| 1. INTRODUCTION 2. ENZYME I Introduction 3. ENZYME II Kinetics 4. ENZYME II Mechanism & Inhibitor 5. CARBOHYDRATE I Introduction 6. CARBOHYDRATE II Classification 7. METABOLIC ENERGY 8. MID SMESTER EXAM 9. LIPID 10. AMINO ACIDS 11. BIOLOGICAL N FIXATION 12. NUCLEIC ACID RNA and DNA 13. PROTEIN SYNTHESIS I Genome and gen 14. PROTEIN SYNTHESIS II Transcription and Translate | 1 | NO. | TOPICS | Subject | |--|-------|-----|-----------------------|--| | 3. ENZYME II Kinetics 4. ENZYME II Mechanism & Inhibitor 5. CARBOHYDRATE I Introduction 6. CARBOHYDRATE II Classification 7. METABOLIC ENERGY 8. MID SMESTER EXAM 9. LIPID 10. AMINO ACIDS 11. BIOLOGICAL N FIXATION 12. NUCLEIC ACID RNA and DNA 13. PROTEIN SYNTHESIS I Genome and gen | | 1. | INTRODUCTION | | | 4. ENZYME II Mechanism & Inhibitor 5. CARBOHYDRATE I Introduction 6. CARBOHYDRATE II Classification 7. METABOLIC ENERGY 8. MID SMESTER EXAM 9. LIPID 10. AMINO ACIDS 11. BIOLOGICAL N FIXATION 12. NUCLEIC ACID RNA and DNA 13. PROTEIN SYNTHESIS I Genome and gen | | 2. | ENZYME I | Introduction | | 5. CARBOHYDRATE I Introduction 6. CARBOHYDRATE II Classification 7. METABOLIC ENERGY 8. MID SMESTER EXAM 9. LIPID 10. AMINO ACIDS 11. BIOLOGICAL N FIXATION 12. NUCLEIC ACID RNA and DNA 13. PROTEIN SYNTHESIS I Genome and gen | | 3. | ENZYME II | Kinetics | | 6. CARBOHYDRATE II Classification 7. METABOLIC ENERGY 8. MID SMESTER EXAM 9. LIPID 10. AMINO ACIDS 11. BIOLOGICAL N FIXATION 12. NUCLEIC ACID RNA and DNA 13. PROTEIN SYNTHESIS I Genome and gen | Maria | 4. | ENZYME II | Mechanism & Inhibitor | | 7. METABOLIC ENERGY 8. MID SMESTER EXAM 9. LIPID 10. AMINO ACIDS 11. BIOLOGICAL N FIXATION 12. NUCLEIC ACID RNA and DNA 13. PROTEIN SYNTHESIS I Genome and gen | | 5. | CARBOHYDRATE I | Introduction | | 8. MID SMESTER EXAM 9. LIPID 10. AMINO ACIDS 11. BIOLOGICAL N FIXATION 12. NUCLEIC ACID RNA and DNA 13. PROTEIN SYNTHESIS I Genome and gen | | 6. | CARBOHYDRATE II | Classification | | 9. LIPID 10. AMINO ACIDS 11. BIOLOGICAL N FIXATION 12. NUCLEIC ACID RNA and DNA 13. PROTEIN SYNTHESIS I Genome and gen | | 7. | METABOLIC ENERGY | | | 10. AMINO ACIDS 11. BIOLOGICAL N FIXATION 12. NUCLEIC ACID RNA and DNA 13. PROTEIN SYNTHESIS I Genome and gen | | 8. | MID SMESTER EXAM | | | 11. BIOLOGICAL N FIXATION 12. NUCLEIC ACID RNA and DNA 13. PROTEIN SYNTHESIS I Genome and gen | 1 | 9. | LIPID | A SA | | 12. NUCLEIC ACID RNA and DNA 13. PROTEIN SYNTHESIS I Genome and gen | | 10. | AMINO ACIDS | | | 13. PROTEIN SYNTHESIS I Genome and gen | | 11. | BIOLOGICAL N FIXATION | | | | | 12. | NUCLEIC ACID | RNA and DNA | | 14. PROTEIN SYNTHESIS II Transcription and Translat | | 13. | PROTEIN SYNTHESIS I | Genome and gen | | | | 14. | PROTEIN SYNTHESIS II | Transcription and Translation | | 15. SECONDARY METABOLITES | | 15. | | | | Saturated | | | |---|--|---------------| | Formula | Common Name | Melting Point | | CH ₃ (CH ₂) ₁₀ CO ₂ H | lauric acid | 45 °C | | CH ₃ (CH ₂) ₁₂ CO ₂ H | myristic acid | 55 °C | | CH ₃ (CH ₂) ₁₄ CO ₂ H | palmitic acid | 63 °C | | CH ₃ (CH ₂) ₁₆ CO ₂ H | stearic acid | 69 °C | | CH ₃ (CH ₂) ₁₈ CO ₂ H | arachidic acid | 76 °C | | Unsaturated | A STATE OF THE STA | M/55/7 | | Formula | Common Name | Melting Point | | CH ₃ (CH ₂) ₅ CH=CH(CH ₂) ₇ CO ₂ H | palmitoleic acid | 0 °C | | CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ CO ₂ H | oleic acid | 13 °C | | CH ₃ (CH ₂) ₄ CH=CHCH ₂ CH=CH
(CH ₂) ₇ CO ₂ H | linoleic acid | -5 °C | | CH ₃ CH ₂ CH=CHCH ₂ CH=CHC
H ₂ CH=CH(CH ₂) ₇ CO ₂ H | linolenic acid | -11 °C | | CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₄ (CH ₂)
₂ CO ₂ H | arachidonic acid | -49 °C |