and so forth can also be useful.

Built-in Range Types
Greenplum Database comes with the following built-in range types:

• int4range -- Range of integer
• int8range -- Range of bigint
• numrange -- Range of numeric
• tsrange -- Range of timestamp without time zone
• tstzrange -- Range of timestamp with time zone
• daterange -- Range of date

In addition, you can define your own range types; see CREATE TYPE for more information.

Examples

CREATE TABLE reservation (room int, during tsrange);
INSERT INTO reservation VALUES
 (1108, '[2010-01-01 14:30, 2010-01-01 15:30)');

-- Containment
SELECT int4range(10, 20) @> 3;

-- Overlaps

Greenplum Database Reference Guide Release Notes

1246

SELECT numrange(11.1, 22.2) && numrange(20.0, 30.0);

-- Extract the upper bound
SELECT upper(int8range(15, 25));

-- Compute the intersection
SELECT int4range(10, 20) * int4range(15, 25);

-- Is the range empty?
SELECT isempty(numrange(1, 5));

See Range Functions and Operators for complete lists of operators and functions on range types.

Inclusive and Exclusive Bounds
Every non-empty range has two bounds, the lower bound and the upper bound. All points between these
values are included in the range. An inclusive bound means that the boundary point itself is included in the
range as well, while an exclusive bound means that the boundary point is not included in the range.

In the text form of a range, an inclusive lower bound is represented by [while an exclusive lower bound
is represented by (. Likewise, an inclusive upper bound is represented by] , while an exclusive upper
bound is represented by) . (See Range Functions and Operators for more details.)

The functions lower_inc and upper_inc test the inclusivity of the lower and upper bounds of a range
value, respectively.

Infinite (Unbounded) Ranges
The lower bound of a range can be omitted, meaning that all points less than the upper bound are included
in the range. Likewise, if the upper bound of the range is omitted, then all points greater than the lower
bound are included in the range. If both lower and upper bounds are omitted, all values of the element type
are considered to be in the range.

This is equivalent to considering that the lower bound is “minus infinity”, or the upper bound is “plus
infinity”, respectively. But note that these infinite values are never values of the range's element type, and
can never be part of the range. (So there is no such thing as an inclusive infinite bound -- if you try to write
one, it will automatically be converted to an exclusive bound.)

Also, some element types have a notion of “infinity”, but that is just another value so far as the range type
mechanisms are concerned. For example, in timestamp ranges, [today,] means the same thing as
[today,). But [today,infinity] means something different from [today,infinity) -- the latter
excludes the special timestamp value infinity.

The functions lower_inf and upper_inf test for infinite lower and upper bounds of a range,
respectively.

Range Input/Output
The input for a range value must follow one of the following patterns:

(lower-bound,upper-bound)
(lower-bound,upper-bound]
[lower-bound,upper-bound)
[lower-bound,upper-bound]
empty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive, as
described previously. Notice that the final pattern is empty, which represents an empty range (a range that
contains no points).

Greenplum Database Reference Guide Release Notes

1247

The lower-bound may be either a string that is valid input for the subtype, or empty to indicate no lower
bound. Likewise, upper-bound may be either a string that is valid input for the subtype, or empty to indicate
no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound value
contains parentheses, brackets, commas, double quotes, or backslashes, since these characters would
otherwise be taken as part of the range syntax. To put a double quote or backslash in a quoted bound
value, precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound value
is taken to represent a double quote character, analogously to the rules for single quotes in SQL literal
strings.) Alternatively, you can avoid quoting and use backslash-escaping to protect all data characters that
would otherwise be taken as range syntax. Also, to write a bound value that is an empty string, write "",
since writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses or
brackets is taken as part of the lower or upper bound value. (Depending on the element type, it might or
might not be significant.)

Examples:

-- includes 3, does not include 7, and does include all points in between
SELECT '[3,7)'::int4range;

-- does not include either 3 or 7, but includes all points in between
SELECT '(3,7)'::int4range;

-- includes only the single point 4
SELECT '[4,4]'::int4range;

-- includes no points (and will be normalized to 'empty')
SELECT '[4,4)'::int4range;

Constructing Ranges
Each range type has a constructor function with the same name as the range type. Using the constructor
function is frequently more convenient than writing a range literal constant, since it avoids the need for
extra quoting of the bound values. The constructor function accepts two or three arguments. The two-
argument form constructs a range in standard form (lower bound inclusive, upper bound exclusive), while
the three-argument form constructs a range with bounds of the form specified by the third argument. The
third argument must be one of the strings () , (] , [) , or [] . For example:

-- The full form is: lower bound, upper bound, and text argument indicating
-- inclusivity/exclusivity of bounds.
SELECT numrange(1.0, 14.0, '(]');

-- If the third argument is omitted, '[)' is assumed.
SELECT numrange(1.0, 14.0);

-- Although '(]' is specified here, on display the value will be converted
 to
-- canonical form, since int8range is a discrete range type (see below).
SELECT int8range(1, 14, '(]');

-- Using NULL for either bound causes the range to be unbounded on that
 side.
SELECT numrange(NULL, 2.2);

Greenplum Database Reference Guide Release Notes

1248

Discrete Range Types
A discrete range is one whose element type has a well-defined “step”, such as integer or date. In
these types two elements can be said to be adjacent, when there are no valid values between them. This
contrasts with continuous ranges, where it's always (or almost always) possible to identify other element
values between two given values. For example, a range over the numeric type is continuous, as is a
range over timestamp. (Even though timestamp has limited precision, and so could theoretically be
treated as discrete, it's better to consider it continuous since the step size is normally not of interest.)

Another way to think about a discrete range type is that there is a clear idea of a “next” or “previous”
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of a range's bounds, by choosing the next or previous element value instead of the one
originally given. For example, in an integer range type [4,8] and (3,9) denote the same set of values;
but this would not be so for a range over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size
for the element type. The canonicalization function is charged with converting equivalent values of the
range type to have identical representations, in particular consistently inclusive or exclusive bounds. If a
canonicalization function is not specified, then ranges with different formatting will always be treated as
unequal, even though they might represent the same set of values in reality.

The built-in range types int4range, int8range, and daterange all use a canonical form that includes
the lower bound and excludes the upper bound; that is, [). User-defined range types can use other
conventions, however.

Defining New Range Types
Users can define their own range types. The most common reason to do this is to use ranges over
subtypes not provided among the built-in range types. For example, to define a new range type of subtype
float8:

CREATE TYPE floatrange AS RANGE (
 subtype = float8,
 subtype_diff = float8mi
);

SELECT '[1.234, 5.678]'::floatrange;

Because float8 has no meaningful “step”, we do not define a canonicalization function in this example.

Defining your own range type also allows you to specify a different subtype B-tree operator class or
collation to use, so as to change the sort ordering that determines which values fall into a given range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE command
should specify a canonical function. The canonicalization function takes an input range value, and must
return an equivalent range value that may have different bounds and formatting. The canonical output
for two ranges that represent the same set of values, for example the integer ranges [1, 7] and [1,
8), must be identical. It doesn't matter which representation you choose to be the canonical one, so long
as two equivalent values with different formattings are always mapped to the same value with the same
formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonicalization function might
round off boundary values, in case the desired step size is larger than what the subtype is capable of
storing. For instance, a range type over timestamp could be defined to have a step size of an hour, in
which case the canonicalization function would need to round off bounds that weren't a multiple of an hour,
or perhaps throw an error instead.

In addition, any range type that is meant to be used with GiST or SP-GiST indexes should define a
subtype difference, or subtype_diff, function. (The index will still work without subtype_diff, but it
is likely to be considerably less efficient than if a difference function is provided.) The subtype difference

Greenplum Database Reference Guide Release Notes

1249

function takes two input values of the subtype, and returns their difference (i.e., X minus Y) represented
as a float8 value. In our example above, the function float8mi that underlies the regular float8
minus operator can be used; but for any other subtype, some type conversion would be necessary. Some
creative thought about how to represent differences as numbers might be needed, too. To the greatest
extent possible, the subtype_diff function should agree with the sort ordering implied by the selected
operator class and collation; that is, its result should be positive whenever its first argument is greater than
its second according to the sort ordering.

A less-oversimplified example of a subtype_diff function is:

CREATE FUNCTION time_subtype_diff(x time, y time) RETURNS float8 AS
'SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sql STRICT IMMUTABLE;

CREATE TYPE timerange AS RANGE (
 subtype = time,
 subtype_diff = time_subtype_diff
);

SELECT '[11:10, 23:00]'::timerange;

See CREATE TYPE for more information about creating range types.

Indexing
GiST and SP-GiST indexes can be created for table columns of range types. For instance, to create a
GiST index:

CREATE INDEX reservation_idx ON reservation USING GIST (during);

A GiST or SP-GiST index can accelerate queries involving these range operators: =, &&, <@, @>, <<, >>,
-|-, &<, and &> (see Range Functions and Operators for more information).

In addition, B-tree and hash indexes can be created for table columns of range types. For these index
types, basically the only useful range operation is equality. There is a B-tree sort ordering defined for range
values, with corresponding < and > operators, but the ordering is rather arbitrary and not usually useful
in the real world. Range types' B-tree and hash support is primarily meant to allow sorting and hashing
internally in queries, rather than creation of actual indexes.

Greenplum Database Reference Guide Release Notes

1250

Summary of Built-in Functions
Greenplum Database supports built-in functions and operators including analytic functions and window
functions that can be used in window expressions. For information about using built-in Greenplum
Database functions see, "Using Functions and Operators" in the Greenplum Database Administrator
Guide.

• Greenplum Database Function Types
• Built-in Functions and Operators
• JSON Functions and Operators
• Window Functions
• Advanced Aggregate Functions
• Text Search Functions and Operators
• Range Functions and Operators

Greenplum Database Function Types
Greenplum Database evaluates functions and operators used in SQL expressions. Some functions and
operators are only allowed to execute on the master since they could lead to inconsistencies in Greenplum
Database segment instances. This table describes the Greenplum Database Function Types.

Table 98: Functions in Greenplum Database

Function Type Greenplum
Support

Description Comments

IMMUTABLE Yes Relies only on information
directly in its argument list.
Given the same argument
values, always returns the same
result.

STABLE Yes, in most
cases

Within a single table scan,
returns the same result for same
argument values, but results
change across SQL statements.

Results depend on database
lookups or parameter values.
current_timestamp family of
functions is STABLE; values do
not change within an execution.

VOLATILE Restricted Function values can change
within a single table scan.
For example: random(),
timeofday().

Any function with side effects
is volatile, even if its result
is predictable. For example:
setval().

In Greenplum Database, data is divided up across segments — each segment is a distinct PostgreSQL
database. To prevent inconsistent or unexpected results, do not execute functions classified as VOLATILE
at the segment level if they contain SQL commands or modify the database in any way. For example,
functions such as setval() are not allowed to execute on distributed data in Greenplum Database
because they can cause inconsistent data between segment instances.

To ensure data consistency, you can safely use VOLATILE and STABLE functions in statements that
are evaluated on and run from the master. For example, the following statements run on the master
(statements without a FROM clause):

SELECT setval('myseq', 201);
SELECT foo();

Greenplum Database Reference Guide Release Notes

1251

If a statement has a FROM clause containing a distributed table and the function in the FROM clause returns
a set of rows, the statement can run on the segments:

SELECT * from foo();

Greenplum Database does not support functions that return a table reference (rangeFuncs) or functions
that use the refCursor datatype.

Built-in Functions and Operators
The following table lists the categories of built-in functions and operators supported by PostgreSQL. All
functions and operators are supported in Greenplum Database as in PostgreSQL with the exception of
STABLE and VOLATILE functions, which are subject to the restrictions noted in Greenplum Database
Function Types. See the Functions and Operators section of the PostgreSQL documentation for more
information about these built-in functions and operators.

Table 99: Built-in functions and operators

Operator/Function
Category

VOLATILE Functions STABLE Functions Restrictions

Logical Operators

Comparison Operators

Mathematical Functions
and Operators

random

setseed

String Functions and
Operators

All built-in conversion
functions

convert

pg_client_encoding

Binary String Functions
and Operators

Bit String Functions and
Operators

Pattern Matching

Data Type Formatting
Functions

to_char

to_timestamp

Date/Time Functions and
Operators

timeofday age

current_date

current_time

current_timestamp

localtime

localtimestamp

now

Enum Support Functions

Geometric Functions and
Operators

https://www.postgresql.org/docs/9.4/functions.html
https://www.postgresql.org/docs/9.4/functions-logical.html
https://www.postgresql.org/docs/9.4/functions-comparison.html
https://www.postgresql.org/docs/9.4/functions-math.html
https://www.postgresql.org/docs/9.4/functions-math.html
https://www.postgresql.org/docs/9.4/functions-string.html
https://www.postgresql.org/docs/9.4/functions-string.html
https://www.postgresql.org/docs/9.4/functions-binarystring.html
https://www.postgresql.org/docs/9.4/functions-binarystring.html
https://www.postgresql.org/docs/9.4/functions-bitstring.html
https://www.postgresql.org/docs/9.4/functions-bitstring.html
https://www.postgresql.org/docs/9.4/functions-matching.html
https://www.postgresql.org/docs/9.4/functions-formatting.html
https://www.postgresql.org/docs/9.4/functions-formatting.html
https://www.postgresql.org/docs/9.4/functions-datetime.html
https://www.postgresql.org/docs/9.4/functions-datetime.html
https://www.postgresql.org/docs/9.4/functions-enum.html
https://www.postgresql.org/docs/9.4/functions-geometry.html
https://www.postgresql.org/docs/9.4/functions-geometry.html

Greenplum Database Reference Guide Release Notes

1252

Operator/Function
Category

VOLATILE Functions STABLE Functions Restrictions

Network Address
Functions and Operators

Sequence Manipulation
Functions

nextval()

setval()

Conditional Expressions

Array Functions and
Operators

All array functions

Aggregate Functions

Subquery Expressions

Row and Array
Comparisons

Set Returning Functions generate_series

System Information
Functions

All session information
functions

All access privilege inquiry
functions

All schema visibility inquiry
functions

All system catalog information
functions

All comment information
functions

All transaction ids and
snapshots

System Administration
Functions

set_config

pg_cancel_backend

pg_reload_conf

pg_rotate_logfile

pg_start_backup

pg_stop_backup

pg_size_pretty

pg_ls_dir

pg_read_file

pg_stat_file

current_setting

All database object size
functions

Note: The
function pg_
column_
size displays
bytes required
to store the
value, possibly
with TOAST
compression.

https://www.postgresql.org/docs/9.4/functions-net.html
https://www.postgresql.org/docs/9.4/functions-net.html
https://www.postgresql.org/docs/9.4/functions-sequence.html
https://www.postgresql.org/docs/9.4/functions-sequence.html
https://www.postgresql.org/docs/9.4/functions-conditional.html
https://www.postgresql.org/docs/9.4/functions-array.html
https://www.postgresql.org/docs/9.4/functions-array.html
https://www.postgresql.org/docs/9.4/functions-aggregate.html
https://www.postgresql.org/docs/9.4/functions-subquery.html
https://www.postgresql.org/docs/9.4/functions-comparisons.html
https://www.postgresql.org/docs/9.4/functions-comparisons.html
https://www.postgresql.org/docs/9.4/functions-srf.html
https://www.postgresql.org/docs/9.4/functions-info.html
https://www.postgresql.org/docs/9.4/functions-info.html
https://www.postgresql.org/docs/9.4/functions-admin.html
https://www.postgresql.org/docs/9.4/functions-admin.html

Greenplum Database Reference Guide Release Notes

1253

Operator/Function
Category

VOLATILE Functions STABLE Functions Restrictions

XML Functions and
function-like expressions

cursor_to_xml(cursor refcursor,
count int, nulls boolean,
tableforest boolean, targetns
text)

cursor_to_xmlschema(cursor
refcursor, nulls boolean,
tableforest boolean, targetns
text)

database_to_xml(nulls
boolean, tableforest boolean,
targetns text)

database_to_xmlschema(nulls
boolean, tableforest boolean,
targetns text)

database_to_xml_and_
xmlschema(nulls boolean,
tableforest boolean, targetns
text)

query_to_xml(query text, nulls
boolean, tableforest boolean,
targetns text)

query_to_xmlschema(query
text, nulls boolean, tableforest
boolean, targetns text)

query_to_xml_and_
xmlschema(query text, nulls
boolean, tableforest boolean,
targetns text)

schema_to_xml(schema name,
nulls boolean, tableforest
boolean, targetns text)

schema_to_
xmlschema(schema name,
nulls boolean, tableforest
boolean, targetns text)

schema_to_xml_and_
xmlschema(schema name,
nulls boolean, tableforest
boolean, targetns text)

table_to_xml(tbl regclass, nulls
boolean, tableforest boolean,
targetns text)

table_to_xmlschema(tbl
regclass, nulls boolean,
tableforest boolean, targetns
text)

https://www.postgresql.org/docs/9.4/functions-xml.html

Greenplum Database Reference Guide Release Notes

1254

Operator/Function
Category

VOLATILE Functions STABLE Functions Restrictions

table_to_xml_and_
xmlschema(tbl regclass, nulls
boolean, tableforest boolean,
targetns text)

xmlagg(xml)

xmlconcat(xml[, ...])

xmlelement(name name
[, xmlattributes(value [AS
attname] [, ...])] [, content, ...])

xmlexists(text, xml)

xmlforest(content [AS name]
[, ...])

xml_is_well_formed(text)

xml_is_well_formed_
document(text)

xml_is_well_formed_
content(text)

xmlparse ({ DOCUMENT |
CONTENT } value)

xpath(text, xml)

xpath(text, xml, text[])

xpath_exists(text, xml)

xpath_exists(text, xml, text[])

xmlpi(name target [, content])

xmlroot(xml, version text | no
value [, standalone yes|no|no
value])

xmlserialize ({ DOCUMENT |
CONTENT } value AS type)

xml(text)

text(xml)

xmlcomment(xml)

xmlconcat2(xml, xml)

JSON Functions and Operators
Greenplum Database includes built-in functions and operators that create and manipulate JSON data.

• JSON Operators
• JSON Creation Functions
• JSON Aggregate Functions
• JSON Processing Functions

Greenplum Database Reference Guide Release Notes

1255

Note: For json data type values, all key/value pairs are kept even if a JSON object contains
duplicate keys. For duplicate keys, JSON processing functions consider the last value as the
operative one. For the jsonb data type, duplicate object keys are not kept. If the input includes
duplicate keys, only the last value is kept. See About JSON Data in the Greenplum Database
Administrator Guide.

JSON Operators
This table describes the operators that are available for use with the json and jsonb data types.

Table 100: json and jsonb Operators

Operator Right
Operand
Type

Description Example Example Result

-> int Get the JSON array element
(indexed from zero).

'[{"a":"foo"},
{"b":"bar"},
{"c":"baz"}]'::json-
>2

{"c":"baz"}

-> text Get the JSON object field by
key.

'{"a":
{"b":"foo"}}'::json-
>'a'

{"b":"foo"}

->> int Get the JSON array element
as text.

'[1,2,3]'::json->>2 3

->> text Get the JSON object field as
text.

'{"a":1,"b":2}'::json-
>>'b'

2

#> text[] Get the JSON object at
specified path.

'{"a": {"b":{"c":
"foo"}}}'::json#>'{a,b}'

{"c": "foo"}

#>> text[] Get the JSON object at
specified path as text.

'{"a":[1,2,3],"b":
[4,5,6]}'::json#>>'{a,2}'

3

Note: There are parallel variants of these operators for both the json and jsonb data types.
The field, element, and path extraction operators return the same data type as their left-hand input
(either json or jsonb), except for those specified as returning text, which coerce the value to
text. The field, element, and path extraction operators return NULL, rather than failing, if the JSON
input does not have the right structure to match the request; for example if no such element exists.

Operators that require the jsonb data type as the left operand are described in the following table. Many
of these operators can be indexed by jsonb operator classes. For a full description of jsonb containment
and existence semantics, see jsonb Containment and Existence in the Greenplum Database Administrator
Guide. For information about how these operators can be used to effectively index jsonb data, see jsonb
Indexing in the Greenplum Database Administrator Guide.

Table 101: jsonb Operators

Operator Right Operand
Type

Description Example

@> jsonb Does the left JSON value contain within it the
right value?

'{"a":1,
"b":2}'::jsonb @>
'{"b":2}'::jsonb

Greenplum Database Reference Guide Release Notes

1256

Operator Right Operand
Type

Description Example

<@ jsonb Is the left JSON value contained within the
right value?

'{"b":2}'::jsonb
<@ '{"a":1,
"b":2}'::jsonb

? text Does the key/element string exist within the
JSON value?

'{"a":1,
"b":2}'::jsonb ?
'b'

?| text[] Do any of these key/element strings exist? '{"a":1, "b":2,
"c":3}'::jsonb ?|
array['b', 'c']

?& text[] Do all of these key/element strings exist? '["a",
"b"]'::jsonb ?&
array['a', 'b']

The standard comparison operators in the following table are available only for the jsonb data type, not
for the json data type. They follow the ordering rules for B-tree operations described in jsonb Indexing in
the Greenplum Database Administrator Guide.

Table 102: jsonb Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to

>= greater than or equal to

= equal

<> or != not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement !=
and <> operators that do different things.

JSON Creation Functions
This table describes the functions that create json data type values. (Currently, there are no equivalent
functions for jsonb, but you can cast the result of one of these functions to jsonb.)

Greenplum Database Reference Guide Release Notes

1257

Table 103: JSON Creation Functions

Function Description Example Example Result

to_
json(anyelement)

Returns the value as
a JSON object. Arrays
and composites are
processed recursively
and are converted to
arrays and objects. If
the input contains a
cast from the type to
json, the cast function
is used to perform the
conversion; otherwise,
a JSON scalar value
is produced. For any
scalar type other than
a number, a Boolean,
or a null value, the text
representation will be
used, properly quoted
and escaped so that it is
a valid JSON string.

to_json('Fred said
"Hi."'::text)

"Fred said \"Hi.
\""

array_to_
json(anyarray [,
pretty_bool])

Returns the array
as a JSON array. A
multidimensional array
becomes a JSON array
of arrays.

Line feeds will be added
between dimension-1
elements if pretty_
bool is true.

array_to_
json('{{1,5},
{99,100}}'::int[])

[[1,5],[99,100]]

row_to_json(record
[, pretty_bool])

Returns the row as a
JSON object.

Line feeds will be
added between level-1
elements if pretty_
bool is true.

row_to_
json(row(1,'foo'))

{"f1":1,"f2":"foo"}

json_build_
array(VARIADIC
"any")

Builds a possibly-
heterogeneously-typed
JSON array out of a
VARIADIC argument list.

json_build_
array(1,2,'3',4,5)

[1, 2, "3", 4, 5]

json_build_
object(VARIADIC
"any")

Builds a JSON object
out of a VARIADIC
argument list. The
argument list is taken in
order and converted to a
set of key/value pairs.

json_build_
object('foo',1,'bar',2)

{"foo": 1, "bar":
2}

Greenplum Database Reference Guide Release Notes

1258

Function Description Example Example Result

json_
object(text[])

Builds a JSON object out
of a text array. The array
must be either a one or a
two dimensional array.

The one dimensional
array must have an even
number of elements. The
elements are taken as
key/value pairs.

For a two dimensional
array, each inner array
must have exactly two
elements, which are
taken as a key/value
pair.

json_object('{a,
1, b, "def", c, 3.
5}')

json_object('{{a,
1},{b, "def"},{c,
3.5}}')

{"a": "1", "b":
"def", "c": "3.5"}

json_object(keys
text[], values
text[])

Builds a JSON object
out of a text array.
This form of json_
object takes keys and
values pairwise from
two separate arrays.
In all other respects it
is identical to the one-
argument form.

json_object('{a,
b}', '{1,2}')

{"a": "1", "b":
"2"}

Note: array_to_json and row_to_json have the same behavior as to_json except for
offering a pretty-printing option. The behavior described for to_json likewise applies to each
individual value converted by the other JSON creation functions.

Note: The hstore extension has a cast from hstore to json, so that hstore values converted via
the JSON creation functions will be represented as JSON objects, not as primitive string values.

JSON Aggregate Functions
This table shows the functions aggregate records to an array of JSON objects and pairs of values to a
JSON object

Table 104: JSON Aggregate Functions

Function Argument Types Return Type Description

json_agg(record) record json Aggregates records as a
JSON array of objects.

json_object_
agg(name, value)

("any", "any") json Aggregates name/value
pairs as a JSON object.

JSON Processing Functions
This table shows the functions that are available for processing json and jsonb values.

Many of these processing functions and operators convert Unicode escapes in JSON strings to the
appropriate single character. This is a not an issue if the input data type is jsonb, because the conversion

Greenplum Database Reference Guide Release Notes

1259

was already done. However, for json data type input, this might result in an error being thrown. See About
JSON Data in the Greenplum Database Administrator Guide.

Table 105: JSON Processing Functions

Function Return Type Description Example Example Result

json_array_
length(json)

jsonb_array_
length(jsonb)

int Returns the
number of
elements in the
outermost JSON
array.

json_array_
length('[1,2,3,
{"f1":1,"f2":
[5,6]},4]')

5

json_
each(json)

jsonb_
each(jsonb)

setof key
text, value
json

setof key
text, value
jsonb

Expands the
outermost JSON
object into a set of
key/value pairs.

select *
from json_
each('{"a":"foo",
"b":"bar"}')

 key | value
-----+-------
 a | "foo"
 b | "bar"

json_each_
text(json)

jsonb_each_
text(jsonb)

setof key
text, value
text

Expands the
outermost JSON
object into a set
of key/value pairs.
The returned
values will be of
type text.

select * from
json_each_
text('{"a":"foo",
"b":"bar"}')

 key | value
-----+-------
 a | foo
 b | bar

json_extract_
path(from_json
json, VARIADIC
path_elems
text[])

jsonb_extract_
path(from_
json jsonb,
VARIADIC path_
elems text[])

json

jsonb

Returns the JSON
value pointed to
by path_elems
(equivalent to #>
operator).

json_extract_
path('{"f2":
{"f3":1},"f4":
{"f5":99,"f6":"foo"}}','f4')

{"f5":99,"f6":"foo"}

json_
extract_path_
text(from_json
json, VARIADIC
path_elems
text[])

jsonb_
extract_path_
text(from_
json jsonb,
VARIADIC path_
elems text[])

text Returns the JSON
value pointed to
by path_elems
as text. Equivalent
to #>> operator.

json_extract_
path_text('{"f2":
{"f3":1},"f4":
{"f5":99,"f6":"foo"}}','f4',
'f6')

foo

Greenplum Database Reference Guide Release Notes

1260

Function Return Type Description Example Example Result

json_object_
keys(json)

jsonb_object_
keys(jsonb)

setof text Returns set
of keys in the
outermost JSON
object.

json_object_
keys('{"f1":"abc","f2":
{"f3":"a",
"f4":"b"}}')

 json_object_
keys

 f1
 f2

json_populate_
record(base
anyelement,
from_json
json)

jsonb_
populate_
record(base
anyelement,
from_json
jsonb)

anyelement Expands the
object in from_
json to a row
whose columns
match the record
type defined by
base. See Note 1.

select * from
json_populate_
record(null::myrowtype,
'{"a":1,"b":2}')

 a | b
---+---
 1 | 2

json_populate_
recordset(base
anyelement,
from_json
json)

jsonb_
populate_
recordset(base
anyelement,
from_json
jsonb)

setof
anyelement

Expands the
outermost array of
objects in from_
json to a set
of rows whose
columns match
the record type
defined by base.
See Note 1.

select * from
json_populate_
recordset(null::myrowtype,
'[{"a":1,"b":2},
{"a":3,"b":4}]')

 a | b
---+---
 1 | 2
 3 | 4

json_array_
elements(json)

jsonb_array_
elements(jsonb)

setof json

setof jsonb

Expands a JSON
array to a set of
JSON values.

select * from
json_array_
elements('[1,true,
[2,false]]')

 value

 1
 true
 [2,false]

json_array_
elements_
text(json)

jsonb_array_
elements_
text(jsonb)

setof text Expands a JSON
array to a set of
text values.

select * from
json_array_
elements_
text('["foo",
"bar"]')

 value

 foo
 bar

json_
typeof(json)

jsonb_
typeof(jsonb)

text Returns the type
of the outermost
JSON value as
a text string.
Possible types are
object, array,
string, number,
boolean, and
null. See Note 2

json_
typeof('-123.4')

number

Greenplum Database Reference Guide Release Notes

1261

Function Return Type Description Example Example Result

json_to_
record(json)

jsonb_to_
record(jsonb)

record Builds an arbitrary
record from a
JSON object. See
Note 1.

As with all
functions returning
record, the
caller must
explicitly define
the structure of
the record with an
AS clause.

select *
from json_to_
record('{"a":1,"b":
[1,2,3],"c":"bar"}')
as x(a int, b
text, d text)

 a | b
 | d
---+---------
+---
 1 | [1,2,3]
 |

json_to_
recordset(json)

jsonb_to_
recordset(jsonb)

setof record Builds an arbitrary
set of records
from a JSON
array of objects
See Note 1.

As with all
functions returning
record, the
caller must
explicitly define
the structure of
the record with an
AS clause.

select *
from json_to_
recordset('[{"a":1,"b":"foo"},
{"a":"2","c":"bar"}]')
as x(a int, b
text);

 a | b
---+-----
 1 | foo
 2 |

Note:

1. The examples for the functions json_populate_record(),
json_populate_recordset(), json_to_record() and json_to_recordset() use
constants. However, the typical use would be to reference a table in the FROM clause and use
one of its json or jsonb columns as an argument to the function. The extracted key values
can then be referenced in other parts of the query. For example the value can be referenced in
WHERE clauses and target lists. Extracting multiple values in this way can improve performance
over extracting them separately with per-key operators.

JSON keys are matched to identical column names in the target row type. JSON type coercion
for these functions might not result in desired values for some types. JSON fields that do not
appear in the target row type will be omitted from the output, and target columns that do not
match any JSON field will be NULL.

2. The json_typeof function null return value of null should not be confused with a
SQL NULL. While calling json_typeof('null'::json) will return null, calling
json_typeof(NULL::json) will return a SQL NULL.

Window Functions
The following are Greenplum Database built-in window functions. All window functions are immutable.
For more information about window functions, see "Window Expressions" in the Greenplum Database
Administrator Guide.

Greenplum Database Reference Guide Release Notes

1262

Table 106: Window functions

Function Return
Type

Full Syntax Description

cume_dist() double
precision

CUME_DIST() OVER ([PARTITION
BY expr] ORDER BY expr)

Calculates the cumulative
distribution of a value in
a group of values. Rows
with equal values always
evaluate to the same
cumulative distribution
value.

dense_rank() bigint DENSE_RANK () OVER
([PARTITION BY expr] ORDER BY
expr)

Computes the rank of a
row in an ordered group of
rows without skipping rank
values. Rows with equal
values are given the same
rank value.

first_
value(expr)

same as
input expr
type

FIRST_VALUE(expr) OVER
([PARTITION BY expr] ORDER BY
expr [ROWS|RANGE frame_expr])

Returns the first value in
an ordered set of values.

lag(expr
[,offset]
[,default])

same as
input expr
type

LAG(expr [, offset] [, default])
OVER ([PARTITION BY expr]
ORDER BY expr)

Provides access to more
than one row of the same
table without doing a self
join. Given a series of rows
returned from a query and
a position of the cursor,
LAG provides access to
a row at a given physical
offset prior to that position.
The default offset is 1.
default sets the value that
is returned if the offset
goes beyond the scope of
the window. If default is not
specified, the default value
is null.

last_
value(expr)

same as
input expr
type

LAST_VALUE(expr) OVER
([PARTITION BY expr] ORDER BY
expr [ROWS|RANGE frame_expr])

Returns the last value in an
ordered set of values.

Greenplum Database Reference Guide Release Notes

1263

Function Return
Type

Full Syntax Description

lead(expr
[,offset]
[,default])

same as
input expr
type

LEAD(expr [,offset]
[,exprdefault]) OVER
([PARTITION BY expr] ORDER BY
expr)

Provides access to more
than one row of the same
table without doing a self
join. Given a series of rows
returned from a query and
a position of the cursor,
lead provides access to
a row at a given physical
offset after that position.
If offset is not specified,
the default offset is 1.
default sets the value that
is returned if the offset
goes beyond the scope of
the window. If default is not
specified, the default value
is null.

ntile(expr) bigint NTILE(expr) OVER ([PARTITION
BY expr] ORDER BY expr)

Divides an ordered data
set into a number of
buckets (as defined by
expr) and assigns a bucket
number to each row.

percent_rank() double
precision

PERCENT_RANK () OVER
([PARTITION BY expr] ORDER BY
expr)

Calculates the rank of a
hypothetical row R minus
1, divided by 1 less than
the number of rows being
evaluated (within a window
partition).

rank() bigint RANK () OVER ([PARTITION BY
expr] ORDER BY expr)

Calculates the rank of a
row in an ordered group of
values. Rows with equal
values for the ranking
criteria receive the same
rank. The number of tied
rows are added to the rank
number to calculate the
next rank value. Ranks
may not be consecutive
numbers in this case.

row_number() bigint ROW_NUMBER () OVER
([PARTITION BY expr] ORDER BY
expr)

Assigns a unique number
to each row to which it is
applied (either each row in
a window partition or each
row of the query).

Advanced Aggregate Functions
The following built-in advanced analytic functions are Greenplum extensions of the PostgreSQL database.
Analytic functions are immutable.

Greenplum Database Reference Guide Release Notes

1264

Note: The Greenplum MADlib Extension for Analytics provides additional advanced functions
to perform statistical analysis and machine learning with Greenplum Database data. See MADlib
Extension for Analytics.

Table 107: Advanced Aggregate Functions

Function Return
Type

Full Syntax Description

MEDIAN (expr) timestamp,
timestamptz,
interval,
float

MEDIAN (expression)

Example:

SELECT department_id,
 MEDIAN(salary)
FROM employees
GROUP BY department_id;

Can take a two-
dimensional array as
input. Treats such arrays
as matrices.

PERCENTILE_CONT
(expr) WITHIN
GROUP (ORDER
BY expr [DESC/
ASC])

timestamp,
timestamptz,
interval,
float

PERCENTILE_CONT(percentage)
WITHIN GROUP (ORDER BY
expression)

Example:

SELECT department_id,
PERCENTILE_CONT (0.5) WITHIN
 GROUP (ORDER BY salary DESC)
"Median_cont";
FROM employees GROUP BY
 department_id;

Performs an inverse
distribution function that
assumes a continuous
distribution model. It
takes a percentile value
and a sort specification
and returns the same
datatype as the numeric
datatype of the argument.
This returned value
is a computed result
after performing linear
interpolation. Null are
ignored in this calculation.

PERCENTILE_DISC
(expr) WITHIN
GROUP (ORDER
BY expr [DESC/
ASC])

timestamp,
timestamptz,
interval,
float

PERCENTILE_DISC(percentage)
WITHIN GROUP (ORDER BY
expression)

Example:

SELECT department_id,
PERCENTILE_DISC (0.5) WITHIN
 GROUP (ORDER BY salary DESC)
"Median_desc";
FROM employees GROUP BY
 department_id;

Performs an inverse
distribution function
that assumes a discrete
distribution model. It
takes a percentile value
and a sort specification.
 This returned value is
an element from the set.
Null are ignored in this
calculation.

Greenplum Database Reference Guide Release Notes

1265

Function Return
Type

Full Syntax Description

sum(array[]) smallint[]int[],
bigint[],
float[]

sum(array[[1,2],[3,4]])

Example:

CREATE TABLE mymatrix
 (myvalue int[]);
INSERT INTO mymatrix VALUES
 (array[[1,2],[3,4]]);
INSERT INTO mymatrix VALUES
 (array[[0,1],[1,0]]);
SELECT sum(myvalue) FROM
 mymatrix;
 sum

 {{1,3},{4,4}}

Performs matrix
summation. Can take as
input a two-dimensional
array that is treated as a
matrix.

pivot_sum
(label[],
label, expr)

int[],
bigint[],
float[]

pivot_sum(array['A1','A2'],
attr, value)

A pivot aggregation using
sum to resolve duplicate
entries.

unnest
(array[])

set of
anyelement

unnest(array['one', 'row',
'per', 'item'])

Transforms a one
dimensional array into
rows. Returns a set
of anyelement, a
polymorphic pseudotype
in PostgreSQL.

Text Search Functions and Operators
The following tables summarize the functions and operators that are provided for full text searching. See
Using Full Text Search for a detailed explanation of Greenplum Database's text search facility.

Table 108: Text Search Operators

Operator Description Example Result

@@ tsvector matches
tsquery ?

to_tsvector('fat
cats ate rats') @@
to_tsquery('cat &
rat')

t

@@@ deprecated synonym for
@@

to_tsvector('fat
cats ate
rats') @@@ to_
tsquery('cat &
rat')

t

|| concatenate
tsvectors

'a:1
b:2'::tsvector
|| 'c:1 d:2
b:3'::tsvector

'a':1 'b':2,5
'c':3 'd':4

&& AND tsquerys together 'fat |
rat'::tsquery &&
'cat'::tsquery

('fat' | 'rat')
& 'cat'

https://www.postgresql.org/docs/9.4/datatype-pseudo.html
https://www.postgresql.org/docs/9.4/datatype-pseudo.html

Greenplum Database Reference Guide Release Notes

1266

Operator Description Example Result

|| OR tsquerys together 'fat |
rat'::tsquery ||
'cat'::tsquery

('fat' | 'rat')
| 'cat'

!! negate a tsquery !! 'cat'::tsquery !'cat'

@> tsquery contains
another ?

'cat'::tsquery
@> 'cat &
rat'::tsquery

f

<@ tsquery is contained
in ?

'cat'::tsquery
<@ 'cat &
rat'::tsquery

t

Note: The tsquery containment operators consider only the lexemes listed in the two queries,
ignoring the combining operators.

In addition to the operators shown in the table, the ordinary B-tree comparison operators (=, <, etc) are
defined for types tsvector and tsquery. These are not very useful for text searching but allow, for
example, unique indexes to be built on columns of these types.

Table 109: Text Search Functions

Function Return Type Description Example Result

get_current_
ts_config()

regconfig get default
text search
configuration

get_current_ts_
config()

english

length(tsvector)integer number of lexemes
in tsvector

length('fat:2,4 cat:3
rat:5A'::tsvector)

3

numnode(tsquery)integer number of lexemes
plus operators in
tsquery

numnode('(fat &
rat) | cat'::tsquery)

5

plainto_
tsquery([config
regconfig ,]
querytext)

tsquery produce
tsquery ignoring
punctuation

plainto_
tsquery('english',
'The Fat Rats')

'fat' & 'rat'

querytree(query
tsquery)

text get indexable part
of a tsquery

querytree('foo & !
bar'::tsquery)

'foo'

setweight(tsvector,
"char")

tsvector assign weight to
each element of
tsvector

setweight('fat:2,4
cat:3
rat:5B'::tsvector,
'A')

'cat':3A 'fat':2A,4A
'rat':5A

strip(tsvector) tsvector remove positions
and weights from
tsvector

strip('fat:2,4 cat:3
rat:5A'::tsvector)

'cat' 'fat' 'rat'

to_
tsquery([config
regconfig ,]
query text)

tsquery normalize words
and convert to
tsquery

to_
tsquery('english',
'The & Fat & Rats')

'fat' & 'rat'

Greenplum Database Reference Guide Release Notes

1267

Function Return Type Description Example Result

to_
tsvector([config
regconfig ,]
documenttext)

tsvector reduce document
text to tsvector

to_
tsvector('english',
'The Fat Rats')

'fat':2 'rat':3

ts_
headline([config
regconfig,]
documenttext,
query tsquery
[, options
text])

text display a query
match

ts_headline('x y z',
'z'::tsquery)

x y z

ts_
rank([weights
float4[],]
vector
tsvector,query
tsquery [,
normalization
integer])

float4 rank document for
query

ts_rank(textsearch,
query)

0.818

ts_rank_
cd([weights
float4[],]
vectortsvector,
query
tsquery [,
normalizationinteger])

float4 rank document for
query using cover
density

ts_rank_cd('{0.
1, 0.2, 0.4, 1.0}',
textsearch, query)

2.01317

ts_
rewrite(query
tsquery,
target
tsquery,substitute
tsquery)

tsquery replace target with
substitute within
query

ts_rewrite('a
& b'::tsquery,
'a'::tsquery, 'foo|
bar'::tsquery)

'b' & ('foo' | 'bar')

ts_
rewrite(query
tsquery,
select text)

tsquery replace using
targets and
substitutes from a
SELECTcommand

SELECT ts_
rewrite('a &
b'::tsquery,
'SELECT t,s FROM
aliases')

'b' & ('foo' | 'bar')

tsvector_
update_
trigger()

trigger trigger function for
automatic tsvector
column update

CREATE
TRIGGER ...
tsvector_update_
trigger(tsvcol, 'pg_
catalog.swedish',
title, body)

tsvector_
update_
trigger_
column()

trigger trigger function for
automatic tsvector
column update

CREATE
TRIGGER .
.. tsvector_
update_trigger_
column(tsvcol,
configcol, title,
body)

Greenplum Database Reference Guide Release Notes

1268

Note: All the text search functions that accept an optional regconfig argument will use the
configuration specified by default_text_search_config when that argument is omitted.

The functions in the following table are listed separately because they are not usually used in everyday text
searching operations. They are helpful for development and debugging of new text search configurations.

Table 110: Text Search Debugging Functions

Function Return Type Description Example Result

ts_debug([
config
regconfig,]
document text,
OUT alias
text, OUT
description
text,
OUT token
text, OUT
dictionaries
regdictionary[],
OUT dictionary
regdictionary,
OUT lexemes
text[])

setof record test a configuration ts_
debug('english',
'The Brightest
supernovaes')

(asciiword,"Word,
all
ASCII",The,
{english_
stem},english_
stem,{}) ...

ts_lexize(dict
regdictionary,
token text)

text[] test a dictionary ts_
lexize('english_
stem',
'stars')

{star}

ts_
parse(parser_
name text,
document text,
OUT tokid
integer, OUT
token text)

setof record test a parser ts_
parse('default',
'foo - bar')

(1,foo) ...

ts_
parse(parser_
oid oid,
document text,
OUT tokid
integer, OUT
token text)

setof record test a parser ts_parse(3722,
'foo - bar')

(1,foo) ...

ts_token_
type(parser_
name text, OUT
tokid integer,
OUT alias
text, OUT
description
text)

setof record get token types
defined by parser

ts_token_
type('default')

(1,asciiword,"Word,
all ASCII") .
..

Greenplum Database Reference Guide Release Notes

1269

Function Return Type Description Example Result

ts_token_
type(parser_
oid oid, OUT
tokid integer,
OUT alias
text, OUT
description
text)

setof record get token types
defined by parser

ts_token_
type(3722)

(1,asciiword,"Word,
all ASCII") .
..

ts_
stat(sqlquery
text, [
weights
text,] OUT
word text, OUT
ndocinteger,
OUT nentry
integer)

setof record get statistics of a
tsvectorcolumn

ts_
stat('SELECT
vector from
apod')

(foo,10,15) .
..

Range Functions and Operators
See Range Types for an overview of range types.

The following table shows the operators available for range types.

Table 111: Range Operators

Operator Description Example Result

= equal int4range(1,5) =
'[1,4]'::int4range

t

<> not equal numrange(1.1,2.2)
<> numrange(1.1,2.
3)

t

< less than int4range(1,10) <
int4range(2,3)

t

> greater than int4range(1,10) >
int4range(1,5)

t

<= less than or equal numrange(1.1,2.2)
<= numrange(1.1,2.
2)

t

>= greater than or equal numrange(1.1,2.2)
>= numrange(1.1,2.
0)

t

@> contains range int4range(2,4) @>
int4range(2,3)

t

@> contains element '[2011-01-01,2011-03-01)'::tsrange
@>
'2011-01-10'::timestamp

t

Greenplum Database Reference Guide Release Notes

1270

Operator Description Example Result

<@ range is contained by int4range(2,4) <@
int4range(1,7)

t

<@ element is contained by 42 <@
int4range(1,7)

f

&& overlap (have points in
common)

int8range(3,7) &&
int8range(4,12)

t

<< strictly left of int8range(1,10) <<
int8range(100,110)

t

>> strictly right of int8range(50,60)
>>
int8range(20,30)

t

&< does not extend to the
right of

int8range(1,20) &<
int8range(18,20)

t

&> does not extend to the
left of

int8range(7,20) &>
int8range(5,10)

t

-|- is adjacent to numrange(1.1,2.
2) -|- numrange(2.
2,3.3)

t

+ union numrange(5,15) +
numrange(10,20)

[5,20)

* intersection int8range(5,15) *
int8range(10,20)

[10,15)

- difference int8range(5,15) -
int8range(10,20)

[5,10)

The simple comparison operators <, >, <=, and >= compare the lower bounds first, and only if those are
equal, compare the upper bounds. These comparisons are not usually very useful for ranges, but are
provided to allow B-tree indexes to be constructed on ranges.

The left-of/right-of/adjacent operators always return false when an empty range is involved; that is, an
empty range is not considered to be either before or after any other range.

The union and difference operators will fail if the resulting range would need to contain two disjoint sub-
ranges, as such a range cannot be represented.

The following table shows the functions available for use with range types.

Table 112: Range Functions

Function Return Type Description Example Result

lower(anyrange) range's element
type

lower bound of
range

lower(numrange(1.
1,2.2))

1.1

upper(anyrange) range's element
type

upper bound of
range

upper(numrange(1.
1,2.2))

2.2

isempty(anyrange)boolean is the range
empty?

isempty(numrange(1.
1,2.2))

false

Greenplum Database Reference Guide Release Notes

1271

Function Return Type Description Example Result

lower_
inc(anyrange)

boolean is the lower bound
inclusive?

lower_
inc(numrange(1.
1,2.2))

true

upper_
inc(anyrange)

boolean is the upper bound
inclusive?

upper_
inc(numrange(1.
1,2.2))

false

lower_
inf(anyrange)

boolean is the lower bound
infinite?

lower_
inf('(,)'::daterange)

true

upper_
inf(anyrange)

boolean is the upper bound
infinite?

upper_
inf('(,)'::daterange)

true

range_
merge(anyrange,
anyrange)

anyrange the smallest range
which includes both
of the given ranges

range_
merge('[1,2)'::int4range,
'[3,4)'::int4range)

[1,4)

The lower and upper functions return null if the range is empty or the requested bound is infinite. The
lower_inc, upper_inc, lower_inf, and upper_inf functions all return false for an empty range.

Greenplum Database Reference Guide Release Notes

1272

Additional Supplied Modules
This section describes additional modules available in the Greenplum Database installation. These
modules may be PostgreSQL- or Greenplum-sourced.

The following Greenplum Database and PostgreSQL contrib modules are installed; refer to the linked
module documentation for usage instructions.

• auto_explain Provides a means for logging execution plans of slow statements automatically.
• citext - Provides a case-insensitive, multibyte-aware text data type.
• dblink - Provides connections to other Greenplum databases.
• diskquota - Allows administrators to set disk usage quotas for Greenplum Database roles and

schemas.
• fuzzystrmatch - Determines similarities and differences between strings.
• gp_sparse_vector - Implements a Greenplum Database data type that uses compressed storage of

zeros to make vector computations on floating point numbers faster.
• hstore - Provides a data type for storing sets of key/value pairs within a single PostgreSQL value.
• orafce - Provides Greenplum Database-specific Oracle SQL compatibility functions.
• pageinspect - Provides functions for low level inspection of the contents of database pages; available

to superusers only.
• pgcrypto - Provides cryptographic functions for Greenplum Database.
• sslinfo - Provides information about the SSL certificate that the current client provided when

connecting to Greenplum.

auto_explain
The auto_explain module provides a means for logging execution plans of slow statements
automatically, without having to run EXPLAIN by hand.

The Greenplum Database auto_explain module was runs only on the Greenplum Database master
segment host. It is otherwise equivalent in functionality to the PostgreSQL auto_explain module.

Loading the Module
The auto_explain module provides no SQL-accessible functions. To use it, simply load it into the
server. You can load it into an individual session by entering this command as a superuser:

LOAD 'auto_explain';

More typical usage is to preload it into some or all sessions by including auto_explain in
session_preload_libraries or shared_preload_libraries in postgresql.conf. Then you
can track unexpectedly slow queries no matter when they happen. However, this does introduce overhead
for all queries.

Module Documentation
See auto_explain in the PostgreSQL documentation for detailed information about the configuration
parameters that control this module's behavior.

citext
The citext module provides a case-insensitive character string data type, citext. Essentially, it internally
calls the lower() function when comparing values. Otherwise, it behaves almost exactly like the text
data type.

https://www.postgresql.org/docs/9.4/auto-explain.html

Greenplum Database Reference Guide Release Notes

1273

The Greenplum Database citext module is equivalent to the PostgreSQL citext module. There are no
Greenplum Database or MPP-specific considerations for the module.

Installing and Registering the Module
The citext module is installed when you install Greenplum Database. Before you can use any of the
data types, operators, or functions defined in the module, you must register the citext extension in each
database in which you want to use the objects. Refer to Installing Additional Supplied Modules for more
information.

Module Documentation
See citext in the PostgreSQL documentation for detailed information about the data types, operators, and
functions defined in this module.

dblink
The dblink module supports connections to other Greenplum Database databases from within a
database session. These databases can reside in the same Greenplum Database system, or in a remote
system.

Greenplum Database supports dblink connections between databases in Greenplum Database
installations with the same major version number. You can also use dblink to connect to other
Greenplum Database installations that use compatible libpq libraries.

Note: dblink is intended for database users to perform short ad hoc queries in other databases.
dblink is not intended for use as a replacement for external tables or for administrative tools such
as gpcopy.

The Greenplum Database dblink module is a modified version of the PostgreSQL dblink module.
There are some restrictions and limitations when you use the module in Greenplum Database.

Installing and Registering the Module
The dblink module is installed when you install Greenplum Database. Before you can use any of the
functions defined in the module, you must register the dblink extension in each database in which you
want to use the functions. Refer to Installing Additional Supplied Modules for more information.

Greenplum Database Considerations
In this release of Greenplum Database, statements that modify table data cannot use named or implicit
dblink connections. Instead, you must provide the connection string directly in the dblink() function.
For example:

gpadmin=# CREATE TABLE testdbllocal (a int, b text) DISTRIBUTED BY (a);
CREATE TABLE
gpadmin=# INSERT INTO testdbllocal select * FROM dblink('dbname=postgres',
 'SELECT * FROM testdblink') AS dbltab(id int, product text);
INSERT 0 2

The Greenplum Database version of dblink disables the following asynchronous functions:

• dblink_send_query()

• dblink_is_busy()

• dblink_get_result()

https://www.postgresql.org/docs/9.4/citext.html

Greenplum Database Reference Guide Release Notes

1274

Using dblink
The following procedure identifies the basic steps for configuring and using dblink in Greenplum
Database. The examples use dblink_connect() to create a connection to a database and dblink()
to execute an SQL query.

1. Begin by creating a sample table to query using the dblink functions. These commands create a small
table in the postgres database, which you will later query from the testdb database using dblink:

$ psql -d postgres
psql (9.4.20)
Type "help" for help.

postgres=# CREATE TABLE testdblink (a int, b text) DISTRIBUTED BY (a);
CREATE TABLE
postgres=# INSERT INTO testdblink VALUES (1, 'Cheese'), (2, 'Fish');
INSERT 0 2
postgres=# \q
$

2. Log into a different database as a superuser. In this example, the superuser gpadmin logs into the
database testdb. If the dblink functions are not already available, register the dblink extension in
the database:

$ psql -d testdb
psql (9.4beta1)
Type "help" for help.

testdb=# CREATE EXTENSION dblink;
CREATE EXTENSION

3. Use the dblink_connect() function to create either an implicit or a named connection to another
database. The connection string that you provide should be a libpq-style keyword/value string.
This example creates a connection named mylocalconn to the postgres database on the local
Greenplum Database system:

testdb=# SELECT dblink_connect('mylocalconn', 'dbname=postgres
 user=gpadmin');
 dblink_connect

 OK
(1 row)

Note: If a user is not specified, dblink_connect() uses the value of the PGUSER
environment variable when Greenplum Database was started. If PGUSER is not set, the default is
the system user that started Greenplum Database.

4. Use the dblink() function to query a database using a configured connection. Keep in mind that this
function returns a record type, so you must assign the columns returned in the dblink() query. For
example, the following command uses the named connection to query the table you created earlier:

testdb=# SELECT * FROM dblink('mylocalconn', 'SELECT * FROM testdblink')
 AS dbltab(id int, product text);
 id | product
----+---------
 1 | Cheese
 2 | Fish
(2 rows)

Greenplum Database Reference Guide Release Notes

1275

To connect to the local database as another user, specify the user in the connection string. This example
connects to the database as the user test_user. Using dblink_connect(), a superuser can create a
connection to another local database without specifying a password.

testdb=# SELECT dblink_connect('localconn2', 'dbname=postgres
 user=test_user');

To make a connection to a remote database system, include host and password information in the
connection string. For example, to create an implicit dblink connection to a remote system:

testdb=# SELECT dblink_connect('host=remotehost port=5432 dbname=postgres
 user=gpadmin password=secret');

Using dblink as a Non-Superuser
To make a connection to a database with dblink_connect(), non-superusers must include host, user,
and password information in the connection string. The host, user, and password information must be
included even when connecting to a local database. For example, the user test_user can create a
dblink connection to the local system mdw with this command:

testdb=> SELECT dblink_connect('host=mdw port=5432 dbname=postgres
 user=test_user password=secret');

If non-superusers need to create dblink connections that do not require a password, they can
use the dblink_connect_u() function. The dblink_connect_u() function is identical to
dblink_connect(), except that it allows non-superusers to create connections that do not require a
password.

dblink_connect_u() is initially installed with all privileges revoked from PUBLIC, making it un-
callable except by superusers. In some situations, it may be appropriate to grant EXECUTE permission on
dblink_connect_u() to specific users who are considered trustworthy, but this should be done with
care.

Warning: If a Greenplum Database system has configured users with an authentication method
that does not involve a password, then impersonation and subsequent escalation of privileges
can occur when a non-superuser executes dblink_connect_u(). The dblink connection
will appear to have originated from the user specified by the function. For example, a non-
superuser can execute dblink_connect_u() and specify a user that is configured with trust
authentication.

Also, even if the dblink connection requires a password, it is possible for the password to be
supplied from the server environment, such as a ~/.pgpass file belonging to the server's user. It
is recommended that any ~/.pgpass file belonging to the server's user not contain any records
specifying a wildcard host name.

1. As a superuser, grant the EXECUTE privilege on the dblink_connect_u() functions in the user
database. This example grants the privilege to the non-superuser test_user on the functions with the
signatures for creating an implicit or a named dblink connection.

testdb=# GRANT EXECUTE ON FUNCTION dblink_connect_u(text) TO test_user;
testdb=# GRANT EXECUTE ON FUNCTION dblink_connect_u(text, text) TO
 test_user;

2. Now test_user can create a connection to another local database without a password. For example,
test_user can log into the testdb database and execute this command to create a connection
named testconn to the local postgres database.

testdb=> SELECT dblink_connect_u('testconn', 'dbname=postgres
 user=test_user');

Greenplum Database Reference Guide Release Notes

1276

Note: If a user is not specified, dblink_connect_u() uses the value of the PGUSER
environment variable when Greenplum Database was started. If PGUSER is not set, the default is
the system user that started Greenplum Database.

3. test_user can use the dblink() function to execute a query using a dblink connection. For
example, this command uses the dblink connection named testconn created in the previous step.
test_user must have appropriate access to the table.

testdb=> SELECT * FROM dblink('testconn', 'SELECT * FROM testdblink') AS
 dbltab(id int, product text);

Using dblink with SSL-Encrypted Connections to Greenplum
When you use dblink to connect to Greenplum Database over an encrypted connection, you must
specify the sslmode property in the connection string. Set sslmode to at least require to disallow
unencrypted transfers. For example:

testdb=# SELECT dblink_connect('greenplum_con_sales', 'dbname=sales
 host=gpmaster user=gpadmin sslmode=require');

Refer to SSL Client Authentication for information about configuring Greenplum Database to use SSL.

Additional Module Documentation
Refer to the dblink PostgreSQL documentation for detailed information about the individual functions in this
module.

diskquota
The diskquota module allows Greenplum Database administrators to limit the amount of disk space used
by schemas or roles in a database.

Installing and Registering the Module
The diskquota module is installed when you install Greenplum Database.

Before you can use the module, you must perform these steps:

1. Create the diskquota database. The diskquota module uses this database to store the list of
databases where the module is enabled.

$ createdb diskquota;

2. Add the diskquota shared library to the Greenplum Database shared_preload_libraries server
configuration parameter and restart Greenplum Database. Be sure to retain the previous setting of the
configuration parameter. For example:

$ gpconfig -s shared_preload_libraries
Values on all segments are consistent
GUC : shared_preload_libraries
Master value: auto_explain
Segment value: auto_explain
$ gpconfig -c shared_preload_libraries -v 'auto_explain,diskquota'
$ gpstop -ar

3. Register the diskquota extension in databases where you want to enforce disk usage quotas.
diskquota can be registered in up to ten databases.

$ psql -d testdb -c "CREATE EXTENSION diskquota"

https://www.postgresql.org/docs/9.4/dblink.html

Greenplum Database Reference Guide Release Notes

1277

4. If you register the diskquota extension in a database that already contains data, you must initialize
the diskquota table size data by running the diskquota.init_table_size_table() UDF in the
database. In a database with many files, this can take a long time. The diskquota module cannot be
used until the initialization is complete.

=# SELECT diskquota.init_table_size_table();

About the diskquota Module
A Greenplum Database superuser can set disk usage quotas for schemas and roles. A schema quota sets
a limit on disk space used by all tables that belong to a schema. A role quota sets a limit on disk space
used by all tables that are owned by a role.

Diskquota processes running on the master and segment hosts check disk usage periodically and place
schemas or roles on a denylist when they reach their quota.

When a query plan has been generated for a query that would add data, and the schema or role is on
the denylist, the query is cancelled before it can start. An error message reports the quota that has been
exceeded. A query that does not add data, such as a simple SELECT query, is allowed to run even when
the role or schema is on the denylist.

Diskquota enforces soft limits for disk usage. Quotas are only checked before a query executes. If the
quota is not exceeded when the query is about to run, the query is allowed to run, even if it causes the
quota to be exceeded.

There is some delay after a quota has been reached before the schema or role is added to the denylist.
Other queries could add more data during the delay. The delay occurs because diskquota processes
that calculate the disk space used by each table execute periodically with a pause between executions
(two seconds by default). The delay also occurs when disk usage falls beneath a quota, due to operations
such as DROP, TRUNCATE, or VACUUM FULL that remove data. Administrators can change the amount of
time between disk space checks by setting the diskquota.naptime server configuration parameter.

If a query is unable to run because the schema or role has been denylisted, an administrator can
increase the exceeded quota to allow the query to execute. The show_fast_schema_quota_view and
show_fast_role_quota_view views can be used to find the schemas or roles that have exceeded their
limits.

Using the diskquota Module

Setting Disk Quotas
Use the diskquota.set_schema_quota() and diskquota.set_role_quota() user-defined
functions in a database to set, update, or delete disk quota limits for schemas and roles in the database.
The functions take two arguments: the schema or role name, and the quota to set. The quota can be
specified in units of MB, GB, TB, or PB, for example '2TB'.

The following example sets a 250GB quota for the acct schema:

$ SELECT diskquota.set_schema_quota('acct', '250GB');

This example sets a 500MB quota for the nickd role:

$ SELECT diskquota.set_role_quota(nickd, '500MB');

To change a quota, call the diskquota.set_schema_quota() or diskquota.set_role_quota()
function again with the new quota value.

To remove a quota, set the quota value to '-1'.

Greenplum Database Reference Guide Release Notes

1278

Displaying Disk Quotas and Disk Usage
The diskquota module provides two views to display active quotas and the current computed disk space
used.

The diskquota.show_fast_schema_quota_view view lists active quotas for schemas in the current
database. The nspsize_in_bytes column contains the calculated size for all tables that belong to the
schema.

=# SELECT * FROM diskquota.show_fast_schema_quota_view;
 schema_name | schema_oid | quota_in_mb | nspsize_in_bytes
-------------+------------+-------------+------------------
 acct | 16561 | 256000 | 131072
 analytics | 16519 | 1073741824 | 144670720
 eng | 16560 | 5242880 | 117833728
 public | 2200 | 250 | 3014656
(4 rows)

The diskquota.show_fast_role_quota_view view lists the active quotas for roles in the current
database. The rolsize_in_bytes column contains the calculated size for all tables that are owned by
the role.

=# SELECT * FROM diskquota.show_fast_role_quota_view;
 role_name | role_oid | quota_in_mb | rolsize_in_bytes
-----------+----------+-------------+------------------
 mdach | 16558 | 500 | 131072
 adam | 16557 | 300 | 117833728
 nickd | 16577 | 500 | 144670720
(3 rows)

Setting the Delay Between Disk Usage Updates
The diskquota.naptime server configuration parameter specifies how frequently (in seconds) the table
sizes are recalculated. The smaller the naptime value, the less delay in detecting changes in disk usage.
This example sets the naptime to ten seconds.

$ gpconfig -c diskquota.naptime -v 10

Configuring diskquota Shared Memory
The diskquota module uses shared memory to save the denylist and to save the active table list.

The denylist shared memory can hold up to 1MiB of database objects that exceed the quota limit. If the
denylist shared memory fills, data may be loaded into some schemas or roles after they have reached their
quota limit.

Active table shared memory holds up to 1MiB of active tables by default. Active tables are tables that may
have changed sizes since diskquota last recalculated the table sizes. diskquota hook functions are
called when the storage manager on each Greenplum Database segment creates, extends, or truncates
a table file. The hook functions store the identity of the file in shared memory so that its file size can be
recalculated the next time the table size data is refreshed.

If the shared memory for active tables fills, diskquota may fail to detect a change in disk usage. The
amount of active table shared memory can be adjusted by setting the diskquota.max_active_tables
server configuration parameter. This example changes the active table shared memory to 2MiB:

$ gpconfig -c diskquota.max_active_tables -v '2MiB'

Shared memory is allocated when Greenplum Database starts up, so a server restart is required after you
change the value of the diskquota.max_active_tables parameter.

Greenplum Database Reference Guide Release Notes

1279

Notes
The diskquota module can be enabled in up to ten databases. One diskquota worker process is created
on the Greenplum Database master host for each diskquota-enabled database.

The disk usage for a role is defined as the total of disk usage on all segments for all tables the role owns.
Although a role is a cluster-level database object, the disk usage for roles is calculated separately for each
database.

The disk usage of a schema is defined as the total of disk usage on all segments for all tables in the
schema.

The disk usage for a table includes the table data, indexes, toast tables, and free space map. For append-
optimized tables, the calculation includes the visibility map and index, and the block directory table.

The diskquota module cannot detect a newly created table inside of an uncommited transaction. The
size of the new table is not included in the disk usage calculated for the corresponding schema or role until
after the transaction has committed. Similarly, a table created using the CREATE TABLE AS command is
not included in disk usage statistics until the command has completed.

Deleting rows or running VACUUM on a table does not release disk space, so these operations cannot alone
remove a schema or role from the diskquota denylist. The disk space used by a table can be reduced by
running VACUUM FULL or TRUNCATE TABLE.

The diskquota module supports high availability features provided by the background worker framework.
The diskquota launcher process only runs on the active master node. The postmaster on the standby
master does not start the diskquota launcher process when it is in standby mode. When the master
is down and the administrator runs the gpactivatestandby command, the standby master changes
its role to master and the diskquota launcher process is forked automatically. Using the diskquota-
enabled database list in the diskquota database, the diskquota launcher creates the diskquota
worker processes that manage disk quotas for each database.

Examples
This example demonstrates how to set up a schema quota and then observe diskquota behavior as data is
added to the schema.

1. Create a database named test and log in to it.

$ createdb test
$ psql -d test

2. Create the diskquota extension in the database.

=# CREATE EXTENSION diskquota;
CREATE EXTENSION

3. Create the s1 schema.

=# CREATE SCHEMA s1;
CREATE SCHEMA

4. Set a 1MB disk quota for the s1 schema.

=# SELECT diskquota.set_schema_quota('s1', '1MB');
 set_schema_quota

(1 row)

Greenplum Database Reference Guide Release Notes

1280

5. The following commands create a table in the s1 schema and insert a small amount of data into it. The
schema has no data yet, so it is not on the denylist.

=# SET search_path TO s1;
SET
=# CREATE TABLE a(i int);
CREATE TABLE
=# INSERT INTO a SELECT generate_series(1,100);
INSERT 0 100

6. This command inserts a large amount of data, enough to exceed the 1MB quota that was set for the
schema. Before the INSERT command, the s1 schema is still not on the denylist, so this command
should be allowed to run, even though it will exceed the limit set for the schema.

=# INSERT INTO a SELECT generate_series(1,10000000);
INSERT 0 10000000

7. This command attempts to insert a small amount of data. Because the previous command exceeded
the schema's disk quota limit, the schema should be denylisted and any data loading command should
be cancelled.

=# INSERT INTO a SELECT generate_series(1,100);
ERROR: schema's disk space quota exceeded with name:s1

8. This command removes the quota from the s1 schema by setting it to -1 and again inserts a small
amount of data. A 5-second sleep before the INSERT command ensures that the diskquota table size
data is updated before the command is run.

=# SELECT diskquota.set_schema_quota('s1', '-1');
 set_schema_quota

(1 row)
Wait for 5 seconds to ensure the denylist is updated
#= SELECT pg_sleep(5);
#= INSERT INTO a SELECT generate_series(1,100);
INSERT 0 100

fuzzystrmatch
The fuzzystrmatch module provides functions to determine similarities and distance between strings
based on various algorithms.

The Greenplum Database fuzzystrmatch module is equivalent to the PostgreSQL fuzzystrmatch
module. There are no Greenplum Database or MPP-specific considerations for the module.

Installing and Registering the Module
The fuzzystrmatch module is installed when you install Greenplum Database. Before you can use
any of the functions defined in the module, you must register the fuzzystrmatch extension in each
database in which you want to use the functions. Refer to Installing Additional Supplied Modules for more
information.

Module Documentation
See fuzzystrmatch in the PostgreSQL documentation for detailed information about the individual functions
in this module.

https://www.postgresql.org/docs/9.4/fuzzystrmatch.html

Greenplum Database Reference Guide Release Notes

1281

gp_sparse_vector
The gp_sparse_vector module implements a Greenplum Database data type and associated functions
that use compressed storage of zeros to make vector computations on floating point numbers faster.

The gp_sparse_vector module is a Greenplum Database extension.

Installing and Registering the Module
The gp_sparse_vector module is installed when you install Greenplum Database. Before you can use
any of the functions defined in the module, you must register the gp_sparse_vector extension in each
database where you want to use the functions. Refer to Installing Additional Supplied Modules for more
information.

Using the gp_sparse_vector Module
When you use arrays of floating point numbers for various calculations, you will often have long runs of
zeros. This is common in scientific, retail optimization, and text processing applications. Each floating point
number takes 8 bytes of storage in memory and/or disk. Saving those zeros is often impractical. There are
also many computations that benefit from skipping over the zeros.

For example, suppose the following array of doubles is stored as a float8[] in Greenplum Database:

'{0, 33, <40,000 zeros>, 12, 22 }'::float8[]

This type of array arises often in text processing, where a dictionary may have 40-100K terms and the
number of words in a particular document is stored in a vector. This array would occupy slightly more than
320KB of memory/disk, most of it zeros. Any operation that you perform on this data works on 40,001 fields
that are not important.

The Greenplum Database built-in array datatype utilizes a bitmap for null values, but it is a poor choice
for this use case because it is not optimized for float8[] or for long runs of zeros instead of nulls, and
the bitmap is not run-length-encoding- (RLE) compressed. Even if each zero were stored as a NULL in the
array, the bitmap for nulls would use 5KB to mark the nulls, which is not nearly as efficient as it could be.

The Greenplum Database gp_sparse_vector module defines a data type and a simple RLE-based
scheme that is biased toward being efficient for zero value bitmaps. This scheme uses only 6 bytes for
bitmap storage.

Note: The sparse vector data type defined by the gp_sparse_vector module is named svec.
svec supports only float8 vector values.

You can construct an svec directly from a float array as follows:

SELECT ('{0, 13, 37, 53, 0, 71 }'::float8[])::svec;

The gp_sparse_vector module supports the vector operators <, >, *, **, /, =, +, sum(),
vec_count_nonzero(), and so on. These operators take advantage of the efficient sparse storage
format, making computations on svecs faster.

The plus (+) operator adds each of the terms of two vectors of the same dimension together. For example,
if vector a = {0,1,5} and vector b = {4,3,2}, you would compute the vector addition as follows:

SELECT ('{0,1,5}'::float8[]::svec + '{4,3,2}'::float8[]::svec)::float8[];
 float8

 {4,4,7}

Greenplum Database Reference Guide Release Notes

1282

A vector dot product (%*%) between vectors a and b returns a scalar result of type float8. Compute the
dot product ((0*4+1*3+5*2)=13) as follows:

SELECT '{0,1,5}'::float8[]::svec %*% '{4,3,2}'::float8[]::svec;
 ?column?

 13

Special vector aggregate functions are also useful. sum() is self explanatory. vec_count_nonzero()
evaluates the count of non-zero terms found in a set of svec and returns an svec with the counts. For
instance, for the set of vectors {0,1,5},{10,0,3},{0,0,3},{0,1,0}, the count of non-zero terms
would be {1,2,3}. Use vec_count_nonzero() to compute the count of these vectors:

CREATE TABLE listvecs(a svec);

INSERT INTO listvecs VALUES ('{0,1,5}'::float8[]),
 ('{10,0,3}'::float8[]),
 ('{0,0,3}'::float8[]),
 ('{0,1,0}'::float8[]);

SELECT vec_count_nonzero(a)::float8[] FROM listvecs;
 count_vec

 {1,2,3}
(1 row)

Additional Module Documentation
Refer to the gp_sparse_vector READMEs in the Greenplum Database github repository for additional
information about this module.

Apache MADlib includes an extended implementation of sparse vectors. See the MADlib Documentation
for a description of this MADlib module.

Example
A text classification example that describes a dictionary and some documents follows. You will create
Greenplum Database tables representing a dictionary and some documents. You then perform document
classification using vector arithmetic on word counts and proportions of dictionary words in each document.

Suppose that you have a dictionary composed of words in a text array. Create a table to store the
dictionary data and insert some data (words) into the table. For example:

CREATE TABLE features (dictionary text[][]) DISTRIBUTED RANDOMLY;
INSERT INTO features
 VALUES
 ('{am,before,being,bothered,corpus,document,i,in,is,me,never,now,'
 'one,really,second,the,third,this,until}');

You have a set of documents, also defined as an array of words. Create a table to represent the
documents and insert some data into the table:

CREATE TABLE documents(docnum int, document text[]) DISTRIBUTED RANDOMLY;
INSERT INTO documents VALUES
 (1,'{this,is,one,document,in,the,corpus}'),
 (2,'{i,am,the,second,document,in,the,corpus}'),
 (3,'{being,third,never,really,bothered,me,until,now}'),
 (4,'{the,document,before,me,is,the,third,document}');

https://github.com/greenplum-db/gpdb/tree/master/gpcontrib/gp_sparse_vector/README
http://madlib.apache.org/docs/latest/group__grp__svec.html

Greenplum Database Reference Guide Release Notes

1283

Using the dictionary and document tables, find the dictionary words that are present in each document.
To do this, you first prepare a Sparse Feature Vector, or SFV, for each document. An SFV is a vector of
dimension N, where N is the number of dictionary words, and each SFV contains a count of each dictionary
word in the document.

You can use the gp_extract_feature_histogram() function to create an SFV from a document.
gp_extract_feature_histogram() outputs an svec for each document that contains the count of
each of the dictionary words in the ordinal positions of the dictionary.

SELECT gp_extract_feature_histogram(
 (SELECT dictionary FROM features LIMIT 1), document)::float8[], document
 FROM documents ORDER BY docnum;

 gp_extract_feature_histogram | document

+--
 {0,0,0,0,1,1,0,1,1,0,0,0,1,0,0,1,0,1,0} |
 {this,is,one,document,in,the,corpus}
 {1,0,0,0,1,1,1,1,0,0,0,0,0,0,1,2,0,0,0} |
 {i,am,the,second,document,in,the,corpus}
 {0,0,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1} |
 {being,third,never,really,bothered,me,until,now}
 {0,1,0,0,0,2,0,0,1,1,0,0,0,0,0,2,1,0,0} |
 {the,document,before,me,is,the,third,document}

SELECT * FROM features;
 dictionary
--
 {am,before,being,bothered,corpus,document,i,in,is,me,never,now,one,really,second,the,third,this,until}

The SFV of the second document, "i am the second document in the corpus", is
{1,3*0,1,1,1,1,6*0,1,2}. The word "am" is the first ordinate in the dictionary, and there is 1 instance
of it in the SFV. The word "before" has no instances in the document, so its value is 0; and so on.

gp_extract_feature_histogram() is very speed optimized - it is a single routine version of a hash
join that processes large numbers of documents into their SFVs in parallel at the highest possible speeds.

For the next part of the processing, generate a sparse vector of the dictionary dimension (19). The vectors
that you generate for each document are referred to as the corpus.

CREATE table corpus (docnum int, feature_vector svec) DISTRIBUTED RANDOMLY;

INSERT INTO corpus
 (SELECT docnum,
 gp_extract_feature_histogram(
 (select dictionary FROM features LIMIT 1), document) from
 documents);

Count the number of times each feature occurs at least once in all documents:

SELECT (vec_count_nonzero(feature_vector))::float8[] AS count_in_document
 FROM corpus;

 count_in_document

 {1,1,1,1,2,3,1,2,2,2,1,1,1,1,1,3,2,1,1}

Count all occurrences of each term in all documents:

SELECT (sum(feature_vector))::float8[] AS sum_in_document FROM corpus;

Greenplum Database Reference Guide Release Notes

1284

 sum_in_document

 {1,1,1,1,2,4,1,2,2,2,1,1,1,1,1,5,2,1,1}

The remainder of the classification process is vector math. The count is turned into a weight that reflects
Term Frequency / Inverse Document Frequency (tf/idf). The calculation for a given term in a given
document is:

#_times_term_appears_in_this_doc * log(#_docs /
 #_docs_the_term_appears_in)

#_docs is the total number of documents (4 in this case). Note that there is one divisor for each dictionary
word and its value is the number of times that word appears in the document.

For example, the term "document" in document 1 would have a weight of 1 * log(4/3). In document
4, the term would have a weight of 2 * log(4/3). Terms that appear in every document would have
weight 0.

This single vector for the whole corpus is then scalar product multiplied by each document SFV to produce
the tf/idf.

Calculate the tf/idf:

SELECT docnum, (feature_vector*logidf)::float8[] AS tf_idf
 FROM (SELECT log(count(feature_vector)/
vec_count_nonzero(feature_vector)) AS logidf FROM corpus)
 AS foo, corpus ORDER BY docnum;
 docnum |
 tf_idf

+--
 1 |
 {0,0,0,0,0.693147180559945,0.287682072451781,0,0.693147180559945,0.693147180559945,0,0,0,1.38629436111989,0,0,0.287682072451781,0,1.38629436111989,0}
 2 |
 {1.38629436111989,0,0,0,0.693147180559945,0.287682072451781,1.38629436111989,0.693147180559945,0,0,0,0,0,0,1.38629436111989,0.575364144903562,0,0,0}
 3 |
 {0,0,1.38629436111989,1.38629436111989,0,0,0,0,0,0.693147180559945,1.38629436111989,1.38629436111989,0,1.38629436111989,0,0,0.693147180559945,0,1.38629436111989
}
 4 |
 {0,1.38629436111989,0,0,0,0.575364144903562,0,0,0.693147180559945,0.693147180559945,0,0,0,0,0,0.575364144903562,0.693147180559945,0,0}

You can determine the angular distance between one document and the rest of the documents using the
ACOS of the dot product of the document vectors:

CREATE TABLE weights AS
 (SELECT docnum, (feature_vector*logidf) tf_idf
 FROM (SELECT log(count(feature_vector)/
vec_count_nonzero(feature_vector))
 AS logidf FROM corpus) foo, corpus ORDER BY docnum)
 DISTRIBUTED RANDOMLY;

Calculate the angular distance between the first document and every other document:

SELECT docnum, trunc((180.*(ACOS(dmin(1.,(tf_idf%*%testdoc)/
(l2norm(tf_idf)*l2norm(testdoc))))/(4.*ATAN(1.))))::numeric,2)
 AS angular_distance FROM weights,
 (SELECT tf_idf testdoc FROM weights WHERE docnum = 1 LIMIT 1) foo
ORDER BY 1;

 docnum | angular_distance
--------+------------------

Greenplum Database Reference Guide Release Notes

1285

 1 | 0.00
 2 | 78.82
 3 | 90.00
 4 | 80.02

You can see that the angular distance between document 1 and itself is 0 degrees, and between document
1 and 3 is 90 degrees because they share no features at all.

hstore
The hstore module implements a data type for storing sets of (key,value) pairs within a single Greenplum
Database data field. This can be useful in various scenarios, such as rows with many attributes that are
rarely examined, or semi-structured data.

The Greenplum Database hstore module is equivalent to the PostgreSQL hstore module. There are no
Greenplum Database or MPP-specific considerations for the module.

Installing and Registering the Module
The hstore module is installed when you install Greenplum Database. Before you can use any of the
data types or functions defined in the module, you must register the hstore extension in each database in
which you want to use the objects. Refer to Installing Additional Supplied Modules for more information.

Module Documentation
See hstore in the PostgreSQL documentation for detailed information about the data types and functions
defined in this module.

orafce
The orafce module provides Oracle Compatibility SQL functions in Greenplum Database. These
functions target PostgreSQL but can also be used in Greenplum.

The Greenplum Database orafce module is a modified version of the open source Orafce PostgreSQL
module extension. The modified orafce source files for Greenplum Database can be found in the
gpcontrib/orafce directory in the Greenplum Database open source project. The source reflects the
Orafce 3.6.1 release and additional commits to 3af70a28f6.

There are some restrictions and limitations when you use the module in Greenplum Database.

Installing and Registering the Module
Note: Always use the Oracle Compatibility Functions module included with your Greenplum
Database version. Before upgrading to a new Greenplum Database version, uninstall the
compatibility functions from each of your databases, and then, when the upgrade is complete,
reinstall the compatibility functions from the new Greenplum Database release. See the Greenplum
Database release notes for upgrade prerequisites and procedures.

The orafce module is installed when you install Greenplum Database. Before you can use any of the
functions defined in the module, you must register the orafce extension in each database in which you
want to use the functions. Refer to Installing Additional Supplied Modules for more information.

Greenplum Database Considerations
The following functions are available by default in Greenplum Database and do not require installing the
Oracle Compatibility Functions:

• sinh()
• tanh()

https://www.postgresql.org/docs/9.4/hstore.html
https://github.com/orafce/orafce
https://github.com/orafce/orafce
https://github.com/greenplum-db/gpdb
https://github.com/orafce/orafce/tree/3af70a28f6ab81f43c990fb5661df99a37328b8a

Greenplum Database Reference Guide Release Notes

1286

• cosh()
• decode() (See Greenplum Implementation Differences for more information.)

Greenplum Implementation Differences

There are differences in the implementation of the compatibility functions in Greenplum Database from the
original PostgreSQL orafce module extension implementation. Some of the differences are as follows:

• The original orafce module implementation performs a decimal round off, the Greenplum Database
implementation does not:

• 2.00 becomes 2 in the original module implementation
• 2.00 remains 2.00 in the Greenplum Database implementation

• The provided Oracle compatibility functions handle implicit type conversions differently. For example,
using the decode function:

decode(expression, value, return [,value, return]...
 [, default])

The original orafce module implementation automatically converts expression and each value to the
data type of the first value before comparing. It automatically converts return to the same data type as
the first result.

The Greenplum Database implementation restricts return and default to be of the same data type.
The expression and value can be different types if the data type of value can be converted into the
data type of the expression. This is done implicitly. Otherwise, decode fails with an invalid input
syntax error. For example:

SELECT decode('a','M',true,false);
CASE

 f
(1 row)
SELECT decode(1,'M',true,false);
ERROR: Invalid input syntax for integer:"M"
LINE 1: SELECT decode(1,'M',true,false);

• Numbers in bigint format are displayed in scientific notation in the original orafce module
implementation but not in the Greenplum Database implementation:

• 9223372036854775 displays as 9.2234E+15 in the original implementation
• 9223372036854775 remains 9223372036854775 in the Greenplum Database implementation

• The default date and timestamp format in the original orafce module implementation is different than
the default format in the Greenplum Database implementation. If the following code is executed:

CREATE TABLE TEST(date1 date, time1 timestamp, time2
 timestamp with time zone);
INSERT INTO TEST VALUES ('2001-11-11','2001-12-13
 01:51:15','2001-12-13 01:51:15 -08:00');
SELECT DECODE(date1, '2001-11-11', '2001-01-01') FROM TEST;

The Greenplum Database implementation returns the row, but the original implementation returns no
rows.

Note: The correct syntax when using the original orafce implementation to return the row is:

SELECT DECODE(to_char(date1, 'YYYY-MM-DD'), '2001-11-11',
 '2001-01-01') FROM TEST

• The functions in the Oracle Compatibility Functions dbms_alert package are not implemented for
Greenplum Database.

Greenplum Database Reference Guide Release Notes

1287

• The decode() function is removed from the Greenplum Database Oracle Compatibility Functions. The
Greenplum Database parser internally converts a decode() function call to a CASE statement.

Using orafce
Some Oracle Compatibility Functions reside in the oracle schema. To access them, set the search path
for the database to include the oracle schema name. For example, this command sets the default search
path for a database to include the oracle schema:

ALTER DATABASE db_name SET search_path = "$user", public, oracle;

Note the following differences when using the Oracle Compatibility Functions with PostgreSQL vs. using
them with Greenplum Database:

• If you use validation scripts, the output may not be exactly the same as with the original orafce
module implementation.

• The functions in the Oracle Compatibility Functions dbms_pipe package execute only on the
Greenplum Database master host.

• The upgrade scripts in the Orafce project do not work with Greenplum Database.

Additional Module Documentation
Refer to the README and Greenplum Database orafce documentation in the Greenplum Database github
repository for detailed information about the individual functions and supporting objects provided in this
module.

pageinspect
The pageinspect module provides functions for low level inspection of the contents of database pages.
pageinspect is available only to Greenplum Database superusers.

The Greenplum Database pageinspect module is based on the PostgreSQL pageinspect module.
The Greenplum version of the module differs only in that it does not allow inspection of pages belonging to
append-optimized or external relations.

Installing and Registering the Module
The pageinspect module is installed when you install Greenplum Database. Before you can use any of
the functions defined in the module, you must register the pageinspect extension in each database in
which you want to use the functions. Refer to Installing Additional Supplied Modules for more information.

Module Documentation
See pageinspect in the PostgreSQL documentation for detailed information about the individual
functions in this module.

Note: For pageinspect functions that read data from a database, the function reads data only
from the segment instance where the function is executed. For example, the get_raw_page()
function returns a block number out of range error when you try to read data from a user-
defined table on the Greenplum Database master because there is no data in the table on the
master segment. The function will read data from a system catalog table on the master segment.

pgcrypto
Greenplum Database is installed with an optional module of encryption/decryption functions called
pgcrypto. The pgcrypto functions allow database administrators to store certain columns of data in
encrypted form. This adds an extra layer of protection for sensitive data, as data stored in Greenplum

https://github.com/greenplum-db/gpdb/tree/master/gpcontrib/orafce/README.asciidoc
https://github.com/greenplum-db/gpdb/tree/master/gpcontrib/orafce/doc/orafce_documentation
https://www.postgresql.org/docs/9.4/pageinspect.html

Greenplum Database Reference Guide Release Notes

1288

Database in encrypted form cannot be read by anyone who does not have the encryption key, nor can it be
read directly from the disks.

Note: The pgcrypto functions run inside the database server, which means that all the data and
passwords move between pgcrypto and the client application in clear-text. For optimal security,
consider also using SSL connections between the client and the Greenplum master server.

Installing and Registering the Module
The pgcrypto module is installed when you install Greenplum Database. Before you can use any of the
functions defined in the module, you must register the pgcrypto extension in each database in which you
want to use the functions. Refer to Installing Additional Supplied Modules for more information.

Additional Module Documentation
Refer to pgcrypto in the PostgreSQL documentation for more information about the individual functions in
this module.

sslinfo
The sslinfo module provides information about the SSL certificate that the current client provided when
connecting to Greenplum. Most functions in this module return NULL if the current connection does not use
SSL.

The Greenplum Database sslinfo module is equivalent to the PostgreSQL sslinfo module. There are
no Greenplum Database or MPP-specific considerations for the module.

Installing and Registering the Module
The sslinfo module is installed when you install Greenplum Database. Before you can use any of the
functions defined in the module, you must register the sslinfo extension in each database in which you
want to use the functions. Refer to Installing Additional Supplied Modules for more information.

Module Documentation
See sslinfo in the PostgreSQL documentation for detailed information about the individual functions in
this module.

https://www.postgresql.org/docs/9.4/pgcrypto.html
https://www.postgresql.org/docs/9.4/sslinfo.html

Greenplum Database Reference Guide Release Notes

1289

Character Set Support
The character set support in Greenplum Database allows you to store text in a variety of character sets,
including single-byte character sets such as the ISO 8859 series and multiple-byte character sets such
as EUC (Extended Unix Code), UTF-8, and Mule internal code. All supported character sets can be used
transparently by clients, but a few are not supported for use within the server (that is, as a server-side
encoding). The default character set is selected while initializing your Greenplum Database array using
gpinitsystem. It can be overridden when you create a database, so you can have multiple databases
each with a different character set.

Table 113: Greenplum Database Character Sets 10

Name Description Language Server? Bytes/Char Aliases

BIG5 Big Five Traditional
Chinese

No 1-2 WIN950,
Windows950

EUC_CN Extended UNIX
Code-CN

Simplified
Chinese

Yes 1-3

EUC_JP Extended UNIX
Code-JP

Japanese Yes 1-3

EUC_KR Extended UNIX
Code-KR

Korean Yes 1-3

EUC_TW Extended UNIX
Code-TW

Traditional
Chinese,
Taiwanese

Yes 1-3

GB18030 National
Standard

Chinese No 1-2

GBK Extended
National
Standard

Simplified
Chinese

No 1-2 WIN936,
Windows936

ISO_8859_5 ISO 8859-5,
ECMA 113

Latin/Cyrillic Yes 1

ISO_8859_6 ISO 8859-6,
ECMA 114

Latin/Arabic Yes 1

ISO_8859_7 ISO 8859-7,
ECMA 118

Latin/Greek Yes 1

ISO_8859_8 ISO 8859-8,
ECMA 121

Latin/Hebrew Yes 1

JOHAB JOHA Korean
(Hangul)

Yes 1-3

KOI8 KOI8-R(U) Cyrillic Yes 1 KOI8R

LATIN1 ISO 8859-1,
ECMA 94

Western
European

Yes 1 ISO88591

10 Not all APIs support all the listed character sets. For example, the JDBC driver does not support
MULE_INTERNAL, LATIN6, LATIN8, and LATIN10.

Greenplum Database Reference Guide Release Notes

1290

Name Description Language Server? Bytes/Char Aliases

LATIN2 ISO 8859-2,
ECMA 94

Central
European

Yes 1 ISO88592

LATIN3 ISO 8859-3,
ECMA 94

South
European

Yes 1 ISO88593

LATIN4 ISO 8859-4,
ECMA 94

North European Yes 1 ISO88594

LATIN5 ISO 8859-9,
ECMA 128

Turkish Yes 1 ISO88599

LATIN6 ISO 8859-10,
ECMA 144

Nordic Yes 1 ISO885910

LATIN7 ISO 8859-13 Baltic Yes 1 ISO885913

LATIN8 ISO 8859-14 Celtic Yes 1 ISO885914

LATIN9 ISO 8859-15 LATIN1 with
Euro and
accents

Yes 1 ISO885915

LATIN10 ISO 8859-16,
ASRO SR
14111

Romanian Yes 1 ISO885916

MULE_
INTERNAL

Mule internal
code

Multilingual
Emacs

Yes 1-4

SJIS Shift JIS Japanese No 1-2 Mskanji,
ShiftJIS,
WIN932,
Windows932

SQL_ASCII unspecified 11 any No 1

UHC Unified Hangul
Code

Korean No 1-2 WIN949,
Windows949

UTF8 Unicode, 8-bit all Yes 1-4 Unicode

WIN866 Windows
CP866

Cyrillic Yes 1 ALT

WIN874 Windows
CP874

Thai Yes 1

WIN1250 Windows
CP1250

Central
European

Yes 1

WIN1251 Windows
CP1251

Cyrillic Yes 1 WIN

WIN1252 Windows
CP1252

Western
European

Yes 1

11 The SQL_ASCII setting behaves considerably differently from the other settings. Byte values 0-127
are interpreted according to the ASCII standard, while byte values 128-255 are taken as uninterpreted
characters. If you are working with any non-ASCII data, it is unwise to use the SQL_ASCII setting as a
client encoding. SQL_ASCII is not supported as a server encoding.

Greenplum Database Reference Guide Release Notes

1291

Name Description Language Server? Bytes/Char Aliases

WIN1253 Windows
CP1253

Greek Yes 1

WIN1254 Windows
CP1254

Turkish Yes 1

WIN1255 Windows
CP1255

Hebrew Yes 1

WIN1256 Windows
CP1256

Arabic Yes 1

WIN1257 Windows
CP1257

Baltic Yes 1

WIN1258 Windows
CP1258

Vietnamese Yes 1 ABC, TCVN,
TCVN5712,
VSCII

Setting the Character Set
gpinitsystem defines the default character set for a Greenplum Database system by reading the setting of
the ENCODING parameter in the gp_init_config file at initialization time. The default character set is
UNICODE or UTF8.

You can create a database with a different character set besides what is used as the system-wide default.
For example:

=> CREATE DATABASE korean WITH ENCODING 'EUC_KR';

Important: Although you can specify any encoding you want for a database, it is unwise to choose an
encoding that is not what is expected by the locale you have selected. The LC_COLLATE and LC_CTYPE
settings imply a particular encoding, and locale-dependent operations (such as sorting) are likely to
misinterpret data that is in an incompatible encoding.

Since these locale settings are frozen by gpinitsystem, the apparent flexibility to use different encodings in
different databases is more theoretical than real.

One way to use multiple encodings safely is to set the locale to C or POSIX during initialization time, thus
disabling any real locale awareness.

Character Set Conversion Between Server and Client
Greenplum Database supports automatic character set conversion between server and client for certain
character set combinations. The conversion information is stored in the master pg_conversion system
catalog table. Greenplum Database comes with some predefined conversions or you can create a new
conversion using the SQL command CREATE CONVERSION.

Table 114: Client/Server Character Set Conversions

Server Character Set Available Client Character Sets

BIG5 not supported as a server encoding

EUC_CN EUC_CN, MULE_INTERNAL, UTF8

EUC_JP EUC_JP, MULE_INTERNAL, SJIS, UTF8

EUC_KR EUC_KR, MULE_INTERNAL, UTF8

Greenplum Database Reference Guide Release Notes

1292

Server Character Set Available Client Character Sets

EUC_TW EUC_TW, BIG5, MULE_INTERNAL, UTF8

GB18030 not supported as a server encoding

GBK not supported as a server encoding

ISO_8859_5 ISO_8859_5, KOI8, MULE_INTERNAL, UTF8,
WIN866, WIN1251

ISO_8859_6 ISO_8859_6, UTF8

ISO_8859_7 ISO_8859_7, UTF8

ISO_8859_8 ISO_8859_8, UTF8

JOHAB JOHAB, UTF8

KOI8 KOI8, ISO_8859_5, MULE_INTERNAL, UTF8,
WIN866, WIN1251

LATIN1 LATIN1, MULE_INTERNAL, UTF8

LATIN2 LATIN2, MULE_INTERNAL, UTF8, WIN1250

LATIN3 LATIN3, MULE_INTERNAL, UTF8

LATIN4 LATIN4, MULE_INTERNAL, UTF8

LATIN5 LATIN5, UTF8

LATIN6 LATIN6, UTF8

LATIN7 LATIN7, UTF8

LATIN8 LATIN8, UTF8

LATIN9 LATIN9, UTF8

LATIN10 LATIN10, UTF8

MULE_INTERNAL MULE_INTERNAL, BIG5, EUC_CN, EUC_JP,
EUC_KR, EUC_TW, ISO_8859_5, KOI8, LATIN1 to
LATIN4, SJIS, WIN866, WIN1250, WIN1251

SJIS not supported as a server encoding

SQL_ASCII not supported as a server encoding

UHC not supported as a server encoding

UTF8 all supported encodings

WIN866 WIN866

ISO_8859_5 KOI8, MULE_INTERNAL, UTF8, WIN1251

WIN874 WIN874, UTF8

WIN1250 WIN1250, LATIN2, MULE_INTERNAL, UTF8

WIN1251 WIN1251, ISO_8859_5, KOI8, MULE_INTERNAL,
UTF8, WIN866

WIN1252 WIN1252, UTF8

WIN1253 WIN1253, UTF8

Greenplum Database Reference Guide Release Notes

1293

Server Character Set Available Client Character Sets

WIN1254 WIN1254, UTF8

WIN1255 WIN1255, UTF8

WIN1256 WIN1256, UTF8

WIN1257 WIN1257, UTF8

WIN1258 WIN1258, UTF8

To enable automatic character set conversion, you have to tell Greenplum Database the character set
(encoding) you would like to use in the client. There are several ways to accomplish this:

• Using the \encoding command in psql, which allows you to change client encoding on the fly.
• Using SETclient_encoding TO.

To set the client encoding, use the following SQL command:

=> SET CLIENT_ENCODING TO 'value';

To query the current client encoding:

=> SHOW client_encoding;

To return to the default encoding:

=> RESET client_encoding;

• Using the PGCLIENTENCODING environment variable. When PGCLIENTENCODING is defined in the
client's environment, that client encoding is automatically selected when a connection to the server is
made. (This can subsequently be overridden using any of the other methods mentioned above.)

• Setting the configuration parameter client_encoding. If client_encoding is set in the master
postgresql.conf file, that client encoding is automatically selected when a connection to
Greenplum Database is made. (This can subsequently be overridden using any of the other methods
mentioned above.)

If the conversion of a particular character is not possible " suppose you chose EUC_JP for the server and
LATIN1 for the client, then some Japanese characters do not have a representation in LATIN1 " then an
error is reported.

If the client character set is defined as SQL_ASCII, encoding conversion is disabled, regardless of the
server's character set. The use of SQL_ASCII is unwise unless you are working with all-ASCII data.
SQL_ASCII is not supported as a server encoding.

Greenplum Database Reference Guide Release Notes

1294

Server Configuration Parameters
There are many Greenplum server configuration parameters that affect the behavior of the Greenplum
Database system. Many of these configuration parameters have the same names, settings, and behaviors
as in a regular PostgreSQL database system.

• Parameter Types and Values describes the parameter data types and values.
• Setting Parameters describes limitations on who can change them and where or when they can be set.
• Parameter Categories organizes parameters by functionality.
• Configuration Parameters lists the parameter descriptions in alphabetic order.

Parameter Types and Values
All parameter names are case-insensitive. Every parameter takes a value of one of the following types:
Boolean, integer, floating point, enum, or string.

Boolean values may be specified as ON, OFF, TRUE, FALSE, YES, NO, 1, 0 (all case-insensitive).

Enum-type parameters are specified in the same manner as string parameters, but are restricted to a
limited set of values. Enum parameter values are case-insensitive.

Some settings specify a memory size or time value. Each of these has an implicit unit, which is either
kilobytes, blocks (typically eight kilobytes), milliseconds, seconds, or minutes. Valid memory size units are
kB (kilobytes), MB (megabytes), and GB (gigabytes). Valid time units are ms (milliseconds), s (seconds),
min (minutes), h (hours), and d (days). Note that the multiplier for memory units is 1024, not 1000. A
valid time expression contains a number and a unit. When specifying a memory or time unit using the SET
command, enclose the value in quotes. For example:

SET statement_mem TO '200MB';

Note: There is no space between the value and the unit names.

Setting Parameters
Many of the configuration parameters have limitations on who can change them and where or when they
can be set. For example, to change certain parameters, you must be a Greenplum Database superuser.
Other parameters require a restart of the system for the changes to take effect. A parameter that is
classified as session can be set at the system level (in the postgresql.conf file), at the database-level
(using ALTER DATABASE), at the role-level (using ALTER ROLE), at the database- and role-level (ALTER
ROLE...IN DATABASE...SET, or at the session-level (using SET). System parameters can only be set
in the postgresql.conf file.

In Greenplum Database, the master and each segment instance has its own postgresql.conf file
(located in their respective data directories). Some parameters are considered local parameters, meaning
that each segment instance looks to its own postgresql.conf file to get the value of that parameter.
You must set local parameters on every instance in the system (master and segments). Others parameters
are considered master parameters. Master parameters need only be set at the master instance.

This table describes the values in the Settable Classifications column of the table in the description of a
server configuration parameter.

Greenplum Database Reference Guide Release Notes

1295

Table 115: Settable Classifications

Set Classification Description

master or local A master parameter only needs to be set in the
postgresql.conf file of the Greenplum master
instance. The value for this parameter is then either
passed to (or ignored by) the segments at run time.

A local parameter must be set in the postgresql.
conf file of the master AND each segment
instance. Each segment instance looks to its own
configuration to get the value for the parameter.
Local parameters always requires a system restart
for changes to take effect.

session or system Session parameters can be changed on the
fly within a database session, and can have
a hierarchy of settings: at the system level
(postgresql.conf), at the database level
(ALTER DATABASE...SET), at the role level
(ALTER ROLE...SET), at the database and role
level (ALTER ROLE...IN DATABASE...SET), or
at the session level (SET). If the parameter is set
at multiple levels, then the most granular setting
takes precedence (for example, session overrides
database and role, database and role overrides
role, role overrides database, and database
overrides system).

A system parameter can only be changed via the
postgresql.conf file(s).

restart or reload When changing parameter values in the postgresql.
conf file(s), some require a restart of Greenplum
Database for the change to take effect. Other
parameter values can be refreshed by just
reloading the server configuration file (using
gpstop -u), and do not require stopping the
system.

superuser These session parameters can only be set by
a database superuser. Regular database users
cannot set this parameter.

read only These parameters are not settable by database
users or superusers. The current value of the
parameter can be shown but not altered.

Parameter Categories
Configuration parameters affect categories of server behaviors, such as resource consumption, query
tuning, and authentication. The following topics describe Greenplum configuration parameter categories.

• Connection and Authentication Parameters
• System Resource Consumption Parameters
• GPORCA Parameters
• Query Tuning Parameters

Greenplum Database Reference Guide Release Notes

1296

• Error Reporting and Logging Parameters
• System Monitoring Parameters
• Runtime Statistics Collection Parameters
• Automatic Statistics Collection Parameters
• Client Connection Default Parameters
• Lock Management Parameters
• Resource Management Parameters (Resource Queues)
• Resource Management Parameters (Resource Groups)
• External Table Parameters
• Database Table Parameters
• Past Version Compatibility Parameters
• Greenplum Database Array Configuration Parameters
• Greenplum Mirroring Parameters for Master and Segments
• Greenplum PL/Java Parameters

Connection and Authentication Parameters
These parameters control how clients connect and authenticate to Greenplum Database.

Connection Parameters

gp_connection_send_timeout

gp_vmem_idle_resource_timeout

listen_addresses

max_connections

max_prepared_transactions

superuser_reserved_connections

tcp_keepalives_count

tcp_keepalives_idle

tcp_keepalives_interval

unix_socket_directories

unix_socket_group

unix_socket_permissions

Security and Authentication Parameters

authentication_timeout

db_user_namespace

krb_caseins_users

krb_server_keyfile

password_encryption

password_hash_algorithm

ssl

ssl_ciphers

System Resource Consumption Parameters
These parameters set the limits for system resources consumed by Greenplum Database.

Memory Consumption Parameters

These parameters control system memory usage.

gp_vmem_idle_resource_timeout

gp_resource_group_memory_limit (resource group-
based resource management)

gp_vmem_protect_limit (resource queue-based
resource management)

gp_workfile_limit_per_query

gp_workfile_limit_per_segment

maintenance_work_mem

max_stack_depth

Greenplum Database Reference Guide Release Notes

1297

gp_vmem_protect_segworker_cache_limit

gp_workfile_limit_files_per_query

shared_buffers

temp_buffers

OS Resource Parameters

max_files_per_process

shared_preload_libraries

Cost-Based Vacuum Delay Parameters

Warning: Do not use cost-based vacuum delay because it runs asynchronously among the
segment instances. The vacuum cost limit and delay is invoked at the segment level without taking
into account the state of the entire Greenplum Database array

You can configure the execution cost of VACUUM and ANALYZE commands to reduce the I/O impact on
concurrent database activity. When the accumulated cost of I/O operations reaches the limit, the process
performing the operation sleeps for a while, Then resets the counter and continues execution

vacuum_cost_delay

vacuum_cost_limit

vacuum_cost_page_dirty

vacuum_cost_page_hit

vacuum_cost_page_miss

Transaction ID Management Parameters

xid_stop_limit

xid_warn_limit

GPORCA Parameters
These parameters control the usage of GPORCA by Greenplum Database. For information about
GPORCA, see About GPORCA in the Greenplum Database Administrator Guide.

gp_enable_relsize_collection

optimizer

optimizer_analyze_root_partition

optimizer_array_expansion_threshold

optimizer_cte_inlining_bound

optimizer_control

optimizer_enable_associativity

optimizer_enable_dml

optimizer_enable_master_only_queries

optimizer_force_agg_skew_avoidance

optimizer_force_multistage_agg

optimizer_force_three_stage_scalar_dqa

optimizer_join_arity_for_associativity_commutativity

optimizer_join_order

optimizer_join_order_threshold

optimizer_mdcache_size

optimizer_metadata_caching

optimizer_parallel_union

optimizer_penalize_skew

optimizer_print_missing_stats

optimizer_print_optimization_stats

optimizer_sort_factor

optimizer_use_gpdb_allocators

Greenplum Database Reference Guide Release Notes

1298

Query Tuning Parameters
These parameters control aspects of SQL query processing such as query operators and operator settings
and statistics sampling.

Postgres Planner Control Parameters

The following parameters control the types of plan operations the Postgres Planner can use. Enable or
disable plan operations to force the Postgres Planner to choose a different plan. This is useful for testing
and comparing query performance using different plan types.

enable_bitmapscan

enable_groupagg

enable_hashagg

enable_hashjoin

enable_indexscan

enable_mergejoin

enable_nestloop

enable_seqscan

enable_sort

enable_tidscan

gp_enable_agg_distinct

gp_enable_agg_distinct_pruning

gp_enable_direct_dispatch

gp_enable_fast_sri

gp_enable_groupext_distinct_gather

gp_enable_groupext_distinct_pruning

gp_enable_multiphase_agg

gp_enable_predicate_propagation

gp_enable_preunique

gp_enable_relsize_collection

gp_enable_sort_distinct

gp_enable_sort_limit

Postgres Planner Costing Parameters

Warning: Do not adjust these query costing parameters. They are tuned to reflect Greenplum
Database hardware configurations and typical workloads. All of these parameters are related.
Changing one without changing the others can have adverse affects on performance.

cpu_index_tuple_cost

cpu_operator_cost

cpu_tuple_cost

cursor_tuple_fraction

effective_cache_size

gp_motion_cost_per_row

gp_segments_for_planner

random_page_cost

seq_page_cost

Database Statistics Sampling Parameters

These parameters adjust the amount of data sampled by an ANALYZE operation. Adjusting these
parameters affects statistics collection system-wide. You can configure statistics collection on particular
tables and columns by using the ALTER TABLESET STATISTICS clause.

default_statistics_target

Sort Operator Configuration Parameters

gp_enable_sort_distinct

Greenplum Database Reference Guide Release Notes

1299

gp_enable_sort_limit

Aggregate Operator Configuration Parameters

gp_enable_agg_distinct

gp_enable_agg_distinct_pruning

gp_enable_multiphase_agg

gp_enable_preunique

gp_enable_groupext_distinct_gather

gp_enable_groupext_distinct_pruning

gp_workfile_compression

Join Operator Configuration Parameters

join_collapse_limit

gp_adjust_selectivity_for_outerjoins

gp_hashjoin_tuples_per_bucket

gp_statistics_use_fkeys

gp_workfile_compression

Other Postgres Planner Configuration Parameters

from_collapse_limit

gp_enable_predicate_propagation

gp_max_plan_size

gp_statistics_pullup_from_child_partition

Query Plan Execution

Control the query plan execution.

gp_max_slices

plan_cache_mode

Error Reporting and Logging Parameters
These configuration parameters control Greenplum Database logging.

Log Rotation

log_rotation_age

log_rotation_size

log_truncate_on_rotation

When to Log

client_min_messages

gp_interconnect_debug_retry_interval

log_error_verbosity

log_min_duration_statement

log_min_error_statement

log_min_messages

optimizer_minidump

Greenplum Database Reference Guide Release Notes

1300

What to Log

debug_pretty_print

debug_print_parse

debug_print_plan

debug_print_prelim_plan

debug_print_rewritten

debug_print_slice_table

log_autostats

log_connections

log_disconnections

log_dispatch_stats

log_duration

log_executor_stats

log_hostname

gp_log_interconnect

log_parser_stats

log_planner_stats

log_statement

log_statement_stats

log_timezone

gp_debug_linger

gp_log_format

gp_reraise_signal

System Monitoring Parameters
These configuration parameters control Greenplum Database data collection and notifications related to
database monitoring.

Greenplum Performance Database

The following parameters configure the data collection agents that populate the gpperfmon database.

gp_enable_gpperfmon

gp_gpperfmon_send_interval

gpperfmon_log_alert_level

gpperfmon_port

Query Metrics Collection Parameters

These parameters enable and configure query metrics collection. When enabled, Greenplum Database
saves metrics to shared memory during query execution. These metrics are used by Pivotal Greenplum
Command Center, which is included with Pivotal's commercial version of Greenplum Database.

gp_enable_query_metrics gp_instrument_shmem_size

Runtime Statistics Collection Parameters
These parameters control the server statistics collection feature. When statistics collection is enabled, you
can access the statistics data using the pg_stat family of system catalog views.

stats_queue_level

track_activities

track_counts

update_process_title

Automatic Statistics Collection Parameters
When automatic statistics collection is enabled, you can run ANALYZE automatically in the same
transaction as an INSERT, UPDATE, DELETE, COPY or CREATE TABLE...AS SELECT statement
when a certain threshold of rows is affected (on_change), or when a newly generated table has no

Greenplum Database Reference Guide Release Notes

1301

statistics (on_no_stats). To enable this feature, set the following server configuration parameters in your
Greenplum Database master postgresql.conf file and restart Greenplum Database:

gp_autostats_mode

gp_autostats_mode_in_functions

gp_autostats_on_change_threshold

log_autostats

Warning: Depending on the specific nature of your database operations, automatic statistics
collection can have a negative performance impact. Carefully evaluate whether the default setting
of on_no_stats is appropriate for your system.

Client Connection Default Parameters
These configuration parameters set defaults that are used for client connections.

Statement Behavior Parameters

check_function_bodies

default_tablespace

default_transaction_deferrable

default_transaction_isolation

default_transaction_read_only

search_path

statement_timeout

temp_tablespaces

vacuum_freeze_min_age

Locale and Formatting Parameters

client_encoding

DateStyle

extra_float_digits

IntervalStyle

lc_collate

lc_ctype

lc_messages

lc_monetary

lc_numeric

lc_time

TimeZone

Other Client Default Parameters

dynamic_library_path

explain_pretty_print

local_preload_libraries

Lock Management Parameters
These configuration parameters set limits for locks and deadlocks.

deadlock_timeout

gp_enable global_deadlock_detector

gp_global_deadlock_detector_period

lock_timeout

max_locks_per_transaction

Greenplum Database Reference Guide Release Notes

1302

Resource Management Parameters (Resource Queues)
The following configuration parameters configure the Greenplum Database resource management feature
(resource queues), query prioritization, memory utilization and concurrency control.

gp_resqueue_memory_policy

gp_resqueue_priority

gp_resqueue_priority_cpucores_per_segment

gp_resqueue_priority_sweeper_interval

gp_vmem_idle_resource_timeout

gp_vmem_protect_limit

gp_vmem_protect_segworker_cache_limit

max_resource_queues

max_resource_portals_per_transaction

max_statement_mem

resource_cleanup_gangs_on_wait

resource_select_only

runaway_detector_activation_percent

statement_mem

stats_queue_level

vmem_process_interrupt

Resource Management Parameters (Resource Groups)
The following parameters configure the Greenplum Database resource group workload management
feature.

gp_resgroup_memory_policy

gp_resource_group_bypass

gp_resource_group_cpu_limit

gp_resource_group_memory_limit

gp_resource_group_queuing_timeout

gp_resource_manager

gp_vmem_idle_resource_timeout

gp_vmem_protect_segworker_cache_limit

max_statement_mem

memory_spill_ratio

runaway_detector_activation_percent

statement_mem

vmem_process_interrupt

External Table Parameters
The following parameters configure the external tables feature of Greenplum Database.

gp_external_enable_exec

gp_external_enable_filter_pushdown

gp_external_max_segs

gp_initial_bad_row_limit

gp_reject_percent_threshold

readable_external_table_timeout

writable_external_table_bufsize

verify_gpfdists_cert

Database Table Parameters
The following parameter configures default option settings for Greenplum Database tables.

gp_create_table_random_default_distribution

gp_default_storage_options

gp_enable_exchange_default_partition

Greenplum Database Reference Guide Release Notes

1303

gp_enable_segment_copy_checking

gp_use_legacy_hashops

Append-Optimized Table Parameters

The following parameters configure the append-optimized tables feature of Greenplum Database.

max_appendonly_tables

gp_add_column_inherits_table_setting

gp_appendonly_compaction

gp_appendonly_compaction_threshold

validate_previous_free_tid

Past Version Compatibility Parameters
The following parameters provide compatibility with older PostgreSQL and Greenplum Database versions.
You do not need to change these parameters in Greenplum Database.

PostgreSQL

array_nulls

backslash_quote

escape_string_warning

regex_flavor

standard_conforming_strings

transform_null_equals

Greenplum Database

gp_ignore_error_table

Greenplum Database Array Configuration Parameters
The parameters in this topic control the configuration of the Greenplum Database array and its
components: segments, master, distributed transaction manager, master mirror, and interconnect.

Interconnect Configuration Parameters

gp_interconnect_fc_method

gp_interconnect_proxy_addresses

gp_interconnect_queue_depth

gp_interconnect_setup_timeout

gp_interconnect_snd_queue_depth

gp_interconnect_type

gp_max_packet_size

Note: Greenplum Database supports only the UDPIFC (default) and TCP interconnect types.

Dispatch Configuration Parameters

gp_cached_segworkers_threshold

gp_enable_direct_dispatch

gp_segment_connect_timeout

gp_set_proc_affinity

Greenplum Database Reference Guide Release Notes

1304

Fault Operation Parameters

gp_set_read_only

gp_fts_probe_interval

gp_fts_probe_retries

gp_fts_probe_threadcount

gp_fts_probe_timeout

gp_fts_replication_attempt_count

gp_log_fts

Distributed Transaction Management Parameters

gp_max_local_distributed_cache

Read-Only Parameters

gp_command_count

gp_content

gp_dbid

gp_role

gp_session_id

gp_server_version

gp_server_version_num

Greenplum Mirroring Parameters for Master and Segments
These parameters control the configuration of the replication between Greenplum Database primary
master and standby master.

max_slot_wal_keep_size

repl_catchup_within_range

replication_timeout

wait_for_replication_threshold

wal_keep_segments

wal_receiver_status_interval

Greenplum PL/Java Parameters
The parameters in this topic control the configuration of the Greenplum Database PL/Java language.

pljava_classpath

pljava_classpath_insecure

pljava_statement_cache_size

pljava_release_lingering_savepoints

pljava_vmoptions

XML Data Parameters
The parameters in this topic control the configuration of the Greenplum Database XML data type.

Greenplum Database Reference Guide Release Notes

1305

xmlbinary

xmloption

Configuration Parameters
Descriptions of the Greenplum Database server configuration parameters listed alphabetically.

• application_name
• array_nulls
• authentication_timeout
• backslash_quote
• block_size
• bonjour_name
• check_function_bodies
• client_encoding
• client_min_messages
• cpu_index_tuple_cost
• cpu_operator_cost
• cpu_tuple_cost
• cursor_tuple_fraction
• data_checksums
• DateStyle
• db_user_namespace
• deadlock_timeout
• debug_assertions
• debug_pretty_print
• debug_print_parse
• debug_print_plan
• debug_print_prelim_plan
• debug_print_rewritten
• debug_print_slice_table
• default_statistics_target
• default_tablespace
• default_text_search_config
• default_transaction_deferrable
• default_transaction_isolation
• default_transaction_read_only
• dynamic_library_path
• effective_cache_size
• enable_bitmapscan
• enable_groupagg
• enable_hashagg
• enable_hashjoin
• enable_indexscan
• enable_mergejoin
• enable_nestloop
• enable_seqscan
• enable_sort
• enable_tidscan

• listen_addresses
• log_planner_stats
• log_rotation_age
• log_rotation_size
• log_statement
• log_statement_stats
• log_temp_files
• log_timezone
• log_truncate_on_rotation
• maintenance_work_mem
• max_appendonly_tables
• max_connections
• max_files_per_process
• max_function_args
• max_identifier_length
• max_index_keys
• max_locks_per_transaction
• max_prepared_transactions
• max_resource_portals_per_transaction
• max_resource_queues
• max_slot_wal_keep_size
• max_stack_depth
• max_statement_mem
• memory_spill_ratio
• optimizer
• optimizer_array_expansion_threshold
• optimizer_analyze_root_partition
• optimizer_control
• optimizer_cte_inlining_bound
• optimizer_enable_associativity
• optimizer_enable_dml
• optimizer_enable_master_only_queries
• optimizer_force_agg_skew_avoidance
• optimizer_force_multistage_agg
• optimizer_force_three_stage_scalar_dqa
• optimizer_join_arity_for_associativity_commutativity
• optimizer_join_order
• optimizer_join_order_threshold
• optimizer_mdcache_size
• optimizer_metadata_caching
• optimizer_minidump
• optimizer_nestloop_factor

Greenplum Database Reference Guide Release Notes

1306

• escape_string_warning
• explain_pretty_print
• extra_float_digits
• from_collapse_limit
• gp_add_column_inherits_table_setting
• gp_adjust_selectivity_for_outerjoins
• gp_appendonly_compaction
• gp_appendonly_compaction_threshold
• gp_autostats_mode
• gp_autostats_mode_in_functions
• gp_autostats_on_change_threshold
• gp_cached_segworkers_threshold
• gp_command_count
• gp_connection_send_timeout
• gp_content
• gp_create_table_random_default_distribution
• gp_dbid
• gp_debug_linger
• gp_default_storage_options
• gp_dynamic_partition_pruning
• gp_enable_agg_distinct
• gp_enable_agg_distinct_pruning
• gp_enable_direct_dispatch
• gp_enable_exchange_default_partition
• gp_enable_fast_sri
• gp_enable_global_deadlock_detector
• gp_enable_gpperfmon
• gp_enable_groupext_distinct_gather
• gp_enable_groupext_distinct_pruning
• gp_enable_multiphase_agg
• gp_enable_predicate_propagation
• gp_enable_preunique
• gp_enable_query_metrics
• gp_enable_relsize_collection
• gp_enable_segment_copy_checking
• gp_enable_sort_distinct
• gp_enable_sort_limit
• gp_external_enable_exec
• gp_external_max_segs
• gp_external_enable_filter_pushdown
• gp_fts_probe_interval
• gp_fts_probe_retries
• gp_fts_probe_threadcount
• gp_fts_probe_timeout
• gp_fts_replication_attempt_count
• gp_global_deadlock_detector_period
• gp_gpperfmon_send_interval
• gp_hashjoin_tuples_per_bucket
• gp_resource_manager
• gp_use_legacy_hashops

• optimizer_parallel_union
• optimizer_penalize_skew
• optimizer_print_missing_stats
• optimizer_print_optimization_stats
• optimizer_sort_factor
• optimizer_use_gpdb_allocators
• plan_cache_mode
• password_encryption
• password_hash_algorithm
• pljava_classpath
• pljava_classpath_insecure
• pljava_statement_cache_size
• pljava_release_lingering_savepoints
• pljava_vmoptions
• port
• random_page_cost
• readable_external_table_timeout
• repl_catchup_within_range
• replication_timeout
• regex_flavor
• resource_cleanup_gangs_on_wait
• resource_select_only
• runaway_detector_activation_percent
• search_path
• seq_page_cost
• server_encoding
• server_version
• server_version_num
• shared_buffers
• shared_preload_libraries
• ssl
• ssl_ciphers
• standard_conforming_strings
• statement_mem
• statement_timeout
• stats_queue_level
• superuser_reserved_connections
• tcp_keepalives_count
• tcp_keepalives_idle
• tcp_keepalives_interval
• temp_buffers
• temp_tablespaces
• TimeZone
• timezone_abbreviations
• track_activity_query_size
• track_activities
• track_counts
• transaction_isolation
• transaction_read_only
• transform_null_equals

Greenplum Database Reference Guide Release Notes

1307

• gp_vmem_idle_resource_timeout
• gp_vmem_protect_limit
• gp_vmem_protect_segworker_cache_limit
• gp_workfile_compression
• gp_workfile_limit_files_per_query
• gp_workfile_limit_per_query
• gp_workfile_limit_per_segment
• gpperfmon_log_alert_level
• gpperfmon_port
• ignore_checksum_failure
• integer_datetimes
• IntervalStyle
• join_collapse_limit
• krb_caseins_users
• krb_server_keyfile
• lc_collate
• lc_ctype
• lc_messages
• lc_monetary
• lc_numeric
• lc_time

• unix_socket_directories
• unix_socket_group
• unix_socket_permissions
• update_process_title
• vacuum_cost_delay
• vacuum_cost_limit
• vacuum_cost_page_dirty
• vacuum_cost_page_hit
• vacuum_cost_page_miss
• vacuum_freeze_min_age
• validate_previous_free_tid
• verify_gpfdists_cert
• vmem_process_interrupt
• wait_for_replication_threshold
• wal_keep_segments
• wal_receiver_status_interval
• writable_external_table_bufsize
• xid_stop_limit
• xid_warn_limit
• xmlbinary
• xmloption

application_name
Sets the application name for a client session. For example, if connecting via psql, this will be set to
psql. Setting an application name allows it to be reported in log messages and statistics views.

Value Range Default Set Classifications

string master

session

reload

array_nulls
This controls whether the array input parser recognizes unquoted NULL as specifying a null array element.
By default, this is on, allowing array values containing null values to be entered. Greenplum Database
versions before 3.0 did not support null values in arrays, and therefore would treat NULL as specifying a
normal array element with the string value 'NULL'.

Value Range Default Set Classifications

Boolean on master

session

reload

authentication_timeout
Maximum time to complete client authentication. This prevents hung clients from occupying a connection
indefinitely.

Greenplum Database Reference Guide Release Notes

1308

Value Range Default Set Classifications

Any valid time expression
(number and unit)

1min local

system

restart

backslash_quote
This controls whether a quote mark can be represented by \' in a string literal. The preferred, SQL-
standard way to represent a quote mark is by doubling it ('') but PostgreSQL has historically also accepted
\'. However, use of \' creates security risks because in some client character set encodings, there are
multibyte characters in which the last byte is numerically equivalent to ASCII \.

Value Range Default Set Classifications

on (allow \' always)

off (reject always)

safe_encoding (allow only if client
encoding does not allow ASCII \
within a multibyte character)

safe_encoding master

session

reload

block_size
Reports the size of a disk block.

Value Range Default Set Classifications

number of bytes 32768 read only

bonjour_name
Specifies the Bonjour broadcast name. By default, the computer name is used, specified as an empty
string. This option is ignored if the server was not compiled with Bonjour support.

Value Range Default Set Classifications

string unset master

system

restart

check_function_bodies
When set to off, disables validation of the function body string during CREATE FUNCTION. Disabling
validation is occasionally useful to avoid problems such as forward references when restoring function
definitions from a dump.

Value Range Default Set Classifications

Boolean on master

session

reload

Greenplum Database Reference Guide Release Notes

1309

client_encoding
Sets the client-side encoding (character set). The default is to use the same as the database encoding.
See Supported Character Sets in the PostgreSQL documentation.

Value Range Default Set Classifications

character set UTF8 master

session

reload

client_min_messages
Controls which message levels are sent to the client. Each level includes all the levels that follow it. The
later the level, the fewer messages are sent.

Value Range Default Set Classifications

DEBUG5

DEBUG4

DEBUG3

DEBUG2

DEBUG1

LOG

NOTICE

WARNING

ERROR

FATAL

PANIC

NOTICE master

session

reload

INFO level messages are always sent to the client.

cpu_index_tuple_cost
For the Postgres Planner, sets the estimate of the cost of processing each index row during an index scan.
This is measured as a fraction of the cost of a sequential page fetch.

Value Range Default Set Classifications

floating point 0.005 master

session

reload

cpu_operator_cost
For the Postgres Planner, sets the estimate of the cost of processing each operator in a WHERE clause.
This is measured as a fraction of the cost of a sequential page fetch.

https://www.postgresql.org/docs/9.4/multibyte.html#MULTIBYTE-CHARSET-SUPPORTED

Greenplum Database Reference Guide Release Notes

1310

Value Range Default Set Classifications

floating point 0.0025 master

session

reload

cpu_tuple_cost
For the Postgres Planner, Sets the estimate of the cost of processing each row during a query. This is
measured as a fraction of the cost of a sequential page fetch.

Value Range Default Set Classifications

floating point 0.01 master

session

reload

cursor_tuple_fraction
Tells the Postgres Planner how many rows are expected to be fetched in a cursor query, thereby allowing
the Postgres Planner to use this information to optimize the query plan. The default of 1 means all rows will
be fetched.

Value Range Default Set Classifications

integer 1 master

session

reload

data_checksums
Reports whether checksums are enabled for heap data storage in the database system. Checksums for
heap data are enabled or disabled when the database system is initialized and cannot be changed.

Heap data pages store heap tables, catalog tables, indexes, and database metadata. Append-optimized
storage has built-in checksum support that is unrelated to this parameter.

Greenplum Database uses checksums to prevent loading data corrupted in the file system into memory
managed by database processes. When heap data checksums are enabled, Greenplum Database
computes and stores checksums on heap data pages when they are written to disk. When a page is
retrieved from disk, the checksum is verified. If the verification fails, an error is generated and the page is
not permitted to load into managed memory.

If the ignore_checksum_failure configuration parameter has been set to on, a failed checksum
verification generates a warning, but the page is allowed to be loaded into managed memory. If the
page is then updated, it is flushed to disk and replicated to the mirror. This can cause data corruption
to propagate to the mirror and prevent a complete recovery. Because of the potential for data loss, the
ignore_checksum_failure parameter should only be enabled when needed to recover data. See
ignore_checksum_failure for more information.

Value Range Default Set Classifications

Boolean on read only

Greenplum Database Reference Guide Release Notes

1311

DateStyle
Sets the display format for date and time values, as well as the rules for interpreting ambiguous date input
values. This variable contains two independent components: the output format specification and the input/
output specification for year/month/day ordering.

Value Range Default Set Classifications

<format>, <date style>

where:

<format> is ISO, Postgres, SQL,
or German

<date style> is DMY, MDY, or
YMD

ISO, MDY master

session

reload

db_user_namespace
This enables per-database user names. If on, you should create users as username@dbname. To create
ordinary global users, simply append @ when specifying the user name in the client.

Value Range Default Set Classifications

Boolean off local

system

restart

deadlock_timeout
The time to wait on a lock before checking to see if there is a deadlock condition. On a heavily loaded
server you might want to raise this value. Ideally the setting should exceed your typical transaction time, so
as to improve the odds that a lock will be released before the waiter decides to check for deadlock.

Value Range Default Set Classifications

Any valid time expression
(number and unit)

1s local

system

restart

debug_assertions
Turns on various assertion checks.

Value Range Default Set Classifications

Boolean off local

system

restart

Greenplum Database Reference Guide Release Notes

1312

debug_pretty_print
Indents debug output to produce a more readable but much longer output format. client_min_messages or
log_min_messages must be DEBUG1 or lower.

Value Range Default Set Classifications

Boolean on master

session

reload

debug_print_parse
For each executed query, prints the resulting parse tree. client_min_messages or log_min_messages must
be DEBUG1 or lower.

Value Range Default Set Classifications

Boolean off master

session

reload

debug_print_plan
For each executed query, prints the Greenplum parallel query execution plan. client_min_messages or
log_min_messages must be DEBUG1 or lower.

Value Range Default Set Classifications

Boolean off master

session

reload

debug_print_prelim_plan
For each executed query, prints the preliminary query plan. client_min_messages or log_min_messages
must be DEBUG1 or lower.

Value Range Default Set Classifications

Boolean off master

session

reload

debug_print_rewritten
For each executed query, prints the query rewriter output. client_min_messages or log_min_messages
must be DEBUG1 or lower.

Greenplum Database Reference Guide Release Notes

1313

Value Range Default Set Classifications

Boolean off master

session

reload

debug_print_slice_table
For each executed query, prints the Greenplum query slice plan. client_min_messages or
log_min_messages must be DEBUG1 or lower.

Value Range Default Set Classifications

Boolean off master

session

reload

default_statistics_target
Sets the default statistics sampling target (the number of values that are stored in the list of common
values) for table columns that have not had a column-specific target set via ALTER TABLE SET
STATISTICS. Larger values may improve the quality of the Postgres Planner estimates.

Value Range Default Set Classifications

0 > Integer > 10000 100 master

session

reload

default_tablespace
The default tablespace in which to create objects (tables and indexes) when a CREATE command does not
explicitly specify a tablespace.

Value Range Default Set Classifications

name of a tablespace unset master

session

reload

default_text_search_config
Selects the text search configuration that is used by those variants of the text search functions that do not
have an explicit argument specifying the configuration. See Using Full Text Search for further information.
The built-in default is pg_catalog.simple, but initdb will initialize the configuration file with a setting
that corresponds to the chosen lc_ctype locale, if a configuration matching that locale can be identified.

Greenplum Database Reference Guide Release Notes

1314

Value Range Default Set Classifications

The name of a text search
configuration.

pg_catalog.simple master

session

reload

default_transaction_deferrable
When running at the SERIALIZABLE isolation level, a deferrable read-only SQL transaction may be
delayed before it is allowed to proceed. However, once it begins executing it does not incur any of the
overhead required to ensure serializability; so serialization code will have no reason to force it to abort
because of concurrent updates, making this option suitable for long-running read-only transactions.

This parameter controls the default deferrable status of each new transaction. It currently has no effect on
read-write transactions or those operating at isolation levels lower than SERIALIZABLE. The default is
off.

Note: Setting default_transaction_deferrable to on has no effect in Greenplum
Database. Only read-only, SERIALIZABLE transactions can be deferred. However, Greenplum
Database does not support the SERIALIZABLE transaction isolation level. See SET
TRANSACTION.

Value Range Default Set Classifications

Boolean off master

session

reload

default_transaction_isolation
Controls the default isolation level of each new transaction. Greenplum Database treats read
uncommitted the same as read committed, and treats serializable the same as repeatable
read.

Value Range Default Set Classifications

read committed

read uncommitted

repeatable read

serializable

read committed master

session

reload

default_transaction_read_only
Controls the default read-only status of each new transaction. A read-only SQL transaction cannot alter
non-temporary tables.

Value Range Default Set Classifications

Boolean off master

session

reload

Greenplum Database Reference Guide Release Notes

1315

dynamic_library_path
If a dynamically loadable module needs to be opened and the file name specified in the CREATE
FUNCTION or LOAD command does not have a directory component (i.e. the name does not contain
a slash), the system will search this path for the required file. The compiled-in PostgreSQL package
library directory is substituted for $libdir. This is where the modules provided by the standard PostgreSQL
distribution are installed.

Value Range Default Set Classifications

a list of absolute directory paths
separated by colons

$libdir local

system

restart

effective_cache_size
Sets the assumption about the effective size of the disk cache that is available to a single query for the
Postgres Planner. This is factored into estimates of the cost of using an index; a higher value makes it
more likely index scans will be used, a lower value makes it more likely sequential scans will be used. This
parameter has no effect on the size of shared memory allocated by a Greenplum server instance, nor does
it reserve kernel disk cache; it is used only for estimation purposes.

Set this parameter to a number of 32K blocks (for example, 512 for 16MB), or specify the size of the
effective cache (for example, '32MB' for 1024 blocks). The gpconfig utility and SHOW command display
the effective cache size value in units such as 'MB' or 'kB'.

Value Range Default Set Classifications

floating point 512 (16GB) master

session

reload

enable_bitmapscan
Enables or disables the use of bitmap-scan plan types by the Postgres Planner. Note that this is different
than a Bitmap Index Scan. A Bitmap Scan means that indexes will be dynamically converted to bitmaps in
memory when appropriate, giving faster index performance on complex queries against very large tables.
It is used when there are multiple predicates on different indexed columns. Each bitmap per column can be
compared to create a final list of selected tuples.

Value Range Default Set Classifications

Boolean on master

session

reload

enable_groupagg
Enables or disables the use of group aggregation plan types by the Postgres Planner.

Greenplum Database Reference Guide Release Notes

1316

Value Range Default Set Classifications

Boolean on master

session

reload

enable_hashagg
Enables or disables the use of hash aggregation plan types by the Postgres Planner.

Value Range Default Set Classifications

Boolean on master

session

reload

enable_hashjoin
Enables or disables the use of hash-join plan types by the Postgres Planner.

Value Range Default Set Classifications

Boolean on master

session

reload

enable_indexscan
Enables or disables the use of index-scan plan types by the Postgres Planner.

Value Range Default Set Classifications

Boolean on master

session

reload

enable_mergejoin
Enables or disables the use of merge-join plan types by the Postgres Planner. Merge join is based on the
idea of sorting the left- and right-hand tables into order and then scanning them in parallel. So, both data
types must be capable of being fully ordered, and the join operator must be one that can only succeed for
pairs of values that fall at the 'same place' in the sort order. In practice this means that the join operator
must behave like equality.

Value Range Default Set Classifications

Boolean off master

session

reload

Greenplum Database Reference Guide Release Notes

1317

enable_nestloop
Enables or disables the use of nested-loop join plans by the Postgres Planner. It's not possible to suppress
nested-loop joins entirely, but turning this variable off discourages the Postgres Planner from using one if
there are other methods available.

Value Range Default Set Classifications

Boolean off master

session

reload

enable_seqscan
Enables or disables the use of sequential scan plan types by the Postgres Planner. It's not possible to
suppress sequential scans entirely, but turning this variable off discourages the Postgres Planner from
using one if there are other methods available.

Value Range Default Set Classifications

Boolean on master

session

reload

enable_sort
Enables or disables the use of explicit sort steps by the Postgres Planner. It's not possible to suppress
explicit sorts entirely, but turning this variable off discourages the Postgres Planner from using one if there
are other methods available.

Value Range Default Set Classifications

Boolean on master

session

reload

enable_tidscan
Enables or disables the use of tuple identifier (TID) scan plan types by the Postgres Planner.

Value Range Default Set Classifications

Boolean on master

session

reload

escape_string_warning
When on, a warning is issued if a backslash (\) appears in an ordinary string literal ('...' syntax). Escape
string syntax (E'...') should be used for escapes, because in future versions, ordinary strings will have the
SQL standard-conforming behavior of treating backslashes literally.

Greenplum Database Reference Guide Release Notes

1318

Value Range Default Set Classifications

Boolean on master

session

reload

explain_pretty_print
Determines whether EXPLAIN VERBOSE uses the indented or non-indented format for displaying detailed
query-tree dumps.

Value Range Default Set Classifications

Boolean on master

session

reload

extra_float_digits
Adjusts the number of digits displayed for floating-point values, including float4, float8, and geometric
data types. The parameter value is added to the standard number of digits. The value can be set as high
as 3, to include partially-significant digits; this is especially useful for dumping float data that needs to be
restored exactly. Or it can be set negative to suppress unwanted digits.

Value Range Default Set Classifications

integer 0 master

session

reload

from_collapse_limit
The Postgres Planner will merge sub-queries into upper queries if the resulting FROM list would have no
more than this many items. Smaller values reduce planning time but may yield inferior query plans.

Value Range Default Set Classifications

1-n 20 master

session

reload

gp_add_column_inherits_table_setting
When adding a column to an append-optimized, column-oriented table with the ALTER TABLE command,
this parameter controls whether the table's data compression parameters for a column (compresstype,
compresslevel, and blocksize) can be inherited from the table values. The default is off, the table's
data compression settings are not considered when adding a column to the table. If the value is on, the
table's settings are considered.

When you create an append-optimized column-oriented table, you can set the table's data compression
parameters compresstype, compresslevel, and blocksize for the table in the WITH clause. When
you add a column, Greenplum Database sets each data compression parameter based on one of the
following settings, in order of preference.

Greenplum Database Reference Guide Release Notes

1319

1. The data compression setting specified in the ALTER TABLE command ENCODING clause.
2. If this server configuration parameter is set to on, the table's data compression setting specified in the

WITH clause when the table was created. Otherwise, the table's data compression setting is ignored.
3. The data compression setting specified in the server configuration parameter

gp_default_storage_options.
4. The default data compression setting.

For information about the data storage compression parameters, see CREATE TABLE.

Value Range Default Set Classifications

Boolean off master

session

reload

gp_adjust_selectivity_for_outerjoins
Enables the selectivity of NULL tests over outer joins.

Value Range Default Set Classifications

Boolean on master

session

reload

gp_appendonly_compaction
Enables compacting segment files during VACUUM commands. When disabled, VACUUM only truncates
the segment files to the EOF value, as is the current behavior. The administrator may want to disable
compaction in high I/O load situations or low space situations.

Value Range Default Set Classifications

Boolean on master

session

reload

gp_appendonly_compaction_threshold
Specifies the threshold ratio (as a percentage) of hidden rows to total rows that triggers compaction of
the segment file when VACUUM is run without the FULL option (a lazy vacuum). If the ratio of hidden rows
in a segment file on a segment is less than this threshold, the segment file is not compacted, and a log
message is issued.

Value Range Default Set Classifications

integer (%) 10 master

session

reload

Greenplum Database Reference Guide Release Notes

1320

gp_autostats_mode
Specifies the mode for triggering automatic statistics collection with ANALYZE. The on_no_stats option
triggers statistics collection for CREATE TABLE AS SELECT, INSERT, or COPY operations on any table
that has no existing statistics.

The on_change option triggers statistics collection only when the number of rows affected exceeds the
threshold defined by gp_autostats_on_change_threshold. Operations that can trigger automatic
statistics collection with on_change are:

CREATE TABLE AS SELECT

UPDATE

DELETE

INSERT

COPY

Default is on_no_stats.

Note: For partitioned tables, automatic statistics collection is not triggered if data is inserted from
the top-level parent table of a partitioned table.

Automatic statistics collection is triggered if data is inserted directly in a leaf table (where the data is
stored) of the partitioned table. Statistics are collected only on the leaf table.

Value Range Default Set Classifications

none

on_change

on_no_stats

on_no_ stats master

session

reload

gp_autostats_mode_in_functions
Specifies the mode for triggering automatic statistics collection with ANALYZE for statements in procedural
language functions. The none option disables statistics collection. The on_no_stats option triggers
statistics collection for CREATE TABLE AS SELECT, INSERT, or COPY operations that are executed in
functions on any table that has no existing statistics.

The on_change option triggers statistics collection only when the number of rows affected exceeds the
threshold defined by gp_autostats_on_change_threshold. Operations in functions that can trigger
automatic statistics collection with on_change are:

CREATE TABLE AS SELECT

UPDATE

DELETE

INSERT

COPY

Value Range Default Set Classifications

none

on_change

on_no_stats

none master

session

reload

Greenplum Database Reference Guide Release Notes

1321

gp_autostats_on_change_threshold
Specifies the threshold for automatic statistics collection when gp_autostats_mode is set to
on_change. When a triggering table operation affects a number of rows exceeding this threshold,
ANALYZE is added and statistics are collected for the table.

Value Range Default Set Classifications

integer 2147483647 master

session

reload

gp_cached_segworkers_threshold
When a user starts a session with Greenplum Database and issues a query, the system creates groups or
'gangs' of worker processes on each segment to do the work. After the work is done, the segment worker
processes are destroyed except for a cached number which is set by this parameter. A lower setting
conserves system resources on the segment hosts, but a higher setting may improve performance for
power-users that want to issue many complex queries in a row.

Value Range Default Set Classifications

integer > 0 5 master

session

reload

gp_command_count
Shows how many commands the master has received from the client. Note that a single SQLcommand
might actually involve more than one command internally, so the counter may increment by more than one
for a single query. This counter also is shared by all of the segment processes working on the command.

Value Range Default Set Classifications

integer > 0 1 read only

gp_connection_send_timeout
Timeout for sending data to unresponsive Greenplum Database user clients during query processing. A
value of 0 disables the timeout, Greenplum Database waits indefinitely for a client. When the timeout is
reached, the query is cancelled with this message:

Could not send data to client: Connection timed out.

Value Range Default Set Classifications

number of seconds 3600 (1 hour) master

system

reload

gp_content
The local content id if a segment.

Greenplum Database Reference Guide Release Notes

1322

Value Range Default Set Classifications

integer read only

gp_create_table_random_default_distribution
Controls table creation when a Greenplum Database table is created with a CREATE TABLE or CREATE
TABLE AS command that does not contain a DISTRIBUTED BY clause.

For CREATE TABLE, if the value of the parameter is off (the default), and the table creation command
does not contain a DISTRIBUTED BY clause, Greenplum Database chooses the table distribution key
based on the command:

• If a LIKE or INHERITS clause is specified, then Greenplum copies the distribution key from the source
or parent table.

• If a PRIMARY KEY or UNIQUE constraints are specified, then Greenplum chooses the largest subset of
all the key columns as the distribution key.

• If neither constraints nor a LIKE or INHERITS clause is specified, then Greenplum chooses the first
suitable column as the distribution key. (Columns with geometric or user-defined data types are not
eligible as Greenplum distribution key columns.)

If the value of the parameter is set to on, Greenplum Database follows these rules to create a table when
the DISTRIBUTED BY clause is not specified:

• If PRIMARY KEY or UNIQUE columns are not specified, the distribution of the table is random
(DISTRIBUTED RANDOMLY). Table distribution is random even if the table creation command contains
the LIKE or INHERITS clause.

• If PRIMARY KEY or UNIQUE columns are specified, a DISTRIBUTED BY clause must also be specified.
If a DISTRIBUTED BY clause is not specified as part of the table creation command, the command
fails.

For a CREATE TABLE AS command that does not contain a distribution clause:

• If the Postgres Planner creates the table, and the value of the parameter is off, the table distribution
policy is determined based on the command.

• If the Postgres Planner creates the table, and the value of the parameter is on, the table distribution
policy is random.

• If GPORCA creates the table, the table distribution policy is random. The parameter value has no affect.

For information about the Postgres Planner and GPORCA, see "Querying Data" in the Greenplum
Database Administrator Guide.

Value Range Default Set Classifications

boolean off master

system

reload

gp_dbid
The local content dbid if a segment.

Value Range Default Set Classifications

integer read only

Greenplum Database Reference Guide Release Notes

1323

gp_debug_linger
Number of seconds for a Greenplum process to linger after a fatal internal error.

Value Range Default Set Classifications

Any valid time expression
(number and unit)

0 master

session

reload

gp_default_storage_options
Set the default values for the following table storage options when a table is created with the CREATE
TABLE command.

• appendoptimized

Note: You use the appendoptimized=value syntax to specify the append-optimized table
storage type. appendoptimized is a thin alias for the appendonly legacy storage option.
Greenplum Database stores appendonly in the catalog, and displays the same when listing the
storage options for append-optimized tables.

• blocksize

• checksum

• compresstype

• compresslevel

• orientation

Specify multiple storage option values as a comma separated list.

You can set the storage options with this parameter instead of specifying the table storage options in the
WITH of the CREATE TABLE command. The table storage options that are specified with the CREATE
TABLE command override the values specified by this parameter.

Not all combinations of storage option values are valid. If the specified storage options are not valid, an
error is returned. See the CREATE TABLE command for information about table storage options.

The defaults can be set for a database and user. If the server configuration parameter is set at different
levels, this the order of precedence, from highest to lowest, of the table storage values when a user logs
into a database and creates a table:

1. The values specified in a CREATE TABLE command with the WITH clause or ENCODING clause
2. The value of gp_default_storage_options that set for the user with the ALTER ROLE...SET

command
3. The value of gp_default_storage_options that is set for the database with the ALTER

DATABASE...SET command
4. The value of gp_default_storage_options that is set for the Greenplum Database system with

the gpconfig utility

The parameter value is not cumulative. For example, if the parameter specifies the appendoptimized
and compresstype options for a database and a user logs in and sets the parameter to specify the value
for the orientation option, the appendoptimized, and compresstype values set at the database
level are ignored.

This example ALTER DATABASE command sets the default orientation and compresstype table
storage options for the database mytest.

ALTER DATABASE mytest SET gp_default_storage_options = 'orientation=column,
 compresstype=rle_type'

Greenplum Database Reference Guide Release Notes

1324

To create an append-optimized table in the mytest database with column-oriented table and RLE
compression. The user needs to specify only appendoptimized=TRUE in the WITH clause.

This example gpconfig utility command sets the default storage option for a Greenplum Database
system. If you set the defaults for multiple table storage options, the value must be enclosed in single
quotes.

gpconfig -c 'gp_default_storage_options' -v 'appendoptimized=true,
 orientation=column'

This example gpconfig utility command shows the value of the parameter. The parameter value must be
consistent across the Greenplum Database master and all segments.

gpconfig -s 'gp_default_storage_options'

Value Range Default Set Classifications 1

appendoptimized= TRUE |
FALSE

blocksize= integer between
8192 and 2097152

checksum= TRUE | FALSE

compresstype= ZLIB | ZSTD |
QUICKLZ2 | RLE_TYPE | NONE

compresslevel= integer
between 0 and 19

orientation= ROW | COLUMN

appendoptimized=FALSE

blocksize=32768

checksum=TRUE

compresstype=none

compresslevel=0

orientation=ROW

master

session

reload

Note: 1The set classification when the parameter is set at the system level with the gpconfig
utility.

Note: 2QuickLZ compression is available only in the commercial release of Pivotal Greenplum
Database.

gp_dynamic_partition_pruning
Enables plans that can dynamically eliminate the scanning of partitions.

Value Range Default Set Classifications

on/off on master

session

reload

gp_enable_agg_distinct
Enables or disables two-phase aggregation to compute a single distinct-qualified aggregate. This applies
only to subqueries that include a single distinct-qualified aggregate function.

Greenplum Database Reference Guide Release Notes

1325

Value Range Default Set Classifications

Boolean on master

session

reload

gp_enable_agg_distinct_pruning
Enables or disables three-phase aggregation and join to compute distinct-qualified aggregates. This
applies only to subqueries that include one or more distinct-qualified aggregate functions.

Value Range Default Set Classifications

Boolean on master

session

reload

gp_enable_direct_dispatch
Enables or disables the dispatching of targeted query plans for queries that access data on a single
segment. When on, queries that target rows on a single segment will only have their query plan dispatched
to that segment (rather than to all segments). This significantly reduces the response time of qualifying
queries as there is no interconnect setup involved. Direct dispatch does require more CPU utilization on
the master.

Value Range Default Set Classifications

Boolean on master

system

restart

gp_enable_exchange_default_partition
Controls availability of the EXCHANGE DEFAULT PARTITION clause for ALTER TABLE. The default value
for the parameter is off. The clause is not available and Greenplum Database returns an error if the
clause is specified in an ALTER TABLE command.

If the value is on, Greenplum Database returns a warning stating that exchanging the default partition
might result in incorrect results due to invalid data in the default partition.

Warning: Before you exchange the default partition, you must ensure the data in the table to
be exchanged, the new default partition, is valid for the default partition. For example, the data in
the new default partition must not contain data that would be valid in other leaf child partitions of
the partitioned table. Otherwise, queries against the partitioned table with the exchanged default
partition that are executed by GPORCA might return incorrect results.

Value Range Default Set Classifications

Boolean off master

session

reload

Greenplum Database Reference Guide Release Notes

1326

gp_enable_fast_sri
When set to on, the Postgres Planner plans single row inserts so that they are sent directly to the correct
segment instance (no motion operation required). This significantly improves performance of single-row-
insert statements.

Value Range Default Set Classifications

Boolean on master

session

reload

gp_enable_global_deadlock_detector
Controls whether the Greenplum Database Global Deadlock Detector is enabled to manage concurrent
UPDATE and DELETE operations on heap tables to improve performance. See Global Deadlock Detector
in the Greenplum Database Administrator Guide. The default is off, the Global Deadlock Detector is
disabled.

If the Global Deadlock Detector is disabled (the default), Greenplum Database executes concurrent update
and delete operations on a heap table serially.

If the Global Deadlock Detector is enabled, concurrent updates are permitted and the Global Deadlock
Detector determines when a deadlock exists, and breaks the deadlock by cancelling one or more backend
processes associated with the youngest transaction(s) involved.

Value Range Default Set Classifications

Boolean off master

system

restart

gp_enable_gpperfmon
Enables or disables the data collection agents that populate the gpperfmon database.

Value Range Default Set Classifications

Boolean off local

system

restart

gp_enable_groupext_distinct_gather
Enables or disables gathering data to a single node to compute distinct-qualified aggregates on grouping
extension queries. When this parameter and gp_enable_groupext_distinct_pruning are both
enabled, the Postgres Planner uses the cheaper plan.

Value Range Default Set Classifications

Boolean on master

session

reload

Greenplum Database Reference Guide Release Notes

1327

gp_enable_groupext_distinct_pruning
Enables or disables three-phase aggregation and join to compute distinct-qualified aggregates on grouping
extension queries. Usually, enabling this parameter generates a cheaper query plan that the Postgres
Planner will use in preference to existing plan.

Value Range Default Set Classifications

Boolean on master

session

reload

gp_enable_multiphase_agg
Enables or disables the use of two or three-stage parallel aggregation plans Postgres Planner. This
approach applies to any subquery with aggregation. If gp_enable_multiphase_agg is off, then
gp_enable_agg_distinct and gp_enable_agg_distinct_pruning are disabled.

Value Range Default Set Classifications

Boolean on master

session

reload

gp_enable_predicate_propagation
When enabled, the Postgres Planner applies query predicates to both table expressions in cases where
the tables are joined on their distribution key column(s). Filtering both tables prior to doing the join (when
possible) is more efficient.

Value Range Default Set Classifications

Boolean on master

session

reload

gp_enable_preunique
Enables two-phase duplicate removal for SELECT DISTINCT queries (not SELECT COUNT(DISTINCT)).
When enabled, it adds an extra SORT DISTINCT set of plan nodes before motioning. In cases where the
distinct operation greatly reduces the number of rows, this extra SORT DISTINCT is much cheaper than
the cost of sending the rows across the Interconnect.

Value Range Default Set Classifications

Boolean on master

session

reload

Greenplum Database Reference Guide Release Notes

1328

gp_enable_query_metrics
Enables collection of query metrics. When query metrics collection is enabled, Greenplum Database
collects metrics during query execution. The default is off.

After changing this configuration parameter, Greenplum Database must be restarted for the change to take
effect.

The Greenplum Database metrics collection extension, when enabled, sends the collected metrics over
UDP to a Pivotal Greenplum Command Center agent1.

Note: 1 The metrics collection extension is included in Pivotal's commercial version of Greenplum
Database. Pivotal Greenplum Command Center is supported only with Pivotal Greenplum
Database.

Value Range Default Set Classifications

Boolean off master

system

restart

gp_enable_relsize_collection
Enables GPORCA and the Postgres Planner to use the estimated size of a table (pg_relation_size
function) if there are no statistics for the table. By default, GPORCA and the planner use a default
value to estimate the number of rows if statistics are not available. The default behavior improves query
optimization time and reduces resource queue usage in heavy workloads, but can lead to suboptimal
plans.

This parameter is ignored for a root partition of a partitioned table. When GPORCA is enabled and the
root partition does not have statistics, GPORCA always uses the default value. You can use ANALZYE
ROOTPARTITION to collect statistics on the root partition. See ANALYZE.

Value Range Default Set Classifications

Boolean off master

session

reload

gp_enable_segment_copy_checking
Controls whether the distribution policy for a table (from the table DISTRIBUTED clause) is checked when
data is copied into the table with the COPY FROM...ON SEGMENT command. If true, an error is returned if
a row of data violates the distribution policy for a segment instance. The default is true.

If the value is false, the distribution policy is not checked. The data added to the table might violate the
table distribution policy for the segment instance. Manual redistribution of table data might be required. See
the ALTER TABLE clause WITH REORGANIZE.

The parameter can be set for a database system or a session. The parameter cannot be set for a specific
database.

Greenplum Database Reference Guide Release Notes

1329

Value Range Default Set Classifications

Boolean true master

session

reload

gp_enable_sort_distinct
Enable duplicates to be removed while sorting.

Value Range Default Set Classifications

Boolean on master

session

reload

gp_enable_sort_limit
Enable LIMIT operation to be performed while sorting. Sorts more efficiently when the plan requires the
first limit_number of rows at most.

Value Range Default Set Classifications

Boolean on master

session

reload

gp_external_enable_exec
Enables or disables the use of external tables that execute OS commands or scripts on the segment
hosts (CREATE EXTERNAL TABLE EXECUTE syntax). Must be enabled if using the Command Center or
MapReduce features.

Value Range Default Set Classifications

Boolean on master

system

restart

gp_external_max_segs
Sets the number of segments that will scan external table data during an external table operation, the
purpose being not to overload the system with scanning data and take away resources from other
concurrent operations. This only applies to external tables that use the gpfdist:// protocol to access
external table data.

Value Range Default Set Classifications

integer 64 master

session

reload

Greenplum Database Reference Guide Release Notes

1330

gp_external_enable_filter_pushdown
Enable filter pushdown when reading data from external tables. If pushdown fails, a query is executed
without pushing filters to the external data source (instead, Greenplum Database applies the same
constraints to the result). See Defining External Tables for more information.

Value Range Default Set Classifications

Boolean on master

session

reload

gp_fts_probe_interval
Specifies the polling interval for the fault detection process (ftsprobe). The ftsprobe process will take
approximately this amount of time to detect a segment failure.

Value Range Default Set Classifications

10 - 3600 seconds 1min master

system

restart

gp_fts_probe_retries
Specifies the number of times the fault detection process (ftsprobe) attempts to connect to a segment
before reporting segment failure.

Value Range Default Set Classifications

integer 5 master

system

restart

gp_fts_probe_threadcount
Specifies the number of ftsprobe threads to create. This parameter should be set to a value equal to or
greater than the number of segments per host.

Value Range Default Set Classifications

1 - 128 16 master

system

restart

gp_fts_probe_timeout
Specifies the allowed timeout for the fault detection process (ftsprobe) to establish a connection to a
segment before declaring it down.

Greenplum Database Reference Guide Release Notes

1331

Value Range Default Set Classifications

10 - 3600 seconds 20 secs master

system

restart

gp_fts_replication_attempt_count
Specifies the maximum number of times that Greenplum Database attempts to establish a primary-mirror
replication connection. When this count is exceeded, the fault detection process (ftsprobe) stops retrying
and marks the mirror down.

Value Range Default Set Classifications

0 - 100 10 master

system

reload

gp_global_deadlock_detector_period
Specifies the executing interval (in seconds) of the global deadlock detector background worker process.

Value Range Default Set Classifications

5 - INT_MAX secs 120 secs master

system

reload

gp_log_fts
Controls the amount of detail the fault detection process (ftsprobe) writes to the log file.

Value Range Default Set Classifications

OFF

TERSE

VERBOSE

DEBUG

TERSE master

system

restart

gp_log_interconnect
Controls the amount of information that is written to the log file about communication between Greenplum
Database segment instance worker processes. The default value is terse. The log information is written
to both the master and segment instance logs.

Increasing the amount of logging could affect performance and increase disk space usage.

Greenplum Database Reference Guide Release Notes

1332

Value Range Default Set Classifications

off

terse

verbose

debug

terse master

session

reload

gp_log_gang
Controls the amount of information that is written to the log file about query worker process creation and
query management. The default value is OFF, do not log information.

Value Range Default Set Classifications

OFF

TERSE

VERBOSE

DEBUG

OFF master

session

restart

gp_gpperfmon_send_interval
Sets the frequency that the Greenplum Database server processes send query execution updates to the
data collection agent processes used to populate the gpperfmon database. Query operations executed
during this interval are sent through UDP to the segment monitor agents. If you find that an excessive
number of UDP packets are dropped during long-running, complex queries, you may consider increasing
this value.

Value Range Default Set Classifications

Any valid time expression
(number and unit)

1sec master

system

restart

superuser

gpperfmon_log_alert_level
Controls which message levels are written to the gpperfmon log. Each level includes all the levels that
follow it. The later the level, the fewer messages are sent to the log.

Note: If the gpperfmon database is installed and is monitoring the database, the default value is
warning.

Value Range Default Set Classifications

none

warning

error

fatal

panic

none local

system

restart

Greenplum Database Reference Guide Release Notes

1333

gp_hashjoin_tuples_per_bucket
Sets the target density of the hash table used by HashJoin operations. A smaller value will tend to produce
larger hash tables, which can increase join performance.

Value Range Default Set Classifications

integer 5 master

session

reload

gp_ignore_error_table
Controls Greenplum Database behavior when the deprecated INTO ERROR TABLE clause is specified in
a CREATE EXTERNAL TABLE or COPY command.

Note: The INTO ERROR TABLE clause was deprecated and removed in Greenplum Database 5.
In Greenplum Database 7, this parameter will be removed as well, causing all INTO ERROR TABLE
invocations be yield a syntax error.

The default value is false, Greenplum Database returns an error if the INTO ERROR TABLE clause is
specified in a command.

If the value is true, Greenplum Database ignores the clause, issues a warning, and executes the
command without the INTO ERROR TABLE clause. In Greenplum Database 5.x and later, you access the
error log information with built-in SQL functions. See the CREATE EXTERNAL TABLE or COPY command.

You can set this value to true to avoid the Greenplum Database error when you run applications that
execute CREATE EXTERNAL TABLE or COPY commands that include the Greenplum Database 4.3.x INTO
ERROR TABLE clause.

Value Range Default Set Classifications

Boolean false master

session

reload

gp_initial_bad_row_limit
For the parameter value n, Greenplum Database stops processing input rows when you import data with
the COPY command or from an external table if the first n rows processed contain formatting errors. If a
valid row is processed within the first n rows, Greenplum Database continues processing input rows.

Setting the value to 0 disables this limit.

The SEGMENT REJECT LIMIT clause can also be specified for the COPY command or the external table
definition to limit the number of rejected rows.

INT_MAX is the largest value that can be stored as an integer on your system.

Value Range Default Set Classifications

integer 0 - INT_MAX 1000 master

session

reload

Greenplum Database Reference Guide Release Notes

1334

gp_instrument_shmem_size
The amount of shared memory, in kilobytes, allocated for query metrics. The default is 5120 and the
maximum is 131072. At startup, if gp_enable_query_metrics is set to on, Greenplum Database
allocates space in shared memory to save query metrics. This memory is organized as a header and
a list of slots. The number of slots needed depends on the number of concurrent queries and the
number of execution plan nodes per query. The default value, 5120, is based on a Greenplum Database
system that executes a maximum of about 250 concurrent queries with 120 nodes per query. If the
gp_enable_query_metrics configuration parameter is off, or if the slots are exhausted, the metrics are
maintained in local memory instead of in shared memory.

Value Range Default Set Classifications

integer 0 - 131072 5120 master

system

restart

gp_interconnect_debug_retry_interval
Specifies the interval, in seconds, to log Greenplum Database interconnect debugging messages when the
server configuration parameter gp_log_interconnect is set to DEBUG. The default is 10 seconds.

The log messages contain information about the interconnect communication between Greenplum
Database segment instance worker processes. The information can be helpful when debugging network
issues between segment instances.

Value Range Default Set Classifications

1 =< Integer < 4096 10 master

session

reload

gp_interconnect_fc_method
Specifies the flow control method used for the default Greenplum Database UDPIFC interconnect.

For capacity based flow control, senders do not send packets when receivers do not have the capacity.

Loss based flow control is based on capacity based flow control, and also tunes the sending speed
according to packet losses.

Value Range Default Set Classifications

CAPACITY

LOSS

LOSS master

session

reload

gp_interconnect_proxy_addresses
Sets the proxy ports that Greenplum Database uses when the server configuration parameter
gp_interconnect_type is set to proxy. Otherwise, this parameter is ignored. The default value is an
empty string ("").

Greenplum Database Reference Guide Release Notes

1335

When the gp_interconnect_type parameter is set to proxy, You must specify a proxy port for the
master, standby master, and all primary and mirror segment instances in this format:

<db_id>:<cont_id>:<seg_ip>:<port>[,<dbid>:<segid>:<ip>:<port> ...]

For the master, standby master, and segment instance, the first three fields, db_id, cont_id, and seg_ip can
be found in the gp_segment_configuration catalog table. The fourth field, port, is the proxy port for
the Greenplum master or a segment instance.

• db_id is the dbid column in the catalog table.
• cont_id is the content column in the catalog table.
• seg_ip is the IP address corresponding to address column in the catalog table. If the address is a

hostname, use the IP address of the hostname.
• port is the TCP/IP port for the segment instance proxy that you specify.

Important: The seg_ip must be an IP address, not a hostname. Also, If the mapping of a segment
instance hostname to the IP address changes, you must update the IP address in the parameter
value.

You must specify the value as a single-quoted string. This gpconfig command sets the value for
gp_interconnect_proxy_addresses as a single-quoted string. The Greenplum system consists of a
master and a single segment instance.

gpconfig --skipvalidation -c gp_interconnect_proxy_addresses -v
 "'1:-1:192.168.180.50:35432,2:0:192.168.180.54:35000'"

For an example of setting gp_interconnect_proxy_addresses, see Configuring Proxies for the
Greenplum Interconnect.

Value Range Default Set Classifications

string (maximum length - 16384
bytes)

local

system

restart

gp_interconnect_queue_depth
Sets the amount of data per-peer to be queued by the Greenplum Database interconnect on receivers
(when data is received but no space is available to receive it the data will be dropped, and the transmitter
will need to resend it) for the default UDPIFC interconnect. Increasing the depth from its default value
will cause the system to use more memory, but may increase performance. It is reasonable to set this
value between 1 and 10. Queries with data skew potentially perform better with an increased queue depth.
Increasing this may radically increase the amount of memory used by the system.

Value Range Default Set Classifications

1-2048 4 master

session

reload

gp_interconnect_setup_timeout
Specifies the amount of time to wait for the Greenplum Database interconnect to complete setup before it
times out.

Greenplum Database Reference Guide Release Notes

1336

Value Range Default Set Classifications

Any valid time expression
(number and unit)

2 hours master

session

reload

gp_interconnect_snd_queue_depth
Sets the amount of data per-peer to be queued by the default UDPIFC interconnect on senders. Increasing
the depth from its default value will cause the system to use more memory, but may increase performance.
Reasonable values for this parameter are between 1 and 4. Increasing the value might radically increase
the amount of memory used by the system.

Value Range Default Set Classifications

1 - 4096 2 master

session

reload

gp_interconnect_type
Sets the networking protocol used for Greenplum Database interconnect traffic. UDPIFC specifies using
UDP with flow control for interconnect traffic, and is the only value supported.

UDPIFC (the default) specifies using UDP with flow control for interconnect traffic. Specify the interconnect
flow control method with gp_interconnect_fc_method.

With TCP as the interconnect protocol, Greenplum Database has an upper limit of 1000 segment instances
- less than that if the query workload involves complex, multi-slice queries.

The PROXY value specifies using the TCP protocol, and when running queries, using a proxy for
Greenplum interconnect communication between the master instance and segment instances
and between two segment instances. When this parameter is set to PROXY, you must specify
the proxy ports for the master and segment instances with the server configuration parameter
gp_interconnect_proxy_addresses. For information about configuring and using proxies with the
Greenplum interconnect, see Configuring Proxies for the Greenplum Interconnect.

Value Range Default Set Classifications

UDPIFC

TCP

PROXY

UDPIFC local

system

restart

gp_log_format
Specifies the format of the server log files. If using gp_toolkit administrative schema, the log files must be
in CSV format.

Value Range Default Set Classifications

csv

text

csv local

system

restart

Greenplum Database Reference Guide Release Notes

1337

gp_max_local_distributed_cache
Sets the maximum number of distributed transaction log entries to cache in the backend process memory
of a segment instance.

The log entries contain information about the state of rows that are being accessed by an SQL statement.
The information is used to determine which rows are visible to an SQL transaction when executing multiple
simultaneous SQL statements in an MVCC environment. Caching distributed transaction log entries
locally improves transaction processing speed by improving performance of the row visibility determination
process.

The default value is optimal for a wide variety of SQL processing environments.

Value Range Default Set Classifications

integer 1024 local

system

restart

gp_max_packet_size
Sets the tuple-serialization chunk size for the Greenplum Database interconnect.

Value Range Default Set Classifications

512-65536 8192 master

system

restart

gp_max_plan_size
Specifies the total maximum uncompressed size of a query execution plan multiplied by the number of
Motion operators (slices) in the plan. If the size of the query plan exceeds the value, the query is cancelled
and an error is returned. A value of 0 means that the size of the plan is not monitored.

You can specify a value in kB, MB, or GB. The default unit is kB. For example, a value of 200 is 200kB. A
value of 1GB is the same as 1024MB or 1048576kB.

Value Range Default Set Classifications

integer 0 master

superuser

session

gp_max_slices
Specifies the maximum number of slices (portions of a query plan that are executed on segment instances)
that can be generated by a query. If the query generates more than the specified number of slices,
Greenplum Database returns an error and does not execute the query. The default value is 0, no maximum
value.

Executing a query that generates a large number of slices might affect Greenplum Database performance.
For example, a query that contains UNION or UNION ALL operators over several complex views can
generate a large number of slices. You can run EXPLAIN ANALYZE on the query to view slice statistics for
the query.

Greenplum Database Reference Guide Release Notes

1338

Value Range Default Set Classifications

0 - INT_MAX 0 master

session

reload

gp_motion_cost_per_row
Sets the Postgres Planner cost estimate for a Motion operator to transfer a row from one segment to
another, measured as a fraction of the cost of a sequential page fetch. If 0, then the value used is two
times the value of cpu_tuple_cost.

Value Range Default Set Classifications

floating point 0 master

session

reload

gp_recursive_cte
Controls the availability of the RECURSIVE keyword in the WITH clause of a SELECT [INTO] command,
or a DELETE, INSERT or UPDATE command. The keyword allows a subquery in the WITH clause of a
command to reference itself. The default value is false, the RECURSIVE keyword is not allowed in the
WITH clause of a command.

For information about the RECURSIVE keyword (Beta), see the SELECT command and WITH Queries
(Common Table Expressions).

The parameter can be set for a database system, an individual database, or a session or query.

Note: This parameter was previously named gp_recursive_cte_prototype, but has been
renamed to reflect the current status of the implementation.

Value Range Default Set Classifications

Boolean true master

session

restart

gp_reject_percent_threshold
For single row error handling on COPY and external table SELECTs, sets the number of rows processed
before SEGMENT REJECT LIMIT n PERCENT starts calculating.

Value Range Default Set Classifications

1-n 300 master

session

reload

gp_reraise_signal
If enabled, will attempt to dump core if a fatal server error occurs.

Greenplum Database Reference Guide Release Notes

1339

Value Range Default Set Classifications

Boolean on master

session

reload

gp_resgroup_memory_policy
Note: The gp_resgroup_memory_policy server configuration parameter is enforced only when
resource group-based resource management is active.

Used by a resource group to manage memory allocation to query operators.

When set to auto, Greenplum Database uses resource group memory limits to distribute memory across
query operators, allocating a fixed size of memory to non-memory-intensive operators and the rest to
memory-intensive operators.

When you specify eager_free, Greenplum Database distributes memory among operators more
optimally by re-allocating memory released by operators that have completed their processing to operators
in a later query stage.

Value Range Default Set Classifications

auto, eager_free eager_free local

system

superuser

restart/reload

gp_resource_group_bypass
Note: The gp_resource_group_bypass server configuration parameter is enforced only when
resource group-based resource management is active.

Enables or disables the enforcement of resource group concurrent transaction limits on Greenplum
Database resources. The default value is false, which enforces resource group transaction limits.
Resource groups manage resources such as CPU, memory, and the number of concurrent transactions
that are used by queries and external components such as PL/Container.

You can set this parameter to true to bypass resource group concurrent transaction limitations so that a
query can run immediately. For example, you can set the parameter to true for a session to run a system
catalog query or a similar query that requires a minimal amount of resources.

When you set this parameter to true and a run a query, the query runs in this environment:

• The query runs inside a resource group. The resource group assignment for the query does not
change.

• The query memory quota is approximately 10 MB per query. The memory is allocated from resource
group shared memory or global shared memory. The query fails if there is not enough shared memory
available to fulfill the memory allocation request.

This parameter can be set for a session. The parameter cannot be set within a transaction or a function.

Value Range Default Set Classifications

Boolean false session

Greenplum Database Reference Guide Release Notes

1340

gp_resource_group_cpu_limit
Note: The gp_resource_group_cpu_limit server configuration parameter is enforced only
when resource group-based resource management is active.

Identifies the maximum percentage of system CPU resources to allocate to resource groups on each
Greenplum Database segment node.

Value Range Default Set Classifications

0.1 - 1.0 0.9 local

system

restart

gp_resource_group_memory_limit
Note: The gp_resource_group_memory_limit server configuration parameter is enforced
only when resource group-based resource management is active.

Identifies the maximum percentage of system memory resources to allocate to resource groups on each
Greenplum Database segment node.

Value Range Default Set Classifications

0.1 - 1.0 0.7 local

system

restart

Note: When resource group-based resource management is active, the memory allotted to a
segment host is equally shared by active primary segments. Greenplum Database assigns memory
to primary segments when the segment takes the primary role. The initial memory allotment to a
primary segment does not change, even in a failover situation. This may result in a segment host
utilizing more memory than the gp_resource_group_memory_limit setting permits.

For example, suppose your Greenplum Database cluster is utilizing the default
gp_resource_group_memory_limit of 0.7 and a segment host named seghost1 has 4
primary segments and 4 mirror segments. Greenplum Database assigns each primary segment on
seghost1 (0.7 / 4 = 0.175%) of overall system memory. If failover occurs and two mirrors
on seghost1 fail over to become primary segments, each of the original 4 primaries retain their
memory allotment of 0.175, and the two new primary segments are each allotted (0.7 / 6 =
0.116%) of system memory. seghost1's overall memory allocation in this scenario is

0.7 + (0.116 * 2) = 0.932%

which is above the percentage configured in the gp_resource_group_memory_limit setting.

gp_resource_group_queuing_timeout
Note: The gp_resource_group_queuing_timeout server configuration parameter is enforced
only when resource group-based resource management is active.

Cancel a transaction queued in a resource group that waits longer than the specified number of
milliseconds. The time limit applies separately to each transaction. The default value is zero; transactions
are queued indefinitely and never time out.

Greenplum Database Reference Guide Release Notes

1341

Value Range Default Set Classifications

0 - INT_MAX millisecs 0 millisecs master

system

session

reload

gp_resource_manager
Identifies the resource management scheme currently enabled in the Greenplum Database cluster.
The default scheme is to use resource queues. For information about Greenplum Database resource
management, see Managing Resources.

Value Range Default Set Classifications

group

queue

queue local

system

restart

gp_resqueue_memory_policy
Note: The gp_resqueue_memory_policy server configuration parameter is enforced only when
resource queue-based resource management is active.

Enables Greenplum memory management features. The distribution algorithm eager_free takes
advantage of the fact that not all operators execute at the same time (in Greenplum Database 4.2 and
later). The query plan is divided into stages and Greenplum Database eagerly frees memory allocated to
a previous stage at the end of that stage's execution, then allocates the eagerly freed memory to the new
stage.

When set to none, memory management is the same as in Greenplum Database releases prior to 4.1.

When set to auto, query memory usage is controlled by statement_mem and resource queue memory
limits.

Value Range Default Set Classifications

none, auto, eager_free eager_free local

system

restart/reload

gp_resqueue_priority
Note: The gp_resqueue_priority server configuration parameter is enforced only when
resource queue-based resource management is active.

Enables or disables query prioritization. When this parameter is disabled, existing priority settings are not
evaluated at query run time.

Value Range Default Set Classifications

Boolean on local

system

restart

Greenplum Database Reference Guide Release Notes

1342

gp_resqueue_priority_cpucores_per_segment
Note: The gp_resqueue_priority_cpucores_per_segment server configuration parameter
is enforced only when resource queue-based resource management is active.

Specifies the number of CPU units allocated per segment instance. For example, if a Greenplum Database
cluster has 10-core segment hosts that are configured with four segments, set the value for the segment
instances to 2.5. For the master instance, the value would be 10. A master host typically has only the
master instance running on it, so the value for the master should reflect the usage of all available CPU
cores.

Incorrect settings can result in CPU under-utilization or query prioritization not working as designed.

Value Range Default Set Classifications

0.1 - 512.0 4 local

system

restart

gp_resqueue_priority_sweeper_interval
Note: The gp_resqueue_priority_sweeper_interval server configuration parameter is
enforced only when resource queue-based resource management is active.

Specifies the interval at which the sweeper process evaluates current CPU usage. When a new statement
becomes active, its priority is evaluated and its CPU share determined when the next interval is reached.

Value Range Default Set Classifications

500 - 15000 ms 1000 local

system

restart

gp_role
The role of this server process " set to dispatch for the master and execute for a segment.

Value Range Default Set Classifications

dispatch

execute

utility

read only

gp_safefswritesize
Specifies a minimum size for safe write operations to append-optimized tables in a non-mature file system.
When a number of bytes greater than zero is specified, the append-optimized writer adds padding data up
to that number in order to prevent data corruption due to file system errors. Each non-mature file system
has a known safe write size that must be specified here when using Greenplum Database with that type of
file system. This is commonly set to a multiple of the extent size of the file system; for example, Linux ext3
is 4096 bytes, so a value of 32768 is commonly used.

Greenplum Database Reference Guide Release Notes

1343

Value Range Default Set Classifications

integer 0 local

system

restart

gp_segment_connect_timeout
Time that the Greenplum interconnect will try to connect to a segment instance over the network before
timing out. Controls the network connection timeout between master and primary segments, and primary to
mirror segment replication processes.

Value Range Default Set Classifications

Any valid time expression
(number and unit)

10min local

system

reload

gp_segments_for_planner
Sets the number of primary segment instances for the Postgres Planner to assume in its cost and size
estimates. If 0, then the value used is the actual number of primary segments. This variable affects the
Postgres Planner's estimates of the number of rows handled by each sending and receiving process in
Motion operators.

Value Range Default Set Classifications

0-n 0 master

session

reload

gp_server_version
Reports the version number of the server as a string. A version modifier argument might be appended to
the numeric portion of the version string, example: 5.0.0 beta.

Value Range Default Set Classifications

String. Examples: 5.0.0 n/a read only

gp_server_version_num
Reports the version number of the server as an integer. The number is guaranteed to always be increasing
for each version and can be used for numeric comparisons. The major version is represented as is, the
minor and patch versions are zero-padded to always be double digit wide.

Value Range Default Set Classifications

Mmmpp where M is the major
version, mm is the minor version
zero-padded and pp is the patch
version zero-padded. Example:
50000

n/a read only

Greenplum Database Reference Guide Release Notes

1344

gp_session_id
A system assigned ID number for a client session. Starts counting from 1 when the master instance is first
started.

Value Range Default Set Classifications

1-n 14 read only

gp_set_proc_affinity
If enabled, when a Greenplum server process (postmaster) is started it will bind to a CPU.

Value Range Default Set Classifications

Boolean off master

system

restart

gp_set_read_only
Set to on to disable writes to the database. Any in progress transactions must finish before read-only mode
takes affect.

Value Range Default Set Classifications

Boolean off master

system

restart

gp_statistics_pullup_from_child_partition
Enables the use of statistics from child tables when planning queries on the parent table by the Postgres
Planner.

Value Range Default Set Classifications

Boolean on master

session

reload

gp_statistics_use_fkeys
When enabled, the Postgres Planner will use the statistics of the referenced column in the parent table
when a column is foreign key reference to another table instead of the statistics of the column itself.

Note: This parameter is deprecated and will be removed in a future Greenplum Database release.

Value Range Default Set Classifications

Boolean off master

session

reload

Greenplum Database Reference Guide Release Notes

1345

gp_use_legacy_hashops
For a table that is defined with a DISTRIBUTED BY key_column clause, this parameter controls the
hash algorithm that is used to distribute table data among segment instances. The default value is false,
use the jump consistent hash algorithm.

Setting the value to true uses the modulo hash algorithm that is compatible with Greenplum Database 5.x
and earlier releases.

Value Range Default Set Classifications

Boolean false master

session

reload

gp_vmem_idle_resource_timeout
If a database session is idle for longer than the time specified, the session will free system resources (such
as shared memory), but remain connected to the database. This allows more concurrent connections to
the database at one time.

Value Range Default Set Classifications

Any valid time expression
(number and unit)

18s master

system

reload

gp_vmem_protect_limit
Note: The gp_vmem_protect_limit server configuration parameter is enforced only when
resource queue-based resource management is active.

Sets the amount of memory (in number of MBs) that all postgres processes of an active segment instance
can consume. If a query causes this limit to be exceeded, memory will not be allocated and the query
will fail. Note that this is a local parameter and must be set for every segment in the system (primary
and mirrors). When setting the parameter value, specify only the numeric value. For example, to specify
4096MB, use the value 4096. Do not add the units MB to the value.

To prevent over-allocation of memory, these calculations can estimate a safe gp_vmem_protect_limit
value.

First calculate the value gp_vmem. This is the Greenplum Database memory available on a host

gp_vmem = ((SWAP + RAM) – (7.5GB + 0.05 * RAM)) / 1.7

where SWAP is the host swap space and RAM is the RAM on the host in GB.

Next, calculate the max_acting_primary_segments. This is the maximum number of primary segments
that can be running on a host when mirror segments are activated due to a failure. With mirrors
arranged in a 4-host block with 8 primary segments per host, for example, a single segment host failure
would activate two or three mirror segments on each remaining host in the failed host's block. The
max_acting_primary_segments value for this configuration is 11 (8 primary segments plus 3 mirrors
activated on failure).

Greenplum Database Reference Guide Release Notes

1346

This is the calculation for gp_vmem_protect_limit. The value should be converted to MB.

gp_vmem_protect_limit = gp_vmem / acting_primary_segments

For scenarios where a large number of workfiles are generated, this is the calculation for gp_vmem that
accounts for the workfiles.

gp_vmem = ((SWAP + RAM) – (7.5GB + 0.05 * RAM - (300KB
 * total_#_workfiles))) / 1.7

For information about monitoring and managing workfile usage, see the Greenplum Database
Administrator Guide.

Based on the gp_vmem value you can calculate the value for the vm.overcommit_ratio operating
system kernel parameter. This parameter is set when you configure each Greenplum Database host.

vm.overcommit_ratio = (RAM - (0.026 * gp_vmem)) / RAM

Note: The default value for the kernel parameter vm.overcommit_ratio in Red Hat Enterprise
Linux is 50.

For information about the kernel parameter, see the Greenplum Database Installation Guide.

Value Range Default Set Classifications

integer 8192 local

system

restart

gp_vmem_protect_segworker_cache_limit
If a query executor process consumes more than this configured amount, then the process will not be
cached for use in subsequent queries after the process completes. Systems with lots of connections or idle
processes may want to reduce this number to free more memory on the segments. Note that this is a local
parameter and must be set for every segment.

Value Range Default Set Classifications

number of megabytes 500 local

system

restart

gp_workfile_compression
Specifies whether the temporary files created, when a hash aggregation or hash join operation spills to
disk, are compressed.

If your Greenplum Database installation uses serial ATA (SATA) disk drives, enabling compression might
help to avoid overloading the disk subsystem with IO operations.

Value Range Default Set Classifications

Boolean off master

session

reload

Greenplum Database Reference Guide Release Notes

1347

gp_workfile_limit_files_per_query
Sets the maximum number of temporary spill files (also known as workfiles) allowed per query per
segment. Spill files are created when executing a query that requires more memory than it is allocated. The
current query is terminated when the limit is exceeded.

Set the value to 0 (zero) to allow an unlimited number of spill files. master session reload

Value Range Default Set Classifications

integer 100000 master

session

reload

gp_workfile_limit_per_query
Sets the maximum disk size an individual query is allowed to use for creating temporary spill files at each
segment. The default value is 0, which means a limit is not enforced.

Value Range Default Set Classifications

kilobytes 0 master

session

reload

gp_workfile_limit_per_segment
Sets the maximum total disk size that all running queries are allowed to use for creating temporary spill
files at each segment. The default value is 0, which means a limit is not enforced.

Value Range Default Set Classifications

kilobytes 0 local

system

restart

gpperfmon_port
Sets the port on which all data collection agents communicate with the master.

Value Range Default Set Classifications

integer 8888 master

system

restart

ignore_checksum_failure
Only has effect if data_checksums is enabled.

Greenplum Database uses checksums to prevent loading data that has been corrupted in the file system
into memory managed by database processes.

Greenplum Database Reference Guide Release Notes

1348

By default, when a checksum verify error occurs when reading a heap data page, Greenplum
Database generates an error and prevents the page from being loaded into managed memory. When
ignore_checksum_failure is set to on and a checksum verify failure occurs, Greenplum Database
generates a warning, and allows the page to be read into managed memory. If the page is then updated it
is saved to disk and replicated to the mirror. If the page header is corrupt an error is reported even if this
option is enabled.

Warning: Setting ignore_checksum_failure to on may propagate or hide data corruption or
lead to other serious problems. However, if a checksum failure has already been detected and the
page header is uncorrupted, setting ignore_checksum_failure to on may allow you to bypass
the error and recover undamaged tuples that may still be present in the table.

The default setting is off, and it can only be changed by a superuser.

Value Range Default Set Classifications

Boolean off local

system

restart

integer_datetimes
Reports whether PostgreSQL was built with support for 64-bit-integer dates and times.

Value Range Default Set Classifications

Boolean on read only

IntervalStyle
Sets the display format for interval values. The value sql_standard produces output matching SQL
standard interval literals. The value postgres produces output matching PostgreSQL releases prior to 8.4
when the DateStyle parameter was set to ISO.

The value postgres_verbose produces output matching Greenplum releases prior to 3.3 when the
DateStyle parameter was set to non-ISO output.

The value iso_8601 will produce output matching the time interval format with designators defined in
section 4.4.3.2 of ISO 8601. See the PostgreSQL 9.4 documentation for more information.

Value Range Default Set Classifications

postgres

postgres_verbose

sql_standard

iso_8601

postgres master

session

reload

join_collapse_limit
The Postgres Planner will rewrite explicit inner JOIN constructs into lists of FROM items whenever a
list of no more than this many items in total would result. By default, this variable is set the same as
from_collapse_limit, which is appropriate for most uses. Setting it to 1 prevents any reordering of inner
JOINs. Setting this variable to a value between 1 and from_collapse_limit might be useful to trade off
planning time against the quality of the chosen plan (higher values produce better plans).

https://www.postgresql.org/docs/9.4/datatype-datetime.html

Greenplum Database Reference Guide Release Notes

1349

Value Range Default Set Classifications

1-n 20 master

session

reload

krb_caseins_users
Sets whether Kerberos user names should be treated case-insensitively. The default is case sensitive (off).

Value Range Default Set Classifications

Boolean off master

system

reload

krb_server_keyfile
Sets the location of the Kerberos server key file.

Value Range Default Set Classifications

path and file name unset master

system

restart

lc_collate
Reports the locale in which sorting of textual data is done. The value is determined when the Greenplum
Database array is initialized.

Value Range Default Set Classifications

<system dependent> read only

lc_ctype
Reports the locale that determines character classifications. The value is determined when the Greenplum
Database array is initialized.

Value Range Default Set Classifications

<system dependent> read only

lc_messages
Sets the language in which messages are displayed. The locales available depends on what was installed
with your operating system - use locale -a to list available locales. The default value is inherited from the
execution environment of the server. On some systems, this locale category does not exist. Setting this
variable will still work, but there will be no effect. Also, there is a chance that no translated messages for
the desired language exist. In that case you will continue to see the English messages.

Greenplum Database Reference Guide Release Notes

1350

Value Range Default Set Classifications

<system dependent> local

system

restart

lc_monetary
Sets the locale to use for formatting monetary amounts, for example with the to_char family of functions.
The locales available depends on what was installed with your operating system - use locale -a to list
available locales. The default value is inherited from the execution environment of the server.

Value Range Default Set Classifications

<system dependent> local

system

restart

lc_numeric
Sets the locale to use for formatting numbers, for example with the to_char family of functions. The locales
available depends on what was installed with your operating system - use locale -a to list available locales.
The default value is inherited from the execution environment of the server.

Value Range Default Set Classifications

<system dependent> local

system

restart

lc_time
This parameter currently does nothing, but may in the future.

Value Range Default Set Classifications

<system dependent> local

system

restart

listen_addresses
Specifies the TCP/IP address(es) on which the server is to listen for connections from client applications -
a comma-separated list of host names and/or numeric IP addresses. The special entry * corresponds to all
available IP interfaces. If the list is empty, only UNIX-domain sockets can connect.

Greenplum Database Reference Guide Release Notes

1351

Value Range Default Set Classifications

localhost,

host names,

IP addresses,

* (all available IP interfaces)

* master

system

restart

local_preload_libraries
Comma separated list of shared library files to preload at the start of a client session.

Value Range Default Set Classifications

local

system

restart

lock_timeout
Abort any statement that waits longer than the specified number of milliseconds while attempting to acquire
a lock on a table, index, row, or other database object. The time limit applies separately to each lock
acquisition attempt. The limit applies both to explicit locking requests (such as LOCK TABLE or SELECT
FOR UPDATE) and to implicitly-acquired locks. If log_min_error_statement is set to ERROR or lower,
Greenplum Database logs the statement that timed out. A value of zero (the default) turns off this lock wait
monitoring.

Unlike statement_timeout, this timeout can only occur while waiting for locks. Note that if
statement_timeout is nonzero, it is rather pointless to set lock_timeout to the same or larger value,
since the statement timeout would always trigger first.

Greenplum Database uses the deadlock_timeout and gp_global_deadlock_detector_period
to trigger local and global deadlock detection. Note that if lock_timeout is turned on and set to a value
smaller than these deadlock detection timeouts, Greenplum Database will abort a statement before it
would ever trigger a deadlock check in that session.

Note: Setting lock_timeout in postgresql.conf is not recommended because it would affect
all sessions

Value Range Default Set Classifications

0 - INT_MAX millisecs 0 millisecs master

session

reload

log_autostats
Logs information about automatic ANALYZE operations related to gp_autostats_mode and
gp_autostats_on_change_threshold.

Greenplum Database Reference Guide Release Notes

1352

Value Range Default Set Classifications

Boolean off master

session

reload

superuser

log_connections
This outputs a line to the server log detailing each successful connection. Some client programs, like psql,
attempt to connect twice while determining if a password is required, so duplicate "connection received"
messages do not always indicate a problem.

Value Range Default Set Classifications

Boolean off local

system

restart

log_disconnections
This outputs a line in the server log at termination of a client session, and includes the duration of the
session.

Value Range Default Set Classifications

Boolean off local

system

restart

log_dispatch_stats
When set to "on," this parameter adds a log message with verbose information about the dispatch of the
statement.

Value Range Default Set Classifications

Boolean off local

system

restart

log_duration
Causes the duration of every completed statement which satisfies log_statement to be logged.

Greenplum Database Reference Guide Release Notes

1353

Value Range Default Set Classifications

Boolean off master

session

reload

superuser

log_error_verbosity
Controls the amount of detail written in the server log for each message that is logged.

Value Range Default Set Classifications

TERSE

DEFAULT

VERBOSE

DEFAULT master

session

reload

superuser

log_executor_stats
For each query, write performance statistics of the query executor to the server log. This is a crude profiling
instrument. Cannot be enabled together with log_statement_stats.

Value Range Default Set Classifications

Boolean off local

system

restart

log_hostname
By default, connection log messages only show the IP address of the connecting host. Turning on this
option causes logging of the IP address and host name of the Greenplum Database master. Note that
depending on your host name resolution setup this might impose a non-negligible performance penalty.

Value Range Default Set Classifications

Boolean off master

system

restart

log_min_duration_statement
Logs the statement and its duration on a single log line if its duration is greater than or equal to the
specified number of milliseconds. Setting this to 0 will print all statements and their durations. -1 disables
the feature. For example, if you set it to 250 then all SQL statements that run 250ms or longer will be
logged. Enabling this option can be useful in tracking down unoptimized queries in your applications.

Greenplum Database Reference Guide Release Notes

1354

Value Range Default Set Classifications

number of milliseconds, 0, -1 -1 master

session

reload

superuser

log_min_error_statement
Controls whether or not the SQL statement that causes an error condition will also be recorded in the
server log. All SQL statements that cause an error of the specified level or higher are logged. The default is
ERROR. To effectively turn off logging of failing statements, set this parameter to PANIC.

Value Range Default Set Classifications

DEBUG5

DEBUG4

DEBUG3

DEBUG2

DEBUG1

INFO

NOTICE

WARNING

ERROR

FATAL

PANIC

ERROR master

session

reload

superuser

log_min_messages
Controls which message levels are written to the server log. Each level includes all the levels that follow it.
The later the level, the fewer messages are sent to the log.

If the Greenplum Database PL/Container extension is installed. This parameter also controls the PL/
Container log level. For information about the extension, see ../../analytics/pl_container.xml.

Greenplum Database Reference Guide Release Notes

1355

Value Range Default Set Classifications

DEBUG5

DEBUG4

DEBUG3

DEBUG2

DEBUG1

INFO

NOTICE

WARNING

LOG

ERROR

FATAL

PANIC

WARNING master

session

reload

superuser

log_parser_stats
For each query, write performance statistics of the query parser to the server log. This is a crude profiling
instrument. Cannot be enabled together with log_statement_stats.

Value Range Default Set Classifications

Boolean off master

session

reload

superuser

log_planner_stats
For each query, write performance statistics of the Postgres Planner to the server log. This is a crude
profiling instrument. Cannot be enabled together with log_statement_stats.

Value Range Default Set Classifications

Boolean off master

session

reload

superuser

log_rotation_age
Determines the amount of time Greenplum Database writes messages to the active log file. When this
amount of time has elapsed, the file is closed and a new log file is created. Set to zero to disable time-
based creation of new log files.

Greenplum Database Reference Guide Release Notes

1356

Value Range Default Set Classifications

Any valid time expression
(number and unit)

1d local

system

restart

log_rotation_size
Determines the size of an individual log file that triggers rotation. When the log file size is equal to or
greater than this size, the file is closed and a new log file is created. Set to zero to disable size-based
creation of new log files.

The maximum value is INT_MAX/1024. If an invalid value is specified, the default value is used. INT_MAX
is the largest value that can be stored as an integer on your system.

Value Range Default Set Classifications

number of kilobytes 1048576 local

system

restart

log_statement
Controls which SQL statements are logged. DDL logs all data definition commands like CREATE, ALTER,
and DROP commands. MOD logs all DDL statements, plus INSERT, UPDATE, DELETE, TRUNCATE, and
COPY FROM. PREPARE and EXPLAIN ANALYZE statements are also logged if their contained command
is of an appropriate type.

Value Range Default Set Classifications

NONE

DDL

MOD

ALL

ALL master

session

reload

superuser

log_statement_stats
For each query, write total performance statistics of the query parser, planner, and executor to the server
log. This is a crude profiling instrument.

Value Range Default Set Classifications

Boolean off master

session

reload

superuser

log_temp_files
Controls logging of temporary file names and sizes. Temporary files can be created for sorts, hashes,
temporary query results and spill files. A log entry is made in pg_log for each temporary file when it
is deleted. Depending on the source of the temporary files, the log entry could be created on either the

Greenplum Database Reference Guide Release Notes

1357

master and/or segments. A log_temp_files value of zero logs all temporary file information, while
positive values log only files whose size is greater than or equal to the specified number of kilobytes. The
default setting is -1, which disables logging. Only superusers can change this setting.

Value Range Default Set Classifications

Integer -1 local

system

restart

log_timezone
Sets the time zone used for timestamps written in the log. Unlike TimeZone, this value is system-wide, so
that all sessions will report timestamps consistently. The default is unknown, which means to use whatever
the system environment specifies as the time zone.

Value Range Default Set Classifications

string unknown local

system

restart

log_truncate_on_rotation
Truncates (overwrites), rather than appends to, any existing log file of the same name. Truncation will
occur only when a new file is being opened due to time-based rotation. For example, using this setting in
combination with a log_filename such as gpseg#-%H.log would result in generating twenty-four hourly
log files and then cyclically overwriting them. When off, pre-existing files will be appended to in all cases.

Value Range Default Set Classifications

Boolean off local

system

restart

maintenance_work_mem
Specifies the maximum amount of memory to be used in maintenance operations, such as VACUUM and
CREATE INDEX. It defaults to 16 megabytes (16MB). Larger settings might improve performance for
vacuuming and for restoring database dumps.

Value Range Default Set Classifications

Integer 16 local

system

restart

max_appendonly_tables
Sets the maximum number of concurrent transactions that can write to or update append-optimized tables.
Transactions that exceed the maximum return an error.

Greenplum Database Reference Guide Release Notes

1358

Operations that are counted are INSERT, UPDATE, COPY, and VACUUM operations. The limit is only for
in-progress transactions. Once a transaction ends (either aborted or committed), it is no longer counted
against this limit.

For operations against a partitioned table, each subpartition (child table) that is an append-optimized
table and is changed counts as a single table towards the maximum. For example, a partitioned table
p_tbl is defined with three subpartitions that are append-optimized tables p_tbl_ao1, p_tbl_ao2, and
p_tbl_ao3. An INSERT or UPDATE command against the partitioned table p_tbl that changes append-
optimized tables p_tbl_ao1 and p_tbl_ao2 is counted as two transactions.

Increasing the limit allocates more shared memory on the master host at server start.

Value Range Default Set Classifications

integer > 0 10000 master

system

restart

max_connections
The maximum number of concurrent connections to the database server. In a Greenplum Database
system, user client connections go through the Greenplum master instance only. Segment
instances should allow 5-10 times the amount as the master. When you increase this parameter,
max_prepared_transactions must be increased as well. For more information about limiting concurrent
connections, see "Configuring Client Authentication" in the Greenplum Database Administrator Guide.

Increasing this parameter may cause Greenplum Database to request more shared memory. Increasing
this parameter might cause Greenplum Database to request more shared memory. See shared_buffers for
information about Greenplum server instance shared memory buffers.

Value Range Default Set Classifications

10 - 8388607 250 on master

750 on segments

local

system

restart

max_files_per_process
Sets the maximum number of simultaneously open files allowed to each server subprocess. If the kernel
is enforcing a safe per-process limit, you don't need to worry about this setting. Some platforms such as
BSD, the kernel will allow individual processes to open many more files than the system can really support.

Value Range Default Set Classifications

integer 1000 local

system

restart

max_function_args
Reports the maximum number of function arguments.

Value Range Default Set Classifications

integer 100 read only

Greenplum Database Reference Guide Release Notes

1359

max_identifier_length
Reports the maximum identifier length.

Value Range Default Set Classifications

integer 63 read only

max_index_keys
Reports the maximum number of index keys.

Value Range Default Set Classifications

integer 32 read only

max_locks_per_transaction
The shared lock table is created with room to describe locks on max_locks_per_transaction *
(max_connections + max_prepared_transactions) objects, so no more than this many distinct objects can
be locked at any one time. This is not a hard limit on the number of locks taken by any one transaction, but
rather a maximum average value. You might need to raise this value if you have clients that touch many
different tables in a single transaction.

Value Range Default Set Classifications

integer 128 local

system

restart

max_prepared_transactions
Sets the maximum number of transactions that can be in the prepared state simultaneously. Greenplum
uses prepared transactions internally to ensure data integrity across the segments. This value must be at
least as large as the value of max_connections on the master. Segment instances should be set to the
same value as the master.

Value Range Default Set Classifications

integer 250 on master

250 on segments

local

system

restart

max_resource_portals_per_transaction
Note: The max_resource_portals_per_transaction server configuration parameter is
enforced only when resource queue-based resource management is active.

Sets the maximum number of simultaneously open user-declared cursors allowed per transaction. Note
that an open cursor will hold an active query slot in a resource queue. Used for resource management.

Greenplum Database Reference Guide Release Notes

1360

Value Range Default Set Classifications

integer 64 master

system

restart

max_resource_queues
Note: The max_resource_queues server configuration parameter is enforced only when
resource queue-based resource management is active.

Sets the maximum number of resource queues that can be created in a Greenplum Database system.
Note that resource queues are system-wide (as are roles) so they apply to all databases in the system.

Value Range Default Set Classifications

integer 9 master

system

restart

max_slot_wal_keep_size
Sets the maximum size in megabytes of Write-Ahead Logging (WAL) files on disk per segment instance
that can be reserved when Greenplum streams data to the mirror segment instance or standby master
to keep it synchronized with the corresponding primary segment instance or master. The default is -1,
Greenplum can retain an unlimited amount of WAL files on disk.

If the file size exceeds the maximum size, the files are released and are available for deletion. A mirror or
standby may no longer be able to continue replication due to removal of required WAL files.

Value Range Default Set Classifications

Integer -1 local

system

restart

max_stack_depth
Specifies the maximum safe depth of the server's execution stack. The ideal setting for this parameter
is the actual stack size limit enforced by the kernel (as set by ulimit -s or local equivalent), less a safety
margin of a megabyte or so. Setting the parameter higher than the actual kernel limit will mean that a
runaway recursive function can crash an individual backend process.

Value Range Default Set Classifications

number of kilobytes 2MB local

system

restart

max_statement_mem
Sets the maximum memory limit for a query. Helps avoid out-of-memory errors on a segment host during
query processing as a result of setting statement_mem too high.

Greenplum Database Reference Guide Release Notes

1361

Taking into account the configuration of a single segment host, calculate max_statement_mem as
follows:

(seghost_physical_memory) / (average_number_concurrent_queries)

When changing both max_statement_mem and statement_mem, max_statement_mem must be
changed first, or listed first in the postgresql.conf file.

Value Range Default Set Classifications

number of kilobytes 2000MB master

session

reload

superuser

memory_spill_ratio
Note: The memory_spill_ratio server configuration parameter is enforced only when resource
group-based resource management is active.

Sets the memory usage threshold percentage for memory-intensive operators in a transaction. When a
transaction reaches this threshold, it spills to disk.

The default memory_spill_ratio percentage is the value defined for the resource group assigned to
the currently active role. You can set memory_spill_ratio at the session level to selectively set this
limit on a per-query basis. For example, if you have a specific query that spills to disk and requires more
memory, you may choose to set a larger memory_spill_ratio to increase the initial memory allocation.

You can specify an integer percentage value from 0 to 100 inclusive. If you specify a value of 0, Greenplum
Database uses the statement_mem server configuration parameter value to control the initial query
operator memory amount.

Value Range Default Set Classifications

0 - 100 20 master

session

reload

optimizer
Enables or disables GPORCA when running SQL queries. The default is on. If you disable GPORCA,
Greenplum Database uses only the Postgres Planner.

GPORCA co-exists with the Postgres Planner. With GPORCA enabled, Greenplum Database uses
GPORCA to generate an execution plan for a query when possible. If GPORCA cannot be used, then the
Postgres Planner is used.

The optimizer parameter can be set for a database system, an individual database, or a session or
query.

For information about the Postgres Planner and GPORCA, see Querying Data in the Greenplum Database
Administrator Guide.

Greenplum Database Reference Guide Release Notes

1362

Value Range Default Set Classifications

Boolean on master

session

reload

optimizer_analyze_root_partition
For a partitioned table, controls whether the ROOTPARTITION keyword is required to collect root partition
statistics when the ANALYZE command is run on the table. GPORCA uses the root partition statistics when
generating a query plan. The Postgres Planner does not use these statistics.

The default setting for the parameter is on, the ANALYZE command can collect root partition statistics
without the ROOTPARTITION keyword. Root partition statistics are collected when you run ANALYZE on the
root partition, or when you run ANALYZE on a child leaf partition of the partitioned table and the other child
leaf partitions have statistics. When the value is off, you must run ANALZYE ROOTPARTITION to collect
root partition statistics.

When the value of the server configuration parameter optimizer is on (the default), the value of this
parameter should also be on. For information about collecting table statistics on partitioned tables, see
ANALYZE.

For information about the Postgres Planner and GPORCA, see Querying Data in the Greenplum Database
Administrator Guide.

Value Range Default Set Classifications

Boolean on master

session

reload

optimizer_array_expansion_threshold
When GPORCA is enabled (the default) and is processing a query that contains a predicate with a
constant array, the optimizer_array_expansion_threshold parameter limits the optimization
process based on the number of constants in the array. If the array in the query predicate contains more
than the number elements specified by parameter, GPORCA disables the transformation of the predicate
into its disjunctive normal form during query optimization.

The default value is 100.

For example, when GPORCA is executing a query that contains an IN clause with more than 100
elements, GPORCA does not transform the predicate into its disjunctive normal form during query
optimization to reduce optimization time consume less memory. The difference in query processing can be
seen in the filter condition for the IN clause of the query EXPLAIN plan.

Changing the value of this parameter changes the trade-off between a shorter optimization time and lower
memory consumption, and the potential benefits from constraint derivation during query optimization, for
example conflict detection and partition elimination.

The parameter can be set for a database system, an individual database, or a session or query.

Value Range Default Set Classifications

Integer > 0 25 master

session

reload

Greenplum Database Reference Guide Release Notes

1363

optimizer_control
Controls whether the server configuration parameter optimizer can be changed with SET, the RESET
command, or the Greenplum Database utility gpconfig. If the optimizer_control parameter value
is on, users can set the optimizer parameter. If the optimizer_control parameter value is off, the
optimizer parameter cannot be changed.

Value Range Default Set Classifications

Boolean on master

system

restart

superuser

optimizer_cte_inlining_bound
When GPORCA is enabled (the default), this parameter controls the amount of inlining performed for
common table expression (CTE) queries (queries that contain a WHERE clause). The default value, 0,
disables inlining.

The parameter can be set for a database system, an individual database, or a session or query.

Value Range Default Set Classifications

Decimal >= 0 0 master

session

reload

optimizer_enable_associativity
When GPORCA is enabled (the default), this parameter controls whether the join associativity transform
is enabled during query optimization. The transform analyzes join orders. For the default value off, only
the GPORCA dynamic programming algorithm for analyzing join orders is enabled. The join associativity
transform largely duplicates the functionality of the newer dynamic programming algorithm.

If the value is on, GPORCA can use the associativity transform during query optimization.

The parameter can be set for a database system, an individual database, or a session or query.

For information about GPORCA, see About GPORCA in the Greenplum Database Administrator Guide.

Value Range Default Set Classifications

Boolean off master

session

reload

optimizer_enable_dml
When GPORCA is enabled (the default) and this parameter is true (the default), GPORCA attempts
to execute DML commands such as INSERT, UPDATE, and DELETE. If GPORCA cannot execute the
command, Greenplum Database falls back to the Postgres Planner.

When set to false, Greenplum Database always falls back to the Postgres Planner when performing DML
commands.

Greenplum Database Reference Guide Release Notes

1364

The parameter can be set for a database system, an individual database, or a session or query.

For information about GPORCA, see About GPORCA in the Greenplum Database Administrator Guide.

Value Range Default Set Classifications

Boolean true master

session

reload

optimizer_enable_master_only_queries
When GPORCA is enabled (the default), this parameter allows GPORCA to execute catalog queries that
run only on the Greenplum Database master. For the default value off, only the Postgres Planner can
execute catalog queries that run only on the Greenplum Database master.

The parameter can be set for a database system, an individual database, or a session or query.

Note: Enabling this parameter decreases performance of short running catalog queries. To avoid
this issue, set this parameter only for a session or a query.

For information about GPORCA, see About GPORCA in the Greenplum Database Administrator Guide.

Value Range Default Set Classifications

Boolean off master

session

reload

optimizer_force_agg_skew_avoidance
When GPORCA is enabled (the default), this parameter affects the query plan alternatives that GPORCA
considers when 3 stage aggregate plans are generated. When the value is true, the default, GPORCA
considers only 3 stage aggregate plans where the intermediate aggregation uses the GROUP BY and
DISTINCT columns for distribution to reduce the effects of processing skew.

If the value is false, GPORCA can also consider a plan that uses GROUP BY columns for distribution.
These plans might perform poorly when processing skew is present.

For information about GPORCA, see About GPORCA in the Greenplum Database Administrator Guide.

Value Range Default Set Classifications

Boolean true master

session

reload

optimizer_force_multistage_agg
For the default settings, GPORCA is enabled and this parameter is false, GPORCA makes a cost-based
choice between a one- or two-stage aggregate plan for a scalar distinct qualified aggregate. When true,
GPORCA chooses a multi-stage aggregate plan when such a plan alternative is generated.

The parameter can be set for a database system, an individual database, or a session or query.

Greenplum Database Reference Guide Release Notes

1365

Value Range Default Set Classifications

Boolean true master

session

reload

optimizer_force_three_stage_scalar_dqa
For the default settings, GPORCA is enabled and this parameter is true, GPORCA chooses a plan with
multistage aggregates when such a plan alternative is generated. When the value is false, GPORCA
makes a cost based choice rather than a heuristic choice.

The parameter can be set for a database system, an individual database, or a session, or query.

Value Range Default Set Classifications

Boolean true master

session

reload

optimizer_join_arity_for_associativity_commutativity
The value is an optimization hint to limit the number of join associativity and join commutativity
transformations explored during query optimization. The limit controls the alternative plans that GPORCA
considers during query optimization. For example, the default value of 18 is an optimization hint for
GPORCA to stop exploring join associativity and join commutativity transformations when an n-ary join
operator has more than 18 children during optimization.

For a query with a large number of joins, specifying a lower value improves query performance by limiting
the number of alternate query plans that GPORCA evaluates. However, setting the value too low might
cause GPORCA to generate a query plan that performs sub-optimally.

This parameter has no effect when the optimizer_join_order parameter is set to query or greedy.

This parameter can be set for a database system or a session.

Value Range Default Set Classifications

integer > 0 18 local

system

reload

optimizer_join_order
When GPORCA is enabled, this parameter sets the optimization level for join ordering during query
optimization by specifying which types of join ordering alternatives to evaluate.

• query - Uses the join order specified in the query.
• greedy - Evaluates the join order specified in the query and alternatives based on minimum

cardinalities of the relations in the joins.
• exhaustive - Applies transformation rules to find and evaluate all join ordering alternatives.

The default value is exhaustive. Setting this parameter to query or greedy can generate a suboptimal
query plan. However, if the administrator is confident that a satisfactory plan is generated with the
query or greedy setting, query optimization time can be improved by setting the parameter to the lower
optimization level.

Greenplum Database Reference Guide Release Notes

1366

Setting this parameter to query or greedy overrides the optimizer_join_order_threshold and
optimizer_join_arity_for_associativity_commutativity parameters.

This parameter can be set for an individual database, a session, or a query.

Value Range Default Set Classifications

query

greedy

exhaustive

exhaustive master

session

reload

optimizer_join_order_threshold
When GPORCA is enabled (the default), this parameter sets the maximum number of join children for
which GPORCA will use the dynamic programming-based join ordering algorithm. You can set this value
for a single query or for an entire session.

This parameter has no effect when the optimizer_join_query parameter is set to query or greedy.

Value Range Default Set Classifications

0 - 12 10 master

session

reload

optimizer_mdcache_size
Sets the maximum amount of memory on the Greenplum Database master that GPORCA uses to cache
query metadata (optimization data) during query optimization. The memory limit session based. GPORCA
caches query metadata during query optimization with the default settings: GPORCA is enabled and
optimizer_metadata_caching is on.

The default value is 16384 (16MB). This is an optimal value that has been determined through
performance analysis.

You can specify a value in KB, MB, or GB. The default unit is KB. For example, a value of 16384 is
16384KB. A value of 1GB is the same as 1024MB or 1048576KB. If the value is 0, the size of the cache is
not limited.

This parameter can be set for a database system, an individual database, or a session or query.

Value Range Default Set Classifications

Integer >= 0 16384 master

session

reload

optimizer_metadata_caching
When GPORCA is enabled (the default), this parameter specifies whether GPORCA caches query
metadata (optimization data) in memory on the Greenplum Database master during query optimization.
The default for this parameter is on, enable caching. The cache is session based. When a session ends,
the cache is released. If the amount of query metadata exceeds the cache size, then old, unused metadata
is evicted from the cache.

If the value is off, GPORCA does not cache metadata during query optimization.

Greenplum Database Reference Guide Release Notes

1367

This parameter can be set for a database system, an individual database, or a session or query.

The server configuration parameter optimizer_mdcache_size controls the size of the query metadata
cache.

Value Range Default Set Classifications

Boolean on master

session

reload

optimizer_minidump
GPORCA generates minidump files to describe the optimization context for a given query. The information
in the file is not in a format that can be easily used for debugging or troubleshooting. The minidump file is
located under the master data directory and uses the following naming format:

Minidump_date_time.mdp

The minidump file contains this query related information:

• Catalog objects including data types, tables, operators, and statistics required by GPORCA
• An internal representation (DXL) of the query
• An internal representation (DXL) of the plan produced by GPORCA
• System configuration information passed to GPORCA such as server configuration parameters, cost

and statistics configuration, and number of segments
• A stack trace of errors generated while optimizing the query

Setting this parameter to ALWAYS generates a minidump for all queries. Set this parameter to ONERROR to
minimize total optimization time.

For information about GPORCA, see About GPORCA in the Greenplum Database Administrator Guide.

Value Range Default Set Classifications

ONERROR

ALWAYS

ONERROR master

session

reload

optimizer_nestloop_factor
This parameter adds a costing factor to GPORCA to prioritize hash joins instead of nested loop joins
during query optimization. The default value of 1024 was chosen after evaluating numerous workloads with
uniformly distributed data. 1024 should be treated as the practical upper bound setting for this parameter.
If you find the GPORCA selects hash joins more often than it should, reduce the value to shift the costing
factor in favor of nested loop joins.

The parameter can be set for a database system, an individual database, or a session or query.

Value Range Default Set Classifications

INT_MAX > 1 1024 master

session

reload

Greenplum Database Reference Guide Release Notes

1368

optimizer_parallel_union
When GPORCA is enabled (the default), optimizer_parallel_union controls the amount of
parallelization that occurs for queries that contain a UNION or UNION ALL clause.

When the value is off, the default, GPORCA generates a query plan where each child of an
APPEND(UNION) operator is in the same slice as the APPEND operator. During query execution, the
children are executed in a sequential manner.

When the value is on, GPORCA generates a query plan where a redistribution motion node is under an
APPEND(UNION) operator. During query execution, the children and the parent APPEND operator are on
different slices, allowing the children of the APPEND(UNION) operator to execute in parallel on segment
instances.

The parameter can be set for a database system, an individual database, or a session or query.

Value Range Default Set Classifications

boolean off master

session

reload

optimizer_penalize_skew
When GPORCA is enabled (the default), this parameter allows GPORCA to penalize the local cost
of a HashJoin with a skewed Redistribute Motion as child to favor a Broadcast Motion during query
optimization. The default value is true.

GPORCA determines there is skew for a Redistribute Motion when the NDV (number of distinct values) is
less than the number of segments.

The parameter can be set for a database system, an individual database, or a session or query.

For information about GPORCA, see About GPORCA in the Greenplum Database Administrator Guide.

Value Range Default Set Classifications

Boolean true master

session

reload

optimizer_print_missing_stats
When GPORCA is enabled (the default), this parameter controls the display of table column information
about columns with missing statistics for a query. The default value is true, display the column
information to the client. When the value is false, the information is not sent to the client.

The information is displayed during query execution, or with the EXPLAIN or EXPLAIN ANALYZE
commands.

The parameter can be set for a database system, an individual database, or a session.

Value Range Default Set Classifications

Boolean true master

session

reload

Greenplum Database Reference Guide Release Notes

1369

optimizer_print_optimization_stats
When GPORCA is enabled (the default), this parameter enables logging of GPORCA query optimization
statistics for various optimization stages for a query. The default value is off, do not log optimization
statistics. To log the optimization statistics, this parameter must be set to on and the parameter
client_min_messages must be set to log.

• set optimizer_print_optimization_stats = on;

• set client_min_messages = 'log';

The information is logged during query execution, or with the EXPLAIN or EXPLAIN ANALYZE commands.

This parameter can be set for a database system, an individual database, or a session or query.

Value Range Default Set Classifications

Boolean off master

session

reload

optimizer_sort_factor
When GPORCA is enabled (the default), optimizer_sort_factor controls the cost factor to apply to
sorting operations during query optimization. The default value 1 specifies the default sort cost factor. The
value is a ratio of increase or decrease from the default factor. For example, a value of 2.0 sets the cost
factor at twice the default, and a value of 0.5 sets the factor at half the default.

The parameter can be set for a database system, an individual database, or a session or query.

Value Range Default Set Classifications

Decimal > 0 1 master

session

reload

optimizer_use_gpdb_allocators
When GPORCA is enabled (the default) and this parameter is true (the default), GPORCA uses
Greenplum Database memory management when executing queries. When set to false, GPORCA uses
GPORCA-specific memory management. Greenplum Database memory management allows for faster
optimization, reduced memory usage during optimization, and improves GPORCA support of vmem limits
when compared to GPORCA-specific memory management.

For information about GPORCA, see About GPORCA in the Greenplum Database Administrator Guide.

Value Range Default Set Classifications

Boolean true master

system

restart

password_encryption
When a password is specified in CREATE USER or ALTER USER without writing either ENCRYPTED or
UNENCRYPTED, this option determines whether the password is to be encrypted.

Greenplum Database Reference Guide Release Notes

1370

Value Range Default Set Classifications

Boolean on master

session

reload

password_hash_algorithm
Specifies the cryptographic hash algorithm that is used when storing an encrypted Greenplum Database
user password. The default algorithm is MD5.

For information about setting the password hash algorithm to protect user passwords, see "Protecting
Passwords in Greenplum Database" in the Greenplum Database Administrator Guide.

Value Range Default Set Classifications

MD5

SHA-256

MD5 master

session

reload

superuser

plan_cache_mode
Prepared statements (either explicitly prepared or implicitly generated, for example by PL/pgSQL) can be
executed using custom or generic plans. Custom plans are created for each execution using its specific set
of parameter values, while generic plans do not rely on the parameter values and can be re-used across
executions. The use of a generic plan saves planning time, but if the ideal plan depends strongly on the
parameter values, then a generic plan might be inefficient. The choice between these options is normally
made automatically, but it can be overridden by setting the plan_cache_mode parameter. If the prepared
statement has no parameters, a generic plan is always used.

The allowed values are auto (the default), force_custom_plan and force_generic_plan. This
setting is considered when a cached plan is to be executed, not when it is prepared. For more information
see PREPARE.

The parameter can be set for a database system, an individual database, a session, or a query.

Value Range Default Set Classifications

auto

force_custom_plan

force_generic_plan

auto master

session

reload

pljava_classpath
A colon (:) separated list of jar files or directories containing jar files needed for PL/Java functions. The
full path to the jar file or directory must be specified, except the path can be omitted for jar files in the
$GPHOME/lib/postgresql/java directory. The jar files must be installed in the same locations on all
Greenplum hosts and readable by the gpadmin user.

The pljava_classpath parameter is used to assemble the PL/Java classpath at the beginning of each
user session. Jar files added after a session has started are not available to that session.

If the full path to a jar file is specified in pljava_classpath it is added to the PL/Java classpath. When
a directory is specified, any jar files the directory contains are added to the PL/Java classpath. The search

Greenplum Database Reference Guide Release Notes

1371

does not descend into subdirectories of the specified directories. If the name of a jar file is included
in pljava_classpath with no path, the jar file must be in the $GPHOME/lib/postgresql/java
directory.

Note: Performance can be affected if there are many directories to search or a large number of jar
files.

If pljava_classpath_insecure is false, setting the pljava_classpath parameter requires
superuser privilege. Setting the classpath in SQL code will fail when the code is executed by a user without
superuser privilege. The pljava_classpath parameter must have been set previously by a superuser
or in the postgresql.conf file. Changing the classpath in the postgresql.conf file requires a reload
(gpstop -u).

Value Range Default Set Classifications

string master

session

reload

superuser

pljava_classpath_insecure
Controls whether the server configuration parameter pljava_classpath can be set by a user without
Greenplum Database superuser privileges. When true, pljava_classpath can be set by a regular
user. Otherwise, pljava_classpath can be set only by a database superuser. The default is false.

Warning: Enabling this parameter exposes a security risk by giving non-administrator database
users the ability to run unauthorized Java methods.

Value Range Default Set Classifications

Boolean false master

session

restart

superuser

pljava_statement_cache_size
Sets the size in KB of the JRE MRU (Most Recently Used) cache for prepared statements.

Value Range Default Set Classifications

number of kilobytes 10 master

system

restart

superuser

pljava_release_lingering_savepoints
If true, lingering savepoints used in PL/Java functions will be released on function exit. If false, savepoints
will be rolled back.

Greenplum Database Reference Guide Release Notes

1372

Value Range Default Set Classifications

Boolean true master

system

restart

superuser

pljava_vmoptions
Defines the startup options for the Java VM. The default value is an empty string ("").

Value Range Default Set Classifications

string master

system

reload

superuser

port
The database listener port for a Greenplum instance. The master and each segment has its own port. Port
numbers for the Greenplum system must also be changed in the gp_segment_configuration catalog.
You must shut down your Greenplum Database system before changing port numbers.

Value Range Default Set Classifications

any valid port number 5432 local

system

restart

random_page_cost
Sets the estimate of the cost of a nonsequentially fetched disk page for the Postgres Planner. This is
measured as a multiple of the cost of a sequential page fetch. A higher value makes it more likely a
sequential scan will be used, a lower value makes it more likely an index scan will be used.

Value Range Default Set Classifications

floating point 100 master

session

reload

readable_external_table_timeout
When an SQL query reads from an external table, the parameter value specifies the amount of time in
seconds that Greenplum Database waits before cancelling the query when data stops being returned from
the external table.

The default value of 0, specifies no time out. Greenplum Database does not cancel the query.

Greenplum Database Reference Guide Release Notes

1373

If queries that use gpfdist run a long time and then return the error "intermittent network connectivity
issues", you can specify a value for readable_external_table_timeout. If no data is returned by gpfdist for
the specified length of time, Greenplum Database cancels the query.

Value Range Default Set Classifications

integer >= 0 0 master

system

reload

repl_catchup_within_range
For Greenplum Database master mirroring, controls updates to the active master. If the number of WAL
segment files that have not been processed by the walsender exceeds this value, Greenplum Database
updates the active master.

If the number of segment files does not exceed the value, Greenplum Database blocks updates to the to
allow the walsender process the files. If all WAL segments have been processed, the active master is
updated.

Value Range Default Set Classifications

0 - 64 1 master

system

reload

superuser

replication_timeout
For Greenplum Database master mirroring, sets the maximum time in milliseconds that the walsender
process on the active master waits for a status message from the walreceiver process on the standby
master. If a message is not received, the walsender logs an error message.

The wal_receiver_status_interval controls the interval between walreceiver status messages.

Value Range Default Set Classifications

0 - INT_MAX 60000 ms (60 seconds) master

system

reload

superuser

regex_flavor
The 'extended' setting may be useful for exact backwards compatibility with pre-7.4 releases of
PostgreSQL.

Value Range Default Set Classifications

advanced

extended

basic

advanced master

session

reload

Greenplum Database Reference Guide Release Notes

1374

resource_cleanup_gangs_on_wait
Note: The resource_cleanup_gangs_on_wait server configuration parameter is enforced
only when resource queue-based resource management is active.

If a statement is submitted through a resource queue, clean up any idle query executor worker processes
before taking a lock on the resource queue.

Value Range Default Set Classifications

Boolean on master

system

restart

resource_select_only
Note: The resource_select_only server configuration parameter is enforced only when
resource queue-based resource management is active.

Sets the types of queries managed by resource queues. If set to on, then SELECT, SELECT INTO,
CREATE TABLE AS SELECT, and DECLARE CURSOR commands are evaluated. If set to off INSERT,
UPDATE, and DELETE commands will be evaluated as well.

Value Range Default Set Classifications

Boolean off master

system

restart

runaway_detector_activation_percent
For queries that are managed by resource queues or resource groups, this parameter determines when
Greenplum Database terminates running queries based on the amount of memory the queries are using.
A value of 100 disables the automatic termination of queries based on the percentage of memory that is
utilized.

Either the resource queue or the resource group management scheme can be active in Greenplum
Database; both schemes cannot be active at the same time. The server configuration parameter
gp_resource_manager controls which scheme is active.

When resource queues are enabled - This parameter sets the percent of utilized Greenplum Database
vmem memory that triggers the termination of queries. If the percentage of vmem memory that is utilized
for a Greenplum Database segment exceeds the specified value, Greenplum Database terminates queries
managed by resource queues based on memory usage, starting with the query consuming the largest
amount of memory. Queries are terminated until the percentage of utilized vmem is below the specified
percentage.

Specify the maximum vmem value for active Greenplum Database segment instances with the server
configuration parameter gp_vmem_protect_limit.

For example, if vmem memory is set to 10GB, and this parameter is 90 (90%), Greenplum Database starts
terminating queries when the utilized vmem memory exceeds 9 GB.

For information about resource queues, see Using Resource Queues.

When resource groups are enabled - This parameter sets the percent of utilized resource group global
shared memory that triggers the termination of queries that are managed by resource groups that are

Greenplum Database Reference Guide Release Notes

1375

configured to use the vmtracker memory auditor, such as admin_group and default_group. For
information about memory auditors, see Memory Auditor.

Resource groups have a global shared memory pool when the sum of the MEMORY_LIMIT attribute values
configured for all resource groups is less than 100. For example, if you have 3 resource groups configured
with memory_limit values of 10 , 20, and 30, then global shared memory is 40% = 100% - (10% + 20% +
30%). See Global Shared Memory.

If the percentage of utilized global shared memory exceeds the specified value, Greenplum Database
terminates queries based on memory usage, selecting from queries managed by the resource groups
that are configured to use the vmtracker memory auditor. Greenplum Database starts with the query
consuming the largest amount of memory. Queries are terminated until the percentage of utilized global
shared memory is below the specified percentage.

For example, if global shared memory is 10GB, and this parameter is 90 (90%), Greenplum Database
starts terminating queries when the utilized global shared memory exceeds 9 GB.

For information about resource groups, see Using Resource Groups.

Value Range Default Set Classifications

percentage (integer) 90 local

system

restart

search_path
Specifies the order in which schemas are searched when an object is referenced by a simple name with
no schema component. When there are objects of identical names in different schemas, the one found
first in the search path is used. The system catalog schema, pg_catalog, is always searched, whether it is
mentioned in the path or not. When objects are created without specifying a particular target schema, they
will be placed in the first schema listed in the search path. The current effective value of the search path
can be examined via the SQL function current_schemas(). current_schemas() shows how the requests
appearing in search_path were resolved.

Value Range Default Set Classifications

a comma-separated list of
schema names

$user,public master

session

reload

seq_page_cost
For the Postgres Planner, sets the estimate of the cost of a disk page fetch that is part of a series of
sequential fetches.

Value Range Default Set Classifications

floating point 1 master

session

reload

server_encoding
Reports the database encoding (character set). It is determined when the Greenplum Database array is
initialized. Ordinarily, clients need only be concerned with the value of client_encoding.

Greenplum Database Reference Guide Release Notes

1376

Value Range Default Set Classifications

<system dependent> UTF8 read only

server_version
Reports the version of PostgreSQL that this release of Greenplum Database is based on.

Value Range Default Set Classifications

string 9.4.20 read only

server_version_num
Reports the version of PostgreSQL that this release of Greenplum Database is based on as an integer.

Value Range Default Set Classifications

integer 90420 read only

shared_buffers
Sets the amount of memory a Greenplum Database segment instance uses for shared memory buffers.
This setting must be at least 128KB and at least 16KB times max_connections.

Each Greenplum Database segment instance calculates and attempts to allocate certain amount of shared
memory based on the segment configuration. The value of shared_buffers is significant portion of this
shared memory calculation, but is not all it. When setting shared_buffers, the values for the operating
system parameters SHMMAX or SHMALL might also need to be adjusted.

The operating system parameter SHMMAX specifies maximum size of a single shared memory allocation.
The value of SHMMAX must be greater than this value:

 shared_buffers + other_seg_shmem

The value of other_seg_shmem is the portion the Greenplum Database shared memory calculation that
is not accounted for by the shared_buffers value. The other_seg_shmem value will vary based on the
segment configuration.

With the default Greenplum Database parameter values, the value for other_seg_shmem is approximately
111MB for Greenplum Database segments and approximately 79MB for the Greenplum Database master.

The operating system parameter SHMALL specifies the maximum amount of shared memory on the host.
The value of SHMALL must be greater than this value:

 (num_instances_per_host * (shared_buffers + other_seg_shmem))
 + other_app_shared_mem

The value of other_app_shared_mem is the amount of shared memory that is used by other applications
and processes on the host.

When shared memory allocation errors occur, possible ways to resolve shared memory allocation issues
are to increase SHMMAX or SHMALL, or decrease shared_buffers or max_connections.

See the Greenplum Database Installation Guide for information about the Greenplum Database values for
the parameters SHMMAX and SHMALL.

Greenplum Database Reference Guide Release Notes

1377

Value Range Default Set Classifications

integer > 16K * max_connections 125MB local

system

restart

shared_preload_libraries
A comma-separated list of shared libraries that are to be preloaded at server start. PostgreSQL procedural
language libraries can be preloaded in this way, typically by using the syntax '$libdir/plXXX' where
XXX is pgsql, perl, tcl, or python. By preloading a shared library, the library startup time is avoided when
the library is first used. If a specified library is not found, the server will fail to start.

Note: When you add a library to shared_preload_libraries, be sure to retain any previous
setting of the parameter.

Value Range Default Set Classifications

local

system

restart

ssl
Enables SSL connections.

Value Range Default Set Classifications

Boolean off master

system

restart

ssl_ciphers
Specifies a list of SSL ciphers that are allowed to be used on secure connections. ssl_ciphers overrides
any ciphers string specified in /etc/openssl.cnf. The default value ALL:!ADH:!LOW:!EXP:!
MD5:@STRENGTH enables all ciphers except for ADH, LOW, EXP, and MD5 ciphers, and prioritizes ciphers
by their strength.

Note: With TLS 1.2 some ciphers in MEDIUM and HIGH strength still use NULL encryption (no
encryption for transport), which the default ssl_ciphers string allows. To bypass NULL ciphers
with TLS 1.2 use a string such as TLSv1.2:!eNULL:!aNULL.

See the openssl manual page for a list of supported ciphers.

Value Range Default Set Classifications

string ALL:!ADH:!LOW:!EXP:!
MD5:@STRENGTH

master

system

restart

Greenplum Database Reference Guide Release Notes

1378

standard_conforming_strings
Determines whether ordinary string literals ('...') treat backslashes literally, as specified in the SQL
standard. The default value is on. Turn this parameter off to treat backslashes in string literals as escape
characters instead of literal backslashes. Applications may check this parameter to determine how string
literals are processed. The presence of this parameter can also be taken as an indication that the escape
string syntax (E'...') is supported.

Value Range Default Set Classifications

Boolean on master

session

reload

statement_mem
Allocates segment host memory per query. The amount of memory allocated with this parameter cannot
exceed max_statement_mem or the memory limit on the resource queue or resource group through
which the query was submitted. If additional memory is required for a query, temporary spill files on disk
are used.

If you are using resource groups to control resource allocation in your Greenplum Database cluster:

• Greenplum Database uses statement_mem to control query memory usage when the resource group
MEMORY_SPILL_RATIO is set to 0.

• You can use the following calculation to estimate a reasonable statement_mem value:

rg_perseg_mem = ((RAM * (vm.overcommit_ratio / 100) + SWAP) *
 gp_resource_group_memory_limit) / num_active_primary_segments
statement_mem = rg_perseg_mem / max_expected_concurrent_queries

If you are using resource queues to control resource allocation in your Greenplum Database cluster:

• When gp_resqueue_memory_policy =auto, statement_mem and resource queue memory limits
control query memory usage.

• You can use the following calculation to estimate a reasonable statement_mem value for a wide
variety of situations:

(gp_vmem_protect_limitGB * .9) / max_expected_concurrent_queries

For example, with a gp_vmem_protect_limit set to 8192MB (8GB) and assuming a maximum of
40 concurrent queries with a 10% buffer, you would use the following calculation to determine the
statement_mem value:

(8GB * .9) / 40 = .18GB = 184MB

When changing both max_statement_mem and statement_mem, max_statement_mem must be
changed first, or listed first in the postgresql.conf file.

Value Range Default Set Classifications

number of kilobytes 128MB master

session

reload

Greenplum Database Reference Guide Release Notes

1379

statement_timeout
Abort any statement that takes over the specified number of milliseconds. 0 turns off the limitation.

Value Range Default Set Classifications

number of milliseconds 0 master

session

reload

stats_queue_level
Note: The stats_queue_level server configuration parameter is enforced only when resource
queue-based resource management is active.

Collects resource queue statistics on database activity.

Value Range Default Set Classifications

Boolean off master

session

reload

superuser_reserved_connections
Determines the number of connection slots that are reserved for Greenplum Database superusers.

Value Range Default Set Classifications

integer < max_connections 3 local

system

restart

tcp_keepalives_count
How many keepalives may be lost before the connection is considered dead. A value of 0 uses the system
default. If TCP_KEEPCNT is not supported, this parameter must be 0.

Use this parameter for all connections that are not between a primary and mirror segment.

Value Range Default Set Classifications

number of lost keepalives 0 local

system

restart

tcp_keepalives_idle
Number of seconds between sending keepalives on an otherwise idle connection. A value of 0 uses the
system default. If TCP_KEEPIDLE is not supported, this parameter must be 0.

Use this parameter for all connections that are not between a primary and mirror segment.

Greenplum Database Reference Guide Release Notes

1380

Value Range Default Set Classifications

number of seconds 0 local

system

restart

tcp_keepalives_interval
How many seconds to wait for a response to a keepalive before retransmitting. A value of 0 uses the
system default. If TCP_KEEPINTVL is not supported, this parameter must be 0.

Use this parameter for all connections that are not between a primary and mirror segment.

Value Range Default Set Classifications

number of seconds 0 local

system

restart

temp_buffers
Sets the maximum memory, in blocks, to allow for temporary buffers by each database session. These
are session-local buffers used only for access to temporary tables. The setting can be changed within
individual sessions, but only up until the first use of temporary tables within a session. The cost of setting
a large value in sessions that do not actually need a lot of temporary buffers is only a buffer descriptor for
each block, or about 64 bytes, per increment. However if a buffer is actually used, an additional 32768
bytes will be consumed.

You can set this parameter to the number of 32K blocks (for example, 1024 to allow 32MB for buffers), or
specify the maximum amount of memory to allow (for example '48MB' for 1536 blocks). The gpconfig
utility and SHOW command report the maximum amount of memory allowed for temporary buffers.

Value Range Default Set Classifications

integer 1024 (32MB) master

session

reload

temp_tablespaces
Specifies tablespaces in which to create temporary objects (temp tables and indexes on temp tables) when
a CREATE command does not explicitly specify a tablespace. Temporary files for purposes such as sorting
large data sets are also created in these tablespaces.

The value is a comma-separated list of names of tablespaces. When there is more than one name in the
list, Greenplum chooses a random member of the list each time a temporary object is to be created; except
that within a transaction, successively created temporary objects are placed in successive tablespaces
from the list. If the selected element of the list is an empty string, Greenplum automatically uses the default
tablespace of the current database instead.

When temp_tablespaces is set interactively, specifying a nonexistent tablespace is an error, as is
specifying a tablespace for which the user does not have CREATE privilege. However, when using a
previously set value, nonexistent tablespaces are ignored, as are tablespaces for which the user lacks
CREATE privilege. In particular, this rule applies when using a value set in postgresql.conf.

Greenplum Database Reference Guide Release Notes

1381

The default value is an empty string, which results in all temporary objects being created in the default
tablespace of the current database.

See also default_tablespace.

Value Range Default Set Classifications

one or more tablespace names unset master

session

reload

TimeZone
Sets the time zone for displaying and interpreting time stamps. The default is to use whatever the system
environment specifies as the time zone. See Date/Time Keywords in the PostgreSQL documentation.

Value Range Default Set Classifications

time zone abbreviation local

restart

timezone_abbreviations
Sets the collection of time zone abbreviations that will be accepted by the server for date time input. The
default is Default, which is a collection that works in most of the world. Australia and India, and
other collections can be defined for a particular installation. Possible values are names of configuration
files stored in $GPHOME/share/postgresql/timezonesets/.

To configure Greenplum Database to use a custom collection of timezones, copy the file that contains
the timezone definitions to the directory $GPHOME/share/postgresql/timezonesets/ on the
Greenplum Database master and segment hosts. Then set value of the server configuration parameter
timezone_abbreviations to the file. For example, to use a file custom that contains the default
timezones and the WIB (Waktu Indonesia Barat) timezone.

1. Copy the file Default from the directory $GPHOME/share/postgresql/timezonesets/ the file
custom. Add the WIB timezone information from the file Asia.txt to the custom.

2. Copy the file custom to the directory $GPHOME/share/postgresql/timezonesets/ on the
Greenplum Database master and segment hosts.

3. Set value of the server configuration parameter timezone_abbreviations to custom.
4. Reload the server configuration file (gpstop -u).

Value Range Default Set Classifications

string Default master

session

reload

track_activities
Enables the collection of information on the currently executing command of each session, along with the
time when that command began execution. The default value is true. Only superusers can change this
setting. See the pg_stat_activity view.

Note: Even when enabled, this information is not visible to all users, only to superusers and the
user owning the session being reported on, so it should not represent a security risk.

https://www.postgresql.org/docs/9.4/datetime-keywords.html

Greenplum Database Reference Guide Release Notes

1382

Value Range Default Set Classifications

Boolean true master

system

reload

superuser

track_activity_query_size
Sets the maximum length limit for the query text stored in query column of the system catalog view
pg_stat_activity. The minimum length is 1024 characters.

Value Range Default Set Classifications

integer 1024 local

system

restart

track_counts
Enables the collection of information on the currently executing command of each session, along with the
time at which that command began execution.

Value Range Default Set Classifications

Boolean true master

session

reload

superuser

transaction_isolation
Sets the current transaction's isolation level.

Value Range Default Set Classifications

read committed

serializable

read committed master

session

reload

transaction_read_only
Sets the current transaction's read-only status.

Value Range Default Set Classifications

Boolean off master

session

reload

Greenplum Database Reference Guide Release Notes

1383

transform_null_equals
When on, expressions of the form expr = NULL (or NULL = expr) are treated as expr IS NULL, that is,
they return true if expr evaluates to the null value, and false otherwise. The correct SQL-spec-compliant
behavior of expr = NULL is to always return null (unknown).

Value Range Default Set Classifications

Boolean off master

session

reload

unix_socket_directories
Specifies the directory of the UNIX-domain socket on which the server is to listen for connections from
client applications. Multiple sockets can be created by listing multiple directories separated by commas.

Important: Do not change the value of this parameter. The default location is required for
Greenplum Database utilities.

Value Range Default Set Classifications

directory path unset local

system

restart

unix_socket_group
Sets the owning group of the UNIX-domain socket. By default this is an empty string, which uses the
default group for the current user.

Value Range Default Set Classifications

UNIX group name unset local

system

restart

unix_socket_permissions
Sets the access permissions of the UNIX-domain socket. UNIX-domain sockets use the usual UNIX file
system permission set. Note that for a UNIX-domain socket, only write permission matters.

Value Range Default Set Classifications

numeric UNIX file permission
mode (as accepted by the chmod
or umask commands)

511 local

system

restart

update_process_title
Enables updating of the process title every time a new SQL command is received by the server. The
process title is typically viewed by the ps command.

Greenplum Database Reference Guide Release Notes

1384

Value Range Default Set Classifications

Boolean on local

system

restart

vacuum_cost_delay
The length of time that the process will sleep when the cost limit has been exceeded. 0 disables the cost-
based vacuum delay feature.

Value Range Default Set Classifications

milliseconds < 0 (in multiples of
10)

0 local

system

restart

vacuum_cost_limit
The accumulated cost that will cause the vacuuming process to sleep.

Value Range Default Set Classifications

integer > 0 200 local

system

restart

vacuum_cost_page_dirty
The estimated cost charged when vacuum modifies a block that was previously clean. It represents the
extra I/O required to flush the dirty block out to disk again.

Value Range Default Set Classifications

integer > 0 20 local

system

restart

vacuum_cost_page_hit
The estimated cost for vacuuming a buffer found in the shared buffer cache. It represents the cost to lock
the buffer pool, lookup the shared hash table and scan the content of the page.

Value Range Default Set Classifications

integer > 0 1 local

system

restart

Greenplum Database Reference Guide Release Notes

1385

vacuum_cost_page_miss
The estimated cost for vacuuming a buffer that has to be read from disk. This represents the effort to lock
the buffer pool, lookup the shared hash table, read the desired block in from the disk and scan its content.

Value Range Default Set Classifications

integer > 0 10 local

system

restart

vacuum_freeze_min_age
Specifies the cutoff age (in transactions) that VACUUM should use to decide whether to replace transaction
IDs with FrozenXID while scanning a table.

For information about VACUUM and transaction ID management, see "Managing Data" in the Greenplum
Database Administrator Guide and the PostgreSQL documentation.

Value Range Default Set Classifications

integer 0-100000000000 100000000 local

system

restart

validate_previous_free_tid
Enables a test that validates the free tuple ID (TID) list. The list is maintained and used by Greenplum
Database. Greenplum Database determines the validity of the free TID list by ensuring the previous free
TID of the current free tuple is a valid free tuple. The default value is true, enable the test.

If Greenplum Database detects a corruption in the free TID list, the free TID list is rebuilt, a warning is
logged, and a warning is returned by queries for which the check failed. Greenplum Database attempts to
execute the queries.

Note: If a warning is returned, please contact Pivotal Support.

Value Range Default Set Classifications

Boolean true master

session

reload

verify_gpfdists_cert
When a Greenplum Database external table is defined with the gpfdists protocol to use SSL security,
this parameter controls whether SSL certificate authentication is enabled. The default is true, SSL
authentication is enabled when Greenplum Database communicates with the gpfdist utility to either read
data from or write data to an external data source.

The value false disables SSL certificate authentication. These SSL exceptions are ignored:

• The self-signed SSL certificate that is used by gpfdist is not trusted by Greenplum Database.
• The host name contained in the SSL certificate does not match the host name that is running gpfdist.

https://www.postgresql.org/docs/9.4/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND

Greenplum Database Reference Guide Release Notes

1386

You can set the value to false to disable authentication when testing the communication between the
Greenplum Database external table and the gpfdist utility that is serving the external data.

Warning: Disabling SSL certificate authentication exposes a security risk by not validating the
gpfdists SSL certificate.

For information about the gpfdists protocol, see gpfdists:// Protocol. For information about running the
gpfdist utility, see gpfdist.

Value Range Default Set Classifications

Boolean true master

session

reload

vmem_process_interrupt
Enables checking for interrupts before reserving vmem memory for a query during Greenplum Database
query execution. Before reserving further vmem for a query, check if the current session for the query
has a pending query cancellation or other pending interrupts. This ensures more responsive interrupt
processing, including query cancellation requests. The default is off.

Value Range Default Set Classifications

Boolean off master

session

reload

wait_for_replication_threshold
When Greenplum Database segment mirroring is enabled, specifies the maximum amount of Write-
Ahead Logging (WAL)-based records (in KB) written by a transaction on the primary segment
instance before the records are written to the mirror segment instance for replication. As the default,
Greenplum Database writes the records to the mirror segment instance when a checkpoint occurs or the
wait_for_replication_threshold value is reached.

A value of 0 disables the check for the amount of records. The records are written to the mirror segment
instance only after a checkpoint occurs.

If you set the value to 0, database performance issues might occur under heavy loads that perform long
transactions that do not perform a checkpoint operation.

Value Range Default Set Classifications

0 - MAX-INT / 1024 1024 master

system

restart

wal_keep_segments
For Greenplum Database master mirroring, sets the maximum number of processed WAL segment files
that are saved by the by the active Greenplum Database master if a checkpoint operation occurs.

The segment files are used to synchronize the active master on the standby master.

Greenplum Database Reference Guide Release Notes

1387

Value Range Default Set Classifications

integer 5 master

system

reload

superuser

wal_receiver_status_interval
For Greenplum Database master mirroring, sets the interval in seconds between walreceiver process
status messages that are sent to the active master. Under heavy loads, the time might be longer.

The value of replication_timeout controls the time that the walsender process waits for a walreceiver
message.

Value Range Default Set Classifications

integer 0- INT_MAX/1000 10 sec master

system

reload

superuser

writable_external_table_bufsize
Size of the buffer (in KB) that Greenplum Database uses for network communication, such as the
gpfdist utility and external web tables (that use http). Greenplum Database stores data in the buffer
before writing the data out. For information about gpfdist, see the Greenplum Database Utility Guide.

Value Range Default Set Classifications

integer 32 - 131072 (32KB -
128MB)

64 local

session

reload

xid_stop_limit
The number of transaction IDs prior to the ID where transaction ID wraparound occurs. When this limit is
reached, Greenplum Database stops creating new transactions to avoid data loss due to transaction ID
wraparound.

Value Range Default Set Classifications

integer 10000000 - 2000000000 1000000000 local

system

restart

xid_warn_limit
The number of transaction IDs prior to the limit specified by xid_stop_limit. When Greenplum Database
reaches this limit, it issues a warning to perform a VACUUM operation to avoid data loss due to transaction
ID wraparound.

Greenplum Database Reference Guide Release Notes

1388

Value Range Default Set Classifications

integer 10000000 - 2000000000 500000000 local

system

restart

xmlbinary
Specifies how binary values are encoded in XML data. For example, when bytea values are converted to
XML. The binary data can be converted to either base64 encoding or hexadecimal encoding. The default is
base64.

The parameter can be set for a database system, an individual database, or a session.

Value Range Default Set Classifications

base64

hex

base64 master

session

reload

 xmloption
Specifies whether XML data is to be considered as an XML document (document) or XML content
fragment (content) for operations that perform implicit parsing and serialization. The default is content.

This parameter affects the validation performed by xml_is_well_formed(). If the value is document,
the function checks for a well-formed XML document. If the value is content, the function checks for a
well-formed XML content fragment.

Note: An XML document that contains a document type declaration (DTD) is not considered a valid
XML content fragment. If xmloption set to content, XML that contains a DTD is not considered
valid XML.

To cast a character string that contains a DTD to the xml data type, use the xmlparse function
with the document keyword, or change the xmloption value to document.

The parameter can be set for a database system, an individual database, or a session. The SQL command
to set this option for a session is also available in Greenplum Database.

SET XML OPTION { DOCUMENT | CONTENT }

Value Range Default Set Classifications

document

content

content master

session

reload

Greenplum Database Reference Guide Release Notes

1389

System Catalogs
This reference describes the Greenplum Database system catalog tables and views. System tables
prefixed with gp_ relate to the parallel features of Greenplum Database. Tables prefixed with pg_ are
either standard PostgreSQL system catalog tables supported in Greenplum Database, or are related to
features Greenplum that provides to enhance PostgreSQL for data warehousing workloads. Note that the
global system catalog for Greenplum Database resides on the master instance.

Warning: Changes to Pivotal Greenplum Database system catalog tables or views are not
supported. If a catalog table or view is changed by the customer, the Pivotal Greenplum Database
cluster is not supported. The cluster must be reinitialized and restored by the customer.

• System Tables
• System Views
• System Catalogs Definitions

System Tables
• gp_configuration_history
• gp_distribution_policy
• gp_fastsequence
• gp_global_sequence
• gp_id
• gp_stat_replication
• gp_segment_configuration
• gp_version_at_initdb
• gpexpand.status
• gpexpand.status_detail
• pg_aggregate
• pg_am
• pg_amop
• pg_amproc
• pg_appendonly
• pg_appendonly_alter_column (not supported)
• pg_attrdef
• pg_attribute
• pg_auth_members
• pg_authid
• pg_autovacuum (not supported)
• pg_cast
• pg_class
• pg_constraint
• pg_conversion
• pg_database
• pg_db_role_setting
• pg_depend
• pg_description
• pg_exttable
• pg_foreign_data_wrapper
• pg_foreign_server

Greenplum Database Reference Guide Release Notes

1390

• pg_foreign_table
• pg_index
• pg_inherits
• pg_language
• pg_largeobject
• pg_listener
• pg_namespace
• pg_opclass
• pg_operator
• pg_opfamily
• pg_partition
• pg_partition_rule
• pg_pltemplate
• pg_proc
• pg_resgroup
• pg_resgroupcapability
• pg_resourcetype
• pg_resqueue
• pg_resqueuecapability
• pg_rewrite
• pg_shdepend
• pg_shdescription
• pg_stat_last_operation
• pg_stat_last_shoperation
• pg_stat_replication
• pg_statistic
• pg_tablespace
• pg_trigger
• pg_type
• pg_user_mapping

System Views
Greenplum Database provides the following system views not available in PostgreSQL.

• gp_distributed_log
• gp_distributed_xacts
• gp_pgdatabase
• gp_resgroup_config
• gp_resgroup_status
• gp_resgroup_status_per_host
• gp_resgroup_status_per_segment
• gp_resqueue_status
• gp_transaction_log
• gpexpand.expansion_progress
• pg_matviews
• pg_max_external_files
• pg_partition_columns
• pg_partition_templates
• pg_partitions
• pg_resqueue_attributes

Greenplum Database Reference Guide Release Notes

1391

• pg_resqueue_status (Deprecated. Use gp_toolkit.gp_resqueue_status.)
• pg_stat_activity
• pg_stat_all_indexes
• pg_stat_all_tables
• pg_stat_replication
• pg_stat_resqueues
• session_level_memory_consumption (See Viewing Session Memory Usage Information)

For more information about the standard system views supported in PostgreSQL and Greenplum
Database, see the following sections of the PostgreSQL documentation:

• System Views
• Statistics Collector Views
• The Information Schema

System Catalogs Definitions
System catalog table and view definitions in alphabetical order.

foreign_data_wrapper_options
The foreign_data_wrapper_options view contains all of the otpions defined for foreign-data
wrappers in the current database. Greenplum Database displays only those foreign-data wrappers to which
the current user has access (by way of being the owner or having some privilege).

Table 116: foreign_data_wrapper_options

column type references description

foreign_data_
wrapper_catalog

sql_identifier Name of the database
in which the foreign-
data wrapper is defined
(always the current
database).

foreign_data_
wrapper_name

sql_identifier Name of the foreign-data
wrapper.

option_name sql_identifier Name of an option.

option_value character_data Value of the option.

foreign_data_wrappers
The foreign_data_wrappers view contains all foreign-data wrappers defined in the current database.
Greenplum Database displays only those foreign-data wrappers to which the current user has access (by
way of being the owner or having some privilege).

Table 117: foreign_data_wrappers

column type references description

foreign_data_
wrapper_catalog

sql_identifier Name of the database
in which the foreign-
data wrapper is defined
(always the current
database).

https://www.postgresql.org/docs/9.4/views-overview.html
https://www.postgresql.org/docs/9.4/monitoring-stats.html#MONITORING-STATS-VIEWS-TABLE
https://www.postgresql.org/docs/9.4/information-schema.html

Greenplum Database Reference Guide Release Notes

1392

column type references description

foreign_data_
wrapper_name

sql_identifier Name of the foreign-data
wrapper.

authorization_
identifier

sql_identifier Name of the owner of
the foreign server.

library_name character_data File name of the library
that implements this
foreign-data wrapper.

foreign_data_
wrapper_language

character_data Language used to
implement the foreign-
data wrapper.

foreign_server_options
The foreign_server_options view contains all of the options defined for foreign servers in the current
database. Greenplum Database displays only those foreign servers to which the current user has access
(by way of being the owner or having some privilege).

Table 118: foreign_server_options

column type references description

foreign_server_
catalog

sql_identifier Name of the database in
which the foreign server
is defined (always the
current database).

foreign_server_
name

sql_identifier Name of the foreign
server.

option_name sql_identifier Name of an option.

option_value character_data Value of the option.

foreign_servers
The foreign_servers view contains all foreign servers defined in the current database. Greenplum
Database displays only those foreign servers to which the current user has access (by way of being the
owner or having some privilege).

Table 119: foreign_servers

column type references description

foreign_server_
catalog

sql_identifier Name of the database in
which the foreign server
is defined (always the
current database).

foreign_server_
name

sql_identifier Name of the foreign
server.

Greenplum Database Reference Guide Release Notes

1393

column type references description

foreign_data_
wrapper_catalog

sql_identifier Name of the database
in which the foreign-data
wrapper used by the
foreign server is defined
(always the current
database).

foreign_data_
wrapper_name

sql_identifier Name of the foreign-data
wrapper used by the
foreign server.

foreign_server_
type

character_data Foreign server type
information, if specified
upon creation.

foreign_server_
version

character_data Foreign server version
information, if specified
upon creation.

authorization_
identifier

sql_identifier Name of the owner of
the foreign server.

foreign_table_options
The foreign_table_options view contains all of the options defined for foreign tables in the current
database. Greenplum Database displays only those foreign tables to which the current user has access (by
way of being the owner or having some privilege).

Table 120: foreign_table_options

column type references description

foreign_table_
catalog

sql_identifier Name of the database in
which the foreign table
is defined (always the
current database).

foreign_table_
schema

sql_identifier Name of the schema
that contains the foreign
table.

foreign_table_name sql_identifier Name of the foreign
table.

option_name sql_identifier Name of an option.

option_value character_data Value of the option.

foreign_tables
The foreign_tables view contains all foreign tables defined in the current database. Greenplum
Database displays only those foreign tables to which the current user has access (by way of being the
owner or having some privilege).

Greenplum Database Reference Guide Release Notes

1394

Table 121: foreign_tables

column type references description

foreign_table_
catalog

sql_identifier Name of the database in
which the foreign table
is defined (always the
current database).

foreign_table_
schema

sql_identifier Name of the schema
that contains the foreign
table.

foreign_table_name sql_identifier Name of the foreign
table.

foreign_server_
catalog

sql_identifier Name of the database in
which the foreign server
is defined (always the
current database).

foreign_server_
name

sql_identifier Name of the foreign
server.

gp_configuration_history
The gp_configuration_history table contains information about system changes related to fault
detection and recovery operations. The fts_probe process logs data to this table, as do certain
related management utilities such as gprecoverseg and gpinitsystem. For example, when
you add a new segment and mirror segment to the system, records for these events are logged to
gp_configuration_history.

The event descriptions stored in this table may be helpful for troubleshooting serious system issues in
collaboration with Pivotal Support technicians.

This table is populated only on the master. This table is defined in the pg_global tablespace, meaning it
is globally shared across all databases in the system.

Table 122: pg_catalog.gp_configuration_history

column type references description

time timestamp with time
zone

Timestamp for the event
recorded.

dbid smallint gp_segment _
configuration.dbid

System-assigned ID.
The unique identifier of
a segment (or master)
instance.

desc text Text description of the
event.

For information about gprecoverseg and gpinitsystem, see the Greenplum Database Utility Guide.

gp_distributed_log
The gp_distributed_log view contains status information about distributed transactions and their
associated local transactions. A distributed transaction is a transaction that involves modifying data on the

Greenplum Database Reference Guide Release Notes

1395

segment instances. Greenplum's distributed transaction manager ensures that the segments stay in synch.
This view allows you to see the status of distributed transactions.

Table 123: pg_catalog.gp_distributed_log

column type references description

segment_id smallint gp_segment_
configuration.content

The content id if the
segment. The master is
always -1 (no content).

dbid small_int gp_segment_
configuration.dbid

The unique id of the
segment instance.

distributed_xid xid The global transaction
id.

distributed_id text A system assigned ID for
a distributed transaction.

status text The status of the
distributed transaction
(Committed or Aborted).

local_transaction xid The local transaction ID.

gp_distributed_xacts
The gp_distributed_xacts view contains information about Greenplum Database distributed
transactions. A distributed transaction is a transaction that involves modifying data on the segment
instances. Greenplum's distributed transaction manager ensures that the segments stay in synch. This
view allows you to see the currently active sessions and their associated distributed transactions.

Table 124: pg_catalog.gp_distributed_xacts

column type references description

distributed_xid xid The transaction ID
used by the distributed
transaction across the
Greenplum Database
array.

distributed_id text The distributed
transaction identifier. It
has 2 parts — a unique
timestamp and the
distributed transaction
number.

state text The current state of this
session with regards to
distributed transactions.

gp_session_id int The ID number of the
Greenplum Database
session associated with
this transaction.

Greenplum Database Reference Guide Release Notes

1396

column type references description

xmin_distributed _
snapshot

xid The minimum distributed
transaction number
found among all open
transactions when this
transaction was started.
It is used for MVCC
distributed snapshot
purposes.

gp_distribution_policy
The gp_distribution_policy table contains information about Greenplum Database tables and their
policy for distributing table data across the segments. This table is populated only on the master. This table
is not globally shared, meaning each database has its own copy of this table.

Table 125: pg_catalog.gp_distribution_policy

column type references description

localoid oid pg_class.oid The table object
identifier (OID).

policytype char The table distribution
policy:

• p - Partitioned
policy. Table data is
distributed among
segment instances.

• r - Replicated
policy. Table data is
replicated on each
segment instance.

numsegments integer The number of segment
instances on which the
table data is distributed.

distkey int2vector pg_attribute.attnum The column number(s)
of the distribution
column(s).

distclass oidvector pg_opclass.oid The operator class
identifier(s) of the
distribution column(s).

gpexpand.expansion_progress
The gpexpand.expansion_progress view contains information about the status of a system
expansion operation. The view provides calculations of the estimated rate of table redistribution and
estimated time to completion.

Status for specific tables involved in the expansion is stored in gpexpand.status_detail.

Greenplum Database Reference Guide Release Notes

1397

Table 126: gpexpand.expansion_progress

column type references description

name text Name for the data field
provided. Includes:

Bytes Left

Bytes Done

Estimated Expansion
Rate

Estimated Time to
Completion

Tables Expanded

Tables Left

value text The value for the
progress data. For
example:

Estimated
Expansion Rate -
9.75667095996092
MB/s

gpexpand.status
The gpexpand.status table contains information about the status of a system expansion operation.
Status for specific tables involved in the expansion is stored in gpexpand.status_detail.

In a normal expansion operation it is not necessary to modify the data stored in this table.

Table 127: gpexpand.status

column type references description

status text Tracks the status of an
expansion operation.
Valid values are:

SETUP

SETUP DONE

EXPANSION STARTED

EXPANSION STOPPED

COMPLETED

updated timestamp without time
zone

Timestamp of the last
change in status.

gpexpand.status_detail
The gpexpand.status_detail table contains information about the status of tables involved in a
system expansion operation. You can query this table to determine the status of tables being expanded, or
to view the start and end time for completed tables.

Greenplum Database Reference Guide Release Notes

1398

This table also stores related information about the table such as the oid and disk size. Overall status
information for the expansion is stored in gpexpand.status.

In a normal expansion operation it is not necessary to modify the data stored in this table.

Table 128: gpexpand.status_detail

column type references description

dbname text Name of the database to
which the table belongs.

fq_name text Fully qualified name of
the table.

table_oid oid OID of the table.

root_partition_
name

text For a partitioned table,
the name of the root
partition. Otherwise,
None.

rank int Rank determines the
order in which tables
are expanded. The
expansion utility will sort
on rank and expand the
lowest-ranking tables
first.

external_writable boolean Identifies whether or not
the table is an external
writable table. (External
writable tables require
a different syntax to
expand).

status text Status of expansion for
this table. Valid values
are:

NOT STARTED

IN PROGRESS

COMPLETED

NO LONGER EXISTS

expansion_started timestamp without time
zone

Timestamp for the start
of the expansion of this
table. This field is only
populated after a table is
successfully expanded.

expansion_finished timestamp without time
zone

Timestamp for the
completion of expansion
of this table.

Greenplum Database Reference Guide Release Notes

1399

column type references description

source_bytes The size of disk space
associated with the
source table. Due to
table bloat in heap
tables and differing
numbers of segments
after expansion, it
is not expected that
the final number of
bytes will equal the
source number. This
information is tracked to
help provide progress
measurement to aid
in duration estimation
for the end-to-end
expansion operation.

gp_fastsequence
The gp_fastsequence table contains information about append-optimized and column-oriented tables.
The last_sequence value indicates maximum row number currently used by the table.

Table 129: pg_catalog.gp_fastsequence

column type references description

objid oid pg_class.oid Object id of the pg_
aoseg.pg_aocsseg_
* table used to track
append-optimized file
segments.

objmod bigint Object modifier.

last_sequence bigint The last sequence
number used by the
object.

gp_id
The gp_id system catalog table identifies the Greenplum Database system name and number of
segments for the system. It also has local values for the particular database instance (segment or
master) on which the table resides. This table is defined in the pg_global tablespace, meaning it is
globally shared across all databases in the system.

Table 130: pg_catalog.gp_id

column type references description

gpname name The name of this
Greenplum Database
system.

Greenplum Database Reference Guide Release Notes

1400

column type references description

numsegments integer The number of segments
in the Greenplum
Database system.

dbid integer The unique identifier of
this segment (or master)
instance.

content integer The ID for the portion
of data on this segment
instance. A primary and
its mirror will have the
same content ID.

For a segment the value
is from 0-N-1, where N is
the number of segments
in Greenplum Database.

For the master, the value
is -1.

gp_pgdatabase
The gp_pgdatabase view shows status information about the Greenplum segment instances and
whether they are acting as the mirror or the primary. This view is used internally by the Greenplum fault
detection and recovery utilities to determine failed segments.

Table 131: pg_catalog.gp_pgdatabase

column type references description

dbid smallint gp_segment_
configuration.dbid

System-assigned ID.
The unique identifier of
a segment (or master)
instance.

isprimary boolean gp_segment_
configuration.role

Whether or not this
instance is active. Is it
currently acting as the
primary segment (as
opposed to the mirror).

content smallint gp_segment_
configuration.content

The ID for the portion
of data on an instance.
A primary segment
instance and its mirror
will have the same
content ID.

For a segment the value
is from 0-N-1, where N is
the number of segments
in Greenplum Database.

For the master, the value
is -1.

Greenplum Database Reference Guide Release Notes

1401

column type references description

definedprimary boolean gp_segment_
configuration.preferred_
role

Whether or not this
instance was defined as
the primary (as opposed
to the mirror) at the
time the system was
initialized.

gp_resgroup_config
The gp_toolkit.gp_resgroup_config view allows administrators to see the current CPU, memory,
and concurrency limits for a resource group.

Note: The gp_resgroup_config view is valid only when resource group-based resource
management is active.

Table 132: gp_toolkit.gp_resgroup_config

column type references description

groupid oid pg_resgroup.oid The ID of the resource
group.

groupname name pg_resgroup.rsgname The name of the
resource group.

concurrency text pg_resgroupcapability.
value for pg_
resgroupcapability.
reslimittype = 1

The concurrency
(CONCURRENCY)
value specified for the
resource group.

cpu_rate_limit text pg_resgroupcapability.
value for pg_
resgroupcapability.
reslimittype = 2

The CPU limit (CPU_
RATE_LIMIT) value
specified for the
resource group, or -1.

memory_limit text pg_resgroupcapability.
value for pg_
resgroupcapability.
reslimittype = 3

The memory limit
(MEMORY_LIMIT)
value specified for the
resource group.

memory_shared_
quota

text pg_resgroupcapability.
value for pg_
resgroupcapability.
reslimittype = 4

The shared memory
quota (MEMORY_
SHARED_QUOTA)
value specified for the
resource group.

memory_spill_ratio text pg_resgroupcapability.
value for pg_
resgroupcapability.
reslimittype = 5

The memory spill ratio
(MEMORY_SPILL_
RATIO) value specified
for the resource group.

memory_auditor text pg_resgroupcapability.
value for pg_
resgroupcapability.
reslimittype = 6

The memory auditor
in use for the resource
group.

Greenplum Database Reference Guide Release Notes

1402

column type references description

cpuset text pg_resgroupcapability.
value for pg_
resgroupcapability.
reslimittype = 7

The CPU cores reserved
for the resource group,
or -1.

gp_resgroup_status
The gp_toolkit.gp_resgroup_status view allows administrators to see status and activity for a
resource group. It shows how many queries are waiting to run and how many queries are currently active
in the system for each resource group. The view also displays current memory and CPU usage for the
resource group.

Note: The gp_resgroup_status view is valid only when resource group-based resource
management is active.

Table 133: gp_toolkit.gp_resgroup_status

column type references description

rsgname name pg_resgroup.rsgname The name of the
resource group.

groupid oid pg_resgroup.oid The ID of the resource
group.

num_running integer The number of
transactions currently
executing in the
resource group.

num_queueing integer The number of currently
queued transactions for
the resource group.

num_queued integer The total number of
queued transactions
for the resource group
since the Greenplum
Database cluster was
last started, excluding
the num_queueing.

num_executed integer The total number of
executed transactions
in the resource group
since the Greenplum
Database cluster was
last started, excluding
the num_running.

total_queue_
duration

interval The total time any
transaction was queued
since the Greenplum
Database cluster was
last started.

Greenplum Database Reference Guide Release Notes

1403

column type references description

cpu_usage json A set of key-value pairs.
For each segment
instance (the key), the
value is the real-time,
per-segment instance
CPU core usage by a
resource group. The
value is the sum of
the percentages (as a
decimal value) of CPU
cores that are used by
the resource group for
the segment instance.

memory_usage json The real-time memory
usage of the resource
group on each
Greenplum Database
segment's host.

The cpu_usage field is a JSON-formatted, key:value string that identifies, for each resource group,
the per-segment instance CPU core usage. The key is the segment id. The value is the sum of the
percentages (as a decimal value) of the CPU cores used by the segment instance's resource group on the
segment host; the maximum value is 1.00. The total CPU usage of all segment instances running on a host
should not exceed the gp_resource_group_cpu_limit. Example cpu_usage column output:

{"-1":0.01, "0":0.31, "1":0.31}

In the example, segment 0 and segment 1 are running on the same host; their CPU usage is the same.

The memory_usage field is also a JSON-formatted, key:value string. The string contents differ depending
upon the type of resource group. For each resource group that you assign to a role (default memory
auditor vmtracker), this string identifies the used and available fixed and shared memory quota
allocations on each segment. The key is segment id. The values are memory values displayed in MB units.
The following example shows memory_usage column output for a single segment for a resource group
that you assign to a role:

"0":{"used":0, "available":76, "quota_used":-1, "quota_available":60,
 "shared_used":0, "shared_available":16}

For each resource group that you assign to an external component, the memory_usage JSON-formatted
string identifies the memory used and the memory limit on each segment. The following example shows
memory_usage column output for an external component resource group for a single segment:

"1":{"used":11, "limit_granted":15}

gp_resgroup_status_per_host
The gp_toolkit.gp_resgroup_status_per_host view allows administrators to see current memory
and CPU usage and allocation for each resource group on a per-host basis.

Memory amounts are specified in MBs.

Greenplum Database Reference Guide Release Notes

1404

Note: The gp_resgroup_status_per_host view is valid only when resource group-based
resource management is active.

Table 134: gp_toolkit.gp_resgroup_status_per_host

column type references description

rsgname name pg_resgroup.rsgname The name of the
resource group.

groupid oid pg_resgroup.oid The ID of the resource
group.

hostname text gp_segment_
configuration.hostname

The hostname of the
segment host.

cpu numeric The real-time CPU core
usage by the resource
group on a host. The
value is the sum of
the percentages (as a
decimal value) of the
CPU cores that are used
by the resource group on
the host.

memory_used integer The real-time memory
usage of the resource
group on the host. This
total includes resource
group fixed and shared
memory. It also includes
global shared memory
used by the resource
group.

memory_available integer The unused fixed and
shared memory for
the resource group
that is available on the
host. This total does
not include available
resource group global
shared memory.

memory_quota_used integer The real-time fixed
memory usage for the
resource group on the
host.

memory_quota_
available

integer The fixed memory
available to the resource
group on the host.

Greenplum Database Reference Guide Release Notes

1405

column type references description

memory_shared_used integer The group shared
memory used by the
resource group on
the host. If any global
shared memory is used
by the resource group,
this amount is included
in the total as well.

memory_shared_
available

integer The amount of group
shared memory
available to the resource
group on the host.
Resource group global
shared memory is not
included in this total.

gp_resgroup_status_per_segment
The gp_toolkit.gp_resgroup_status_per_segment view allows administrators to see current
memory and CPU usage and allocation for each resource group on a per-host and per-segment basis.

Memory amounts are specified in MBs.

Note: The gp_resgroup_status_per_segment view is valid only when resource group-based
resource management is active.

Table 135: gp_toolkit.gp_resgroup_status_per_segment

column type references description

rsgname name pg_resgroup.rsgname The name of the
resource group.

groupid oid pg_resgroup.oid The ID of the resource
group.

hostname text gp_segment_
configuration.hostname

The hostname of the
segment host.

segment_id smallint gp_segment_
configuration.content

The content ID for a
segment instance on the
segment host.

cpu numeric The real-time, per-
segment instance CPU
core usage by the
resource group on the
host. The value is the
sum of the percentages
(as a decimal value) of
the CPU cores that are
used by the resource
group for the segment
instance.

Greenplum Database Reference Guide Release Notes

1406

column type references description

memory_used integer The real-time memory
usage of the resource
group for the segment
instance on the host.
This total includes
resource group fixed and
shared memory. It also
includes global shared
memory used by the
resource group.

memory_available integer The unused fixed and
shared memory for the
resource group for the
segment instance on the
host.

memory_quota_used integer The real-time fixed
memory usage for the
resource group for the
segment instance on the
host.

memory_quota_
available

integer The fixed memory
available to the resource
group for the segment
instance on the host.

memory_shared_used integer The group shared
memory used by the
resource group for the
segment instance on the
host.

memory_shared_
available

integer The amount of group
shared memory
available for the
segment instance on the
host. Resource group
global shared memory is
not included in this total.

gp_resqueue_status
The gp_toolkit.gp_resqueue_status view allows administrators to see status and activity for a
resource queue. It shows how many queries are waiting to run and how many queries are currently active
in the system from a particular resource queue.

Note: The gp_resqueue_status view is valid only when resource queue-based resource
management is active.

Table 136: gp_toolkit.gp_resqueue_status

column type references description

queueid oid gp_toolkit.gp_resqueue_
queueid

The ID of the resource
queue.

Greenplum Database Reference Guide Release Notes

1407

column type references description

rsqname name gp_toolkit.gp_resqueue_
rsqname

The name of the
resource queue.

rsqcountlimit real gp_toolkit.gp_resqueue_
rsqcountlimit

The active query
threshold of the resource
queue. A value of -1
means no limit.

rsqcountvalue real gp_toolkit.gp_resqueue_
rsqcountvalue

The number of active
query slots currently
being used in the
resource queue.

rsqcostlimit real gp_toolkit.gp_resqueue_
rsqcostlimit

The query cost threshold
of the resource queue.
A value of -1 means no
limit.

rsqcostvalue real gp_toolkit.gp_resqueue_
rsqcostvalue

The total cost of all
statements currently in
the resource queue.

rsqmemorylimit real gp_toolkit.gp_resqueue_
rsqmemorylimit

The memory limit for the
resource queue.

rsqmemoryvalue real gp_toolkit.gp_resqueue_
rsqmemoryvalue

The total memory
used by all statements
currently in the resource
queue.

rsqwaiters integer gp_toolkit.gp_resqueue_
rsqwaiter

The number of
statements currently
waiting in the resource
queue.

rsqholders integer gp_toolkit.gp_resqueue_
rsqholders

The number of
statements currently
running on the system
from this resource
queue.

gp_stat_replication
The gp_stat_replication view contains replication statistics of the walsender process that is used
for Greenplum Database Write-Ahead Logging (WAL) replication when master or segment mirroring is
enabled.

Table 137: gp_catalog.gp_stat_replication

column type references description

gp_segment_id integer Unique identifier of a
segment (or master)
instance.

pid integer Process ID of the
walsender backend
process.

Greenplum Database Reference Guide Release Notes

1408

column type references description

usesysid oid User system ID that runs
the walsender backend
process.

usename name User name that runs the
walsender backend
process.

application_name text Client application name.

client_addr inet Client IP address.

client_hostname text Client host name.

client_port integer Client port number.

backend_start timestamp Operation start
timestamp.

state text walsender state. The
value can be:

startup

backup

catchup

streaming

sent_location text walsender xlog record
sent location.

write_location text walreceiver xlog
record write location.

flush_location text walreceiver xlog
record flush location.

replay_location text Master standby or
segment mirror xlog
record replay location.

sync_priority integer Priority. The value is 1.

sync_state text walsendersynchronization
state. The value is sync.

sync_error text walsender
synchronization error.
 none if no error.

gp_segment_configuration
The gp_segment_configuration table contains information about mirroring and segment instance
configuration.

Greenplum Database Reference Guide Release Notes

1409

Table 138: pg_catalog.gp_segment_configuration

column type references description

dbid smallint Unique identifier of a
segment (or master)
instance.

content smallint The content identifier
for a segment instance.
A primary segment
instance and its
corresponding mirror will
always have the same
content identifier.

For a segment the value
is from 0 to N-1, where N
is the number of primary
segments in the system.

For the master, the value
is always -1.

role char The role that a segment
is currently running as.
Values are p (primary) or
m(mirror).

preferred_role char The role that a segment
was originally assigned
at initialization time.
Values are p (primary) or
m (mirror).

Greenplum Database Reference Guide Release Notes

1410

column type references description

mode char The synchronization
status of a segment
instance with its mirror
copy. Values are s
(synchronized) or n (not
synchronized).

Note: This
column always
shows n for the
master segment
and s for the
standby master
segment, but
these values do
not describe the
synchronization
state for
the master
segment. Use
gp_stat_replication
to determine the
synchronization
state between
the master and
standby master.

status char The fault status of a
segment instance.
Values are u (up) or d
(down).

port integer The TCP port the
database server listener
process is using.

hostname text The hostname of a
segment host.

address text The hostname used
to access a particular
segment instance on a
segment host. This value
may be the same as
hostname on systems
that do not have per-
interface hostnames
configured.

datadir text Segment instance data
directory.

gp_transaction_log
The gp_transaction_log view contains status information about transactions local to a particular
segment. This view allows you to see the status of local transactions.

Greenplum Database Reference Guide Release Notes

1411

Table 139: pg_catalog.gp_transaction_log

column type references description

segment_id smallint gp_segment_
configuration.content

The content id if the
segment. The master is
always -1 (no content).

dbid smallint gp_segment_
configuration.dbid

The unique id of the
segment instance.

transaction xid The local transaction ID.

status text The status of the local
transaction (Committed
or Aborted).

gp_version_at_initdb
The gp_version_at_initdb table is populated on the master and each segment in the Greenplum
Database system. It identifies the version of Greenplum Database used when the system was first
initialized. This table is defined in the pg_global tablespace, meaning it is globally shared across all
databases in the system.

Table 140: pg_catalog.gp_version

column type references description

schemaversion integer Schema version number.

productversion text Product version number.

pg_aggregate
The pg_aggregate table stores information about aggregate functions. An aggregate function is a
function that operates on a set of values (typically one column from each row that matches a query
condition) and returns a single value computed from all these values. Typical aggregate functions are sum,
count, and max. Each entry in pg_aggregate is an extension of an entry in pg_proc. The pg_proc
entry carries the aggregate's name, input and output data types, and other information that is similar to
ordinary functions.

Table 141: pg_catalog.pg_aggregate

column type references description

aggfnoid regproc pg_proc.oid OID of the aggregate
function

aggkind char Aggregate kind: n for
normal aggregates, o for
ordered-set aggregates,
or h for hypothetical-set
aggregates

Greenplum Database Reference Guide Release Notes

1412

column type references description

aggnumdirectargs int2 Number of direct (non-
aggregated) arguments
of an ordered-set
or hypothetical-set
aggregate, counting
a variadic array as
one argument. If equal
to pronargs, the
aggregate must be
variadic and the variadic
array describes the
aggregated arguments
as well as the final direct
arguments. Always zero
for normal aggregates.

aggtransfn regproc pg_proc.oid Transition function OID

aggfinalfn regproc pg_proc.oid Final function OID (zero
if none)

aggcombinefn regproc pg_proc.oid Combine function OID
(zero if none)

aggserialfn regproc pg_proc.oid OID of the serialization
function to convert
transtype to bytea (zero
if none)

aggdeserialfn regproc pg_proc.oid OID of the
deserialization function
to convert bytea to
transtype (zero if none)

aggmtransfn regproc pg_proc.oid Forward transition
function OID for moving-
aggregate mode (zero if
none)

aggminvtransfn regproc pg_proc.oid Inverse transition
function OID for moving-
aggregate mode (zero if
none)

aggmfinalfn regproc pg_proc.oid Final function OID for
moving-aggregate mode
(zero if none)

aggfinalextra bool True to pass extra
dummy arguments to
aggfinalfn

aggmfinalextra bool True to pass extra
dummy arguments to
aggmfinalfn

aggsortop oid pg_operator.oid Associated sort operator
OID (zero if none)

Greenplum Database Reference Guide Release Notes

1413

column type references description

aggtranstype oid pg_type.oid Data type of the
aggregate function's
internal transition (state)
data

aggtransspace int4 Approximate average
size (in bytes) of the
transition state data, or
zero to use a default
estimate

aggmtranstype oid pg_type.oid Data type of the
aggregate function's
internal transition
(state) data for moving-
aggregate mode (zero if
none)

aggmtransspace int4 Approximate average
size (in bytes) of the
transition state data for
moving-aggregate mode,
or zero to use a default
estimate

agginitval text The initial value of the
transition state. This is a
text field containing the
initial value in its external
string representation. If
this field is NULL, the
transition state value
starts out NULL.

aggminitval text The initial value of
the transition state for
moving- aggregate
mode. This is a text field
containing the initial
value in its external
string representation. If
this field is NULL, the
transition state value
starts out NULL.

pg_am
The pg_am table stores information about index access methods. There is one row for each index access
method supported by the system.

Greenplum Database Reference Guide Release Notes

1414

Table 142: pg_catalog.pg_am

column type references description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

amname name Name of the access
method

amstrategies int2 Number of operator
strategies for this access
method, or zero if the
access method does
not have a fixed set of
operator strategies

amsupport int2 Number of support
routines for this access
method

amcanorder boolean Does the access method
support ordered scans
sorted by the indexed
column's value?

amcanorderbyop boolean Does the access method
support ordered scans
sorted by the result of an
operator on the indexed
column?

amcanbackward boolean Does the access method
support backward
scanning?

amcanunique boolean Does the access method
support unique indexes?

amcanmulticol boolean Does the access method
support multicolumn
indexes?

amoptionalkey boolean Does the access method
support a scan without
any constraint for the
first index column?

amsearcharray boolean Does the access
method support
ScalarArrayOpExpr
searches?

amsearchnulls boolean Does the access method
support IS NULL/NOT
NULL searches?

amstorage boolean Can index storage data
type differ from column
data type?

Greenplum Database Reference Guide Release Notes

1415

column type references description

amclusterable boolean Can an index of this type
be clustered on?

ampredlocks boolean Does an index of this
type manage fine-
grained predicae locks?

amkeytype oid pg_type.oid Type of data stored in
index, or zero if not a
fixed type

aminsert regproc pg_proc.oid "Insert this tuple"
function

ambeginscan regproc pg_proc.oid "Prepare for index scan"
function

amgettuple regproc pg_proc.oid "Next valid tuple"
function, or zero if none

amgetbitmap regproc pg_proc.oid "Fetch all tuples"
function, or zero if none

amrescan regproc pg_proc.oid "(Re)start index scan"
function

amendscan regproc pg_proc.oid "Clean up after index
scan" function

ammarkpos regproc pg_proc.oid "Mark current scan
position" function

amrestrpos regproc pg_proc.oid "Restore marked scan
position" function

ambuild regproc pg_proc.oid "Build new index"
function

ambuildempty regproc pg_proc.oid "Build empty index"
function

ambulkdelete regproc pg_proc.oid Bulk-delete function

amvacuumcleanup regproc pg_proc.oid Post-VACUUM cleanup
function

amcanreturn regproc pg_proc.oid Function to check
whether index supports
index-only scans, or zero
if none

amcostestimate regproc pg_proc.oid Function to estimate cost
of an index scan

amoptions regproc pg_proc.oid Function to parse and
validate reloptions
for an index

Greenplum Database Reference Guide Release Notes

1416

pg_amop
The pg_amop table stores information about operators associated with index access method operator
classes. There is one row for each operator that is a member of an operator class.

An entry's amopmethod must match the opfmethod of its containing operator family (including
amopmethod here is an intentional denormalization of the catalog structure for performance reasons).
Also, amoplefttype and amoprighttype must match the oprleft and oprright fields of the
referenced pg_operator entry.

Table 143: pg_catalog.pg_amop

column type references description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

amopfamily oid pg_opfamily.oid The operator family that
this entry is for

amoplefttype oid pg_type.oid Left-hand input data type
of operator

amoprighttype oid pg_type.oid Right-hand input data
type of operator

amopstrategy int2 Operator strategy
number

amoppurpose char Operator purpose, either
s for search or o for
ordering

amopopr oid pg_operator.oid OID of the operator

amopmethod oid pg_am.oid Index access method for
the operator family

amopsortfamily oid pg_opfamily.oid If an ordering operator,
the B-tree operator
family that this entry
sorts according to; zero
if a search operator

pg_amproc
The pg_amproc table stores information about support procedures associated with index access method
operator classes. There is one row for each support procedure belonging to an operator class.

Table 144: pg_catalog.pg_amproc

column type references description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

amprocfamily oid pg_opfamily.oid The operator family this
entry is for

Greenplum Database Reference Guide Release Notes

1417

column type references description

amproclefttype oid pg_type.oid Left-hand input data type
of associated operator

amprocrighttype oid pg_type.oid Right-hand input data
type of associated
operator

amprocnum int2 Support procedure
number

amproc regproc pg_proc.oid OID of the procedure

pg_appendonly
The pg_appendonly table contains information about the storage options and other characteristics of
append-optimized tables.

Table 145: pg_catalog.pg_appendonly

column type references description

relid oid The table object
identifier (OID) of the
compressed table.

blocksize integer Block size used for
compression of append-
optimized tables. Valid
values are 8K - 2M.
Default is 32K.

safefswritesize integer Minimum size for safe
write operations to
append-optimized tables
in a non-mature file
system. Commonly
set to a multiple of the
extent size of the file
system; for example,
Linux ext3 is 4096 bytes,
so a value of 32768 is
commonly used.

compresslevel smallint The compression level,
with compression ratio
increasing from 1 to 19.

When quicklz1

is specified for
compresstype, valid
values are 1 or 3. With
zlib specified, valid
values are 1-9. When
zstd is specified, valid
values are 1-19.

Greenplum Database Reference Guide Release Notes

1418

column type references description

majorversion smallint The major version
number of the pg_
appendonly table.

minorversion smallint The minor version
number of the pg_
appendonly table.

checksum boolean A checksum value that
is stored to compare the
state of a block of data
at compression time and
at scan time to ensure
data integrity.

compresstype text Type of compression
used to compress
append-optimized
tables. Valid values are:

• zlib (gzip
compression)

• zstd (Zstandard
compression)

• quicklz1

columnstore boolean 1 for column-oriented
storage, 0 for row-
oriented storage.

segrelid oid Table on-disk segment
file id.

segidxid oid Index on-disk segment
file id.

blkdirrelid oid Block used for on-disk
column-oriented table
file.

blkdiridxid oid Block used for on-disk
column-oriented index
file.

visimaprelid oid Visibility map for the
table.

visimapidxid oid B-tree index on the
visibility map.

Note: 1QuickLZ compression is available only in the commercial release of Pivotal Greenplum
Database.

pg_attrdef
The pg_attrdef table stores column default values. The main information about columns is stored in
pg_attribute. Only columns that explicitly specify a default value (when the table is created or the column is
added) will have an entry here.

Greenplum Database Reference Guide Release Notes

1419

Table 146: pg_catalog.pg_attrdef

column type references description

adrelid oid pg_class.oid The table this column
belongs to

adnum int2 pg_attribute.attnum The number of the
column

adbin text The internal
representation of the
column default value

adsrc text A human-readable
representation of the
default value. This field
is historical, and is best
not used.

pg_attribute
The pg_attribute table stores information about table columns. There will be exactly one
pg_attribute row for every column in every table in the database. (There will also be attribute entries
for indexes, and all objects that have pg_class entries.) The term attribute is equivalent to column.

Table 147: pg_catalog.pg_attribute

column type references description

attrelid oid pg_class.oid The table this column
belongs to.

attname name The column name.

atttypid oid pg_type.oid The data type of this
column.

attstattarget int4 Controls the level
of detail of statistics
accumulated for this
column by ANALYZE.
A zero value indicates
that no statistics should
be collected. A negative
value says to use the
system default statistics
target. The exact
meaning of positive
values is data type-
dependent. For scalar
data types, it is both
the target number of
"most common values"
to collect, and the target
number of histogram
bins to create.

Greenplum Database Reference Guide Release Notes

1420

column type references description

attlen int2 A copy of pg_type.
typlen of this column's
type.

attnum int2 The number of the
column. Ordinary
columns are numbered
from 1 up. System
columns, such as oid,
have (arbitrary) negative
numbers.

attndims int4 Number of dimensions,
if the column is an
array type; otherwise 0.
(Presently, the number
of dimensions of an
array is not enforced,
so any nonzero value
effectively means it is an
array.)

attcacheoff int4 Always -1 in storage,
but when loaded into
a row descriptor in
memory this may be
updated to cache the
offset of the attribute
within the row.

atttypmod int4 Records type-specific
data supplied at table
creation time (for
example, the maximum
length of a varchar
column). It is passed
to type-specific input
functions and length
coercion functions. The
value will generally be
-1 for types that do not
need it.

attbyval boolean A copy of pg_type.
typbyval of this
column's type.

attstorage char Normally a copy of pg_
type.typstorage
of this column's type.
For TOAST-able data
types, this can be altered
after column creation to
control storage policy.

Greenplum Database Reference Guide Release Notes

1421

column type references description

attalign char A copy of pg_type.
typalign of this
column's type.

attnotnull boolean This represents a not-
null constraint. It is
possible to change this
column to enable or
disable the constraint.

atthasdef boolean This column has a
default value, in which
case there will be a
corresponding entry
in the pg_attrdef
catalog that actually
defines the value.

attisdropped boolean This column has been
dropped and is no
longer valid. A dropped
column is still physically
present in the table,
but is ignored by the
parser and so cannot be
accessed via SQL.

attislocal boolean This column is defined
locally in the relation.
 Note that a column may
be locally defined and
inherited simultaneously.

attinhcount int4 The number of direct
ancestors this column
has. A column with a
nonzero number of
ancestors cannot be
dropped nor renamed.

attcollation oid pg_collation.oid The defined collation of
the column, or zero if the
is not of a collatable data
type.

attacl aclitem[] Column-level access
privileges, if any have
been granted specifically
on this column.

attoptions text[] Attribute-level options,
as "keyword=value"
strings.

attfdwoptions text[] Attribute-level foreign
data wrapper options, as
"keyword=value" strings.

Greenplum Database Reference Guide Release Notes

1422

pg_attribute_encoding
The pg_attribute_encoding system catalog table contains column storage information.

Table 148: pg_catalog.pg_attribute_encoding

column type modifers storage description

attrelid oid not null plain Foreign key to
pg_attribute.
attrelid

attnum smallint not null plain Foreign key to
pg_attribute.
attnum

attoptions text [] extended The options

pg_auth_members
The pg_auth_members system catalog table shows the membership relations between roles. Any non-
circular set of relationships is allowed. Because roles are system-wide, pg_auth_members is shared
across all databases of a Greenplum Database system.

Table 149: pg_catalog.pg_auth_members

column type references description

roleid oid pg_authid.oid ID of the parent-level
(group) role

member oid pg_authid.oid ID of a member role

grantor oid pg_authid.oid ID of the role that
granted this membership

admin_option boolean True if role member may
grant membership to
others

pg_authid
The pg_authid table contains information about database authorization identifiers (roles). A role
subsumes the concepts of users and groups. A user is a role with the rolcanlogin flag set. Any role
(with or without rolcanlogin) may have other roles as members. See pg_auth_members.

Since this catalog contains passwords, it must not be publicly readable. pg_roles is a publicly readable
view on pg_authid that blanks out the password field.

Because user identities are system-wide, pg_authid is shared across all databases in a Greenplum
Database system: there is only one copy of pg_authid per system, not one per database.

Table 150: pg_catalog.pg_authid

column type references description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

Greenplum Database Reference Guide Release Notes

1423

column type references description

rolname name Role name

rolsuper boolean Role has superuser
privileges

rolinherit boolean Role automatically
inherits privileges of
roles it is a member of

rolcreaterole boolean Role may create more
roles

rolcreatedb boolean Role may create
databases

rolcatupdate boolean Role may update system
catalogs directly. (Even
a superuser may not do
this unless this column is
true)

rolcanlogin boolean Role may log in. That is,
this role can be given
as the initial session
authorization identifier

rolreplication boolean Role is a replication
role. That is, this role
can initiate streaming
replication and set/
unset the system backup
mode using pg_start_
backup and pg_stop_
backup.

rolconnlimit int4 For roles that can log
in, this sets maximum
number of concurrent
connections this role can
make. -1 means no limit

Greenplum Database Reference Guide Release Notes

1424

column type references description

rolpassword text Password (possibly
encrypted); NULL if
none. If the password is
encrypted, this column
will begin with the string
md5 followed by a 32-
character hexadecimal
MD5 hash. The MD5
hash will be the user's
password concatenated
to their user name.
For example, if user
joe has password
xyzzy, Greenplum
Database will store the
md5 hash of xyzzyjoe.
Greenplum assumes
that a password that
does not follow that
format is unencrypted.

rolvaliduntil timestamptz Password expiry time
(only used for password
authentication); NULL if
no expiration

rolresqueue oid Object ID of the
associated resource
queue ID in pg_
resqueue

rolcreaterextgpfd boolean Privilege to create read
external tables with the
gpfdist or gpfdists
protocol

rolcreaterexhttp boolean Privilege to create read
external tables with the
http protocol

rolcreatewextgpfd boolean Privilege to create write
external tables with the
gpfdist or gpfdists
protocol

rolresgroup oid Object ID of the
associated resource
group ID in pg_resgroup

pg_available_extension_versions
The pg_available_extension_versions view lists the specific extension versions that are available
for installation. The pg_extension system catalog table shows the extensions currently installed.

The view is read only.

Greenplum Database Reference Guide Release Notes

1425

Table 151: pg_catalog.pg_available_extension_versions

column type description

name name Extension name.

version text Version name.

installed boolean True if this version of this
extension is currently installed,
False otherwise.

superuser boolean True if only superusers are
allowed to install the extension,
False otherwise.

relocatable boolean True if extension can be
relocated to another schema,
False otherwise.

schema name Name of the schema that the
extension must be installed
into, or NULL if partially or fully
relocatable.

requires name[] Names of prerequisite
extensions, or NULL if none

comment text Comment string from the
extension control file.

pg_available_extensions
The pg_available_extensions view lists the extensions that are available for installation. The
pg_extension system catalog table shows the extensions currently installed.

The view is read only.

Table 152: pg_catalog.pg_available_extensions

column type description

name name Extension name.

default_version text Name of default version, or NULL
if none is specified.

installed_version text Currently installed version of the
extension, or NULL if not installed.

comment text Comment string from the
extension control file.

pg_cast
The pg_cast table stores data type conversion paths, both built-in paths and those defined with CREATE
CAST.

Note that pg_cast does not represent every type conversion known to the system, only those that cannot
be deduced from some generic rule. For example, casting between a domain and its base type is not
explicitly represented in pg_cast. Another important exception is that "automatic I/O conversion casts",

Greenplum Database Reference Guide Release Notes

1426

those performed using a data type's own I/O functions to convert to or from text or other string types, are
not explicitly represented in pg_cast.

The cast functions listed in pg_cast must always take the cast source type as their first argument type,
and return the cast destination type as their result type. A cast function can have up to three arguments.
The second argument, if present, must be type integer; it receives the type modifier associated with the
destination type, or -1 if there is none. The third argument, if present, must be type boolean; it receives
true if the cast is an explicit cast, false otherwise.

It is legitimate to create a pg_cast entry in which the source and target types are the same, if the
associated function takes more than one argument. Such entries represent 'length coercion functions' that
coerce values of the type to be legal for a particular type modifier value.

When a pg_cast entry has different source and target types and a function that takes more than one
argument, the entry converts from one type to another and applies a length coercion in a single step. When
no such entry is available, coercion to a type that uses a type modifier involves two steps, one to convert
between data types and a second to apply the modifier.

Table 153: pg_catalog.pg_cast

column type references description

castsource oid pg_type.oid OID of the source data
type.

casttarget oid pg_type.oid OID of the target data
type.

castfunc oid pg_proc.oid The OID of the function
to use to perform this
cast. Zero is stored if the
cast method does not
require a function.

castcontext char Indicates what contexts
the cast may be invoked
in. e means only as an
explicit cast (using CAST
or :: syntax). a means
implicitly in assignment
to a target column,
as well as explicitly.
i means implicitly in
expressions, as well as
the other cases.

castmethod char Indicates how the cast is
performed:

f - The function
identified in the
castfunc field is used.

i - The input/output
functions are used.

b - The types are binary-
coercible, and no
conversion is required.

Greenplum Database Reference Guide Release Notes

1427

pg_class
The system catalog table pg_class catalogs tables and most everything else that has columns or
is otherwise similar to a table (also known as relations). This includes indexes (see also pg_index),
sequences, views, composite types, and TOAST tables. Not all columns are meaningful for all relation
types.

Table 154: pg_catalog.pg_class

column type references description

relname name Name of the table, index,
view, etc.

relnamespace oid pg_namespace.oid The OID of the
namespace (schema)
that contains this relation

reltype oid pg_type.oid The OID of the data type
that corresponds to this
table's row type, if any
(zero for indexes, which
have no pg_type entry)

reloftype oid pg_type.oid The OID of an entry
in pg_type for an
underlying composite
type.

relowner oid pg_authid.oid Owner of the relation

relam oid pg_am.oid If this is an index, the
access method used (B-
tree, Bitmap, hash, etc.)

relfilenode oid Name of the on-disk file
of this relation; 0 if none.

reltablespace oid pg_tablespace.oid The tablespace in which
this relation is stored.
If zero, the database's
default tablespace is
implied. (Not meaningful
if the relation has no on-
disk file.)

relpages int4 Size of the on-disk
representation of this
table in pages (of 32K
each). This is only an
estimate used by the
planner. It is updated by
VACUUM, ANALYZE, and
a few DDL commands.

Greenplum Database Reference Guide Release Notes

1428

column type references description

reltuples float4 Number of rows in the
table. This is only an
estimate used by the
planner. It is updated by
VACUUM, ANALYZE, and
a few DDL commands.

relallvisible int32 Number of all-visible
blocks (this value may
not be up-to-date).

reltoastrelid oid pg_class.oid OID of the TOAST table
associated with this
table, 0 if none. The
TOAST table stores
large attributes "out of
line" in a secondary
table.

relhasindex boolean True if this is a table
and it has (or recently
had) any indexes.
 This is set by CREATE
INDEX, but not cleared
immediately by DROP
INDEX. VACUUM will
clear if it finds the table
has no indexes.

relisshared boolean True if this table is
shared across all
databases in the system.
 Only certain system
catalog tables are
shared.

relpersistence char The type of object
persistence: p = heap or
append-optimized table,
u = unlogged temporary
table, t = temporary
table.

Greenplum Database Reference Guide Release Notes

1429

column type references description

relkind char The type of object

r = heap or append-
optimized table, i =
index, S = sequence, t =
TOAST value, v = view,
c = composite type,
f = foreign table, u =
uncatalogued temporary
heap table, o = internal
append-optimized
segment files and EOFs,
b = append-only block
directory, M = append-
only visibility map

relstorage char The storage mode of a
table

a= append-optimized,
c= column-oriented, h
= heap, v = virtual, x=
external table.

relnatts int2 Number of user columns
in the relation (system
columns not counted).
There must be this many
corresponding entries in
pg_attribute.

relchecks int2 Number of check
constraints on the table.

relhasoids boolean True if an OID is
generated for each row
of the relation.

relhaspkey boolean True if the table has (or
once had) a primary key.

relhasrules boolean True if table has rules.

relhastriggers boolean True if table has (or once
had) triggers.

relhassubclass boolean True if table has (or once
had) any inheritance
children.

relispopulated boolean True if relation is
populated (this is true
for all relations other
than some materialized
views).

Greenplum Database Reference Guide Release Notes

1430

column type references description

relreplident char Columns used to
form “replica identity”
for rows: d = default
(primary key, if any),
n = nothing, f = all
columns i = index with
indisreplident set,
or default

relfrozenxid xid All transaction IDs
before this one have
been replaced with a
permanent (frozen)
transaction ID in this
table. This is used
to track whether the
table needs to be
vacuumed in order to
prevent transaction ID
wraparound or to allow
pg_clog to be shrunk.

The value is 0
(InvalidTransactionId)
if the relation is not a
table or if the table does
not require vacuuming
to prevent transaction
ID wraparound. The
table still might require
vacuuming to reclaim
disk space.

relminmxid xid All multixact IDs
before this one have
been replaced by a
transaction ID in this
table. This is used
to track whether the
table needs to be
vacuumed in order
to prevent multixact
ID wraparound or to
allow pg_multixact
to be shrunk. Zero
(InvalidMultiXactId)
if the relation is not a
table.

relacl aclitem[] Access privileges
assigned by GRANT and
REVOKE.

reloptions text[] Access-method-specific
options, as "keyword=
value" strings.

Greenplum Database Reference Guide Release Notes

1431

pg_compression
The pg_compression system catalog table describes the compression methods available.

Table 155: pg_catalog.pg_compression

column type modifers storage description

compname name not null plain Name of the
compression

compconstructor regproc not null plain Name of
compression
constructor

compdestructor regproc not null plain Name of
compression
destructor

compcompressor regproc not null plain Name of the
compressor

compdecompressorregproc not null plain Name of the
decompressor

compvalidator regproc not null plain Name of the
compression
validator

compowner oid not null plain oid from pg_authid

pg_constraint
The pg_constraint system catalog table stores check, primary key, unique, and foreign key constraints
on tables. Column constraints are not treated specially. Every column constraint is equivalent to some
table constraint. Not-null constraints are represented in the pg_attribute catalog table. Check constraints on
domains are stored here, too.

Table 156: pg_catalog.pg_constraint

column type references description

conname name Constraint name (not
necessarily unique!)

connamespace oid pg_namespace.oid The OID of the
namespace (schema)
that contains this
constraint.

contype char c = check constraint, f =
 foreign key constraint, p
= primary key constraint,
u = unique constraint.

condeferrable boolean Is the constraint
deferrable?

condeferred boolean Is the constraint deferred
by default?

Greenplum Database Reference Guide Release Notes

1432

column type references description

conrelid oid pg_class.oid The table this constraint
is on; 0 if not a table
constraint.

contypid oid pg_type.oid The domain this
constraint is on; 0 if not a
domain constraint.

confrelid oid pg_class.oid If a foreign key, the
referenced table; else 0.

confupdtype char Foreign key update
action code.

confdeltype char Foreign key deletion
action code.

confmatchtype char Foreign key match type.

conkey int2[] pg_attribute.attnum If a table constraint, list
of columns which the
constraint constrains.

confkey int2[] pg_attribute.attnum If a foreign key, list of the
referenced columns.

conbin text If a check constraint, an
internal representation of
the expression.

consrc text If a check constraint,
a human-readable
representation of the
expression. This is
not updated when
referenced objects
change; for example, it
won't track renaming of
columns. Rather than
relying on this field, it is
best to use pg_get_
constraintdef() to
extract the definition of a
check constraint.

pg_conversion
The pg_conversion system catalog table describes the available encoding conversion procedures as
defined by CREATE CONVERSION.

Table 157: pg_catalog.pg_conversion

column type references description

conname name Conversion name
(unique within a
namespace).

Greenplum Database Reference Guide Release Notes

1433

column type references description

connamespace oid pg_namespace.oid The OID of the
namespace (schema)
that contains this
conversion.

conowner oid pg_authid.oid Owner of the conversion.

conforencoding int4 Source encoding ID.

contoencoding int4 Destination encoding ID.

conproc regproc pg_proc.oid Conversion procedure.

condefault boolean True if this is the default
conversion.

pg_database
The pg_database system catalog table stores information about the available databases. Databases
are created with the CREATE DATABASE SQL command. Unlike most system catalogs, pg_database is
shared across all databases in the system. There is only one copy of pg_database per system, not one
per database.

Table 158: pg_catalog.pg_database

column type references description

datname name Database name.

datdba oid pg_authid.oid Owner of the database,
usually the user who
created it.

encoding int4 Character encoding
for this database. pg_
encoding_to_char()
can translate this
number to the encoding
name.

datcollate name LC_COLLATE for this
database.

datctype name LC_CTYPE for this
database.

datistemplate boolean If true then this database
can be used in the
TEMPLATE clause of
CREATE DATABASE to
create a new database
as a clone of this one.

datallowconn boolean If false then no one
can connect to this
database. This is used to
protect the template0
database from being
altered.

Greenplum Database Reference Guide Release Notes

1434

column type references description

datconnlimit int4 Sets the maximum
number of concurrent
connections that can be
made to this database.
-1 means no limit.

datlastsysoid oid Last system OID in the
database.

datfrozenxid xid All transaction IDs
(XIDs) before this one
have been replaced with
a permanent (frozen)
transaction ID in this
database. This is used
to track whether the
database needs to be
vacuumed in order to
prevent transaction ID
wraparound or to allow
pg_clog to be shrunk.
It is the minimum of
the per-table pg_class.
relfrozenxid values.

datminmxid xid A Multixact ID is used to
support row locking by
multiple transactions. All
multixact IDs before this
one have been replaced
with a transaction ID in
this database. This is
used to track whether
the database needs to
be vacuumed in order
to prevent multixact ID
wraparound or to allow
pg_multixact to be
shrunk. It is the minimum
of the per-table pg_
class.relminmxid values.

dattablespace oid pg_tablespace.oid The default tablespace
for the database. Within
this database, all tables
for which pg_class.
reltablespace is zero
will be stored in this
tablespace. All non-
shared system catalogs
will also be there.

datacl aclitem[] Database access
privileges as given by
GRANT and REVOKE.

Greenplum Database Reference Guide Release Notes

1435

pg_db_role_setting
The pg_db_role_setting system catalog table records the default values of server configuration
settings for each role and database combination.

There is a single copy of pg_db_role_settings per Greenplum Database cluster. This system catalog
table is shared across all databases.

You can view the server configuration settings for your Greenplum Database cluster with psql's \drds
meta-command.

Table 159: pg_catalog.pg_database

column type references description

setdatabase oid pg_database.oid The database to which
the setting is applicable,
or zero if the setting is
not database-specific.

setrole oid pg_authid.oid The role to which the
setting is applicable, or
zero if the setting is not
role-specific.

setconfig text[] Per-database- and per-
role-specific defaults
for user-settable
server configuration
parameters.

pg_depend
The pg_depend system catalog table records the dependency relationships between database objects.
This information allows DROP commands to find which other objects must be dropped by DROP CASCADE
or prevent dropping in the DROP RESTRICT case. See also pg_shdepend, which performs a similar
function for dependencies involving objects that are shared across a Greenplum system.

In all cases, a pg_depend entry indicates that the referenced object may not be dropped without also
dropping the dependent object. However, there are several subflavors identified by deptype:

• DEPENDENCY_NORMAL (n) — A normal relationship between separately-created objects. The
dependent object may be dropped without affecting the referenced object. The referenced object may
only be dropped by specifying CASCADE, in which case the dependent object is dropped, too. Example:
a table column has a normal dependency on its data type.

• DEPENDENCY_AUTO (a) — The dependent object can be dropped separately from the referenced
object, and should be automatically dropped (regardless of RESTRICT or CASCADE mode) if the
referenced object is dropped. Example: a named constraint on a table is made autodependent on the
table, so that it will go away if the table is dropped.

• DEPENDENCY_INTERNAL (i) — The dependent object was created as part of creation of the
referenced object, and is really just a part of its internal implementation. A DROP of the dependent object
will be disallowed outright (we'll tell the user to issue a DROP against the referenced object, instead).
A DROP of the referenced object will be propagated through to drop the dependent object whether
CASCADE is specified or not.

• DEPENDENCY_PIN (p) — There is no dependent object; this type of entry is a signal that the system
itself depends on the referenced object, and so that object must never be deleted. Entries of this type
are created only by system initialization. The columns for the dependent object contain zeroes.

Greenplum Database Reference Guide Release Notes

1436

Table 160: pg_catalog.pg_depend

column type references description

classid oid pg_class.oid The OID of the system
catalog the dependent
object is in.

objid oid any OID column The OID of the specific
dependent object.

objsubid int4 For a table column, this
is the column number.
For all other object
types, this column is
zero.

refclassid oid pg_class.oid The OID of the system
catalog the referenced
object is in.

refobjid oid any OID column The OID of the specific
referenced object.

refobjsubid int4 For a table column,
this is the referenced
column number. For all
other object types, this
column is zero.

deptype char A code defining the
specific semantics
of this dependency
relationship.

pg_description
The pg_description system catalog table stores optional descriptions (comments) for each database
object. Descriptions can be manipulated with the COMMENT command and viewed with psql's \d
meta-commands. Descriptions of many built-in system objects are provided in the initial contents of
pg_description. See also pg_shdescription, which performs a similar function for descriptions involving
objects that are shared across a Greenplum system.

Table 161: pg_catalog.pg_description

column type references description

objoid oid any OID column The OID of the object
this description pertains
to.

classoid oid pg_class.oid The OID of the system
catalog this object
appears in

Greenplum Database Reference Guide Release Notes

1437

column type references description

objsubid int4 For a comment on a
table column, this is the
column number. For all
other object types, this
column is zero.

description text Arbitrary text that serves
as the description of this
object.

pg_enum
The pg_enum table contains entries matching enum types to their associated values and labels. The
internal representation of a given enum value is actually the OID of its associated row in pg_enum. The
OIDs for a particular enum type are guaranteed to be ordered in the way the type should sort, but there is
no guarantee about the ordering of OIDs of unrelated enum types.

Table 162: pg_catalog.pg_enum

Column Type References Description

enumtypid oid pgtype.oid The OID of the pg_type
entry owning this enum
value

enumlabel name The textual label for this
enum value

pg_extension
The system catalog table pg_extension stores information about installed extensions.

Table 163: pg_catalog.pg_extension

column type references description

extname name Name of the extension.

extowner oid pg_authid.oid Owner of the extension

extnamespace oid pg_namespace.oid Schema containing
the extension exported
objects.

extrelocatable boolean True if the extension can
be relocated to another
schema.

extversion text Version name for the
extension.

extconfig oid[] pg_class.oid Array of regclass
OIDs for the extension
configuration tables, or
NULL if none.

Greenplum Database Reference Guide Release Notes

1438

column type references description

extcondition text[] Array of WHERE-clause
filter conditions for the
extension configuration
tables, or NULL if none.

Unlike most catalogs with a namespace column, extnamespace does not imply that the extension
belongs to that schema. Extension names are never schema-qualified. The extnamespace schema
indicates the schema that contains most or all of the extension objects. If extrelocatable is true, then
this schema must contain all schema-qualifiable objects that belong to the extension.

pg_exttable
The pg_exttable system catalog table is used to track external tables and web tables created by the
CREATE EXTERNAL TABLE command.

Table 164: pg_catalog.pg_exttable

column type references description

reloid oid pg_class.oid The OID of this external
table.

urilocation text[] The URI location(s) of
the external table files.

execlocation text[] The ON segment
locations defined for the
external table.

fmttype char Format of the external
table files: t for text, or c
for csv.

fmtopts text Formatting options of the
external table files, such
as the field delimiter, null
string, escape character,
etc.

options text[] The options defined for
the external table.

command text The OS command
to execute when
the external table is
accessed.

rejectlimit integer The per segment reject
limit for rows with errors,
after which the load will
fail.

rejectlimittype char Type of reject limit
threshold: r for number
of rows.

logerrors bool 1 to log errors, 0 to not.

Greenplum Database Reference Guide Release Notes

1439

column type references description

encoding text The client encoding.

writable boolean 0 for readable external
tables, 1 for writable
external tables.

pg_foreign_data_wrapper
The system catalog table pg_foreign_data_wrapper stores foreign-data wrapper definitions. A
foreign-data wrapper is a mechanism by which you access external data residing on foreign servers.

Table 165: pg_catalog.pg_foreign_data_wrapper

column type references description

fdwname name Name of the foreign-data
wrapper.

fdwowner oid pg_authid.oid Owner of the foreign-
data wrapper.

fdwhandler oid pg_proc.oid A reference to a
handler function that is
responsible for supplying
execution routines
for the foreign-data
wrapper. Zero if no
handler is provided.

fdwvalidator oid pg_proc.oid A reference to a
validator function
that is responsible for
checking the validity of
the options provided
to the foreign-data
wrapper. This function
also checks the options
for foreign servers and
user mappings using the
foreign-data wrapper.
Zero if no validator is
provided.

fdwacl aclitem[] Access privileges; see
GRANT and REVOKE for
details.

fdwoptions text[] Foreign-data wrapper-
specific options, as
"keyword=value" strings.

pg_foreign_server
The system catalog table pg_foreign_server stores foreign server definitions. A foreign server
describes a source of external data, such as a remote server. You access a foreign server via a foreign-
data wrapper.

Greenplum Database Reference Guide Release Notes

1440

Table 166: pg_catalog.pg_foreign_server

column type references description

srvname name Name of the foreign
server.

srvowner oid pg_authid.oid Owner of the foreign
server.

srvfdw oid pg_foreign_data_
wrapper.oid

OID of the foreign-data
wrapper of this foreign
server.

srvtype text Type of server (optional).

srvversion text Version of the server
(optional).

srvacl aclitem[] Access privileges; see
GRANT and REVOKE for
details.

srvoptions text[] Foreign server-specific
options, as "keyword=
value" strings.

pg_foreign_table
The system catalog table pg_foreign_table contains auxiliary information about foreign
tables. A foreign table is primarily represented by a pg_class entry, just like a regular table. Its
pg_foreign_table entry contains the information that is pertinent only to foreign tables and not any
other kind of relation.

Table 167: pg_catalog.pg_foreign_table

column type references description

ftrelid oid pg_class.oid OID of the pg_class
entry for this foreign
table.

ftserver oid pg_foreign_server.oid OID of the foreign server
for this foreign table.

ftoptions text[] Foreign table options, as
"keyword=value" strings.

pg_index
The pg_index system catalog table contains part of the information about indexes. The rest is mostly in
pg_class.

Table 168: pg_catalog.pg_index

column type references description

indexrelid oid pg_class.oid The OID of the pg_class
entry for this index.

Greenplum Database Reference Guide Release Notes

1441

column type references description

indrelid oid pg_class.oid The OID of the pg_class
entry for the table this
index is for.

indnatts int2 The number of columns
in the index (duplicates
pg_class.relnatts).

indisunique boolean If true, this is a unique
index.

indisprimary boolean If true, this index
represents the primary
key of the table.
 (indisunique should
always be true when this
is true.)

indisexclusion boolean If true, this index
supports an exclusion
constraint

indimmediate boolean If true, the uniqueness
check is enforced
immediately on
insertion (irrelevant if
indisunique is not
true)

indisclustered boolean If true, the table was
last clustered on this
index via the CLUSTER
command.

indisvalid boolean If true, the index is
currently valid for
queries. False means
the index is possibly
incomplete: it must
still be modified by
INSERT/UPDATE
operations, but it cannot
safely be used for
queries.

indcheckxmin boolean If true, queries must
not use the index until
the xmin of this pg_
index row is below their
TransactionXmin
event horizon, because
the table may contain
broken HOT chains with
incompatible rows that
they can see

Greenplum Database Reference Guide Release Notes

1442

column type references description

indisready boolean If true, the index is
currently ready for
inserts. False means the
index must be ignored
by INSERT/UPDATE
operations

indislive boolean If false, the index is
in process of being
dropped, and should be
ignored for all purposes

indisreplident boolean If true this index has
been chosen as "replica
identity" using ALTER
TABLE ... REPLICA
IDENTITY USING
INDEX ...

indkey int2vector pg_attribute.attnum This is an array of
indnatts values that
indicate which table
columns this index
indexes. For example a
value of 1 3 would mean
that the first and the third
table columns make up
the index key. A zero in
this array indicates that
the corresponding index
attribute is an expression
over the table columns,
rather than a simple
column reference.

indcollation oidvector For each column in the
index key, this contains
the OID of the collation
to use for the index.

indclass oidvector pg_opclass.oid For each column in the
index key this contains
the OID of the operator
class to use.

indoption int2vector This is an array of
indnatts values that
store per-column flag
bits. The meaning of the
bits is defined by the
index's access method.

Greenplum Database Reference Guide Release Notes

1443

column type references description

indexprs text Expression trees (in
nodeToString()
representation) for
index attributes that
are not simple column
references. This is a
list with one element
for each zero entry in
indkey. NULL if all index
attributes are simple
references.

indpred text Expression tree (in
nodeToString()
representation) for
partial index predicate.
NULL if not a partial
index.

pg_inherits
The pg_inherits system catalog table records information about table inheritance hierarchies. There is
one entry for each direct child table in the database. (Indirect inheritance can be determined by following
chains of entries.) In Greenplum Database, inheritance relationships are created by both the INHERITS
clause (standalone inheritance) and the PARTITION BY clause (partitioned child table inheritance) of
CREATE TABLE.

Table 169: pg_catalog.pg_inherits

column type references description

inhrelid oid pg_class.oid The OID of the child
table.

inhparent oid pg_class.oid The OID of the parent
table.

inhseqno int4 If there is more than
one direct parent for
a child table (multiple
inheritance), this number
tells the order in which
the inherited columns
are to be arranged. The
count starts at 1.

pg_language
The pg_language system catalog table registers languages in which you can write functions or stored
procedures. It is populated by CREATE LANGUAGE.

Table 170: pg_catalog.pg_language

column type references description

lanname name Name of the language.

Greenplum Database Reference Guide Release Notes

1444

column type references description

lanowner oid pg_authid.oid Owner of the language.

lanispl boolean This is false for internal
languages (such as
SQL) and true for user-
defined languages.
Currently, pg_dump still
uses this to determine
which languages need
to be dumped, but this
may be replaced by a
different mechanism in
the future.

lanpltrusted boolean True if this is a trusted
language, which means
that it is believed not to
grant access to anything
outside the normal SQL
execution environment.
 Only superusers may
create functions in
untrusted languages.

lanplcallfoid oid pg_proc.oid For noninternal
languages this
references the language
handler, which is a
special function that is
responsible for executing
all functions that are
written in the particular
language.

laninline oid pg_proc.oid This references
a function that is
responsible for executing
inline anonymous code
blocks (see the DO
command). Zero if
anonymous blocks are
not supported.

lanvalidator oid pg_proc.oid This references a
language validator
function that is
responsible for checking
the syntax and validity of
new functions when they
are created. Zero if no
validator is provided.

lanacl aclitem[] Access privileges for the
language.

Greenplum Database Reference Guide Release Notes

1445

pg_largeobject
Note: Greenplum Database does not support the PostgreSQL large object facility for streaming
user data that is stored in large-object structures.

The pg_largeobject system catalog table holds the data making up 'large objects'. A large object is
identified by an OID assigned when it is created. Each large object is broken into segments or 'pages'
small enough to be conveniently stored as rows in pg_largeobject. The amount of data per page is
defined to be LOBLKSIZE (which is currently BLCKSZ/4, or typically 8K).

Each row of pg_largeobject holds data for one page of a large object, beginning at byte offset (pageno
* LOBLKSIZE) within the object. The implementation allows sparse storage: pages may be missing, and
may be shorter than LOBLKSIZE bytes even if they are not the last page of the object. Missing regions
within a large object read as zeroes.

Table 171: pg_catalog.pg_largeobject

column type references description

loid oid Identifier of the large
object that includes this
page.

pageno int4 Page number of this
page within its large
object (counting from
zero).

data bytea Actual data stored in
the large object. This
will never be more than
LOBLKSIZE bytes and
may be less.

pg_listener
The pg_listener system catalog table supports the LISTEN and NOTIFY commands. A listener creates
an entry in pg_listener for each notification name it is listening for. A notifier scans and updates each
matching entry to show that a notification has occurred. The notifier also sends a signal (using the PID
recorded in the table) to awaken the listener from sleep.

This table is not currently used in Greenplum Database.

Table 172: pg_catalog.pg_listener

column type references description

relname name Notify condition name.
(The name need not
match any actual relation
in the database.

listenerpid int4 PID of the server
process that created this
entry.

https://www.postgresql.org/docs/9.4/largeobjects.html

Greenplum Database Reference Guide Release Notes

1446

column type references description

notification int4 Zero if no event is
pending for this listener.
 If an event is pending,
the PID of the server
process that sent the
notification.

pg_locks
The pg_locks view provides access to information about the locks held by open transactions within
Greenplum Database.

pg_locks contains one row per active lockable object, requested lock mode, and relevant transaction.
Thus, the same lockable object may appear many times if multiple transactions are holding or waiting for
locks on it. An object with no current locks on it will not appear in the view at all.

There are several distinct types of lockable objects: whole relations (such as tables), individual pages
of relations, individual tuples of relations, transaction IDs (both virtual and permanent IDs), and general
database objects. Also, the right to extend a relation is represented as a separate lockable object.

Table 173: pg_catalog.pg_locks

column type references description

locktype text Type of the lockable
object: relation,
extend, page, tuple,
transactionid,
object, userlock,
resource queue, or
advisory

database oid pg_database.oid OID of the database
in which the object
exists, zero if the object
is a shared object, or
NULL if the object is a
transaction ID

relation oid pg_class.oid OID of the relation, or
NULL if the object is not
a relation or part of a
relation

page integer Page number within the
relation, or NULL if the
object is not a tuple or
relation page

tuple smallint Tuple number within
the page, or NULL if the
object is not a tuple

virtualxid text Virtual ID of a
transaction, or NULL if
the object is not a virtual
transaction ID

Greenplum Database Reference Guide Release Notes

1447

column type references description

transactionid xid ID of a transaction, or
NULL if the object is not
a transaction ID

classid oid pg_class.oid OID of the system
catalog containing the
object, or NULL if the
object is not a general
database object

objid oid any OID column OID of the object within
its system catalog, or
NULL if the object is
not a general database
object

objsubid smallint For a table column, this
is the column number
(the classid and objid
refer to the table itself).
 For all other object
types, this column
is zero. NULL if the
object is not a general
database object

virtualtransaction text Virtual ID of the
transaction that is
holding or awaiting this
lock

pid integer Process ID of the server
process holding or
awaiting this lock. NULL
if the lock is held by a
prepared transaction

mode text Name of the lock mode
held or desired by this
process

granted boolean True if lock is held, false
if lock is awaited.

fastpath boolean True if lock was taken
via fastpath, false if lock
is taken via main lock
table.

mppsessionid integer The id of the client
session associated with
this lock.

mppiswriter boolean Specifies whether the
lock is held by a writer
process.

Greenplum Database Reference Guide Release Notes

1448

column type references description

gp_segment_id integer The Greenplum segment
id (dbid) where the lock
is held.

pg_matviews
The view pg_matviews provides access to useful information about each materialized view in the
database.

Table 174: pg_catalog.pg_conversion

column type references description

schemaname name pg_namespace.
nspname

Name of the schema
containing the
materialized view

matviewname name pg_class.relname Name of the materialized
view

matviewowner name pg_authid.rolname Name of the materialized
view's owner

tablespace name pg_tablespace.spcname Name of the tablespace
containing the
materialized view
(NULL if default for the
database)

hasindexes boolean True if the materialized
view has (or recently
had) any indexes

ispopulated boolean True if the materialized
view is currently
populated

definition text Materialized
view definition (a
reconstructed SELECT
command)

pg_max_external_files
The pg_max_external_files view shows the maximum number of external table files allowed per
segment host when using the external table file protocol.

Table 175: pg_catalog.pg_max_external_files

column type references description

hostname name The host name used
to access a particular
segment instance on a
segment host.

Greenplum Database Reference Guide Release Notes

1449

column type references description

maxfiles bigint Number of primary
segment instances on
the host.

pg_namespace
The pg_namespace system catalog table stores namespaces. A namespace is the structure underlying
SQL schemas: each namespace can have a separate collection of relations, types, etc. without name
conflicts.

Table 176: pg_catalog.pg_namespace

column type references description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

nspname name Name of the namespace

nspowner oid pg_authid.oid Owner of the
namespace

nspacl aclitem[] Access privileges as
given by GRANT and
REVOKE

pg_opclass
The pg_opclass system catalog table defines index access method operator classes. Each operator
class defines semantics for index columns of a particular data type and a particular index access method.
An operator class essentially specifies that a particular operator family is applicable to a particular
indexable column data type. The set of operators from the family that are actually usable with the indexed
column are those that accept the column's data type as their left-hand input.

An operator class's opcmethod must match the opfmethod of its containing operator family. Also, there
must be no more than one pg_opclass row having opcdefault true for any given combination of
opcmethod and opcintype.

Table 177: pg_catalog.pg_opclass

column type references description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

opcmethod oid pg_am.oid Index access method
operator class is for

opcname name Name of this operator
class

opcnamespace oid pg_namespace.oid Namespace of this
operator class

opcowner oid pg_authid.oid Owner of the operator
class

Greenplum Database Reference Guide Release Notes

1450

column type references description

opcfamily oid pg_opfamily.oid Operator family
containing the operator
class

opcintype oid pg_type.oid Data type that the
operator class indexes

opcdefault boolean True if this operator
class is the default
for the data type
opcintype

opckeytype oid pg_type.oid Type of data stored in
index, or zero if same as
opcintype

pg_operator
The pg_operator system catalog table stores information about operators, both built-in and those
defined by CREATE OPERATOR. Unused column contain zeroes. For example, oprleft is zero for a prefix
operator.

Table 178: pg_catalog.pg_operator

column type references description

oid oid Row identifier (hidden
attribute, must be
explicityly selected)

oprname name Name of the operator

oprnamespace oid pg_namespace.oid The OID of the
namespace that contains
this operator

oprowner oid pg_authid.oid Owner of the operator

oprkind char b = infix (both), l =
prefix (left), r = postfix
(right)

oprcanmerge boolean This operator supports
merge joins

oprcanhash boolean This operator supports
hash joins

oprleft oid pg_type.oid Type of the left operand

oprright oid pg_type.oid Type of the right
operand

oprresult oid pg_type.oid Type of the result

oprcom oid pg_operator.oid Commutator of this
operator, if any

oprnegate oid pg_operator.oid Negator of this operator,
if any

Greenplum Database Reference Guide Release Notes

1451

column type references description

oprcode regproc pg_proc.oid Function that
implements this operator

oprrest regproc pg_proc.oid Restriction selectivity
estimation function for
this operator

oprjoin regproc pg_proc.oid Join selectivity
estimation function for
this operator

pg_opfamily
The catalog pg_opfamily defines operator families. Each operator family is a collection of operators and
associated support routines that implement the semantics specified for a particular index access method.
Furthermore, the operators in a family are all compatible in a way that is specified by the access method.
The operator family concept allows cross-data-type operators to be used with indexes and to be reasoned
about using knowledge of access method semantics.

The majority of the information defining an operator family is not in its pg_opfamily row, but in the
associated rows in pg_amop, pg_amproc, and pg_opclass.

Table 179: pg_opfamily

Name Type References Description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

opfmethod oid pg_am.oid Index access method
operator for this family

opfname name Name of this operator
family

opfnamespace oid pg_namespace.oid Namespace of this
operator family

opfowner oid pg_authid.oid Owner of the operator
family

pg_partition
The pg_partition system catalog table is used to track partitioned tables and their inheritance level
relationships. Each row of pg_partition represents either the level of a partitioned table in the partition
hierarchy, or a subpartition template description. The value of the attribute paristemplate determines
what a particular row represents.

Table 180: pg_catalog.pg_partition

column type references description

parrelid oid pg_class.oid The object identifier of
the table.

parkind char The partition type - R for
range or L for list.

Greenplum Database Reference Guide Release Notes

1452

column type references description

parlevel smallint The partition level of
this row: 0 for the top-
level parent table, 1 for
the first level under the
parent table, 2 for the
second level, and so on.

paristemplate boolean Whether or not this row
represents a subpartition
template definition (true)
or an actual partitioning
level (false).

parnatts smallint The number of attributes
that define this level.

paratts smallint() An array of the attribute
numbers (as in pg_
attribute.attnum)
of the attributes that
participate in defining
this level.

parclass oidvector pg_opclass.oid The operator class
identifier(s) of the
partition columns.

pg_partition_columns
The pg_partition_columns system view is used to show the partition key columns of a partitioned
table.

Table 181: pg_catalog.pg_partition_columns

column type references description

schemaname name The name of the schema
the partitioned table is in.

tablename name The table name of the
top-level parent table.

columnname name The name of the partition
key column.

partitionlevel smallint The level of this
subpartition in the
hierarchy.

position_in_
partition_key

integer For list partitions you
can have a composite
(multi-column) partition
key. This shows the
position of the column in
a composite key.

Greenplum Database Reference Guide Release Notes

1453

pg_partition_encoding
The pg_partition_encoding system catalog table describes the available column compression
options for a partition template.

Table 182: pg_catalog.pg_attribute_encoding

column type modifers storage description

parencoid oid not null plain

parencattnum snallint not null plain

parencattoptionstext [] extended

pg_partition_rule
The pg_partition_rule system catalog table is used to track partitioned tables, their check constraints,
and data containment rules. Each row of pg_partition_rule represents either a leaf partition (the
bottom level partitions that contain data), or a branch partition (a top or mid-level partition that is used to
define the partition hierarchy, but does not contain any data).

Table 183: pg_catalog.pg_partition_rule

column type references description

paroid oid pg_partition.oid Row identifier of the
partitioning level
(from pg_partition) to
which this partition
belongs. In the case
of a branch partition,
the corresponding
table (identified by pg_
partition_rule) is an
empty container table. In
case of a leaf partition,
the table contains the
rows for that partition
containment rule.

parchildrelid oid pg_class.oid The table identifier of the
partition (child table).

parparentrule oid pg_partition_rule.paroid The row identifier of the
rule associated with
the parent table of this
partition.

parname name The given name of this
partition.

parisdefault boolean Whether or not this
partition is a default
partition.

Greenplum Database Reference Guide Release Notes

1454

column type references description

parruleord smallint For range partitioned
tables, the rank of this
partition on this level of
the partition hierarchy.

parrangestartincl boolean For range partitioned
tables, whether or not
the starting value is
inclusive.

parrangeendincl boolean For range partitioned
tables, whether or not
the ending value is
inclusive.

parrangestart text For range partitioned
tables, the starting value
of the range.

parrangeend text For range partitioned
tables, the ending value
of the range.

parrangeevery text For range partitioned
tables, the interval value
of the EVERY clause.

parlistvalues text For list partitioned
tables, the list of values
assigned to this partition.

parreloptions text An array describing the
storage characteristics of
the particular partition.

pg_partition_templates
The pg_partition_templates system view is used to show the subpartitions that were created using a
subpartition template.

Table 184: pg_catalog.pg_partition_templates

column type references description

schemaname name The name of the schema
the partitioned table is in.

tablename name The table name of the
top-level parent table.

Greenplum Database Reference Guide Release Notes

1455

column type references description

partitionname name The name of the
subpartition (this is
the name to use if
referring to the partition
in an ALTER TABLE
command). NULL if the
partition was not given a
name at create time or
generated by an EVERY
clause.

partitiontype text The type of subpartition
(range or list).

partitionlevel smallint The level of this
subpartition in the
hierarchy.

partitionrank bigint For range partitions,
the rank of the partition
compared to other
partitions of the same
level.

partitionposition smallint The rule order position of
this subpartition.

partitionlistvalues text For list partitions, the list
value(s) associated with
this subpartition.

partitionrangestart text For range partitions,
the start value of this
subpartition.

partitionstartinclusiveboolean T if the start value
is included in this
subpartition. F if it is
excluded.

partitionrangeend text For range partitions,
the end value of this
subpartition.

partitionendinclusiveboolean T if the end value
is included in this
subpartition. F if it is
excluded.

partitioneveryclausetext The EVERY clause
(interval) of this
subpartition.

partitionisdefault boolean T if this is a default
subpartition, otherwise
F.

Greenplum Database Reference Guide Release Notes

1456

column type references description

partitionboundary text The entire partition
specification for this
subpartition.

pg_partitions
The pg_partitions system view is used to show the structure of a partitioned table.

Table 185: pg_catalog.pg_partitions

column type references description

schemaname name The name of the schema
the partitioned table is in.

tablename name The name of the top-
level parent table.

partitiontablename name The relation name of the
partitioned table (this is
the table name to use if
accessing the partition
directly).

partitionname name The name of the partition
(this is the name to use if
referring to the partition
in an ALTER TABLE
command). NULL if the
partition was not given a
name at create time or
generated by an EVERY
clause.

parentpartitiontablenamename The relation name of the
parent table one level up
from this partition.

parentpartitionname name The given name of the
parent table one level up
from this partition.

partitiontype text The type of partition
(range or list).

partitionlevel smallint The level of this partition
in the hierarchy.

partitionrank bigint For range partitions,
the rank of the partition
compared to other
partitions of the same
level.

partitionposition smallint The rule order position of
this partition.

Greenplum Database Reference Guide Release Notes

1457

column type references description

partitionlistvalues text For list partitions, the list
value(s) associated with
this partition.

partitionrangestart text For range partitions,
the start value of this
partition.

partitionstartinclusiveboolean T if the start value is
included in this partition.
F if it is excluded.

partitionrangeend text For range partitions,
the end value of this
partition.

partitionendinclusiveboolean T if the end value is
included in this partition.
 F if it is excluded.

partitioneveryclausetext The EVERY clause
(interval) of this partition.

partitionisdefault boolean T if this is a default
partition, otherwise F.

partitionboundary text The entire partition
specification for this
partition.

pg_pltemplate
The pg_pltemplate system catalog table stores template information for procedural languages. A
template for a language allows the language to be created in a particular database by a simple CREATE
LANGUAGE command, with no need to specify implementation details. Unlike most system catalogs,
pg_pltemplate is shared across all databases of Greenplum system: there is only one copy of
pg_pltemplate per system, not one per database. This allows the information to be accessible in each
database as it is needed.

There are not currently any commands that manipulate procedural language templates; to change the built-
in information, a superuser must modify the table using ordinary INSERT, DELETE, or UPDATE commands.

Table 186: pg_catalog.pg_pltemplate

column type references description

tmplname name Name of the language
this template is for

tmpltrusted boolean True if language is
considered trusted

tmplhandler text Name of call handler
function

tmplvalidator text Name of validator
function, or NULL if none

Greenplum Database Reference Guide Release Notes

1458

column type references description

tmpllibrary text Path of shared library
that implements
language

tmplacl aclitem[] Access privileges
for template (not yet
implemented).

pg_proc
The pg_proc system catalog table stores information about functions (or procedures), both built-
in functions and those defined by CREATE FUNCTION. The table contains data for aggregate and
window functions as well as plain functions. If proisagg is true, there should be a matching row in
pg_aggregate.

For compiled functions, both built-in and dynamically loaded, prosrc contains the function's C-language
name (link symbol). For all other currently-known language types, prosrc contains the function's source
text. probin is unused except for dynamically-loaded C functions, for which it gives the name of the
shared library file containing the function.

Table 187: pg_catalog.pg_proc

column type references description

oid oid Row identifier (hidden
attribute; ust be explicitly
selected)

proname name Name of the function

pronamespace oid pg_namespace.oid The OID of the
namespace that contains
this function

proowner oid pg_authid.oid Owner of the function

prolang oid pg_language.oid Implementation
language or call
interface of this function

procost float4 Estimated execution cost
(in cpu_operator_cost
units); if proretset is
true, identifies the cost
per row returned

prorows float4 Estimated number of
result rows (zero if not
proretset)

provariadic oid pg_type.oid Data type of the variadic
array parameter's
elements, or zero if the
function does not have a
variadic parameter

Greenplum Database Reference Guide Release Notes

1459

column type references description

protransform regproc pg_proc.oid Calls to this function
can be simplified by this
other function

proisagg boolean Function is an aggregate
function

proiswindow boolean Function is a window
function

prosecdef boolean Function is a security
definer (for example, a
'setuid' function)

proleakproof boolean The function has no side
effects. No information
about the arguments
is conveyed except via
the return value. Any
function that might throw
an error depending
on the values of its
arguments is not leak-
proof.

proisstrict boolean Function returns NULL
if any call argument
is NULL. In that case
the function will not
actually be called at all.
Functions that are not
strict must be prepared
to handle NULL inputs.

proretset boolean Function returns a set
(multiple values of the
specified data type)

provolatile char Tells whether the
function's result depends
only on its input
arguments, or is affected
by outside factors. i
= immutable (always
delivers the same result
for the same inputs),
s = stable (results (for
fixed inputs) do not
change within a scan),
or v = volatile (results
may change at any time
or functions with side-
effects).

pronargs int2 Number of arguments

pronargdefaults int2 Number of arguments
that have default values

Greenplum Database Reference Guide Release Notes

1460

column type references description

prorettype oid pg_type.oid Data type of the return
value

proargtypes oidvector pg_type.oid An array with the data
types of the function
arguments. This includes
only input arguments
(including INOUT and
VARIADIC arguments),
and thus represents
the call signature of the
function.

proallargtypes oid[] pg_type.oid An array with the data
types of the function
arguments. This includes
all arguments (including
OUT and INOUT
arguments); however, if
all of the arguments are
IN arguments, this field
will be null. Note that
subscripting is 1-based,
whereas for historical
reasons proargtypes
is subscripted from 0.

proargmodes char[] An array with the
modes of the function
arguments: i = IN, o
= OUT , b = INOUT,
v = VARIADIC. If
all the arguments
are IN arguments,
this field will be null.
Note that subscripts
correspond to positions
of proallargtypes,
not proargtypes.

proargnames text[] An array with the
names of the function
arguments. Arguments
without a name are set
to empty strings in the
array. If none of the
arguments have a name,
this field will be null.
Note that subscripts
correspond to positions
of proallargtypes
not proargtypes.

Greenplum Database Reference Guide Release Notes

1461

column type references description

proargdefaults pg_node_tree Expression trees (in
nodeToString()
representation) for
default argument
values. This is a list with
pronargdefaults
elements, corresponding
to the last N input
arguments (i.e., the
last N proargtypes
positions). If none of
the arguments have
defaults, this field will be
null.

prosrc text This tells the function
handler how to invoke
the function. It might
be the actual source
code of the function for
interpreted languages,
a link symbol, a file
name, or just about
anything else, depending
on the implementation
language/call
convention.

probin text Additional information
about how to invoke
the function. Again,
the interpretation is
language-specific.

proconfig text[] Function's local settings
for run-time configuration
variables.

proacl aclitem[] Access privileges for
the function as given by
GRANT/REVOKE

prodataaccess char Provides a hint regarding
the type SQL statements
that are included in
the function: n - does
not contain SQL, c
- contains SQL, r -
contains SQL that reads
data, m - contains SQL
that modifies data

Greenplum Database Reference Guide Release Notes

1462

column type references description

proexeclocation char Where the function
executes when it is
invoked: m - master
only, a - any segment
instance, s - all segment
instances.

pg_resgroup
Note: The pg_resgroup system catalog table is valid only when resource group-based resource
management is active.

The pg_resgroup system catalog table contains information about Greenplum Database resource
groups, which are used for managing concurrent statements, CPU, and memory resources. This table,
defined in the pg_global tablespace, is globally shared across all databases in the system.

Table 188: pg_catalog.pg_resgroup

column type references description

rsgname name The name of the
resource group.

parent oid Unused; reserved for
future use.

pg_resgroupcapability
Note: The pg_resgroupcapability system catalog table is valid only when resource group-
based resource management is active.

The pg_resgroupcapability system catalog table contains information about the capabilities and
limits of defined Greenplum Database resource groups. You can join this table to the pg_resgroup table by
resource group object ID.

The pg_resgroupcapability table, defined in the pg_global tablespace, is globally shared across all
databases in the system.

Table 189: pg_catalog.pg_resgroupcapability

column type references description

resgroupid oid pg_resgroup.oid The object ID of the
associated resource
group.

Greenplum Database Reference Guide Release Notes

1463

column type references description

reslimittype smallint The resource group limit
type:

0 - Unknown

1 - Concurrency

2 - CPU

3 - Memory

4 - Memory shared
quota

5 - Memory spill ratio

6 - Memory auditor

7 - CPU set

value opaque type The specific value set
for the resource limit
referenced in this record.
This value has the
fixed type text, and
will be converted to
a different data type
depending upon the limit
referenced.

pg_resourcetype
The pg_resourcetype system catalog table contains information about the extended attributes that can
be assigned to Greenplum Database resource queues. Each row details an attribute and inherent qualities
such as its default setting, whether it is required, and the value to disable it (when allowed).

This table is populated only on the master. This table is defined in the pg_global tablespace, meaning it
is globally shared across all databases in the system.

Table 190: pg_catalog.pg_resourcetype

column type references description

restypid smallint The resource type ID.

resname name The name of the
resource type.

resrequired boolean Whether the resource
type is required for a
valid resource queue.

reshasdefault boolean Whether the resource
type has a default value.
 When true, the default
value is specified in
reshasdefaultsetting.

Greenplum Database Reference Guide Release Notes

1464

column type references description

rescandisable boolean Whether the type can
be removed or disabled.
 When true, the default
value is specified in
resdisabledsetting.

resdefaultsetting text Default setting for the
resource type, when
applicable.

resdisabledsetting text The value that disables
this resource type (when
allowed).

pg_resqueue
Note: The pg_resqueue system catalog table is valid only when resource queue-based resource
management is active.

The pg_resqueue system catalog table contains information about Greenplum Database resource
queues, which are used for the resource management feature. This table is populated only on the master.
This table is defined in the pg_global tablespace, meaning it is globally shared across all databases in
the system.

Table 191: pg_catalog.pg_resqueue

column type references description

rsqname name The name of the
resource queue.

rsqcountlimit real The active query
threshold of the resource
queue.

rsqcostlimit real The query cost threshold
of the resource queue.

rsqovercommit boolean Allows queries that
exceed the cost
threshold to run when
the system is idle.

rsqignorecostlimit real The query cost limit of
what is considered a
'small query'. Queries
with a cost under this
limit will not be queued
and run immediately.

pg_resqueue_attributes
Note: The pg_resqueue_attributes view is valid only when resource queue-based resource
management is active.

The pg_resqueue_attributes view allows administrators to see the attributes set for a resource
queue, such as its active statement limit, query cost limits, and priority.

Greenplum Database Reference Guide Release Notes

1465

Table 192: pg_catalog.pg_resqueue_attributes

column type references description

rsqname name pg_resqueue.rsqname The name of the
resource queue.

resname text The name of the
resource queue attribute.

resetting text The current value of a
resource queue attribute.

restypid integer System assigned
resource type id.

pg_resqueuecapability
Note: The pg_resqueuecapability system catalog table is valid only when resource queue-
based resource management is active.

The pg_resqueuecapability system catalog table contains information about the extended attributes,
or capabilities, of existing Greenplum Database resource queues. Only resource queues that have been
assigned an extended capability, such as a priority setting, are recorded in this table. This table is joined to
the pg_resqueue table by resource queue object ID, and to the pg_resourcetype table by resource type ID
(restypid).

This table is populated only on the master. This table is defined in the pg_global tablespace, meaning it
is globally shared across all databases in the system.

Table 193: pg_catalog.pg_resqueuecapability

column type references description

rsqueueid oid pg_resqueue.oid The object ID of the
associated resource
queue.

restypid smallint pg_resourcetype.
restypid

The resource type,
derived from the pg_
resqueuecapability
system table.

resetting opaque type The specific value set for
the capability referenced
in this record. Depending
on the actual resource
type, this value may
have different data
types.

pg_rewrite
The pg_rewrite system catalog table stores rewrite rules for tables and views.
pg_class.relhasrules must be true if a table has any rules in this catalog.

Greenplum Database Reference Guide Release Notes

1466

Table 194: pg_catalog.pg_rewrite

column type references description

rulename name Rule name.

ev_class oid pg_class.oid The table this rule is for.

ev_type char Event type that the rule
is for: 1 = SELECT, 2 =
UPDATE, 3 = INSERT, 4
= DELETE

ev_enabled char Controls in which
session replication role
mode the rule fires.
Always O, rule fires in
origin mode.

is_instead bool True if the rule is an
INSTEAD rule

ev_qual pg_node_tree Expression tree
(in the form of a
nodeToString()
representation) for the
rule's qualifying condition

ev_action pg_node_tree Query tree (in the form
of a nodeToString()
representation) for the
rule's action

pg_roles
The view pg_roles provides access to information about database roles. This is simply a publicly
readable view of pg_authid that blanks out the password field. This view explicitly exposes the OID column
of the underlying table, since that is needed to do joins to other catalogs.

Table 195: pg_catalog.pg_roles

column type references description

rolname name Role name

rolsuper bool Role has superuser
privileges

rolinherit bool Role automatically
inherits privileges of
roles it is a member of

rolcreaterole bool Role may create more
roles

rolcreatedb bool Role may create
databases

Greenplum Database Reference Guide Release Notes

1467

column type references description

rolcatupdate bool Role may update system
catalogs directly. (Even
a superuser may not do
this unless this column is
true.)

rolcanlogin bool Role may log in. That is,
this role can be given
as the initial session
authorization identifier

rolconnlimit int4 For roles that can log
in, this sets maximum
number of concurrent
connections this role can
make. -1 means no limit

rolpassword text Not the password
(always reads as
********)

rolvaliduntil timestamptz Password expiry time
(only used for password
authentication); NULL if
no expiration

rolconfig text[] Role-specific defaults for
run-time configuration
variables

rolresqueue oid pg_resqueue.oid Object ID of the resource
queue this role is
assigned to.

oid oid pg_authid.oid Object ID of role

rolcreaterextgpfd bool Role may create
readable external tables
that use the gpfdist
protocol.

rolcreaterexthttp bool Role may create
readable external
tables that use the http
protocol.

rolcreatewextgpfd bool Role may create writable
external tables that use
the gpfdist protocol.

rolresgroup oid pg_resgroup.oid Object ID of the resource
group to which this role
is assigned.

pg_rules
The view pg_rules provides access to useful information about query rewrite rules.

Greenplum Database Reference Guide Release Notes

1468

The pg_rules view excludes the ON SELECT rules of views and materialized views; those can be seen in
pg_views and pg_matviews.

Table 196: pg_catalog.pg_rules

column type references description

schemaname name pg_namespace.
nspname

Name of schema
containing table

tablename name pg_class.relname Name of table the rule is
for

rulename name pg_rewrite.rulename Name of rule

definition text Rule definition (a
reconstructed creation
command)

pg_shdepend
The pg_shdepend system catalog table records the dependency relationships between database
objects and shared objects, such as roles. This information allows Greenplum Database to ensure that
those objects are unreferenced before attempting to delete them. See also pg_depend, which performs
a similar function for dependencies involving objects within a single database. Unlike most system
catalogs, pg_shdepend is shared across all databases of Greenplum system: there is only one copy of
pg_shdepend per system, not one per database.

In all cases, a pg_shdepend entry indicates that the referenced object may not be dropped without also
dropping the dependent object. However, there are several subflavors identified by deptype:

• SHARED_DEPENDENCY_OWNER (o) — The referenced object (which must be a role) is the owner of
the dependent object.

• SHARED_DEPENDENCY_ACL (a) — The referenced object (which must be a role) is mentioned in the
ACL (access control list) of the dependent object.

• SHARED_DEPENDENCY_PIN (p) — There is no dependent object; this type of entry is a signal that
the system itself depends on the referenced object, and so that object must never be deleted. Entries of
this type are created only by system initialization. The columns for the dependent object contain zeroes.

Table 197: pg_catalog.pg_shdepend

column type references description

dbid oid pg_database.oid The OID of the
database the dependent
object is in, or zero for a
shared object.

classid oid pg_class.oid The OID of the system
catalog the dependent
object is in.

objid oid any OID column The OID of the specific
dependent object.

objsubid int4 For a table column, this
is the column number.
 For all other object
types, this column is
zero.

Greenplum Database Reference Guide Release Notes

1469

column type references description

refclassid oid pg_class.oid The OID of the system
catalog the referenced
object is in (must be a
shared catalog).

refobjid oid any OID column The OID of the specific
referenced object.

refobjsubid int4 For a table column,
this is the referenced
column number. For all
other object types, this
column is zero.

deptype char A code defining the
specific semantics
of this dependency
relationship.

pg_shdescription
The pg_shdescription system catalog table stores optional descriptions (comments) for shared
database objects. Descriptions can be manipulated with the COMMENT command and viewed with psql's
\d meta-commands. See also pg_description, which performs a similar function for descriptions involving
objects within a single database. Unlike most system catalogs, pg_shdescription is shared across all
databases of a Greenplum system: there is only one copy of pg_shdescription per system, not one per
database.

Table 198: pg_catalog.pg_shdescription

column type references description

objoid oid any OID column The OID of the object
this description pertains
to.

classoid oid pg_class.oid The OID of the system
catalog this object
appears in

description text Arbitrary text that serves
as the description of this
object.

pg_stat_activity
The view pg_stat_activity shows one row per server process with details about the associated user
session and query. The columns that report data on the current query are available unless the parameter
stats_command_string has been turned off. Furthermore, these columns are only visible if the user
examining the view is a superuser or the same as the user owning the process being reported on.

The maximum length of the query text string stored in the column query can be controlled with the server
configuration parameter track_activity_query_size.

Greenplum Database Reference Guide Release Notes

1470

Table 199: pg_catalog.pg_stat_activity

column type references description

datid oid pg_database.oid Database OID

datname name Database name

pid integer Process ID of this
backend

sess_id integer Session ID

usesysid oid pg_authid.oid OID of the user logged
into this backend

usename name Name of the user logged
into this backend

application_name text Name of the application
that is connected to this
backend

client_addr inet IP address of the
client connected to
this backend. If this
field is null, it indicates
either that the client is
connected via a Unix
socket on the server
machine or that this is an
internal process such as
autovacuum.

client_hostname text Host name of the
connected client, as
reported by a reverse
DNS lookup of client_
addr. This field will
only be non-null for IP
connections, and only
when log_hostname is
enabled.

client_port integer TCP port number that
the client is using for
communication with this
backend, or -1 if a Unix
socket is used

backend_start timestamptz Time backend process
was started

xact_start timestamptz Transaction start time

query_start timestamptz Time query began
execution

state_change timestampz Time when the state
was last changed

Greenplum Database Reference Guide Release Notes

1471

column type references description

waiting boolean True if waiting on a lock,
false if not waiting

state text Current overall state of
this backend. Possible
values are:

• active: The
backend is executing
a query.

• idle: The backend
is waiting for a new
client command.

• idle in
transaction:
The backend is in a
transaction, but is not
currently executing a
query.

• idle in
transaction
(aborted): This
state is similar to idle
in transaction, except
one of the statements
in the transaction
caused an error.

• fastpath
function call:
The backend is
executing a fast-path
function.

• disabled: This
state is reported if
track_activities
is disabled in this
backend.

query text Text of this backend's
most recent query. If
state is active this
field shows the currently
executing query. In all
other states, it shows
the last query that was
executed.

waiting_reason text Reason the server
process is waiting. The
value can be:

lock, replication, or
resgroup

Greenplum Database Reference Guide Release Notes

1472

column type references description

rsgid oid pg_resgroup.oid Resource group OID or
0.

See Note.

rsgname text pg_resgroup.rsgname Resource group name or
unknown.

See Note.

rsgqueueduration interval For a queued query, the
total time the query has
been queued.

Note: When resource groups are enabled. Only query dispatcher (QD) processes will have a
rsgid and rsgname. Other server processes such as a query executer (QE) process or session
connection processes will have a rsgid value of 0 and a rsgname value of unknown. QE
processes are managed by the same resource group as the dispatching QD process.

pg_stat_all_indexes
The pg_stat_all_indexes view shows one row for each index in the current database that displays
statistics about accesses to that specific index.

The pg_stat_user_indexes and pg_stat_sys_indexes views contain the same information, but
filtered to only show user and system indexes respectively.

In Greenplum Database 6, the pg_stat_*_indexes views display access statistics for indexes only
from the master instance. Access statistics from segment instances are ignored. You can create views
that display usage statistics that combine statistics from the master and the segment instances, see Index
Access Statistics from the Master and Segment Instances.

Table 200: pg_catalog.pg_stat_all_indexes View

Column Type Description

relid oid OID of the table for this index

indexrelid oid OID of this index

schemaname name Name of the schema this index is
in

relname name Name of the table for this index

indexrelname name Name of this index

idx_scan bigint Total number of index scans
initiated on this index from all
segment instances

idx_tup_read bigint Number of index entries returned
by scans on this index

idx_tup_fetch bigint Number of live table rows fetched
by simple index scans using this
index

Greenplum Database Reference Guide Release Notes

1473

Index Access Statistics from the Master and Segment Instances
To display index access statistics that combine statistics from the master and the segment instances you
can create these views. A user requires SELECT privilege on the views to use them.

-- Create these index access statistics views
-- pg_stat_all_indexes_gpdb6
-- pg_stat_sys_indexes_gpdb6
-- pg_stat_user_indexes_gpdb6

CREATE VIEW pg_stat_all_indexes_gpdb6 AS
SELECT
 s.relid,
 s.indexrelid,
 s.schemaname,
 s.relname,
 s.indexrelname,
 m.idx_scan,
 m.idx_tup_read,
 m.idx_tup_fetch
FROM
 (SELECT
 relid,
 indexrelid,
 schemaname,
 relname,
 indexrelname,
 sum(idx_scan) as idx_scan,
 sum(idx_tup_read) as idx_tup_read,
 sum(idx_tup_fetch) as idx_tup_fetch
 FROM gp_dist_random('pg_stat_all_indexes')
 WHERE relid >= 16384
 GROUP BY relid, indexrelid, schemaname, relname, indexrelname
 UNION ALL
 SELECT *
 FROM pg_stat_all_indexes
 WHERE relid < 16384) m, pg_stat_all_indexes s
WHERE m.relid = s.relid;

CREATE VIEW pg_stat_sys_indexes_gpdb6 AS
 SELECT * FROM pg_stat_all_indexes_gpdb6
 WHERE schemaname IN ('pg_catalog', 'information_schema') OR
 schemaname ~ '^pg_toast';

CREATE VIEW pg_stat_user_indexes_gpdb6 AS
 SELECT * FROM pg_stat_all_indexes_gpdb6
 WHERE schemaname NOT IN ('pg_catalog', 'information_schema') AND
 schemaname !~ '^pg_toast';

pg_stat_all_tables
The pg_stat_all_tables view shows one row for each table in the current database (including TOAST
tables) to display statistics about accesses to that specific table.

The pg_stat_user_tables and pg_stat_sys_tables views contain the same information, but
filtered to only show user and system tables respectively.

In Greenplum Database 6, the pg_stat_*_tables views display access statistics for tables only from
the master instance. Access statistics from segment instances are ignored. You can create views that
display usage statistics, see Table Access Statistics from the Master and Segment Instances.

Greenplum Database Reference Guide Release Notes

1474

Table 201: pg_catalog.pg_stat_all_table View

Column Type Description

relid oid OID of a table

schemaname name Name of the schema that this
table is in

relname name Name of this table

seq_scan bigint Total number of sequential scans
initiated on this table from all
segment instances

seq_tup_read bigint Number of live rows fetched by
sequential scans

idx_scan bigint Total number of index scans
initiated on this index from all
segment instances

idx_tup_fetch bigint Number of live rows fetched by
index scans

n_tup_ins bigint Number of rows inserted

n_tup_upd bigint Number of rows updated
(includes HOT updated rows)

n_tup_del bigint Number of rows deleted

n_tup_hot_upd bigint Number of rows HOT updated (i.
e., with no separate index update
required)

n_live_tup bigint Estimated number of live rows

n_dead_tup bigint Estimated number of dead rows

n_mod_since_analyze bigint Estimated number of rows
modified since this table was last
analyzed

last_vacuum timestamp with time zone Last time this table was manually
vacuumed (not counting VACUUM
FULL)

last_autovacuum timestamp with time zone Last time this table was
vacuumed by the autovacuum
daemon1

last_analyze timestamp with time zone Last time this table was manually
analyzed

last_autoanalyze timestamp with time zone Last time this table was analyzed
by the autovacuum daemon1

vacuum_count bigint Number of times this table has
been manually vacuumed (not
counting VACUUM FULL)

Greenplum Database Reference Guide Release Notes

1475

Column Type Description

autovacuum_count bigint Number of times this table
has been vacuumed by the
autovacuum daemon1

analyze_count bigint Number of times this table has
been manually analyzed

autoanalyze_count bigint Number of times this table
has been analyzed by the
autovacuum daemon 1

Note: 1 In Greenplum Database, the autovacuum daemon is disabled and not supported for user
defined databases.

Table Access Statistics from the Master and Segment Instances
To display table access statistics that combine statistics from the master and the segment instances you
can create these views. A user requires SELECT privilege on the views to use them.

-- Create these table access statistics views
-- pg_stat_all_tables_gpdb6
-- pg_stat_sys_tables_gpdb6
-- pg_stat_user_tables_gpdb6

CREATE VIEW pg_stat_all_tables_gpdb6 AS
SELECT
 s.relid,
 s.schemaname,
 s.relname,
 m.seq_scan,
 m.seq_tup_read,
 m.idx_scan,
 m.idx_tup_fetch,
 m.n_tup_ins,
 m.n_tup_upd,
 m.n_tup_del,
 m.n_tup_hot_upd,
 m.n_live_tup,
 m.n_dead_tup,
 s.n_mod_since_analyze,
 s.last_vacuum,
 s.last_autovacuum,
 s.last_analyze,
 s.last_autoanalyze,
 s.vacuum_count,
 s.autovacuum_count,
 s.analyze_count,
 s.autoanalyze_count
FROM
 (SELECT
 relid,
 schemaname,
 relname,
 sum(seq_scan) as seq_scan,
 sum(seq_tup_read) as seq_tup_read,
 sum(idx_scan) as idx_scan,
 sum(idx_tup_fetch) as idx_tup_fetch,
 sum(n_tup_ins) as n_tup_ins,
 sum(n_tup_upd) as n_tup_upd,
 sum(n_tup_del) as n_tup_del,

Greenplum Database Reference Guide Release Notes

1476

 sum(n_tup_hot_upd) as n_tup_hot_upd,
 sum(n_live_tup) as n_live_tup,
 sum(n_dead_tup) as n_dead_tup,
 max(n_mod_since_analyze) as n_mod_since_analyze,
 max(last_vacuum) as last_vacuum,
 max(last_autovacuum) as last_autovacuum,
 max(last_analyze) as last_analyze,
 max(last_autoanalyze) as last_autoanalyze,
 max(vacuum_count) as vacuum_count,
 max(autovacuum_count) as autovacuum_count,
 max(analyze_count) as analyze_count,
 max(autoanalyze_count) as autoanalyze_count
 FROM gp_dist_random('pg_stat_all_tables')
 WHERE relid >= 16384
 GROUP BY relid, schemaname, relname
 UNION ALL
 SELECT *
 FROM pg_stat_all_tables
 WHERE relid < 16384) m, pg_stat_all_tables s
 WHERE m.relid = s.relid;

CREATE VIEW pg_stat_sys_tables_gpdb6 AS
 SELECT * FROM pg_stat_all_tables_gpdb6
 WHERE schemaname IN ('pg_catalog', 'information_schema') OR
 schemaname ~ '^pg_toast';

CREATE VIEW pg_stat_user_tables_gpdb6 AS
 SELECT * FROM pg_stat_all_tables_gpdb6
 WHERE schemaname NOT IN ('pg_catalog', 'information_schema') AND
 schemaname !~ '^pg_toast';

pg_stat_last_operation
The pg_stat_last_operation table contains metadata tracking information about database objects (tables,
views, etc.).

Table 202: pg_catalog.pg_stat_last_operation

column type references description

classid oid pg_class.oid OID of the system
catalog containing the
object.

objid oid any OID column OID of the object within
its system catalog.

staactionname name The action that was
taken on the object.

stasysid oid pg_authid.oid A foreign key to pg_
authid.oid.

stausename name The name of the role
that performed the
operation on this object.

Greenplum Database Reference Guide Release Notes

1477

column type references description

stasubtype text The type of object
operated on or the
subclass of operation
performed.

statime timestamp with timezone The timestamp of the
operation. This is the
same timestamp that is
written to the Greenplum
Database server log
files in case you need
to look up more detailed
information about the
operation in the logs.

The pg_stat_last_operation table contains metadata tracking information about operations on
database objects. This information includes the object id, DDL action, user, type of object, and operation
timestamp. Greenplum Database updates this table when a database object is created, altered, truncated,
vacuumed, analyzed, or partitioned, and when privileges are granted to an object.

If you want to track the operations performed on a specific object, use the objid value. Because
the stasubtype value can identify either the type of object operated on or the subclass of operation
performed, it is not a suitable parameter when querying the pg_stat_last_operation table.

The following example creates and replaces a view, and then shows how to use objid as a query
parameter on the pg_stat_last_operation table.

testdb=# CREATE VIEW trial AS SELECT * FROM gp_segment_configuration;
CREATE VIEW
testdb=# CREATE OR REPLACE VIEW trial AS SELECT * FROM
 gp_segment_configuration;
CREATE VIEW
testdb=# SELECT * FROM pg_stat_last_operation WHERE
 objid='trial'::regclass::oid;
 classid | objid | staactionname | stasysid | stausename | stasubtype |
 statime
---------+-------+---------------+----------+------------+------------
+-------------------------------
 1259 | 24735 | CREATE | 10 | gpadmin | VIEW |
 2020-04-07 16:44:28.808811+00
 1259 | 24735 | ALTER | 10 | gpadmin | SET |
 2020-04-07 16:44:38.110615+00
(2 rows)

Notice that the pg_stat_last_operation table entry for the view REPLACE operation specifies the
ALTER action (staactionname) and the SET subtype (stasubtype).

pg_stat_last_shoperation
The pg_stat_last_shoperation table contains metadata tracking information about global objects (roles,
tablespaces, etc.).

Greenplum Database Reference Guide Release Notes

1478

Table 203: pg_catalog.pg_stat_last_shoperation

column type references description

classid oid pg_class.oid OID of the system
catalog containing the
object.

objid oid any OID column OID of the object within
its system catalog.

staactionname name The action that was
taken on the object.

stasysid oid

stausename name The name of the role
that performed the
operation on this object.

stasubtype text The type of object
operated on or the
subclass of operation
performed.

statime timestamp with timezone The timestamp of the
operation. This is the
same timestamp that is
written to the Greenplum
Database server log
files in case you need
to look up more detailed
information about the
operation in the logs.

pg_stat_operations
The view pg_stat_operations shows details about the last operation performed on a database object
(such as a table, index, view or database) or a global object (such as a role).

Table 204: pg_catalog.pg_stat_operations

column type references description

classname text The name of the
system table in the pg_
catalog schema where
the record about this
object is stored (pg_
class=relations, pg_
database=databases,

pg_namespace=
schemas,

pg_authid=roles)

objname name The name of the object.

objid oid The OID of the object.

Greenplum Database Reference Guide Release Notes

1479

column type references description

schemaname name The name of the schema
where the object resides.

usestatus text The status of the role
who performed the last
operation on the object
(CURRENT=a currently
active role in the system,
DROPPED=a role that
no longer exists in the
system, CHANGED=a role
name that exists in the
system, but has changed
since the last operation
was performed).

usename name The name of the role
that performed the
operation on this object.

actionname name The action that was
taken on the object.

subtype text The type of object
operated on or the
subclass of operation
performed.

statime timestamptz The timestamp of the
operation. This is the
same timestamp that is
written to the Greenplum
Database server log
files in case you need
to look up more detailed
information about the
operation in the logs.

pg_stat_partition_operations
The pg_stat_partition_operations view shows details about the last operation performed on a
partitioned table.

Table 205: pg_catalog.pg_stat_partition_operations

column type references description

classname text The name of the
system table in the pg_
catalog schema where
the record about this
object is stored (always
pg_class for tables and
partitions).

objname name The name of the object.

Greenplum Database Reference Guide Release Notes

1480

column type references description

objid oid The OID of the object.

schemaname name The name of the schema
where the object resides.

usestatus text The status of the role
who performed the last
operation on the object
(CURRENT=a currently
active role in the system,
DROPPED=a role that
no longer exists in the
system, CHANGED=a
role name that exists
in the system, but its
definition has changed
since the last operation
was performed).

usename name The name of the role
that performed the
operation on this object.

actionname name The action that was
taken on the object.

subtype text The type of object
operated on or the
subclass of operation
performed.

statime timestamptz The timestamp of the
operation. This is the
same timestamp that is
written to the Greenplum
Database server log
files in case you need
to look up more detailed
information about the
operation in the logs.

partitionlevel smallint The level of this partition
in the hierarchy.

parenttablename name The relation name of the
parent table one level up
from this partition.

parentschemaname name The name of the schema
where the parent table
resides.

parent_relid oid The OID of the parent
table one level up from
this partition.

Greenplum Database Reference Guide Release Notes

1481

pg_stat_replication
The pg_stat_replication view contains metadata of the walsender process that is used for
Greenplum Database master mirroring.

Table 206: pg_catalog.pg_stat_replication

column type references description

pid integer Process ID of WAL
sender backend
process.

usesysid integer User system ID that
runs the WAL sender
backend process

usename name User name that runs
WAL sender backend
process.

application_name oid Client application name.

client_addr name Client IP address.

client_port integer Client port number.

backend_start timestamp Operation start
timestamp.

state text WAL sender state. The
value can be:

startup

backup

catchup

streaming

sent_location text WAL sender xlog record
sent location.

write_location text WAL receiver xlog
record write location.

flush_location text WAL receiver xlog
record flush location.

replay_location text Standby xlog record
replay location.

sync_priority text Priority. the value is 1.

sync_state text WAL sender
synchronization state.
The value is sync.

pg_statistic
The pg_statistic system catalog table stores statistical data about the contents of the database.
Entries are created by ANALYZE and subsequently used by the query optimizer. There is one entry for

Greenplum Database Reference Guide Release Notes

1482

each table column that has been analyzed. Note that all the statistical data is inherently approximate, even
assuming that it is up-to-date.

pg_statistic also stores statistical data about the values of index expressions. These are described
as if they were actual data columns; in particular, starelid references the index. No entry is made for
an ordinary non-expression index column, however, since it would be redundant with the entry for the
underlying table column. Currently, entries for index expressions always have stainherit = false.

When stainherit = false, there is normally one entry for each table column that has been analyzed.
If the table has inheritance children, Greenplum Database creates a second entry with stainherit =
true. This row represents the column's statistics over the inheritance tree, for example, statistics for the
data you would see with SELECT column FROM table*, whereas the stainherit = false row
represents the results of SELECT column FROM ONLY table.

Since different kinds of statistics may be appropriate for different kinds of data, pg_statistic is
designed not to assume very much about what sort of statistics it stores. Only extremely general statistics
(such as nullness) are given dedicated columns in pg_statistic. Everything else is stored in slots,
which are groups of associated columns whose content is identified by a code number in one of the slot's
columns.

Statistical information about a table's contents should be considered sensitive (for example: minimum and
maximum values of a salary column). pg_stats is a publicly readable view on pg_statistic that only
exposes information about those tables that are readable by the current user.

Warning: Diagnostic tools such as gpsd and minirepro collect sensitive information from
pg_statistic, such as histogram boundaries, in a clear, readable form. Always review the
output files of these utilities to ensure that the contents are acceptable for transport outside of the
database in your organization.

Table 207: pg_catalog.pg_statistic

column type references description

starelid oid pg_class.oid The table or index that
the described column
belongs to.

staattnum int2 pg_attribute.attnum The number of the
described column.

stainherit bool If true, the statistics
include inheritance child
columns, not just the
values in the specified
relations.

stanullfrac float4 The fraction of the
column's entries that are
null.

stawidth int4 The average stored
width, in bytes, of
nonnull entries.

Greenplum Database Reference Guide Release Notes

1483

column type references description

stadistinct float4 The number of distinct
nonnull data values in
the column. A value
greater than zero is
the actual number of
distinct values. A value
less than zero is the
negative of a fraction of
the number of rows in
the table (for example,
a column in which
values appear about
twice on the average
could be represented by
stadistinct = -0.5).
A zero value means the
number of distinct values
is unknown.

stakindN int2 A code number
indicating the kind of
statistics stored in the
Nth slot of the pg_
statistic row.

staopN oid pg_operator.oid An operator used to
derive the statistics
stored in the Nth slot. For
example, a histogram
slot would show the <
operator that defines the
sort order of the data.

stanumbersN float4[] Numerical statistics of
the appropriate kind for
the Nth slot, or NULL
if the slot kind does
not involve numerical
values.

stavaluesN anyarray Column data values of
the appropriate kind for
the Nth slot, or NULL if
the slot kind does not
store any data values.
 Each array's element
values are actually of the
specific column's data
type, so there is no way
to define these columns'
type more specifically
than anyarray.

Greenplum Database Reference Guide Release Notes

1484

pg_stat_resqueues
Note: The pg_stat_resqueues view is valid only when resource queue-based resource
management is active.

The pg_stat_resqueues view allows administrators to view metrics about a resource queue's workload
over time. To allow statistics to be collected for this view, you must enable the stats_queue_level
server configuration parameter on the Greenplum Database master instance. Enabling the collection of
these metrics does incur a small performance penalty, as each statement submitted through a resource
queue must be logged in the system catalog tables.

Table 208: pg_catalog.pg_stat_resqueues

column type references description

queueoid oid The OID of the resource
queue.

queuename name The name of the
resource queue.

n_queries_exec bigint Number of queries
submitted for execution
from this resource
queue.

n_queries_wait bigint Number of queries
submitted to this
resource queue that had
to wait before they could
execute.

elapsed_exec bigint Total elapsed execution
time for statements
submitted through this
resource queue.

elapsed_wait bigint Total elapsed time that
statements submitted
through this resource
queue had to wait before
they were executed.

pg_tablespace
The pg_tablespace system catalog table stores information about the available tablespaces. Tables
can be placed in particular tablespaces to aid administration of disk layout. Unlike most system catalogs,
pg_tablespace is shared across all databases of a Greenplum system: there is only one copy of
pg_tablespace per system, not one per database.

Table 209: pg_catalog.pg_tablespace

column type references description

spcname name Tablespace name.

spcowner oid pg_authid.oid Owner of the tablespace,
usually the user who
created it.

Greenplum Database Reference Guide Release Notes

1485

column type references description

spcacl aclitem[] Tablespace access
privileges.

spcoptions text[] Tablespace contentID
locations.

pg_trigger
The pg_trigger system catalog table stores triggers on tables.

Note: Greenplum Database does not support triggers.

Table 210: pg_catalog.pg_trigger

column type references description

tgrelid oid pg_class.oid

Note that Greenplum
Database does not
enforce referential
integrity.

The table this trigger is
on.

tgname name Trigger name (must be
unique among triggers of
same table).

tgfoid oid pg_proc.oid

Note that Greenplum
Database does not
enforce referential
integrity.

The function to be
called.

tgtype int2 Bit mask identifying
trigger conditions.

tgenabled boolean True if trigger is enabled.

tgisinternal boolean True if trigger is
internally generated
(usually, to enforce the
constraint identified by
tgconstraint).

tgconstrrelid oid pg_class.oid

Note that Greenplum
Database does not
enforce referential
integrity.

The table referenced by
an referential integrity
constraint.

tgdeferrable boolean True if deferrable.

tginitdeferred boolean True if initially deferred.

tgnargs int2 Number of argument
strings passed to trigger
function.

Greenplum Database Reference Guide Release Notes

1486

column type references description

tgattr int2vector Currently not used.

tgargs bytea Argument strings to pass
to trigger, each NULL-
terminated.

pg_type
The pg_type system catalog table stores information about data types. Base types (scalar types) are
created with CREATE TYPE, and domains with CREATE DOMAIN. A composite type is automatically
created for each table in the database, to represent the row structure of the table. It is also possible to
create composite types with CREATE TYPE AS.

Table 211: pg_catalog.pg_type

column type references description

oid oid Row identifier (hidden
attribute; must be
explicitly selected)

typname name Data type name

typnamespace oid pg_namespace.oid The OID of the
namespace that contains
this type

typowner oid pg_authid.oid Owner of the type

typlen int2 For a fixed-size type,
typlen is the number
of bytes in the internal
representation of the
type. But for a variable-
length type, typlen is
negative. -1 indicates
a 'varlena' type (one
that has a length word),
-2 indicates a null-
terminated C string.

typbyval boolean Determines whether
internal routines pass
a value of this type by
value or by reference.
typbyval had better
be false if typlen is
not 1, 2, or 4 (or 8 on
machines where Datum
is 8 bytes). Variable-
length types are always
passed by reference.
Note that typbyval
can be false even if the
length would allow pass-
by-value.

Greenplum Database Reference Guide Release Notes

1487

column type references description

typtype char b for a base type, c
for a composite type,
d for a domain, e for
an enum type, p for
a pseudo-type, or r
for a range type. See
also typrelid and
typbasetype.

typcategory char Arbitrary classification
of data types that is
used by the parser
to determine which
implicit casts should be
preferred. See Category
Codes.

typispreferred boolean True if the type is a
preferred cast target
within its typcategory

typisdefined boolean True if the type is
defined, false if this is
a placeholder entry for
a not-yet-defined type.
When false, nothing
except the type name,
namespace, and OID
can be relied on.

typdelim char Character that separates
two values of this type
when parsing array
input. Note that the
delimiter is associated
with the array element
data type, not the array
data type.

typrelid oid pg_class.oid If this is a composite
type (see typtype),
then this column points
to the pg_class
entry that defines the
corresponding table.
(For a free-standing
composite type, the
pg_class entry does
not really represent a
table, but it is needed
anyway for the type's
pg_attribute entries
to link to.) Zero for non-
composite types.

Greenplum Database Reference Guide Release Notes

1488

column type references description

typelem oid pg_type.oid If not 0 then it identifies
another row in pg_type.
The current type can
then be subscripted
like an array yielding
values of type typelem.
A "true" array type is
variable length (typlen
= -1), but some fixed-
length (typlen > 0)
types also have nonzero
typelem, for example
name and point. If a
fixed-length type has
a typelem then its
internal representation
must be some number of
values of the typelem
data type with no other
data. Variable-length
array types have a
header defined by the
array subroutines.

typarray oid pg_type.oid If not 0, identifies
another row in pg_type,
which is the "true" array
type having this type
as its element. Use
pg_type.typarray
to locate the array
type associated with a
specific type.

typinput regproc pg_proc.oid Input conversion function
(text format)

typoutput regproc pg_proc.oid Output conversion
function (text format)

typreceive regproc pg_proc.oid Input conversion function
(binary format), or 0 if
none

typsend regproc pg_proc.oid Output conversion
function (binary format),
or 0 if none

typmodin regproc pg_proc.oid Type modifier input
function, or 0 if the
type does not support
modifiers

typmodout regproc pg_proc.oid Type modifier output
function, or 0 to use the
standard format

Greenplum Database Reference Guide Release Notes

1489

column type references description

typanalyze regproc pg_proc.oid Custom ANALYZE
function, or 0 to use the
standard function

typalign char The alignment required
when storing a value of
this type. It applies to
storage on disk as well
as most representations
of the value inside
Greenplum Database.
When multiple
values are stored
consecutively, such as
in the representation
of a complete row on
disk, padding is inserted
before a datum of this
type so that it begins on
the specified boundary.
The alignment reference
is the beginning of
the first datum in the
sequence. Possible
values are:

c = char alignment (no
alignment needed).

s = short alignment
(2 bytes on most
machines).

i = int alignment
(4 bytes on most
machines).

d = double alignment
(8 bytes on many
machines, but not all).

Greenplum Database Reference Guide Release Notes

1490

column type references description

typstorage char For varlena types (those
with typlen = -1) tells
if the type is prepared
for toasting and what
the default strategy for
attributes of this type
should be. Possible
values are:

p: Value must always be
stored plain.

e: Value can be stored
in a secondary relation
(if relation has one,
see pg_class.
reltoastrelid).

m: Value can be stored
compressed inline.

x: Value can be stored
compressed inline or
stored in secondary
storage.

Note that m columns
can also be moved out
to secondary storage,
but only as a last resort
(e and x columns are
moved first).

typnotnull boolean Represents a not-null
constraint on a type.
Used for domains only.

typbasetype oid pg_type.oid Identifies the type that
a domain is based on.
Zero if this type is not a
domain.

typtypmod int4 Domains use
typtypmod to record
the typmod to be
applied to their base
type (-1 if base type
does not use a typmod).
-1 if this type is not a
domain.

Greenplum Database Reference Guide Release Notes

1491

column type references description

typndims int4 The number of array
dimensions for a
domain over an array
(if typbasetype is
an array type). Zero
for types other than
domains over array
types.

typcollation oid pg_collation.oid Specifies the collation
of the type. Zero if the
type does not support
collations. The value is
DEFAULT_COLLATION_
OID for a base type that
supports collations. A
domain over a collatable
type can have some
other collation OID if one
was specified for the
domain.

typdefaultbin pg_node_tree If not null, it is the
nodeToString()
representation of a
default expression for
the type. This is only
used for domains.

typdefault text Null if the type has no
associated default value.
If typdefaultbin is
not null, typdefault
must contain a human-
readable version of
the default expression
represented by
typdefaultbin. If
typdefaultbin is null
and typdefault is not,
then typdefault is the
external representation
of the type's default
value, which may be
fed to the type's input
converter to produce a
constant.

typacl aclitem[] Access privileges; see
GRANT and REVOKE for
details.

The following table lists the system-defined values of typcategory. Any future additions to this list will
also be upper-case ASCII letters. All other ASCII characters are reserved for user-defined categories.

Greenplum Database Reference Guide Release Notes

1492

Table 212: typcategory Codes

Code Category

A Array types

B Boolean types

C Composite types

D Date/time types

E Enum types

G Geometric types

I Network address types

N Numeric types

P Pseudo-types

R Range types

S String types

T Timespan types

U User-defined types

V Bit-string types

X unknown type

pg_type_encoding
The pg_type_encoding system catalog table contains the column storage type information.

Table 213: pg_catalog.pg_type_encoding

column type modifers storage description

typeid oid not null plain Foreign key to pg_
attribute

typoptions text [] extended The actual options

pg_user_mapping
The system catalog table pg_user_mapping stores the mappings from local user to remote user. You
must have administrator privileges to view this catalog. Access to this catalog is restricted from normal
users, use the pg_user_mappings view instead.

Table 214: pg_catalog.pg_user_mapping

column type references description

umuser oid pg_authid.oid OID of the local role
being mapped, 0 if the
user mapping is public.

Greenplum Database Reference Guide Release Notes

1493

column type references description

umserver oid pg_foreign_server.oid OID of the foreign
server that contains this
mapping.

umoptions text[] User mapping-specific
options, as "keyword=
value" strings.

pg_user_mappings
The pg_user_mappings view provides access to information about user mappings. This view is
essentially a public-readble view of the pg_user_mapping system catalog table that omits the options
field if the user does not have access rights to view it.

Table 215: pg_user_mappings

column type references description

umid oid pg_user_mapping.oid OID of the user
mapping.

srvid oid pg_foreign_server.oid OID of the foreign
server that contains this
mapping.

srvname text pg_foreign_server.
srvname

Name of the foreign
server.

umuser oid pg_authid.oid OID of the local role
being mapped, 0 if the
user mapping is public.

usename name Name of the local user to
be mapped.

umoptions text[] User mapping-specific
options, as "keyword=
value" strings.

To protect password information stored as a user mapping option, the umoptions column reads as null
unless one of the following applies:

• The current user is the user being mapped, and owns the server or holds USAGE privilege on it.
• The current user is the server owner and the mapping is for PUBLIC.
• The current user is a superuser.

user_mapping_options
The user_mapping_options view contains all of the options defined for user mappings in the current
database. Greenplum Database displays only those user mappings to which the current user has access
(by way of being the owner or having some privilege).

Greenplum Database Reference Guide Release Notes

1494

Table 216: user_mapping_options

column type references description

authorization_
identifier

sql_identifier Name of the user being
mapped, or PUBLIC if
the mapping is public.

foreign_server_
catalog

sql_identifier Name of the database in
which the foreign server
used by this mapping
is defined (always the
current database).

foreign_server_
name

sql_identifier Name of the foreign
server used by this
mapping.

option_name sql_identifier Name of an option.

option_value character_data Value of the option. This
column will display null
unless:

• The current user
is the user being
mapped.

• The mapping is for
PUBLIC and the
current user is the
foreign server owner.

• The current user is a
superuser.

The intent is to protect
password information
stored as a user
mapping option.

user_mappings
The user_mappings view contains all of the user mappgins defined in the current database. Greenplum
Database displays only those user mappings to which the current user has access (by way of being the
owner or having some privilege).

Table 217: user_mappings

column type references description

authorization_
identifier

sql_identifier Name of the user being
mapped, or PUBLIC if
the mapping is public.

foreign_server_
catalog

sql_identifier Name of the database in
which the foreign server
used by this mapping
is defined (always the
current database).

Greenplum Database Reference Guide Release Notes

1495

column type references description

foreign_server_
name

sql_identifier Name of the foreign
server used by this
mapping.

Greenplum Database Reference Guide Release Notes

1496

The gp_toolkit Administrative Schema
Greenplum Database provides an administrative schema called gp_toolkit that you can use to query
the system catalogs, log files, and operating environment for system status information. The gp_toolkit
schema contains a number of views that you can access using SQL commands. The gp_toolkit
schema is accessible to all database users, although some objects may require superuser permissions.
For convenience, you may want to add the gp_toolkit schema to your schema search path. For
example:

=> ALTER ROLE myrole SET search_path TO myschema,gp_toolkit;

This documentation describes the most useful views in gp_toolkit. You may notice other objects
(views, functions, and external tables) within the gp_toolkit schema that are not described in this
documentation (these are supporting objects to the views described in this section).

Warning: Do not change database objects in the gp_toolkit schema. Do not create database
objects in the schema. Changes to objects in the schema might affect the accuracy of
administrative information returned by schema objects. Any changes made in the gp_toolkit schema
are lost when the database is backed up and then restored with the gpbackup and gprestore
utilities.

These are the categories for views in the gp_toolkit schema.

Checking for Tables that Need Routine Maintenance
The following views can help identify tables that need routine table maintenance (VACUUM and/or
ANALYZE).

• gp_bloat_diag
• gp_stats_missing

The VACUUM or VACUUM FULL command reclaims disk space occupied by deleted or obsolete rows.
Because of the MVCC transaction concurrency model used in Greenplum Database, data rows that
are deleted or updated still occupy physical space on disk even though they are not visible to any new
transactions. Expired rows increase table size on disk and eventually slow down scans of the table.

The ANALYZE command collects column-level statistics needed by the query optimizer. Greenplum
Database uses a cost-based query optimizer that relies on database statistics. Accurate statistics allow
the query optimizer to better estimate selectivity and the number of rows retrieved by a query operation in
order to choose the most efficient query plan.

gp_bloat_diag
This view shows regular heap-storage tables that have bloat (the actual number of pages on disk exceeds
the expected number of pages given the table statistics). Tables that are bloated require a VACUUM or a
VACUUM FULL in order to reclaim disk space occupied by deleted or obsolete rows. This view is accessible
to all users, however non-superusers will only be able to see the tables that they have permission to
access.

Note: For diagnostic functions that return append-optimized table information, see Checking
Append-Optimized Tables.

Table 218: gp_bloat_diag view

Column Description

bdirelid Table object id.

Greenplum Database Reference Guide Release Notes

1497

Column Description

bdinspname Schema name.

bdirelname Table name.

bdirelpages Actual number of pages on disk.

bdiexppages Expected number of pages given the table data.

bdidiag Bloat diagnostic message.

gp_stats_missing
This view shows tables that do not have statistics and therefore may require an ANALYZE be run on the
table.

Note: By default, gp_stats_missing does not display data for materialized views.
Refer to Including Data for Materialized Views for instructions on adding this data to the
gp_stats_missing* view output.

Table 219: gp_stats_missing view

Column Description

smischema Schema name.

smitable Table name.

smisize Does this table have statistics? False if the table
does not have row count and row sizing statistics
recorded in the system catalog, which may indicate
that the table needs to be analyzed. This will also
be false if the table does not contain any rows. For
example, the parent tables of partitioned tables are
always empty and will always return a false result.

smicols Number of columns in the table.

smirecs Number of rows in the table.

Checking for Locks
When a transaction accesses a relation (such as a table), it acquires a lock. Depending on the type of
lock acquired, subsequent transactions may have to wait before they can access the same relation. For
more information on the types of locks, see "Managing Data" in the Greenplum Database Administrator
Guide. Greenplum Database resource queues (used for resource management) also use locks to control
the admission of queries into the system.

The gp_locks_* family of views can help diagnose queries and sessions that are waiting to access an
object due to a lock.

• gp_locks_on_relation
• gp_locks_on_resqueue

gp_locks_on_relation
This view shows any locks currently being held on a relation, and the associated session information about
the query associated with the lock. For more information on the types of locks, see "Managing Data" in the
Greenplum Database Administrator Guide. This view is accessible to all users, however non-superusers
will only be able to see the locks for relations that they have permission to access.

Greenplum Database Reference Guide Release Notes

1498

Table 220: gp_locks_on_relation view

Column Description

lorlocktype Type of the lockable object: relation, extend,
page, tuple, transactionid, object,
userlock, resource queue, or advisory

lordatabase Object ID of the database in which the object exists,
zero if the object is a shared object.

lorrelname The name of the relation.

lorrelation The object ID of the relation.

lortransaction The transaction ID that is affected by the lock.

lorpid Process ID of the server process holding or
awaiting this lock. NULL if the lock is held by a
prepared transaction.

lormode Name of the lock mode held or desired by this
process.

lorgranted Displays whether the lock is granted (true) or not
granted (false).

lorcurrentquery The current query in the session.

gp_locks_on_resqueue
Note: The gp_locks_on_resqueue view is valid only when resource queue-based resource
management is active.

This view shows any locks currently being held on a resource queue, and the associated session
information about the query associated with the lock. This view is accessible to all users, however non-
superusers will only be able to see the locks associated with their own sessions.

Table 221: gp_locks_on_resqueue view

Column Description

lorusename Name of the user executing the session.

lorrsqname The resource queue name.

lorlocktype Type of the lockable object: resource queue

lorobjid The ID of the locked transaction.

lortransaction The ID of the transaction that is affected by the
lock.

lorpid The process ID of the transaction that is affected by
the lock.

lormode The name of the lock mode held or desired by this
process.

lorgranted Displays whether the lock is granted (true) or not
granted (false).

lorwaiting Displays whether or not the session is waiting.

Greenplum Database Reference Guide Release Notes

1499

Checking Append-Optimized Tables
The gp_toolkit schema includes a set of diagnostic functions you can use to investigate the state of
append-optimized tables.

When an append-optimized table (or column-oriented append-optimized table) is created, another table
is implicitly created, containing metadata about the current state of the table. The metadata includes
information such as the number of records in each of the table's segments.

Append-optimized tables may have non-visible rows—rows that have been updated or deleted, but remain
in storage until the table is compacted using VACUUM. The hidden rows are tracked using an auxiliary
visibility map table, or visimap.

The following functions let you access the metadata for append-optimized and column-oriented tables and
view non-visible rows.

For most of the functions, the input argument is regclass, either the table name or the oid of a table.

__gp_aovisimap_compaction_info(oid)
This function displays compaction information for an append-optimized table. The information is for the on-
disk data files on Greenplum Database segments that store the table data. You can use the information to
determine the data files that will be compacted by a VACUUM operation on an append-optimized table.

Note: Until a VACUUM operation deletes the row from the data file, deleted or updated data rows
occupy physical space on disk even though they are hidden to new transactions. The configuration
parameter gp_appendonly_compaction controls the functionality of the VACUUM command.

This table describes the __gp_aovisimap_compaction_info function output table.

Table 222: __gp_aovisimap_compaction_info output table

Column Description

content Greenplum Database segment ID.

datafile ID of the data file on the segment.

compaction_possible The value is either t or f. The value t indicates
that the data in data file be compacted when a
VACUUM operation is performed.

The server configuration parameter gp_
appendonly_compaction_threshold affects
this value.

hidden_tupcount In the data file, the number of hidden (deleted or
updated) rows.

total_tupcount In the data file, the total number of rows.

percent_hidden In the data file, the ratio (as a percentage) of hidden
(deleted or updated) rows to total rows.

__gp_aoseg(regclass)
This function returns metadata information contained in the append-optimized table's on-disk segment file.

The input argument is the name or the oid of an append-optimized table.

Greenplum Database Reference Guide Release Notes

1500

Table 223: __gp_aoseg_name output table

Column Description

segno The file segment number.

eof The effective end of file for this file segment.

tupcount The total number of tuples in the segment, including
invisible tuples.

varblockcount The total number of varblocks in the file segment.

eof_uncompressed The end of file if the file segment were
uncompressed.

modcount The number of data modification operations.

state The state of the file segment. Indicates if the
segment is active or ready to be dropped after
compaction.

__gp_aoseg_history(regclass)
This function returns metadata information contained in the append-optimized table's on-disk segment
file. It displays all different versions (heap tuples) of the aoseg meta information. The data is complex, but
users with a deep understanding of the system may find it useful for debugging.

The input argument is the name or the oid of an append-optimized table.

Table 224: __gp_aoseg_history output table

Column Description

gp_tid The id of the tuple.

gp_xmin The id of the earliest transaction.

gp_xmin_status Status of the gp_xmin transaction.

gp_xmin_commit_ The commit distribution id of the gp_xmin
transaction.

gp_xmax The id of the latest transaction.

gp_xmax_status The status of the latest transaction.

gp_xmax_commit_ The commit distribution id of the gp_xmax
transaction.

gp_command_id The id of the query command.

gp_infomask A bitmap containing state information.

gp_update_tid The ID of the newer tuple if the row is updated.

gp_visibility The tuple visibility status.

segno The number of the segment in the segment file.

tupcount The number of tuples, including hidden tuples.

eof The effective end of file for the segment.

Greenplum Database Reference Guide Release Notes

1501

Column Description

eof_uncompressed The end of file for the segment if data were
uncompressed.

modcount A count of data modifications.

state The status of the segment.

__gp_aocsseg(regclass)
This function returns metadata information contained in a column-oriented append-optimized table's on-
disk segment file, excluding non-visible rows. Each row describes a segment for a column in the table.

The input argument is the name or the oid of a column-oriented append-optimized table.

Table 225: __gp_aocsseg(oid) output table

Column Description

gp_tid The table id.

segno The segment number.

column_num The column number.

physical_segno The number of the segment in the segment file.

tupcount The number of rows in the segment, excluding
hidden tuples.

eof The effective end of file for the segment.

eof_uncompressed The end of file for the segment if the data were
uncompressed.

modcount A count of data modification operations for the
segment.

state The status of the segment.

__gp_aocsseg_history(regclass)
This function returns metadata information contained in a column-oriented append-optimized table's on-
disk segment file. Each row describes a segment for a column in the table. The data is complex, but users
with a deep understanding of the system may find it useful for debugging.

The input argument is the name or the oid of a column-oriented append-optimized table.

Table 226: __gp_aocsseg_history output table

Column Description

gp_tid The oid of the tuple.

gp_xmin The earliest transaction.

gp_xmin_status The status of the gp_xmin transaction.

gp_xmin_ Text representation of gp_xmin.

gp_xmax The latest transaction.

gp_xmax_status The status of the gp_xmax transaction.

Greenplum Database Reference Guide Release Notes

1502

Column Description

gp_xmax_ Text representation of gp_max.

gp_command_id ID of the command operating on the tuple.

gp_infomask A bitmap containing state information.

gp_update_tid The ID of the newer tuple if the row is updated.

gp_visibility The tuple visibility status.

segno The segment number in the segment file.

column_num The column number.

physical_segno The segment containing data for the column.

tupcount The total number of tuples in the segment.

eof The effective end of file for the segment.

eof_uncompressed The end of file for the segment if the data were
uncompressed.

modcount A count of the data modification operations.

state The state of the segment.

__gp_aovisimap(regclass)
This function returns the tuple ID, the segment file, and the row number of each non-visible tuple according
to the visibility map.

The input argument is the name or the oid of an append-optimized table.

Column Description

tid The tuple id.

segno The number of the segment file.

row_num The row number of a row that has been deleted or
updated.

__gp_aovisimap_hidden_info(regclass)
This function returns the numbers of hidden and visible tuples in the segment files for an append-optimized
table.

The input argument is the name or the oid of an append-optimized table.

Column Description

segno The number of the segment file.

hidden_tupcount The number of hidden tuples in the segment file.

total_tupcount The total number of tuples in the segment file.

__gp_aovisimap_entry(regclass)
This function returns information about each visibility map entry for the table.

The input argument is the name or the oid of an append-optimized table.

Greenplum Database Reference Guide Release Notes

1503

Table 227: __gp_aovisimap_entry output table

Column Description

segno Segment number of the visibility map entry.

first_row_num The first row number of the entry.

hidden_tupcount The number of hidden tuples in the entry.

bitmap A text representation of the visibility bitmap.

Viewing Greenplum Database Server Log Files
Each component of a Greenplum Database system (master, standby master, primary segments, and mirror
segments) keeps its own server log files. The gp_log_* family of views allows you to issue SQL queries
against the server log files to find particular entries of interest. The use of these views require superuser
permissions.

• gp_log_command_timings
• gp_log_database
• gp_log_master_concise
• gp_log_system

gp_log_command_timings
This view uses an external table to read the log files on the master and report the execution time of SQL
commands executed in a database session. The use of this view requires superuser permissions.

Table 228: gp_log_command_timings view

Column Description

logsession The session identifier (prefixed with "con").

logcmdcount The command number within a session (prefixed
with "cmd").

logdatabase The name of the database.

loguser The name of the database user.

logpid The process id (prefixed with "p").

logtimemin The time of the first log message for this command.

logtimemax The time of the last log message for this command.

logduration Statement duration from start to end time.

gp_log_database
This view uses an external table to read the server log files of the entire Greenplum system (master,
segments, and mirrors) and lists log entries associated with the current database. Associated log entries
can be identified by the session id (logsession) and command id (logcmdcount). The use of this view
requires superuser permissions.

Greenplum Database Reference Guide Release Notes

1504

Table 229: gp_log_database view

Column Description

logtime The timestamp of the log message.

loguser The name of the database user.

logdatabase The name of the database.

logpid The associated process id (prefixed with "p").

logthread The associated thread count (prefixed with "th").

loghost The segment or master host name.

logport The segment or master port.

logsessiontime Time session connection was opened.

logtransaction Global transaction id.

logsession The session identifier (prefixed with "con").

logcmdcount The command number within a session (prefixed
with "cmd").

logsegment The segment content identifier (prefixed with "seg"
for primary or "mir" for mirror. The master always
has a content id of -1).

logslice The slice id (portion of the query plan being
executed).

logdistxact Distributed transaction id.

loglocalxact Local transaction id.

logsubxact Subtransaction id.

logseverity LOG, ERROR, FATAL, PANIC, DEBUG1 or
DEBUG2.

logstate SQL state code associated with the log message.

logmessage Log or error message text.

logdetail Detail message text associated with an error
message.

loghint Hint message text associated with an error
message.

logquery The internally-generated query text.

logquerypos The cursor index into the internally-generated query
text.

logcontext The context in which this message gets generated.

logdebug Query string with full detail for debugging.

logcursorpos The cursor index into the query string.

logfunction The function in which this message is generated.

logfile The log file in which this message is generated.

Greenplum Database Reference Guide Release Notes

1505

Column Description

logline The line in the log file in which this message is
generated.

logstack Full text of the stack trace associated with this
message.

gp_log_master_concise
This view uses an external table to read a subset of the log fields from the master log file. The use of this
view requires superuser permissions.

Table 230: gp_log_master_concise view

Column Description

logtime The timestamp of the log message.

logdatabase The name of the database.

logsession The session identifier (prefixed with "con").

logcmdcount The command number within a session (prefixed
with "cmd").

logmessage Log or error message text.

gp_log_system
This view uses an external table to read the server log files of the entire Greenplum system (master,
segments, and mirrors) and lists all log entries. Associated log entries can be identified by the session id
(logsession) and command id (logcmdcount). The use of this view requires superuser permissions.

Table 231: gp_log_system view

Column Description

logtime The timestamp of the log message.

loguser The name of the database user.

logdatabase The name of the database.

logpid The associated process id (prefixed with "p").

logthread The associated thread count (prefixed with "th").

loghost The segment or master host name.

logport The segment or master port.

logsessiontime Time session connection was opened.

logtransaction Global transaction id.

logsession The session identifier (prefixed with "con").

logcmdcount The command number within a session (prefixed
with "cmd").

Greenplum Database Reference Guide Release Notes

1506

Column Description

logsegment The segment content identifier (prefixed with "seg"
for primary or "mir" for mirror. The master always
has a content id of -1).

logslice The slice id (portion of the query plan being
executed).

logdistxact Distributed transaction id.

loglocalxact Local transaction id.

logsubxact Subtransaction id.

logseverity LOG, ERROR, FATAL, PANIC, DEBUG1 or
DEBUG2.

logstate SQL state code associated with the log message.

logmessage Log or error message text.

logdetail Detail message text associated with an error
message.

loghint Hint message text associated with an error
message.

logquery The internally-generated query text.

logquerypos The cursor index into the internally-generated query
text.

logcontext The context in which this message gets generated.

logdebug Query string with full detail for debugging.

logcursorpos The cursor index into the query string.

logfunction The function in which this message is generated.

logfile The log file in which this message is generated.

logline The line in the log file in which this message is
generated.

logstack Full text of the stack trace associated with this
message.

Checking Server Configuration Files
Each component of a Greenplum Database system (master, standby master, primary segments, and mirror
segments) has its own server configuration file (postgresql.conf). The following gp_toolkit objects
can be used to check parameter settings across all primary postgresql.conf files in the system:

• gp_param_setting('parameter_name')
• gp_param_settings_seg_value_diffs

gp_param_setting('parameter_name')
This function takes the name of a server configuration parameter and returns the postgresql.conf
value for the master and each active segment. This function is accessible to all users.

Greenplum Database Reference Guide Release Notes

1507

Table 232: gp_param_setting('parameter_name') function

Column Description

paramsegment The segment content id (only active segments are
shown). The master content id is always -1.

paramname The name of the parameter.

paramvalue The value of the parameter.

Example:

SELECT * FROM gp_param_setting('max_connections');

gp_param_settings_seg_value_diffs
Server configuration parameters that are classified as local parameters (meaning each segment gets the
parameter value from its own postgresql.conf file), should be set identically on all segments. This
view shows local parameter settings that are inconsistent. Parameters that are supposed to have different
values (such as port) are not included. This view is accessible to all users.

Table 233: gp_param_settings_seg_value_diffs view

Column Description

psdname The name of the parameter.

psdvalue The value of the parameter.

psdcount The number of segments that have this value.

Checking for Failed Segments
The gp_pgdatabase_invalid view can be used to check for down segments.

gp_pgdatabase_invalid
This view shows information about segments that are marked as down in the system catalog. This view is
accessible to all users.

Table 234: gp_pgdatabase_invalid view

Column Description

pgdbidbid The segment dbid. Every segment has a unique
dbid.

pgdbiisprimary Is the segment currently acting as the primary
(active) segment? (t or f)

pgdbicontent The content id of this segment. A primary and
mirror will have the same content id.

pgdbivalid Is this segment up and valid? (t or f)

pgdbidefinedprimary Was this segment assigned the role of primary at
system initialization time? (t or f)

Greenplum Database Reference Guide Release Notes

1508

Checking Resource Group Activity and Status
Note: The resource group activity and status views described in this section are valid only when
resource group-based resource management is active.

Resource groups manage transactions to avoid exhausting system CPU and memory resources. Every
database user is assigned a resource group. Greenplum Database evaluates every transaction submitted
by a user against the limits configured for the user's resource group before running the transaction.

You can use the gp_resgroup_config view to check the configuration of each resource group. You can
use the gp_resgroup_status* views to display the current transaction status and resource usage of
each resource group.

• gp_resgroup_config
• gp_resgroup_status
• gp_resgroup_status_per_host
• gp_resgroup_status_per_segment

gp_resgroup_config
The gp_resgroup_config view allows administrators to see the current CPU, memory, and concurrency
limits for a resource group.

This view is accessible to all users.

Table 235: gp_resgroup_config

Column Description

groupid The ID of the resource group.

groupname The name of the resource group.

concurrency The concurrency (CONCURRENCY) value specified
for the resource group.

cpu_rate_limit The CPU limit (CPU_RATE_LIMIT) value specified
for the resource group, or -1.

memory_limit The memory limit (MEMORY_LIMIT) value specified
for the resource group.

memory_shared_quota The shared memory quota (MEMORY_SHARED_
QUOTA) value specified for the resource group.

memory_spill_ratio The memory spill ratio (MEMORY_SPILL_RATIO)
value specified for the resource group.

memory_auditor The memory auditor for the resource group.

cpuset The CPU cores reserved for the resource group, or
-1.

gp_resgroup_status
The gp_resgroup_status view allows administrators to see status and activity for a resource group. It
shows how many queries are waiting to run and how many queries are currently active in the system for
each resource group. The view also displays current memory and CPU usage for the resource group.

Note: Resource groups use the Linux control groups (cgroups) configured on the host systems.
The cgroups are used to manage host system resources. When resource groups use cgroups

Greenplum Database Reference Guide Release Notes

1509

that are as part of a nested set of cgroups, resource group limits are relative to the parent cgroup
allotment. For information about nested cgroups and Greenplum Database resource group limits,
see Understanding Role and Component Resource Groups.

This view is accessible to all users.

Table 236: gp_resgroup_status view

Column Description

rsgname The name of the resource group.

groupid The ID of the resource group.

num_running The number of transactions currently executing in
the resource group.

num_queueing The number of currently queued transactions for
the resource group.

num_queued The total number of queued transactions for the
resource group since the Greenplum Database
cluster was last started, excluding the num_
queueing.

num_executed The total number of executed transactions in the
resource group since the Greenplum Database
cluster was last started, excluding the num_
running.

total_queue_duration The total time any transaction was queued since
the Greenplum Database cluster was last started.

cpu_usage A set of key-value pairs. For each segment
instance (the key), the value is the real-time, per-
segment instance CPU core usage by a resource
group. The value is the sum of the percentages (as
a decimal value) of CPU cores that are used by the
resource group for the segment instance.

memory_usage The real-time memory usage of the resource group
on each Greenplum Database segment's host.

The cpu_usage field is a JSON-formatted, key:value string that identifies, for each resource group,
the per-segment instance CPU core usage. The key is the segment id. The value is the sum of the
percentages (as a decimal value) of the CPU cores used by the segment instance's resource group on the
segment host; the maximum value is 1.00. The total CPU usage of all segment instances running on a host
should not exceed the gp_resource_group_cpu_limit. Example cpu_usage column output:

{"-1":0.01, "0":0.31, "1":0.31}

In the example, segment 0 and segment 1 are running on the same host; their CPU usage is the same.

The memory_usage field is also a JSON-formatted, key:value string. The string contents differ depending
upon the type of resource group. For each resource group that you assign to a role (default memory
auditor vmtracker), this string identifies the used and available fixed and shared memory quota
allocations on each segment. The key is segment id. The values are memory values displayed in MB units.

Greenplum Database Reference Guide Release Notes

1510

The following example shows memory_usage column output for a single segment for a resource group
that you assign to a role:

"0":{"used":0, "available":76, "quota_used":-1, "quota_available":60,
 "shared_used":0, "shared_available":16}

For each resource group that you assign to an external component, the memory_usage JSON-formatted
string identifies the memory used and the memory limit on each segment. The following example shows
memory_usage column output for an external component resource group for a single segment:

"1":{"used":11, "limit_granted":15}

Note: See the gp_resgroup_status_per_host and gp_resgroup_status_per_segment
views, described below, for more user-friendly display of CPU and memory usage.

gp_resgroup_status_per_host
The gp_resgroup_status_per_host view displays the real-time CPU and memory usage (MBs) for
each resource group on a per-host basis. The view also displays available and granted group fixed and
shared memory for each resource group on a host.

Table 237: gp_resgroup_status_per_host view

Column Description

rsgname The name of the resource group.

groupid The ID of the resource group.

hostname The hostname of the segment host.

cpu The real-time CPU core usage by the resource
group on a host. The value is the sum of the
percentages (as a decimal value) of the CPU cores
that are used by the resource group on the host.

memory_used The real-time memory usage of the resource group
on the host. This total includes resource group fixed
and shared memory. It also includes global shared
memory used by the resource group.

memory_available The unused fixed and shared memory for the
resource group that is available on the host. This
total does not include available resource group
global shared memory.

memory_quota_used The real-time fixed memory usage for the resource
group on the host.

memory_quota_available The fixed memory available to the resource group
on the host.

memory_shared_used The group shared memory used by the resource
group on the host. If any global shared memory is
used by the resource group, this amount is included
in the total as well.

memory_shared_available The amount of group shared memory available to
the resource group on the host. Resource group
global shared memory is not included in this total.

Greenplum Database Reference Guide Release Notes

1511

Sample output for the gp_resgroup_status_per_host view:

 rsgname | groupid | hostname | cpu | memory_used |
 memory_available | memory_quota_used | memory_quota_available |
 memory_shared_used | memory_shared_available
---------------+---------+------------+------+-------------
+------------------+-------------------+------------------------
+---------------------+---------------------
 admin_group | 6438 | my-desktop | 0.84 | 1 | 271
 | 68 | 68 | 0 | 136

 default_group | 6437 | my-desktop | 0.00 | 0 | 816
 | 0 | 400 | 0 | 416

(2 rows)

gp_resgroup_status_per_segment
The gp_resgroup_status_per_segment view displays the real-time CPU and memory usage (MBs)
for each resource group on a per-segment-instance and per-host basis. The view also displays available
and granted group fixed and shared memory for each resource group and segment instance combination
on the host.

Table 238: gp_resgroup_status_per_segment view

Column Description

rsgname The name of the resource group.

groupid The ID of the resource group.

hostname The hostname of the segment host.

segment_id The content ID for a segment instance on the
segment host.

cpu The real-time, per-segment instance CPU core
usage by the resource group on the host. The value
is the sum of the percentages (as a decimal value)
of the CPU cores that are used by the resource
group for the segment instance.

memory_used The real-time memory usage of the resource group
for the segment instance on the host. This total
includes resource group fixed and shared memory.
It also includes global shared memory used by the
resource group.

memory_available The unused fixed and shared memory for the
resource group for the segment instance on the
host.

memory_quota_used The real-time fixed memory usage for the resource
group for the segment instance on the host.

memory_quota_available The fixed memory available to the resource group
for the segment instance on the host.

memory_shared_used The group shared memory used by the resource
group for the segment instance on the host.

Greenplum Database Reference Guide Release Notes

1512

Column Description

memory_shared_available The amount of group shared memory available for
the segment instance on the host. Resource group
global shared memory is not included in this total.

Query output for this view is similar to that of the gp_resgroup_status_per_host view, and breaks out
the CPU and memory (used and available) for each segment instance on each host.

Checking Resource Queue Activity and Status
Note: The resource queue activity and status views described in this section are valid only when
resource queue-based resource management is active.

The purpose of resource queues is to limit the number of active queries in the system at any given time
in order to avoid exhausting system resources such as memory, CPU, and disk I/O. All database users
are assigned to a resource queue, and every statement submitted by a user is first evaluated against
the resource queue limits before it can run. The gp_resq_* family of views can be used to check the
status of statements currently submitted to the system through their respective resource queue. Note that
statements issued by superusers are exempt from resource queuing.

• gp_resq_activity
• gp_resq_activity_by_queue
• gp_resq_priority_statement
• gp_resq_role
• gp_resqueue_status

gp_resq_activity
For the resource queues that have active workload, this view shows one row for each active statement
submitted through a resource queue. This view is accessible to all users.

Table 239: gp_resq_activity view

Column Description

resqprocpid Process ID assigned to this statement (on the
master).

resqrole User name.

resqoid Resource queue object id.

resqname Resource queue name.

resqstart Time statement was issued to the system.

resqstatus Status of statement: running, waiting or cancelled.

gp_resq_activity_by_queue
For the resource queues that have active workload, this view shows a summary of queue activity. This
view is accessible to all users.

Table 240: gp_resq_activity_by_queue Column

Column Description

resqoid Resource queue object id.

Greenplum Database Reference Guide Release Notes

1513

Column Description

resqname Resource queue name.

resqlast Time of the last statement issued to the queue.

resqstatus Status of last statement: running, waiting or
cancelled.

resqtotal Total statements in this queue.

gp_resq_priority_statement
This view shows the resource queue priority, session ID, and other information for all statements currently
running in the Greenplum Database system. This view is accessible to all users.

Table 241: gp_resq_priority_statement view

Column Description

rqpdatname The database name that the session is connected
to.

rqpusename The user who issued the statement.

rqpsession The session ID.

rqpcommand The number of the statement within this session
(the command id and session id uniquely identify a
statement).

rqppriority The resource queue priority for this statement
(MAX, HIGH, MEDIUM, LOW).

rqpweight An integer value associated with the priority of this
statement.

rqpquery The query text of the statement.

gp_resq_role
This view shows the resource queues associated with a role. This view is accessible to all users.

Table 242: gp_resq_role view

Column Description

rrrolname Role (user) name.

rrrsqname The resource queue name assigned to this role. If a
role has not been explicitly assigned to a resource
queue, it will be in the default resource queue (pg_
default).

gp_resqueue_status
This view allows administrators to see status and activity for a resource queue. It shows how many queries
are waiting to run and how many queries are currently active in the system from a particular resource
queue.

Greenplum Database Reference Guide Release Notes

1514

Table 243: gp_resqueue_status view

Column Description

queueid The ID of the resource queue.

rsqname The name of the resource queue.

rsqcountlimit The active query threshold of the resource queue.
A value of -1 means no limit.

rsqcountvalue The number of active query slots currently being
used in the resource queue.

rsqcostlimit The query cost threshold of the resource queue. A
value of -1 means no limit.

rsqcostvalue The total cost of all statements currently in the
resource queue.

rsqmemorylimit The memory limit for the resource queue.

rsqmemoryvalue The total memory used by all statements currently
in the resource queue.

rsqwaiters The number of statements currently waiting in the
resource queue.

rsqholders The number of statements currently running on the
system from this resource queue.

Checking Query Disk Spill Space Usage
The gp_workfile_* views show information about all the queries that are currently using disk spill space.
Greenplum Database creates work files on disk if it does not have sufficient memory to execute the query
in memory. This information can be used for troubleshooting and tuning queries. The information in the
views can also be used to specify the values for the Greenplum Database configuration parameters
gp_workfile_limit_per_query and gp_workfile_limit_per_segment.

• gp_workfile_entries
• gp_workfile_usage_per_query
• gp_workfile_usage_per_segment

gp_workfile_entries
This view contains one row for each operator using disk space for workfiles on a segment at the current
time. The view is accessible to all users, however non-superusers only to see information for the
databases that they have permission to access.

Table 244: gp_workfile_entries

Column Type References Description

datname name Greenplum database
name.

pid integer Process ID of the server
process.

sess_id integer Session ID.

Greenplum Database Reference Guide Release Notes

1515

Column Type References Description

command_cnt integer Command ID of the
query.

usename name Role name.

query text Current query that the
process is running.

segid integer Segment ID.

slice integer The query plan slice.
The portion of the
query plan that is being
executed.

optype text The query operator type
that created the work
file.

size bigint The size of the work file
in bytes.

numfiles integer The number of files
created.

prefix text Prefix used when
naming a related set of
workfiles.

gp_workfile_usage_per_query
This view contains one row for each query using disk space for workfiles on a segment at the current time.
The view is accessible to all users, however non-superusers only to see information for the databases that
they have permission to access.

Table 245: gp_workfile_usage_per_query

Column Type References Description

datname name Greenplum database
name.

pid integer Process ID of the server
process.

sess_id integer Session ID.

command_cnt integer Command ID of the
query.

usename name Role name.

query text Current query that the
process is running.

segid integer Segment ID.

size numeric The size of the work file
in bytes.

Greenplum Database Reference Guide Release Notes

1516

Column Type References Description

numfiles bigint The number of files
created.

gp_workfile_usage_per_segment
This view contains one row for each segment. Each row displays the total amount of disk space used for
workfiles on the segment at the current time. The view is accessible to all users, however non-superusers
only to see information for the databases that they have permission to access.

Table 246: gp_workfile_usage_per_segment

Column Type References Description

segid smallint Segment ID.

size numeric The total size of the work
files on a segment.

numfiles bigint The number of files
created.

Viewing Users and Groups (Roles)
It is frequently convenient to group users (roles) together to ease management of object privileges: that
way, privileges can be granted to, or revoked from, a group as a whole. In Greenplum Database this is
done by creating a role that represents the group, and then granting membership in the group role to
individual user roles.

The gp_roles_assigned view can be used to see all of the roles in the system, and their assigned
members (if the role is also a group role).

gp_roles_assigned
This view shows all of the roles in the system, and their assigned members (if the role is also a group role).
This view is accessible to all users.

Table 247: gp_roles_assigned view

Column Description

raroleid The role object ID. If this role has members (users),
it is considered a group role.

rarolename The role (user or group) name.

ramemberid The role object ID of the role that is a member of
this role.

ramembername Name of the role that is a member of this role.

Checking Database Object Sizes and Disk Space
The gp_size_* family of views can be used to determine the disk space usage for a distributed
Greenplum Database, schema, table, or index. The following views calculate the total size of an object
across all primary segments (mirrors are not included in the size calculations).

Greenplum Database Reference Guide Release Notes

1517

Note: By default, the gp_size_* views do not display data for materialized views. Refer to
Including Data for Materialized Views for instructions on adding this data to gp_size_* view
output.

• gp_size_of_all_table_indexes
• gp_size_of_database
• gp_size_of_index
• gp_size_of_partition_and_indexes_disk
• gp_size_of_schema_disk
• gp_size_of_table_and_indexes_disk
• gp_size_of_table_and_indexes_licensing
• gp_size_of_table_disk
• gp_size_of_table_uncompressed
• gp_disk_free

The table and index sizing views list the relation by object ID (not by name). To check the size of a table or
index by name, you must look up the relation name (relname) in the pg_class table. For example:

SELECT relname as name, sotdsize as size, sotdtoastsize as
toast, sotdadditionalsize as other
FROM gp_size_of_table_disk as sotd, pg_class
WHERE sotd.sotdoid=pg_class.oid ORDER BY relname;

gp_size_of_all_table_indexes
This view shows the total size of all indexes for a table. This view is accessible to all users, however non-
superusers will only be able to see relations that they have permission to access.

Table 248: gp_size_of_all_table_indexes view

Column Description

soatioid The object ID of the table

soatisize The total size of all table indexes in bytes

soatischemaname The schema name

soatitablename The table name

gp_size_of_database
This view shows the total size of a database. This view is accessible to all users, however non-superusers
will only be able to see databases that they have permission to access.

Table 249: gp_size_of_database view

Column Description

sodddatname The name of the database

sodddatsize The size of the database in bytes

gp_size_of_index
This view shows the total size of an index. This view is accessible to all users, however non-superusers will
only be able to see relations that they have permission to access.

Greenplum Database Reference Guide Release Notes

1518

Table 250: gp_size_of_index view

Column Description

soioid The object ID of the index

soitableoid The object ID of the table to which the index
belongs

soisize The size of the index in bytes

soiindexschemaname The name of the index schema

soiindexname The name of the index

soitableschemaname The name of the table schema

soitablename The name of the table

gp_size_of_partition_and_indexes_disk
This view shows the size on disk of partitioned child tables and their indexes. This view is accessible to all
users, however non-superusers will only be able to see relations that they have permission to access.

Table 251: gp_size_of_partition_and_indexes_disk view

Column Description

sopaidparentoid The object ID of the parent table

sopaidpartitionoid The object ID of the partition table

sopaidpartitiontablesize The partition table size in bytes

sopaidpartitionindexessize The total size of all indexes on this partition

Sopaidparentschemaname The name of the parent schema

Sopaidparenttablename The name of the parent table

Sopaidpartitionschemaname The name of the partition schema

sopaidpartitiontablename The name of the partition table

gp_size_of_schema_disk
This view shows schema sizes for the public schema and the user-created schemas in the current
database. This view is accessible to all users, however non-superusers will be able to see only the
schemas that they have permission to access.

Table 252: gp_size_of_schema_disk view

Column Description

sosdnsp The name of the schema

sosdschematablesize The total size of tables in the schema in bytes

sosdschemaidxsize The total size of indexes in the schema in bytes

Greenplum Database Reference Guide Release Notes

1519

gp_size_of_table_and_indexes_disk
This view shows the size on disk of tables and their indexes. This view is accessible to all users, however
non-superusers will only be able to see relations that they have permission to access.

Table 253: gp_size_of_table_and_indexes_disk view

Column Description

sotaidoid The object ID of the parent table

sotaidtablesize The disk size of the table

sotaididxsize The total size of all indexes on the table

sotaidschemaname The name of the schema

sotaidtablename The name of the table

gp_size_of_table_and_indexes_licensing
This view shows the total size of tables and their indexes for licensing purposes. The use of this view
requires superuser permissions.

Table 254: gp_size_of_table_and_indexes_licensing view

Column Description

sotailoid The object ID of the table

sotailtablesizedisk The total disk size of the table

sotailtablesizeuncompressed If the table is a compressed append-optimized
table, shows the uncompressed table size in bytes.

sotailindexessize The total size of all indexes in the table

sotailschemaname The schema name

sotailtablename The table name

gp_size_of_table_disk
This view shows the size of a table on disk. This view is accessible to all users, however non-superusers
will only be able to see tables that they have permission to access

Table 255: gp_size_of_table_disk view

Column Description

sotdoid The object ID of the table

sotdsize The size of the table in bytes. The size is only the
main table size. The size does not include auxiliary
objects such as oversized (toast) attributes, or
additional storage objects for AO tables.

sotdtoastsize The size of the TOAST table (oversized attribute
storage), if there is one.

Greenplum Database Reference Guide Release Notes

1520

Column Description

sotdadditionalsize Reflects the segment and block directory table
sizes for append-optimized (AO) tables.

sotdschemaname The schema name

sotdtablename The table name

gp_size_of_table_uncompressed
This view shows the uncompressed table size for append-optimized (AO) tables. Otherwise, the table size
on disk is shown. The use of this view requires superuser permissions.

Table 256: gp_size_of_table_uncompressed view

Column Description

sotuoid The object ID of the table

sotusize The uncomressed size of the table in bytes if it is a
compressed AO table. Otherwise, the table size on
disk.

sotuschemaname The schema name

sotutablename The table name

gp_disk_free
This external table runs the df (disk free) command on the active segment hosts and reports back
the results. Inactive mirrors are not included in the calculation. The use of this external table requires
superuser permissions.

Table 257: gp_disk_free external table

Column Description

dfsegment The content id of the segment (only active
segments are shown)

dfhostname The hostname of the segment host

dfdevice The device name

dfspace Free disk space in the segment file system in
kilobytes

Checking for Uneven Data Distribution
All tables in Greenplum Database are distributed, meaning their data is divided across all of the segments
in the system. If the data is not distributed evenly, then query processing performance may suffer. The
following views can help diagnose if a table has uneven data distribution:

• gp_skew_coefficients
• gp_skew_idle_fractions

Note: By default, the gp_skew_* views do not display data for materialized views. Refer to
Including Data for Materialized Views for instructions on adding this data to gp_skew_* view
output.

Greenplum Database Reference Guide Release Notes

1521

gp_skew_coefficients
This view shows data distribution skew by calculating the coefficient of variation (CV) for the data stored on
each segment. This view is accessible to all users, however non-superusers will only be able to see tables
that they have permission to access

Table 258: gp_skew_coefficients view

Column Description

skcoid The object id of the table.

skcnamespace The namespace where the table is defined.

skcrelname The table name.

skccoeff The coefficient of variation (CV) is calculated as
the standard deviation divided by the average. It
takes into account both the average and variability
around the average of a data series. The lower the
value, the better. Higher values indicate greater
data skew.

gp_skew_idle_fractions
This view shows data distribution skew by calculating the percentage of the system that is idle during a
table scan, which is an indicator of processing data skew. This view is accessible to all users, however
non-superusers will only be able to see tables that they have permission to access

Table 259: gp_skew_idle_fractions view

Column Description

sifoid The object id of the table.

sifnamespace The namespace where the table is defined.

sifrelname The table name.

siffraction The percentage of the system that is idle during
a table scan, which is an indicator of uneven data
distribution or query processing skew. For example,
a value of 0.1 indicates 10% skew, a value of 0.5
indicates 50% skew, and so on. Tables that have
more than 10% skew should have their distribution
policies evaluated.

Including Data for Materialized Views
You must update a gp_toolkit internal view if you want data about materialized views to be included in
the output of relevant gp_toolkit views.

Run the following SQL commands as the Greenplum Database administrator to update the internal view:

CREATE or REPLACE VIEW gp_toolkit.__gp_user_tables
AS
 SELECT
 fn.fnnspname as autnspname,
 fn.fnrelname as autrelname,

Greenplum Database Reference Guide Release Notes

1522

 relkind as autrelkind,
 reltuples as autreltuples,
 relpages as autrelpages,
 relacl as autrelacl,
 pgc.oid as autoid,
 pgc.reltoastrelid as auttoastoid,
 pgc.relstorage as autrelstorage
 FROM
 pg_catalog.pg_class pgc,
 gp_toolkit.__gp_fullname fn
 WHERE pgc.relnamespace IN
 (
 SELECT aunoid
 FROM gp_toolkit.__gp_user_namespaces
)
 AND (pgc.relkind = 'r' OR pgc.relkind = 'm')
 AND pgc.relispopulated = 't'
 AND pgc.oid = fn.fnoid;

GRANT SELECT ON TABLE gp_toolkit.__gp_user_tables TO public;

Greenplum Database Reference Guide Release Notes

1523

The gpperfmon Database
The gpperfmon database is a dedicated database where data collection agents on Greenplum segment
hosts save query and system statistics.

The gpperfmon database is created using the gpperfmon_install command-line utility. The utility
creates the database and the gpmon database role and enables the data collection agents on the master
and segment hosts. See the gpperfmon_install reference in the Greenplum Database Utility Guide for
information about using the utility and configuring the data collection agents.

The gpperfmon database consists of three sets of tables that capture query and system status
information at different stages.

• _now tables store current system metrics such as active queries.
• _tail tables are used to stage data before it is saved to the _history tables. The _tail tables are

for internal use only and not to be queried by users.
• _history tables store historical metrics.

The data for _now and _tail tables are stored as text files on the master host file system, and are
accessed in the gpperfmon database via external tables. The history tables are regular heap database
tables in the gpperfmon database. History is saved only for queries that run for a minimum number of
seconds, 20 by default. You can set this threshold to another value by setting the min_query_time
parameter in the $MASTER_DATA_DIRECTORY/gpperfmon/conf/gpperfmon.conf configuration file.
Setting the value to 0 saves history for all queries.

Note: gpperfmon does not support SQL ALTER commands. ALTER queries are not recorded in
the gpperfmon query history tables.

The history tables are partitioned by month. See History Table Partition Retention for information about
removing old partitions.

The database contains the following categories of tables:

• The database_* tables store query workload information for a Greenplum Database instance.
• The diskspace_* tables store diskspace metrics.
• The log_alert_* tables store error and warning messages from pg_log.
• The queries_* tables store high-level query status information.
• The segment_* tables store memory allocation statistics for the Greenplum Database segment

instances.
• The socket_stats_* tables store statistical metrics about socket usage for a Greenplum Database

instance. Note: These tables are in place for future use and are not currently populated.
• The system_* tables store system utilization metrics.

The gpperfmon database also contains the following views:

• The dynamic_memory_info view shows an aggregate of all the segments per host and the amount of
dynamic memory used per host.

• The memory_info view shows per-host memory information from the system_history and
segment_history tables.

History Table Partition Retention
The history tables in the gpperfmon database are partitioned by month. Partitions are automatically
added in two month increments as needed.

The partition_age parameter in the $MASTER_DATA_DIRECTORY/gpperfmon/conf/
gpperfmon.conf file can be set to the maximum number of monthly partitions to keep. Partitions older
than the specified value are removed automatically when new partitions are added.

Greenplum Database Reference Guide Release Notes

1524

The default value for partition_age is 0, which means that administrators must manually remove
unneeded partitions.

Alert Log Processing and Log Rotation
When the gp_enable_gpperfmon server configuration parameter is set to true, the Greenplum Database
syslogger writes alert messages to a .csv file in the $MASTER_DATA_DIRECTORY/gpperfmon/logs
directory.

The level of messages written to the log can be set to none, warning, error, fatal, or panic by
setting the gpperfmon_log_alert_level server configuration parameter in postgresql.conf. The
default message level is warning.

The directory where the log is written can be changed by setting the log_location configuration variable
in the $MASTER_DATA_DIRECTORY/gpperfmon/conf/gpperfmon.conf configuration file.

The syslogger rotates the alert log every 24 hours or when the current log file reaches or exceeds 1MB.

A rotated log file can exceed 1MB if a single error message contains a large SQL statement or a large
stack trace. Also, the syslogger processes error messages in chunks, with a separate chunk for each
logging process. The size of a chunk is OS-dependent; on Red Hat Enterprise Linux, for example, it is
4096 bytes. If many Greenplum Database sessions generate error messages at the same time, the log file
can grow significantly before its size is checked and log rotation is triggered.

gpperfmon Data Collection Process
When Greenplum Database starts up with gpperfmon support enabled, it forks a gpmmon agent process.
gpmmon then starts a gpsmon agent process on the master host and every segment host in the Greenplum
Database cluster. The Greenplum Database postmaster process monitors the gpmmon process and
restarts it if needed, and the gpmmon process monitors and restarts gpsmon processes as needed.

The gpmmon process runs in a loop and at configurable intervals retrieves data accumulated by the
gpsmon processes, adds it to the data files for the _now and _tail external database tables, and then
into the _history regular heap database tables.

Note: The log_alert tables in the gpperfmon database follow a different process, since alert
messages are delivered by the Greenplum Database system logger instead of through gpsmon.
See Alert Log Processing and Log Rotation for more information.

Two configuration parameters in the $MASTER_DATA_DIRECTORY/gpperfmon/conf/
gpperfmon.conf configuration file control how often gpmmon activities are triggered:

• The quantum parameter is how frequently, in seconds, gpmmon requests data from the gpsmon agents
on the segment hosts and adds retrieved data to the _now and _tail external table data files. Valid
values for the quantum parameter are 10, 15, 20, 30, and 60. The default is 15.

• The harvest_interval parameter is how frequently, in seconds, data in the _tail tables is moved
to the _history tables. The harvest_interval must be at least 30. The default is 120.

See the gpperfmon_install management utility reference in the Greenplum Database Utility Guide for
the complete list of gpperfmon configuration parameters.

The following steps describe the flow of data from Greenplum Database into the gpperfmon database
when gpperfmon support is enabled.

1. While executing queries, the Greenplum Database query dispatcher and query executor processes
send out query status messages in UDP datagrams. The gp_gpperfmon_send_interval server
configuration variable determines how frequently the database sends these messages. The default is
every second.

2. The gpsmon process on each host receives the UDP packets, consolidates and summarizes the data
they contain, and adds additional host metrics, such as CPU and memory usage.

3. The gpsmon processes continue to accumulate data until they receive a dump command from gpmmon.

Greenplum Database Reference Guide Release Notes

1525

4. The gpsmon processes respond to a dump command by sending their accumulated status data and log
alerts to a listening gpmmon event handler thread.

5. The gpmmon event handler saves the metrics to .txt files in the $MASTER_DATA_DIRECTORY/
gpperfmon/data directory on the master host.

At each quantum interval (15 seconds by default), gpmmon performs the following steps:

1. Sends a dump command to the gpsmon processes.
2. Gathers and converts the .txt files saved in the $MASTER_DATA_DIRECTORY/gpperfmon/data

directory into .dat external data files for the _now and _tail external tables in the gpperfmon
database.

For example, disk space metrics are added to the diskspace_now.dat and
_diskspace_tail.dat delimited text files. These text files are accessed via the diskspace_now
and _diskspace_tail tables in the gpperfmon database.

At each harvest_interval (120 seconds by default), gpmmon performs the following steps for each
_tail file:

1. Renames the _tail file to a _stage file.
2. Creates a new _tail file.
3. Appends data from the _stage file into the _tail file.
4. Runs a SQL command to insert the data from the _tail external table into the corresponding

_history table.

For example, the contents of the _database_tail external table is inserted into the
database_history regular (heap) table.

5. Deletes the _tail file after its contents have been loaded into the database table.
6. Gathers all of the gpdb-alert-*.csv files in the $MASTER_DATA_DIRECTORY/gpperfmon/logs

directory (except the most recent, which the syslogger has open and is writing to) into a single file,
alert_log_stage.

7. Loads the alert_log_stage file into the log_alert_history table in the gpperfmon database.
8. Truncates the alert_log_stage file.

The following topics describe the contents of the tables in the gpperfmon database.

 database_*
The database_* tables store query workload information for a Greenplum Database instance. There are
three database tables, all having the same columns:

• database_now is an external table whose data files are stored in $MASTER_DATA_DIRECTORY/
gpperfmon/data. Current query workload data is stored in database_now during the period
between data collection from the data collection agents and automatic commitment to the
database_history table.

• database_tail is an external table whose data files are stored in $MASTER_DATA_DIRECTORY/
gpperfmon/data. This is a transitional table for query workload data that has been cleared from
database_now but has not yet been committed to database_history. It typically only contains a
few minutes worth of data.

• database_history is a regular table that stores historical database-wide query workload data. It is
pre-partitioned into monthly partitions. Partitions are automatically added in two month increments as
needed.

Column Type Description

ctime timestamp Time this row was created.

Greenplum Database Reference Guide Release Notes

1526

Column Type Description

queries_total int The total number of queries in
Greenplum Database at data
collection time.

queries_running int The number of active queries
running at data collection time.

queries_queued int The number of queries waiting
in a resource group or resource
queue, depending upon which
resource management scheme is
active, at data collection time.

 diskspace_*
The diskspace_* tables store diskspace metrics.

• diskspace_now is an external table whose data files are stored in $MASTER_DATA_DIRECTORY/
gpperfmon/data. Current diskspace metrics are stored in database_now during the period between
data collection from the gpperfmon agents and automatic commitment to the diskspace_history
table.

• diskspace_tail is an external table whose data files are stored in $MASTER_DATA_DIRECTORY/
gpperfmon/data. This is a transitional table for diskspace metrics that have been cleared from
diskspace_now but has not yet been committed to diskspace_history. It typically only contains a
few minutes worth of data.

• diskspace_history is a regular table that stores historical diskspace metrics. It is pre-partitioned
into monthly partitions. Partitions are automatically added in two month increments as needed.

Column Type Description

ctime timestamp(0) without time zone Time of diskspace measurement.

hostname varchar(64) The hostname associated with
the diskspace measurement.

Filesystem text Name of the filesystem for the
diskspace measurement.

total_bytes bigint Total bytes in the file system.

bytes_used bigint Total bytes used in the file
system.

bytes_available bigint Total bytes available in file
system.

 interface_stats_*
The interface_stats_* tables store statistical metrics about communications over each active
interface for a Greenplum Database instance.

These tables are in place for future use and are not currently populated.

There are three interface_stats tables, all having the same columns:

• interface_stats_now is an external table whose data files are stored in
$MASTER_DATA_DIRECTORY/gpperfmon/data.

• interface_stats_tail is an external table whose data files are stored in
$MASTER_DATA_DIRECTORY/gpperfmon/data. This is a transitional table for statistical interface

Greenplum Database Reference Guide Release Notes

1527

metrics that has been cleared from interface_stats_now but has not yet been committed to
interface_stats_history. It typically only contains a few minutes worth of data.

• interface_stats_history is a regular table that stores statistical interface metrics. It is pre-
partitioned into monthly partitions. Partitions are automatically added in one month increments as
needed.

Column Type Description

interface_name string Name of the interface. For
example: eth0, eth1, lo.

bytes_received bigint Amount of data received in bytes.

packets_received bigint Number of packets received.

receive_errors bigint Number of errors encountered
while data was being received.

receive_drops bigint Number of times packets were
dropped while data was being
received.

receive_fifo_errors bigint Number of times FIFO (first in
first out) errors were encountered
while data was being received.

receive_frame_errors bigint Number of frame errors while
data was being received.

receive_compressed_
packets

int Number of packets received in
compressed format.

receive_multicast_packets int Number of multicast packets
received.

bytes_transmitted bigint Amount of data transmitted in
bytes.

packets_transmitted bigint Amount of data transmitted in
bytes.

packets_transmitted bigint Number of packets transmitted.

transmit_errors bigint Number of errors encountered
during data transmission.

transmit_drops bigint Number of times packets
were dropped during data
transmission.

transmit_fifo_errors bigint Number of times fifo errors
were encountered during data
transmission.

transmit_collision_errors bigint Number of times collision errors
were encountered during data
transmission.

transmit_carrier_errors bigint Number of times carrier errors
were encountered during data
transmission.

Greenplum Database Reference Guide Release Notes

1528

Column Type Description

transmit_compressed_
packets

int Number of packets transmitted in
compressed format.

 log_alert_*
The log_alert_* tables store pg_log errors and warnings.

See Alert Log Processing and Log Rotation for information about configuring the system logger for
gpperfmon.

There are three log_alert tables, all having the same columns:

• log_alert_now is an external table whose data is stored in .csv files in the
$MASTER_DATA_DIRECTORY/gpperfmon/logs directory. Current pg_log errors and warnings
data are available in log_alert_now during the period between data collection from the gpperfmon
agents and automatic commitment to the log_alert_history table.

• log_alert_tail is an external table with data stored in $MASTER_DATA_DIRECTORY/gpperfmon/
logs/alert_log_stage. This is a transitional table for data that has been cleared from
log_alert_now but has not yet been committed to log_alert_history. The table includes records
from all alert logs except the most recent. It typically contains only a few minutes' worth of data.

• log_alert_history is a regular table that stores historical database-wide errors and warnings data.
It is pre-partitioned into monthly partitions. Partitions are automatically added in two month increments
as needed.

Column Type Description

logtime timestamp with time zone Timestamp for this log

loguser text User of the query

logdatabase text The accessed database

logpid text Process id

logthread text Thread number

loghost text Host name or ip address

logport text Port number

logsessiontime timestamp with time zone Session timestamp

logtransaction integer Transaction id

logsession text Session id

logcmdcount text Command count

logsegment text Segment number

logslice text Slice number

logdistxact text Distributed transaction

loglocalxact text Local transaction

logsubxact text Subtransaction

logseverity text Log severity

logstate text State

logmessage text Log message

Greenplum Database Reference Guide Release Notes

1529

Column Type Description

logdetail text Detailed message

loghint text Hint info

logquery text Executed query

logquerypos text Query position

logcontext text Context info

logdebug text Debug

logcursorpos text Cursor position

logfunction text Function info

logfile text Source code file

logline text Source code line

logstack text Stack trace

queries_*
The queries_* tables store high-level query status information.

The tmid, ssid and ccnt columns are the composite key that uniquely identifies a particular query.

There are three queries tables, all having the same columns:

• queries_now is an external table whose data files are stored in $MASTER_DATA_DIRECTORY/
gpperfmon/data. Current query status is stored in queries_now during the period between data
collection from the gpperfmon agents and automatic commitment to the queries_history table.

• queries_tail is an external table whose data files are stored in $MASTER_DATA_DIRECTORY/
gpperfmon/data. This is a transitional table for query status data that has been cleared from
queries_now but has not yet been committed to queries_history. It typically only contains a few
minutes worth of data.

• queries_history is a regular table that stores historical query status data. It is pre-partitioned into
monthly partitions. Partitions are automatically added in two month increments as needed.

Column Type Description

ctime timestamp Time this row was created.

tmid int A time identifier for a particular
query. All records associated
with the query will have the same
tmid.

ssid int The session id as shown by
gp_session_id. All records
associated with the query will
have the same ssid.

ccnt int The command number within
this session as shown by gp_
command_count. All records
associated with the query will
have the same ccnt.

Greenplum Database Reference Guide Release Notes

1530

Column Type Description

username varchar(64) Greenplum role name that issued
this query.

db varchar(64) Name of the database queried.

cost int Not implemented in this release.

tsubmit timestamp Time the query was submitted.

tstart timestamp Time the query was started.

tfinish timestamp Time the query finished.

status varchar(64) Status of the query -- start,
done, or abort.

rows_out bigint Rows out for the query.

cpu_elapsed bigint CPU usage by all processes
across all segments executing
this query (in seconds). It is the
sum of the CPU usage values
taken from all active primary
segments in the database
system.

Note that the value is logged as
0 if the query runtime is shorter
than the value for the quantum.
This occurs even if the query
runtime is greater than the value
for min_query_time, and this
value is lower than the value for
the quantum.

cpu_currpct float Current CPU percent average
for all processes executing this
query. The percentages for
all processes running on each
segment are averaged, and then
the average of all those values is
calculated to render this metric.

Current CPU percent average is
always zero in historical and tail
data.

Greenplum Database Reference Guide Release Notes

1531

Column Type Description

skew_cpu float Displays the amount of
processing skew in the system
for this query. Processing/CPU
skew occurs when one segment
performs a disproportionate
amount of processing for a query.
This value is the coefficient of
variation in the CPU% metric
across all segments for this
query, multiplied by 100. For
example, a value of .95 is shown
as 95.

skew_rows float Displays the amount of row skew
in the system. Row skew occurs
when one segment produces
a disproportionate number of
rows for a query. This value is
the coefficient of variation for
the rows_in metric across
all segments for this query,
multiplied by 100. For example, a
value of .95 is shown as 95.

query_hash bigint Not implemented in this release.

query_text text The SQL text of this query.

query_plan text Text of the query plan. Not
implemented in this release.

application_name varchar(64) The name of the application.

rsqname varchar(64) If the resource queue-based
resource management scheme is
active, this column specifies the
name of the resource queue.

rqppriority varchar(64) If the resource queue-based
resource management scheme
is active, this column specifies
the priority of the query -- max,
high, med, low, or min.

 segment_*
The segment_* tables contain memory allocation statistics for the Greenplum Database segment
instances. This tracks the amount of memory consumed by all postgres processes of a particular segment
instance, and the remaining amount of memory available to a segment as per the settings configured by
the currently active resource management scheme (resource group-based or resource queue-based). See
the Greenplum Database Administrator Guide for more information about resource management schemes.

There are three segment tables, all having the same columns:

• segment_now is an external table whose data files are stored in $MASTER_DATA_DIRECTORY/
gpperfmon/data. Current memory allocation data is stored in segment_now during the

Greenplum Database Reference Guide Release Notes

1532

period between data collection from the gpperfmon agents and automatic commitment to the
segment_history table.

• segment_tail is an external table whose data files are stored in $MASTER_DATA_DIRECTORY/
gpperfmon/data. This is a transitional table for memory allocation data that has been cleared from
segment_now but has not yet been committed to segment_history. It typically only contains a few
minutes worth of data.

• segment_history is a regular table that stores historical memory allocation metrics. It is pre-
partitioned into monthly partitions. Partitions are automatically added in two month increments as
needed.

A particular segment instance is identified by its hostname and dbid (the unique segment identifier as per
the gp_segment_configuration system catalog table).

Column Type Description

ctime timestamp(0)

(without time zone)

The time the row was created.

dbid int The segment ID (dbid from gp_
segment_configuration).

hostname charvar(64) The segment hostname.

dynamic_memory_used bigint The amount of dynamic memory
(in bytes) allocated to query
processes running on this
segment.

dynamic_memory_available bigint The amount of additional
dynamic memory (in bytes)
that the segment can request
before reaching the limit set by
the currently active resource
management scheme (resource
group-based or resource queue-
based).

See also the views memory_info and dynamic_memory_info for aggregated memory allocation and
utilization by host.

socket_stats_*
The socket_stats_* tables store statistical metrics about socket usage for a Greenplum Database
instance. There are three system tables, all having the same columns:

These tables are in place for future use and are not currently populated.

• socket_stats_now is an external table whose data files are stored in $MASTER_DATA_DIRECTORY/
gpperfmon/data.

• socket_stats_tail is an external table whose data files are stored in
$MASTER_DATA_DIRECTORY/gpperfmon/data. This is a transitional table for socket statistical
metrics that has been cleared from socket_stats_now but has not yet been committed to
socket_stats_history. It typically only contains a few minutes worth of data.

• socket_stats_history is a regular table that stores historical socket statistical metrics. It is pre-
partitioned into monthly partitions. Partitions are automatically added in two month increments as
needed.

Greenplum Database Reference Guide Release Notes

1533

Column Type Description

total_sockets_used int Total sockets used in the system.

tcp_sockets_inuse int Number of TCP sockets in use.

tcp_sockets_orphan int Number of TCP sockets
orphaned.

tcp_sockets_timewait int Number of TCP sockets in Time-
Wait.

tcp_sockets_alloc int Number of TCP sockets
allocated.

tcp_sockets_memusage_
inbytes

int Amount of memory consumed by
TCP sockets.

udp_sockets_inuse int Number of UDP sockets in use.

udp_sockets_memusage_
inbytes

int Amount of memory consumed by
UDP sockets.

raw_sockets_inuse int Number of RAW sockets in use.

frag_sockets_inuse int Number of FRAG sockets in use.

frag_sockets_memusage_
inbytes

int Amount of memory consumed by
FRAG sockets.

system_*
The system_* tables store system utilization metrics. There are three system tables, all having the same
columns:

• system_now is an external table whose data files are stored in $MASTER_DATA_DIRECTORY/
gpperfmon/data. Current system utilization data is stored in system_now during the period between
data collection from the gpperfmon agents and automatic commitment to the system_history table.

• system_tail is an external table whose data files are stored in $MASTER_DATA_DIRECTORY/
gpperfmon/data. This is a transitional table for system utilization data that has been cleared from
system_now but has not yet been committed to system_history. It typically only contains a few
minutes worth of data.

• system_history is a regular table that stores historical system utilization metrics. It is pre-partitioned
into monthly partitions. Partitions are automatically added in two month increments as needed.

Column Type Description

ctime timestamp Time this row was created.

hostname varchar(64) Segment or master hostname
associated with these system
metrics.

mem_total bigint Total system memory in Bytes for
this host.

mem_used bigint Used system memory in Bytes for
this host.

Greenplum Database Reference Guide Release Notes

1534

Column Type Description

mem_actual_used bigint Used actual memory in Bytes
for this host (not including the
memory reserved for cache and
buffers).

mem_actual_free bigint Free actual memory in Bytes
for this host (not including the
memory reserved for cache and
buffers).

swap_total bigint Total swap space in Bytes for this
host.

swap_used bigint Used swap space in Bytes for this
host.

swap_page_in bigint Number of swap pages in.

swap_page_out bigint Number of swap pages out.

cpu_user float CPU usage by the Greenplum
system user.

cpu_sys float CPU usage for this host.

cpu_idle float Idle CPU capacity at metric
collection time.

load0 float CPU load average for the prior
one-minute period.

load1 float CPU load average for the prior
five-minute period.

load2 float CPU load average for the prior
fifteen-minute period.

quantum int Interval between metric collection
for this metric entry.

disk_ro_rate bigint Disk read operations per second.

disk_wo_rate bigint Disk write operations per second.

disk_rb_rate bigint Bytes per second for disk read
operations.

disk_wb_rate bigint Bytes per second for disk write
operations.

net_rp_rate bigint Packets per second on the
system network for read
operations.

net_wp_rate bigint Packets per second on the
system network for write
operations.

net_rb_rate bigint Bytes per second on the system
network for read operations.

Greenplum Database Reference Guide Release Notes

1535

Column Type Description

net_wb_rate bigint Bytes per second on the system
network for write operations.

dynamic_memory_info
The dynamic_memory_info view shows a sum of the used and available dynamic memory for all
segment instances on a segment host. Dynamic memory refers to the maximum amount of memory that
Greenplum Database instance will allow the query processes of a single segment instance to consume
before it starts cancelling processes. This limit, determined by the currently active resource management
scheme (resource group-based or resource queue-based), is evaluated on a per-segment basis.

Column Type Description

ctime timestamp(0) without time zone Time this row was created in the
segment_history table.

hostname varchar(64) Segment or master hostname
associated with these system
memory metrics.

dynamic_memory_used_mb numeric The amount of dynamic memory
in MB allocated to query
processes running on this
segment.

dynamic_memory_available_
mb

numeric The amount of additional dynamic
memory (in MB) available to the
query processes running on this
segment host. Note that this
value is a sum of the available
memory for all segments on a
host. Even though this value
reports available memory, it
is possible that one or more
segments on the host have
exceeded their memory limit.

 memory_info
The memory_info view shows per-host memory information from the system_history and
segment_history tables. This allows administrators to compare the total memory available on a
segment host, total memory used on a segment host, and dynamic memory used by query processes.

Column Type Description

ctime timestamp(0) without time zone Time this row was created in the
segment_history table.

hostname varchar(64) Segment or master hostname
associated with these system
memory metrics.

mem_total_mb numeric Total system memory in MB for
this segment host.

mem_used_mb numeric Total system memory used in MB
for this segment host.

Greenplum Database Reference Guide Release Notes

1536

Column Type Description

mem_actual_used_mb numeric Actual system memory used in
MB for this segment host.

mem_actual_free_mb numeric Actual system memory free in MB
for this segment host.

swap_total_mb numeric Total swap space in MB for this
segment host.

swap_used_mb numeric Total swap space used in MB for
this segment host.

dynamic_memory_used_mb numeric The amount of dynamic memory
in MB allocated to query
processes running on this
segment.

dynamic_memory_available_
mb

numeric The amount of additional dynamic
memory (in MB) available to the
query processes running on this
segment host. Note that this
value is a sum of the available
memory for all segments on a
host. Even though this value
reports available memory, it
is possible that one or more
segments on the host have
exceeded their memory limit.

Greenplum Database Reference Guide Release Notes

1537

Server Programmatic Interfaces
This section describes programmatic interfaces to the Greenplum Database server.

• Greenplum Partner Connector API
• Background Worker Processes

Greenplum Partner Connector API
With the Greenplum Partner Connector API (GPPC API), you can write portable Greenplum Database
user-defined functions (UDFs) in the C and C++ programming languages. Functions that you develop with
the GPPC API require no recompilation or modification to work with older or newer Greenplum Database
versions.

Functions that you write to the GPPC API can be invoked using SQL in Greenplum Database. The API
provides a set of functions and macros that you can use to issue SQL commands through the Server
Programming Interface (SPI), manipulate simple and composite data type function arguments and return
values, manage memory, and handle data.

You compile the C/C++ functions that you develop with the GPPC API into a shared library. The GPPC
functions are available to Greenplum Database users after the shared library is installed in the Greenplum
Database cluster and the GPPC functions are registered as SQL UDFs.

Note: The Greenplum Partner Connector is supported for Greenplum Database versions 4.3.5.0
and later.

This topic contains the following information:

• Using the GPPC API

• Requirements
• Header and Library Files
• Data Types
• Function Declaration, Arguments, and Results
• Memory Handling
• Working With Variable-Length Text Types
• Error Reporting and Logging
• SPI Functions
• About Tuple Descriptors and Tuples
• Set-Returning Functions
• Table Functions
• Limitations
• Sample Code

• Building a GPPC Shared Library with PGXS
• Registering a GPPC Function with Greenplum Database
• Packaging and Deployment Considerations
• GPPC Text Function Example
• GPPC Set-Returning Function Example

Using the GPPC API
The GPPC API shares some concepts with C language functions as defined by PostgreSQL. Refer to
C-Language Functions in the PostgreSQL documentation for detailed information about developing C
language functions.

https://www.postgresql.org/docs/9.4/xfunc-c.html

Greenplum Database Reference Guide Release Notes

1538

The GPPC API is a wrapper that makes a C/C++ function SQL-invokable in Greenplum Database. This
wrapper shields GPPC functions that you write from Greenplum Database library changes by normalizing
table and data manipulation and SPI operations through functions and macros defined by the API.

The GPPC API includes functions and macros to:

• Operate on base and composite data types.
• Process function arguments and return values.
• Allocate and free memory.
• Log and report errors to the client.
• Issue SPI queries.
• Return a table or set of rows.
• Process tables as function input arguments.

Requirements

When you develop with the GPPC API:

• You must develop your code on a system with the same hardware and software architecture as that of
your Greenplum Database hosts.

• You must write the GPPC function(s) in the C or C++ programming languages.
• The function code must use the GPPC API, data types, and macros.
• The function code must not use the PostgreSQL C-Language Function API, header files, functions, or

macros.
• The function code must not #include the postgres.h header file or use PG_MODULE_MAGIC.
• You must use only the GPPC-wrapped memory functions to allocate and free memory. See Memory

Handling.
• Symbol names in your object files must not conflict with each other nor with symbols defined in the

Greenplum Database server. You must rename your functions or variables if you get error messages to
this effect.

Header and Library Files

The GPPC header files and libraries are installed in $GPHOME:

• $GPHOME/include/gppc.h - the main GPPC header file
• $GPHOME/include/gppc_config.h - header file defining the GPPC version
• $GPHOME/lib/libgppc.[a, so, so.1, so.1.2] - GPPC archive and shared libraries

Data Types

The GPPC functions that you create will operate on data residing in Greenplum Database. The GPPC API
includes data type definitions for equivalent Greenplum Database SQL data types. You must use these
types in your GPPC functions.

The GPPC API defines a generic data type that you can use to represent any GPPC type. This data type is
named GppcDatum, and is defined as follows:

typedef int64_t GppcDatum;

The following table identifies each GPPC data type and the SQL type to which it maps.

SQL Type GPPC Type GPPC Oid for Type

boolean GppcBool GppcOidBool

char (single byte) GppcChar GppcOidChar

int2/smallint GppcInt2 GppcOidInt2

Greenplum Database Reference Guide Release Notes

1539

SQL Type GPPC Type GPPC Oid for Type

int4/integer GppcInt4 GppcOidInt4

int8/bigint GppcInt8 GppcOidInt8

float4/real GppcFloat4 GppcOidFloat4

float8/double GppcFloat8 GppcOidFloat8

text *GppcText GppcOidText

varchar *GppcVarChar GppcOidVarChar

char *GppcBpChar GppcOidBpChar

bytea *GppcBytea GppcOidBytea

numeric *GppcNumeric GppcOidNumeric

date GppcDate GppcOidDate

time GppcTime GppcOidTime

timetz *GppcTimeTz GppcOidTimeTz

timestamp GppcTimestamp GppcOidTimestamp

timestamptz GppcTimestampTz GppcOidTimestampTz

anytable GppcAnyTable GppcOidAnyTable

oid GppcOid

The GPPC API treats text, numeric, and timestamp data types specially, providing functions to operate on
these types.

Example GPPC base data type declarations:

GppcText message;
GppcInt4 arg1;
GppcNumeric total_sales;

The GPPC API defines functions to convert between the generic GppcDatum type and the GPPC specific
types. For example, to convert from an integer to a datum:

GppcInt4 num = 13;
GppcDatum num_dat = GppcInt4GetDatum(num);

Composite Types

A composite data type represents the structure of a row or record, and is comprised of a list of field names
and their data types. This structure information is typically referred to as a tuple descriptor. An instance
of a composite type is typically referred to as a tuple or row. A tuple does not have a fixed layout and can
contain null fields.

The GPPC API provides an interface that you can use to define the structure of, to access, and to set
tuples. You will use this interface when your GPPC function takes a table as an input argument or returns
table or set of record types. Using tuples in table and set returning functions is covered later in this topic.

Greenplum Database Reference Guide Release Notes

1540

Function Declaration, Arguments, and Results

The GPPC API relies on macros to declare functions and to simplify the passing of function arguments and
results. These macros include:

Task Macro Signature Description

Make a function SQL-
invokable

GPPC_FUNCTION_
INFO(function_name)

Glue to make function function_name SQL-
invokable.

Declare a function GppcDatum function_
name(GPPC_FUNCTION_
ARGS)

Declare a GPPC function named function_
name; every function must have this same
signature.

Return the number of
arguments

GPPC_NARGS() Return the number of arguments passed to the
function.

Fetch an argument GPPC_GETARG_
<ARGTYPE>(arg_num)

Fetch the value of argument number arg_num
(starts at 0), where <ARGTYPE> identifies the
data type of the argument. For example, GPPC_
GETARG_FLOAT8(0).

Fetch and make a copy
of a text-type argument

GPPC_GETARG_
<ARGTYPE>_COPY(arg_
num)

Fetch and make a copy of the value of argument
number arg_num (starts at 0). <ARGTYPE>
identifies the text type (text, varchar, bpchar,
bytea). For example, GPPC_GETARG_BYTEA_
COPY(1).

Determine if an
argument is NULL

GPPC_ARGISNULL(arg_
num)

Return whether or not argument number arg_
num is NULL.

Return a result GPPC_RETURN_
<ARGTYPE>(return_
val)

Return the value return_val, where
<ARGTYPE> identifies the data type of the
return value. For example, GPPC_RETURN_
INT4(131).

When you define and implement your GPPC function, you must declare it with the GPPC API using the two
declarations identified above. For example, to declare a GPPC function named add_int4s():

GPPC_FUNCTION_INFO(add_int4s);
GppcDatum add_int4s(GPPC_FUNCTION_ARGS);

GppcDatum
add_int4s(GPPC_FUNCTION_ARGS)
{
 // code here
}

If the add_int4s() function takes two input arguments of type int4, you use the
GPPC_GETARG_INT4(arg_num) macro to access the argument values. The argument index starts at 0.
For example:

GppcInt4 first_int = GPPC_GETARG_INT4(0);
GppcInt4 second_int = GPPC_GETARG_INT4(1);

If add_int4s() returns the sum of the two input arguments, you use the
GPPC_RETURN_INT8(return_val) macro to return this sum. For example:

GppcInt8 sum = first_int + second_int;

Greenplum Database Reference Guide Release Notes

1541

GPPC_RETURN_INT8(sum);

The complete GPPC function:

GPPC_FUNCTION_INFO(add_int4s);
GppcDatum add_int4s(GPPC_FUNCTION_ARGS);

GppcDatum
add_int4s(GPPC_FUNCTION_ARGS)
{
 // get input arguments
 GppcInt4 first_int = GPPC_GETARG_INT4(0);
 GppcInt4 second_int = GPPC_GETARG_INT4(1);

 // add the arguments
 GppcInt8 sum = first_int + second_int;

 // return the sum
 GPPC_RETURN_INT8(sum);
}

Memory Handling

The GPPC API provides functions that you use to allocate and free memory, including text memory. You
must use these functions for all memory operations.

Function Name Description

void *GppcAlloc(size_t num) Allocate num bytes of uninitialized memory.

void *GppcAlloc0(size_t num) Allocate num bytes of 0-initialized memory.

void *GppcRealloc(void *ptr, size_t num) Resize pre-allocated memory.

void GppcFree(void *ptr) Free allocated memory.

After you allocate memory, you can use system functions such as memcpy() to set the data.

The following example allocates an array of GppcDatums and sets the array to datum versions of the
function input arguments:

GppcDatum *values;
int attnum = GPPC_NARGS();

// allocate memory for attnum values
values = GppcAlloc(sizeof(GppcDatum) * attnum);

// set the values
for(int i=0; i<attnum; i++) {
 GppcDatum d = GPPC_GETARG_DATUM(i);
 values[i] = d;
}

When you allocate memory for a GPPC function, you allocate it in the current context. The GPPC API
includes functions to return, create, switch, and reset memory contexts.

Function Name Description

GppcMemoryContext GppcGetCurrentMemoryContext(void) Return the current memory context.

GppcMemoryContext
GppcMemoryContextCreate(GppcMemoryContext parent)

Create a new memory context under
parent.

Greenplum Database Reference Guide Release Notes

1542

Function Name Description

GppcMemoryContext
GppcMemoryContextSwitchTo(GppcMemoryContext context)

Switch to the memory context context.

void GppcMemoryContextReset(GppcMemoryContext context) Reset (free) the memory in memory
context context.

Greenplum Database typically calls a SQL-invoked function in a per-tuple context that it creates and
deletes every time the server backend processes a table row. Do not assume that memory allocated in the
current memory context is available across multiple function calls.

Working With Variable-Length Text Types

The GPPC API supports the variable length text, varchar, blank padded, and byte array types. You must
use the GPPC API-provided functions when you operate on these data types. Variable text manipulation
functions provided in the GPPC API include those to allocate memory for, determine string length of, get
string pointers for, and access these types:

Function Name Description

GppcText GppcAllocText(size_t len)

GppcVarChar GppcAllocVarChar(size_t len)

GppcBpChar GppcAllocBpChar(size_t len)

GppcBytea GppcAllocBytea(size_t len)

Allocate len bytes of memory for the
varying length type.

size_t GppcGetTextLength(GppcText s)

size_t GppcGetVarCharLength(GppcVarChar s)

size_t GppcGetBpCharLength(GppcBpChar s)

size_t GppcGetByteaLength(GppcBytea b)

Return the number of bytes in the memory
chunk.

char *GppcGetTextPointer(GppcText s)

char *GppcGetVarCharPointer(GppcVarChar s)

char *GppcGetBpCharPointer(GppcBpChar s)

char *GppcGetByteaPointer(GppcBytea b)

Return a string pointer to the head of the
memory chunk. The string is not null-
terminated.

char *GppcTextGetCString(GppcText s)

char *GppcVarCharGetCString(GppcVarChar s)

char *GppcBpCharGetCString(GppcBpChar s)

Return a string pointer to the head of
the memory chunk. The string is null-
terminated.

GppcText *GppcCStringGetText(const char *s)

GppcVarChar *GppcCStringGetVarChar(const char *s)

GppcBpChar *GppcCStringGetBpChar(const char *s)

Build a varying-length type from a
character string.

Memory returned by the GppcGet<VLEN_ARGTYPE>Pointer() functions may point to actual database
content. Do not modify the memory content. The GPPC API provides functions to allocate memory for
these types should you require it. After you allocate memory, you can use system functions such as
memcpy() to set the data.

Greenplum Database Reference Guide Release Notes

1543

The following example manipulates text input arguments and allocates and sets result memory for a text
string concatenation operation:

GppcText first_textstr = GPPC_GETARG_TEXT(0);
GppcText second_textstr = GPPC_GETARG_TEXT(1);

// determine the size of the concatenated string and allocate
// text memory of this size
size_t arg0_len = GppcGetTextLength(first_textstr);
size_t arg1_len = GppcGetTextLength(second_textstr);
GppcText retstring = GppcAllocText(arg0_len + arg1_len);

// construct the concatenated return string; copying each string
// individually
memcpy(GppcGetTextPointer(retstring), GppcGetTextPointer(first_textstr),
 arg0_len);
memcpy(GppcGetTextPointer(retstring) + arg0_len,
 GppcGetTextPointer(second_textstr), arg1_len);

Error Reporting and Logging

The GPPC API provides error reporting and logging functions. The API defines reporting levels equivalent
to those in Greenplum Database:

typedef enum GppcReportLevel
{
 GPPC_DEBUG1 = 10,
 GPPC_DEBUG2 = 11,
 GPPC_DEBUG3 = 12,
 GPPC_DEBUG4 = 13,
 GPPC_DEBUG = 14,
 GPPC_LOG = 15,
 GPPC_INFO = 17,
 GPPC_NOTICE = 18,
 GPPC_WARNING = 19,
 GPPC_ERROR = 20,
} GppcReportLevel;

(The Greenplum Database client_min_messages server configuration parameter governs the current
client logging level. The log_min_messages configuration parameter governs the current log-to-logfile
level.)

A GPPC report includes the report level, a report message, and an optional report callback function.

Reporting and handling functions provide by the GPPC API include:

Function Name Description

GppcReport() Format and print/log a string of the specified report
level.

GppcInstallReportCallback() Register/install a report callback function.

GppcUninstallReportCallback() Uninstall a report callback function.

GppcGetReportLevel() Retrieve the level from an error report.

GppcGetReportMessage() Retrieve the message from an error report.

GppcCheckForInterrupts() Error out if an interrupt is pending.

Greenplum Database Reference Guide Release Notes

1544

The GppcReport() function signature is:

void GppcReport(GppcReportLevel elevel, const char *fmt, ...);

GppcReport() takes a format string input argument similar to printf(). The following example
generates an error level report message that formats a GPPC text argument:

GppcText uname = GPPC_GETARG_TEXT(1);
GppcReport(GPPC_ERROR, "Unknown user name: %s", GppcTextGetCString(uname));

Refer to the GPPC example code for example report callback handlers.

SPI Functions

The Greenplum Database Server Programming Interface (SPI) provides writers of C/C++ functions the
ability to run SQL commands within a GPPC function. For additional information on SPI functions, refer to
Server Programming Interface in the PostgreSQL documentation.

The GPPC API exposes a subset of PostgreSQL SPI functions. This subset enables you to issue SPI
queries and retrieve SPI result values in your GPPC function. The GPPC SPI wrapper functions are:

SPI Function Name GPPC
Function
Name

Description

SPI_connect() GppcSPIConnect()Connect to the Greenplum Database server programming interface.

SPI_finish() GppcSPIFinish()Disconnect from the Greenplum Database server programming
interface.

SPI_exec() GppcSPIExec()Execute a SQL statement, returning the number of rows.

GppcSPIGetValue()Retrieve the value of a specific attribute by number from a SQL
result as a character string.

GppcSPIGetDatum()Retrieve the value of a specific attribute by number from a SQL
result as a GppcDatum.

GppcSPIGetValueByName()Retrieve the value of a specific attribute by name from a SQL result
as a character string.

SPI_getvalue()

GppcSPIGetDatumByName()Retrieve the value of a specific attribute by name from a SQL result
as a GppcDatum.

When you create a GPPC function that accesses the server programming interface, your function should
comply with the following flow:

GppcSPIConnect();
GppcSPIExec(...)
// process the results - GppcSPIGetValue(...), GppcSPIGetDatum(...)
GppcSPIFinish()

You use GppcSPIExec() to execute SQL statements in your GPPC function. When you call this function,
you also identify the maximum number of rows to return. The function signature of GppcSPIExec() is:

GppcSPIResult GppcSPIExec(const char *sql_statement, long rcount);

https://github.com/greenplum-db/gpdb/tree/master/src/interfaces/gppc/test
https://www.postgresql.org/docs/9.4/spi.html

Greenplum Database Reference Guide Release Notes

1545

GppcSPIExec() returns a GppcSPIResult structure. This structure represents SPI result data. It
includes a pointer to the data, information about the number of rows processed, a counter, and a result
code. The GPPC API defines this structure as follows:

typedef struct GppcSPIResultData
{
 struct GppcSPITupleTableData *tuptable;
 uint32_t processed;
 uint32_t current;
 int rescode;
} GppcSPIResultData;
typedef GppcSPIResultData *GppcSPIResult;

You can set and use the current field in the GppcSPIResult structure to examine each row of the
tuptable result data.

The following code excerpt uses the GPPC API to connect to SPI, execute a simple query, loop through
query results, and finish processing:

GppcSPIResult result;
char *attname = "id";
char *query = "SELECT i, 'foo' || i AS val FROM
 generate_series(1, 10)i ORDER BY 1";
bool isnull = true;

// connect to SPI
if(GppcSPIConnect() < 0) {
 GppcReport(GPPC_ERROR, "cannot connect to SPI");
}

// execute the query, returning all rows
result = GppcSPIExec(query, 0);

// process result
while(result->current < result->processed) {
 // get the value of attname column as a datum, making a copy
 datum = GppcSPIGetDatumByName(result, attname, &isnull, true);

 // do something with value

 // move on to next row
 result->current++;
}

// complete processing
GppcSPIFinish();

About Tuple Descriptors and Tuples

A table or a set of records contains one or more tuples (rows). The structure of each attribute of a tuple is
defined by a tuple descriptor. A tuple descriptor defines the following for each attribute in the tuple:

• attribute name
• object identifier of the attribute data type
• byte length of the attribute data type
• object identifier of the attribute modifer

The GPPC API defines an abstract type, GppcTupleDesc, to represent a tuple/row descriptor. The API
also provides functions that you can use to create, access, and set tuple descriptors:

Greenplum Database Reference Guide Release Notes

1546

Function Name Description

GppcCreateTemplateTupleDesc() Create an empty tuple descriptor with a specified number of
attributes.

GppcTupleDescInitEntry() Add an attribute to the tuple descriptor at a specified position.

GppcTupleDescNattrs() Fetch the number of attributes in the tuple descriptor.

GppcTupleDescAttrName() Fetch the name of the attribute in a specific position (starts at 0)
in the tuple descriptor.

GppcTupleDescAttrType() Fetch the type object identifier of the attribute in a specific
position (starts at 0) in the tuple descriptor.

GppcTupleDescAttrLen() Fetch the type length of an attribute in a specific position (starts
at 0) in the tuple descriptor.

GppcTupleDescAttrTypmod() Fetch the type modifier object identifier of an attribute in a
specific position (starts at 0) in the tuple descriptor.

To construct a tuple descriptor, you first create a template, and then fill in the descriptor fields for each
attribute. The signatures for these functions are:

GppcTupleDesc GppcCreateTemplateTupleDesc(int natts);
void GppcTupleDescInitEntry(GppcTupleDesc desc, uint16_t attno,
 const char *attname, GppcOid typid, int32_t
 typmod);

In some cases, you may want to initialize a tuple descriptor entry from an attribute definition in an existing
tuple. The following functions fetch the number of attributes in a tuple descriptor, as well as the definition of
a specific attribute (by number) in the descriptor:

int GppcTupleDescNattrs(GppcTupleDesc tupdesc);
const char *GppcTupleDescAttrName(GppcTupleDesc tupdesc, int16_t attno);
GppcOid GppcTupleDescAttrType(GppcTupleDesc tupdesc, int16_t attno);
int16_t GppcTupleDescAttrLen(GppcTupleDesc tupdesc, int16_t attno);
int32_t GppcTupleDescAttrTypmod(GppcTupleDesc tupdesc, int16_t attno);

The following example initializes a two attribute tuple descriptor. The first attribute is initialized with the
definition of an attribute from a different descriptor, and the second attribute is initialized to a boolean type
attribute:

GppcTupleDesc tdesc;
GppcTupleDesc indesc = some_input_descriptor;

// initialize the tuple descriptor with 2 attributes
tdesc = GppcCreateTemplateTupleDesc(2);

// use third attribute from the input descriptor
GppcTupleDescInitEntry(tdesc, 1,
 GppcTupleDescAttrName(indesc, 2),
 GppcTupleDescAttrType(indesc, 2),
 GppcTupleDescAttrTypmod(indesc, 2));

// create the boolean attribute
GppcTupleDescInitEntry(tdesc, 2, "is_active", GppcOidBool, 0);

The GPPC API defines an abstract type, GppcHeapTuple, to represent a tuple/record/row. A tuple is
defined by its tuple descriptor, the value for each tuple attribute, and an indicator of whether or not each
value is NULL.

Greenplum Database Reference Guide Release Notes

1547

The GPPC API provides functions that you can use to set and access a tuple and its attributes:

Function Name Description

GppcHeapFormTuple() Form a tuple from an array of GppcDatums.

GppcBuildHeapTupleDatum() Form a GppcDatum tuple from an array of GppcDatums.

GppcGetAttributeByName() Fetch an attribute from the tuple by name.

GppcGetAttributeByNum() Fetch an attribute from the tuple by number (starts at 1).

The signatures for the tuple-building GPPC functions are:

GppcHeapTuple GppcHeapFormTuple(GppcTupleDesc tupdesc, GppcDatum *values,
 bool *nulls);
GppcDatum GppcBuildHeapTupleDatum(GppcTupleDesc tupdesc, GppcDatum
 *values, bool *nulls);

The following code excerpt constructs a GppcDatum tuple from the tuple descriptor in the above code
example, and from integer and boolean input arguments to a function:

GppcDatum intarg = GPPC_GETARG_INT4(0);
GppcDatum boolarg = GPPC_GETARG_BOOL(1);
GppcDatum result, values[2];
bool nulls[2] = { false, false };

// construct the values array
values[0] = intarg;
values[1] = boolarg;
result = GppcBuildHeapTupleDatum(tdesc, values, nulls);

Set-Returning Functions

Greenplum Database UDFs whose signatures include RETURNS SETOF RECORD or RETURNS
TABLE(...) are set-returning functions.

The GPPC API provides support for returning sets (for example, multiple rows/tuples) from a GPPC
function. Greenplum Database calls a set-returning function (SRF) once for each row or item. The function
must save enough state to remember what it was doing and to return the next row on each call. Memory
that you allocate in the SRF context must survive across multiple function calls.

The GPPC API provides macros and functions to help keep track of and set this context, and to allocate
SRF memory. They include:

Function/Macro Name Description

GPPC_SRF_RESULT_DESC() Get the output row tuple descriptor for this SRF. The result
tuple descriptor is determined by an output table definition or a
DESCRIBE function.

GPPC_SRF_IS_FIRSTCALL() Determine if this is the first call to the SRF.

GPPC_SRF_FIRSTCALL_INIT() Initialize the SRF context.

GPPC_SRF_PERCALL_SETUP() Restore the context on each call to the SRF.

GPPC_SRF_RETURN_NEXT() Return a value from the SRF and continue processing.

GPPC_SRF_RETURN_DONE() Signal that SRF processing is complete.

GppSRFAlloc() Allocate memory in this SRF context.

Greenplum Database Reference Guide Release Notes

1548

Function/Macro Name Description

GppSRFAlloc0() Allocate memory in this SRF context and initialize it to zero.

GppSRFSave() Save user state in this SRF context.

GppSRFRestore() Restore user state in this SRF context.

The GppcFuncCallContext structure provides the context for an SRF. You create this context on
the first call to your SRF. Your set-returning GPPC function must retrieve the function context on each
invocation. For example:

// set function context
GppcFuncCallContext fctx;
if (GPPC_SRF_IS_FIRSTCALL()) {
 fctx = GPPC_SRF_FIRSTCALL_INIT();
}
fctx = GPPC_SRF_PERCALL_SETUP();
// process the tuple

The GPPC function must provide the context when it returns a tuple result or to indicate that processing is
complete. For example:

GPPC_SRF_RETURN_NEXT(fctx, result_tuple);
// or
GPPC_SRF_RETURN_DONE(fctx);

Use a DESCRIBE function to define the output tuple descriptor of a function that uses the RETURNS SETOF
RECORD clause. Use the GPPC_SRF_RESULT_DESC() macro to get the output tuple descriptor of a
function that uses the RETURNS TABLE(...) clause.

Refer to the GPPC Set-Returning Function Example for a set-returning function code and deployment
example.

Table Functions

The GPPC API provides the GppcAnyTable type to pass a table to a function as an input argument, or to
return a table as a function result.

Table-related functions and macros provided in the GPPC API include:

Function/Macro Name Description

GPPC_GETARG_ANYTABLE() Fetch an anytable function argument.

GPPC_RETURN_ANYTABLE() Return the table.

GppcAnyTableGetTupleDesc() Fetch the tuple descriptor for the table.

GppcAnyTableGetNextTuple() Fetch the next row in the table.

You can use the GPPC_GETARG_ANYTABLE() macro to retrieve a table input argument. When
you have access to the table, you can examine the tuple descriptor for the table using the
GppcAnyTableGetTupleDesc() function. The signature of this function is:

GppcTupleDesc GppcAnyTableGetTupleDesc(GppcAnyTable t);

For example, to retrieve the tuple descriptor of a table that is the first input argument to a function:

GppcAnyTable intbl;

Greenplum Database Reference Guide Release Notes

1549

GppcTupleDesc in_desc;

intbl = GPPC_GETARG_ANYTABLE(0);
in_desc = GppcAnyTableGetTupleDesc(intbl);

The GppcAnyTableGetNextTuple() function fetches the next row from the table. Similarly, to retrieve
the next tuple from the table above:

GppcHeapTuple ntuple;

ntuple = GppcAnyTableGetNextTuple(intbl);

Limitations

The GPPC API does not support the following operators with Greenplum Database version 5.0.x:

• integer || integer
• integer = text
• text < integer

Sample Code

The gppc test directory in the Greenplum Database github repository includes sample GPPC code:

• gppc_demo/ - sample code exercising GPPC SPI functions, error reporting, data type argument and
return macros, set-returning functions, and encoding functions

• tabfunc_gppc_demo/ - sample code exercising GPPC table and set-returning functions

Building a GPPC Shared Library with PGXS
You compile functions that you write with the GPPC API into one or more shared libraries that the
Greenplum Database server loads on demand.

You can use the PostgreSQL build extension infrastructure (PGXS) to build the source code for your
GPPC functions against a Greenplum Database installation. This framework automates common build
rules for simple modules. If you have a more complicated use case, you will need to write your own build
system.

To use the PGXS infrastructure to generate a shared library for functions that you create with the GPPC
API, create a simple Makefile that sets PGXS-specific variables.

Note: Refer to Extension Building Infrastructure in the PostgreSQL documentation for information
about the Makefile variables supported by PGXS.

For example, the following Makefile generates a shared library named sharedlib_name.so from two
C source files named src1.c and src2.c:

MODULE_big = sharedlib_name
OBJS = src1.o src2.o
PG_CPPFLAGS = -I$(shell $(PG_CONFIG) --includedir)
SHLIB_LINK = -L$(shell $(PG_CONFIG) --libdir) -lgppc

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)

MODULE_big identifes the base name of the shared library generated by the Makefile.

PG_CPPFLAGS adds the Greenplum Database installation include directory to the compiler header file
search path.

https://github.com/greenplum-db/gpdb/tree/master/src/interfaces/gppc/test
https://www.postgresql.org/docs/9.4/extend-pgxs.html

Greenplum Database Reference Guide Release Notes

1550

SHLIB_LINK adds the Greenplum Database installation library directory to the linker search path. This
variable also adds the GPPC library (-lgppc) to the link command.

The PG_CONFIG and PGXS variable settings and the include statement are required and typically reside
in the last three lines of the Makefile.

Registering a GPPC Function with Greenplum Database
Before users can invoke a GPPC function from SQL, you must register the function with Greenplum
Database.

Registering a GPPC function involves mapping the GPPC function signature to a SQL user-defined
function. You define this mapping with the CREATE FUNCTION .. AS command specifying the GPPC
shared library name. You may choose to use the same name or differing names for the GPPC and SQL
functions.

Sample CREATE FUNCTION ... AS syntax follows:

CREATE FUNCTION sql_function_name(arg[, ...]) RETURNS return_type
 AS 'shared_library_path'[, 'gppc_function_name']
LANGUAGE C STRICT [WITH (DESCRIBE=describe_function)];

You may omit the shared library .so extension when you specify shared_library_path.

The following command registers the example add_int4s() function referenced earlier in this topic to a
SQL UDF named add_two_int4s_gppc() if the GPPC function was compiled and linked in a shared
library named gppc_try.so:

CREATE FUNCTION add_two_int4s_gppc(int4, int4) RETURNS int8
 AS 'gppc_try.so', 'add_int4s'
LANGUAGE C STRICT;

About Dynamic Loading

You specify the name of the GPPC shared library in the SQL CREATE FUNCTION ... AS command
to register a GPPC function in the shared library with Greenplum Database. The Greenplum Database
dynamic loader loads a GPPC shared library file into memory the first time that a user invokes a user-
defined function linked in that shared library. If you do not provide an absolute path to the shared library
in the CREATE FUNCTION ... AS command, Greenplum Database attempts to locate the library using
these ordered steps:

1. If the shared library file path begins with the string $libdir, Greenplum Database looks for the file in
the PostgreSQL package library directory. Run the pg_config --pkglibdir command to determine
the location of this directory.

2. If the shared library file name is specified without a directory prefix, Greenplum Database searches
for the file in the directory identified by the dynamic_library_path server configuration parameter
value.

3. The current working directory.

Packaging and Deployment Considerations
You must package the GPPC shared library and SQL function registration script in a form suitable
for deployment by the Greenplum Database administrator in the Greenplum cluster. Provide specific
deployment instructions for your GPPC package.

When you construct the package and deployment instructions, take into account the following:

• Consider providing a shell script or program that the Greenplum Database administrator runs to both
install the shared library to the desired file system location and register the GPPC functions.

Greenplum Database Reference Guide Release Notes

1551

• The GPPC shared library must be installed to the same file system location on the master host and on
every segment host in the Greenplum Database cluster.

• The gpadmin user must have permission to traverse the complete file system path to the GPPC shared
library file.

• The file system location of your GPPC shared library after it is installed in the Greenplum Database
deployment determines how you reference the shared library when you register a function in the library
with the CREATE FUNCTION ... AS command.

• Create a .sql script file that registers a SQL UDF for each GPPC function in your GPPC shared
library. The functions that you create in the .sql registration script must reference the deployment
location of the GPPC shared library. Include this script in your GPPC deployment package.

• Document the instructions for running your GPPC package deployment script, if you provide one.
• Document the instructions for installing the GPPC shared library if you do not include this task in a

package deployment script.
• Document the instructions for installing and running the function registration script if you do not include

this task in a package deployment script.

GPPC Text Function Example
In this example, you develop, build, and deploy a GPPC shared library and register and run a GPPC
function named concat_two_strings. This function uses the GPPC API to concatenate two string
arguments and return the result.

You will develop the GPPC function on your Greenplum Database master host. Deploying the GPPC
shared library that you create in this example requires administrative access to your Greenplum Database
cluster.

Perform the following procedure to run the example:

1. Log in to the Greenplum Database master host and set up your environment. For example:

$ ssh gpadmin@<gpmaster>
gpadmin@gpmaster$. /usr/local/greenplum-db/greenplum_path.sh

2. Create a work directory and navigate to the new directory. For example:

gpadmin@gpmaster$ mkdir gppc_work
gpadmin@gpmaster$ cd gppc_work

3. Prepare a file for GPPC source code by opening the file in the editor of your choice. For example, to
open a file named gppc_concat.c using vi:

gpadmin@gpmaster$ vi gppc_concat.c

4. Copy/paste the following code into the file:

#include <stdio.h>
#include <string.h>
#include "gppc.h"

// make the function SQL-invokable
GPPC_FUNCTION_INFO(concat_two_strings);

// declare the function
GppcDatum concat_two_strings(GPPC_FUNCTION_ARGS);

GppcDatum
concat_two_strings(GPPC_FUNCTION_ARGS)
{
 // retrieve the text input arguments
 GppcText arg0 = GPPC_GETARG_TEXT(0);

Greenplum Database Reference Guide Release Notes

1552

 GppcText arg1 = GPPC_GETARG_TEXT(1);

 // determine the size of the concatenated string and allocate
 // text memory of this size
 size_t arg0_len = GppcGetTextLength(arg0);
 size_t arg1_len = GppcGetTextLength(arg1);
 GppcText retstring = GppcAllocText(arg0_len + arg1_len);

 // construct the concatenated return string
 memcpy(GppcGetTextPointer(retstring), GppcGetTextPointer(arg0),
 arg0_len);
 memcpy(GppcGetTextPointer(retstring) + arg0_len,
 GppcGetTextPointer(arg1), arg1_len);

 GPPC_RETURN_TEXT(retstring);
}

The code declares and implements the concat_two_strings() function. It uses GPPC data types,
macros, and functions to get the function arguments, allocate memory for the concatenated string, copy
the arguments into the new string, and return the result.

5. Save the file and exit the editor.
6. Open a file named Makefile in the editor of your choice. Copy/paste the following text into the file:

MODULE_big = gppc_concat
OBJS = gppc_concat.o

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)

PG_CPPFLAGS = -I$(shell $(PG_CONFIG) --includedir)
SHLIB_LINK = -L$(shell $(PG_CONFIG) --libdir) -lgppc
include $(PGXS)

7. Save the file and exit the editor.
8. Build a GPPC shared library for the concat_two_strings() function. For example:

gpadmin@gpmaster$ make all

The make command generates a shared library file named gppc_concat.so in the current working
directory.

9. Copy the shared library to your Greenplum Database installation. You must have Greenplum Database
administrative privileges to copy the file. For example:

gpadmin@gpmaster$ cp gppc_concat.so /usr/local/greenplum-db/lib/
postgresql/

10.Copy the shared library to every host in your Greenplum Database installation. For example, if
seghostfile contains a list, one-host-per-line, of the segment hosts in your Greenplum Database
cluster:

gpadmin@gpmaster$ gpscp -v -f seghostfile /usr/local/greenplum-db/lib/
postgresql/gppc_concat.so =:/usr/local/greenplum-db/lib/postgresql/
gppc_concat.so

11.Open a psql session. For example:

gpadmin@gpmaster$ psql -d testdb

Greenplum Database Reference Guide Release Notes

1553

12.Register the GPPC function named concat_two_strings() with Greenplum Database,
For example, to map the Greenplum Database function concat_with_gppc() to the GPPC
concat_two_strings() function:

testdb=# CREATE FUNCTION concat_with_gppc(text, text) RETURNS text
 AS 'gppc_concat', 'concat_two_strings'
LANGUAGE C STRICT;

13.Run the concat_with_gppc() function. For example:

testdb=# SELECT concat_with_gppc('happy', 'monday');
 concat_with_gppc

 happymonday
(1 row)

GPPC Set-Returning Function Example
In this example, you develop, build, and deploy a GPPC shared library. You also create and run a .sql
registration script for a GPPC function named return_tbl(). This function uses the GPPC API to take
an input table with an integer and a text column, determine if the integer column is greater than 13, and
returns a result table with the input integer column and a boolean column identifying whether or not the
integer is greater than 13. return_tbl() utilizes GPPC API reporting and SRF functions and macros.

You will develop the GPPC function on your Greenplum Database master host. Deploying the GPPC
shared library that you create in this example requires administrative access to your Greenplum Database
cluster.

Perform the following procedure to run the example:

1. Log in to the Greenplum Database master host and set up your environment. For example:

$ ssh gpadmin@<gpmaster>
gpadmin@gpmaster$. /usr/local/greenplum-db/greenplum_path.sh

2. Create a work directory and navigate to the new directory. For example:

gpadmin@gpmaster$ mkdir gppc_work
gpadmin@gpmaster$ cd gppc_work

3. Prepare a source file for GPPC code by opening the file in the editor of your choice. For example, to
open a file named gppc_concat.c using vi:

gpadmin@gpmaster$ vi gppc_rettbl.c

4. Copy/paste the following code into the file:

#include <stdio.h>
#include <string.h>
#include "gppc.h"

// initialize the logging level
GppcReportLevel level = GPPC_INFO;

// make the function SQL-invokable and declare the function
GPPC_FUNCTION_INFO(return_tbl);
GppcDatum return_tbl(GPPC_FUNCTION_ARGS);

GppcDatum
return_tbl(GPPC_FUNCTION_ARGS)
{
 GppcFuncCallContext fctx;

Greenplum Database Reference Guide Release Notes

1554

 GppcAnyTable intbl;
 GppcHeapTuple intuple;
 GppcTupleDesc in_tupdesc, out_tupdesc;
 GppcBool resbool = false;
 GppcDatum result, boolres, values[2];
 bool nulls[2] = {false, false};

 // single input argument - the table
 intbl = GPPC_GETARG_ANYTABLE(0);

 // set the function context
 if (GPPC_SRF_IS_FIRSTCALL()) {
 fctx = GPPC_SRF_FIRSTCALL_INIT();
 }
 fctx = GPPC_SRF_PERCALL_SETUP();

 // get the tuple descriptor for the input table
 in_tupdesc = GppcAnyTableGetTupleDesc(intbl);

 // retrieve the next tuple
 intuple = GppcAnyTableGetNextTuple(intbl);
 if(intuple == NULL) {
 // no more tuples, conclude
 GPPC_SRF_RETURN_DONE(fctx);
 }

 // get the output tuple descriptor and verify that it is
 // defined as we expect
 out_tupdesc = GPPC_SRF_RESULT_DESC();
 if (GppcTupleDescNattrs(out_tupdesc) != 2 ||
 GppcTupleDescAttrType(out_tupdesc, 0) != GppcOidInt4 ||
 GppcTupleDescAttrType(out_tupdesc, 1) != GppcOidBool) {
 GppcReport(GPPC_ERROR, "INVALID out_tupdesc tuple");
 }

 // log the attribute names of the output tuple descriptor
 GppcReport(level, "output tuple descriptor attr0 name: %s",
 GppcTupleDescAttrName(out_tupdesc, 0));
 GppcReport(level, "output tuple descriptor attr1 name: %s",
 GppcTupleDescAttrName(out_tupdesc, 1));

 // retrieve the attribute values by name from the tuple
 bool text_isnull, int_isnull;
 GppcDatum intdat = GppcGetAttributeByName(intuple, "id", &int_isnull);
 GppcDatum textdat = GppcGetAttributeByName(intuple, "msg",
 &text_isnull);

 // convert datum to specific type
 GppcInt4 intarg = GppcDatumGetInt4(intdat);
 GppcReport(level, "id: %d", intarg);
 GppcReport(level, "msg: %s",
 GppcTextGetCString(GppcDatumGetText(textdat)));

 // perform the >13 check on the integer
 if(!int_isnull && (intarg > 13)) {
 // greater than 13?
 resbool = true;
 GppcReport(level, "id is greater than 13!");
 }

 // values are datums; use integer from the tuple and
 // construct the datum for the boolean return
 values[0] = intdat;
 boolres = GppcBoolGetDatum(resbool);

Greenplum Database Reference Guide Release Notes

1555

 values[1] = boolres;

 // build a datum tuple and return
 result = GppcBuildHeapTupleDatum(out_tupdesc, values, nulls);
 GPPC_SRF_RETURN_NEXT(fctx, result);

}

The code declares and implements the return_tbl() function. It uses GPPC data types, macros,
and functions to fetch the function arguments, examine tuple descriptors, build the return tuple, and
return the result. The function also uses the SRF macros to keep track of the tuple context across
function calls.

5. Save the file and exit the editor.
6. Open a file named Makefile in the editor of your choice. Copy/paste the following text into the file:

MODULE_big = gppc_rettbl
OBJS = gppc_rettbl.o

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)

PG_CPPFLAGS = -I$(shell $(PG_CONFIG) --includedir)
SHLIB_LINK = -L$(shell $(PG_CONFIG) --libdir) -lgppc
include $(PGXS)

7. Save the file and exit the editor.
8. Build a GPPC shared library for the return_tbl() function. For example:

gpadmin@gpmaster$ make all

The make command generates a shared library file named gppc_rettbl.so in the current working
directory.

9. Copy the shared library to your Greenplum Database installation. You must have Greenplum Database
administrative privileges to copy the file. For example:

gpadmin@gpmaster$ cp gppc_rettbl.so /usr/local/greenplum-db/lib/
postgresql/

This command copies the shared library to $libdir
10.Copy the shared library to every host in your Greenplum Database installation. For example, if

seghostfile contains a list, one-host-per-line, of the segment hosts in your Greenplum Database
cluster:

gpadmin@gpmaster$ gpscp -v -f seghostfile /usr/local/greenplum-db/lib/
postgresql/gppc_rettbl.so =:/usr/local/greenplum-db/lib/postgresql/
gppc_rettbl.so

11.Create a .sql file to register the GPPC return_tbl() function. Open a file named
gppc_rettbl_reg.sql in the editor of your choice.

12.Copy/paste the following text into the file:

CREATE FUNCTION rettbl_gppc(anytable) RETURNS TABLE(id int4, thirteen
 bool)
 AS 'gppc_rettbl', 'return_tbl'
LANGUAGE C STRICT;

Greenplum Database Reference Guide Release Notes

1556

13.Register the GPPC function by running the script you just created. For example, to register the function
in a database named testdb:

gpadmin@gpmaster$ psql -d testdb -f gppc_rettbl_reg.sql

14.Open a psql session. For example:

gpadmin@gpmaster$ psql -d testdb

15.Create a table with some test data. For example:

CREATE TABLE gppc_testtbl(id int, msg text);
INSERT INTO gppc_testtbl VALUES (1, 'f1');
INSERT INTO gppc_testtbl VALUES (7, 'f7');
INSERT INTO gppc_testtbl VALUES (10, 'f10');
INSERT INTO gppc_testtbl VALUES (13, 'f13');
INSERT INTO gppc_testtbl VALUES (15, 'f15');
INSERT INTO gppc_testtbl VALUES (17, 'f17');

16.Run the rettbl_gppc() function. For example:

testdb=# SELECT * FROM rettbl_gppc(TABLE(SELECT * FROM gppc_testtbl));
 id | thirteen
----+----------
 1 | f
 7 | f
 13 | f
 15 | t
 17 | t
 10 | f
(6 rows)

Developing a Background Worker Process
Greenplum Database can be extended to run user-supplied code in separate processes. Such processes
are started, stopped, and monitored by postgres, which permits them to have a lifetime closely linked to
the server's status. These processes have the option to attach to Greenplum Database's shared memory
area and to connect to databases internally; they can also run multiple transactions serially, just like a
regular client-connected server process. Also, by linking to libpq they can connect to the server and
behave like a regular client application.

Warning: There are considerable robustness and security risks in using background worker
processes because, being written in the C language, they have unrestricted access to data.
Administrators wishing to enable modules that include background worker processes should
exercise extreme caution. Only carefully audited modules should be permitted to run background
worker processes.

Background workers can be initialized at the time that Greenplum Database is started by including the
module name in the shared_preload_libraries server configuration parameter. A module wishing to run
a background worker can register it by calling RegisterBackgroundWorker(BackgroundWorker
*worker) from its _PG_init(). Background workers can also be started after the system is up
and running by calling the function RegisterDynamicBackgroundWorker(BackgroundWorker
*worker, BackgroundWorkerHandle **handle). Unlike RegisterBackgroundWorker, which
can only be called from within the postmaster, RegisterDynamicBackgroundWorker must be called
from a regular backend.

The structure BackgroundWorker is defined thus:

typedef void (*bgworker_main_type)(Datum main_arg);
typedef struct BackgroundWorker

Greenplum Database Reference Guide Release Notes

1557

{
 char bgw_name[BGW_MAXLEN];
 int bgw_flags;
 BgWorkerStartTime bgw_start_time;
 int bgw_restart_time; /* in seconds, or BGW_NEVER_RESTART
 */
 bgworker_main_type bgw_main;
 char bgw_library_name[BGW_MAXLEN]; /* only if bgw_main is NULL
 */
 char bgw_function_name[BGW_MAXLEN]; /* only if bgw_main is NULL
 */
 Datum bgw_main_arg;
 int bgw_notify_pid;
} BackgroundWorker;

bgw_name is a string to be used in log messages, process listings and similar contexts.

bgw_flags is a bitwise-or'd bit mask indicating the capabilities that the module wants.
Possible values are BGWORKER_SHMEM_ACCESS (requesting shared memory access) and
BGWORKER_BACKEND_DATABASE_CONNECTION (requesting the ability to establish a database
connection, through which it can later run transactions and queries). A background worker using
BGWORKER_BACKEND_DATABASE_CONNECTION to connect to a database must also attach shared
memory using BGWORKER_SHMEM_ACCESS, or worker start-up will fail.

bgw_start_time is the server state during which postgres should start the process; it
can be one of BgWorkerStart_PostmasterStart (start as soon as postgres itself has
finished its own initialization; processes requesting this are not eligible for database connections),
BgWorkerStart_ConsistentState (start as soon as a consistent state has been reached
in a hot standby, allowing processes to connect to databases and run read-only queries), and
BgWorkerStart_RecoveryFinished (start as soon as the system has entered normal read-write
state). Note the last two values are equivalent in a server that's not a hot standby. Note that this setting
only indicates when the processes are to be started; they do not stop when a different state is reached.

bgw_restart_time is the interval, in seconds, that postgres should wait before restarting the process,
in case it crashes. It can be any positive value, or BGW_NEVER_RESTART, indicating not to restart the
process in case of a crash.

bgw_main is a pointer to the function to run when the process is started. This function must take
a single argument of type Datum and return void. bgw_main_arg will be passed to it as its only
argument. Note that the global variable MyBgworkerEntry points to a copy of the BackgroundWorker
structure passed at registration time. bgw_main may be NULL; in that case, bgw_library_name and
bgw_function_name will be used to determine the entry point. This is useful for background workers
launched after postmaster startup, where the postmaster does not have the requisite library loaded.

bgw_library_name is the name of a library in which the initial entry point for the background worker
should be sought. It is ignored unless bgw_main is NULL. But if bgw_main is NULL, then the named
library will be dynamically loaded by the worker process and bgw_function_name will be used to identify
the function to be called.

bgw_function_name is the name of a function in a dynamically loaded library which should be used as
the initial entry point for a new background worker. It is ignored unless bgw_main is NULL.

bgw_notify_pid is the PID of a Greenplum Database backend process to which the postmaster should
send SIGUSR1 when the process is started or exits. It should be 0 for workers registered at postmaster
startup time, or when the backend registering the worker does not wish to wait for the worker to start up.
Otherwise, it should be initialized to MyProcPid.

Once running, the process can connect to a database by calling
BackgroundWorkerInitializeConnection(char *dbname, char *username). This allows
the process to run transactions and queries using the SPI interface. If dbname is NULL, the session is
not connected to any particular database, but shared catalogs can be accessed. If username is NULL, the

Greenplum Database Reference Guide Release Notes

1558

process will run as the superuser created during initdb. BackgroundWorkerInitializeConnection can only
be called once per background process, it is not possible to switch databases.

Signals are initially blocked when control reaches the bgw_main function, and must be unblocked by
it; this is to allow the process to customize its signal handlers, if necessary. Signals can be unblocked
in the new process by calling BackgroundWorkerUnblockSignals and blocked by calling
BackgroundWorkerBlockSignals.

If bgw_restart_time for a background worker is configured as BGW_NEVER_RESTART, or if it exits
with an exit code of 0 or is terminated by TerminateBackgroundWorker, it will be automatically
unregistered by the postmaster on exit. Otherwise, it will be restarted after the time period configured via
bgw_restart_time, or immediately if the postmaster reinitializes the cluster due to a backend failure.
Backends which need to suspend execution only temporarily should use an interruptible sleep rather than
exiting; this can be achieved by calling WaitLatch(). Make sure the WL_POSTMASTER_DEATH flag is
set when calling that function, and verify the return code for a prompt exit in the emergency case that
postgres itself has terminated.

When a background worker is registered using the RegisterDynamicBackgroundWorker function,
it is possible for the backend performing the registration to obtain information regarding the status of
the worker. Backends wishing to do this should pass the address of a BackgroundWorkerHandle
* as the second argument to RegisterDynamicBackgroundWorker. If the worker is successfully
registered, this pointer will be initialized with an opaque handle that can subsequently be
passed to GetBackgroundWorkerPid(BackgroundWorkerHandle *, pid_t *) or
TerminateBackgroundWorker(BackgroundWorkerHandle *). GetBackgroundWorkerPid can
be used to poll the status of the worker: a return value of BGWH_NOT_YET_STARTED indicates that the
worker has not yet been started by the postmaster; BGWH_STOPPED indicates that it has been started but
is no longer running; and BGWH_STARTED indicates that it is currently running. In this last case, the PID
will also be returned via the second argument. TerminateBackgroundWorker causes the postmaster to
send SIGTERM to the worker if it is running, and to unregister it as soon as it is not.

In some cases, a process which registers a background worker may wish to wait for the
worker to start up. This can be accomplished by initializing bgw_notify_pid to MyProcPid
and then passing the BackgroundWorkerHandle * obtained at registration time to
WaitForBackgroundWorkerStartup(BackgroundWorkerHandle *handle, pid_t *) function.
This function will block until the postmaster has attempted to start the background worker, or until the
postmaster dies. If the background runner is running, the return value will BGWH_STARTED, and the
PID will be written to the provided address. Otherwise, the return value will be BGWH_STOPPED or
BGWH_POSTMASTER_DIED.

The worker_spi contrib module contains a working example, which demonstrates some useful
techniques.

The maximum number of registered background workers is limited by max-worker-processes.

Greenplum Database Reference Guide Release Notes

1559

SQL Features, Reserved and Key Words, and Compliance
This section includes topics that identify SQL features and compliance in Greenplum Database:

• Summary of Greenplum Features
• Reserved Identifiers and SQL Key Words
• SQL 2008 Optional Feature Compliance

Summary of Greenplum Features
This section provides a high-level overview of the system requirements and feature set of Greenplum
Database. It contains the following topics:

• Greenplum SQL Standard Conformance
• Greenplum and PostgreSQL Compatibility

Greenplum SQL Standard Conformance
The SQL language was first formally standardized in 1986 by the American National Standards Institute
(ANSI) as SQL 1986. Subsequent versions of the SQL standard have been released by ANSI and
as International Organization for Standardization (ISO) standards: SQL 1989, SQL 1992, SQL 1999,
SQL 2003, SQL 2006, and finally SQL 2008, which is the current SQL standard. The official name of
the standard is ISO/IEC 9075-14:2008. In general, each new version adds more features, although
occasionally features are deprecated or removed.

It is important to note that there are no commercial database systems that are fully compliant with the SQL
standard. Greenplum Database is almost fully compliant with the SQL 1992 standard, with most of the
features from SQL 1999. Several features from SQL 2003 have also been implemented (most notably the
SQL OLAP features).

This section addresses the important conformance issues of Greenplum Database as they relate to the
SQL standards. For a feature-by-feature list of Greenplum's support of the latest SQL standard, see SQL
2008 Optional Feature Compliance.

Core SQL Conformance

In the process of building a parallel, shared-nothing database system and query optimizer, certain common
SQL constructs are not currently implemented in Greenplum Database. The following SQL constructs are
not supported:

1. Some set returning subqueries in EXISTS or NOT EXISTS clauses that Greenplum's parallel optimizer
cannot rewrite into joins.

2. Backwards scrolling cursors, including the use of FETCH PRIOR, FETCH FIRST, FETCH ABSOLUTE,
and FETCH RELATIVE.

3. In CREATE TABLE statements (on hash-distributed tables): a UNIQUE or PRIMARY KEY clause
must include all of (or a superset of) the distribution key columns. Because of this restriction, only
one UNIQUE clause or PRIMARY KEY clause is allowed in a CREATE TABLE statement. UNIQUE or
PRIMARY KEY clauses are not allowed on randomly-distributed tables.

4. CREATE UNIQUE INDEX statements that do not contain all of (or a superset of) the distribution key
columns. CREATE UNIQUE INDEX is not allowed on randomly-distributed tables.

Note that UNIQUE INDEXES (but not UNIQUE CONSTRAINTS) are enforced on a part basis within a
partitioned table. They guarantee the uniqueness of the key within each part or sub-part.

5. VOLATILE or STABLE functions cannot execute on the segments, and so are generally limited to being
passed literal values as the arguments to their parameters.

6. Triggers are not supported since they typically rely on the use of VOLATILE functions.

Greenplum Database Reference Guide Release Notes

1560

7. Referential integrity constraints (foreign keys) are not enforced in Greenplum Database. Users can
declare foreign keys and this information is kept in the system catalog, however.

8. Sequence manipulation functions CURRVAL and LASTVAL.

SQL 1992 Conformance

The following features of SQL 1992 are not supported in Greenplum Database:

1. NATIONAL CHARACTER (NCHAR) and NATIONAL CHARACTER VARYING (NVARCHAR). Users can
declare the NCHAR and NVARCHAR types, however they are just synonyms for CHAR and VARCHAR in
Greenplum Database.

2. CREATE ASSERTION statement.
3. INTERVAL literals are supported in Greenplum Database, but do not conform to the standard.
4. GET DIAGNOSTICS statement.
5. GLOBAL TEMPORARY TABLEs and LOCAL TEMPORARY TABLEs. Greenplum TEMPORARY TABLEs

do not conform to the SQL standard, but many commercial database systems have implemented
temporary tables in the same way. Greenplum temporary tables are the same as VOLATILE TABLEs in
Teradata.

6. UNIQUE predicate.
7. MATCH PARTIAL for referential integrity checks (most likely will not be implemented in Greenplum

Database).

SQL 1999 Conformance

The following features of SQL 1999 are not supported in Greenplum Database:

1. Large Object data types: BLOB, CLOB, NCLOB. However, the BYTEA and TEXT columns can store very
large amounts of data in Greenplum Database (hundreds of megabytes).

2. MODULE (SQL client modules).
3. CREATE PROCEDURE (SQL/PSM). This can be worked around in Greenplum Database by creating a

FUNCTION that returns void, and invoking the function as follows:

SELECT myfunc(args);

4. The PostgreSQL/Greenplum function definition language (PL/PGSQL) is a subset of Oracle's PL/SQL,
rather than being compatible with the SQL/PSM function definition language. Greenplum Database also
supports function definitions written in Python, Perl, Java, and R.

5. BIT and BIT VARYING data types (intentionally omitted). These were deprecated in SQL 2003, and
replaced in SQL 2008.

6. Greenplum supports identifiers up to 63 characters long. The SQL standard requires support for
identifiers up to 128 characters long.

7. Prepared transactions (PREPARE TRANSACTION, COMMIT PREPARED, ROLLBACK PREPARED). This
also means Greenplum does not support XA Transactions (2 phase commit coordination of database
transactions with external transactions).

8. CHARACTER SET option on the definition of CHAR() or VARCHAR() columns.
9. Specification of CHARACTERS or OCTETS (BYTES) on the length of a CHAR() or VARCHAR() column.

For example, VARCHAR(15 CHARACTERS) or VARCHAR(15 OCTETS) or VARCHAR(15 BYTES).
10.CURRENT_SCHEMA function.
11.CREATE DISTINCT TYPE statement. CREATE DOMAIN can be used as a work-around in Greenplum.
12.The explicit table construct.

SQL 2003 Conformance

The following features of SQL 2003 are not supported in Greenplum Database:

1. MERGE statements.

Greenplum Database Reference Guide Release Notes

1561

2. IDENTITY columns and the associated GENERATED ALWAYS/GENERATED BY DEFAULT clause. The
SERIAL or BIGSERIAL data types are very similar to INT or BIGINT GENERATED BY DEFAULT AS
IDENTITY.

3. MULTISET modifiers on data types.
4. ROW data type.
5. Greenplum Database syntax for using sequences is non-standard. For example, nextval('seq') is

used in Greenplum instead of the standard NEXT VALUE FOR seq.
6. GENERATED ALWAYS AS columns. Views can be used as a work-around.
7. The sample clause (TABLESAMPLE) on SELECT statements. The random() function can be used as a

work-around to get random samples from tables.
8. The partitioned join tables construct (PARTITION BY in a join).
9. For CREATE TABLE x (LIKE(y)) statements, Greenplum does not support the [INCLUDING|

EXCLUDING][DEFAULTS|CONSTRAINTS|INDEXES] clauses.
10.Greenplum array data types are almost SQL standard compliant with some exceptions. Generally

customers should not encounter any problems using them.

SQL 2008 Conformance

The following features of SQL 2008 are not supported in Greenplum Database:

1. BINARY and VARBINARY data types. BYTEA can be used in place of VARBINARY in Greenplum
Database.

2. FETCH FIRST or FETCH NEXT clause for SELECT, for example:

SELECT id, name FROM tab1 ORDER BY id OFFSET 20 ROWS FETCH
NEXT 10 ROWS ONLY;

Greenplum has LIMIT and LIMIT OFFSET clauses instead.
3. The ORDER BY clause is ignored in views and subqueries unless a LIMIT clause is also used. This is

intentional, as the Greenplum optimizer cannot determine when it is safe to avoid the sort, causing an
unexpected performance impact for such ORDER BY clauses. To work around, you can specify a really
large LIMIT. For example: SELECT * FROM mytable ORDER BY 1 LIMIT 9999999999

4. The row subquery construct is not supported.
5. TRUNCATE TABLE does not accept the CONTINUE IDENTITY and RESTART IDENTITY clauses.

Greenplum and PostgreSQL Compatibility
Greenplum Database is based on PostgreSQL 9.4. To support the distributed nature and typical workload
of a Greenplum Database system, some SQL commands have been added or modified, and there are
a few PostgreSQL features that are not supported. Greenplum has also added features not found in
PostgreSQL, such as physical data distribution, parallel query optimization, external tables, resource
queues, and enhanced table partitioning. For full SQL syntax and references, see the SQL Commands.

Note: Greenplum Database does not support the PostgreSQL large object facility for streaming
user data that is stored in large-object structures.

Note: Pivotal does not support using WITH OIDS or oids=TRUE to assign an OID system
column when creating or altering a table. This syntax is deprecated and will be removed in a future
Greenplum release.

Table 260: SQL Support in Greenplum Database

SQL Command Supported in Greenplum Modifications, Limitations,
Exceptions

ALTER AGGREGATE YES

https://www.postgresql.org/docs/9.4/largeobjects.html

Greenplum Database Reference Guide Release Notes

1562

SQL Command Supported in Greenplum Modifications, Limitations,
Exceptions

ALTER CONVERSION YES

ALTER DATABASE YES

ALTER DOMAIN YES

ALTER EXTENSION YES Changes the definition of a
Greenplum Database extension -
based on PostgreSQL 9.6.

ALTER FUNCTION YES

ALTER GROUP YES An alias for ALTER ROLE

ALTER INDEX YES

ALTER LANGUAGE YES

ALTER OPERATOR YES

ALTER OPERATOR CLASS YES

ALTER OPERATOR FAMILY YES

ALTER PROTOCOL YES

ALTER RESOURCE QUEUE YES Greenplum Database resource
management feature - not in
PostgreSQL.

ALTER ROLE YES Greenplum Database Clauses:

RESOURCE QUEUE queue_name
| none

ALTER SCHEMA YES

ALTER SEQUENCE YES

ALTER SYSTEM NO

ALTER TABLE YES Unsupported Clauses /
Options:

CLUSTER ON

ENABLE/DISABLE TRIGGER

Greenplum Database Clauses:

ADD | DROP | RENAME
| SPLIT | EXCHANGE
PARTITION | SET
SUBPARTITION TEMPLATE
| SET WITH (REORGANIZE=
true | false) | SET
DISTRIBUTED BY

ALTER TABLESPACE YES

ALTER TRIGGER NO

Greenplum Database Reference Guide Release Notes

1563

SQL Command Supported in Greenplum Modifications, Limitations,
Exceptions

ALTER TYPE YES Greenplum Database Clauses:

SET DEFAULT ENCODING

ALTER USER YES An alias for ALTER ROLE

ALTER VIEW YES

ANALYZE YES

BEGIN YES

CHECKPOINT YES

CLOSE YES

CLUSTER YES

COMMENT YES

COMMIT YES

COMMIT PREPARED NO

COPY YES Modified Clauses:

ESCAPE [AS] 'escape' |
'OFF'

Greenplum Database Clauses:

[LOG ERRORS] SEGMENT
REJECT LIMIT count [ROWS|
PERCENT]

CREATE AGGREGATE YES Unsupported Clauses /
Options:

[, SORTOP = sort_operator]

Greenplum Database Clauses:

[, COMBINEFUNC =
combinefunc]

Limitations:

The functions used to implement
the aggregate must be
IMMUTABLE functions.

CREATE CAST YES

CREATE CONSTRAINT TRIGGER NO

CREATE CONVERSION YES

CREATE DATABASE YES

CREATE DOMAIN YES

CREATE EXTENSION YES Loads a new extension into
Greenplum Database - based on
PostgreSQL 9.6.

Greenplum Database Reference Guide Release Notes

1564

SQL Command Supported in Greenplum Modifications, Limitations,
Exceptions

CREATE EXTERNAL TABLE YES Greenplum Database parallel
ETL feature - not in PostgreSQL
9.4.

CREATE FUNCTION YES Limitations:

Functions defined as STABLE or
VOLATILE can be executed in
Greenplum Database provided
that they are executed on
the master only. STABLE and
VOLATILE functions cannot be
used in statements that execute
at the segment level.

CREATE GROUP YES An alias for CREATE ROLE

CREATE INDEX YES Greenplum Database Clauses:

USING bitmap (bitmap indexes)

Limitations:

UNIQUE indexes are allowed only
if they contain all of (or a superset
of) the Greenplum distribution key
columns. On partitioned tables,
a unique index is only supported
within an individual partition - not
across all partitions.

CONCURRENTLY keyword not
supported in Greenplum.

CREATE LANGUAGE YES

CREATE MATERIALIZED VIEW YES Based on PostgreSQL 9.4.

CREATE OPERATOR YES Limitations:

The function used to implement
the operator must be an
IMMUTABLE function.

CREATE OPERATOR CLASS YES

CREATE OPERATOR FAMILY YES

CREATE PROTOCOL YES

CREATE RESOURCE QUEUE YES Greenplum Database resource
management feature - not in
PostgreSQL 9.4.

CREATE ROLE YES Greenplum Database Clauses:

RESOURCE QUEUE queue_name
| none

CREATE RULE YES

Greenplum Database Reference Guide Release Notes

1565

SQL Command Supported in Greenplum Modifications, Limitations,
Exceptions

CREATE SCHEMA YES

CREATE SEQUENCE YES Limitations:

The lastval() and currval()
functions are not supported.

The setval() function is only
allowed in queries that do not
operate on distributed data.

CREATE TABLE YES Unsupported Clauses /
Options:

[GLOBAL | LOCAL]

REFERENCES

FOREIGN KEY

[DEFERRABLE | NOT
DEFERRABLE]

Limited Clauses:

UNIQUE or PRIMARY KEY
constraints are only allowed
on hash-distributed tables
(DISTRIBUTED BY), and the
constraint columns must be the
same as or a superset of the
distribution key columns of the
table and must include all the
distribution key columns of the
partitioning key.

Greenplum Database Clauses:

DISTRIBUTED BY (column,
[...]) |

DISTRIBUTED RANDOMLY

PARTITION BY type (column
[, ...]) (partition_
specification, [...])

WITH (appendoptimized=
true
 [,compresslevel=
value,blocksize=value])

CREATE TABLE AS YES See CREATE TABLE

CREATE TABLESPACE YES Greenplum Database Clauses:

Specify host file system locations
for specific segment instances.

WITH (contentID_1='/path/
to/dir1...)

Greenplum Database Reference Guide Release Notes

1566

SQL Command Supported in Greenplum Modifications, Limitations,
Exceptions

CREATE TRIGGER NO

CREATE TYPE YES Greenplum Database Clauses:

COMPRESSTYPE |
COMPRESSLEVEL | BLOCKSIZE

Limitations:

The functions used to implement
a new base type must be
IMMUTABLE functions.

CREATE USER YES An alias for CREATE ROLE

CREATE VIEW YES

DEALLOCATE YES

DECLARE YES Unsupported Clauses /
Options:

SCROLL

FOR UPDATE [OF column
[, ...]]

Limitations:

Cursors cannot be backward-
scrolled. Forward scrolling is
supported.

PL/pgSQL does not have support
for updatable cursors.

DELETE YES

DISCARD YES Limitation: DISCARD ALL is not
supported.

DO YES PostgreSQL 9.0 feature

DROP AGGREGATE YES

DROP CAST YES

DROP CONVERSION YES

DROP DATABASE YES

DROP DOMAIN YES

DROP EXTENSION YES Removes an extension from
Greenplum Database – based on
PostgreSQL 9.6.

DROP EXTERNAL TABLE YES Greenplum Database parallel
ETL feature - not in PostgreSQL
9.4.

DROP FUNCTION YES

Greenplum Database Reference Guide Release Notes

1567

SQL Command Supported in Greenplum Modifications, Limitations,
Exceptions

DROP GROUP YES An alias for DROP ROLE

DROP INDEX YES

DROP LANGUAGE YES

DROP OPERATOR YES

DROP OPERATOR CLASS YES

DROP OPERATOR FAMILY YES

DROP OWNED NO

DROP PROTOCOL YES

DROP RESOURCE QUEUE YES Greenplum Database resource
management feature - not in
PostgreSQL 9.4.

DROP ROLE YES

DROP RULE YES

DROP SCHEMA YES

DROP SEQUENCE YES

DROP TABLE YES

DROP TABLESPACE YES

DROP TRIGGER NO

DROP TYPE YES

DROP USER YES An alias for DROP ROLE

DROP VIEW YES

END YES

EXECUTE YES

EXPLAIN YES

FETCH YES Unsupported Clauses /
Options:

LAST

PRIOR

BACKWARD

BACKWARD ALL

Limitations:

Cannot fetch rows in a
nonsequential fashion; backward
scan is not supported.

GRANT YES

INSERT YES

Greenplum Database Reference Guide Release Notes

1568

SQL Command Supported in Greenplum Modifications, Limitations,
Exceptions

LATERAL Join Type NO

LISTEN NO

LOAD YES

LOCK YES

MOVE YES See FETCH

NOTIFY NO

PREPARE YES

PREPARE TRANSACTION NO

REASSIGN OWNED YES

REFRESH MATERIALIZED VIEW YES Based on PostgreSQL 9.4.

REINDEX YES

RELEASE SAVEPOINT YES

RESET YES

REVOKE YES

ROLLBACK YES

ROLLBACK PREPARED NO

ROLLBACK TO SAVEPOINT YES

SAVEPOINT YES

SELECT YES Limitations:

Limited use of VOLATILE and
STABLE functions in FROM or
WHERE clauses

Text search (Tsearch2) is not
supported

FETCH FIRST or FETCH NEXT
clauses not supported

Greenplum Database Clauses
(OLAP):

[GROUP BY grouping_element
[, ...]]

[WINDOW window_name AS
(window_specification)]

[FILTER (WHERE condition)]
applied to an aggregate function
in the SELECT list

SELECT INTO YES See SELECT

SET YES

Greenplum Database Reference Guide Release Notes

1569

SQL Command Supported in Greenplum Modifications, Limitations,
Exceptions

SET CONSTRAINTS NO In PostgreSQL, this only applies
to foreign key constraints, which
are currently not enforced in
Greenplum Database.

SET ROLE YES

SET SESSION AUTHORIZATION YES Deprecated as of PostgreSQL 8.1
- see SET ROLE

SET TRANSACTION YES Limitations:

DEFERRABLE clause has no
effect.

SET TRANSACTION SNAPSHOT
command is not supported.

SHOW YES

START TRANSACTION YES

TRUNCATE YES

UNLISTEN NO

UPDATE YES Limitations:

SET not allowed for Greenplum
distribution key columns.

VACUUM YES Limitations:

VACUUM FULL is not
recommended in Greenplum
Database.

VALUES YES

Reserved Identifiers and SQL Key Words
This topic describes Greenplum Database reserved identifiers and object names, and SQL key words
recognized by the Greenplum Database and PostgreSQL command parsers.

Reserved Identifiers
In the Greenplum Database system, names beginning with gp_ and pg_ are reserved and should not be
used as names for user-created objects, such as tables, views, and functions.

The resource group names admin_group, default_group, and none are reserved. The resource
queue name pg_default is reserved.

The tablespace names pg_default and pg_global are reserved.

The role names gpadmin and gpmon are reserved. gpadmin is the default Greenplum Database
superuser role. The gpmon role owns the gpperfmon database and is also used by Greenplum Command
Center.

Greenplum Database Reference Guide Release Notes

1570

In data files, the characters that delimit fields (columns) and rows have a special meaning. If they appear
within the data you must escape them so that Greenplum Database treats them as data and not as
delimiters. The backslash character (\) is the default escape character. See Escaping for details.

See SQL Syntax in the PostgreSQL documentation for more information about SQL identifiers, constants,
operators, and expressions.

SQL Key Words
Table 261: SQL Key Words lists all tokens that are key words in Greenplum Database 6 and PostgreSQL
9.4.

ANSI SQL distinguishes between reserved and unreserved key words. According to the standard, reserved
key words are the only real key words; they are never allowed as identifiers. Unreserved key words only
have a special meaning in particular contexts and can be used as identifiers in other contexts. Most
unreserved key words are actually the names of built-in tables and functions specified by SQL. The
concept of unreserved key words essentially only exists to declare that some predefined meaning is
attached to a word in some contexts.

In the Greenplum Database and PostgreSQL parsers there are several different classes of tokens ranging
from those that can never be used as an identifier to those that have absolutely no special status in the
parser as compared to an ordinary identifier. (The latter is usually the case for functions specified by SQL.)
Even reserved key words are not completely reserved, but can be used as column labels (for example,
SELECT 55 AS CHECK, even though CHECK is a reserved key word).

Table 261: SQL Key Words classifies as "unreserved" those key words that are explicitly known to the
parser but are allowed as column or table names. Some key words that are otherwise unreserved cannot
be used as function or data type names and are marked accordingly. (Most of these words represent
built-in functions or data types with special syntax. The function or type is still available but it cannot be
redefined by the user.) Key words labeled "reserved" are not allowed as column or table names. Some
reserved key words are allowable as names for functions or data types; this is also shown in the table. If
not so marked, a reserved key word is only allowed as an "AS" column label name.

If you get spurious parser errors for commands that contain any of the listed key words as an identifier you
should try to quote the identifier to see if the problem goes away.

Before studying the table, note the fact that a key word is not reserved does not mean that the feature
related to the word is not implemented. Conversely, the presence of a key word does not indicate the
existence of a feature.

Table 261: SQL Key Words

Key Word Greenplum Database PostgreSQL 9.4

ABORT unreserved unreserved

ABSOLUTE unreserved unreserved

ACCESS unreserved unreserved

ACTION unreserved unreserved

ACTIVE unreserved

ADD unreserved unreserved

ADMIN unreserved unreserved

AFTER unreserved unreserved

AGGREGATE unreserved unreserved

ALL reserved reserved

https://www.postgresql.org/docs/9.4/sql-syntax.html

Greenplum Database Reference Guide Release Notes

1571

Key Word Greenplum Database PostgreSQL 9.4

ALSO unreserved unreserved

ALTER unreserved unreserved

ALWAYS unreserved unreserved

ANALYSE reserved reserved

ANALYZE reserved reserved

AND reserved reserved

ANY reserved reserved

ARRAY reserved reserved

AS reserved reserved

ASC reserved reserved

ASSERTION unreserved unreserved

ASSIGNMENT unreserved unreserved

ASYMMETRIC reserved reserved

AT unreserved unreserved

ATTRIBUTE unreserved unreserved

AUTHORIZATION reserved (can be function or type name) reserved (can be function or type name)

BACKWARD unreserved unreserved

BEFORE unreserved unreserved

BEGIN unreserved unreserved

BETWEEN unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

BIGINT unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

BINARY reserved (can be function or type name) reserved (can be function or type name)

BIT unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

BOOLEAN unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

BOTH reserved reserved

BY unreserved unreserved

CACHE unreserved unreserved

CALLED unreserved unreserved

CASCADE unreserved unreserved

CASCADED unreserved unreserved

CASE reserved reserved

CAST reserved reserved

Greenplum Database Reference Guide Release Notes

1572

Key Word Greenplum Database PostgreSQL 9.4

CATALOG unreserved unreserved

CHAIN unreserved unreserved

CHAR unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

CHARACTER unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

CHARACTERISTICSunreserved unreserved

CHECK reserved reserved

CHECKPOINT unreserved unreserved

CLASS unreserved unreserved

CLOSE unreserved unreserved

CLUSTER unreserved unreserved

COALESCE unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

COLLATE reserved reserved

COLLATION reserved (can be function or type name) reserved (can be function or type name)

COLUMN reserved reserved

COMMENT unreserved unreserved

COMMENTS unreserved unreserved

COMMIT unreserved unreserved

COMMITTED unreserved unreserved

CONCURRENCY unreserved

CONCURRENTLY reserved (can be function or type name) reserved (can be function or type name)

CONFIGURATION unreserved unreserved

CONNECTION unreserved unreserved

CONSTRAINT reserved reserved

CONSTRAINTS unreserved unreserved

CONTAINS unreserved

CONTENT unreserved unreserved

CONTINUE unreserved unreserved

CONVERSION unreserved unreserved

COPY unreserved unreserved

COST unreserved unreserved

CPU_RATE_LIMIT unreserved

CPUSET unreserved

Greenplum Database Reference Guide Release Notes

1573

Key Word Greenplum Database PostgreSQL 9.4

CREATE reserved reserved

CREATEEXTTABLE unreserved

CROSS reserved (can be function or type name) reserved (can be function or type name)

CSV unreserved unreserved

CUBE unreserved (cannot be function or type
name)

CURRENT unreserved unreserved

CURRENT_
CATALOG

reserved reserved

CURRENT_DATE reserved reserved

CURRENT_ROLE reserved reserved

CURRENT_
SCHEMA

reserved (can be function or type name) reserved (can be function or type name)

CURRENT_TIME reserved reserved

CURRENT_
TIMESTAMP

reserved reserved

CURRENT_USER reserved reserved

CURSOR unreserved unreserved

CYCLE unreserved unreserved

DATA unreserved unreserved

DATABASE unreserved unreserved

DAY unreserved unreserved

DEALLOCATE unreserved unreserved

DEC unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

DECIMAL unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

DECLARE unreserved unreserved

DECODE reserved

DEFAULT reserved reserved

DEFAULTS unreserved unreserved

DEFERRABLE reserved reserved

DEFERRED unreserved unreserved

DEFINER unreserved unreserved

DELETE unreserved unreserved

DELIMITER unreserved unreserved

Greenplum Database Reference Guide Release Notes

1574

Key Word Greenplum Database PostgreSQL 9.4

DELIMITERS unreserved unreserved

DENY unreserved

DESC reserved reserved

DICTIONARY unreserved unreserved

DISABLE unreserved unreserved

DISCARD unreserved unreserved

DISTINCT reserved reserved

DISTRIBUTED reserved

DO reserved reserved

DOCUMENT unreserved unreserved

DOMAIN unreserved unreserved

DOUBLE unreserved unreserved

DROP unreserved unreserved

DXL unreserved

EACH unreserved unreserved

ELSE reserved reserved

ENABLE unreserved unreserved

ENCODING unreserved unreserved

ENCRYPTED unreserved unreserved

END reserved reserved

ENUM unreserved unreserved

ERRORS unreserved

ESCAPE unreserved unreserved

EVENT unreserved unreserved

EVERY unreserved

EXCEPT reserved reserved

EXCHANGE unreserved

EXCLUDE reserved unreserved

EXCLUDING unreserved unreserved

EXCLUSIVE unreserved unreserved

EXECUTE unreserved unreserved

EXISTS unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

EXPAND unreserved

EXPLAIN unreserved unreserved

Greenplum Database Reference Guide Release Notes

1575

Key Word Greenplum Database PostgreSQL 9.4

EXTENSION unreserved unreserved

EXTERNAL unreserved unreserved

EXTRACT unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

FALSE reserved reserved

FAMILY unreserved unreserved

FETCH reserved reserved

FIELDS unreserved

FILL unreserved

FILTER unreserved unreserved

FIRST unreserved unreserved

FLOAT unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

FOLLOWING reserved unreserved

FOR reserved reserved

FORCE unreserved unreserved

FOREIGN reserved reserved

FORMAT unreserved

FORWARD unreserved unreserved

FREEZE reserved (can be function or type name) reserved (can be function or type name)

FROM reserved reserved

FULL reserved (can be function or type name) reserved (can be function or type name)

FULLSCAN unreserved

FUNCTION unreserved unreserved

FUNCTIONS unreserved unreserved

GLOBAL unreserved unreserved

GRANT reserved reserved

GRANTED unreserved unreserved

GREATEST unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

GROUP reserved reserved

GROUP_ID unreserved (cannot be function or type
name)

GROUPING unreserved (cannot be function or type
name)

HANDLER unreserved unreserved

Greenplum Database Reference Guide Release Notes

1576

Key Word Greenplum Database PostgreSQL 9.4

HASH unreserved

HAVING reserved reserved

HEADER unreserved unreserved

HOLD unreserved unreserved

HOST unreserved

HOUR unreserved unreserved

IDENTITY unreserved unreserved

IF unreserved unreserved

IGNORE unreserved

ILIKE reserved (can be function or type name) reserved (can be function or type name)

IMMEDIATE unreserved unreserved

IMMUTABLE unreserved unreserved

IMPLICIT unreserved unreserved

IN reserved reserved

INCLUDING unreserved unreserved

INCLUSIVE unreserved

INCREMENT unreserved unreserved

INDEX unreserved unreserved

INDEXES unreserved unreserved

INHERIT unreserved unreserved

INHERITS unreserved unreserved

INITIALLY reserved reserved

INLINE unreserved unreserved

INNER reserved (can be function or type name) reserved (can be function or type name)

INOUT unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

INPUT unreserved unreserved

INSENSITIVE unreserved unreserved

INSERT unreserved unreserved

INSTEAD unreserved unreserved

INT unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

INTEGER unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

INTERSECT reserved reserved

Greenplum Database Reference Guide Release Notes

1577

Key Word Greenplum Database PostgreSQL 9.4

INTERVAL unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

INTO reserved reserved

INVOKER unreserved unreserved

IS reserved (can be function or type name) reserved (can be function or type name)

ISNULL reserved (can be function or type name) reserved (can be function or type name)

ISOLATION unreserved unreserved

JOIN reserved (can be function or type name) reserved (can be function or type name)

KEY unreserved unreserved

LABEL unreserved unreserved

LANGUAGE unreserved unreserved

LARGE unreserved unreserved

LAST unreserved unreserved

LATERAL reserved reserved

LC_COLLATE unreserved unreserved

LC_CTYPE unreserved unreserved

LEADING reserved reserved

LEAKPROOF unreserved unreserved

LEAST unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

LEFT reserved (can be function or type name) reserved (can be function or type name)

LEVEL unreserved unreserved

LIKE reserved (can be function or type name) reserved (can be function or type name)

LIMIT reserved reserved

LIST unreserved

LISTEN unreserved unreserved

LOAD unreserved unreserved

LOCAL unreserved unreserved

LOCALTIME reserved reserved

LOCALTIMESTAMP reserved reserved

LOCATION unreserved unreserved

LOCK unreserved unreserved

LOG reserved (can be function or type name)

MAPPING unreserved unreserved

MASTER unreserved

Greenplum Database Reference Guide Release Notes

1578

Key Word Greenplum Database PostgreSQL 9.4

MATCH unreserved unreserved

MATERIALIZED unreserved unreserved

MAXVALUE unreserved unreserved

MEDIAN unreserved (cannot be function or type
name)

MEMORY_LIMIT unreserved

MEMORY_
SHARED_QUOTA

unreserved

MEMORY_SPILL_
RATIO

unreserved

MINUTE unreserved unreserved

MINVALUE unreserved unreserved

MISSING unreserved

MODE unreserved unreserved

MODIFIES unreserved

MONTH unreserved unreserved

MOVE unreserved unreserved

NAME unreserved unreserved

NAMES unreserved unreserved

NATIONAL unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

NATURAL reserved (can be function or type name) reserved (can be function or type name)

NCHAR unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

NEWLINE unreserved

NEXT unreserved unreserved

NO unreserved unreserved

NOCREATEEXTTABLEunreserved

NONE unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

NOOVERCOMMIT unreserved

NOT reserved reserved

NOTHING unreserved unreserved

NOTIFY unreserved unreserved

NOTNULL reserved (can be function or type name) reserved (can be function or type name)

NOWAIT unreserved unreserved

Greenplum Database Reference Guide Release Notes

1579

Key Word Greenplum Database PostgreSQL 9.4

NULL reserved reserved

NULLIF unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

NULLS unreserved unreserved

NUMERIC unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

OBJECT unreserved unreserved

OF unreserved unreserved

OFF unreserved unreserved

OFFSET reserved reserved

OIDS unreserved unreserved

ON reserved reserved

ONLY reserved reserved

OPERATOR unreserved unreserved

OPTION unreserved unreserved

OPTIONS unreserved unreserved

OR reserved reserved

ORDER reserved reserved

ORDERED unreserved

ORDINALITY unreserved unreserved

OTHERS unreserved

OUT unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

OUTER reserved (can be function or type name) reserved (can be function or type name)

OVER unreserved unreserved

OVERCOMMIT unreserved

OVERLAPS reserved (can be function or type name) reserved (can be function or type name)

OVERLAY unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

OWNED unreserved unreserved

OWNER unreserved unreserved

PARSER unreserved unreserved

PARTIAL unreserved unreserved

PARTITION reserved unreserved

PARTITIONS unreserved

PASSING unreserved unreserved

Greenplum Database Reference Guide Release Notes

1580

Key Word Greenplum Database PostgreSQL 9.4

PASSWORD unreserved unreserved

PERCENT unreserved

PLACING reserved reserved

PLANS unreserved unreserved

POSITION unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

PRECEDING reserved unreserved

PRECISION unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

PREPARE unreserved unreserved

PREPARED unreserved unreserved

PRESERVE unreserved unreserved

PRIMARY reserved reserved

PRIOR unreserved unreserved

PRIVILEGES unreserved unreserved

PROCEDURAL unreserved unreserved

PROCEDURE unreserved unreserved

PROGRAM unreserved unreserved

PROTOCOL unreserved

QUEUE unreserved

QUOTE unreserved unreserved

RANDOMLY unreserved

RANGE unreserved unreserved

READ unreserved unreserved

READABLE unreserved

READS unreserved

REAL unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

REASSIGN unreserved unreserved

RECHECK unreserved unreserved

RECURSIVE unreserved unreserved

REF unreserved unreserved

REFERENCES reserved reserved

REFRESH unreserved unreserved

REINDEX unreserved unreserved

Greenplum Database Reference Guide Release Notes

1581

Key Word Greenplum Database PostgreSQL 9.4

REJECT unreserved

RELATIVE unreserved unreserved

RELEASE unreserved unreserved

RENAME unreserved unreserved

REPEATABLE unreserved unreserved

REPLACE unreserved unreserved

REPLICA unreserved unreserved

REPLICATED unreserved

RESET unreserved unreserved

RESOURCE unreserved

RESTART unreserved unreserved

RESTRICT unreserved unreserved

RETURNING reserved reserved

RETURNS unreserved unreserved

REVOKE unreserved unreserved

RIGHT reserved (can be function or type name) reserved (can be function or type name)

ROLE unreserved unreserved

ROLLBACK unreserved unreserved

ROLLUP unreserved (cannot be function or type
name)

ROOTPARTITION unreserved

ROW unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

ROWS unreserved unreserved

RULE unreserved unreserved

SAVEPOINT unreserved unreserved

SCATTER reserved

SCHEMA unreserved unreserved

SCROLL unreserved unreserved

SEARCH unreserved unreserved

SECOND unreserved unreserved

SECURITY unreserved unreserved

SEGMENT unreserved

SEGMENTS unreserved

SELECT reserved reserved

Greenplum Database Reference Guide Release Notes

1582

Key Word Greenplum Database PostgreSQL 9.4

SEQUENCE unreserved unreserved

SEQUENCES unreserved unreserved

SERIALIZABLE unreserved unreserved

SERVER unreserved unreserved

SESSION unreserved unreserved

SESSION_USER reserved reserved

SET unreserved unreserved

SETOF unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

SETS unreserved (cannot be function or type
name)

SHARE unreserved unreserved

SHOW unreserved unreserved

SIMILAR reserved (can be function or type name) reserved (can be function or type name)

SIMPLE unreserved unreserved

SMALLINT unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

SNAPSHOT unreserved unreserved

SOME reserved reserved

SPLIT unreserved

SQL unreserved

STABLE unreserved unreserved

STANDALONE unreserved unreserved

START unreserved unreserved

STATEMENT unreserved unreserved

STATISTICS unreserved unreserved

STDIN unreserved unreserved

STDOUT unreserved unreserved

STORAGE unreserved unreserved

STRICT unreserved unreserved

STRIP unreserved unreserved

SUBPARTITION unreserved

SUBSTRING unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

SYMMETRIC reserved reserved

SYSID unreserved unreserved

Greenplum Database Reference Guide Release Notes

1583

Key Word Greenplum Database PostgreSQL 9.4

SYSTEM unreserved unreserved

TABLE reserved reserved

TABLES unreserved unreserved

TABLESPACE unreserved unreserved

TEMP unreserved unreserved

TEMPLATE unreserved unreserved

TEMPORARY unreserved unreserved

TEXT unreserved unreserved

THEN reserved reserved

THRESHOLD unreserved

TIES unreserved

TIME unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

TIMESTAMP unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

TO reserved reserved

TRAILING reserved reserved

TRANSACTION unreserved unreserved

TREAT unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

TRIGGER unreserved unreserved

TRIM unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

TRUE reserved reserved

TRUNCATE unreserved unreserved

TRUSTED unreserved unreserved

TYPE unreserved unreserved

TYPES unreserved unreserved

UNBOUNDED reserved unreserved

UNCOMMITTED unreserved unreserved

UNENCRYPTED unreserved unreserved

UNION reserved reserved

UNIQUE reserved reserved

UNKNOWN unreserved unreserved

UNLISTEN unreserved unreserved

UNLOGGED unreserved unreserved

Greenplum Database Reference Guide Release Notes

1584

Key Word Greenplum Database PostgreSQL 9.4

UNTIL unreserved unreserved

UPDATE unreserved unreserved

USER reserved reserved

USING reserved reserved

VACUUM unreserved unreserved

VALID unreserved unreserved

VALIDATE unreserved unreserved

VALIDATION unreserved

VALIDATOR unreserved unreserved

VALUE unreserved unreserved

VALUES unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

VARCHAR unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

VARIADIC reserved reserved

VARYING unreserved unreserved

VERBOSE reserved (can be function or type name) reserved (can be function or type name)

VERSION unreserved unreserved

VIEW unreserved unreserved

VIEWS unreserved unreserved

VOLATILE unreserved unreserved

WEB unreserved

WHEN reserved reserved

WHERE reserved reserved

WHITESPACE unreserved unreserved

WINDOW reserved reserved

WITH reserved reserved

WITHIN unreserved unreserved

WITHOUT unreserved unreserved

WORK unreserved unreserved

WRAPPER unreserved unreserved

WRITABLE unreserved

WRITE unreserved unreserved

XML unreserved unreserved

Greenplum Database Reference Guide Release Notes

1585

Key Word Greenplum Database PostgreSQL 9.4

XMLATTRIBUTES unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

XMLCONCAT unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

XMLELEMENT unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

XMLEXISTS unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

XMLFOREST unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

XMLPARSE unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

XMLPI unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

XMLROOT unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

XMLSERIALIZE unreserved (cannot be function or type
name)

unreserved (cannot be function or type
name)

YEAR unreserved unreserved

YES unreserved unreserved

ZONE unreserved unreserved

SQL 2008 Optional Feature Compliance
The following table lists the features described in the 2008 SQL standard. Features that are supported in
Greenplum Database are marked as YES in the 'Supported' column, features that are not implemented are
marked as NO.

For information about Greenplum features and SQL compliance, see the Greenplum Database
Administrator Guide.

Table 262: SQL 2008 Optional Feature Compliance Details

ID Feature Supported Comments

B011 Embedded Ada NO

B012 Embedded C NO Due to issues with
PostgreSQL ecpg

B013 Embedded COBOL NO

B014 Embedded Fortran NO

B015 Embedded MUMPS NO

B016 Embedded Pascal NO

B017 Embedded PL/I NO

B021 Direct SQL YES

Greenplum Database Reference Guide Release Notes

1586

ID Feature Supported Comments

B031 Basic dynamic SQL NO

B032 Extended dynamic SQL NO

B033 Untyped SQL-invoked
function arguments

NO

B034 Dynamic specification of
cursor attributes

NO

B035 Non-extended descriptor
names

NO

B041 Extensions to embedded
SQL exception
declarations

NO

B051 Enhanced execution
rights

NO

B111 Module language Ada NO

B112 Module language C NO

B113 Module language
COBOL

NO

B114 Module language
Fortran

NO

B115 Module language
MUMPS

NO

B116 Module language Pascal NO

B117 Module language PL/I NO

B121 Routine language Ada NO

B122 Routine language C NO

B123 Routine language
COBOL

NO

B124 Routine language
Fortran

NO

B125 Routine language
MUMPS

NO

B126 Routine language Pascal NO

B127 Routine language PL/I NO

B128 Routine language SQL NO

E011 Numeric data types YES

E011-01 INTEGER and
SMALLINT data types

YES

E011-02 DOUBLE PRECISION
and FLOAT data types

YES

Greenplum Database Reference Guide Release Notes

1587

ID Feature Supported Comments

E011-03 DECIMAL and NUMERIC
data types

YES

E011-04 Arithmetic operators YES

E011-05 Numeric comparison YES

E011-06 Implicit casting among
the numeric data types

YES

E021 Character data types YES

E021-01 CHARACTER data type YES

E021-02 CHARACTER VARYING
data type

YES

E021-03 Character literals YES

E021-04 CHARACTER_LENGTH
function

YES Trims trailing spaces
from CHARACTER values
before counting

E021-05 OCTET_LENGTH function YES

E021-06 SUBSTRING function YES

E021-07 Character concatenation YES

E021-08 UPPER and LOWER
functions

YES

E021-09 TRIM function YES

E021-10 Implicit casting among
the character string
types

YES

E021-11 POSITION function YES

E021-12 Character comparison YES

E031 Identifiers YES

E031-01 Delimited identifiers YES

E031-02 Lower case identifiers YES

E031-03 Trailing underscore YES

E051 Basic query specification YES

E051-01 SELECT DISTINCT YES

E051-02 GROUP BY clause YES

E051-03 GROUP BY can contain
columns not in SELECT
list

YES

E051-04 SELECT list items can be
renamed

YES

E051-05 HAVING clause YES

Greenplum Database Reference Guide Release Notes

1588

ID Feature Supported Comments

E051-06 Qualified * in SELECT list YES

E051-07 Correlation names in the
FROM clause

YES

E051-08 Rename columns in the
FROM clause

YES

E061 Basic predicates and
search conditions

YES

E061-01 Comparison predicate YES

E061-02 BETWEEN predicate YES

E061-03 IN predicate with list of
values

YES

E061-04 LIKE predicate YES

E061-05 LIKE predicate ESCAPE
clause

YES

E061-06 NULL predicate YES

E061-07 Quantified comparison
predicate

YES

E061-08 EXISTS predicate YES Not all uses work in
Greenplum

E061-09 Subqueries in
comparison predicate

YES

E061-11 Subqueries in IN
predicate

YES

E061-12 Subqueries in quantified
comparison predicate

YES

E061-13 Correlated subqueries YES

E061-14 Search condition YES

E071 Basic query expressions YES

E071-01 UNION DISTINCT table
operator

YES

E071-02 UNION ALL table
operator

YES

E071-03 EXCEPT DISTINCT
table operator

YES

E071-05 Columns combined via
table operators need not
have exactly the same
data type

YES

E071-06 Table operators in
subqueries

YES

Greenplum Database Reference Guide Release Notes

1589

ID Feature Supported Comments

E081 Basic Privileges NO Partial sub-feature
support

E081-01 SELECT privilege YES

E081-02 DELETE privilege YES

E081-03 INSERT privilege at the
table level

YES

E081-04 UPDATE privilege at the
table level

YES

E081-05 UPDATE privilege at the
column level

YES

E081-06 REFERENCES privilege at
the table level

NO

E081-07 REFERENCES privilege at
the column level

NO

E081-08 WITH GRANT OPTION YES

E081-09 USAGE privilege YES

E081-10 EXECUTE privilege YES

E091 Set Functions YES

E091-01 AVG YES

E091-02 COUNT YES

E091-03 MAX YES

E091-04 MIN YES

E091-05 SUM YES

E091-06 ALL quantifier YES

E091-07 DISTINCT quantifier YES

E101 Basic data manipulation YES

E101-01 INSERT statement YES

E101-03 Searched UPDATE
statement

YES

E101-04 Searched DELETE
statement

YES

E111 Single row SELECT
statement

YES

E121 Basic cursor support YES

E121-01 DECLARE CURSOR YES

E121-02 ORDER BY columns
need not be in select list

YES

Greenplum Database Reference Guide Release Notes

1590

ID Feature Supported Comments

E121-03 Value expressions in
ORDER BY clause

YES

E121-04 OPEN statement YES

E121-06 Positioned UPDATE
statement

NO

E121-07 Positioned DELETE
statement

NO

E121-08 CLOSE statement YES

E121-10 FETCH statement implicit
NEXT

YES

E121-17 WITH HOLD cursors YES

E131 Null value support YES

E141 Basic integrity
constraints

YES

E141-01 NOT NULL constraints YES

E141-02 UNIQUE constraints of
NOT NULL columns

YES Must be the same as
or a superset of the
Greenplum distribution
key

E141-03 PRIMARY KEY
constraints

YES Must be the same as
or a superset of the
Greenplum distribution
key

E141-04 Basic FOREIGN KEY
constraint with the NO
ACTION default for both
referential delete action
and referential update
action

NO

E141-06 CHECK constraints YES

E141-07 Column defaults YES

E141-08 NOT NULL inferred on
PRIMARY KEY

YES

E141-10 Names in a foreign key
can be specified in any
order

YES Foreign keys can be
declared but are not
enforced in Greenplum

E151 Transaction support YES

E151-01 COMMIT statement YES

E151-02 ROLLBACK statement YES

E152 Basic SET
TRANSACTION
statement

YES

Greenplum Database Reference Guide Release Notes

1591

ID Feature Supported Comments

E152-01 ISOLATION LEVEL
SERIALIZABLE clause

NO Can be declared but is
treated as a synonym for
REPEATABLE READ

E152-02 READ ONLY and READ
WRITE clauses

YES

E153 Updatable queries with
subqueries

NO

E161 SQL comments using
leading double minus

YES

E171 SQLSTATE support YES

E182 Module language NO

F021 Basic information
schema

YES

F021-01 COLUMNS view YES

F021-02 TABLES view YES

F021-03 VIEWS view YES

F021-04 TABLE_CONSTRAINTS
view

YES

F021-05 REFERENTIAL_
CONSTRAINTS view

YES

F021-06 CHECK_CONSTRAINTS
view

YES

F031 Basic schema
manipulation

YES

F031-01 CREATE TABLE
statement to create
persistent base tables

YES

F031-02 CREATE VIEW
statement

YES

F031-03 GRANT statement YES

F031-04 ALTER TABLE
statement: ADD COLUMN
clause

YES

F031-13 DROP TABLE statement:
RESTRICT clause

YES

F031-16 DROP VIEW statement:
RESTRICT clause

YES

F031-19 REVOKE statement:
RESTRICT clause

YES

F032 CASCADE drop behavior YES

Greenplum Database Reference Guide Release Notes

1592

ID Feature Supported Comments

F033 ALTER TABLE
statement: DROP
COLUMN clause

YES

F034 Extended REVOKE
statement

YES

F034-01 REVOKE statement
performed by other than
the owner of a schema
object

YES

F034-02 REVOKE statement:
GRANT OPTION FOR
clause

YES

F034-03 REVOKE statement to
revoke a privilege that
the grantee has WITH
GRANT OPTION

YES

F041 Basic joined table YES

F041-01 Inner join (but not
necessarily the INNER
keyword)

YES

F041-02 INNER keyword YES

F041-03 LEFT OUTER JOIN YES

F041-04 RIGHT OUTER JOIN YES

F041-05 Outer joins can be
nested

YES

F041-07 The inner table in a left
or right outer join can
also be used in an inner
join

YES

F041-08 All comparison operators
are supported (rather
than just =)

YES

F051 Basic date and time YES

F051-01 DATE data type
(including support of
DATE literal)

YES

F051-02 TIME data type
(including support
of TIME literal) with
fractional seconds
precision of at least 0

YES

Greenplum Database Reference Guide Release Notes

1593

ID Feature Supported Comments

F051-03 TIMESTAMP data type
(including support of
TIMESTAMP literal)
with fractional seconds
precision of at least 0
and 6

YES

F051-04 Comparison predicate
on DATE, TIME, and
TIMESTAMP data types

YES

F051-05 Explicit CAST between
datetime types and
character string types

YES

F051-06 CURRENT_DATE YES

F051-07 LOCALTIME YES

F051-08 LOCALTIMESTAMP YES

F052 Intervals and datetime
arithmetic

YES

F053 OVERLAPS predicate YES

F081 UNION and EXCEPT in
views

YES

F111 Isolation levels other
than SERIALIZABLE

YES

F111-01 READ UNCOMMITTED
isolation level

NO Can be declared but is
treated as a synonym for
READ COMMITTED

F111-02 READ COMMITTED
isolation level

YES

F111-03 REPEATABLE READ
isolation level

YES

F121 Basic diagnostics
management

NO

F122 Enhanced diagnostics
management

NO

F123 All diagnostics NO

F131- Grouped operations YES

F131-01 WHERE, GROUP BY,
and HAVING clauses
supported in queries with
grouped views

YES

F131-02 Multiple tables supported
in queries with grouped
views

YES

Greenplum Database Reference Guide Release Notes

1594

ID Feature Supported Comments

F131-03 Set functions supported
in queries with grouped
views

YES

F131-04 Subqueries with GROUP
BY and HAVING clauses
and grouped views

YES

F131-05 Single row SELECT with
GROUP BY and HAVING
clauses and grouped
views

YES

F171 Multiple schemas per
user

YES

F181 Multiple module support NO

F191 Referential delete
actions

NO

F200 TRUNCATE TABLE
statement

YES

F201 CAST function YES

F202 TRUNCATE TABLE:
identity column restart
option

NO

F221 Explicit defaults YES

F222 INSERT statement:
DEFAULT VALUES
clause

YES

F231 Privilege tables YES

F231-01 TABLE_PRIVILEGES
view

YES

F231-02 COLUMN_PRIVILEGES
view

YES

F231-03 USAGE_PRIVILEGES
view

YES

F251 Domain support

F261 CASE expression YES

F261-01 Simple CASE YES

F261-02 Searched CASE YES

F261-03 NULLIF YES

F261-04 COALESCE YES

F262 Extended CASE
expression

NO

Greenplum Database Reference Guide Release Notes

1595

ID Feature Supported Comments

F263 Comma-separated
predicates in simple
CASE expression

NO

F271 Compound character
literals

YES

F281 LIKE enhancements YES

F291 UNIQUE predicate NO

F301 CORRESPONDING in
query expressions

NO

F302 INTERSECT table
operator

YES

F302-01 INTERSECT DISTINCT
table operator

YES

F302-02 INTERSECT ALL table
operator

YES

F304 EXCEPT ALL table
operator

F311 Schema definition
statement

YES Partial sub-feature
support

F311-01 CREATE SCHEMA YES

F311-02 CREATE TABLE for
persistent base tables

YES

F311-03 CREATE VIEW YES

F311-04 CREATE VIEW: WITH
CHECK OPTION

NO

F311-05 GRANT statement YES

F312 MERGE statement NO

F313 Enhanced MERGE
statement

NO

F321 User authorization YES

F341 Usage Tables NO

F361 Subprogram support YES

F381 Extended schema
manipulation

YES

F381-01 ALTER TABLE
statement: ALTER
COLUMN clause

Some limitations on
altering distribution key
columns

F381-02 ALTER TABLE
statement: ADD
CONSTRAINT clause

Greenplum Database Reference Guide Release Notes

1596

ID Feature Supported Comments

F381-03 ALTER TABLE
statement: DROP
CONSTRAINT clause

F382 Alter column data type YES Some limitations on
altering distribution key
columns

F391 Long identifiers YES

F392 Unicode escapes in
identifiers

NO

F393 Unicode escapes in
literals

NO

F394 Optional normal form
specification

NO

F401 Extended joined table YES

F401-01 NATURAL JOIN YES

F401-02 FULL OUTER JOIN YES

F401-04 CROSS JOIN YES

F402 Named column joins
for LOBs, arrays, and
multisets

NO

F403 Partitioned joined tables NO

F411 Time zone specification YES Differences regarding
literal interpretation

F421 National character YES

F431 Read-only scrollable
cursors

YES Forward scrolling only

01 FETCH with explicit NEXT YES

02 FETCH FIRST NO

03 FETCH LAST YES

04 FETCH PRIOR NO

05 FETCH ABSOLUTE NO

06 FETCH RELATIVE NO

F441 Extended set function
support

YES

F442 Mixed column
references in set
functions

YES

F451 Character set definition NO

F461 Named character sets NO

Greenplum Database Reference Guide Release Notes

1597

ID Feature Supported Comments

F471 Scalar subquery values YES

F481 Expanded NULL
predicate

YES

F491 Constraint management YES

F501 Features and
conformance views

YES

F501-01 SQL_FEATURES view YES

F501-02 SQL_SIZING view YES

F501-03 SQL_LANGUAGES view YES

F502 Enhanced
documentation tables

YES

F502-01 SQL_SIZING_
PROFILES view

YES

F502-02 SQL_
IMPLEMENTATION_
INFO view

YES

F502-03 SQL_PACKAGES view YES

F521 Assertions NO

F531 Temporary tables YES Non-standard form

F555 Enhanced seconds
precision

YES

F561 Full value expressions YES

F571 Truth value tests YES

F591 Derived tables YES

F611 Indicator data types YES

F641 Row and table
constructors

NO

F651 Catalog name qualifiers YES

F661 Simple tables NO

F671 Subqueries in CHECK NO Intentionally omitted

F672 Retrospective check
constraints

YES

F690 Collation support NO

F692 Enhanced collation
support

NO

F693 SQL-session and client
module collations

NO

F695 Translation support NO

Greenplum Database Reference Guide Release Notes

1598

ID Feature Supported Comments

F696 Additional translation
documentation

NO

F701 Referential update
actions

NO

F711 ALTER domain YES

F721 Deferrable constraints NO

F731 INSERT column
privileges

YES

F741 Referential MATCH types NO No partial match

F751 View CHECK
enhancements

NO

F761 Session management YES

F762 CURRENT_CATALOG NO

F763 CURRENT_SCHEMA NO

F771 Connection
management

YES

F781 Self-referencing
operations

YES

F791 Insensitive cursors YES

F801 Full set function YES

F812 Basic flagging NO

F813 Extended flagging NO

F831 Full cursor update NO

F841 LIKE_REGEX predicate NO Non-standard syntax for
regex

F842 OCCURENCES_REGEX
function

NO

F843 POSITION_REGEX
function

NO

F844 SUBSTRING_REGEX
function

NO

F845 TRANSLATE_REGEX
function

NO

F846 Octet support in regular
expression operators

NO

F847 Nonconstant regular
expressions

NO

F850 Top-level ORDER
BY clause in query
expression

YES

Greenplum Database Reference Guide Release Notes

1599

ID Feature Supported Comments

F851 Top-level ORDER BY
clause in subqueries

NO

F852 Top-level ORDER BY
clause in views

NO

F855 Nested ORDER BY
clause in query
expression

NO

F856 Nested FETCH FIRST
clause in query
expression

NO

F857 Top-level FETCH
FIRST clause in query
expression

NO

F858 FETCH FIRST clause
in subqueries

NO

F859 Top-level FETCH FIRST
clause in views

NO

F860 FETCH FIRST
ROWcount in FETCH
FIRST clause

NO

F861 Top-level RESULT
OFFSET clause in query
expression

NO

F862 RESULT OFFSET clause
in subqueries

NO

F863 Nested RESULT
OFFSET clause in query
expression

NO

F864 Top-level RESULT
OFFSET clause in views

NO

F865 OFFSET ROWcount in
RESULT OFFSET clause

NO

S011 Distinct data types NO

S023 Basic structured types NO

S024 Enhanced structured
types

NO

S025 Final structured types NO

S026 Self-referencing
structured types

NO

S027 Create method by
specific method name

NO

S028 Permutable UDT options
list

NO

Greenplum Database Reference Guide Release Notes

1600

ID Feature Supported Comments

S041 Basic reference types NO

S043 Enhanced reference
types

NO

S051 Create table of type NO

S071 SQL paths in function
and type name
resolution

YES

S091 Basic array support NO Greenplum has arrays,
but is not fully standards
compliant

S091-01 Arrays of built-in data
types

NO Partially compliant

S091-02 Arrays of distinct types NO

S091-03 Array expressions NO

S092 Arrays of user-defined
types

NO

S094 Arrays of reference
types

NO

S095 Array constructors by
query

NO

S096 Optional array bounds NO

S097 Array element
assignment

NO

Greenplum Database Reference Guide Release Notes

1601

ID Feature Supported Comments

S098 ARRAY_AGG Partially Supported: Using
array_agg without a
window specification; for
example

SELECT array_agg(x)
FROM ...

SELECT array_agg (x
order by y) FROM ...

Not supported: Using
array_agg as an
aggregate derived
window function; for
example

SELECT array_agg(x)
over (ORDER BY y)
FROM ...

SELECT array_
agg(x order by y) over
(PARTITION BY z)
FROM ...

SELECT array_
agg(x order by y) over
(ORDER BY z) FROM ...

S111 ONLY in query
expressions

YES

S151 Type predicate NO

S161 Subtype treatment NO

S162 Subtype treatment for
references

NO

S201 SQL-invoked routines on
arrays

NO Functions can be passed
Greenplum array types

S202 SQL-invoked routines on
multisets

NO

S211 User-defined cast
functions

YES

S231 Structured type locators NO

S232 Array locators NO

S233 Multiset locators NO

S241 Transform functions NO

S242 Alter transform
statement

NO

S251 User-defined orderings NO

Greenplum Database Reference Guide Release Notes

1602

ID Feature Supported Comments

S261 Specific type method NO

S271 Basic multiset support NO

S272 Multisets of user-defined
types

NO

S274 Multisets of reference
types

NO

S275 Advanced multiset
support

NO

S281 Nested collection types NO

S291 Unique constraint on
entire row

NO

S301 Enhanced UNNEST NO

S401 Distinct types based on
array types

NO

S402 Distinct types based on
distinct types

NO

S403 MAX_CARDINALITY NO

S404 TRIM_ARRAY NO

T011 Timestamp in
Information Schema

NO

T021 BINARY and
VARBINARY data types

NO

T022 Advanced support
for BINARY and
VARBINARY data types

NO

T023 Compound binary literal NO

T024 Spaces in binary literals NO

T031 BOOLEAN data type YES

T041 Basic LOB data type
support

NO

T042 Extended LOB data type
support

NO

T043 Multiplier T NO

T044 Multiplier P NO

T051 Row types NO

T052 MAX and MIN for row
types

NO

T053 Explicit aliases for all-
fields reference

NO

Greenplum Database Reference Guide Release Notes

1603

ID Feature Supported Comments

T061 UCS support NO

T071 BIGINT data type YES

T101 Enhanced nullability
determiniation

NO

T111 Updatable joins, unions,
and columns

NO

T121 WITH (excluding
RECURSIVE) in query
expression

NO

T122 WITH (excluding
RECURSIVE) in
subquery

NO

T131 Recursive query NO

T132 Recursive query in
subquery

NO

T141 SIMILAR predicate YES

T151 DISTINCT predicate YES

T152 DISTINCT predicate
with negation

NO

T171 LIKE clause in table
definition

YES

T172 AS subquery clause in
table definition

YES

T173 Extended LIKE clause in
table definition

YES

T174 Identity columns NO

T175 Generated columns NO

T176 Sequence generator
support

NO

T177 Sequence generator
support: simple restart
option

NO

T178 Identity columns: simple
restart option

NO

T191 Referential action
RESTRICT

NO

T201 Comparable data types
for referential constraints

NO

T211 Basic trigger capability NO

Greenplum Database Reference Guide Release Notes

1604

ID Feature Supported Comments

T211-01 Triggers activated on
UPDATE, INSERT, or
DELETE of one base
table

NO

T211-02 BEFORE triggers NO

T211-03 AFTER triggers NO

T211-04 FOR EACH ROW triggers NO

T211-05 Ability to specify a
search condition that
must be true before the
trigger is invoked

NO

T211-06 Support for run-
time rules for the
interaction of triggers
and constraints

NO

T211-07 TRIGGER privilege YES

T211-08 Multiple triggers for
the same event are
executed in the order in
which they were created
in the catalog

NO Intentionally omitted

T212 Enhanced trigger
capability

NO

T213 INSTEAD OF triggers NO

T231 Sensitive cursors YES

T241 START TRANSACTION
statement

YES

T251 SET TRANSACTION
statement: LOCAL option

NO

T261 Chained transactions NO

T271 Savepoints YES

T272 Enhanced savepoint
management

NO

T281 SELECT privilege with
column granularity

YES

T285 Enhanced derived
column names

NO

T301 Functional dependencies NO

T312 OVERLAY function YES

T321 Basic SQL-invoked
routines

NO Partial support

Greenplum Database Reference Guide Release Notes

1605

ID Feature Supported Comments

T321-01 User-defined functions
with no overloading

YES

T321-02 User-defined stored
procedures with no
overloading

NO

T321-03 Function invocation YES

T321-04 CALL statement NO

T321-05 RETURN statement NO

T321-06 ROUTINES view YES

T321-07 PARAMETERS view YES

T322 Overloading of SQL-
invoked functions and
procedures

YES

T323 Explicit security for
external routines

YES

T324 Explicit security for SQL
routines

NO

T325 Qualified SQL parameter
references

NO

T326 Table functions NO

T331 Basic roles NO

T332 Extended roles NO

T351 Bracketed SQL
comments (/*...*/
comments)

YES

T431 Extended grouping
capabilities

NO

T432 Nested and
concatenated GROUPING
SETS

NO

T433 Multiargument
GROUPING function

NO

T434 GROUP BY DISTINCT NO

T441 ABS and MOD functions YES

T461 Symmetric BETWEEN
predicate

YES

T471 Result sets return value NO

T491 LATERAL derived table NO

T501 Enhanced EXISTS
predicate

NO

Greenplum Database Reference Guide Release Notes

1606

ID Feature Supported Comments

T511 Transaction counts NO

T541 Updatable table
references

NO

T561 Holdable locators NO

T571 Array-returning external
SQL-invoked functions

NO

T572 Multiset-returning
external SQL-invoked
functions

NO

T581 Regular expression
substring function

YES

T591 UNIQUE constraints of
possibly null columns

YES

T601 Local cursor references NO

T611 Elementary OLAP
operations

YES

T612 Advanced OLAP
operations

NO Partially supported

T613 Sampling NO

T614 NTILE function YES

T615 LEAD and LAG functions YES

T616 Null treatment option for
LEAD and LAG functions

NO

T617 FIRST_VALUE and
LAST_VALUE function

YES

T618 NTH_VALUE NO Function exists in
Greenplum but not all
options are supported

T621 Enhanced numeric
functions

YES

T631 N predicate with one list
element

NO

T641 Multiple column
assignment

NO Some syntax variants
supported

T651 SQL-schema statements
in SQL routines

NO

T652 SQL-dynamic
statements in SQL
routines

NO

T653 SQL-schema statements
in external routines

NO

Greenplum Database Reference Guide Release Notes

1607

ID Feature Supported Comments

T654 SQL-dynamic
statements in external
routines

NO

T655 Cyclically dependent
routines

NO

M001 Datalinks NO

M002 Datalinks via SQL/CLI NO

M003 Datalinks via Embedded
SQL

NO

M004 Foreign data support NO

M005 Foreign schema support NO

M006 GetSQLString routine NO

M007 TransmitRequest NO

M009 GetOpts and
GetStatistics routines

NO

M010 Foreign data wrapper
support

NO

M011 Datalinks via Ada NO

M012 Datalinks via C NO

M013 Datalinks via COBOL NO

M014 Datalinks via Fortran NO

M015 Datalinks via M NO

M016 Datalinks via Pascal NO

M017 Datalinks via PL/I NO

M018 Foreign data wrapper
interface routines in Ada

NO

M019 Foreign data wrapper
interface routines in C

NO

M020 Foreign data wrapper
interface routines in
COBOL

NO

M021 Foreign data wrapper
interface routines in
Fortran

NO

M022 Foreign data wrapper
interface routines in
MUMPS

NO

M023 Foreign data wrapper
interface routines in
Pascal

NO

Greenplum Database Reference Guide Release Notes

1608

ID Feature Supported Comments

M024 Foreign data wrapper
interface routines in PL/I

NO

M030 SQL-server foreign data
support

NO

M031 Foreign data wrapper
general routines

NO

X010 XML type YES

X011 Arrays of XML type YES

X012 Multisets of XML type NO

X013 Distinct types of XML
type

NO

X014 Attributes of XML type NO

X015 Fields of XML type NO

X016 Persistent XML values YES

X020 XMLConcat YES xmlconcat2() supported

X025 XMLCast NO

X030 XMLDocument NO

X031 XMLElement YES

X032 XMLForest YES

X034 XMLAgg YES

X035 XMLAgg: ORDER BY
option

YES

X036 XMLComment YES

X037 XMLPI YES

X038 XMLText NO

X040 Basic table mapping NO

X041 Basic table mapping:
nulls absent

NO

X042 Basic table mapping: null
as nil

NO

X043 Basic table mapping:
table as forest

NO

X044 Basic table mapping:
table as element

NO

X045 Basic table mapping:
with target namespace

NO

X046 Basic table mapping:
data mapping

NO

Greenplum Database Reference Guide Release Notes

1609

ID Feature Supported Comments

X047 Basic table mapping:
metadata mapping

NO

X048 Basic table mapping:
base64 encoding of
binary strings

NO

X049 Basic table mapping:
hex encoding of binary
strings

NO

X051 Advanced table
mapping: nulls absent

NO

X052 Advanced table
mapping: null as nil

NO

X053 Advanced table
mapping: table as forest

NO

X054 Advanced table
mapping: table as
element

NO

X055 Advanced table
mapping: target
namespace

NO

X056 Advanced table
mapping: data mapping

NO

X057 Advanced table
mapping: metadata
mapping

NO

X058 Advanced table
mapping: base64
encoding of binary
strings

NO

X059 Advanced table
mapping: hex encoding
of binary strings

NO

X060 XMLParse: Character
string input and
CONTENT option

YES

X061 XMLParse: Character
string input and
DOCUMENT option

YES

X065 XMLParse: BLOB input
and CONTENT option

NO

X066 XMLParse: BLOB input
and DOCUMENT option

NO

X068 XMLSerialize: BOM NO

X069 XMLSerialize: INDENT NO

Greenplum Database Reference Guide Release Notes

1610

ID Feature Supported Comments

X070 XMLSerialize: Character
string serialization and
CONTENT option

YES

X071 XMLSerialize: Character
string serialization and
DOCUMENT option

YES

X072 XMLSerialize: Character
string serialization

YES

X073 XMLSerialize: BLOB
serialization and
CONTENT option

NO

X074 XMLSerialize: BLOB
serialization and
DOCUMENT option

NO

X075 XMLSerialize: BLOB
serialization

NO

X076 XMLSerialize: VERSION NO

X077 XMLSerialize: explicit
ENCODING option

NO

X078 XMLSerialize: explicit
XML declaration

NO

X080 Namespaces in XML
publishing

NO

X081 Query-level XML
namespace declarations

NO

X082 XML namespace
declarations in DML

NO

X083 XML namespace
declarations in DDL

NO

X084 XML namespace
declarations in
compound statements

NO

X085 Predefined namespace
prefixes

NO

X086 XML namespace
declarations in
XMLTable

NO

X090 XML document predicate NO xml_is_well_formed_
document() supported

X091 XML content predicate NO xml_is_well_formed_
content() supported

X096 XMLExists NO xmlexists() supported

Greenplum Database Reference Guide Release Notes

1611

ID Feature Supported Comments

X100 Host language support
for XML: CONTENT
option

NO

X101 Host language support
for XML: DOCUMENT
option

NO

X110 Host language support
for XML: VARCHAR
mapping

NO

X111 Host language support
for XML: CLOB mapping

NO

X112 Host language support
for XML: BLOB mapping

NO

X113 Host language support
for XML: STRIP
WHITESPACE option

YES

X114 Host language support
for XML: PRESERVE
WHITESPACE option

YES

X120 XML parameters in SQL
routines

YES

X121 XML parameters in
external routines

YES

X131 Query-level
XMLBINARY clause

NO

X132 XMLBINARY clause in
DML

NO

X133 XMLBINARY clause in
DDL

NO

X134 XMLBINARY clause in
compound statements

NO

X135 XMLBINARY clause in
subqueries

NO

X141 IS VALID predicate:
data-driven case

NO

X142 IS VALID predicate:
ACCORDING TO clause

NO

X143 IS VALID predicate:
ELEMENT clause

NO

X144 IS VALID predicate:
schema location

NO

Greenplum Database Reference Guide Release Notes

1612

ID Feature Supported Comments

X145 IS VALID predicate
outside check
constraints

NO

X151 IS VALID predicate with
DOCUMENT option

NO

X152 IS VALID predicate with
CONTENT option

NO

X153 IS VALID predicate with
SEQUENCE option

NO

X155 IS VALID predicate:
NAMESPACE without
ELEMENT clause

NO

X157 IS VALID predicate:
NO NAMESPACE with
ELEMENT clause

NO

X160 Basic Information
Schema for registered
XML Schemas

NO

X161 Advanced Information
Schema for registered
XML Schemas

NO

X170 XML null handling
options

NO

X171 NIL ON NO CONTENT
option

NO

X181 XML(DOCUMENT
(UNTYPED)) type

NO

X182 XML(DOCUMENT
(ANY)) type

NO

X190 XML(SEQUENCE) type NO

X191 XML(DOCUMENT
(XMLSCHEMA)) type

NO

X192 XML(CONTENT
(XMLSCHEMA)) type

NO

X200 XMLQuery NO

X201 XMLQuery:
RETURNING CONTENT

NO

X202 XMLQuery:
RETURNING
SEQUENCE

NO

X203 XMLQuery: passing a
context item

NO

Greenplum Database Reference Guide Release Notes

1613

ID Feature Supported Comments

X204 XMLQuery: initializing an
XQuery variable

NO

X205 XMLQuery: EMPTY ON
EMPTY option

NO

X206 XMLQuery: NULL ON
EMPTY option

NO

X211 XML 1.1 support NO

X221 XML passing
mechanism BY VALUE

NO

X222 XML passing
mechanism BY REF

NO

X231 XML(CONTENT
(UNTYPED)) type

NO

X232 XML(CONTENT (ANY))
type

NO

X241 RETURNING CONTENT
in XML publishing

NO

X242 RETURNING
SEQUENCE in XML
publishing

NO

X251 Persistent XML values
of XML(DOCUMENT
(UNTYPED)) type

NO

X252 Persistent XML values
of XML(DOCUMENT
(ANY)) type

NO

X253 Persistent XML values
of XML(CONTENT
(UNTYPED)) type

NO

X254 Persistent XML values of
XML(CONTENT (ANY))
type

NO

X255 Persistent XML values of
XML(SEQUENCE) type

NO

X256 Persistent XML values
of XML(DOCUMENT
(XMLSCHEMA)) type

NO

X257 Persistent XML values
of XML(CONTENT
(XMLSCHEMA) type

NO

X260 XML type: ELEMENT
clause

NO

Greenplum Database Reference Guide Release Notes

1614

ID Feature Supported Comments

X261 XML type: NAMESPACE
without ELEMENT
clause

NO

X263 XML type: NO
NAMESPACE with
ELEMENT clause

NO

X264 XML type: schema
location

NO

X271 XMLValidate: data-
driven case

NO

X272 XMLValidate:
ACCORDING TO clause

NO

X273 XMLValidate: ELEMENT
clause

NO

X274 XMLValidate: schema
location

NO

X281 XMLValidate: with
DOCUMENT option

NO

X282 XMLValidate with
CONTENT option

NO

X283 XMLValidate with
SEQUENCE option

NO

X284 XMLValidate
NAMESPACE without
ELEMENT clause

NO

X286 XMLValidate: NO
NAMESPACE with
ELEMENT clause

NO

X300 XMLTable NO

X301 XMLTable: derived
column list option

NO

X302 XMLTable: ordinality
column option

NO

X303 XMLTable: column
default option

NO

X304 XMLTable: passing a
context item

NO

X305 XMLTable: initializing an
XQuery variable

NO

X400 Name and identifier
mapping

NO

1615

Chapter 8

Greenplum Client and Loader Tools Package

This documentation describes the contents of, and how to install, configure, and use the Greenplum client
and loader utility programs for UNIX and Windows systems.

Key topics in the documentation include:

• About the Tools Package
• Installing the Client and Loader Tools Package
• Configuring Greenplum Database for Remote Client Access
• Configuring a Client System for Kerberos Authentication
• Using the Client and Loader Tools
• Client and Loader Utility Reference

About the Tools Package Release Notes

1616

Chapter 9

About the Tools Package

The Greenplum client and loader tools package provides utility programs that you can install and run on a
host outside of your Greenplum Database cluster. The package is available on VMware Tanzu Network.

Greenplum utility programs provided in the client and loader tools package include:

Table 263: Client and Loader Programs

Program Description

createdb Create a Greenplum database. Requires superuser or specially-granted
Greenplum Database privileges.

createlang Register a language in a Greenplum database. Requires superuser or
specially-granted Greenplum Database privileges.

createuser Register a Greenplum user. Requires superuser or specially-granted
Greenplum Database privileges.

dropdb Drop a Greenplum database. Requires superuser or specially-granted
Greenplum Database privileges.

droplang Remove support for a language from a Greenplum database. Requires
superuser or specially-granted Greenplum Database privileges.

dropuser Remove a Greenplum user. Requires superuser or specially-granted
Greenplum Database privileges.

gpfdist Greenplum parallel file distribution program.

gpkafka Load Kafka data into Greenplum Database using the Pivotal Greenplum
Streaming Server.

gpload Greenplum data loading utility.

gpss Start a Pivotal Greenplum Streaming Server instance.

gpsscli Pivotal Greenplum Streaming Server client program.

pg_dump Dump the contents of a Greenplum database to a file.

pg_dumpall Dump the contents of all Greenplum databases to a file.

psql PostgreSQL interactive command-line interface for Greenplum Database.

Note: The Windows Greenplum client and loader tools package provides additional libraries and
programs, including kinit, kdestroy, and klist. The Windows package does not include the
gpkafka, gpsscli, and gpss programs.

The gpload program provided in the Windows package is backwards-compatible with Greenplum
Database 5.

https://network.pivotal.io/products/pivotal-gpdb

1617

Chapter 10

Installing the Client and Loader Tools Package

This section provides the information required to download and install the tools on your client machine.

Installing the Client and Loader Tools Package Release Notes

1618

Supported Platforms
You can install the client and loader tools package on any of the following systems:

• CentOS 6.x
• CentOS 7.x
• Ubuntu 18.04
• Windows 7 SP1 or later
• Windows Server 2012 or later

Installing the Client and Loader Tools Package Release Notes

1619

Installation Procedure
Perform the following procedure to install the Greenplum Database client tools on your system:

1. Download the appropriate installer package for your platform from VMware Tanzu Network. For
example, to download the CentOS 7.x package, click to select the Greenplum Clients->Clients for
RHEL 7 directory.

The naming format of a UNIX package file is greenplum-db-clients-<version>-
<platform>.<filetype>.

The naming format of a Windows package file is greenplum-db-clients-<version>-
x86_64.msi.

2. Note the file system location of the downloaded file.
3. If you are installing the package on a system running the CentOS or Ubuntu operating system, follow

the instructions in Running the UNIX Tools Installer.
4. If you are installing the package on a Windows system, follow the instructions in Running the Windows

Tools Installer.

https://network.pivotal.io/products/pivotal-gpdb

Installing the Client and Loader Tools Package Release Notes

1620

About Your Installation
Your Greenplum Database client and loader tools installation includes the following files and directories:

Table 264: Files and Directories

File/Directory Description

bin/ client and loader tool utility programs

ext/ (UNIX only) Python runtime components required by the UNIX utilities

greenplum_clients_path.<ext> environment set up script or batch file; the file extension
(<ext>) is operating system- or shell-dependent

lib/ libraries required by the utilities

LICENSE (UNIX)

'Pivotal License' (Windows)

license notices for the utilities

NOTICE (UNIX)

'Thirdparty Notice' (Windows)

attribution notices for the utilities

'GPDB Clients Version' (Windows only) file identifying the Windows package version

Installing the Client and Loader Tools Package Release Notes

1621

Running the UNIX Tools Installer
This section describes the client and loader tool package installation procedure for CentOS and Ubuntu
systems.

Prerequisites
You must have operating system superuser privileges to install the tools package.

Note: Installing the client tools package automatically installs dependent packages not already
installed on the system.

Procedure
Perform the following procedure to install the client and loader tools package on a CentOS or Ubuntu
system.

1. Locate the installer file that you downloaded from VMware Tanzu Network. The naming format of the
file is greenplum-db-clients-<version>-<platform>.<file_type>.

2. Install the package using your package management utility. You must be the superuser or have sudo
access to install packages. For example:

• To install the tools on a host running CentOS 7.x:

root@clientsys$ yum install greenplum-db-clients-6.1.0-rhel7-x86_64.rpm

• To install the tools on a host running Ubuntu 18.04:

root@clientsys$ apt install greenplum-db-clients-6.1.0-ubuntu18.04-
amd64.deb

The client tools are installed into the /usr/local/greenplum-db-clients-<version>/ directory.
The installation process creates a symbolic link from /usr/local/greenplum-db-clients to the
install directory.

Installing the Client and Loader Tools Package Release Notes

1622

Running the Windows Tools Installer
This section describes the client and loader tool package installation procedure for Windows systems.

Prerequisites
You must have operating system superuser privileges to install the tools package.

Procedure
Perform the following procedure to install the client and loader tools package on a Windows system.

1. The Greenplum Database client and loader tools for Windows require a recent Microsoft Visual C++
Redistributable for Visual Studio 2017. You must download and install an update as described in the
Microsoft support article titled The latest supported Visual C++ downloads.

2. If you plan to use the gpload.bat Greenplum Database loader program for Windows:

a. Ensure that a 64-bit version of Python 2.7 is installed on your system. Refer to Python 2.7.16 or the
source of your choice for Python download and install instructions.

b. You must also add the Python directory to your PATH.
3. Locate the installer .msi file that you downloaded from VMware Tanzu Network in a previous step. The

naming format of the Windows installer file is greenplum-db-clients-<version>-x86_64.msi.
4. Double-click on the greenplum-db-clients-<version>-x86_64.msi file to launch the installer.
5. Click Next on the Greenplum Clients Setup Wizard Welcome screen.
6. Read through the End-User License Agreement, and click I Agree to accept the terms of the license.
7. By default, the Greenplum Database client and load tools are installed into the following directory:

C:\Program Files\Greenplum\greenplum-clients\

Click Browse on the Custom Setup screen to choose another location.
8. Click Next when you have chosen the desired install path.
9. Click Install to begin the installation.
10.Click Finish to exit the Windows client and load tools installer.

https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads
https://www.python.org/downloads/release/python-2716/

1623

Chapter 11

Configuring Greenplum Database for Remote Client
Access

Greenplum Database does not, by default, accept remote client connections. You must configure
Greenplum Database to accept remote connections. This configuration involves identifying each client host
system and Greenplum Database role combination to which you want to provide access, and then adding
access rules to the pg_hba.conf client authentication configuration file. Refer to Allowing Connections to
Greenplum Database for detailed information about configuring remote client access.

Note: Ensure that the authentication method that you configure for a role is supported by the
Greenplum Database client program(s) that the role will execute.

In addition to configuring remote client access, you must also ensure that each Greenplum role that you
are allowing to connect to the master exists in the cluster, and that the role has the correct privileges to
database objects. Managing Roles and Privileges describes configuring Greenplum Database users and
granting privileges.

Configuring a Client System for Kerberos Authentication Release Notes

1624

Chapter 12

Configuring a Client System for Kerberos
Authentication

If your Greenplum Database cluster employs Kerberos user authentication, your client host must be
configured to access Greenplum with Kerberos. Refer to the following documentation for instructions on
configuring Kerberos authentication on a client system:

• UNIX client hosts - Configuring Kerberos for Linux Clients
• Windows client hosts - Configuring Kerberos for Windows Clients

If your Greenplum Database cluster is not using Kerberos for user authentication, then this configuration is
not required.

1625

Chapter 13

Using the Client and Loader Tools

This section provides the information required to set up your Greenplum Database client runtime
environment and use the client and loader tools. Topics include:

• Prerequisites
• Setting Up Your Greenplum Database Clients Runtime Environment
• Running the Client and Loader Programs
• Greenplum Database Documentation References
• Windows Considerations

Using the Client and Loader Tools Release Notes

1626

Prerequisites
Before using the client and loader tools, ensure that:

• Your Greenplum Database cluster is up and running, and you can identify the master host and port
number, if the master server process is not running on the default port (5432).

• Network connectivity exists between the client machine and the Greenplum Database master host. If
you are using the gpfdist, gpload, or gpss utility programs, network connectivity must also exist
between the client machine and all Greenplum Database segment hosts.

• You have installed and configured the tools and any dependent components on your client machine as
described in Installing the Client and Loader Tools Package.

• You can identify your Greenplum Database user/role name and password.
• You have created or can identify the Greenplum database, schema, and table objects of interest.

Contact your Greenplum Database administrator if you do not meet the prerequisites mentioned above.

Using the Client and Loader Tools Release Notes

1627

Setting Up Your Greenplum Database Clients Runtime
Environment

The client and loader tools package installs a file that you use to set up your Greenplum Database client
and loader environment. This script or batch file, named greenplum_clients_path.<ext> (where
the file extension <ext> is operating system- or shell-dependent) is located in the client tools root install
directory.

greenplum_clients_path.<ext>:

• Sets the runtime environment variables that are required by the utilities.
• Sets the $GPHOME_CLIENTS environment variable to point to the root directory of the client and loader

tools installation.
• Updates your $PATH to include $GPHOME_CLIENTS/bin.

You must source or run greenplum_clients_path.<ext> before you invoke any of the client or loader
programs. For example, run the following command on a CentOS or Ubuntu system to source the file:

user@clientsys$. /usr/local/greenplum-db-clients/greenplum_clients_path.sh

Note: Consider adding the command to source or run greenplum_clients_path.<ext> to
your shell or equivalent initialization file.

Using the Client and Loader Tools Release Notes

1628

Running the Client and Loader Programs
Clients always connect to Greenplum Database through the master host. In order for the client or loader
program to establish a connection to the master host, you provide the following connection parameters to
the program via options, a configuration file, or environment variables:

Table 265: Connection Parameters

Connection Parameter Description Environment Variable Name

Database name The name of the database to
which you want to connect.

PGDATABASE

Host name The host name of the Greenplum
Database master. The default
host is the local host.

PGHOST

Port The port number on which the
Greenplum Database master
server instance is running. The
default port is 5432.

PGPORT

User name The Greenplum Database user
(role) name. This name may not
necessarily be the same as your
operating system user name.

PGUSER

Note: Refer to the Client and Loader Utility Reference for the client or load command to determine
tool support for specifying these connection parameters via options, configuration property names,
and/or environment variables.

Using the Client and Loader Tools Release Notes

1629

Greenplum Database Documentation References
The following Greenplum Database documentation topics provide additional information about using
selected client and loader tools:

• gpfdist - Using the Greenplum Parallel File Server (gpfdist)
• gpkafka - Pivotal Greenplum Streaming Server Loading from a Kafka data source documentation
• gpload - Loading Data with gpload
• gpss, gpsscli - Pivotal Greenplum Streaming Server documentation
• psql - Connecting with psql

https://greenplum.docs.pivotal.io/streaming-server/1-4/kafka/loading.html
https://greenplum.docs.pivotal.io/streaming-server/1-4/intro.html

Using the Client and Loader Tools Release Notes

1630

Windows Considerations
Keep in mind these additional considerations when you use the Windows client and load programs:

• You must ensure that any ports that you identify in a gpload control file are unblocked by any firewall
running on the Windows client system.

• By default, gpload.bat attempts to create a directory named gpAdminLog in the directory from which
you execute the program, and writes its log files there. This operation will fail if you do not have write
permission to the current working directory. Run gpload.bat with the -l option to direct the log output
to a different location.

• Review the Greenplum Character Encoding and Formatting Rows documentation for Windows-specific
considerations for the tools.

1631

Chapter 14

Client and Loader Utility Reference

The Greenplum client and loader tools package includes the following utilities:

Note: The Windows Greenplum client and loader tools package provides additional libraries and
programs, including kinit, kdestroy, and klist. The Windows package does not include the
gpkafka, gpsscli, and gpss programs.

The gpload program provided in the Windows package is backwards-compatible with Greenplum
Database 5.

DataDirect ODBC Drivers for Greenplum Release Notes

1632

Chapter 15

DataDirect ODBC Drivers for Greenplum

ODBC drivers enable third party applications to connect via a common interface to the Greenplum
Database system. This document describes how to install DataDirect Connect XE for ODBC drivers for
Greenplum on either a Linux or Windows system. Unless specified otherwise, references to DataDirect
Connect XE for ODBC refer to DataDirect Connect XE for ODBC and DataDirect Connect64 XE for ODBC.

The DataDirect ODBC Drivers for Greenplum are available for download from VMware Tanzu Network.

https://network.pivotal.io/products/pivotal-gpdb

DataDirect ODBC Drivers for Greenplum Release Notes

1633

Prerequisites
• Install KornShell (ksh) on your system if it is not available.
• Note the appropriate serial number and license key (use the same number for both the serial number

and license key during the installation):

Driver Serial Number / License Key

DataDirect Connect XE for ODBC 7.1 drivers (32-
bit drivers)

1076681728

DataDirect Connect64 XE for ODBC 7.1 drivers
(64-bit drivers)

1076681984

DataDirect ODBC Drivers for Greenplum Release Notes

1634

Supported Client Platforms
DataDirect Connect64 XE for ODBC drivers for Greenplum support the following 64-bit client platforms:

• AIX 64: 7.1, 6.1, 5.3 Fixpack 5 or higher
• HP-UX IPF: 11i v3.0 (B.11.3X), 11i v2.0 (B.11.23)
• Linux Itanium: Red Hat Enterprise Linux (RHEL) 7.x, 6.x, RHEL 5.x, RHEL 4.x
• Linux x64: RHEL 7.x RHEL 6.x, RHEL 5.x, RHEL 4.x, SUSE Linux Enterprise Server (SLES) 15, SLES

12, SLES 11, SLES 10, Ubuntu 16.04
• Solaris on SPARC: 11 and 11 Express (Solaris 5.11), 10 (Solaris 5.10), 9 (Solaris 5.9), 8 (Solaris 5.8)
• Solaris x64: 11 (Solaris 5.11), 10 (Solaris 5.10)
• Windows x64: Windows 8, Windows 10, Windows Server 20016

DataDirect Connect XE for ODBC drivers for Greenplum support the following 32-bit client platforms:

• AIX 32: 7.1, 6.1, 5.3 Fixpack 5 or higher
• HP-UX IPF: 11i v3.0 (B.11.3X), 11i v2.0 (B.11.23)
• HP-UX PA-RISC: 11i v3 (B.11.3X), 11i v2 (B.11.23) 11i v1 (B.11.11), 11
• Linux x86: Red Hat Enterprise Linux (RHEL) 6.x, RHEL 5.x, RHEL 4.x, SUSE Linux Enterprise Server

(SLES) 11, SLES 10, Ubuntu 16.04, Ubuntu 14.04
• Solaris on SPARC: 11 and 11 Express (Solaris 5.11), 10 (Solaris 5.10), 9 (Solaris 5.9), 8 (Solaris 5.8)
• Windows: Windows 8, Windows 10, Windows Server 20016

DataDirect ODBC Drivers for Greenplum Release Notes

1635

Installing on Linux Systems
To install ODBC drivers on your client:

1. Log into VMware Tanzu Network and download the correct ODBC driver for your operating system. The
following Linux and UNIX files are available:

• PROGRESS_DATADIRECT_CONNECT64_ODBC_7.1.6.HOTFIX_LINUX_64.tar.gz

• PROGRESS_DATADIRECT_CONNECT_ODBC_7.1.6.HOTFIX_LINUX_32.tar.gz

• PROGRESS_DATADIRECT_CONNECT64_ODBC_7.1.6.HOTFIX_AIX_64.tar.gz

• PROGRESS_DATADIRECT_CONNECT_ODBC_7.1.6.HOTFIX_AIX_32.tar.gz

2. Unpack the files. For example:

$ tar -zxvf
 PROGRESS_DATADIRECT_CONNECT64_ODBC_7.1.6.HOTFIX_LINUX_64.tar.gz

The files are extracted to the current directory.
3. Execute the installer as the root user:

$ ksh unixmi.ksh
Progress DataDirect Connect for ODBC Setup is preparing....

English has been set as the installation language.

Log file : /tmp/logfile.492.1
--
Progress DataDirect Connect (R) and Connect XE for ODBC 7.1 SP5
for UNIX operating systems
--

The following operating system has been detected:

LinuxX64
Is this the current operating system on your machine (Y/N) ?

4. Press Y to confirm your operating system. The installer displays the license agreement.
5. Enter YES to accept the End User License Agreement. The installer prompts you for registration

information:

Enter YES to accept the above agreement : YES
Please enter the following information for proper registration.

In the Key field, enter either EVAL or the Key provided.

Name :

6. Enter the required registration information at each prompt:

Prompt Enter

Name: Name to associate with the registration.

Company: Your company name.

Serial Number: • 1076681984 for 64-bit driver, or
• 1076681728 for 32-bit driver.

https://network.pivotal.io/products/pivotal-gpdb

DataDirect ODBC Drivers for Greenplum Release Notes

1636

Prompt Enter

Key: • 1076681984 for 64-bit driver, or
• 1076681728 for 32-bit driver.

The installation program displays the registered driver information. For example:

You have chosen the Greenplum Wire Protocol driver.

Server Unlimited
Unlimited Connections

To change this information, enter C. Otherwise, press Enter to continue. :

7. Press Enter to continue with the installation. The installer prompts you for a temporary directory:

DataDirect Connect for ODBC Setup is preparing the installation.
Choose a temporary directory.

Enter the full path to the temporary install directory.[/tmp]:

8. Press Enter to accept the default /tmp directory or enter a custom directory to store temporary files.
The installer extracts temporary files and prompts you for an installation directory:

Checking for available space...

There is enough space.
Extracting files...

Choose a destination directory.
Enter the full path to the install directory.[/opt/Progress/DataDirect/
Connect64_for_ODBC_71]:

9. Press Enter to accept the default directory or enter a custom destination directory. The installer checks
for available space and installs the software:

Checking for available space...

There is enough space.
Extracting files...

Creating license file......

DataDirect Connect for ODBC Setup successfully removed all of the
 temporary files.

Thank you for using Progress DataDirect products under OEM license to
 Greenplum Inc.

Would you like to install another product (Y/N) ? [Y]

10.Enter N to exit the installer.

Configuring the Driver on Linux
After you install the driver software, perform these steps to configure the driver.

DataDirect ODBC Drivers for Greenplum Release Notes

1637

1. Change to the installation directory for your driver. For example:

$ cd /opt/Progress/DataDirect/Connect64_for_ODBC_71/

2. Set the LD_LIBRARY_PATH, ODBCINI and ODBCINST environment variables with the command:

$ source odbc.sh

3. Open the odbc.ini file and create a new DSN entry. You can use the existing "Greenplum Wire
Protocol" entry as a template.

$ vi $ODBCINI

You must edit the following entries to add values that match your system:

Entry Description

Database Greenplum database name.

HostName Master host name.

PortNumber Master host port number.

LogonID Greenplum Database user.

Password Password.

4. Verify the driver version:

$ cd /opt/Progress/DataDirect/Connect64_for_ODBC_71/bin
$./ddtestlib ddgplm27.so
Load of ddgplm27.so successful, qehandle is 0x15C9EC0
File version: 07.16.0389 (B0562, U0408)

Testing the Driver Connection on Linux
To test the DSN connection:

1. Execute the example utility to test the DSN connection, entering the Greenplum Wire Protocol data
source name and the credentials of a Greenplum user. For example:

$ cd /opt/Progress/DataDirect/Connect64_for_ODBC_71/samples/example
$./example
./example DataDirect Technologies, Inc. ODBC Example Application.
Enter the data source name : Greenplum Wire Protocol
Enter the user name : gpadmin
Enter the password : gpadmin

Enter SQL statements (Press ENTER to QUIT)
SQL>

2. Enter the following select statement to confirm database connectivity:

Enter SQL statements (Press ENTER to QUIT)
SQL> select version();

version
PostgreSQL 8.3.23 (Greenplum Database 5.0.0 build
 commit:8c709516061cff5476c03d6e2da99aae42722ae1) on x86_64-pc-linux-gnu,
 compiled by GCC gcc (GCC) 6.2.0 compiled on Sep 1 2017 22:39:53

Enter SQL statements (Press ENTER to QUIT)

DataDirect ODBC Drivers for Greenplum Release Notes

1638

SQL>

3. Press the ENTER key to exit the example application.

DataDirect ODBC Drivers for Greenplum Release Notes

1639

Installing on Windows Systems
To install ODBC drivers on your client:

1. Log into VMware Tanzu Network and download the correct ODBC driver for your operating system (32-
bit or 64-bit). The following Windows files are available:

• PROGRESS_DATADIRECT_CONNECT64_ODBC_7.1.6.HOTFIX_WIN_64.zip

• PROGRESS_DATADIRECT_CONNECT_ODBC_7.1.6.HOTFIX_WIN_32.zip

2. Uncompress the installer.
3. Double-click setup.exe to launch the install wizard.
4. If necessary, permit the InstallAnywhere installer to run.
5. Click Next at the Introduction screen to begin the installation.
6. Accept the End User License Agreement and click Next.
7. Select OEM or Licensed Installation as the installation type and click Next.
8. Enter your licensing information: Division name, Company Name, and serial number/license key found

in Prerequisites.
9. Select Add. You should see this driver in the License dialog box: ODBC Greenplum Wire Protocol Third

Party All Platform Server Unlimited Cores
10.Select Next.
11.Choose options appropriate for your installation. For example, select to replace the existing drivers and/

or to create the default data sources. Click Next.
12.Accept the default installation directory or choose a custom directory. Click Next.
13.Verify the selected installation options, and click Install to begin installation. The installation process

may take several minutes.
14.Select Done to complete installing the driver package.

Verifying the Version on Windows
To verify your driver version:

1. Select Start > All Programs > DataDirect > ODBC Administrator to open the Windows ODBC
Administrator.

2. Click the Drivers tab, and scroll down to DataDirect <version> Greenplum Wire Protocol. Ensure that
you see the expected version number.

Configuring and Testing the Driver on Windows
To configure and test a DSN connection to a Greenplum Database:

1. Open the ODBC Administrator.
2. Select the System DSN tab.
3. Select Add.
4. Select DataDirect 7.1 Greenplum Wire Protocol and click Finish.
5. Enter the details for your chosen Greenplum Database instance. For example:

Recommended: Set the Max Long Varchar size.

Select the Advanced tab.

In Max Long Varchar Size, enter 8192 then select Apply.

https://network.pivotal.io/products/pivotal-gpdb

DataDirect ODBC Drivers for Greenplum Release Notes

1640

6. Select Test Connect.
7. Enter your user name and password, then select OK.
8. You should see the confirmation message Connection Established!

If your connection fails, check the following for accuracy:

• Host Name
• Port Number
• Database Name
• User Name
• Password
• Greenplum instance is active

DataDirect ODBC Drivers for Greenplum Release Notes

1641

DataDirect Driver Documentation
For more information on working with Data Direct, see documentation that is installed with the driver.
By default, you can access the installed documentation by using a Web browser to open the file /opt/
Progress/DataDirect/Connect64_for_ODBC_71/help/index.html.

Documentation is also available online at https://www.progress.com/documentation/datadirect-connectors.
Titles include:

• User's Guide
• Reference
• Troubleshooting Guide
• Installation Help
• Windows Readme
• UNIX/Linux Readme

https://www.progress.com/documentation/datadirect-connectors
http://media.datadirect.com/download/docs/odbc/allodbc/
http://media.datadirect.com/download/docs/odbc/allodbc/#page/odbc%2Freference.html%23
http://media.datadirect.com/download/docs/odbc/allodbc/#page/odbc%2Ftroubleshooting-guide.html%23
http://media.datadirect.com/download/docs/odbc/odbcig/help.html
http://media.datadirect.com/download/docs/odbc64/readme/winread.htm
http://media.datadirect.com/download/docs/odbc/readme/unixread.htm

DataDirect JDBC Driver for Greenplum Release Notes

1642

Chapter 16

DataDirect JDBC Driver for Greenplum

DataDirect JDBC drivers are compliant with the Type 4 architecture, but provide advanced features that
define them as Type 5 drivers. Additionally, the drivers consistently support the latest database features
and are fully compliant with Java™ SE 8 and JDBC 4.0 functionality.

The DataDirect JDBC Driver for Greenplum is available for download from VMware Tanzu Network.

https://network.pivotal.io/products/pivotal-gpdb

DataDirect JDBC Driver for Greenplum Release Notes

1643

Prerequisites
• The DataDirect JDBC Driver requires Java SE 5 or higher. See System and Product Requirements in

the DataDirect documentation for information and requirements associated with specific features of the
JDBC driver.

• The license key is embedded in the greenplum.jar file itself. You do not need to apply a specific
license key to the driver to activate it.

http://media.datadirect.com/download/docs/jdbc/jdbcig/help.html#page/jdbcconnectinstall%2Fsystem-and-product-requirements.html%23

DataDirect JDBC Driver for Greenplum Release Notes

1644

Downloading the DataDirect JDBC Driver
To install the JDBC driver on your client:

1. Log into VMware Tanzu Network and download the DataDirect JDBC driver file:
PROGRESS_DATADIRECT_JDBC_DRIVER_PIVOTAL_GREENPLUM_5.1.4.zip.

2. Extract the downloaded ZIP file.
3. Add the full path to the PROGRESS_DATADIRECT_JDBC_DRIVER_PIVOTAL_GREENPLUM_5.1.4.jar

to your Java CLASSPATH environment variable, or add it to your classpath with the -classpath option
when executing a Java application.

https://network.pivotal.io/products/pivotal-gpdb

DataDirect JDBC Driver for Greenplum Release Notes

1645

Obtaining Version Details for the Driver
To view the JDBC driver version information:

1. Change to the directory that contains the downloaded
PROGRESS_DATADIRECT_JDBC_DRIVER_PIVOTAL_GREENPLUM_5.1.4.jar driver file. For
example:

$ cd /opt/Progress/DataDirect/Connect_for_JDBC_51/lib

2. Execute the data source class to display the version information.

For Linux/Unix systems:

$ java -classpath
 PROGRESS_DATADIRECT_JDBC_DRIVER_PIVOTAL_GREENPLUM_5.1.4.jar
 com.pivotal.jdbc.GreenplumDriver
[Pivotal][Greenplum JDBC Driver]Driver Version: 5.1.4.000223
 (F000432.U000208)

For Windows systems:

java -classpath .;.\greenplum.jar com.pivotal.jdbc.GreenplumDriver
[Pivotal][Greenplum JDBC Driver]Driver Version: 5.1.4.000223
 (F000432.U000208)

DataDirect JDBC Driver for Greenplum Release Notes

1646

Usage Information
The JDBC driver is provided in the greenplum.jar file. Use the following data source class and
connection URL information with the driver.

Property Description

Driver File Name greenplum.jar

Data Source Class com.pivotal.jdbc.GreenplumDriver

Connection URL jdbc:pivotal:greenplum://host:port;DatabaseName=
<name>

Driver Defaults FetchTWFSasTime=true

MaxLongVarcharSize=8190

MaxNumericPrecision=28

MaxNumericScale=6

PrepareThreshold=0

ResultSetMetadataOptions=1

SupportsCatalogs=true

DataDirect JDBC Driver for Greenplum Release Notes

1647

Configuring Prepared Statement Execution
The DataDirect JDBC driver version 5.1.4.000270 (F000450.U000214) introduced support for the
PrepareThreshold connection property. This property specifies the number of prepared statement
executions to be performed before the driver switches to using server-side prepared statements.

The PrepareThreshold default value is 0, always use server-side prepare for prepared statements. This
setting preserves the behavior of previous versions of the JDBC driver.

When the PrepareThreshold value is greater than 1, it specifies on which execution of a prepared
statement the driver starts using server-side prepared statements.

Note: statement.executeBatch() always uses server-side prepare for prepared statements.
This matches the behavior of the PostgreSQL open source JDBC driver.

Refer to PrepareThreshold in the DataDirect documentation for additional information about this connection
property.

Limitation
When the PrepareThreshold value is greater than one and the prepared statement
includes parameterized operations, the driver does not send any SQL prepare calls during
connection.prepareStatement(). The driver instead sends the query all at once, at execution time.
This requires that the driver determine the data types of every column before it sends the query to the
server. While the driver can make this determination for many data types, it cannot for the JDBC types that
can be mapped to multiple Greenplum data types:

• BIT VARYING
• BOOLEAN
• JSON
• TIME WITH TIME ZONE
• UUIDCOL

To work around this limitation, set PrepareThreshold to 0 when a prepared statement uses
parameterized values with any of the above data types. And use ResultSet.getMetaData() to
determine if any of the above types are used in a query in advance of submitting the prepared statement.

Note: GPORCA does not support prepared statements that have parameterized values, and will
fall back to using the Postgres Planner.

http://media.datadirect.com/download/docs/jdbc/alljdbc/index.html#page/jdbcconnect/preparethreshold.html

DataDirect JDBC Driver for Greenplum Release Notes

1648

DataDirect Driver Documentation
For more information on working with the Data Direct JDBC driver, see documentation available online at
https://www.progress.com/documentation/datadirect-connectors. Titles include:

• User's Guide
• Reference
• Installation Help
• Readme
• Quick Start

https://www.progress.com/documentation/datadirect-connectors
http://media.datadirect.com/download/docs/jdbc/alljdbc/help.html
http://media.datadirect.com/download/docs/jdbc/alljdbc/help.html
http://media.datadirect.com/download/docs/jdbc/jdbcig/help.html
http://media.datadirect.com/download/docs/jdbc/readme/jdbcread.htm
http://media.datadirect.com/download/eval_docs/jdbc-quickstart.htm

	Copyright
	Contents
	Pivotal Greenplum 6.11 Release Notes
	Release 6.11.2
	Changed Features
	Resolved Issues

	Release 6.11.1
	Changed Features
	Resolved Issues
	Upgrading from Greenplum 6.x to Greenplum 6.11

	Release 6.11.0
	Features
	Resolved Issues
	Upgrading from Greenplum 6.x to Greenplum 6.11

	Deprecated Features
	Migrating Data to Greenplum 6
	Known Issues and Limitations
	Differences Compared to Open Source Greenplum Database

	Installing and Upgrading Greenplum
	Platform Requirements
	Operating Systems
	Software Dependencies
	Java

	Hardware and Network
	Storage
	Tools and Extensions Compatibility
	Client Tools
	Extensions
	Data Connectors
	GPText
	Greenplum Command Center

	Hadoop Distributions

	Introduction to Greenplum
	The Greenplum Master
	Master Redundancy

	The Segments
	Segment Redundancy
	Segment Failover and Recovery

	Example Segment Host Hardware Stack
	Example Segment Disk Layout

	The Interconnect
	Interconnect Redundancy
	Network Interface Configuration
	Switch Configuration

	ETL Hosts for Data Loading
	Greenplum Performance Monitoring

	Estimating Storage Capacity
	Calculating Usable Disk Capacity
	Calculating User Data Size
	Calculating Space Requirements for Metadata and Logs

	Configuring Your Systems
	Disabling SELinux and Firewall Software
	Recommended OS Parameters Settings
	Synchronizing System Clocks
	Creating the Greenplum Administrative User
	Next Steps

	Installing the Greenplum Database Software
	Installing Greenplum Database
	(Optional) Installing to a Non-Default Directory
	Enabling Passwordless SSH
	Confirming Your Installation
	About Your Greenplum Database Installation
	Next Steps

	Creating the Data Storage Areas
	Creating Data Storage Areas on the Master and Standby Master Hosts
	Creating Data Storage Areas on Segment Hosts
	Next Steps

	Validating Your Systems
	Validating Network Performance
	Validating Disk I/O and Memory Bandwidth

	Initializing a Greenplum Database System
	Overview
	Initializing Greenplum Database
	Creating the Initialization Host File
	Creating the Greenplum Database Configuration File
	Running the Initialization Utility
	Troubleshooting Initialization Problems

	Setting the Greenplum Database Timezone

	Setting Greenplum Environment Variables
	Next Steps
	Allowing Client Connections
	Creating Databases and Loading Data

	Installing Optional Extensions
	Procedural Language, Machine Learning, and Geospatial Extensions
	Python Data Science Module Package
	Python Data Science Modules
	Installing the Python Data Science Module Package
	Uninstalling the Python Data Science Module Package

	R Data Science Library Package
	R Data Science Libraries
	Installing the R Data Science Library Package
	Uninstalling the R Data Science Library Package

	Greenplum Platform Extension Framework (PXF)

	Installing Additional Supplied Modules
	Configuring Timezone and Localization Settings
	Configuring the Timezone
	About Locale Support in Greenplum Database
	Locale Behavior
	Troubleshooting Locales

	Character Set Support
	Setting the Character Set
	Character Set Conversion Between Server and Client

	Upgrading to Greenplum 6
	Upgrading from an Earlier Greenplum 6 Release
	Upgrading from 6.x to a Newer 6.x Release
	Troubleshooting a Failed Upgrade

	Migrating Data from Greenplum 4.3 or 5 to Greenplum 6
	Preparing the Greenplum 6 Cluster
	Preparing Greenplum 4.3 and 5 Databases for Backup
	Backing Up and Restoring a Database
	Completing the Migration
	Working With Hash Operator Classes in Greenplum 6

	Enabling iptables (Optional)
	Example iptables Rules
	Example Master and Standby Master iptables Rules
	Example Segment Host iptables Rules

	Installation Management Utilities
	Greenplum Environment Variables
	Required Environment Variables
	GPHOME
	PATH
	LD_LIBRARY_PATH
	MASTER_DATA_DIRECTORY

	Optional Environment Variables
	PGAPPNAME
	PGDATABASE
	PGHOST
	PGHOSTADDR
	PGPASSWORD
	PGPASSFILE
	PGOPTIONS
	PGPORT
	PGUSER
	PGDATESTYLE
	PGTZ
	PGCLIENTENCODING

	Example Ansible Playbook

	Greenplum Database Administrator Guide
	Greenplum Database Concepts
	About the Greenplum Architecture
	About the Greenplum Master
	About the Greenplum Segments
	About the Greenplum Interconnect

	About Management and Monitoring Utilities
	About Concurrency Control in Greenplum Database
	Example of Managing Transaction IDs
	Simple MVCC Example

	About Parallel Data Loading
	About Redundancy and Failover in Greenplum Database
	About Database Statistics in Greenplum Database
	System Statistics
	Configuring Statistics

	Managing a Greenplum System
	About the Greenplum Database Release Version Number
	Starting and Stopping Greenplum Database
	Starting Greenplum Database
	Restarting Greenplum Database
	Reloading Configuration File Changes Only
	Starting the Master in Maintenance Mode
	Stopping Greenplum Database
	Stopping Client Processes

	Accessing the Database
	Establishing a Database Session
	Supported Client Applications
	Greenplum Database Client Applications
	Connecting with psql
	Using the PgBouncer Connection Pooler
	Overview
	Migrating PgBouncer
	Configuring PgBouncer
	Starting PgBouncer
	Managing PgBouncer

	Database Application Interfaces
	Troubleshooting Connection Problems

	Configuring the Greenplum Database System
	About Greenplum Database Master and Local Parameters
	Setting Configuration Parameters
	Setting a Local Configuration Parameter
	Setting a Master Configuration Parameter
	Setting Parameters at the System Level
	Setting Parameters at the Database Level
	Setting Parameters at the Role Level
	Setting Parameters in a Session

	Viewing Server Configuration Parameter Settings
	Configuration Parameter Categories

	Enabling Compression
	Configuring Proxies for the Greenplum Interconnect
	Example

	Enabling High Availability and Data Consistency Features
	Overview of Greenplum Database High Availability
	Overview of Segment Mirroring
	Overview of Master Mirroring

	Enabling Mirroring in Greenplum Database
	Enabling Segment Mirroring
	Enabling Master Mirroring

	Detecting a Failed Segment
	Checking for Failed Segments
	Checking the Log Files for Failed Segments

	Recovering a Failed Segment
	Recovering From Segment Failures
	When a segment host is not recoverable

	Recovering a Failed Master
	Restoring Master Mirroring After a Recovery

	Backing Up and Restoring Databases
	Backup and Restore Overview
	Parallel Backup with gpbackup and gprestore
	Requirements and Limitations
	Objects Included in a Backup or Restore
	Performing Basic Backup and Restore Operations
	Filtering the Contents of a Backup or Restore
	Configuring Email Notifications
	gpbackup and gprestore Email File Format

	Understanding Backup Files
	Creating and Using Incremental Backups with gpbackup and gprestore
	About Incremental Backup Sets
	Using Incremental Backups

	Using gpbackup and gprestore with BoostFS
	Installing BoostFS
	Backing Up and Restoring with BoostFS

	Using gpbackup Storage Plugins
	Using the S3 Storage Plugin with gpbackup and gprestore
	Using the DD Boost Storage Plugin with gpbackup, gprestore, and gpbackup_manager
	Replicating Backups

	Backup/Restore Storage Plugin API (Beta)
	Plugin Configuration File
	Plugin API
	Plugin Commands

	Implementing a Backup/Restore Storage Plugin
	Verifying a Backup/Restore Storage Plugin
	Packaging and Deploying a Backup/Restore Storage Plugin
	backup_data
	backup_file
	cleanup_plugin_for_backup
	cleanup_plugin_for_restore
	delete_backup
	plugin_api_version
	restore_data
	restore_file
	setup_plugin_for_backup
	setup_plugin_for_restore

	Expanding a Greenplum System
	System Expansion Overview
	Planning Greenplum System Expansion
	System Expansion Checklist
	Planning New Hardware Platforms
	Planning New Segment Initialization
	Planning Mirror Segments
	Increasing Segments Per Host
	About the Expansion Schema

	Planning Table Redistribution
	Managing Redistribution in Large-Scale Greenplum Systems
	Redistributing Append-Optimized and Compressed Tables
	Redistributing Partitioned Tables
	Redistributing Indexed Tables

	Preparing and Adding Hosts
	Adding New Hosts to the Trusted Host Environment
	Validating Disk I/O and Memory Bandwidth
	Integrating New Hardware into the System

	Initializing New Segments
	Creating an Input File for System Expansion
	Creating an input file in Interactive Mode
	Expansion Input File Format

	Running gpexpand to Initialize New Segments
	Monitoring the Cluster Expansion State
	Rolling Back a Failed Expansion Setup

	Redistributing Tables
	Ranking Tables for Redistribution
	Redistributing Tables Using gpexpand
	Monitoring Table Redistribution
	Viewing Expansion Status
	Viewing Table Status

	Removing the Expansion Schema

	Migrating Data with gpcopy
	Monitoring a Greenplum System
	Monitoring Database Activity and Performance
	Monitoring System State
	Checking System State
	Viewing Master and Segment Status and Configuration
	Viewing Your Mirroring Configuration and Status

	Checking Disk Space Usage
	Checking Sizing of Distributed Databases and Tables
	Viewing Disk Space Usage for a Database
	Viewing Disk Space Usage for a Table
	Viewing Disk Space Usage for Indexes

	Checking for Data Distribution Skew
	Viewing a Table's Distribution Key
	Viewing Data Distribution
	Checking for Query Processing Skew

	Viewing Metadata Information about Database Objects
	Viewing the Last Operation Performed
	Viewing the Definition of an Object

	Viewing Session Memory Usage Information
	Creating the session_level_memory_consumption View
	The session_level_memory_consumption View

	Viewing Query Workfile Usage Information
	Viewing the Database Server Log Files
	Log File Format
	Searching the Greenplum Server Log Files

	Using gp_toolkit
	SQL Standard Error Codes

	Routine System Maintenance Tasks
	Routine Vacuum and Analyze
	Transaction ID Management
	System Catalog Maintenance
	Regular System Catalog Maintenance
	Intensive System Catalog Maintenance

	Vacuum and Analyze for Query Optimization

	Routine Reindexing
	Managing Greenplum Database Log Files
	Database Server Log Files
	Management Utility Log Files

	Recommended Monitoring and Maintenance Tasks
	Database State Monitoring Activities
	Database Alert Log Monitoring
	Hardware and Operating System Monitoring
	Catalog Monitoring
	Data Maintenance
	Database Maintenance
	Patching and Upgrading

	Managing Greenplum Database Access
	Configuring Client Authentication
	Allowing Connections to Greenplum Database
	Editing the pg_hba.conf File

	Limiting Concurrent Connections
	Encrypting Client/Server Connections
	Creating a Self-signed Certificate without a Passphrase for Testing Only

	Using LDAP Authentication with TLS/SSL
	Using Kerberos Authentication
	Creating Greenplum Database Principals in the KDC Database
	Installing the Kerberos Client on the Master Host
	Configuring Greenplum Database to use Kerberos Authentication
	Mapping Kerberos Principals to Greenplum Database Roles
	Configuring JDBC Kerberos Authentication for Greenplum Database
	Installing and Configuring a Kerberos KDC Server

	Configuring Kerberos for Linux Clients
	Requirements
	Prerequisites
	Required Software on the Client Machine

	Setting Up Client System with Kerberos Authentication
	Running psql
	Running a Java Application

	Configuring Kerberos For Windows Clients
	Installing and Configuring Kerberos on a Windows System
	Running the psql Utility
	Creating a Kerberos Keytab File
	Example gpload YAML File
	Issues and Possible Solutions

	Managing Roles and Privileges
	Security Best Practices for Roles and Privileges
	Creating New Roles (Users)
	Altering Role Attributes

	Role Membership
	Managing Object Privileges
	Simulating Row Level Access Control

	Encrypting Data
	Protecting Passwords in Greenplum Database
	Time-based Authentication

	Defining Database Objects
	Creating and Managing Databases
	About Template and Default Databases
	Creating a Database
	Cloning a Database
	Creating a Database with a Different Owner

	Viewing the List of Databases
	Altering a Database
	Dropping a Database

	Creating and Managing Tablespaces
	Creating a Tablespace
	Using a Tablespace to Store Database Objects
	Viewing Existing Tablespaces
	Dropping Tablespaces
	Moving the Location of Temporary or Transaction Files

	Creating and Managing Schemas
	The Default "Public" Schema
	Creating a Schema
	Schema Search Paths
	Setting the Schema Search Path
	Viewing the Current Schema

	Dropping a Schema
	System Schemas

	Creating and Managing Tables
	Creating a Table
	Choosing Column Data Types
	Setting Table and Column Constraints
	Check Constraints
	Not-Null Constraints
	Unique Constraints
	Primary Keys
	Foreign Keys

	Choosing the Table Distribution Policy
	Declaring Distribution Keys
	Custom Distribution Key Hash Functions

	Choosing the Table Storage Model
	Heap Storage
	Append-Optimized Storage
	Choosing Row or Column-Oriented Storage
	Using Compression (Append-Optimized Tables Only)
	Checking the Compression and Distribution of an Append-Optimized Table
	Support for Run-length Encoding
	Adding Column-level Compression
	Default Compression Values
	Precedence of Compression Settings
	Optimal Location for Column Compression Settings
	Storage Directives Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Adding Compression in a TYPE Command
	Choosing Block Size

	Altering a Table
	Altering Table Distribution
	Changing the Distribution Policy
	Redistributing Table Data
	Altering the Table Storage Model
	Adding a Compressed Column to Table
	Inheritance of Compression Settings

	Dropping a Table

	Partitioning Large Tables
	About Table Partitioning
	Table Partitioning in Greenplum Database
	Deciding on a Table Partitioning Strategy
	Creating Partitioned Tables
	Defining Date Range Table Partitions
	Defining Numeric Range Table Partitions
	Defining List Table Partitions
	Defining Multi-level Partitions
	Partitioning an Existing Table
	Limitations of Partitioned Tables

	Loading Partitioned Tables
	Verifying Your Partition Strategy
	Troubleshooting Selective Partition Scanning

	Viewing Your Partition Design
	Maintaining Partitioned Tables
	Adding a Partition
	Renaming a Partition
	Adding a Default Partition
	Dropping a Partition
	Truncating a Partition
	Exchanging a Partition
	Splitting a Partition
	Modifying a Subpartition Template
	Exchanging a Leaf Child Partition with an External Table
	Example Exchanging a Partition with an External Table

	Creating and Using Sequences
	Creating a Sequence
	Using a Sequence
	Altering a Sequence
	Dropping a Sequence
	Specifying a Sequence as the Default Value for a Column
	Sequence Wraparound

	Using Indexes in Greenplum Database
	Index Types
	About Bitmap Indexes
	When to Use Bitmap Indexes
	When Not to Use Bitmap Indexes

	Creating an Index
	Indexes on Expressions

	Examining Index Usage
	Managing Indexes
	Dropping an Index

	Creating and Managing Views
	Creating Views
	Dropping Views
	Best Practices when Creating Views
	Working with View Dependencies
	Finding View Dependencies

	About View Storage in Greenplum Database

	Creating and Managing Materialized Views
	Creating Materialized Views
	Refreshing or Disabling Materialized Views
	Dropping Materialized Views

	Distribution and Skew
	Local (Co-located) Joins
	Data Skew
	Processing Skew

	Inserting, Updating, and Deleting Data
	About Concurrency Control in Greenplum Database
	Inserting Rows
	Updating Existing Rows
	Deleting Rows
	Truncating a Table

	Working With Transactions
	Transaction Isolation Levels

	Global Deadlock Detector
	Vacuuming the Database
	Running Out of Locks

	Querying Data
	About Greenplum Query Processing
	Understanding Query Planning and Dispatch
	Understanding Greenplum Query Plans
	Understanding Parallel Query Execution

	About GPORCA
	Overview of GPORCA
	Enabling and Disabling GPORCA
	Enabling GPORCA for a System
	Enabling GPORCA for a Database
	Enabling GPORCA for a Session or a Query

	Collecting Root Partition Statistics
	Running ANALYZE
	GPORCA and Leaf Partition Statistics
	Disabling Automatic Root Partition Statistics Collection

	Considerations when Using GPORCA
	GPORCA Features and Enhancements
	Queries Against Partitioned Tables
	Queries that Contain Subqueries
	Queries that Contain Common Table Expressions
	DML Operation Enhancements with GPORCA

	Changed Behavior with the GPORCA
	GPORCA Limitations
	Unsupported SQL Query Features
	Performance Regressions

	Determining the Query Optimizer that is Used
	Examples

	About Uniform Multi-level Partitioned Tables
	Example

	Defining Queries
	SQL Lexicon
	SQL Value Expressions
	Column References
	Positional Parameters
	Subscripts
	Field Selection
	Operator Invocations
	Function Calls
	Aggregate Expressions
	Limitations of Aggregate Expressions

	Window Expressions
	Window Examples

	Type Casts
	Scalar Subqueries
	Correlated Subqueries
	Correlated Subquery Examples
	Example 1 – Scalar correlated subquery
	Example 2 – Correlated EXISTS subquery
	Example 3 - CSQ in the Select List

	Example 4 - CSQs connected by OR Clauses
	Array Constructors
	Row Constructors
	Expression Evaluation Rules

	WITH Queries (Common Table Expressions)
	SELECT in a WITH Clause
	Data-Modifying Statements in a WITH clause

	Using Functions and Operators
	Using Functions in Greenplum Database
	Function Volatility and Plan Caching

	User-Defined Functions
	Built-in Functions and Operators
	Window Functions
	Advanced Aggregate Functions

	Working with JSON Data
	About JSON Data
	JSON Input and Output Syntax
	Designing JSON documents
	jsonb Containment and Existence
	jsonb Indexing
	GIN Indexes on jsonb Data
	Btree and Hash Indexes on jsonb Data

	JSON Functions and Operators
	JSON Operators
	JSON Creation Functions
	JSON Aggregate Functions
	JSON Processing Functions

	Working with XML Data
	Creating XML Values
	Encoding Handling
	Accessing XML Values
	Processing XML
	Mapping Tables to XML
	XML Function Reference
	XML Predicates

	Using Full Text Search
	About Full Text Search
	Searching Text in Database Tables
	Controlling Text Search
	Additional Text Search Features
	Text Search Parsers
	Text Search Dictionaries
	Text Search Configuration Example
	Testing and Debugging Text Search
	GiST and GIN Indexes for Text Search
	psql Support
	Limitations

	Using Greenplum MapReduce
	About the Greenplum MapReduce Configuration File
	Example Greenplum MapReduce Job
	Flow Diagram for MapReduce Example

	Query Performance
	Managing Spill Files Generated by Queries
	Query Profiling
	Reading EXPLAIN Output
	EXPLAIN Example

	Reading EXPLAIN ANALYZE Output
	EXPLAIN ANALYZE Examples
	Determining the Query Optimizer

	Examining Query Plans to Solve Problems

	Working with External Data
	Accessing External Data with PXF
	Defining External Tables
	file:// Protocol
	gpfdist:// Protocol
	gpfdists:// Protocol
	pxf:// Protocol
	s3:// Protocol
	Using a Custom Protocol
	Handling Errors in External Table Data
	Creating and Using External Web Tables
	Command-based External Web Tables
	URL-based External Web Tables

	Examples for Creating External Tables
	Example 1—Single gpfdist instance on single-NIC machine
	Example 2—Multiple gpfdist instances
	Example 3—Multiple gpfdists instances
	Example 4—Single gpfdist instance with error logging
	Example 5—TEXT Format on a Hadoop Distributed File Server
	Example 6—Multiple files in CSV format with header rows
	Example 7—Readable External Web Table with Script
	Example 8—Writable External Table with gpfdist
	Example 9—Writable External Web Table with Script
	Example 10—Readable and Writable External Tables with XML Transformations

	Accessing External Data with Foreign Tables
	Writing a Foreign Data Wrapper
	Requirements
	Known Issues and Limitations
	Header Files
	Foreign Data Wrapper Functions
	Foreign Data Wrapper Callback Functions
	Foreign Data Wrapper Helper Functions
	Greenplum Database Considerations
	Building a Foreign Data Wrapper Extension with PGXS
	Deployment Considerations

	Using the Greenplum Parallel File Server (gpfdist)
	About gpfdist and External Tables
	About gpfdist Setup and Performance
	Controlling Segment Parallelism
	Installing gpfdist
	Starting and Stopping gpfdist
	Troubleshooting gpfdist

	Loading and Unloading Data
	Loading Data Using an External Table
	Loading and Writing Non-HDFS Custom Data
	Using a Custom Format
	Importing and Exporting Fixed Width Data
	Examples: Read Fixed-Width Data

	Using a Custom Protocol

	Handling Load Errors
	Define an External Table with Single Row Error Isolation
	Capture Row Formatting Errors and Declare a Reject Limit
	Viewing Bad Rows in the Error Log
	Moving Data between Tables

	Loading Data with gpload
	Accessing External Data with PXF
	Transforming External Data with gpfdist and gpload
	About gpfdist Transformations
	Determine the Transformation Schema
	Write a Transformation
	Write the gpfdist Configuration File
	Transfer the Data
	Transforming with gpload
	Transforming with gpfdist and INSERT INTO SELECT FROM
	Configuration File Format

	XML Transformation Examples
	Command-based External Web Tables
	IRS MeF XML Files (In demo Directory)
	WITSML™ Files (In demo Directory)

	Loading Data with COPY
	Loading From a File
	Loading From STDIN
	Loading Data Using \copy in psql
	Input Format

	Running COPY in Single Row Error Isolation Mode
	Optimizing Data Load and Query Performance
	Unloading Data from Greenplum Database
	Defining a File-Based Writable External Table
	Example 1—Greenplum file server (gpfdist)
	Example 2—Hadoop file server (pxf)

	Defining a Command-Based Writable External Web Table
	Disabling EXECUTE for Web or Writable External Tables

	Unloading Data Using a Writable External Table
	Unloading Data Using COPY

	Formatting Data Files
	Formatting Rows
	Formatting Columns
	Representing NULL Values
	Escaping
	Escaping in Text Formatted Files
	Escaping in CSV Formatted Files

	Character Encoding
	Changing the Client-Side Character Encoding

	Example Custom Data Access Protocol
	Installing the External Table Protocol
	gpextprotocal.c

	Managing Performance
	Defining Database Performance
	Understanding the Performance Factors
	System Resources
	Workload
	Throughput
	Contention
	Optimization

	Determining Acceptable Performance
	Baseline Hardware Performance
	Performance Benchmarks

	Common Causes of Performance Issues
	Identifying Hardware and Segment Failures
	Managing Workload
	Avoiding Contention
	Maintaining Database Statistics
	Identifying Statistics Problems in Query Plans
	Tuning Statistics Collection

	Optimizing Data Distribution
	Optimizing Your Database Design
	Greenplum Database Maximum Limits

	Greenplum Database Memory Overview
	Managing Resources
	Using Resource Groups
	Understanding Role and Component Resource Groups
	Resource Group Attributes and Limits
	Memory Auditor
	Transaction Concurrency Limit
	CPU Limits
	Assigning CPU Resources by Core
	Assigning CPU Resources by Percentage

	Memory Limits
	Additional Memory Limits for Role-based Resource Groups
	Global Shared Memory
	Query Operator Memory

	About Using Reserved Resource Group Memory vs. Using Resource Group Global Shared Memory
	Other Memory Considerations

	Using Greenplum Command Center to Manage Resource Groups
	Configuring and Using Resource Groups
	Enabling Resource Groups
	Creating Resource Groups
	Configuring Automatic Query Termination Based on Memory Usage
	Assigning a Resource Group to a Role
	Monitoring Resource Group Status
	Viewing Resource Group Limits
	Viewing Resource Group Query Status and CPU/Memory Usage
	Viewing Resource Group CPU/Memory Usage Per Host
	Viewing Resource Group CPU/Memory Usage Per Segment

	Viewing the Resource Group Assigned to a Role
	Viewing a Resource Group's Running and Pending Queries
	Cancelling a Running or Queued Transaction in a Resource Group

	Moving a Query to a Different Resource Group
	Resource Group Frequently Asked Questions

	Using Resource Queues
	Resource Queue Example
	How Memory Limits Work
	How Priorities Work
	Steps to Enable Resource Management
	Configuring Resource Management
	Creating Resource Queues
	Creating Queues with an Active Query Limit
	Creating Queues with Memory Limits
	Setting Priority Levels

	Assigning Roles (Users) to a Resource Queue
	Removing a Role from a Resource Queue

	Modifying Resource Queues
	Altering a Resource Queue
	Dropping a Resource Queue

	Checking Resource Queue Status
	Viewing Queued Statements and Resource Queue Status
	Viewing Resource Queue Statistics
	Viewing the Roles Assigned to a Resource Queue
	Viewing the Waiting Queries for a Resource Queue
	Clearing a Waiting Statement From a Resource Queue
	Viewing the Priority of Active Statements
	Resetting the Priority of an Active Statement

	Investigating a Performance Problem
	Checking System State
	Checking Database Activity
	Checking for Active Sessions (Workload)
	Checking for Locks (Contention)
	Checking Query Status and System Utilization

	Troubleshooting Problem Queries
	Investigating Error Messages
	Gathering Information for Pivotal Customer Support

	Greenplum Database Security Configuration Guide
	Securing the Database
	Greenplum Database Ports and Protocols
	Configuring Client Authentication
	Allowing Connections to Greenplum Database
	Editing the pg_hba.conf File
	Authentication Methods
	SSL Client Authentication
	PAM-Based Authentication
	Radius Authentication
	Limiting Concurrent Connections
	Encrypting Client/Server Connections

	Configuring Database Authorization
	Access Permissions and Roles
	Managing Object Privileges
	Using SSH-256 Encryption
	Setting Encryption Method System-wide
	Setting Encryption Method for an Individual Session

	Restricting Access by Time
	Dropping a Time-based Restriction

	Greenplum Command Center Security
	Auditing
	Encrypting Data and Database Connections
	Encrypting gpfdist Connections
	Encrypting Data at Rest with pgcrypto

	Security Best Practices

	Greenplum Database Best Practices
	Best Practices Summary
	System Configuration
	Schema Design
	Data Types
	Storage Model
	Compression
	Distributions
	Partitioning
	Indexes
	Column Sequence and Byte Alignment

	Memory and Resource Management with Resource Groups
	Memory and Resource Management with Resource Queues
	System Monitoring and Maintenance
	Monitoring
	Updating Statistics with ANALYZE
	Managing Bloat in a Database
	Monitoring Greenplum Database Log Files

	Loading Data
	INSERT Statement with Column Values
	COPY Statement
	External Tables
	External Tables with Gpfdist
	Gpload
	Best Practices

	Security
	Encrypting Data and Database Connections
	Tuning SQL Queries
	How to Generate Explain Plans
	How to Read Explain Plans
	Optimizing Greenplum Queries

	High Availability
	Disk Storage
	Master Mirroring
	Segment Mirroring
	Dual Clusters
	Backup and Restore
	Detecting Failed Master and Segment Instances
	Segment Mirroring Configurations

	Greenplum Database Utility Guide
	About the Greenplum Database Utilities
	Referencing IP Addresses
	Running Backend Server Programs

	Utility Reference
	analyzedb
	clusterdb
	createdb
	createlang
	createuser
	dropdb
	droplang
	dropuser
	gpactivatestandby
	gpaddmirrors
	gpbackup_manager
	gpbackup
	gpcheckcat
	gpcheckperf
	gpconfig
	gpcopy
	gpdeletesystem
	gpexpand
	gpfdist
	gpinitstandby
	gpinitsystem
	gpload
	gplogfilter
	gpmapreduce
	gpmapreduce.yaml
	gpmovemirrors
	gppkg
	gprecoverseg
	gpreload
	gprestore
	gpscp
	gpssh
	gpssh-exkeys
	gpstart
	gpstate
	gpstop
	pg_config
	pg_dump
	pg_dumpall
	pg_restore
	pgbouncer
	pgbouncer.ini
	[databases] Section
	[pgbouncer] Section
	[users] Section
	Example Configuration Files
	See Also

	pgbouncer-admin
	Command Syntax
	Administration Commands
	SHOW Command
	ACTIVE_SOCKETS
	CLIENTS
	CONFIG
	DATABASES
	DNS_HOSTS
	DNS_ZONES
	FDS
	LISTS
	MEM
	POOLS
	SERVERS
	STATS
	STATS_AVERAGES
	STATS_TOTALS
	USERS
	VERSION

	See Also

	plcontainer
	plcontainer Configuration File
	psql
	reindexdb
	vacuumdb

	Additional Supplied Programs

	Greenplum Database Reference Guide
	SQL Commands
	SQL Syntax Summary
	ABORT
	ALTER AGGREGATE
	ALTER COLLATION
	ALTER CONVERSION
	ALTER DATABASE
	ALTER DEFAULT PRIVILEGES
	ALTER DOMAIN
	ALTER EXTENSION
	ALTER EXTERNAL TABLE
	ALTER FOREIGN DATA WRAPPER
	ALTER FOREIGN TABLE
	ALTER FUNCTION
	ALTER GROUP
	ALTER INDEX
	ALTER LANGUAGE
	ALTER MATERIALIZED VIEW
	ALTER OPERATOR
	ALTER OPERATOR CLASS
	ALTER OPERATOR FAMILY
	ALTER PROTOCOL
	ALTER RESOURCE GROUP
	ALTER RESOURCE QUEUE
	ALTER ROLE
	ALTER SCHEMA
	ALTER SEQUENCE
	ALTER SERVER
	ALTER TABLE
	ALTER TABLESPACE
	ALTER TEXT SEARCH CONFIGURATION
	ALTER TEXT SEARCH DICTIONARY
	ALTER TEXT SEARCH PARSER
	ALTER TEXT SEARCH TEMPLATE
	ALTER TYPE
	ALTER USER
	ALTER USER MAPPING
	ALTER VIEW
	ANALYZE
	BEGIN
	CHECKPOINT
	CLOSE
	CLUSTER
	COMMENT
	COMMIT
	COPY
	CREATE AGGREGATE
	CREATE CAST
	CREATE COLLATION
	CREATE CONVERSION
	CREATE DATABASE
	CREATE DOMAIN
	CREATE EXTENSION
	CREATE EXTERNAL TABLE
	CREATE FOREIGN DATA WRAPPER
	CREATE FOREIGN TABLE
	CREATE FUNCTION
	CREATE GROUP
	CREATE INDEX
	CREATE LANGUAGE
	CREATE MATERIALIZED VIEW
	CREATE OPERATOR
	CREATE OPERATOR CLASS
	CREATE OPERATOR FAMILY
	CREATE PROTOCOL
	CREATE RESOURCE GROUP
	CREATE RESOURCE QUEUE
	CREATE ROLE
	CREATE RULE
	CREATE SCHEMA
	CREATE SEQUENCE
	CREATE SERVER
	CREATE TABLE
	CREATE TABLE AS
	CREATE TABLESPACE
	CREATE TEXT SEARCH CONFIGURATION
	CREATE TEXT SEARCH DICTIONARY
	CREATE TEXT SEARCH PARSER
	CREATE TEXT SEARCH TEMPLATE
	CREATE TYPE
	CREATE USER
	CREATE USER MAPPING
	CREATE VIEW
	DEALLOCATE
	DECLARE
	DELETE
	DISCARD
	DO
	DROP AGGREGATE
	DROP CAST
	DROP COLLATION
	DROP CONVERSION
	DROP DATABASE
	DROP DOMAIN
	DROP EXTENSION
	DROP EXTERNAL TABLE
	DROP FOREIGN DATA WRAPPER
	DROP FOREIGN TABLE
	DROP FUNCTION
	DROP GROUP
	DROP INDEX
	DROP LANGUAGE
	DROP MATERIALIZED VIEW
	DROP OPERATOR
	DROP OPERATOR CLASS
	DROP OPERATOR FAMILY
	DROP OWNED
	DROP PROTOCOL
	DROP RESOURCE GROUP
	DROP RESOURCE QUEUE
	DROP ROLE
	DROP RULE
	DROP SCHEMA
	DROP SEQUENCE
	DROP SERVER
	DROP TABLE
	DROP TABLESPACE
	DROP TEXT SEARCH CONFIGURATION
	DROP TEXT SEARCH DICTIONARY
	DROP TEXT SEARCH PARSER
	DROP TEXT SEARCH TEMPLATE
	DROP TYPE
	DROP USER
	DROP USER MAPPING
	DROP VIEW
	END
	EXECUTE
	EXPLAIN
	FETCH
	GRANT
	INSERT
	LOAD
	LOCK
	MOVE
	PREPARE
	REASSIGN OWNED
	REFRESH MATERIALIZED VIEW
	REINDEX
	RELEASE SAVEPOINT
	RESET
	REVOKE
	ROLLBACK
	ROLLBACK TO SAVEPOINT
	SAVEPOINT
	SELECT
	SELECT INTO
	SET
	SET CONSTRAINTS
	SET ROLE
	SET SESSION AUTHORIZATION
	SET TRANSACTION
	SHOW
	START TRANSACTION
	TRUNCATE
	UPDATE
	VACUUM
	VALUES

	Data Types
	Date/Time Types
	Pseudo-Types
	Polymorphic Types
	Table Value Expressions

	Text Search Data Types
	tsvector
	tsquery

	Range Types
	Built-in Range Types
	Examples
	Inclusive and Exclusive Bounds
	Infinite (Unbounded) Ranges
	Range Input/Output
	Constructing Ranges
	Discrete Range Types
	Defining New Range Types
	Indexing

	Summary of Built-in Functions
	Greenplum Database Function Types
	Built-in Functions and Operators
	JSON Functions and Operators
	JSON Operators
	JSON Creation Functions
	JSON Aggregate Functions
	JSON Processing Functions

	Window Functions
	Advanced Aggregate Functions
	Text Search Functions and Operators
	Range Functions and Operators

	Additional Supplied Modules
	auto_explain
	Loading the Module
	Module Documentation

	citext
	Installing and Registering the Module
	Module Documentation

	dblink
	Installing and Registering the Module
	Greenplum Database Considerations
	Using dblink
	Additional Module Documentation

	diskquota
	Installing and Registering the Module
	About the diskquota Module
	Using the diskquota Module
	Notes
	Examples

	fuzzystrmatch
	Installing and Registering the Module
	Module Documentation

	gp_sparse_vector
	Installing and Registering the Module
	Using the gp_sparse_vector Module
	Additional Module Documentation
	Example

	hstore
	Installing and Registering the Module
	Module Documentation

	orafce
	Installing and Registering the Module
	Greenplum Database Considerations
	Greenplum Implementation Differences

	Using orafce
	Additional Module Documentation

	pageinspect
	Installing and Registering the Module
	Module Documentation

	pgcrypto
	Installing and Registering the Module
	Additional Module Documentation

	sslinfo
	Installing and Registering the Module
	Module Documentation

	Character Set Support
	Setting the Character Set
	Character Set Conversion Between Server and Client

	Server Configuration Parameters
	Parameter Types and Values
	Setting Parameters
	Parameter Categories
	Connection and Authentication Parameters
	Connection Parameters
	Security and Authentication Parameters

	System Resource Consumption Parameters
	Memory Consumption Parameters
	OS Resource Parameters
	Cost-Based Vacuum Delay Parameters
	Transaction ID Management Parameters

	GPORCA Parameters
	Query Tuning Parameters
	Postgres Planner Control Parameters
	Postgres Planner Costing Parameters
	Database Statistics Sampling Parameters
	Sort Operator Configuration Parameters
	Aggregate Operator Configuration Parameters
	Join Operator Configuration Parameters
	Other Postgres Planner Configuration Parameters
	Query Plan Execution

	Error Reporting and Logging Parameters
	Log Rotation
	When to Log
	What to Log

	System Monitoring Parameters
	Greenplum Performance Database
	Query Metrics Collection Parameters

	Runtime Statistics Collection Parameters
	Automatic Statistics Collection Parameters
	Client Connection Default Parameters
	Statement Behavior Parameters
	Locale and Formatting Parameters
	Other Client Default Parameters

	Lock Management Parameters
	Resource Management Parameters (Resource Queues)
	Resource Management Parameters (Resource Groups)
	External Table Parameters
	Database Table Parameters
	Append-Optimized Table Parameters

	Past Version Compatibility Parameters
	PostgreSQL
	Greenplum Database

	Greenplum Database Array Configuration Parameters
	Interconnect Configuration Parameters
	Dispatch Configuration Parameters
	Fault Operation Parameters
	Distributed Transaction Management Parameters
	Read-Only Parameters

	Greenplum Mirroring Parameters for Master and Segments
	Greenplum PL/Java Parameters
	XML Data Parameters

	Configuration Parameters
	application_name
	array_nulls
	authentication_timeout
	backslash_quote
	block_size
	bonjour_name
	check_function_bodies
	client_encoding
	client_min_messages
	cpu_index_tuple_cost
	cpu_operator_cost
	cpu_tuple_cost
	cursor_tuple_fraction
	data_checksums
	DateStyle
	db_user_namespace
	deadlock_timeout
	debug_assertions
	debug_pretty_print
	debug_print_parse
	debug_print_plan
	debug_print_prelim_plan
	debug_print_rewritten
	debug_print_slice_table
	default_statistics_target
	default_tablespace
	default_text_search_config
	default_transaction_deferrable
	default_transaction_isolation
	default_transaction_read_only
	dynamic_library_path
	effective_cache_size
	enable_bitmapscan
	enable_groupagg
	enable_hashagg
	enable_hashjoin
	enable_indexscan
	enable_mergejoin
	enable_nestloop
	enable_seqscan
	enable_sort
	enable_tidscan
	escape_string_warning
	explain_pretty_print
	extra_float_digits
	from_collapse_limit
	gp_add_column_inherits_table_setting
	gp_adjust_selectivity_for_outerjoins
	gp_appendonly_compaction
	gp_appendonly_compaction_threshold
	gp_autostats_mode
	gp_autostats_mode_in_functions
	gp_autostats_on_change_threshold
	gp_cached_segworkers_threshold
	gp_command_count
	gp_connection_send_timeout
	gp_content
	gp_create_table_random_default_distribution
	gp_dbid
	gp_debug_linger
	gp_default_storage_options
	gp_dynamic_partition_pruning
	gp_enable_agg_distinct
	gp_enable_agg_distinct_pruning
	gp_enable_direct_dispatch
	gp_enable_exchange_default_partition
	gp_enable_fast_sri
	gp_enable_global_deadlock_detector
	gp_enable_gpperfmon
	gp_enable_groupext_distinct_gather
	gp_enable_groupext_distinct_pruning
	gp_enable_multiphase_agg
	gp_enable_predicate_propagation
	gp_enable_preunique
	gp_enable_query_metrics
	gp_enable_relsize_collection
	gp_enable_segment_copy_checking
	gp_enable_sort_distinct
	gp_enable_sort_limit
	gp_external_enable_exec
	gp_external_max_segs
	gp_external_enable_filter_pushdown
	gp_fts_probe_interval
	gp_fts_probe_retries
	gp_fts_probe_threadcount
	gp_fts_probe_timeout
	gp_fts_replication_attempt_count
	gp_global_deadlock_detector_period
	gp_log_fts
	gp_log_interconnect
	gp_log_gang
	gp_gpperfmon_send_interval
	gpperfmon_log_alert_level
	gp_hashjoin_tuples_per_bucket
	gp_ignore_error_table
	gp_initial_bad_row_limit
	gp_instrument_shmem_size
	gp_interconnect_debug_retry_interval
	gp_interconnect_fc_method
	gp_interconnect_proxy_addresses
	gp_interconnect_queue_depth
	gp_interconnect_setup_timeout
	gp_interconnect_snd_queue_depth
	gp_interconnect_type
	gp_log_format
	gp_max_local_distributed_cache
	gp_max_packet_size
	gp_max_plan_size
	gp_max_slices
	gp_motion_cost_per_row
	gp_recursive_cte
	gp_reject_percent_threshold
	gp_reraise_signal
	gp_resgroup_memory_policy
	gp_resource_group_bypass
	gp_resource_group_cpu_limit
	gp_resource_group_memory_limit
	gp_resource_group_queuing_timeout
	gp_resource_manager
	gp_resqueue_memory_policy
	gp_resqueue_priority
	gp_resqueue_priority_cpucores_per_segment
	gp_resqueue_priority_sweeper_interval
	gp_role
	gp_safefswritesize
	gp_segment_connect_timeout
	gp_segments_for_planner
	gp_server_version
	gp_server_version_num
	gp_session_id
	gp_set_proc_affinity
	gp_set_read_only
	gp_statistics_pullup_from_child_partition
	gp_statistics_use_fkeys
	gp_use_legacy_hashops
	gp_vmem_idle_resource_timeout
	gp_vmem_protect_limit
	gp_vmem_protect_segworker_cache_limit
	gp_workfile_compression
	gp_workfile_limit_files_per_query
	gp_workfile_limit_per_query
	gp_workfile_limit_per_segment
	gpperfmon_port
	ignore_checksum_failure
	integer_datetimes
	IntervalStyle
	join_collapse_limit
	krb_caseins_users
	krb_server_keyfile
	lc_collate
	lc_ctype
	lc_messages
	lc_monetary
	lc_numeric
	lc_time
	listen_addresses
	local_preload_libraries
	lock_timeout
	log_autostats
	log_connections
	log_disconnections
	log_dispatch_stats
	log_duration
	log_error_verbosity
	log_executor_stats
	log_hostname
	log_min_duration_statement
	log_min_error_statement
	log_min_messages
	log_parser_stats
	log_planner_stats
	log_rotation_age
	log_rotation_size
	log_statement
	log_statement_stats
	log_temp_files
	log_timezone
	log_truncate_on_rotation
	maintenance_work_mem
	max_appendonly_tables
	max_connections
	max_files_per_process
	max_function_args
	max_identifier_length
	max_index_keys
	max_locks_per_transaction
	max_prepared_transactions
	max_resource_portals_per_transaction
	max_resource_queues
	max_slot_wal_keep_size
	max_stack_depth
	max_statement_mem
	memory_spill_ratio
	optimizer
	optimizer_analyze_root_partition
	optimizer_array_expansion_threshold
	optimizer_control
	optimizer_cte_inlining_bound
	optimizer_enable_associativity
	optimizer_enable_dml
	optimizer_enable_master_only_queries
	optimizer_force_agg_skew_avoidance
	optimizer_force_multistage_agg
	optimizer_force_three_stage_scalar_dqa
	optimizer_join_arity_for_associativity_commutativity
	optimizer_join_order
	optimizer_join_order_threshold
	optimizer_mdcache_size
	optimizer_metadata_caching
	optimizer_minidump
	optimizer_nestloop_factor
	optimizer_parallel_union
	optimizer_penalize_skew
	optimizer_print_missing_stats
	optimizer_print_optimization_stats
	optimizer_sort_factor
	optimizer_use_gpdb_allocators
	password_encryption
	password_hash_algorithm
	plan_cache_mode
	pljava_classpath
	pljava_classpath_insecure
	pljava_statement_cache_size
	pljava_release_lingering_savepoints
	pljava_vmoptions
	port
	random_page_cost
	readable_external_table_timeout
	repl_catchup_within_range
	replication_timeout
	regex_flavor
	resource_cleanup_gangs_on_wait
	resource_select_only
	runaway_detector_activation_percent
	search_path
	seq_page_cost
	server_encoding
	server_version
	server_version_num
	shared_buffers
	shared_preload_libraries
	ssl
	ssl_ciphers
	standard_conforming_strings
	statement_mem
	statement_timeout
	stats_queue_level
	superuser_reserved_connections
	tcp_keepalives_count
	tcp_keepalives_idle
	tcp_keepalives_interval
	temp_buffers
	temp_tablespaces
	TimeZone
	timezone_abbreviations
	track_activities
	track_activity_query_size
	track_counts
	transaction_isolation
	transaction_read_only
	transform_null_equals
	unix_socket_directories
	unix_socket_group
	unix_socket_permissions
	update_process_title
	vacuum_cost_delay
	vacuum_cost_limit
	vacuum_cost_page_dirty
	vacuum_cost_page_hit
	vacuum_cost_page_miss
	vacuum_freeze_min_age
	validate_previous_free_tid
	verify_gpfdists_cert
	vmem_process_interrupt
	wait_for_replication_threshold
	wal_keep_segments
	wal_receiver_status_interval
	writable_external_table_bufsize
	xid_stop_limit
	xid_warn_limit
	xmlbinary
	xmloption

	System Catalogs
	System Tables
	System Views
	System Catalogs Definitions
	foreign_data_wrapper_options
	foreign_data_wrappers
	foreign_server_options
	foreign_servers
	foreign_table_options
	foreign_tables
	gp_configuration_history
	gp_distributed_log
	gp_distributed_xacts
	gp_distribution_policy
	gpexpand.expansion_progress
	gpexpand.status
	gpexpand.status_detail
	gp_fastsequence
	gp_id
	gp_pgdatabase
	gp_resgroup_config
	gp_resgroup_status
	gp_resgroup_status_per_host
	gp_resgroup_status_per_segment
	gp_resqueue_status
	gp_stat_replication
	gp_segment_configuration
	gp_transaction_log
	gp_version_at_initdb
	pg_aggregate
	pg_am
	pg_amop
	pg_amproc
	pg_appendonly
	pg_attrdef
	pg_attribute
	pg_attribute_encoding
	pg_auth_members
	pg_authid
	pg_available_extension_versions
	pg_available_extensions
	pg_cast
	pg_class
	pg_compression
	pg_constraint
	pg_conversion
	pg_database
	pg_db_role_setting
	pg_depend
	pg_description
	pg_enum
	pg_extension
	pg_exttable
	pg_foreign_data_wrapper
	pg_foreign_server
	pg_foreign_table
	pg_index
	pg_inherits
	pg_language
	pg_largeobject
	pg_listener
	pg_locks
	pg_matviews
	pg_max_external_files
	pg_namespace
	pg_opclass
	pg_operator
	pg_opfamily
	pg_partition
	pg_partition_columns
	pg_partition_encoding
	pg_partition_rule
	pg_partition_templates
	pg_partitions
	pg_pltemplate
	pg_proc
	pg_resgroup
	pg_resgroupcapability
	pg_resourcetype
	pg_resqueue
	pg_resqueue_attributes
	pg_resqueuecapability
	pg_rewrite
	pg_roles
	pg_rules
	pg_shdepend
	pg_shdescription
	pg_stat_activity
	pg_stat_all_indexes
	pg_stat_all_tables
	pg_stat_last_operation
	pg_stat_last_shoperation
	pg_stat_operations
	pg_stat_partition_operations
	pg_stat_replication
	pg_statistic
	pg_stat_resqueues
	pg_tablespace
	pg_trigger
	pg_type
	pg_type_encoding
	pg_user_mapping
	pg_user_mappings
	user_mapping_options
	user_mappings

	The gp_toolkit Administrative Schema
	Checking for Tables that Need Routine Maintenance
	gp_bloat_diag
	gp_stats_missing

	Checking for Locks
	gp_locks_on_relation
	gp_locks_on_resqueue

	Checking Append-Optimized Tables
	__gp_aovisimap_compaction_info(oid)
	__gp_aoseg(regclass)
	__gp_aoseg_history(regclass)
	__gp_aocsseg(regclass)
	__gp_aocsseg_history(regclass)
	__gp_aovisimap(regclass)
	__gp_aovisimap_hidden_info(regclass)
	__gp_aovisimap_entry(regclass)

	Viewing Greenplum Database Server Log Files
	gp_log_command_timings
	gp_log_database
	gp_log_master_concise
	gp_log_system

	Checking Server Configuration Files
	gp_param_setting('parameter_name')
	gp_param_settings_seg_value_diffs

	Checking for Failed Segments
	gp_pgdatabase_invalid

	Checking Resource Group Activity and Status
	gp_resgroup_config
	gp_resgroup_status
	gp_resgroup_status_per_host
	gp_resgroup_status_per_segment

	Checking Resource Queue Activity and Status
	gp_resq_activity
	gp_resq_activity_by_queue
	gp_resq_priority_statement
	gp_resq_role
	gp_resqueue_status

	Checking Query Disk Spill Space Usage
	gp_workfile_entries
	gp_workfile_usage_per_query
	gp_workfile_usage_per_segment

	Viewing Users and Groups (Roles)
	gp_roles_assigned

	Checking Database Object Sizes and Disk Space
	gp_size_of_all_table_indexes
	gp_size_of_database
	gp_size_of_index
	gp_size_of_partition_and_indexes_disk
	gp_size_of_schema_disk
	gp_size_of_table_and_indexes_disk
	gp_size_of_table_and_indexes_licensing
	gp_size_of_table_disk
	gp_size_of_table_uncompressed
	gp_disk_free

	Checking for Uneven Data Distribution
	gp_skew_coefficients
	gp_skew_idle_fractions

	Including Data for Materialized Views

	The gpperfmon Database
	database_*
	diskspace_*
	interface_stats_*
	log_alert_*
	queries_*
	segment_*
	socket_stats_*
	system_*
	dynamic_memory_info
	memory_info

	Server Programmatic Interfaces
	Greenplum Partner Connector API
	Using the GPPC API
	Requirements
	Header and Library Files
	Data Types
	Composite Types

	Function Declaration, Arguments, and Results
	Memory Handling
	Working With Variable-Length Text Types
	Error Reporting and Logging
	SPI Functions
	About Tuple Descriptors and Tuples
	Set-Returning Functions
	Table Functions
	Limitations
	Sample Code

	Building a GPPC Shared Library with PGXS
	Registering a GPPC Function with Greenplum Database
	About Dynamic Loading

	Packaging and Deployment Considerations
	GPPC Text Function Example
	GPPC Set-Returning Function Example

	Developing a Background Worker Process

	SQL Features, Reserved and Key Words, and Compliance
	Summary of Greenplum Features
	Greenplum SQL Standard Conformance
	Core SQL Conformance
	SQL 1992 Conformance
	SQL 1999 Conformance
	SQL 2003 Conformance
	SQL 2008 Conformance

	Greenplum and PostgreSQL Compatibility

	Reserved Identifiers and SQL Key Words
	SQL 2008 Optional Feature Compliance

	Greenplum Client and Loader Tools Package
	About the Tools Package
	Installing the Client and Loader Tools Package
	Supported Platforms
	Installation Procedure
	About Your Installation
	Running the UNIX Tools Installer
	Prerequisites
	Procedure

	Running the Windows Tools Installer
	Prerequisites
	Procedure

	Configuring Greenplum Database for Remote Client Access
	Configuring a Client System for Kerberos Authentication
	Using the Client and Loader Tools
	Prerequisites
	Setting Up Your Greenplum Database Clients Runtime Environment
	Running the Client and Loader Programs
	Greenplum Database Documentation References
	Windows Considerations

	Client and Loader Utility Reference
	DataDirect ODBC Drivers for Greenplum
	Prerequisites
	Supported Client Platforms
	Installing on Linux Systems
	Configuring the Driver on Linux
	Testing the Driver Connection on Linux

	Installing on Windows Systems
	Verifying the Version on Windows
	Configuring and Testing the Driver on Windows

	DataDirect Driver Documentation

	DataDirect JDBC Driver for Greenplum
	Prerequisites
	Downloading the DataDirect JDBC Driver
	Obtaining Version Details for the Driver
	Usage Information
	Configuring Prepared Statement Execution
	DataDirect Driver Documentation

