Planar Kinetics of a Rigid Body: Force and Acceleration

Prof. Nicholas Zabaras Warwick Centre for Predictive Modelling University of Warwick Coventry CV4 7AL United Kingdom

Email: nzabaras@gmail.com
URL: http://www.zabaras.com/

April 10, 2016

Moment and Angular Acceleration

- When $\mathrm{M} \neq 0$, rigid body experiences angular acceleration
- Relation between M and α is analogous to relation between F and a

Mass $=$ Resistance
Moment of Inertia

- Closely following the Vector Mechanics for Engineers, Beer and Johnston (Chapter 16), and Engineering Mechanics: Dynamics Hibbeler (Chapter 17)

Force and Torque

- A torque and a force provide the same angular acceleration when: $M=F \cdot r$
(r is the perpendicular distance between the force vector and the torque axis)

- A force on a rigid body is dynamically equivalent to the same force moved a perpendicular distance, r, plus an additional torque, $M=F \cdot r$

Moment of Inertia

- consider a small element, $\mathrm{d} m$
- 2nd Law: $\mathrm{d} F=\mathrm{d} m . a$
- External $\quad \mathrm{dM}=(d F) \cdot r$ torque:

- Rotational 2nd Law: $\mathrm{M}=\mathrm{I} \alpha$

Moment of Inertia

- This mass analog is called the moment of inertia, I, of the object

$$
I=\int_{m} r^{2} d m
$$

$-r=$ moment arm

- SI units are $\mathrm{kg} \mathrm{m}^{2}$

Example

$$
d m=\rho d V=\rho(2 \pi r d r h)
$$

$$
\begin{gathered}
I=\int_{m} r^{2} d m=\rho 2 \pi h \int_{0}^{R} r^{3} d r=\frac{\rho \pi}{2} R^{4} h=\frac{1}{2} R^{2}\left(\rho \pi R^{2} h\right) \\
m=\rho \pi R^{2} h \\
I_{z}=\frac{1}{2} m R^{2} \\
\text { Introduction to Dynamics }(\mathbb{N} . \text { Zabaras })
\end{gathered}
$$

Useful Formulas

Thin circular disk

$$
I_{x x}=I_{y y}=\frac{1}{4} m r^{2} \quad I_{z z}=\frac{1}{2} m r^{2} \quad I_{z^{\prime} z^{\prime}}=\frac{3}{2} m r^{2}
$$

$$
\begin{array}{lll}
I_{x x}=I_{y y}=\frac{1}{12} m \ell^{2} & I_{x^{\prime} x^{\prime}}=I_{y^{\prime} y^{\prime}}=\frac{1}{3} m \ell^{2} & I_{z z}=0 \\
\text { namics (N. Zabaras) } & I_{x^{\prime} x \prime}=\frac{1}{3} m l^{2} & \mathbf{7}
\end{array}
$$

Radius of Gyration

Frequently tabulated data related to moments of inertia will be presented in terms of radius of gyration.

$$
I=m k^{2} \quad \text { or } \quad k=\sqrt{\frac{I}{m}}
$$

Parallel Axis Theorem

- The moment of inertia about any axis parallel to and at distance d away from the axis that passes through the centre of mass is:

$$
I_{o}=I_{G}+m d^{2}
$$

- Where
$-I_{G}=$ moment of inertia for mass centre G

- $m=$ mass of the body
$-d=$ perpendicular distance between the parallel axes.

Example:Parallel-axis theorem

$$
\left(I_{O A}\right)_{O}=\frac{1}{3} m l^{2}=\frac{1}{3}\left(\frac{10 l \mathrm{~b}}{32.2 \mathrm{ft} / \mathrm{s}^{2}}\right)(2 \mathrm{ft})^{2}=0.414 \text { slug. } \mathrm{ft}^{2}
$$

$$
\left(I_{B C}\right)_{O}=\frac{1}{12} m l^{2}+m d^{2}=\frac{1}{12}\left(\frac{10}{32.2}\right)(2)^{2}+\left(\frac{10}{32.2}\right)(2)^{2}
$$

$$
=1.346 \quad \text { slug. } \mathrm{ft}^{2}
$$

$$
I_{O}=0.414+1.346=1.76 \text { slug. } \mathrm{ft}^{2}
$$

$$
I_{O}=I_{G}+m d^{2}
$$

$$
y-\sum m
$$

$$
1.76=I_{G}+\left(\frac{20}{32.2}\right)(1.5)^{2}
$$

$$
\bar{y}=\frac{\sum \tilde{y}_{i} m_{i}}{\sum m}=\frac{1(10 / 32.2)+2(10 / 32.2)}{(10 / 32.2)+(10 / 32.2)}=1.5 \mathrm{ft}
$$

$$
I_{G}=0.362 \text { slug. } \mathrm{ft}^{2}
$$

Note about units (not needed for any exam!): $1 l b-m=\frac{1 \mathrm{lb}}{32.2 \mathrm{ft} / \mathrm{s}^{2}}=\frac{1}{32.2}$ slug

Equations of Motion for a Rigid Body

- Consider a rigid body acted upon by several external forces.
- Assume that the body is made of a large number of particles.
- For the motion of the mass center G of the body with respect to the Newtonian frame Oxyz, $\quad \sum \vec{F}=m \vec{a}$
- For the motion of the body with respect to the centroidal frame Gx'y'z',

$$
\sum \vec{M}_{G}=\dot{\vec{H}}_{G}
$$

- System of external forces is equipollent to the system consisting of $m \vec{a}$ and \vec{H}_{G}.

Angular Momentum of a Rigid Body in Plane Motion

- Consider a rigid slab in plane motion.
- Angular momentum of the slab may be computed by

$$
\begin{aligned}
\vec{H}_{G} & =\sum_{i=1}^{n}\left(\vec{r}_{i}^{\prime} \times \vec{v}_{i}^{\prime} \Delta m_{i}\right) \\
& =\sum_{i=1}^{n}\left[\vec{r}_{i}^{\prime} \times\left(\vec{\omega} \times \vec{r}_{i}^{\prime}\right) \Delta m_{i}\right] \\
& =\vec{\omega} \sum\left(r_{i}^{\prime 2} \Delta m_{i}\right) \\
& =\bar{I} \vec{\omega}
\end{aligned}
$$

- After differentiation,

$$
\dot{\vec{H}}_{G}=\bar{I} \dot{\vec{\omega}}=\bar{I} \vec{\alpha}
$$

- Results are also valid for plane motion of bodies which are symmetrical with respect to the reference plane.
- Results are not valid for asymmetrical bodies or three-dimensional motion.

Angular Momentum
 $\dot{\vec{H}}_{G}=\bar{I} \dot{\vec{\omega}}=\bar{I} \vec{\alpha}$

- Conservation of Angular Momentum: if there is no external torque, angular momentum stays the same.
- A spinning skater can increase their angular velocity by reducing their / value
- Angular momentum has direction (along the axis of rotation)
 to change that direction is harder the more angular momentum the object has.

Plane Motion of a Rigid Body: D'Alembert's Principle

- Motion of a rigid body in plane motion is completely defined by the resultant and moment resultant about G of the external forces.

$$
\sum F_{x}=m \bar{a}_{x} \quad \sum F_{y}=m \bar{a}_{y} \quad \sum M_{G}=\bar{I} \alpha
$$

- The external forces and the collective effective forces of the slab particles are equipollent (reduce to the same resultant and moment resultant) and equivalent (have the same effect on the body).
- d'Alembert's Principle: The external forces acting on a rigid body are equivalent to the effective forces of the various particles forming the body.
- The most general motion of a rigid body that is symmetrical with respect to the reference plane can be replaced by the sum of a translation and a centroidal rotation.

Kinetic Moment

$$
\begin{aligned}
& \sum F_{x}=m\left(a_{G}\right)_{x} \\
& \sum F_{y}=m\left(a_{G}\right)_{y} \\
& \sum M_{G}=I_{G} \alpha
\end{aligned}
$$

$$
\sum M_{P}=\sum\left(\mathcal{M}_{k}\right)_{P}
$$

Kinetic diagram

$$
\sum M_{P}=\sum\left(\mathscr{M}_{k}\right)_{P}=\bar{x} m\left(a_{G}\right)_{y}-\bar{y} m\left(a_{G}\right)_{x}+I_{G} \alpha
$$

Moments of the external forces about any point P in the body are equivalent to the sum of the kinetic moments of the components of $m \boldsymbol{a}_{G}$ plus the kinetic moment $I_{G} \alpha$

Example

$$
\begin{aligned}
& m=2 M g \\
& \mu_{k}=0.25 \\
& \text { back wheels slipping } \\
& a=\text { ? }
\end{aligned}
$$

The car shown has a mass of 2 Mg and a center of mass at G. Determine the acceleration if the rear -'driving" wheels are always slipping, whereas the front wheels are free to rotate. Neglect the mass m of the wheels.

The coefficient of kinetic friction between the wheels and the road is $\mu_{\mathrm{k}}=0.25$.

Hint: The rear-wheel frictional force pushes the car forward and since slipping occurs $F_{B}=0.25 N_{B}$. With negligible wheel mass, $1 \alpha=0$ and the required force to turn the front wheel is zero.

Example

Alternatively: can use this with the $1^{\text {st }} \mathrm{Eq}$. above (solve for a_{G})

$$
\begin{aligned}
\sum M_{A}=\sum\left(\mathcal{M}_{\mathrm{k}}\right)_{A} \quad & N_{B}(2)-2000(9.81)(1.25) \\
& =2000 \cdot a_{G} \cdot(0.3)
\end{aligned}
$$

Sample Problem

A cord is wrapped around a disk of mass 15 kg . The cord is pulled upwards with a force $T=180 \mathrm{~N}$.

Determine:
(a) the acceleration of the center of the disk,
(b) the angular acceleration of the disk, and
(c) the acceleration of the cord.

SOLUTION:

- Draw the free-body-diagram equation expressing the equivalence of the external and effective forces on the disk.
- Solve the three corresponding scalar equilibrium equations for the horizontal, vertical, and angular accelerations of the disk.
- Determine the acceleration of the cord by evaluating the tangential acceleration of the point A on the disk.

Sample Problem

SOLUTION:

- Draw the free-body-diagram equation expressing the equivalence of the external and effective
 forces on the disk.
- Solve the three scalar equilibrium equations.

$$
\begin{aligned}
& \xrightarrow{+} \sum F_{x}=\sum\left(F_{x}\right)_{e f f} \\
& \quad 0=m \bar{a}_{x} \\
& +\uparrow \sum F_{y}=\sum\left(F_{y}\right)_{e f f} \\
& \\
& T-W=m \bar{a}_{y} \\
& \bar{a}_{y}=\frac{T-W}{m}=\frac{180 \mathrm{~N}-(15 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{15 \mathrm{~kg}} \\
& +\bar{a}_{x}=0 \\
& +M_{G}=\sum\left(M_{G}\right)_{e f f} \\
& \quad-T r=\bar{I} \alpha=\left(\frac{1}{2} m r^{2}\right) \alpha \\
& \\
& \alpha=-\frac{2 T}{m r}=-\frac{2(180 \mathrm{~N})}{(15 \mathrm{~kg})(0.5 \mathrm{~m})} \quad \alpha=48.0 \mathrm{rad} / \mathrm{s}^{2} 2
\end{aligned}
$$

Sample Problem

- Determine the acceleration of the cord by evaluating the tangential acceleration of the point A on the disk.

$$
\begin{aligned}
\vec{a}_{\text {cord }} & =\left(a_{A}\right)_{t}=\bar{a}+\left(a_{A / G}\right)_{t} \\
& =2.19 \mathrm{~m} / \mathrm{s}^{2}+(0.5 \mathrm{~m})\left(48 \mathrm{rad} / \mathrm{s}^{2}\right)
\end{aligned}
$$

$$
a_{\text {cord }}=26.2 \mathrm{~m} / \mathrm{s}^{2} \uparrow
$$

$$
\bar{a}_{x}=0 \quad \bar{a}_{y}=2.19 \mathrm{~m} / \mathrm{s}^{2} \uparrow
$$

$$
\alpha=48.0 \mathrm{rad} / \mathrm{s}^{2} 2
$$

Rotation About a Fixed Axis

Example-Non Centroidal Rotation

$$
\begin{aligned}
& \leftarrow \sum F_{n}=m \omega^{2} r_{G} ; \quad O_{n}=(20 \mathrm{~kg})(5 \mathrm{rad} / \mathrm{s})^{2}(1.5 \mathrm{~m}) \\
& \downarrow \sum F_{t}=m \alpha r_{G} ; \quad-O_{t}+20(9.81)=(20)(\alpha)(1.5 \mathrm{~m}) \\
& \sum M_{G}=I_{G} \alpha ; \quad O_{t}(1.5)+60 N . m=\left[\frac{1}{12}(20)(3)^{2}\right] \alpha
\end{aligned}
$$

Alternative monent Eqs:

$$
O_{n}=750 \mathrm{~N} \quad O_{t}=19.0 \mathrm{~N} \quad \alpha=5.90 \mathrm{rad} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& \sum M_{o}=\sum\left(M_{k}\right)_{o} ; \quad 60 N . m+20(9.81)(1.5)=\left[\frac{1}{12}(20)(3)^{2}\right] \alpha+[20(\alpha)(1.5)(1.5)] \\
& \alpha=5.9 \mathrm{rad} / \mathrm{s}^{2} \\
& \sum M_{o}=I_{o} \alpha ; \quad 60 N . m+20(9.81)(1.5)=\left[\frac{1}{3}(20)(3)^{2}\right] \alpha \\
& \alpha=5.9 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

Frictional Rolling Problems

- rolls without slipping
- slides as it rolls

$$
\begin{aligned}
& \rightarrow \sum F_{x}=m\left(a_{G}\right)_{x} \quad P-F=m a_{G} \\
& \uparrow \quad \sum F_{y}=m\left(a_{G}\right)_{y} \quad N-m g=0 \\
& \sum M_{G}=I_{G} \alpha \quad F r=I_{G} \alpha \\
& \text { (Rolling) No Slipping valid if } \\
& F \leq \mu_{s} N \\
& \text { Slipping } \\
& F=\mu_{K} N
\end{aligned}
$$

$$
\sum M_{G}=I_{G} \alpha \quad 35-1.25 F_{A}=0.761 \cdot \alpha
$$

Example

W=50-lb
radius of gyration
$\mathrm{k}_{\mathrm{G}}=0.70 \mathrm{ft}$.
$\mathrm{a}_{\mathrm{G}}=$?.

$$
\mu_{s}=0.3 \text { and } \mu_{k}=0.25
$$

The 50-lb wheel has a radius of gyration $k_{G}=0.70 \mathrm{ft}$. If a $35-\mathrm{lb} \cdot \mathrm{ft}$ couple moment is applied to the wheel, determine the acceleration of its mass center G. The coefficients of static and kinetic friction between the wheel and the plane at A are $\mu_{\mathrm{s}}=0.3$ and $\mu_{\mathrm{k}}=0.25$, respectively.

1) Rolling without slipping $\quad a_{G}=1.25 \alpha$
$N_{A}=50 \mathrm{lb} \quad F_{A}=21.3 \mathrm{lb}$
$\alpha=11.0 \mathrm{rad} / \mathrm{s}^{2} \quad a_{G}=13.7 \mathrm{ft} / \mathrm{s}^{2}$
$\mu_{s} N(0.3 * 50=15) \leq F_{A}=21.3$ slipping will take place

$$
\begin{aligned}
& I_{G}=m k_{G}^{2}=\frac{50}{32.2}(0.7)^{2}=0.761 \mathrm{slug} \cdot f t^{2} \\
& \rightarrow \sum F_{x}=m\left(a_{G}\right)_{x} \quad F_{A}=\frac{50}{32.2} a_{G} \\
& \uparrow \sum F_{y}=m\left(a_{G}\right)_{y} \quad N_{A}-50 l b=0
\end{aligned}
$$

2) $F_{A}=\mu_{k} N=0.25(50)=12.5 \mathrm{lb}$. Now substitute in $35-1.25 F_{A}=0.761 \cdot \alpha \therefore \alpha=25.5 \mathrm{rad} / \mathrm{s}^{2}$

Also from $F_{A}=\frac{50}{32.2} a_{G}$ we obtain $a_{G}=8.05 \mathrm{ft} / \mathrm{s}^{2}$

