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Classical ctrl approaches in energy systems
A

In traditional power
systems, the sources of
uncertainties are
represented by the loads.

Transmission

\ 4
Majority of the control

problems are solved in the
planning (years) or
dispatching (day) stages.

Sub-transmission

Distribution

(low voltage)
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Importance of uncertainties of renewabhles
A
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Classical ctrl approaches in energy systems
A

Massive deployment of
distributed energy
resources - large
uncertainties come from
injections

Transmission

Sub-transmission v

Control problems are
solved in the planning
(years), dispatching (day)
and real-time.

Distribution

(low voltage)
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Methodological/techneological chalienges in smart grids
A s

Problem Required methods Required technologies
= Renewables short-term = Real-time knowledge of the = Distributed sensing (e.g.
volatility system state PMU)

= Real-time state estimators
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sensing: situation awareness and functions
A

Network Optimal |
monitoring  yjp control  CONgestion
management

Optimal dispatch

Real-Time of DERs

monitoring | islanding

of power grids operation

4accurate

+reliable Losses
minimization

+fast (sub-second)

+low |atency Fault detection

and location
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sensing: technologies and time synchronisation
A

Drivers Availability of new technologies (e.g., precise time dissemination)
—> Enable new situation-awareness and control schemes in power
grids

oy
.‘-.”' ‘ -
: "’/k

Primary
SS

=

Monitoring

.(l)ﬂ- _ EICom, M. Paolone | 17.11.2017
FEDERALE DE LAUSANNE



sensing: real-time state estimation via PMUs
A

Definition

Phasor Measurement Unit
(IEEE Std.C37.118-2011)

“A device that produces synchronized measurements of
phasor (i.e. its amplitude and phase), frequency, ROCOF
(Rate of Change Of Frequency) from voltage and/or current
signals based on a common time source that typically is the
one provided by the Global Positioning System UTC-GPS.’
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sensing: the EPFL PMU metrological performances
A
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Methodological/technological challenges in smart grids
A s

Problem Required methods Required technologies
= Renewables short-term = Real-time knowledge of the = Distributed sensing (e.qg.
volatility system state PMU)

= Real-time state estimators
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Real-Time State Estimation via PMUs
A

Availability of new technologies P T T T T S
—> Enable new protection and control schemes . ..., St = |
) X Data Estimation = I

@ AU Concentration algorithm
o d Telecom I Q Control [
UTC Time % @é I
Reference Protections |
I
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Real-Time State Estimation via PMUs
A

Definition 1/2
To fix the ideas, in what follows with the term
Real-Time State Estimation — RTSE

we make reference to the process of estimating the network
state (i.e., phase-to-ground node voltages) with an
extremely high refreshing rate (typically of several tens of
frames per second) enabled by the use of synchrophasor
measurements.
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Real-Time State Estimation via PMUs
A

Use cases

Monitoring Protection Control

» Real-time visualization and » Fault identification Voltage control

alarming «  Fault location « Line congestion management

* Real-time State Estimation ~ «  Faylt isolation « Distributed resources control (€.g.,

» Post-event analysis electrochemical storage)

Planning of grid reinfor- » Network islanding (and reconnection)
cement due to excessive «  System restoration
DER penetration

» Asset management
» Equipment misoperation
«  System health monitoring
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Real-Time State Estimation via PMUs
A

The SiL case study (network operator of the city of Lausanne)

= Line [Jll Bus with PMU e Qwhner: Services industriels de
/ e Lausanne (SilL)

* Location: Lausanne, Switzerland
» Size: 7 buses

* Nominal voltage: 125 kV,

* Installed PMUs: 15

* Adopted telecom: fiber links

* Field trial objectives:

1. Integration of PMU
measurements in the existing
SCADA

2. Demonstration on the use of
PMU to locate faults and provide
protection functionalities
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Real-Time State Estimation via PMUs

The SiL case study — The GUI of the developed SCADA
—T1|M® REAL TIME STATE ESTIMATOR
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Methodological/technological challenges in smart grids
A s

= Stability assessment of
complex systems (low inertia)

‘ Problem Required methods Required technologies
n

=

|

2

£ | = Grid congestions = Exact optimal power flow = Distributed storage

& | = Voltage control = Explicit control methods
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Ontimal real-time explicit control
A

The COMMELEC control framework — Main features

= inexpensive platforms (embedded controllers)
= scalability
= do not build a monster of complexity - bug-free

Such a control framework must be

= gcalable

= composable

(i.e. built with identical small elements)
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COMMELEC's Architecture
s

= Software Agents

assoclated with devices / < @ \

= |oad, generators, storage ;
I
= grids P
]

&)
o)
G

= Grid agent sends explicit
power setpoints {0 — m
devices’ agents \ S1 52

2
I
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COMMELEC's Architecture
e
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= Every agent advertises its state (example each 100 ms) as a
PQt profile, a virtual cost and a belief function

= Each Grid agent computes optimal setpoints and sends them
as requests to resource agents.
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FEDERALE DE LAUSANNE

EICom, M. Paolone | 17.11.2017



y - -
COMMELEC's Architecture - The POt Profile
e

PQt profile: constraints on active/reactive power setpoints

Examples of PQt profiles

Synchronous
Battery Generator
S:r- A P Pgna:c
\ JPR— g
PV plant
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COMMELEC’s Architecture - The Virtual Cost
i
Virtual cost: proxy for the resource internal constraints

Example:
If (State-of-Charge) is 0.7
| am willing to inject power

If (State-of-Charge) is 0.3,
| am interested in absorbing power

Battery agent

Grid agent

HE___.S> EiCom, M. Paolone | 17.112017 21
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COMME -The B

’ - - -
LEC’S Architecture elief Function
A

= Say grid agent requests setpoint

(Pgets Qqer) from a resource
= Actual setpoint will, in general,

differ e PQt profile slice
= The belief function is exported by belict

a resource agent with the semantic: S\ . /Pgl(t)

ek el

resource implements < ’
(P.Q) EBF(Pt,Qser) R ’
= |t gives bounds on the actual (P,Q)
that will be observed when the : \ SN
follower is instructed to implement a AN
given setpoint. _Q

= Essential for safe operation.
I o . pctone 1120
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COMMELEC’s Architecture - The Grid Agent’s Joh
s

Leader agent (grid agent) computes setpoints for followers based on
= the state of the grid

= advertisements received from the resources

: Ce Cost of power flow at point
The Grid Agent attempts to minimize o

J (x) = éi wC (xi)+W(z) +J, (xo)

Virtual cost of the Penalty function of grid electrical state z
resources  (e.g., voltages close to 1 p.u.,
line currents below the ampacity)

The Grid Agent does not see the details of resources
a grid is a collection of devices that export PQt profiles, virtual costs and

belief functions and has some penalty function problem solved by grid

agent is always the same
I
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COMMELEC's Architecture — Experimental resuits
A
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Methodological/technological challenges in smart grid
A s

Problem Required methods Required technologies

time

= Heterogeneous resources = Real-time estimation of = Agent-based software
aggregation system flexibility frameworks
= Ancillary services (system = Robust optimization = Demand response
stability) = Short-term forecast = New technologies in pumped
hydro
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Robust optimization applied to local systems: why
A

= Achieving dispatched-by-design operation of traditionally
stochastic prosumption allows reducing grid reserve

requirements.

= The dispatch plan is built to satisfy a local objective, such as
peak shaving, load levelling or minimization of the cost of

imported electricity.
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The

topology of a dispatchable feeder (EPFL campus)
A

EPFL sub-transmission grid sources Of ﬂeXibiIity:
;g/flovljgv Grid Connection Point " phyS|caI energy Storage Storage
Aggregated consumption SyStems

20/0.17 kVi
0.75 MW

I |
I |
I |
I |
| |
I |
| |
I g |
| BESS i‘f:iu'l'iuli I
: Buildings with 95 kWp rooftop PV :
I |
I |
I |
| |
I |
I |
I |
I |

I : Dispatchable feeder

The 6p_eration of a group of stochastic prosumers (generation + demand) is dispatched according to
a profile established the day before operation (called dispatch plan) by controlling the real power

injection of the battery.
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The DF problem formulation - A two stage process
A

Time (hours before the beginning of the day of operation)

The feeder dispatch plan on a
S-minute basis is determined.

-
The feeder is dispatched accord-
ing to the dispatch plan.

Tracking of the dispatch plan. | Receding horizon MPC to
control BESS injections.

24
\J Y
TSO Dispatchable feeder operator BESS

Day-ahead scheduling Intra-day and real time operation
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Tlle nl: exnerlmental neriormances
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(c) Real-time: dispatch plan vs realization of GCP power transit and pro-

sumption.

I
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e
24h dlspatoh of heterogeneous EPFL campus aggregated resources

EPFL sub-transmission grid
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Grid connection point (GCP)
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P (composite power flow)
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_ Office buildings with
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A

The massive integration of volatile resources is and will
drive major changes in modern power systems and future
smart grids.

Current Swiss research programs have developed new
technologies and methodologies to re-engineer the sensing
and control of power grids.

= Real-time situation awareness of power systems
enabling new control schemes.

= Seamless aggregation and control of heterogeneous
energy resources via abhstract control methods.
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A

Fundamental questions

= How much can we compress the time horizon to supply
optimal controllers of wide-area power systems ?

¢ Further evolve PMU-based situation awareness systems

¢ Time-determinist situation awareness has been just
Introduced. The potential is still to be explored.

= How can we distribute the optimal controls as a function
of the system partitioning ?

¢ Abstract methods (like COMMELEC) have been just
introduced. Potential to completely re-engineer power
systems control approaches.
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A

Fundamental questions

= How can we couple long-term system objectives (daily,
weekly and seasonal energy balances) with real-time
optimal controllers ?

s Emerge/quantify the system flexibilities via COMMELEC-
like abstract methods.

¢ Coupling of COMMELEC-like abstract methods with
energy-management policies still unexplored.

= How can we couple power grid with other energy grid
controls ?

«»» Extend COMMELEC-like abstract methods to non electrical

systems is a completely unexplored field.
I ccom, . pane 11201




