
Player Tracking and Analysis of Basketball Plays

Evan Cheshire, Cibele Halasz, and Jose Krause Perin

Abstract— We developed an algorithm that tracks the move-
ments of ten different players from a video of a basketball
game. With their position tracked, we then proceed to map the
position of these players onto an image of a basketball court.
The purpose of tracking player is to provide the maximum
amount of information to basketball coaches and organizations,
so that they can better design mechanisms of defense and attack.
Overall, our model has a high degree of identification and
tracking of the players in the court.

I. INTRODUCTION

Automated player detection and tracking in team-sport
games is of growing importance [1]. As the profits from
sports are increasing substantially, teams are heavily in-
vested more in gathering statistics on their athletes. Certain
statistics, such as distance run during a match, can provide
information on player’s health. Moreover, real-time detection
of players can be valuable in identifying the opponent’s
formation and strategy, and might give some insight on the
likelihood of a certain play be successful. This can lead to
better strategies.

Our project is relevant because it is able to gather infor-
mation regarding the position of the players in the court,
as well, as data related to the style of play of each team.
Such information could be crucial to the winning of matches,
if well analyzed by the team’s coach. More generally, our
project could be adapted to the tracking of players of any
sports’ match.

II. METHODOLOGY

This project was developed entirely on MATLAB. In order
to achieve our end goal of a two dimensional image with
player positioning, we made use of a five step algorithm,
each of which will be further expanded:

1) Court Detection - find lines of the court;
2) Individual Detection - detect individuals standing on

the court;
3) Color Classification - Separate these individuals into

two teams;
4) Player Tracking - Keep positions information frame by

frame;
5) Mapping - translate onto a court

The data for the project consisted of multiple YouTube
videos which were then cropped in order for us to do our
analysis. We mainly selected videos in which we were able to
see all major lines of the court in order to accurately perform
the homography.

emails: {evanches, cibelemh, jkperin}@stanford.edu

III. ALGORITHM

Fig. 1 illustrates the block diagram of algorithm devel-
oped. The subsequent subsections discuss each stage of the
algorithm in detail.

A. Court Detection

The video frames that we obtained from Youtube were
initially converted from the BGR to the HSV (hue, saturation
and value) color model. We then focused on the H-plane
in order to create a binary model of the system. Then, we
proceeded to perform erosion and dilation of the image in
order to get rid of artifacts that were not related to the court.
Subsequently, we made use of the Canny edge detector to
detect the lines in our system. Finally, we performed the
Hough transform in order to detect the straight lines in the
system. This process is illustrated by Figure 2.

B. Pedestrian Detection by Histogram of Oriented Gradients

The next stage is pedestrian detection through histogram
of oriented gradients (HOG). HOG essentially builds his-
tograms of the gradient orientations in localized portions of
an image, which can be used to identify objects in a image.
While it is difficult to establish definite characteristics for
these histograms in order to detect a certain object, machine
learning classifiers, such as support vector machine (SVM),
can be used to identify a desired object in a image based
on a training data set. For pedestrian detection no single
feature has been shown to outperform HOG. However, the
performance can be improved by using additional features to
provide complementary information [2].

For this project we used the HOG detector from OpenCV.
This was mainly motivated by the fact that OpenCV has
already a default data set for pedestrian detections, and
that the HOG feature calculation and SVM were already
efficiently implemented. We used the “Daimler” dataset for
pedestrian detection. This detector is trained using window
size of 48 by 96 pixels. Thus, the HOG detector expects
pedestrians to be of at least that size.

Fig. 3 illustrates an example of pedestrian detection of bas-
ketball players using HOG descriptors and SVM classifier.
The inset in that figure illustrates the HOG descriptors of one
of the players as well as an inverse, which corresponds to a
reconstructed image from the HOG descriptors. This image
shows that HOG descriptors carry significant information of
the detection. In the sample frame all players were detected,
but there were some false positives, and two players were
detected by the same box because they were too close
together.



Fig. 1: Block diagram of algorithm for player detection and tracking.

Fig. 2: This schematic represents the work performed in
order to detect the edge lines of the system. The frame is
initially converted to the HSV plane, then turned into a binary
image. Later, we make use of the Hough transform in order
to find the Hough Lines (straight lines) of the image

The HOG features with SVM have a miss rate of about
70% for pedestrian detection [2]. However for this particular
application, the accuracy of the HOG detectors is expected
to be smaller, since the players can fall, jump, or crunch to
get the ball, and consequently will not be detected by the
HOG detector. Thus, it is necessary a redundancy system to
detect the players when the HOG detector fails. To this end,
we built a color-based detector and classifier. This color-
based detector detects the players based on their jersey’s
colors. The purpose of this detector is two-folded. Firstly,
it is responsible for classifying the players according to their
team as well as ruling out other “pedestrians” that might
be detected by the HOG detector such as referees, coaches,
audience members, for example. Secondly, the color detector
should identify players within a HOG box. Quite often some
players will be too close together or partially obstructed by
other players. In these situations the HOG detector might

Fig. 3: Example of basket players detection using openCV
pedestrian detection with HOG.

return a single detection (box) for all those players.

C. Color-Based Detection and Classification

The color-based detector performs player’s detection
within a HOG box, which is a region of the original image
classified as a pedestrian by the HOG detector. Color-based
detection could also be used in a larger image (not necessar-
ily in a HOG box only), for example detecting players in the
entire court as done in previous projects [3], [4]. However,
the HOG detector greatly improves the performance of this
color detector, since the HOG boxes limit the scope to a
couple of players. Thus other objects that might have the
same color of the player’s jerseys, such as details in the floor
typically found in basketball courts, will not be detected as
often as if an entire frame were used.

The color detector performs detection by using thresholds
in the HSV space. The choice of the HSV space as oppose
to RGB was motivated by the fact that the HSV enables
higher discrimination between changes in color rather than
saturation and brightness. For instance, a RGB-color-based
initially implemented would constantly obtain false positives
given by the reflections on floor. Given a set of images
containing players from both teams, referees, members of the
audience, etc. The histograms for all coordinates H, S, and
V are calculated and thresholds are calculated using Otsu’s
method. Depending on the color of the two teams more
than one threshold might be necessary to allow distinction
between other elements that might appear in the image (e.g.,
yellow and floor). Once these thresholds are known we can
derive logical expressions for color detection. For instance,
yellow corresponds to (60o, 100%, 100%) in the HSV space,
whereas white corresponds to (0o, 0%, 100%). Thus, we can
distinguish between yellow and white by requiring the hue



(a) RGB (b) HSV

yellow white

(c) Detection by thresholding

Fig. 4: Illustration of color-based classifier. (a) represents the original image in RGB, (b) is the original image converted
to HSV, (c) is the image after binarization through thresholding. Closing and dilation using circle of radius 10, and 15× 5
rectangle is performed in the resulting binary image. The algorithm selects only boxes that meet certain criteria in size and
extent. Thus, smaller boxes are ignored and false positives are avoided. As we can see in (c) all four players were classified
correctly.

and saturation coordinates to be higher than their respective
thresholds for yellow, and below a certain threshold for
white.

Fig. 4 illustrates the color detection process for a white vs
yellow detection. Once the thresholds are determined from a
training data set, the color detection can be performed fairly
fast since it basically comprises of comparisons and logical
operations. To avoid some false positives, some additional
criteria is enforced. For instance, boxes that correspond
to more less than 5% of the image area are disregarded.
Moreover, valid boxes are expected to have height higher
than width since basketball players are tall and they’re
standing.

The color detection also plays an important role as a
backup of the HOG detector. As the game proceeds some
players might become partially obstructed by other players,
or they might simply not be detected by the HOG detector in
a certain frame. In these different scenarios, the color-based
detector will be called to find the missing player by perform-
ing detection in small neighborhood of the corresponding box
from the previous frame. This works fairly well because we
used videos of rate of 24 fps, thus the player is expected to be
in the surroundings of where he was in the previous frame.
These different conditions in adding players and dropping
players in the detection is done by the tracking algorithm
discussed in the next subsection.

Fig. 5 shows two sample frames after color detection. Note
that Fig. 5-(a) corresponds to the same frame of Fig. 4, and
the false positives were eliminated and the ambiguity of two
players being detected by the same box was eliminated.

D. Tracking

Once detected, the next goal is to establish a frame
by frame positioning of the individual players in order to
understand the play in total. Thus, a tracking algorithm kept
track of the players’ movements. This algorithm used the

information from the previous frames for initial conditions
on tracking. We dealt with the following scenarios.

1) Scenario 1: Player Detected in Consecutive Frames: In
this scenario, a player was detected by the HOG detector and
color classifier in back to back frames. Because the frames
are taken at a rate of 24 fps, the position of player from
one frame to the next are highly related. Thus these boxes
that are detected would have high overlap. In this case, the
position of this player is updated with the new position, and
the new position is saved.

2) Scenario 2: Neighborhood Estimate: Ins this scenario,
a player was not detected by the HoG detector, but can be
found by a color detection in the neighborhood. With this
frame-by-frame scenario, the HOG does not detect every
player in every frame. Players can be in motion and blurred,
crouching, or in some way be undetectable to the HOG
detector in a particular frame. A player detected in the
previous frame would then have no correlation to a player in
the current frame. We search for this missing player within
a 20 pixel bound around the location of the player in the
previous frame. If the color detector can identify a player
with the same jersey within this box, it matches this player
to this new position. If multiple players are found within this
box, it matches this player to the closest previous position.
Thus lose a HOG detection for a frame does not result in
the loss of the player’ positioning.

3) Scenarios 3 & 4: Adding and Dropping: The next two
scenarios, though quite different, have a similar solution:

Scenario 3: A player was not originally detected in the
first frame, but was found at a later time. In this scenario, a
player was not detected in the 1st frame. The HoG detector
was not able to originally find this player. This scenario will
be referred to as an add. In the original frame, 9 players were
detected on the court in Fig. 6a; however, in a later frame,
this 10th player was added in Fig. 6b.

Scenario 4: A player who had been previously identified



(a) Michigan vs Louisvielle (b) Michigan vs Syracuse

Fig. 5: Example of player’s detection using HOG pedestrian detection and color-basedclassification in two different games.

(a) The first frame of the play (b) A player was added (c) 3 players merged

Fig. 6: Different tracking scenarios that might occur throughout the game.

by the HoG detector and color classifier was dropped. This
will happen when players of the same team merge together,
and the color classifier is unable to distinguish them as
separate players. This scenario will be referred to as a drop.
In the first frame for example, one is able to distinguish five
separate players on the yellow team in Fig. 6a. However,
because the players converge, only 3 yellow masses are
distinguishable in Fig. 6c. Therefore, information is lost.

These scenarios have a combined solution, a minimum
distance correlator. On every single frame, the boxes and
positions are stored. If a player is dropped, after a certain
period of time, the HoG detector will detect him again.
Because no box from the previous frame correlates to him, he
will have had no established previous position. The algorithm
checks to see if a player who had been dropped is relatively
close to his position. The distance allowed is fixed distance
multiplied by the number of frames since this player was
lost. If this player was within the distance of any previously
dropped players, he is then correlated back to this original
player, combating the drop issue. However, if no previous
player was within range of this current player, a new player
is added to the tracking data, combating the add issue.

This tracking algorithm solving scenarios 3 and 4 is far
from perfect. Tracking itself is highly dependent on the
detection information. False positives from the bench or
the court can lead to bad minimum distance guesses if a
player is lost. With players merging on the court, solving the
drop problem is especially difficult. Players’ motion change
rapidly and do get convoluted, and using a players’ original

motion is not reliable to match missing players to previous
frames. The algorithm is also sensitive to camera jitter. The
best solution to this add and drop problem would be to have
multiple stable camera viewpoints, which is not available
to us from a broadcast, but would be available within a
professional environment such as a NBA team.

E. Mapping via Homography

The last step was related to the projection of each player’s
location in the top-down view of the court. By having the
dimensions of the court, we are able to find a 3x3 homog-
raphy matrix that is computed using an affine transform.
Each player’s position is then multiplied by the homography
matrix that projects them into the model court, as shown in
Fig. 7.

Fig. 7: Comparison between the players detected and the
projected image in the court. As you can see the players
match the position in the top-down court model.



IV. ANALYSIS AND RESULTS

In this section we use the algorithm developed to analyze
the positions of the players as the play progresses. As an
example, Fig. 8 shows the heatmap of the players positioning
as the play progresses. The position of the team is compatible
with the video since we can see that the white team remains
on the defense throughout the play and the yellow team only
crosses the white team’s defense line to score a basket.

Fig. 8: Heatmap of the players location between teams yellow
and white

A similar heat map can be created for the second game
between Michigan (represented by yellow) and Syracuse
(represented by red), Fig. 9. We can see the distribution of
players in the field is compatible to that seen in the video,
which indicates that our player detection and homography
are working in conjunction in order to provide us with useful
data related to the players location in the court.

Fig. 9: Heatmap of the players location between teams yellow
and red

In order to further validate the results of our tracking
let’s break down the Syracuse and Michigan game into the
two teams. Then, if we analyze only the positions of the
players from Michigan we get the image compatible with
Fig. 10 for the first 60 frames. In those, we can see that we
are correctly labeling players 1 through 5 in the Michigan
game. Furthermore, there movements seem to be compatible
to those represented in the video.

What is most impressive, however, is the ability of our
player identification and tracking system to capture the

Fig. 10: Positions of players from Michigan team. Each
player is represented by a different color. The movements
of the players seem to be compatible to that of the video

movement of one single player that crosses the court, passing
through many other players and is still correctly labeled and
identified. This can be perceived by Fig. 11.

Fig. 11: Position of Michigan player identified as player 1.
As we can see the color segmentation and the tracking appear
as a viable way to track this player across the court

V. CONCLUSION AND FUTURE WORK

We have developed an algorithm that accurately detects
basketball players in a video and is able to accurately
place them in a 2D top-view court. We have achieved such
results making use of an association of the hog detector
from OpenCV and color segmentation. Future work for this
project would involve better adjusting the color segmentation
thresholds to avoid artifact identification as well as improving
the accuracy of our tracking system.

VI. APPENDIX

A. Acknowledgements

The authors would like to thank Andre Araujo for his
mentorship throughout the quarter, and the rest of the EE368
teaching staff for putting together this incredible course.

B. Work distribution

All students contributed to the making of the poster and
writing of the paper.
Evan: Tracking of players



Jose: Color segmentation and player detection
Cibele: Court detection, homography and analysis

REFERENCES

[1] Wei-Lwun Lu, Jo-Anne Ting, James J. Little, Kevin P. Murphy,
“Learning to Track and Identify Players from Broadcast Sports
Videos,” IEEE transactions on pattern analysis and machine intelli-
gence, 2011.

[2] Dollar, Piotr, et al. “Pedestrian detection: An evaluation of the state of
the art.” Pattern Analysis and Machine Intelligence, IEEE Transactions
on 34.4 (2012): 743-761.

[3] Scott Parsons and Jason Rogers, “Basketball Player Tracking and
Automated Analysis,” EE368 final project, Spring 2013/2014.

[4] Matthew Wilson and Jerry Giese, “Basketball Localization and Loca-
tion Prediction,” EE368 final project, Winter 2013/2014.


	I INTRODUCTION
	II Methodology
	III ALGORITHM
	III-A Court Detection
	III-B Pedestrian Detection by Histogram of Oriented Gradients
	III-C Color-Based Detection and Classification
	III-D Tracking
	III-D.1 Scenario 1: Player Detected in Consecutive Frames
	III-D.2 Scenario 2: Neighborhood Estimate
	III-D.3 Scenarios 3 & 4: Adding and Dropping

	III-E Mapping via Homography

	IV ANALYSIS AND RESULTS
	V CONCLUSION AND FUTURE WORK
	VI APPENDIX
	VI-A Acknowledgements
	VI-B Work distribution

	References

