

Plant Performance 2017 User Symposium

Purdue University Reactor Protection and Control System

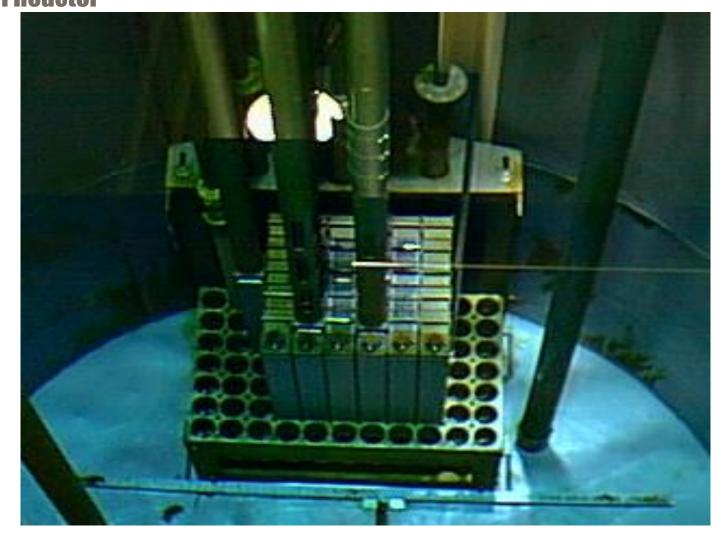
Presenters

Clive Townsend (Purdue University)

- PUR-1 Reactor Supervisor
- PUR-1 Upgrade Project Manager
- clive@purdue.edu

Robert Ammon (Curtiss-Wright Nuclear)

- Director of Products and System Integration
- PUR-1 Upgrade System Engineer
- rammon@curtisswright.com



RUMUE NUCLEAR LADOMATOMES Overview

- Very exciting time at Purdue Nuclear Engineering
- College of Engineering Unprecedented growth
- Complete renovation of lab space to better comply with ADA Standards
- Power Uprate of PUR-1
- Reactor Protection and Control System Upgrade

PURITIE NUCLEAR LABORATORIES PURI Reactor

PURIREACTOR

Rurdue Nuclear Laboratories

Existing Reactor Console

- Irradiations
- Neutron Activation Analysis
- Equipment Testing
- Benchmarking Reactor Codes

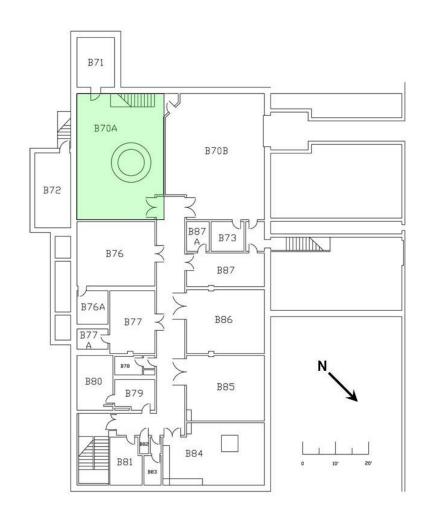
RURI MISSION Teaching

- Undergraduate and Graduate Lab Courses
 - Approach To Critical
 - Subcritical Multiplication
 - Rod Worth By Positive Period
 - Fermi Age

Operations and Reactor Administration

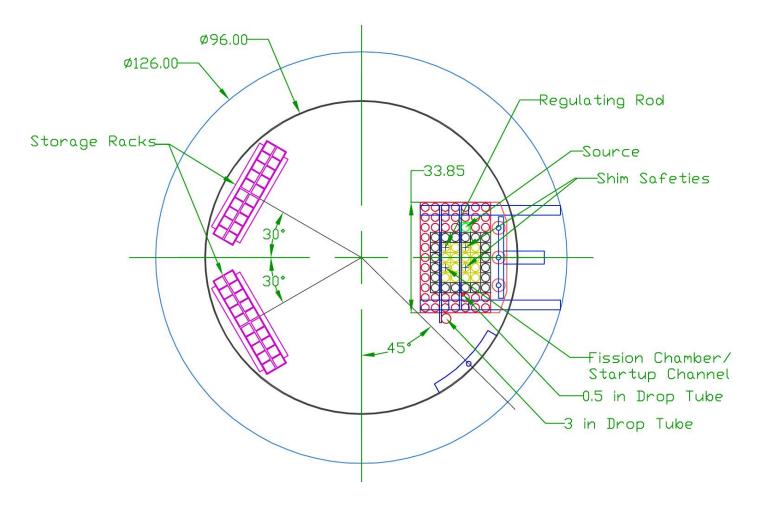
- Indiana's only nuclear reactor
- Over 1500 people toured PUR-1 in 2015
- Three non-nuclear courses have reactor visits as part of the syllabus
- High school visits

- 1960 Initial design work and proposal to build facility
- 1962 First criticality of PUR-1
- 1968 First License renewal
- 1988 Second License renewal
- 2007 HEU to LEU fuel conversion completed
- 2015 Proposals Submitted for Console Upgrade
- 2016 Third License Renewal with power uprate
- 2016 Reactor Protection and Control System SAT
- 2017 Expected Digital I&C Final Installation



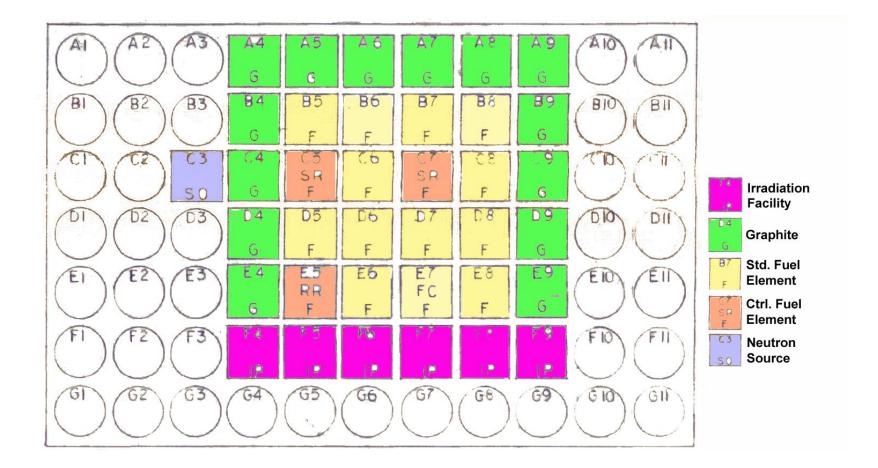
- Laboratory Director Robert Bean
- Reactor Supervisor Clive Townsend
- Electronics Technician David Storz
- Various graduate and undergraduate students

PURI FACILITY Facility Layout



- PUR1 Reactor
- Subcritical pile
- Undergraduate
 Thermalhydraulic Lab
- Chem Facility Room
- Beta Voltaic Facility
- Expanding Lab Space

PUR1 Facility


Pool Layout

PUR1 Facility

Core Layout

PUR1 DESEGN

- Materials Test Reactor (MTR) Pool Type
- Built by Lockheed Nuclear Products
- 10 kW design level (Possible in future to expand)
- Licensed at 1 kW in 1962
- Entered timely renewal of license in 2008
- Power uprate to design level (10kW) approved by the US NRC in 2016

- Flat Plate Type Fuel by BWXT Technologies
- Fuel Material
 - Low Enriched Uranium $(19.75\%^{235}U)$
 - $U_3Si_2 Al$
- Plates are $7cm \times 64 cm$
- Standard Element has up to14 fuel elements per assembly
- 16 Total Assemblies

Control Rods

- Two Shim Safety Rods
 - Boron-Stainless Steel
 - Total calculated worth $-5.8\% \Delta k/k$
 - Operating Speed 4.4 inches/min
- One Regulating Rod
 - 304 Stainless Steel
 - Total Worth $-0.47 \% \Delta k/k$
 - Operating Speed 17.7 inches/min

PUR1 Design

Current Nuclear Instrumentation

Startup Channel

- Fission Chamber
- Range: 1 cps to 10⁴ cps

Log-N Channel

- Compensated Ionization Chamber
- Range: 10^4 to $10^{10}n/cm^2sec$
- Linear Channel
 - BF₃ lon Chamber
 - Range: 10^4 to $10^{10}n/cm^2sec$
- Safety Channel
 - Compensated Ionization Chamber
 - Range: 10⁻³ to 150 % *Power*

- Average thermal flux in fuel region: $1.2 \times 10^{10} \frac{n}{cm^2 sec}$ (10¹¹ Expected)
- Maximum thermal flux in fuel region:

$$2.1 \times 10^{10} \frac{n}{cm^2 sec}$$

• Drop Tubes

0.5 in:
$$1.55 \times 10^{10} \frac{n}{cm^2 sec}$$

3.0 in: $4.88 \times 10^7 \frac{n}{cm^2 sec}$

PUR1 Design

Safety Limits per Technical Specification Amendment #13

- Limiting Safety System Setting of 12 kW
- Safety Limit of Fuel and Clad Temperature 530 °C
- No Explosives
- Very low reactivity worth
 - Movable or unsecured experiments 0.003 $\Delta k/k$
 - Secured experiments 0.004 $\Delta k/k$
- Sealed samples easiest to approve
- Limited to 1 R/hr upon removal

Undrade Motivation

PUR-1 Reactor Upgrade

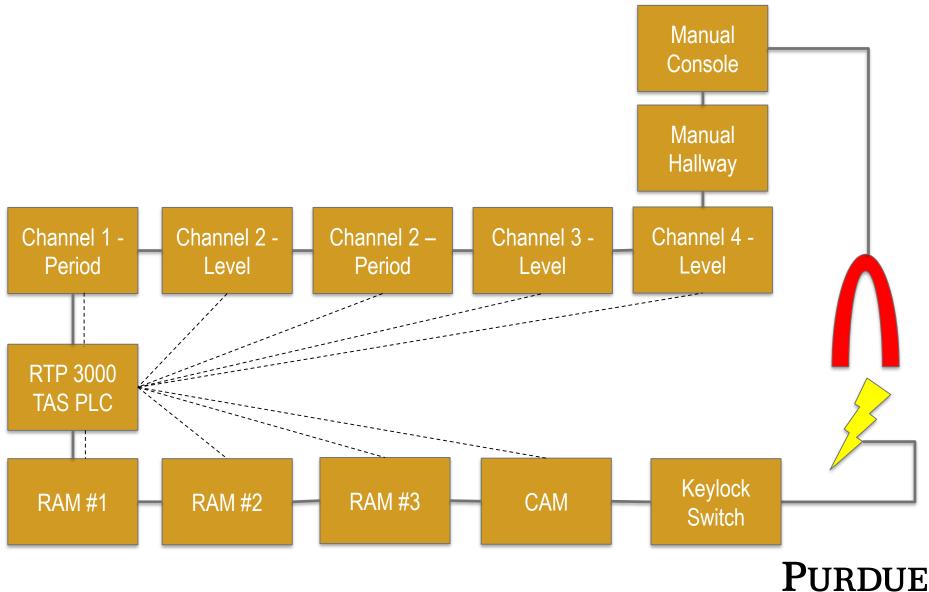
18 Oct 62 0800 Equipment moved back into room. 18 Oct 62 0900 Instrument check OK. Attempted start-up to check set-back and slow scram operation. Noise on 5521 Control circuit resulted in repeated scram and set-back. Attempted to find source of hoise unsuccessfully. By 1145 noise had practically disappeared. Possibly due to dirt on contacts some place. Reactor secured. 1545 - STARTED LOOKING FOR NOISE RECORDERS ON - MAGNET KEY OFF. - CHECKOUT COMPLETED TO ITEM #10. Broken connection tourd on LGR. Repaired Use-Calib switch ! Reactor secured 1732. JRE

Ungrade Timeline

- Summer 2015 Solicitation of bids
- Fall 2015 Bid awarded to Mirion Technologies
- Spring 2016 Functional Requirements Specifications Document Complete
- Summer 2016 Software and Hardware Design Locked
- August 29 Factory Acceptance Testing (Idaho Falls, ID)
- September 16 Delivery to Purdue
- September 30 Final System Staging
- December 21 Site Acceptance Testing
- 2017 Final Reactor Integration

PUR-1 Reactor Upgrade

- Like-for-like performance
 - 4 Channels Remain
 - Exact replication of interlocks and other functionality
 - Replacement of detectors by same type
 - No voting of channels to increase licensability
 - Isolated workstations to mitigate cyber risk
 - Complete replacement of controls and instrumentation to ensure compatibility
 - SCRAM capability in all major subsystems


- 10 CFR 50.59 Review not practical or likely to result in positive outcome
- Communicate early and often with the NRC
- Understand regulatory stance when making design decisions
- Deviate as little as possible from current design
- Comprehensive License Amendment Request
- ...while avoiding operability traps

SCRAM

UNIVERSITY

Protection vs. Control

PUR-1 Reactor Upgrade

Protection	Control
Mirion Channels (DGK, DWK, DAK)	RTP 3000 TAS PLC
Manual Scram	Dell Computer Workstation
Radiation Area Monitors	
Continuous Air Monitor	

Neutron Flux Monitoring Equipment

Channel #1 (Startup Range)

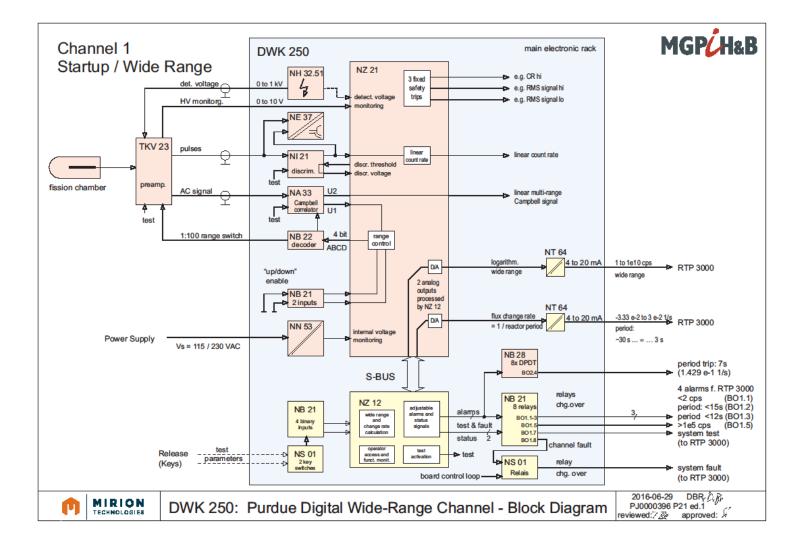
- Mirion Fission Chamber Detector
- Mirion TKV 23 Pre Amplifier
- Mirion DWK 250 Wide Range Channel

Channel #2 (Intermediate Range)

- Mirion Compensated Ion Chamber Detector
- Mirion NV 102 Pre Amplifier
- Mirion DAK 250-g Log N and Period Channel

Neutron Flux Monitoring Equipment

Channel #3 (Power)


- Mirion Uncompensated Ion Chamber Detector
- Mirion NV 102 Pre Amplifier
- Mirion DAK 250-g Linear Power Channel

Channel #4 (Safety)

- Mirion Uncompensated Ion Chamber Detector
- Mirion DGK 250 Linear Power Channel

Neutron Flux Monitoring Equipment

Reactor Control System Equipment

RTP 3000 TAS I/O Equipment

- 4-20 mA Current Inputs
- 0-10 VDC Voltage Inputs
- 0-10 VDC Voltage Outputs
- 24 VDC DI inputs
- 24 VDC DO outputs

Reactor Operator Console Display Workstation

- Dell Precision Tower 5810 workstation
- Dual 19 inch display monitors
- R*TIME Server V 14.1
- R*TIME Viewer V 4.10

Reactor Control System Equipment

Control Rod Magnet Power Supply

- Acopian Constant Current Supply
- 30 mA nominal

Miscellaneous

- Interposing Relays
- 24 VDC Power Supply
- Wiring Terminations

Plant Server System Equipment

- Canary Data Diode
- Plant Server System
 - Dell Precision Tower 5810
 - Cisco Network Switch
 - HP Printer

External System Equipment

UPS

- One for Reactor Protection System
- One for Reactor Control System
- Makeup Water Instrumentation
 - Makeup Water Temperature (Pool and Process Equipment)
 - Conductivity (Pool and Process Equipment)
- HVAC Controls

External System Equipment (cont.)

Radiation Area Monitors (3)

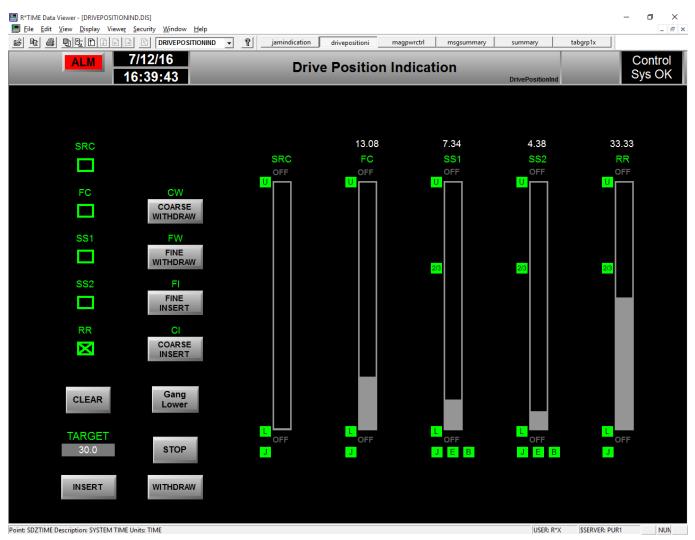
- Reactor Pool
- Makeup Process Equipment
- Operator Console
- Continuous Air Monitor
- Environmental Monitor
 - Negative Air Pressure Monitor

- Response time to facility parameter changes less than 50 milliseconds
- Any bad signal will be set automatically to the most conservative value
- Any off-normal equipment causes Reactor SCRAM
- Power (Linear Channel Reading) and Period always visible to operator

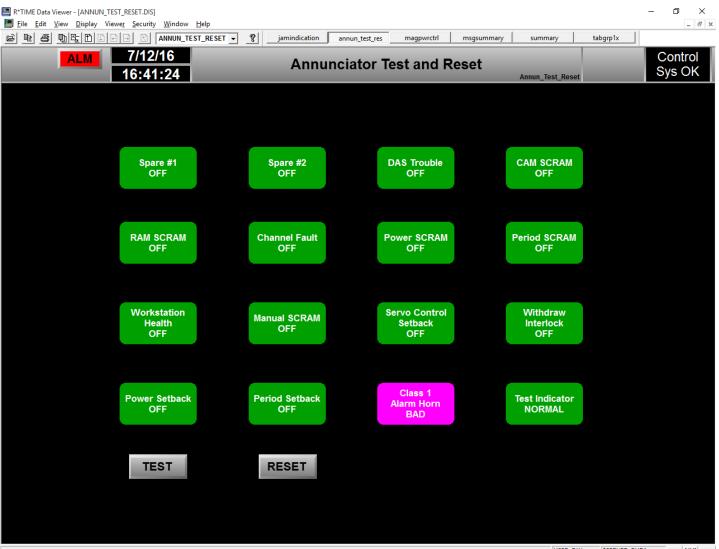
- Workstation Logins protected at same level as console keyswitch
- External media restricted to facility personnel
- Plant Server System for secondary display use
- No external network access to Reactor Control System (data diode between RCS and PSS)

- Capability to directly enter final rod height
- Automatic rod drop timing calculations
- Ability to plant up to 12 facility parameters on up to 4 simultaneous screens
- Custom live data analysis by experimenters
- Ability to present large variability of values depending on tour level
- Display data on facility screens for exterior viewing

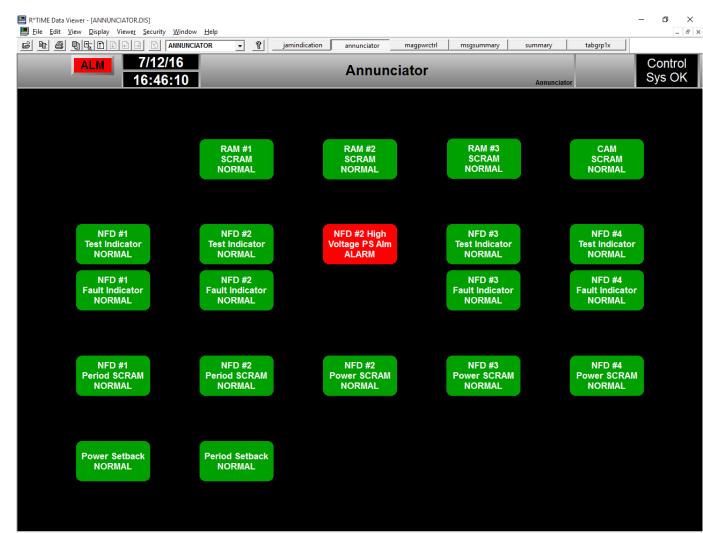
PUR-1 Reactor Upgrade



PUR-1 Reactor Upgrade



PURDUE UNIVERSITY


PUR-1 Reactor Upgrade

PUR-1 Reactor Upgrade

CONSOL COMPATISON PUR-1 Reactor Upgrade

CONSOLG COMPARISON PUR-1 Reactor Upgrade

KITERAL STREET SCRAN ė 7/12/16 7/12/16 Contrast Res OK PUMP POWER POWER POWER CHILLER

Site Acceptance Testing

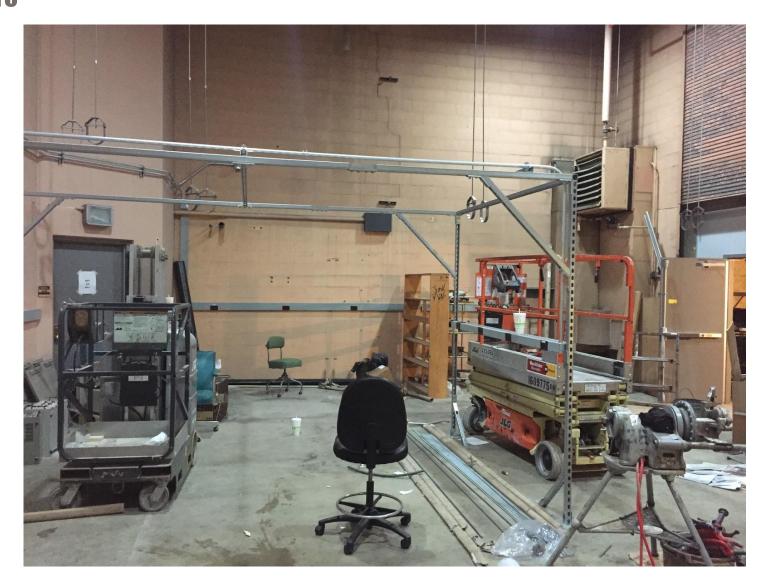
- Parallel Installation with Existing System
 - Mirion detectors in the Reactor Pool in new canisters
 - Mirion electronics connected to Reactor Control System (RCS) and Mirion detectors
 - Control Rod Magnet Power controlled from existing system only
 - RCS connected to external systems
 - New RAMs
 - New CAM
 - New Makeup Water Sensors
 - New Environmental Sensors
 - Existing Rod Drive Controls
 - New cables switched with existing system
 - Existing Rod Drive Position Sensors
 - New cables switched with existing system

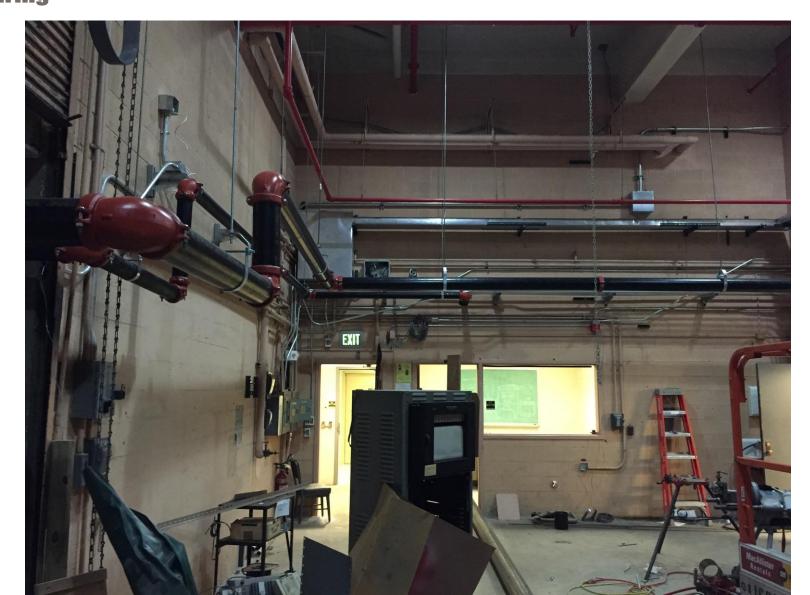
Site Acceptance Testing

Final Installation

- After NRC approval of License Amendment Request (LAR)
- Removal of existing system control console equipment cabinets
- Gut and retain existing operator console frame
- Installation of new equipment cabinets
- Transfer of RPCS from temporary racks to new equipment cabinets and operator console frame
- Transfer in pool detectors to final location
- Final installation SAT tests
 - Mirion neutron equipment calibration
 - RCS Control Rod Movement
 - RCS Control Rod SCRAM Timing

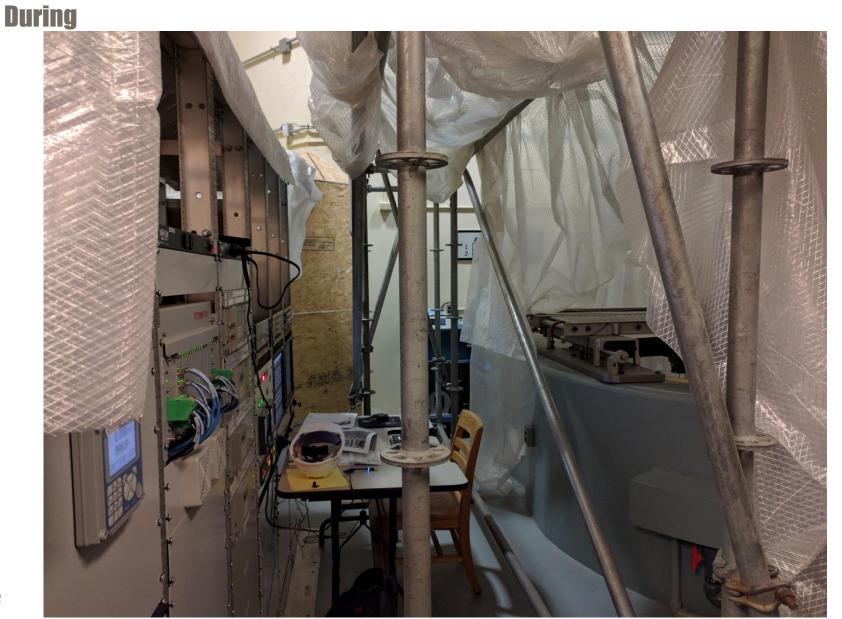
Temporary Installation




Complete renovation of lab space ...

- Major Building Modifications occurring at the same time as Parallel System Installation and SAT
 - Heating and Cooling system complete replacement
 - Fire protection system complete replacement
 - Electrical power distribution complete replacement
 - Building reorganization (removal of lots of walls and addition of lots of walls)
 - Significant exterior window additions

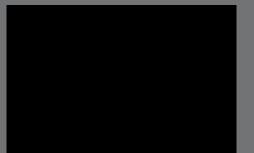
RUMATE NUCLEAR Laboratories Before


Purille Nuclear Laboratories During

RUMATIC NUCLEAR LABORATORIES Before

Rurdue Nuclear Laboratories

Rurdue Nuclear Laboratories During


The Team ...

Clive Townsend <u>clive@purdue.edu</u> Robert Ammon <u>rammon@curtisswright.com</u>

https://engineering.purdue.edu/NE/research/facilities/reactor/index_html

