PLASMA RIE ETCHING FUNDAMENTALS AND APPLICATIONS

Hasan Sharifi & Geoff Gardner

18 November 2008

Outline

DEFINITIONS

> Electron (e⁻)

Discovery Park

> Positive ion (Ar⁺, Cl⁺, SiF₄⁺, CF₃⁺)

Positive ion mass in RIEs >>mass of electron

➢ Radical (F, Cl, O, CF3)

Uncharged atoms with unsatisfied chemical bonding

DEFINITIONS (continued)

$$\lambda(cm) \approx \frac{5}{P(mT)}$$

(Dependent on the species)

Pressure

Discovery Park

1atmosphere= 760 Torr = $1*10^5$ Pascals

Pumping speed (S) [liters/sec]

➤ Gas flow rate (Q) [Torr-liters/sec] or [sccm]

Plasma Vacuum System

cxverv Park

Mechanical Pumps

Wet and Dry Pumps Pumping speed: 20-500 m³/h Ultimate pressure: 1-10 mTorr

Turbo Pumps

Rotation speed= 20000-90000 rpm Pumping speed: 50-3000 l/s Ultimate pressure: 10⁻⁵-10⁻⁸ Torr

[TP controller]

Mass Flow Controller (MFC)

MFC or Gas Box

Panasonic MFC Box

Automatic Pressure Controller (APC) & Gate Valve

Pendulum valve

 $Q = S \times P$

Butterfly valve

VAT

Clamp or Electrostatic Chuck

Electrostatic Chuck (ESC)

+++++

-V

Dielectric

Base Plate

RF Generator & Matching Network

In general: $Z_L \neq Z_S$

Purpose of Matching Network: $Z_{in} = Z_S$ to maximize power delivery from source.

[Gambetti]

Outline

- 1. Introductory Concepts
- Plasma Fundamentals
 The Physics and Chemistry of Plasmas
 Anisotropy Mechanisms
 The Etching of Si and its Compounds
 The Etching of Other Materials

What is Plasma?

• Plasma is the fourth state of matter. It is an ionized gas, a gas into which sufficient energy is provided to free electrons from atoms or molecules and to allow both species, ions and electrons, to coexist.

Discovery Park

[Plasmas.org]

How to Make Plasma?

➤ Capacitive RIE
 - Low density plasma
 n_e ≈ 10⁹ [electron/cm³]
 Ionization efficiency ≈ 10⁻⁷

Discovery Park

[Oxford Instruments]

➢ Inductive RIE

- High density plasma

 $n_e \approx 10^{13}$ [electron/cm³] Ionization efficiency $\approx 10^{-3}$

>Only used for sputtering system not for etching.

>Used for any materials (insulating and conductive).

>Ion transit time (T_{ion}) is the time it takes the ion to traverse the sheath.

► 1/Freq << T_{ion} ! Freq= 13.56 MHz

Paschen's Law

Describes how the breakdown voltage depends on electrode separation and the pressure based on ideal gas law.

Inductive Coupled Plasma RIE

STS ASE and AOE systems

Why High Density Plasmas?

- Lower ion bombardment energies improve selectivity and reduce ionbombardment-induced physical damage of the wafer surface.
- Lower ion energies, however, result in the lower etch rates and reduced anisotropy!
- However, the etch rate can be increased by using much higher ion fluxes due to high density plasmas.
- > The anisotropy can also be restored by operating at low pressure.

Outline

Ce	Pr	No	Pm	Sm	EŰ	Go	Τb	Dy	Ho	Er	Tm	Yb	LJ
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Tin	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Mc	No	Lin

Electron-Molecule Collisions

- An energetic electron colliding with a neutral etch gas molecule can create any of the following processes:
- ✓ Dissociation $AB + e^{-} \implies A + B + e^{-} \implies CF_4 + e^{-} \implies CF_3 + F + e^{-}$
- ✓ Ionization $AB + e^{-} \implies AB^{+} + 2e^{-} \implies Ar + e^{-} \implies Ar^{+} + 2e^{-}$

Radicals and Ions in Plasmas

- Positive ions are very important for etching processes.
- Radicals are more numerous than ions in gas glow discharges because:
- 1. The electron energy required in order to break chemical bonds in the molecules is usually less than the energy required to ionize these molecules.
- 2. Radicals have a longer lifetime in the plasma compared to ions because an ion is almost always neutralized during a collision with a surface while radicals often do not react with a surface and are reflected back into the plasma.

What is Plasma Etching?

1- Need an etching gas

- 2- Establish a glow discharge
- 3- Choose chemistry so that the reactive species react with the substrate to form a volatile by-product
- 4- Pump away the volatile by-product

Why Plasma Etching?

Clean process

- Compatible with automation
- Anisotropic etching
- Precise pattern transfer especially for Nano-scale features

Discovery Park Gas-Solid Systems

Solid	Etch Gas	Etch Product
Silicon	CF_4, Cl_2, SF_6	SiF ₄ , SiCl ₄ , SiCl ₂
SiO ₂ , SiN _x	CF ₄ , C ₄ F ₈ , CHF ₃ , SF ₆	SiF ₄ , CO, O ₂ , N ₂ , FCN
Al	BCl ₃ /Cl ₂	$Al_2Cl_6, AlCl_3$
Ti, TiN	Cl_2, CF_4	TiCl ₄ , TiF ₄
Organic Solids	O ₂ , O ₂ /CF ₄	CO, CO ₂ ,
GaAs & III-V	Cl ₂ /Ar, BCl ₃	Ga_2Cl_6 , AsCl ₃
Cr	Cl ₂ /O ₂	CrO ₂ Cl ₂

Difficult materials to etch:

Fe, Ni, Co, Au, Ag, Pt \implies halides not volatile Cu \implies Cu₃Cl₃ is volatile above 200^C

Halogen Size Effect

[Handbook of Advanced Plasma Processing Techniques by Pearton]

Outline

×50.0

- 1. Introductory Concepts
- 2. Plasma Fundamentals
- 3. The Physics and Chemistry of Plasmas
- 4. Anisotropy Mechanisms
- 5. The Etching of Si and its Compounds
- 6. The Etching of Other Materials

Definition

• Etch rate

- Mask (Photoresist, Metal, SiO₂, ...)
- Selectivity
- Anisotropy degree

$$A_{f} \equiv 1 - \frac{L}{H}$$

Reactive etching

>Reactive etching is an isotropic process!

>Has very high selectivity!

Si + 4F \implies SiF₄ (gas)

Isotropic etch

Ion etching

>Ion etching or mechanical etching is an anisotropic process!

>Has lower selectivity and etch rate!

Reactive ion etching

Reactive ion etching is an anisotropic process!Has better selectivity and much higher etch rate!

[J. Appl. Phys. 50, 3189 (1979)]

every Park

Sidewall Passivation

Deposition of carbon polymer material on the sidewalls where:

coverv Park

- (a) Either the carbon is provided by the feed gas through the chamber such as CHF_3 , C_4F_8 .
- (b) Or the carbon is provided by the erosion of the photoresist etch mask.

Sidewall Passivation

>Oxidation of the sidewall by adding O_2 gas.

Bosch Process

Switching SF_6 and C_4F_8

The sidewall film thickness depends to the deposition or passivation time.

Temperature effects in plasma etching

- ≻Wafer surface temp. depends on:
- Chuck temperature
- Ion's energy and density

Reaction probability of radicals depends on substrate temperature.

Helium backside cooling helps anisotropic etch by preventing or reducing reaction of F and CI species with sidewalls.

Notch Effect

[[]J. Vac. Sci. Technol. B 19.5., Sep/Oct 2001]

STS ASE has LF pulsed generator!!

Other Effects

Grass or micromasking issue mainly because of metal mask sputtered on the wafer

Aspect Ratio Dependent Effect (ARDE) Typically large open areas etch faster than smaller features!

Other Effects

× Microloading effect:

Feature of the same size etch more slowly in dense patterns Than in wide open areas!

Outline

- 1. Introductory Concepts
- 2. Plasma Fundamentals
- 3. The Physics and Chemistry of Plasmas
- 4. Anisotropy Mechanisms
- 5. The Etching of Si and its Compounds
- 6. The Etching of Other Materials

STS ASE DRIE

It's a 6" ICP Bosch process dedicated for silicon etching!

Gases:

SF ₆	C ₄ F ₈
O ₂	Ar

STS ASE DRIE

High etch-rate recipe:

	Switching time	Pressure	RF coil power	RF bias power	Gas flow [sccm]
Etch	8.5 sec	40mTorr	2200W	40W	450 SF ₆
Passivation	3 sec	14mTorr	1500W	20W	$200 \ C_4 F_8$

Etch rate ≈ 8µm/min for 500 µm feature size with ~ 20% exposed area

High selectivity to $PR \approx 75-100$

STS ASE DRIE

Low etch-rate recipe:

	Switching time	Pressure	RF coil power	RF bias power	Gas flow [sccm]
Etch	13 sec	5mTorr	800W	25W	160 SF ₆
Passivation	7 sec	1mTorr	600W	20W	$85 C_4 F_8$

Etch rate ≈ 2µm/min for 500 µm feature size with ~ 20% exposed area

High selectivity to $PR \approx 50$ Smooth side wall

STS AOE DRIE

It's a 4" ICP tool dedicated for etching of oxide, nitrite, and polymers!

Gases:

SF ₆	C ₄ F ₈	CF ₄
O ₂	Ar	He

	Pressure	RF coil power	RF bias power	Gas flow [sccm]
Oxide Etch	2mTorr	600W	50W	13 CF ₄

Etch rate ≈ 0.3µm/min Selectivity to PR≈ 1-2

Panasonic RIE

It's a 6" ICP tool for etching of silicon, oxide, nitrite, III-V, polymers, and some metals!

Gases:

SF ₆	CHF ₃	Cl ₂	O_2
CF ₄	Ar	BCl ₃	N_2

Panasonic RIE

	Pressure	RF coil power	RF bias power	SF ₆ flow [sccm]	O ₂ flow [sccm]	
Si Etch	11Pa	900W	75W	30	30	

Etch rate ≈ 1µm/min

Discovery Park

[Panasonic]

LU. FAU NG. BBC N. BRAN

	Pressure	RF coil power	RF bias power	Cl ₂ flow [sccm]	O ₂ flow [sccm]
Si Etch	0.8Pa	350W	50W	63	1.2

Etch rate ≈ 200nm/min

Discovery Park Panasonic RIE

	Pressure	RF coil power	RF bias power	CHF ₃ flow [sccm]
Oxide Etch	0.16 Pa	450W	50W	40

Etch rate ≈ 60 nm/min

	Pressure	RF coil power	RF bias power	CF ₄ flow [sccm]	CHF ₃ flow [sccm]
SiN ₃ Etch	2 Pa	400W	30W	48	50

Etch rate ≈ 100 nm/min

Panasonic RIE

	Pressure	RF coil power	RF bias power	SF ₆ flow [sccm]
SiC Etch	4 Pa	700W	280W	50

Etch rate ≈ 0.46 µm/min

Discovery Park

510-101				
	1			1
1				
1		×19.1	к э.	ala de

	Pressure	RF coil power	RF bias power	Cl ₂ flow [sccm]	O ₂ flow [sccm]
SiC Etch	1.5 Pa	500W	150W	30	20

Etch rate $\approx 0.19 \ \mu m/min$

Plasma Tech RIE

- \checkmark It's a simple RIE.
- ✓ It can be used for etching silicon, oxide, nitrite, SiC, and polymers.

Gases:

Outline

- 1. Introductory Concepts
- 2. Plasma Fundamentals
- 3. The Physics and Chemistry of Plasmas
- 4. Anisotropy Mechanisms
- 5. The Etching of Si and its Compounds
- 6. The Etching of Other Materials

Panasonic RIE

	Pressure	RF coil power	RF bias power	Cl ₂ flow [sccm]	Ar flow [sccm]
Ti Etch	2 Pa	400W	100W	100	5

Etch rate ≈ 3 µm/min

Panasonic RIE

	Pressure	RF coil power	RF bias power	BCl ₃ flow [sccm]	Cl ₂ flow [sccm]	Ar flow [sccm]
GaAs	3 Pa	900W	75W	50	150	20
Etch						

Etch rate ≈ 5.3µm/min Selectivity to PR≈ 5

Panasonic RIE

	Pressure	RF coil power	RF bias power	BCl ₃ flow [sccm]	Ar flow [sccm]
GaAs	0.6 Pa	500W	50W	15	60
Etch					

Etch rate ≈ 120 nm/min Selectivity to PR≈ 4

Panasonic RIE

	Pressure	RF coil power	RF bias power	Cl ₂ flow [sccm]	
GaN	4 Pa	900W	90W	50	
Etch					

Etch rate $\approx 500 \text{ nm/min}$ Selectivity to PR ≈ 0.5 Selectivity to SiO₂ ≈ 5

General Process Trends

How to Increase Etch Rate?

- Increasing Main Coil Power
- Increasing Platen or Bias Power
- Increasing Process pressure
- Increasing etching flow
- Increasing Etch cycle time (for Bosch process)

How to Reduce Sidewall Roughness/Scallops?

- > Keep etch and deposition cycle times to minimum, (for Bosch process)
- Reduce process pressure
- Reduce etch gas flow
- Increase deposition component, time, power, or flow (for Bosch process)

How to Increase Selectivity?

- Increasing the pressure
- Reducing platen power

Discovery Park General Process Trends

How to Straighten the Profile?

- ➤ Using low pressure
- > Decreasing etch cycle time or increasing deposition cycle time (for Bosch process)
- Optimizing platen power

General Process Trends

Trends for Controlling process results	Etch rate	Profile	Selectivity	Sidewall Roughness
Etch gas increase	${\leftarrow}$		←	1
Pressure increase	${\leftarrow}$		<	1
Etch Coil Power increase	1		1	1
Platen Power increase	$\uparrow \leftrightarrow$		\downarrow	\leftrightarrow

Acknowledgment

➢We would like to thank faculty members, staff, and students for their support.

Questions?

