PLC / Embedded computer

UuBLOC

User Manual
Version 2.5

“Everything for Embedded Control”

COMFILE

TECHNOLOGY
Comfile Technology Inc.
www.comfiletech.com

Copyright 1996,2006 Comfile Technology

Blank Page

C U B LO C sout O 1 24 [1 VIN (5.5V~12Vinput)
CBZZO sINO] 2 .23]VSS
Core Module ATN] 3 221 RES
. vss [4 21|J vDD
Pinout SS_ADCO_PO [5 20[7 P15_HCNT1
-
(Input only)SCK_ADC1_P1 [] 6 19|30 P14_HCNTO
MOSI_ADC2_P2[] 7 181 P13
MISO_ADC3_P3 [] 8 173 P12
ADC4_P4]9 161 P11_TX1
PWMO_ADC5_P5 [10 15[3 P10_RX1
PWM1_ADC6_P6 [| 11 14 [J P9_SDA(CUNET)
PWM2_ADC7_P7 [] 12 130 P8_SCL(CUNET)
souT VDD TX1 33 @ @ 49| TTLTX1
SIN VSS RX1 34 @ @ 50| TTLRX1
‘ B 2 8 0 ATN RES AVDD 35 @ @ 51 | AVREF
vss NIC NC 36 @ @ 52| Pag
ss PO P16 ADCO_P24 37 @ @ 53 | P31_ADCT
(Input_only)SCK_P1 P17 ADC1_P25 38 @ @ 54 | P30_ADCG
MOSI_P2 P18 ADC2_P26 39 @ @ 55 | P29_ADC5
MISO_P3 P19_PWM3 ADC3_P27 40 @ @ 56 | P28 ADC4
P4 P20_PWM4_INTO P47 41 @ @ 57| P32
PWMO0_P5 P21_PWMS5_INT1 P46 42 @ @ 58| P33
PWM1_P6 P22_INT2 P45 43 @ @ 59 | P34
PWM2_P7 P23_INT3 P44 44 @ @ 60| P35
(CUNET)SCL_P8 P15_HCNT1 P43 45 @ @ 61| P36
(CUNET)SDA_P9 P14_HCNTO P42 46 @ @ 62| P37
P10 P13 P41 47 @ @ 63| P38
P11 P12 P40 48 @ @ 64 | P39
-
Vdd X1 41 TUTX1
Vss RX1 42 TURX1
RES C B 2 9 0 AVdd 43 AVref
VBB vdd 44 Vss
P8_ADCO P24 45 P32
(Input d P9_ADC1 P25 46 P33
P10_ADC2 P26 47 P34
P11_ADC3 e P27 48 P35
P12_ADC4 Wi P28 49 P36
P13_ADC5 zz P29 50 P37
P14_ADC6 ©33 P30 51 P38
P15_ADC7 Sozes P31 52 P39
P64 =00%% P40 53 P48
Pes 555 P41 54 ® @74 P49
P66 ogerw P42 55 ® @75 P50
P67 Zdaoao P43 56 ® @76 P51
P68 oo P44 57 P52
P69 @ @@ oo P45 58 P53
P70 P46 59 P54
P71 ° P47 60 ® @80 P55
wor~
385
oco
85
S
!
iz
G
4
21 Vdd TXE THTXE
22 Vss RXE THURXE
23 RES C B 4 0 AVdd Avref
vdd Vss
ADC8 _P32 P48
ou] ADC9_P33 P49
Only 27 P18_ADC2 ADC10_P34 P50
28 P19_ADC3 ADC11_P35 P51_PWM9
29 P20_ADC4 ADC12_P36 P52_PWM10
30 P21_ADC5 ADC13_P37 P53_PWM11
31 P22_ ADC6 ADC14_P38 P54
32 P23_ ADC7 ADC15_ P39 P55
33 P24 HCNT1_P47 P63
34 P25 HCNTO_P46 P62
35 P26 P45 P61
36 P27_PWM3 P44 P60
37 P28_ PWM4_INTO TX1_P43 P59
38 P29_ PWM5_INT 1 RX1_P42 P58
39 P30_INT2 (CUNET)SDA_P41 ®79 P57_TX3
P15 20@ @40 P31_INT3 (CUNET)SCL _P40 60 ® ®80 P56 _RX3

Warranty

Comfile Technology provides 1 Year warranty on its products against defects in
materials and workmanship. If you discover a defect, Comfile Technology will, at its
option, repair, replace, or refund the purchase price. Simply return the product with a
description of the problem and a copy of your invoice (if you do not have your invoice,
please include your name and telephone number).

This warranty does not apply if the product has been modified or damaged by accident,
abuse, or misuse.

30-Day Money-Back Guarantee

If, within 30 days of having received your product, you find that it does not suit your
needs, you may return it for a refund. Comfile Technology will refund the purchase
price of the product, excluding shipping/handling costs. This does not apply if the
product has been altered or damaged.

Copyright & Trademarks

Copyright © 2006 by Comfile Technology Inc. All rights reserved. CUBLOC™ is a
registered trademark of Comfile Technology Inc. WINDOWS is a trademark of
Microsoft Corporation. XPORT is trademark of Lantronix inc. Other trademarks are of
their respective companies.

Notice

This Data Book may be changed and updated without notice. For the addition of new
features, information can be updated without notice. Comfile Technology Inc. is not
responsible for any actions taken outside the explanation of this data book. This
product is protected by patents across the world. You may not change, copy,
reproduce, or translate without the consent of Comfile Technology Inc.

Disclaimer of Liability

Comfile Technology Inc. is not responsible for special, incidental, or consequential
damages resulting from any breach of warranty, or under any legal theory, including
lost profits, downtime, goodwill, damage to or replacement of equipment or property,
and costs or recovering, reprogramming, or reproducing any data stored in or use with
Comfile Technology products.

NEW in CublocStudio v.2.0.X

1. You can simple upgrade to CUBLOC STUDIO V2.X to use new

features of CUBLOC and CUTOUCH.

New Functions | Syntax Features
SET RS485 SET RS485 Channel, Port Set Port Number for automatic
control of TE (Transmit Enable)
signal for RS485 converter
(Comfile RS485 Converter)
GETCRC GETCRC Variable, Array, Length Calculate the CRC
VALHEX() Variable = VALHEX(String Variable) Convert hexadecimal String
number to a decimal variable.
FREEPIN FREEPIN Port Free I/O Port set to LADDER
using Usepin back to BASIC
FP() FP(Single Variable, Whole Number | Convert Floating Point variable
Digits, Fractional Number Digits) to a formatted String
COMPARE COMPARE Channel, Set point, | When high counter value
PortNumber, PortStatus reaches a set point, set an I/O
Port to Low or High.
I2CREADNA Variable = I2CREADNA(0) I2CREAD command without
acknowledgement

2. Modbus RTU Slave Mode

SET MODBUS mode, slaveaddress, returninterval

mode : 0=ASCII, 1=RTU
slaveaddress : Slave Address (1 to 254)

returninterval : return interval value (1 to 255, default value is 1)

3. Pulse Control Command.

Function Syntax Features
STEPPULSE STEPPULSE Channnel, Output a set of number of
PortNumber, Fregency, Number of pulses at a set frequency (up
Pulses to 15kHz)
STEPSTOP STEPSTOP Channel Stop Pulse Output Channel
immediately.
STEPSTAT() Variable = STEPSTAT(Channel) Return number of pulses
outputted since last
STEPPULSE command

4. RS232 Receive and Send Commands Added.

Function

Syntax

Features

PUTA2

PUTA2 Channel, ArrayName,

StopChar

Length,

Same as PUTA command
except it will stop transmission
upto a set character in the
array. (StopChar will be the
last character to be send)

GETA2

GETA2 Channel, Array name, BytelLength,

StopChar)

Same as GETA command
except it will stop reading data
at the StopChar even if there
are data left to read set by the
Length. If StopChar is not
found, then it will operate just
like a GETA command.

GETSTR2

String Variable =
Length, StopChar)

GETSTR2(Channel,

Same as GETSTR command
except it will stop reading data
at the StopChar even if there
are data left to read set by the
Length. If StopChar is not
found, then it will operate just
like a GETSTR command.
(StopChar is read from the
buffer, but not stored into the
String Variable)

5. RTC using the system timer for CUBLOC without RTC.

This command will allow you to use the system timer of CUBLOC as an RTC.
You can use TIME() and TIMESET functions to access the following

addresses:
address Returning Value Range
10 Seconds 0 to 59
11 Minutes 0to 59
12 Hours 0 to 65535
13 Continuous Seconds 0 to 65535

NEW CUBLOC Module - CB405

The new CUBLOC Module CB405 has more program and data memory with
additional 2 RS232 serial channels over older CUBLOC modules.

Core Module

Features

CB405

RS232 Channels

200KB Program memory, 110KB Data memory, 64 1/Os, 4

To use the CUBLOC module CB405, you need to use CublocStudio v.2.0.X

and above.

1. New functions for the CB405

New Functions Commands
Use the following commands for | OPENCOM
RS232 Channel 0 through 3. SET RS232

GET, GETA, GETSTR, PUT, PUTA, PUTSTR,
BLEN, BFREE, CHECKBF, BCLR
ON RECV, SET ONRECV, WAITTX

Use the AD commands from Channel 0 | ADIN, TADIN
through 15.
Use PWM commands from Channel 0 | PWM, PWMOFF

through 11.

2. Heap Access for the CB405

The HEAP memory access is a special feature only available on the CB405

module.

Function Syntax Feature

HEAPCLEAR Heapclear Erase the entire Heap
memory.

HREAD Variable = HREAD(Address, Length) Read the designated number
of bytes set by Length from
the Heap memory address
and store into a variable.

HWRITE HWRITE Address, Variable, Length Store the designated number
of bytes set by Length to the
Heap memory Address.

HEAPW HEAPW Address, Variable Store one byte to the Heap
memory Address.

HEAP Variable = HEAP(Address) Read one byte from the Heap

memory Address and store
into a variable.

Preface

Comfile Technology has been developing PLC and BASIC controllers since
1997. With our past knowledge of this field, we are giving you a brand new
product that is more powerful, flexible, and has the best features of both
BASIC controllers and PLCs (Programmable Logic Controllers).

After experiences developing and selling TinyPLC and PicBASIC, which are
chip based PLCs and BASIC controllers, we have been able to improve our
engineering efforts every year. CUBLOC is able to adapt to the user’s
strengths, whether that be BASIC or LADDER. Unlike other products, you
can simply use CUBLOC as a BASIC controller or as a PLC controller.

Ladder Logic, which is the traditional way of programming PLCs for its
outstanding control sequence, is neither sufficient nor easy to use for
graphic interface and other modern technology that require complex
programming. In comparison, the BASIC language proves to be simple yet
easy to implement those modern devices.

CUBLOC is able to handle both BASIC and Ladder Logic through on-chip
multi-tasking. By sharing memory data, it's able to integrate both BASIC
and LADDER efficiently and become a new type of controller by itself.

“CUBLOC" is created for beginners and advanced users in mind. Its basic
purpose is to cut design time for those who are just entering the field of
microcontrollers, engineers from other backgrounds such as Chemical or
Mechanical, and anyone who would like to make something that they
envision quickly and get a head start on their project.

With our Plug-N-Play displays, development boards, and relay boards, you
will be able to put something together in matter or hours, instead of months.

Comfile Technology, Inc.

Notice

The Start Kit or Industrial Kit you receive comes with the latest version of
Cubloc Studio.

Please be aware that the software may be upgraded often.

Please check www.comfiletech.com to download the latest version of
CublocStudio.

Please do Setup->Firmware Download after installing new version of
CublocStudio as firmware of the modules is upgraded along with our
software. (Firmware is comes automatically along w/ your new
version of CublocStudio.

Please check www.comfiletech.com often for latest Manual.

Please make sure to insert the CUBLOC module correctly as inserting it
upside-down can cause damage to the chip.

Please be aware that our 1 Year Warranty only covers defective items.

Special thanks goes to:

. Alexandre Braun & Lextronics for applications on the Forum

Batman for applications on the Forum

Mauro Russo & Uniplan Software srl, Italy for User Manual Revisions
Steve Yang & Mr. Bill Ebert for Modbus RTU

Spence for website links and website bugs

Table of Contents

CHAPTER 1 CUBLOC GETTING STARTED...

19

What iS CUBLOC? ...iuuiiiiiriiiii s
CUBLOC SpecifiCationsoveuvieiieniiiiiieiicnese e
Ladder Logic @and BASICocuviiiiniiiiiiiiiisi i
Multi-tasking of Ladder Logic and BASICccccevvviviiieniennnnnnennennannns
Advantages of “"On-Chip” PLC/Embedded Computerc..ccevvnvenns
Development ENVIFONMENTc.uvviiiiiiiiiiiiriis i ens
Download and Monitoring through the Internet............c.cooviiiiiiinnns
Hints for traditional PLC USEIvvuiiiiiiiii st enne e ennannns
Hints for Micro Controller USErcvvevveiveiiinee e e enne e
CUBLOC's Internal StruCtUre......couvivviiiiiiiiiin e
CUBLOC Peripherals.......ccocuiviiiiiiiiiniii e

CHAPTER 2 HARDWARE

20

How to connect Battery to CB290/CB405cceiiiiiiiiiiiiiieeeeanee
(3] 1 0 a1 013 (o] 1= P
CUBLOC Chipset : CB280CScceveuiiiiiiienieiiereirensses s ees e eneens

CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER

CUBLOC STUDIO BaSICS ...cuivninieiieiiiiianieienr e ee e ens s e ee e
Creating BASIC ...viiii it
DEDUGGING cenitiiii i e

CHAPTER 4 CUBLOC BASIC LANGUAGE

CUBLOC BASIC FEAtUIES ..uivieiriiiiiee v e eeneieesse s en e ss s snnan e enenenas
Simple BASIC PrOgramceeceeessessenrinsssnsenssssesenssssenssnsensenssenes
Sub and FUNCHION. ... e
VariablEs .o

10

Bits and Bytes MOdifiers.......cvvriiriiiiiiiiiiii e 87
CONSEANES et 90
CoNSEANE ArTaYS. .. wiuiiiiiiii 91
(0] 0= =] o] 5 93
Expressing Numbers in Bitscoouiiiiiiiiiiiie e 96
The BASIC PreprOCESSOr. . cuuiuiiit ittt tietr et s tae e st e s e aaans 97
CONAItIONA] . .tiitieii e 99
TO use LADDER ONLY .uivuiiiiiiiiiiiiniisi s s na s s e 102
TO USE BASIC ONLY .eviiiiiiiiiiiiiiiii e rei i s s sa e s sa e 102
INerrUPE e 103
More about INterrupts... ..oovveiiiiiii s 104
Pointers using Peek, Poke, and Memadr...........cooveiiiiiiiiiiniiinennen 105
Sharing Data... ..o s 106
CHAPTER 5 CUBLOC BASIC FUNCTIONS 109
Math FUNCHIONSuieiii e 110
BN O0o] 1Y7=1 51 (o o N 112
SEANG FUNCHIONS ..eeiei e e e s 115
CHAPTER 6 CUBLOC BASIC STATEMENTS & LIBRARY.........cmmcn 123
AIN() ceieii e 124
ALIAS i 126
BCAZ2DIN ..t 127
P 128
7T o 129
1= =T (O 130
BiN2DCA . iviiiiiiiii i 130
BiN2DCA ..iiviiiiiiiii i 131
1] T o T PPN 132
BYEEIN() tevnieiiiiiii i 133
BYtEOUL . et 134
(O T=Tol 4= (I PP PRTPRPPIN 135
L6000} 0] 7= = 136
L6000 T8 o (N 137
COUNEIESEE. . e 139
Dol 140
DEDUG i 141
5Tl e 144
DIAY it 145
[T O o To o R PP 146
[w4 =] o 1 PP 148

12

=72 |1 o T () I PP
(<] =TT | (TP
EOWIIEE i e

= ol PP
(1] w (TP
GEESEI2() wuvieiirie it
GOSUD. . REEUIM . eaeas

[LY=L [TP
HWEIEE 1o

| =] o) L PP
|17 @ =T T [PP
|17 @ =TT [= | T
|4 O = (O T PPN
If..Then..Elseif...Endif

(@] 071 3 Tolo] o o TR 193
UL ettt 196
OUEPUL L 197
L 1) = o () 198
PaUSE it 198
PEEK() tuitiii ittt 199
0] (Rt 199
PUISOUL ..t s 200
PUE . et 201
PUL e e 202
[7= P 203
PUESEE e e 204
P I L e 205
PWMOf e 206
2. 1. [LT 207
RV B S .ttt 208
1230 o () T PP 209

1= o g | PPN 215
Set Ladder 0n/off .. 216
Set Modbus.......ccccveiviinnnns

Set Onglobal
S ONINE .
Set OnlLadderint
SEL ONPAA .uiiiiiiiiiiii
Y= @] o1 =TV PPN
Y=o @] o U= PPN
Set Outonlycvvevvinienienns

SetPadcoveviiiiiiiiiiinn,

L 21 (O TP 240
L 1= PP 242
(0[] PP 244
L5 o | 245
(00 T PP 246
L= L PP 247
L Lol It 248
CHAPTER 7 CUBLOC DISPLAY LIBRARY 249
[PP PPPRRP 253
{61 o o PP 253
[o] 5 Rt 253
o Tor= | (PP PP 253
PN e e 253
CLCD MOAUIE e 254
GHLCD Graphic LCD : GHB3224 SEri€Suvcvuiruiiniinnenrenrinsensrnneenses 257
{1 PP PP 260
(@1 | PR PPPPRP 260
{61 o o PP 260
[T] 5 Rt 260
o Tor= | (= PP PPTRPS 260
PN e e 261
= Y= PPN 261
GLAY BT 1aiitiii i 262
OVENAY 1oiiiiiiiiii i 262
(0] 1 = 1) PP PPPRRP 263
o o) 263
0]) S 264
1] 0 [T PP PTPRN 265
(@14 To o L= T PP PPRPRRP 266
T PPN 266
T =] (o S 266
70) PPN 267
BOXC AN .ttt e 267
BOXFll s e 267
[Tt 268
CIrClEfill et e 268
Bl DS et 269
P PRPRPE 269
][Y= Rt 270
GPFINE. et 270

14

L3 £ Y 272
PSEE e 273
(@] o] PPN 273
[T= T Y = 273
DOESIZE .. vt 273
Paint .o 274
Y o PP 274
DEfChr e 275
15] 0] o PPN 275
GPUSH e, 277
L7 50 o 277
GPASEE vt 278
HPUSK e 279
[5o o J PP 279
HPASEE e 279
Seven Segment Display : CSG SEeriesocuviiiiiniiiiiiiiiiiieenn, 281
(G5 [o [ol PP 282
(@=Ta] o] | PPN 283
CSOXPUL .t a ettt 284
L6007 = o 284
(5T | 1= PP 284
CHAPTER 8 INTERFACE 285
INPUL/OULPUL CirCUIES ...vvieieieeee e e 286
LN S72C 17 0 o [X TR 290
CUNET 1ottt et e e a s s e e e e e e aas 292
CUBLOC STUDY BOARD Circuit Diagramcoceuuviiuniinnininninnnnnenn, 294
X0 0T o 7 PPN 296
More About I2C... (AdVanCed)cvvvuviiiiiieiiirr s 300
CHAPTER 9 MODBUS 303
ADOUE MODBUS.......ocviiiiiiii e 304
MODBUS ASCII Master MOde......c.ovvuiiniiiiieiiniieee e 315
MODBUS ASCII Slave MOde.......ccvviiiiniiiiiiiiiiei e 316
MODBUS RTU Master MOdecvvvvuiiniiiniiiiniiii e 317
CHAPTER 10 APPLICATION NOTES 319
NOTE 1. SWiItch INPUE ...cvvieiiiicee e 320
NOTE 2. Keypad INPULcvuiiniiiiiiiiiie s 322
NOTE 3. TeMPErature SENSOKcuvuieiniiiiiiieiee et eree e 325
NOTE 4. SoUNd BYtES....cuiiiiiiiiiii e 330

NOTE 5. RC SErvO MOLOr ..viiiiiiiiiiiiiiiien et e e e 333

NOTE 7. DS1302 RTC ..iuieiiiiiieiiiie it e e e e e e e e e en e eaas 336
NOTE 8. MCP3202 12 Bit A/D CONVEISION ..uvvuveerireeneenenneenrennennenns 338
NOTE 9. Read and write to the EEPROM.......ccccvvviiiiiiiniiiieieeeieeaens 340
CHAPTER 12 LADDER LOGIC 343
LADDER BaSICS ...ucuituiniiiiiiiiiinins et eea e e e s e e e e e e ans 344
Creating LADDER.......ociiiiiiiii e e e e e eeeas 346
Editing LADDER TeXE. v iuiiiiiiiiiiiii it e e en e eaans 348
MORNIEOFING +uiviiiiiiiii 352
Time Chart MONItOMNG....cuucuiiiiceie e 353
WATCH POINT ..t e e e 354
Register EXPreSSioNn ...uu.iuieiiiiiiiin e 359
Ladder SymMDbOISuivviiiiiii 361
USING I/OS e e 363
USE Of AlI@SES . evuieuiieiieieieie e e e e e e e s e e e e e aeenns 364
Beginning of LADDERcuiiiiiiiiiii e 365
Declare deviCes TO USEuuiviiuiiiiiiiiiiieie e ea e 365
To Use Ladder Only, without BASIC.........ccoiiiiiiiiiiiiiieeeeens 366
Enable Turbo Scan Time MOdeovuvvriieiiiiirr e 367
Things to Remember in LADDERoceiiiiiiiiiiiiiieee s 368
ladder INSLrUCHIONSvvieii e 371
LOAD,LOADN,OUT L.tuieiieiisieere e e e e e s e s e s e s e e eaans 373
NN I N 5 o PP 374
SETOUT, RSTOUT ..tuitiiiiieiieieie s ee e e e e e e e s e s e e e ennens 375
DIFU, DIFD .uituitiiiiiieiie et e e e st e e s e et e e s e s e s e eaneaaens 376
MCS, MCSCLR ..tiiiiiiiiii et e s e i r e e e s e eaanns 377
ST EPSET . it 379
ST EP OUT .ttt 380
TON, TAON Lot et e et s e e e e e aanns 381
TOFF, TAOFF .. et r e e aeans 382
[P 383
T D ittt 383
UP/DOWN COUNTER ...ttt sttt e e e e s ee e e 384
[1L PP PRP 385
S 15 PP 385
[0 5 9]0 =] =T] o N 1o T [l N 386
How to store Words and Double Wordscoeviiiiiiiiiniiiiiineneens 387
Binary, Decimal, Hexadecimal..........cooviiiiiiiiiiii e 388
WMOV, DWMOV ...t e s e e 389
WXCHG, DWXCHG .. cuitiiiiiiieiie ettt e e e e e e 390
FIMOV it e e e 391

16

WINC, DWINC, WDEC, DWDECciiiiiiiiiriniiinesere e nai s eanes 393
WADD, DWADD ...ttt e 394
WSUB, DWSUB .. ceiiiiiiiiiieiiineie s s s s s e s ra s e eans 394
WMUL, DWMUL ..t s 395
WDIV, DWDIV....iiiiiiiiniiiiiiiiisi it s st sr s s s s s e s ean e 396
WOR, DWOR ...ttt 397
WXOR, DWXOR ...cuiiiiiiiiiiieineises e s s s e s e s ran s e enns 398
WAND, DWAND ...ttt 399
WROL, DWROL .. ctuiiitiiiriiiiiiii st si s s s si e s ean e 400
WROR, DWRORiiitiiiiiiiiiiiii s 401
(1O O T = PN 402
CALLS, SBRT, RET ..iiiiiiiiiiiiiiiiii e 403
N 0 1 P 404
TIND oottt 405
Special REGISTEIS . .vuiiiiii e 406
CUTOUCH 409
What iS CUTOUCH?......iiiiiiiiiiinii i s a e 411
CUTOUCH Specifications......cuuieiuiiiiiieiieiiiieicesin e 412
Hardware Requir€mMentS........cceuiiiiiiiiiiiir e 413
Software Development Environment..........ccovviviiniiniininincenennn, 414
CUTOUCH I/0 POIES ..ivviiiriiiiiisiiseris st rsi s s eai s s s sa s enas 415
Backup Battery ...cuivieiiiiii i 418
KEEP Timer and KEEP Counter........cioviiiiiiiiiiiiiicne e 419
Menu System Librarycovviiiinii 420
MENU COMMANAS....iiviiiiiiiiiiiiisisi s 420
MENUSEL .vviiiiiii s 421
MENUEILIE +.evei i e 421
MENUCNECK() 1evuirniiniiiiiiin i 422
MENUMEVEISE ..euiiiiiiiiiiiii s 422
1= o U TP 422
WaItAraW e e 423
Touch Pad Input EXample......cocevviiiiiiiiiiiinii e 424
CUTOUCH Sample Programs.........ccvueeuiiiininiiiinirieseseensesaennens 426
APPENDIX 437
AppendiX A. ASCII CODE.......ciiuiieiiiiiiiineie e 438
Appendix B. Note for BASIC STAMP USEISccovvviiiniiiiniiineisinnennns 439
Appendix C. Using Output Port on the CB290 / CT1720.........c......... 440
Appendix D. CUBLOC BASIC Command SUMMaryccceeevveveneenennen 441

18

Chapter 1
CUBLOC
Getting
started...

What is CUBLOC?

CUBLOC is different from the traditional PLCs that you may associate with.
Traditional PLCs have cases and connections like the picture below but
CUBLOC is an “On-Chip” PLC/Industrial Controller, meaning you have more
freedom and flexibility to the final product size and design.

CUBLOC Modules are similar to traditional PLCs in that Ladder Logic can be
used. But its small size allows developers to design custom PCBs just like a
microcontroller.

CUBLOC core module
traditional PLC

There are different models, each with a unique program memory size and
number of I/O ports. Please make a selection based on your product’s
requirement.

20

CUBLOC Specifications

CB220

CB280

CB290

Picture
Program 80KB 80KB 80KB 200KB
Memory
Data 2KB(BASIC)+1K 2KB(BASIC)+1K | 24KB(BASIC)+4KB(Ladd | 51KB(BASIC)+4KB(Ladd
Memory B(Ladder Logic) B(Ladder Logic) er Logic) er Logic)+55KB(Heap)
EEPROM 4KB EEPROM 4KB EEPROM 4KB EEPROM 4KB EEPROM
Program | 5 500 inst./sec | 36,000 inst./sec 36,000 inst./sec 36,000 inst./sec
Speed
. . 91 1/0 lines (5V TTL)
General 11_6rLI)/° lines (5V ;‘_?LI)/O lines (5V [(33 input only + 32 64 1/0 lines (5V TTL)
Purpose : : output only + 26 (input/output
Do~ | (mwoupss | (rewioupst | npiboutps conaurae)
9 9 configurable)
2 serial ports 2 serial ports 2 serial ports 4 serial ports
(Channel 0: RS2 (Channel 0: RS2 (Channel 0: RS232C (Channel 0: RS232C
; 32C 12v, 32C 12v, 12V, Channel 1: 12V, Channel 1 to 3:
Serial Channel 1: TTL Channel 1: RS232C 12V & TTL 5V) - | RS232C TTL5V) -
Ports for 5V) - RS232C 12V & Configurable Baud Configurable Baud
Communic Configurable TTL 5V) - rates: 2400bps to rates: 2400bps to
ation Baud rates: Configurable 230,400 bps 230,400 bps
2400bps to Baud rates:
230,400 bps 2400bps to
230,400 bps
Analog 8 Channel 10-bit | 8 Channel 10-bit | g honqel 10-bit ADCs | 16 channel 10-bit ADCs
Inputs ADCs ADCs
- 3 Channel 16- - 6 Channel 16- - 6 Channel 16-bit - 12 Channel 16-bit
bit PWMs (DACs) | bit PWMs (DACs) | PWMs (DACs) - PWMs (DACs) -
Analog - - Configurable Frequency: Configurable Frequency:
Outputs Configurable Fre Configurable Fre 35hz to 1.5Mhz 35hz to 1.5Mhz
quency: 35hz to quency: 35hz to
1.5Mhz 1.5Mhz
External None 4 Channels 4 Channels 4 Channels
Interrupts
High 2 Channel 32-bit | 2 Channel 32-bit
2 Channel 32-bit 2 Channel 32-bit
Speed Counters (up to Counters (up to
Counters (up to 2Mhz Counters (up to 2Mhz
Counters | 2Mh2) 2Mhz) (up) (up)
Power 5to 12V, 40mA 5V, 40mA (ports 5V, 70mA (ports 5V, 50mA (ports
d (ports unloaded) unloaded) unloaded) unloaded)
RTC No No Yes No
Data
Memory None None Optional Optional
Back-up
Operating
Temperat -40 °Cto 120 °C -40 °Cto 120 °C -40 °Cto 120 °C -40 °C to 120 °C
ure
24-pin DIP . N o
Package 600mil 64-pin Module 108-pin Module 80-pin Module
1.2"L x 0.6"W x 1.4"Lx 1"W x
Size 0.4"H 0.4"H 2.4"Lx 1.9"W x 0.5"H 2.4"Lx 1.9"W x 0.5"H
1z (30 x 15.3 x 11 (35x25.4 x 11 (59.4 x 47.8 x 13 mm) (59.4 x 47.8 x 13 mm)
mm) mm)

21

The main advantage of CUBLOC over other PLCs is that it fills Ladder Logic’s
weaknesses with BASIC language. Ladder Logic is good enough to replace
sequence diagrams, but to collect data, print graphics, and process complex
tasks is asking a little bit too much. That is why we added the BASIC
language. You can now run both Ladder Logic and/or BASIC!

Another advantage over other BASIC processors is that CUBLOC is able to
separate the amount of work and programming between Ladder Logic and
BASIC as necessary. The user is able to debug easier by having two
processes work together, instead of grudging through lines of BASIC codes.

DIM A AS INTEGER
H IF IN(0) = 0 THEN
ouUT 2,A

LADDER LOGIC

& Cubloc Studio [D:_Tpc_test\BMPDOWN. cul | [=[(=1]ES]
il

Edit Device Run Setup Help
BeE ¢ XEE A o B =

[F1] BASIC | [F2] LADDER | Ladder Mnemanic |

“ Print 27, "EWEWRT", Pace s i i i

. De1 co0 pad & CUBLOC studio [c:#cubloc_testWu3-1018.cul]
elay File Edit Device Run Setup Help

“ Put RE232CH,Asc("E") 1l |pan| @|xa@E Alr n i B @

& [FI] BASIC [F2] LADDER | Ladder Mnemanic |
B For J=1 To pagesize el Ak e[—| L0141 - /_|4=1| 40|40 [0 [40
zare insart | Delste | Undo | Copy
W wizard| F3 | F4 | F5 | F6 | FT ARG AR AL AR A RS
@ Do '===========fait P3PS PST F2 M8 =
31 /| I ¢
5t Delay 20 Tetuscw [-ictw | L
52 Loop Until Blen(RS23% M8 PE0 TOUCH SENS INPUT-P31, “MB=XCW -TOUCH -
5 Delay 10 s2 i b
54 Geta RE232CH,dt, 256 3‘ IR rﬁs)
33 H/H/ 7t ¢
& Belr RS232CH, 0 -Tstns-xcew -k XeCW-T
5 For I = 0 To 127 Ste M3 Pal TOUCH SENS INPUT-PSI, MI=XCCW ~TOUCH
5 Print dt (I) el !
XCCOW-FLSXN
s Print dt (I+1) POl PR PR F2] Mio
1
B 35 H/H/]
Delay A A= £
o Next Mio Pe2 TOUCH SENS INPUT-P91 MIOYCH -TouCH
o Delay 100 s o
6z For I = 128 To 255 &t P9I PSS PSR F2 Mt
= print dt(I) 37 4/ (
] -TSENS-YCCH YT Vech-T
o print dt (I+1) MIl - PE3 "TOUCH SENS INPUT-PSI. MII=YCCW -TOUCH
3 Delay 5 38 /|
YCCW-FLSYN
o Next Psl psu P61 Miz
4 Delay 100 39 1 |C—|/' (w;
, o 4wt ZeWT
e Print " M2 Pat “TOUCH SENS INPUT-PSI, MI2=ZCW ~TOUCH
6 Delay 100 o UL, =
i Put REZ232CH,Asc("K"), X6 V'3 Program : 9602 Bytes, Data : 101
N >

1 v

Picture of "CUBLOC Studio” is shown above.

22

There are PLCs on the current market that supports both LADDER and
BASIC. These PLCs do not multi-task and run “Single-task.” BASIC is part
of their Ladder Logic and does not run independently like CUBLOC or
CUTOUCH. This can prove to be costly since BASIC is not real-time
oriented and can affect the Ladder Logic of the program. CUBLOC covers
these weaknesses through its multi-tasking features, guaranteeing accuracy
and precision of timing. Unlike many BASIC processors on the market
today, CUBLOC supports Ladder Logic and multi-tasking with BASIC
language.

CUBLOC has a multi-tasking structure that runs BASIC and LADDER
simultaneously that allows accurate LADDER scan timing and still process
BASIC. You even have a choice of simply using BASIC or LADDER by itself.

SINGLE TASK MULTI TASK

LADDER:

LABDDER

BASIC

BASIC
LADDER BASIC

CUBLOC is a brand new type of industrial controller. By being able to do
things that traditional PLCs couldn't through BASIC language, we have
expanded the horizons of both PLCs and BASIC micro-computers.

Unlike some BASIC controllers out on the market today, CUBLOC is fully
backed by many Plug-N-Play peripherals such as our CuBASE industrial 1/O
Boards and Plug-N-Play Relay8 Boards. With these peripherals, controlling
DC/AC devices becomes a walk in the park.

With 32-bit IEEE floating point math support and MODBUS ASCII/RTU
support, the user will find that CUBLOC and CUTOUCH are one of the most
versatile BASIC/PLC hybrid chip on the market today.

Another analogy to real life would be to automobiles. Do you have a very
small fast car? Or do you have a monster truck? How would it be to use
an SUV? Yes, CUBLOC is sort of like an SUV in the automobile world. You
have the best of the worlds. Although it's not as fast as a raw MCU, you
can take advantage over the overall savings in development cost and time
using our Plug-N-Play peripherals.

23

Ladder Logic and BASIC

The biggest advantage of Ladder Logic is that all circuits are processed in
“Parallel,” meaning they are all processed at the same time.

PO P2 P9
A

P3

P5 P6 P8
s HH

As you can see above, both A and B circuits are in a waiting state, ready to
turn output On as soon as input is turned On. For example, if input P3
turned On, P9 would turn On.

In comparison, BASIC processes code in order, a type of “Sequential
Processing.”

Dim AAs Integer
Dim B As Integer

A=0 Jump
Again:

ForB=0to 10

Debug DECA,CR

A=A+10 Loop
Next

Goto Again —478¥ —— |

These 2 types of programming languages have been used in different fields
for a long time. Ladder Logic is used in automation controllers such as
PLCs. On the other hand, BASIC and other programming languages such
as C and Assembly have been used in PCs and MCUs.

Whether you are an experienced MCU or PLC user, you will be able to
benefit by integrating both BASIC and Ladder Logic in your designs.

24

The biggest advantage that Ladder Logic possesses is the ability to process
input within a guaranteed slot of time. No matter how complex the circuit
becomes, Ladder Logic is always ready to output when it receives input.
This is the main reason why it's used for machine control and other
automation fields.

Ladder Logic is more logic oriented, not a complete programming language.
To do complex processes, it has its limits. For example, to receive input
from a keypad, display to 7 Segment or LCD, and process user’s input is a
daring task for Ladder Logic.

But these things are rarely a problem for programming languages such as
BASIC. BASIC is able to process floating point numbers, data
communications, and other things beyond the scope of what Ladder Logic
can do alone. Another advantage that BASIC has is that its language is
very similar to the English language (IF, GOTO, etc...), allowing the
beginners and the developers to learn in matter of hours, instead having to
deal with months of learning curves.

Ladder Logic Programming Languages
(BASIC, C, ASM)
Device PLC PC or Micro-Computer
Application Automation, Machine- | General Computing
Control
Advantages Sequencer, Bit Logic, | Complex Math,
Timers, Counters Data Communication,

Data Collection & Process, Analysis,
Graphic Interface

Basic Parallel Sequential

Mechanism

Ladder Logic’s parallelism and BASIC sequential language both have its
advantages over each other. Ladder Logic is able to process what couldn’t
be done with BASIC. On the other hand, BASIC can easily process what is
either hard to do or couldn’t be done in Ladder Logic.

That is why we created “"CUBLOC,"” which the user is free to use both Ladder
Logic and/or BASIC based on the application being created. After
understanding the advantages of both Ladder Logic and BASIC, the user will
be able to create more efficient final products while saving development
time and costs.

25

Multi-tasking of Ladder Logic
and BASIC

There are many ways to implement both BASIC and Ladder Logic in one
processor. The current products on the market use BASIC as part of
Ladder Logic. These products support BASIC and Ladder Logic but there is
one clear weakness.

/\ FUNC #1
PO P1 Print "Setting Mode"

I—l FUNC #1 A=A+
B=B+1

RETURN

The first weakness is that based on the execution time of BASIC, Ladder
Logic also gets affected. If the BASIC code is made up of an infinite loop,
Ladder Logic will also stop.

Ladder Logic’s main advantage is that it can process input in a guaranteed
scan-time. If Ladder Logic cannot process within this guaranteed scan-time
because of BASIC, it might be better to not include BASIC capabilities.

The second weakness is that BASIC can only be used as part of Ladder
Logic. BASIC is a powerful language by being able to process complex
algorithms. But if we can only use BASIC as part of Ladder Logic, we are
not fully using BASIC to its maximum performance.

The third point has to do with I/Os. BASIC language’s execution of I/Os
can create unwanted collisions with LADDER. The reason is that Ladder
Logic I/0s are updated while in BASIC, I/Os are directly accessed.

After solving these problems, we have created a BASIC and Ladder Logic
processor that supports real-time “multi-tasking.” BASIC runs BASIC and
LADDER runs LADDER, simultaneously without causing collision between the
each other.

26

With just BASIC, you will be able to create many devices. In comparison to
other BASIC processor on the market today, CUBLOC's BASIC clearly has
faster processing speed and the upper hand on the main features. If
Ladder Logic is not necessary, the user may use just BASIC.

In the case of I/0s, the user can specifically control the I/Os used by BASIC
and LADDER, thereby eliminating I/0O collision problems.

CUBLOC uses BASIC as its main language. We recommend controlling
LADDER from BASIC.

For example, there is a MASTER CONTROL feature in Ladder Logic, allowing
the user to set Control Zones. Control Zones are sections within the Ladder
Logic that the user can set entire sections of the control circuit. With the
MASTER CONTROL feature, the user can enable/disable Ladder Logic’s
Control Zones easily.

M1 MCS 0

IfA=1 THEN _M(1) = 1
1fB=1THEN _M(1)=0 _|

MCSCLR 0

In BASIC, the user may read or write to Ladder Logic’s data memory.
In the above example, you can access Register M1 as _M(1) and write to it
from BASIC.

As you can see, CUBLOC supports BASIC and LADDER multi-tasking
simultaneously through “data memory sharing.”

27

Advantages of “"On-Chip”
PLC/Embedded Computer

One of the main advantages of CUBLOC is that it is an “On-Chip” PLC.
Normally, we think of PLC as a block type case with input and output lines.
When using these PLCs, an external case, and cabinet must be used in
addition to other mind-bogging wiring requirements

When using just a couple of sets, this might not present a big problem. But
when mass-producing such PLCs, labor cost for assembling the PLCs and
faulty parts could lead to many problems. Most importantly, the overall
design of you final product will be bigger and will cost more to produce.

CcuBLOC
CORE MODULE

28

CUBLOC is an “On-Chip” PLC, allowing easy fit on a PCB. You may use the
PLC almost like an MCU. You can design a customized PCB for the desired
product which reduces the cost and size of your final product, and most
importantly, allow the product to be one-of-a-kind.

The following table shows differences between a traditional PLC and “On-
Chip” PLC/Micro-computer, CUBLOC.

Traditional PLC

CUBLOC

Picture

Production Din Rail Attachment Din Rail or PCB
Labor Costs High Low

Mass- Difficult Easy
Production

Final Product | High Low

Cost

Final Size Large Compact

If you are currently using a traditional PLC, please review our product and
compare the costs if you change it to a PCB type. We believe that you will
have much more satisfactory final product at a fractional cost.

29

Development Environment

To use CUBLOC, the user may use a Windows XP, 2000, or 98 operating
system equipped computer. If you would like to use it in
Linux/Unix/Macintosh environment, you will need to install a virtual machine
software of some type (such as VMware, etc..) that allows Windows
operating system to run on it.

An RS232 port is also required or you may use a USB-to-RS232C converter.
Download and Monitoring is possible when connected with the PC.

~ 24 vin
. 23[vss
22[0 RES
210 vbD
0 pPis
= 1[0 P14
P20 18[00 P13
P3O 173 P12
Pao 163 P11
P5 O 10 15[P10
P6 O] 11 140 P9
P7 [12 13 P8

sout O
sIN [
ATN O
vss O
Po
P10

R
n
S

When CUBLOC is disconnected from the PC, it goes into a STAND-ALONE
state. The main program is stored in CUBLOC's flash memory, and will be
retained even with no power. The user may download new programs and
erase them as many times as he or she wishes.

%

/0 IN| 706 PUSH S/W é
s

a0 L

CUBLOC STUDY BOARD 1

Cubloc core module with Study board

30

Download and Monitoring
through the Internet

XPORT is an internet module that converts RS232 signals into TCP or UDP
packets. You can use XPORT and CUBLOC to download and monitor
programs through the internet.

By using this feature, you will be able to update and provide customer
service for your products even if it's located in other parts of the world. We
provide custom MAXPORT firmware, Downloading/Monitoring Server
programs and embeddable applets for downloading and monitoring your
CUBLOC module. You may use this program to manage thousands of
devices.

MAXPORT module

&, MaxPORT Downloader v.1.2.8 FEX
Search Lm:al Area Netwurk(LAN) far XPOHTS Select for CUBLOC Firmware
Je, 0.4 S U) CB280 A CUBLOC Object File
Downloade

[0 r
CUBLOC Firmware E——
Downloader
MaxPORT Firmyeare
Ready... Downloader via TFTP
Search
Status Monitor
[~ Use This IP

Set P Address (Set all to ZERO for Automatic IP via DHCP)
[I [[SetIp

‘ — Clear Set Debug ON

Monitoring/Download Server Program for multiple MAXPORTs

31

Hints for traditional PLC User

For users with much experience in traditional PLCs, they will find BASIC a
completely new language. CUBLOC is a PLC with BASIC language
capabilities added. The user may program only using the ladder language.
By having the option of using the BASIC language, even the PLC user may
be able to incorporate new features to the final product by making use of
BASIC, which has much powerful capability and flexibility in communicating
with other devices than PLCs.

To use CUBLOC, the user does not have to know BASIC. He/She may
simply use only LADDER for development. If the user does not require LCD
display or keypad usage, he or she does not need to use BASIC at all.

As you can realize, more emphasis on user interface is becoming apparent
in our industrial world. CUBLOC is able to overcome the deficiencies and
disadvantages of traditional PLCs by being able to use both BASIC and
LADDER language.

DISPLAY

KEYPAD

PC INTERFACE

MACHINE CONTROL

We provide many BASIC libraries for user interfaces which you can simply
copy & paste to achieve the user interface structure desired.

32

Hints for Micro Controller User

MCU, Micro Controller Unit, is programmable micro-computers such as PIC,
AVR, and 8051. For mass-production, MCUs can cut costs and reduce the
overall product size. But the main disadvantage of MCUs is that it is hard
to develop and takes a long time. For simple projects, this might be a good
route.

Even those experienced engineers feel that MCU programming is time-
consuming and not a simple task. To make a final product, it takes many
hours programming and debugging with an MCU. Even after development,
if bugs arise, it becomes almost impossible to update the MCU.

In comparison, Comfile’'s CUBLOC will cut the users development time as
much as 20 times and provide a MCU-like chip that is upgradeable through
RS232 cable or even through the internet by using an XPORT. By being
able to provide a way to upgrade the final product, the value of your final
product is much more than what you thought.

If you have experience programming with MCUs, we guarantee you that
development of your final product will be much easier. You will be able to
spend more time designing the features of your final product, instead of
spending hours and hours in front of a computer.

flash programmer

target board target board

MCU engineer's desk CUBLOC engineer's desk

33

CUBLOC'’s Internal Structure

BASIC processor Ladder processor

BASIC Program
Memory

Ladder Program
Memory

1) FLASH

200KB

SRAM
1KB~4KB

BASIC LADDER
Data Memory Data Memory

1/0 Ports

The BASIC interpreter contains a “Flash memory” for user’'s BASIC
programs. LADDER processor also has a “Flash memory” for user’s LADDER
program. I/O ports are shared among BASIC and LADDER, allowing free
access to both.

BASIC data Memory can only be accessed by BASIC interpreter while
LADDER data memory can be accessed by both BASIC Interpreter and
LADDER Processor.

BASIC program memory(1) and LADDER(2) share the same Flash Memory.
The total available memory space is 80KB. BASIC can use the whole
memory or LADDER may use the whole memory. As long as the BASIC
and LADDER program total is within 200KB, the user is free to program as
he/she wills. (CB2XX series allow 80KB)

I/O ports (5) can be used both by BASIC and LADDER. The user must

specify I/0 ports to use in LADDER and BASIC. All I/O ports can be used in
LADDER or BASIC.

34

CUBLOC Peripherals

PROTO BOARD Series

Proto-boards for CUBLOC can be used for testing and debugging your future
products before starting PCB artwork or production. These proto-boards all
include basic power and interface circuits.

BASE BOARD / SB Series

Base-boards for CUBLOC, SB series, are especially geared for the industrial
field applications. Simply attach our Plug-N-Play relays to the output
ports for implementing solenoids, magnetic switches, and etc... With 24V
input ports and DIN-RAIL Mount Brackets, the user does not have to re-
invent the wheel by using CUBASE.

35

STUDY BOARD

Study board is geared for first timers and experienced developers to
CUBLOC. Peripherals for simple experiments including switches, LED,
RS232 communication, I2C, piezo, ADC, toggle switches, and LCDs are
included.

We recommend the Start Kit for first-timers, which includes this study board,
a CUBLOC module, necessary cables, and a manual.

LCD DISPLAY Module

(CLCD, GHLCD Series)

Various LCD displays are provided for use with CUBLOC using CUNET (I2C)
protocol. With one line commands (PRINT, CLS, etc...), you can easily start
printing to the LCD without hassling with complex lines and commands.

7 *Min
COLD .
HEADTeRp

AL T
ACNE TREATMENT

= LL=ALLUSLL Y

CUNET is especially engineered for CUBLOC displays, therefore, we
recommend to use CUNET supported LCDs for quick and easy development.
Our Graphic Display GHLCD allows you to download Black and White BMP
images from your computer and store it in its memory.

36

7 Segment Display Modules (CSG Series)

7 Segment display, modules can be easily implemented using CUBLOC's 12C
protocol and native commands.

[l'l I'I [

[iy

CUTOUCH Series

CUTOUCH is an integration of our graphic LCD, touch panel, and CUBLOC
core module. With BASIC, you can control the GHLCD, touch panel. With
Ladder Logic, I/0 ports can be controlled in real-time.

We are constantly upgrading and developing new peripherals for CUBLOC
core modules. Please check out our website www.comfiletech.com often for

these updates.

37

MEMO

38

Chapter 2
Hardware

Hardware Features

CUBLOC have the following features:

(BASIC and Ladder Logic) 80KB or 200KB Flash Memory
BASIC Execution Speed : 36,000 Instr./sec
LADDER Execution Speed : 10ms Scan time

(Turbo Mode ~= 100 Micro Second)

Model Comparison Chart

Data Memory for BASIC: 2 to 51KB
Data Memory for LADDER: 1 to 4KB
EEPROM Memory: 4KB
16 to 91 I/O pins (Ports)
10 bit, 16 Channel ADC
8 to 16bit, 3 to 12 Channel PWM (DAC)
UART (H/W RS232C ports) 4 Channels
RS232C port PC interface
RTC chip included (CB290)

Feature CB220 CB280 CB290 CB405
Program 80KB 80KB 80KB 200KB
Memory
Data Memory BASIC 2KB BASIC 2KB BASIC 24KB BASIC 51KB

LADDER 1KB | LADDER 1KB LADDER 4KB LADDER 4KB

HEAP 55KB

Battery N/A N/A Available Available

Backup

EEPROM 4KB 4KB 4KB 4KB

1/0 ports 16 49 + 2 91 +2 64 +2

Package 24 pin DIP 64 pin Module 108 pin Module 80 pin Module

ADC 8 Channel 8 Channel 8 Channel 16 Channel

PWM 3 Channel 6 Channel 6 Channel 12 Channel

RS232 2 Channel 2 Channel 2 Channel 4 Channel

External None 4 4 4

Interrupt

HIGH COUNT | 2 Channel 2 Channel 2 Channel 2 Channel

INPUT

RTC None None Yes None

40

CB220

CB220 is comes as a 24pin DIP type package.
internal 5V power regulator.

It has 16 I/O ports and an

souT O 1 24 [VIN (5.5V~12Vinput)
SINO 2 23[] vss
ATN [3 22[1 RES
vss[4 21 vDD
ss_poOs 201 P15_HCNT1
(Inputonly)SCK_P1 [6 19 [0 P14_HCNTO
MosI_P2[7 18 [0 P13
MISO_P3 [] 8 173 P12
Pal]9 16 [P11_TX(CH1)
PWMO_P5 [] 10 15 [0 P10_RX(CH1)
PWM1_P6 [] 11 14 [1 P9_SDA(CUNET)
PWM2_P7 [] 12 13 [1 P8_SCL(CUNET)
CB220
Port Pin 1/0 Port Block Explanation
SouT |1 ouT DOWNLOAD SERIAL OUTPUT
SIN 2 IN DOWNLOAD SERIAL INPUT
ATN 3 IN DOWNLOAD SERIAL INPUT
VSS 4 POWER GROUND
PO 5 1/0 ADCO / SPI SS
P1 6 Input ADC1 / SPI SCK
P2 7 1/0 ADC2 / SPI MOSI
P3 8 1/0 Block 0 ADC3 / SPI MISO
P4 9 1/0 ADC4
P5 10 1/0 PWMO / ADC5
P6 11 1/0 PWM1 / ADC6
P7 12 1/0 PWM2 / ADC7
P8 13 1/0 CuNET SCL
P9 14 1/0 CuNET SDA
P10 15 1/0 RS232C Channel 1 RX
P11 16 1/0 Block 1 RS232C Channel 1 TX
P12 17 1/0
P13 18 1/0
P14 19 1/0 High Count channel 0
P15 20 I/0 High Count channel 1
VDD 21 1/0 5V Output/Input
RES 22 IN RESET Input (LOW signal resets!)
VSS 23 IN GROUND
VIN 24 IN 5.5V to 12V Input Power

41

SIN, SOUT, ATN are connection pins to the PC/XPORT for DOWNLOAD,
DEBUG, and MONITORING. All CUBLOC models have SOUT, SIN, ATN pins
and you can connect to the PC serial cable as shown below.

sout g1~ 24P viN
siN O 2 23 vss
ATN O 3 221 RES
vss [4 21[A vbD
Po O 5 201 P15
P16 190 P14
P27 18 [0 P13
P3 '8 170 P12
Pa o 161 P11
Ps [10 15[P10
P6 O 11 140 P9
P7 O 12 13[1 P8

Other pins are mostly I/O ports. The user may select which ports (pins) to
use as INPUT or OUTPUT. When set to INPUT, the pin enters a HIGH
impedance state whereas when set to OUTPUT, the pin ether outputs LOW
or HIGH. The maximum current coming out of the output ports is 25mA.
The user is free to choose which I/O ports he/she will use for which purpose
(such as AD, PWM, etc...).

42

Supplying power to the CB220

CB220 has an internal 5V power regulator that accepts anything between
5.5 to 12V of power.

It will produce a stable 100mA 5V. When using the internal regulator,
voltage can be inputted to pin 24 and 5V will output on pin 21. If 5V is
used for power, the user may simply connect to pin 21. If your application
requires more than 100mA of current that can be supplied by the internal
regulator, please use a separate power supply.

Method 1
DC5.5~12V
sout 1 Y _2p V|NJ
SIN 2 231 vss
Rx ATN [0 3 221 RES
vss [4 2103 vbp
Tx PO Os 20 P15
P16 190 P14
DTR P2 07 181 P13
P38 173 P12
5] GND P4 Qo 16 1 P11
P5 O 10 150 P10
P6 [11 140 Py
P7 [12 131 P8
Method 2

sout 1 Y 24P vin DC5V
SIN O 2 23 vss j—
Rx ATN [3 22 RES
vss [4 211 vDD
PoOs 200 P15
P1 Qe 190 P14
DTR P27 18[a P13
P3 Qs 7@ P12
GND P4 o 16 P11
P5 [10 15[P10
P6 O 11 141 P9
P7 [12 131 P8

43

CB280

CB280 is in a 64 pin module package and 49 of those pins can be used for
I/0. The CB280 does not have a 5V internal regulator.

SouT | 1@ @ 17 VDD N TX1 33 @ @ 49 | TTLTX1
SIN| 2@ @18 vss RX1 34 @ @ 50 | TTLRX1
ATN | 3@ @ 19 RES AVDD 35 @ @ 51 | AVREF
vss | 4@ @20 N/C N/C 36 @ @ 52 | P48
sspPo|s@ @21 Pis ADCO_P24 37 @ @ 53 | P31_ADC7
(Input_only)SCK_P1 | 6@ @ 22 P17 ADC1_P25 38 @ @ 54 | P30_ADC6
MOSILP2| 7@ @23 P18 ADC2_P26 39 @ @ 55 | P29_ADCS
MISOP3 | 6@ @24 P1o_PWM3 ADC3_P27 40 ® @ 56 | P28_ADC4
P4 | 9@ @25 P20_PWM4_INTO P47 41 @ @ 57 | P32
PWMO_P5 [10@® @ 26 P21_PWM5_INT1 P46 42 @ @ 58 | P33
PWM1_P6 [11@ @ 27 P22 INT2 P45 43 @ @ 59 | P34
PWM2_P7 [12@ @ 28 P23_INT3 P44 44 @ @ 60 | P35
(CUNET)SCL_P8 [13@® @ 29 P15 _HCNT1 P43 45 @ @ 61 | P36
(CUNET)SDA_P9 (14 @ @ 30 P14_HCNTO P42 46 @ @ 62 | P37
P10 [15@ @31 P13 P41 47 @ @ 63 | P38
P11 [16@® @32 P12 P40 48 @ @ 64 | P39
CB280

The pin numbers below are categorized by features, not by pin numbers.

Port Pin 1/0 Port Explanation
Block
SOuUT 1 ouT DOWNLOAD SERIAL OUTPUT
SIN 2 IN DOWNLOAD SERIAL INPUT
ATN 3 IN DOWNLOAD SERIAL INPUT
VSS 4 POWER GROUND
PO 5 I/0 SPI SS
P1 6 Input SPI SCK
P2 7 1/0 SPI MOSI
P3 8 /O Block 0 | sp MISO
P4 9 1/0
P5 10 1/0 PWM Channel 0
P6 11 1/0 PWM Channel 1
P7 12 1/0 PWM Channel 2
P8 13 1/0 CuNET SCL
P9 14 1/0 CuNET SDA
P10 15 1/0
P11 16 1/0 Block 1
P12 32 1/0
P13 31 /0
P14 30 1/0 High Count Channel 0
P15 29 1/0 High Count Channel 1
P16 21 1/0
P17 22 1/0
P18 23 1/0
P19 24 I/0 Block 2 | PwWM Channel 3
P20 25 1/0 PWM Channel 4 / INT Channel 0
P21 26 1/0 PWM Channel 5 / INT Channel 1
P22 27 1/0 INT Channel 2
P23 28 1/0 INT Channel 3

44

P24 37 1/0 ADCO : AD Channel 0

P25 38 1/0 ADC1 : AD Channel 1

P26 39 1/0 ADC2 : AD Channel 2

P27 40 1/0 Block 3 | ADC3 : AD Channel 3

P28 56 1/0 ADC4 : AD Channel 4

P29 55 I/0 ADCS5 : AD Channel 5

P30 54 1/0 ADC6 : AD Channel 6

P31 53 I/0 ADC7 : AD Channel 7

P32 57 1/0

P33 58 1/0

P34 59 1/0

P35 60 1/0 Block 4

P36 61 1/0

P37 62 1/0

P38 63 1/0

P39 64 1/0

P40 48 1/0

P41 47 1/0

P42 46 1/0

P43 45 1/0 Block 5

P44 44 1/0

P45 43 1/0

P46 42 1/0

P47 41 1/0

P48 52 1/0

VDD 17 IN Power, 4.5V to 5.5V

VSS 18 IN GROUND

RES 19 IN RESET Input (LOW signal resets!),
Normally HIGH or OPEN

TX1 33 RS232 Channel 1, +/- 12V Data Output

RX1 34 RS232 Channel 1, +/- 12V Data Input

AVDD 35 ADC Power

TTLTX1 49 RS232 Channel 1, 5V (TTL level) Data
Output

TTLRX1 50 RS232 Channel 1, 5V (TTL level) Data
Input

AVREF 51 ADC Reference Voltage

45

How to supply power to
the CB280

The CB280 does not have a 5V regulator; you must provide your own 5V
power like shown below.

DC5V

1

1@ ﬂw VDD ™1 TTLTX1
2@ @18 vss RX1 TTLRX1
3@ @19 REs AVDD AVREF
4@ @20 NC NiC P48
5@ @21 P16 P24 P31
6® @22 P17 P25 P30
7@ @23 P18 P26 P29
8@ @24 P19 P27 P28
9@ @25 P20 Pa7 P32
100 @26 P21 lad P33
10 @27 p22 P45 P34
2@ @28 P23 Pa4 P35
130 @29 P15 P43 P36
4@ @30 P14 P42 P37
150 @31 P13 P41 P3g
160 @32 P12 P40 P39

* Pin 20 and 36 are not used, please DO NOT CONNECT anything.

46

CB290

CB290 is in a 108 pin module package, of which 91 pins can be used as I/O
ports.

It has a battery backup-able 28KB of data memory and RTC. CB290 does
not have an internal 5V regulator. Of the I/O ports, 32 ports are Output
only, 32 ports are Input only, and rest can be set as desired by the user.

\
Sout 1@ @21 Vdd TX1 41 ® @61 TUTX1
Sin 20 @22 Vss RX1 42 ® @62 THRX1
Atn 3@ @23 RES C B 2 9 0 AVdd 43 ® @63 Avref
Vss 4@ @24 VBB Vdd 44 ® @64 Vss
SS_P0 5@ @25 P8_ADCO P24 45 ® @65 P32
(Input ofily) SCK_P1 6@ ®26 P9_ADC1 P25 46 ® @66 P33
MOSI_P2 7@ ®27 P10_ADC2 P26 47 ® @67 P34
MISO_P3 8@ ®28 P11_ADC3 e P27 48 ® @68 P35
P4 9@®29 P12_ADC4 Lo P28 49 ® @69 P36
PWMO_P5 10@ ® 30 P13_ADC5 zz P29 50 ® @70 P37
PWM1_P6 11@ ®31 P14_ADC6 “03 P30 51 ®@71 P38
PWM2_P7 12@ @32 P15_ADC7 SSZer P31 52 ® @72 P39
P56 13@ ® 33 P64 =00tz P40 53 ® @73 P48
P57 14@ @34 P65 80057 P41 54 @ @74 P49
P58 15@ @ 35 P66 VPONPINOTIO =N ® P42 55 @ @75 P50
P59 16@ ® 36 P67 ZRisaannnbhanad P43 56 ® @76 P51
P60 17@ @37 P68 o - — P44 57 @ @77 P52
P61 18@ @38 P69 PRODROBDRD DS P45 58 @ @78 P53
P62 19@ ®39 P70 I XY Y Y Y Y Y X Y P46 59 ® @79 P54
P63 200 @ 40 P71 Xy P47 60 ® @80 P55
LON DI N T WO~ ©
88588858838858
o NDON®D T B © N
S PNNNNRRRRISSDES
EL‘EL‘ELELEL‘D_‘ELELCLELELELELEL
= o'
2 EE
2= o0
o T

The pin numbers below are categorized by features, not by pin numbers.

Port Pin I/0 Port Block Explanation

SOouUT 1 ouT DOWNLOAD SERIAL OUTPUT
SIN 2 IN DOWNLOAD SERIAL INPUT
ATN 3 IN DOWNLOAD SERIAL INPUT
VSS 4 POWER GROUND

PO 5 1/0 SPI SS

P1 6 Input SPI SCK

P2 7 I/0 SPI MOSI

P3 8 /0 Block 0 SPI MISO

P4 9 1/0

P5 10 I/0 PWM Channel 0

P6 11 I1/0 PWM Channel 1

P7 12 1/0 PWM Channel 2

P8 25 1/0 ADCO : AD Channel 0

P9 26 I/0 ADC1 : AD Channel 1

P10 27 1/0 ADC2 : AD Channel 2

P11 28 1/0 Block 1 ADC3 : AD Channel 3

P12 29 1/0 ADC4 : AD Channel 4

P13 30 I/0 ADC5 : AD Channel 5
P14 31 1/0 ADC6 : AD Channel 6

P15 32 I/0 ADC7 : AD Channel 7

47

P16 83 1/0 CUNET SCL
P17 84 1/0 CUNET SDA
P18 85 I/0 INT Channel 2
P19 86 /0 Block 2 INT Channel 3
P20 97 1/0

P21 98 1/0

P22 99 1/0 High Count Channel 0
P23 100 I/0 High Count Channel 1
P24 45 Output

P25 46 Output

P26 47 Output

P27 48 Output Block 3

P28 49 Output

P29 50 Output

P30 51 Output

P31 52 Output

P32 65 Output

P33 66 Output

P34 67 Output

P35 68 Output Block 4

P36 69 Output

P37 70 Output

P38 71 Output

P39 72 Output

P40 53 Output

P41 54 Output

P42 55 Output

P43 56 Output Block 5

P44 57 Output

P45 58 Output

P46 59 Output

P47 60 Output

P48 73 Output

P49 74 Output

P50 75 Output

P51 76 Output Block 6

P52 77 Output

P53 78 Output

P54 79 Output

P55 80 Output

P56 13 Input

P57 14 Input

P58 15 Input

P59 16 Input Block 7

P60 17 Input

P61 18 Input

P62 19 Input

P63 20 Input

48

P64 33 Input

P65 34 Input

P66 35 Input

P67 36 Input Block 8

P68 37 Input

P69 38 Input

P70 39 Input

P71 40 Input

P72 87 Input

P73 88 Input

P74 89 Input

P75 90 Input Block 9

P76 101 Input

P77 102 Input

P78 103 Input

P79 104 Input

P80 91 Input

P81 92 Input

P82 93 Input

P83 94 Input Block 10

P84 105 Input

P85 106 Input

P86 107 Input

P87 108 Input

P88 81 N/C N/C (Do not use this I/O number)

P89 82 1/0 PWM Channel 3

P90 95 1/0 Block 11 PWM Channel 4 / INT Channel 0

P91 96 1/0 PWM Channel 5 / INT Channel 1

VDD 21,44 IN Power, 4.5V to 5.5V

VSS 22,64 IN GROUND

RES 23 IN RESET Input (LOW signal resets!),
Normally HIGH or OPEN

VBB 24 IN Battery Backup

TX1 41 RS232 Channel 1, +/- 12V Data
Output

RX1 42 RS232 Channel 1, +/- 12V Data
Input

AVDD 43 ADC Power

TTLTX1 61 RS232 Channel 1, 5V (TTL level)
Data Output

TTLRX1 62 RS232 Channel 1, 5V (TTL level)
Data Input

AVREF 63 ADC Reference Voltage

49

The CB290 output-only pins P24 to P55 are in high impedance state(High-Z)
at power ON. You can use “Set Outonly On” to set them all to output
states.

Set Outonly On

This command only works with CB290 rev B. The revision number is
written on the bottom side of the CB290 module.

A fake port 88 was made to make the Set OUTOnly command, which is
same as LOW 88. Therefore, when using the CB290 Rev B, you may not
use port 88 (P88) for other purposes. Please do not use USEPIN 88 when
using with LADDER.

410@61 THTX1

Sout 1@®21 Vdd
42 @ @62 THRX1
o0

Sin 20@22 Vss

Atn 3023 RES

Vss 4@@24 VBB
SS_P0 5@@25 P8 ADCO
(Input ohly) SCK_P1 6@ @26 P9_ADC1
MOSI_P2 7@ @27 P10_ADC2
MISO_P3 8@ ®28 P11_ADC3
P4 9@®29 P12_ADC4
PWMO_P5 10®®30 P13_ADC5
PWM1_P6 11@®31 P14_ADC6
PWM2_P7 12@ @32 P15_ADC7

P56 13@ @33 P64

P57 14@ @34 P65

P32
46 @ @66 P33
47 @ @67 P34
48 @ @68 P35
49 @ @69 P36
83050 Qutput Only

51@@71 P38
52 @ @72 P39
53 @ @73 P48

54 @ @74 P49
55 @ @75 P50

P58 15@ ® 35 P66 €]
P59 16@ @36 P67 z P43 56 @ @76 P51
P60 17@ @37 P68 - P44 57 @ @77 P52
P61 130 ®38 P69 @ P45 58 @ @78 P53
P62 19@ @39 P70 . P46 59 @ @79 P54
P63 200 @40 P71 L] P47 60 @ @80 P55

225383

TEERE

ERTEE

gz5888

22 gt

z 35

o T

°4&" CcB290

7 8 5 6

11\ 2 \ 9 \ 10
Port Blocks

50

CB405

CB405 is in a 80 pin module package, of which 64 pins can be used as I/O
ports. It has a battery backup-able 55KB of data memory. CB405 does not
have an internal 5V regulator.

Sout
Sin
Atn
Vss
PO

nput SCK /P1
i MOSI /P2
MISO /P3

P4

PWMO0 /P5
PWM1/P6
PWM2/P7
RX2/P8
TX2/P9

P10

PWM6 /P11
PWM7 /P12
PWM8 /P13

P14
P15

22 |Vss

©END U A WN =
(XXX XX XXX

150 @ 35 (P26

21 [vdd

TXE| 41 ® ® 61| THITXE
RXE| 42 ® @ 62| TtIRXE

(;B405 AVdd| 43 ® @63 Avref
Vdd| 44 @ ® 64| Vss

16 @ @ 36 (P27 / PWM3
17 @ @ 37 |P28/ PWM4/INTO
18 @ @ 38 |P29/ PWM5/INT 1

19@ @ 39 (P30/INT2
20@ @ 40 [P31/INT3

AD8/P32]| 45 ® ® 65| P48
AD9/P33| 46 ® ® 66| P49
AD10/P34| 47 ® ® 67| P50
AD11/P35| 48 @ ® 68 P51/PWM9
AD12/P36| 49 ® ® 69| P52/PWM10
AD13/P37| 50 ® ® 70| P53/ PWM11
AD14/P38| 51 ® ® 71
AD15/P39| 52 ® @ 72| P55
HCNT1/P47| 53 ® ® 73(P63
HCNTO/P46]| 54 ® @ 74| P62
P45| 55 @ @ 75| P61
P44] 56 @ ® 76| P60
TX1/P43| 57 @ ® 77| P59
RX1/P42| 58 ® ® 78| P58
SDA/P41| 59 @ @ 79| P57/ TX3
SCL/P40| 60 ® ® 80(P56/RX3

o
a
=

The pin numbers below are categorized by features, not by pin numbers.

Name Pin # I/0 Explanation
SOUT 1 ouT DOWNLOAD SERIAL OUTPUT
SIN 2 IN DOWNLOAD SERIAL INPUT
ATN 3 IN DOWNLOAD SERIAL INPUT
VSS 4,22, 64 POWER IN | GROUND
VDD 21,44 POWER IN | 4.5V to 5.5V Power Supply
AVDD 43 POWER IN | ADC power
AVREF 63 IN ADC Reference Voltage
VBB 24 POWER IN | Battery Backup
RES 23 IN RESET pin
TTLTXE 61 ouT RS232 to TTL232 curcuit, TX contact
TTLRXE 62 IN RS232 to TTL232 curcuit, RX contact
TXE 41 ouT RS232 Output, +/- 12V
RXE 42 IN RS232 Input, +/- 12V

51

The following is I/O Ports explained in PortBlocks.

Block Name Pin# | I/O Function Explanation
PO 5 1/0 SPI SS
P1 6 Input SPI SCK Input Only
P2 7 Input SPI MOSI Input Only
0 P3 8 Input SPI MISO Input Only
P4 9 1/0
P5 10 /0 PWM CHANNEL 0
P6 11 1/0 PWM CHANNEL 1
P7 12 /0 PWM CHANNEL 2
P8 13 1/0 TTL232 RX2 TTLRX channel 2
P9 14 1/0 TTL232 TX2 TTLTX channel 2
P10 15 1/0
1 P11 16 /0 PWM CHANNEL 6
P12 17 1/0 PWM CHANNEL 7
P13 18 1/0 PWM CHANNEL 8
P14 19 1/0
P15 20 1/0
P16 25 1/0 AD CHANNEL 0
P17 26 1/0 AD CHANNEL 1
P18 27 1/0 AD CHANNEL 2
2 P19 28 1/0 AD CHANNEL 3
P20 29 1/0 AD CHANNEL 4
P21 30 1/0 AD CHANNEL 5
P22 31 1/0 AD CHANNEL 6
P23 32 1/0 AD CHANNEL 7
P24 33 1/0 Co-processor SCL 1)
P25 34 1/0 Co-processor SDA 1)
P26 35 1/0 Co-processor INT 1)
3 P27 36 1/0 PWM3
P28 37 1/0 PWM4 / INTO
P29 38 1/0 PWMS5 / INT1
P30 39 1/0 INT2
P31 40 1/0 INT3

1) Communication line for connecting to co-processor (Please try to save

these pins for future co-processor communication ports.)

52

Block Name Pin# | I/O Function Explanation
P32 45 1/0 AD CHANNEL 8
P33 46 1/0 AD CHANNEL 9
P34 47 1/0 AD CHANNEL 10
4 P35 48 1/0 AD CHANNEL 11
P36 49 1/0 AD CHANNEL 12
P37 50 1/0 AD CHANNEL 13
P38 51 1/0 AD CHANNEL 14
P39 52 1/0 AD CHANNEL 15
P40 60 1/0 SCL CUNET clock pin
P41 59 1/0 SDA CUNET data pin
P42 58 1/0 RX1 TTLRX channel 1
5 P43 57 1/0 TX1 TTLTX channel 1
P44 56 1/0
P45 55 1/0
P46 54 1/0 HCNTO High Counter 0
P47 53 1/0 HCNT1 High Counter 1
P48 65 1/0
P49 66 1/0
P50 67 1/0
6 P51 68 1/0 PWM CANNEL 9
P52 69 1/0 PWM CANNEL 10
P53 70 1/0 PWM CANNEL 11
P54 71 1/0
P55 72 1/0
P56 80 1/0 RX3 TTLRX channel 3
P57 79 1/0 TX3 TTLTX channel 3
P58 78 1/0
7 P59 77 1/0
P60 76 1/0
P61 75 1/0
P62 74 1/0
P63 73 1/0

53

How to connect Battery to
CB290/CB405

When a super capacitor is used for VBB of CB290 /CB405, a length of
couple days to couple weeks can be backed up once powered OFF. CB290
/CB405 consumes about 15-20mA of current when idling. For longer
backup period, a battery can be used. Using a battery with large capacity
could yield up to 1 year of data backup. Make sure to use a diode as

shown below for using batteries.
VBB
% CB290
Operating Voltage : 4.5V to 5.5V

Power Features
Operating Clock : 18.432MHz

I/0 Port Source Current : 20mA

I/0 Port Sink Current : 25mA

Operating Temperature : -40 to 125 Degrees(Celcius)
Maintenance Temperature: -60 to 140 Degrees(Celcius)
Operating Humidity : 5 to 95% RH

(Keep the board's surface dry when testing and/or operating)

Additional Information

If CUBLOC module is supplied with power above recommended voltage, the
chip can be destroyed. Please be careful of static electricity that could
damage the chip. Please be aware that P1 is an input-only pin.

To block noise, please set all pins not used to input and set all outputs to
Low when not being used. All I/Os are set to input as default at power-ON.
When not using SIN, SOUT, and ATN pins, please do not connect them to
anything.

54

Dimensions

CB220

30mm (1181mil)

>

15.24mm (600 mil)

25.4mm (1000 mil)

2mm (78.74 mil)
oo 34.9mm (1374mil)

CB280 ::

. ° v

—>| |4 2mm (78.74 mil)

18.415mm (725 mil)

55

59.4mm (2338 mil)

49.53mm (1950 mil)

| -

CB290
CB405

36.83mm (1450 mil)

r
v

2mm (78.74 mil)

47.8mm (1882mil)

0000000000000 0000
0000000000000 00000O0

—00000000000000

?............. L

«— >

<« 2mm (78.74 mil)

10.8mm (425 mil)

14.0 ~14.9mm (551~586mil)

| | CB290 CB405

9.5mm (374mil)

Please refer to the above picture for PCB design. The numbers are Offsets
based on location 0, 0.

X:150 X:2100
Y:1600 Y:1600

Unit: 1/1000 Inch (Mil

56

CUBLOC Chipset : CB280CS

The CB280CS has exactly the same features as a regular CB280 chip except
it's in a chipset format. By using the CB280CS, the user is able to solder
the chipset directly on to their PCB. This will lower your overall production
cost while integrating CB280 into your product seamlessly.

Since this chipset has same features as a regular CB280, we recommend
you develop your applications on the CB280 before going into production
with the chipset version.

*The CB280CS includes

: Main Chip, Sub Chip

S8 I&R 8582385808883
2% ddaddaacc®saan
ANO00000000000nnn
T 89 58 88 b8 BB YIS B Q
voo 01 o 48 [p3s
rxo Oz a7 [p3s
@0 Os 46 [P37
p1e Ca 45 [p3s
(Pwm3)P19 s 44 [P39
(PWM4/INTO) P20 [J6 — 43 [Pas
| cuBLOC e e voD s vss
(nT2P22 Os 41 P46
aNT3yP23 o CBZSOCS 40 [pas RS :23';5;5‘357: RO
sspo 1o i : 39 [Pas
(S(CK;M (= £ Main Chip 38 [pas R4 53 Sub Chip °= R1
mosypz 12 37 [paz R3 4 5 R2
™misoPs 13 36 [] P41
P4 []14 35 [Pao
(PwMo)Ps []1s 4 [P11
(pwm1yPs []1e 33 [P10
E 22 R NR & Q8 8KKB KB 58
goooooooooogouoong
Nerl-FO Wk ZzZ®o - a0 Yo
= 54 N z z
- £ gt
Main chip pin out
Pin # Port Function Desc.
1 VDD Power Supply
2 RX0 DOWNLOAD RX RS232-RX
3 TXO0 DOWNLOAD TX RS232-TX
4 P18 1/0 port
5 P19 PWM3 1/0 port
6 P20 PWM4 / INTO 1/0 port
7 P21 PWMS5 / INT1 1/0 port
3 P22 INT2 1/0 port
9 P23 INT3 1/0 port
10 PO SS 1/0 port
11 P1 SCK 1/0 port
12 P2 MOSI 1/0 port
13 P3 MISO 1/0 port
14 P4 1/0 port

57

15 P5 PWMO 1/0 port

16 P6 PWM1 1/0 port

17 P7 PWM2 1/O port

18 P16 1/0 port

19 P17 1/0 port

20 /RESET Reset (Low active)
21 VDD Power supply
22 VSS Ground

23 XTALOUT Xtal output
24 XTALIN Xtal input

25 P8 CUNET_SCL 1/0 port

26 P9 CUNET_SDA 1/O port

27 RX1 RS232 CH1 RX RS232 Channel 1 Rx
28 TX1 RS232 CH1 TX RS232 Channel 1 Tx
29 P12 1/O port

30 P13 1/0 port

31 P14 HCOUNTO 1/0 port

32 P15 HCOUNT1 1/0 port

33 P10 1/O port

34 P11 1/0 port

35 P40 1/0 port

36 P41 1/0 port

37 P42 1/O port

38 P43 1/0 port

39 P44 1/0 port

40 P45 1/0 port

41 P46 1/0 port

42 P47 1/0 port

43 P48 1/0 port

44 P39 1/0 port

45 P38 1/O port

46 P37 1/0 port

47 P36 1/0 port

48 P35 1/0 port

49 P34 1/O port

50 P33 1/0 port

51 P32 1/0 port

52 VDD Power supply
53 VSS Ground

54 P31 ADC7 1/0 port

55 P30 ADC6 1/0 port

56 P29 ADC5 1/0 port

57 P28 ADC4 1/O port

58 P27 ADC3 1/0 port

59 P26 ADC2 1/0O port

60 P25 ADC1 1/0 port

61 P24 ADCO 1/O port

62 AREF Ref. for ADC
63 VSS Ground

64 AVDD Power supply for ADC

Please refer to Appendix F for detailed CB280CS specification.

58

CB280CS Application Schematic

to PC

DOWNLOAD

0.1F x2

T_é Supervisor
VDD vss
P rs RO ors O
R1[$ (Pwm3)P19 O 5
—

[| R4

R3 R2 | (Pwma/nTopP20 O 6
(PWM5/INT1) P21] 7
(NT2P22 O 8

529421 01d

(ssypo O 10

ore X
g
o1F 2=
Lc3>14
owr == 44 3
Y & 1 5V
0WF E7n10
| s 9 st §ssaanr
28§58 359 8|y s
foEad oy sEee
gOonoonaon aonno
8 8 8 58 8 FB 8 58

cuBLOC
NT3P23 O 9 CBZSOCS

gooooooooooooooo

T a2
(CUNET _SCL) P8
(CUNET_sDA

[E VDD)

o vssp

oscouTt

18. 4320MHz
OSC ILLATOR

Example

CB280CS
Main Chip ol
16A1 0529
18.4320MHz
Oscillator
CB280CS
Sub Chip

] 1 (SCK)P1 Maln Chlp 38
s woshez O ATMEGA128-16A .
Mmiso)pP3] 13 36
pa] ™ 35
110 1 Fwmoyps o 15 ‘ b 3
(PWm1)P6 [] 16 % 33

=2 2 R & N & & 8 R 8 R 8 5 8

ooa Tooooooooo

E2E |82z Egreric

<]

5V

59

MEMO

60

Chapter 3
CUBLOC
STUDIO

Editor/
Compiler

CUBLOC STUDIO Basics

After installing CUBLOC STUDIO and executing it, you will see the following
screen.

& CUBLOCstudio [untitled.cul 1 [S=1[E9)

Fle Edit Device Fun Sewp Help
Bl LA20 Ay e B =
[F1] BASIC | [F2] LADDER | Laslder Mnemonic |

& CUBLOCstudio [untitled.cul] =1

File Edit Device Fun Setup Help
2oL Sl LHE A > nit|E =
[FI]BASIC [F2] LADDER | Ladder Mnemanic |

pLC -H-‘-M— — | 1= -{1‘{01 ||z
Wizard F3 Fd F& FB Fi Fi F8 F11 F12 | NOT
31

Aeno]
END

1O | IO | iIFO
Insert | Delete | Undo

1O
Copy

32
33
34
- []
36

37

38

39

X Yi35 Modified Program : 9502 Bytes. Data : 101

You will see that at first CUBLOC STUDIO will be in TEXT EDITOR Mode.

If you press F2, the screen will change to LADDER EDITOR Mode and if you
press F1, it will switch back to TEXT EDITOR Mode.

62

Source files are saved under file extensions .CUL and .CUB, as TWO FILES.
If you need to backup or move source files, you must save BOTH of these

files.
open 2| x|
Laok in: I@ My Documents j - g '
@My Pictures
File: riame: I j Iﬂl
" Files of type: ICUBLDE Saource file[* cul] j Cancel |

4

When opening a file, you will only see .CUL files. (.CUB files are not

displayed, but they are in the same folder).

When you open .CUL file,

CUBLOC STUDIO automatically opens CUB file.

The source code can only be saved on the PC. Source code downloaded to
the CUBLOC module can not be recovered.

IMPORTANT
CUBLOC module supports “Code-
protection.” By encrypting

download data, others can not
simply read part of the chip’s
memory to access the source
code.

When you press the RUN button (or
CTRL-R), Save-> Compile->
Download-> Execute are
automatically processed.

LADDER and BASIC both are
compiled with one RUN button. If
error is found during compilation,
the screen will move to where the
error occurs.

63

Creating BASIC

You can create BASIC code as shown below. CUBLOC Text Editor is similar
to most text editors and supports Coloring of certain commands.

&2 Cubloc Studio [D:_Tpc_test\outofram.cul
Eile Edit Dewice Run 3Setup Help

Baok @ L£EE & r mi B E

[F1] BASIC } [F2] LADDER | Ladder Mnemanic |

| Const Device = CE405
Dim =tl As String
Dim =tZ As String
Dim aal As String
Dim aaZ As String

aal = "programmer"+Chr (10)

aaz = "timer"+Chr(10)

=tl = "comfile tech "

=tZ = "cubloc & cutouch controller”

Set Display 2,0,0,50
Opencem 3, 115200, 3,100, 100
On recv3 Gosub aaa
get Until 3,100,110
Cls
Do

Debug =tl,Cr

Debug addst (=tl, =tZ2),Cr

Delay 200

Print loc,0,0,2t2

If In{4) = 1 Then

Putaz 3,aal_a, 80,10

Do While Ini4) = 1
Loop
Endif
If In{l0) = 1 Then
Putaz 3,aaZ_a, 50,10
Do While In(10) = 1 >
< >
X1yl
Short-Cut Explanation
CTRL-Z UNDO
CTRL-O OPEN
CTRL-S SAVE
CTRL-C COPY
CTRL-X CuUT
CTRL-V PASTE
CTRL-F FIND
CTRL-HOME Go to the very beginning
CTRL-END Go to the very end
CTRL-Y REDO

64

Debugging

%@ CUBLOC studio [d!¥sourceWcublocstudioWiestsource®... g@@
File Edit Device Bun Setup Help

BoL LGB Ay nit E®
[FI1 BASIC | [F2] LADDER | Ladder Mnemanic |

Const Device = CBZE0
Delay 10
Debug "Hello"

+ Debug Terminal

Baud Rate Parity Data Bits gy 1y ﬁ n

Port
[com | [11s200 | [uene <] 6 | @py

~ Fix Right Side

As you can see in the above example, DEBUG command can be used to
debug your BASIC program while it's running. Be aware that you are not
allowed to use both Debugging and LADDER Monitoring at the same time.
You must remove Debug commands or comment them out with an
apostrophe to use LADDER Monitoring. Another option is to use the
command “Set Debug Off,” which will turn OFF the DEBUG feature.

65

Menus

|Ei|e Edit Device NElEW Setup

File Menu

Ladder Import

Save
Save fs..,
Save Object,,,

Print Ladder
Print BASIC, .,
Print Setup. .,

Download from object file

BASIC Section

Ladder Section
Ci¥fCubloc_Test#c290exouttest, cul
CiCubloc_TestwBCDTEST, cul
C#Cubloc_Testbrmpdown, cul
C:¥Cubloc_Testwata, cul

Exit

Help

Ctrl+3

Menu Explanation
New Create new file.
Open Open file.
Ladder Import Import Ladder Logic part of a CUBLOC program.
Save Save current file.
Save As Save current file under different name.

Save Object

Save current program as an object file. Use this to protect
your source code. Object file is strictly binary format file so
others cannot reverse engineer it. You can use “Download
from Object File” to download your object file to CUBLOC.
Create object files for internet-downloading with CuMAX or
CuMAX Server.

Print Ladder

Print Ladder Logic Section only.

Print Basic Print Basic Section only.

Print Setup Setup Printer for printing Ladder Logic Section.
Download from | Download an Object file to the CUBLOC module.
Object file

Basic Section

Switch to Basic Section for editing. (Or press F1).

Ladder Section

Switch to Ladder Logic Section for editing. (Or press F2).

Last 4 Files Edited

View last 4 files edited.

Exit

Exit CUBLOC Studio

Device Menu

If Const device statement does not exist in your source code, Device Menu
will create a Const device statement at the very beginning of your source

code.
replaced.

66

If it exists already, the Const device statement will simply be

Run Menu

Reset

Ladder Monitor on

BASIC Debug Terminal...
Time Chart Monitar, .,

clear CUBLGC Flash memory
Wrike enable fuse off

‘Wiew Relay Usage. ..

Chrl+F7

Check Syntax
Menu Explanation
Run Compile Basic and Ladder, download to CUBLOC
module if there are no errors, and restart the program
automatically. To disable automatic restart, please go
to Setup->Studio Option to change.
Reset Reset CUBLOC Module.

Ladder Monitor on

Start Ladder Monitoring

BASIC Debug Terminal

Open BASIC Debug Terminal Window.
This window opens automatically when there's a
DEBUG command in the source code.

Time Chart Monitor

View Time chart monitor window

Clear CUBLOC's Flash | Clear CUBLOC's Flash Memory.

Memory

Write enable fuse off This will turn off download function for a CUBLOC Core
module to protect against noisy environments where
the flash memory can be affected. Once you choose
this menu, you will be unable to download new
programs to your CUBLOC module. BUT, you will be
able to download again after a new Firmware
Download.

View Register Usage (After Compiling) View Register usage of Ladder Logic.

Check Syntax Check Syntax

Setup Menu

Menu Explanation

PLC Setup Wizard

Automatic BASIC source code generation for Ladder
Logic

PC Interface Setup

Setup the RS232 COM PORT for Download/Monitor.
Select COM1 through COM4.

Editor
Setup

Environment

Setup Editor Environment options for BASIC text editor.

Environment Options

CUBLOC Studio Options.

Firmware Download

Download Firmware to CUBLOC CORE. Please use this
to download firmware to CUBLOC CORE manually.

67

MEMO

68

Chapter 4
CUBLOC
BASIC
Language

IMPORTANT

You must declare the device being used before using BASIC or LADDER.
Below is an example of declaring CUBLOC CB220 module.

CONST DEVICE = CB220 ‘ Use CB220.

This should be the first line at the start of your program. When this
command is not used, CB220 model will be chosen as default.

CONST DEVICE = CT1720 ¢ Use CT1720.
CONST DEVICE = CB280 * Use CB280.

69

CUBLOC BASIC Features

Interface PC with RS232C Port

CUBLOC uses RS232 port to interface with the PC. You also have option of
using it to connect to MAXPORT and use monitoring/downloading via the
internet.

CUBLOC BASIC supports functions and sub

routines.

Like C language, the user is able to create sub-routines and functions to
lessen the complexities of their programs. By being able to use sub-
routines and functions, it is now possible to simple copy & paste for new
programs, instead of starting everything from scratch.

Function SUM(A As Integer, B As Integer) As Integer
Dim RES As Integer
RES = A + B
SUM = RES

End Function

Calculations can be done within conditional
statements such as If, While, etc...

IF ((A + 1) = 100) THEN GOTO ABC

IF ((A + 1) = 100) AND (B / 100 = 20) OR C = 3 THEN GOTO ABC

Multi-dimension arrays are supported.

CUBLOC supports multi-dimension arrays including character arrays.
Maximum of 8-D arrays are supported and only 1 dimensional array is
allowed for character arrays.

DIM A(100,10,20) AS BYTE

70

Hardware RS232 Communication are Supported
CUBLOC supports hardware RS232 communication, meaning it does not
conflict with real-time processing.

Conditional Statements are supported.
CUBLOC BASIC supports SELECT CASE and DO..LOOP conditional
statements.

A graphic LCD library is provided.

CUBLOC provides a complete graphic LCD library for GHLCD. Drawing
boxes, lines, circles, and graphic commands are easily implemented in few
lines of code.

Various Communication Protocols are supported.
CUNET : Display Peripherals such as LCD

RS232 : 4 channel

MODBUS : HMI and Touch screen Protocol

12C : I2C commands supported (I2CREAD, I2CWRITE)

SPI : SPI commands supported (SHIFTIN, SHIFTOUT)

PAD: Keypad, touchpad supported.

Advanced Basic Language is Comparable to C
Language.

#include support

#define support

#if..#ifdef..#endif conditional compile support

Incr, Decr commands: same function as C's + +, - -

Pointers allowed (PEEK, POKE, and MEMADR)

String Arrays (1-Dimension)

71

Simple BASIC program

Below is an example of simple BASIC program with Do...Loop statement.

Dim A As Byte

Do
Byteout 0, A
A=A+1

Loop

This program outputs to Port PO-P7 an increasing value of A. The next
program uses a function to accomplish the same task:

Dim A As Byte

Do
Byteout 0, A
A=ADD VALUE (A)
Loop
End

Function ADD VALUE (B As Byte) As Byte
ADD VALUE = B + 1
End Function

By separating A=A+1 to a function, the user will be able to separate one big
program into small chunks. As you can see here, the main program ends
when “END” comes and functions are added afterwards.

MAIN PROGRAM

FUNCTION Sub Program

(2] m
c >
w o

72

Sub and Function

For sub-routines, you can either use Sub or Function. Sub does not return

any values whereas Function does return values.

Sub SubName (Paraml As DataType [,ParamX As DataType] [,...])

Statements
[Exit sub] ' Exit during sub-routine

End Sub

Function FunctionName (Paraml As DataType [,...]) [As ReturnDataType]
Statements

[Exit Function] ‘

End Function

Exit during sub-routine

To return values using Function, simply store the final value as the name of

the Function like shown here:

Function ADD VALUE (B As Byte) As Byte
ADD VALUE = B + 1 ' Return B+1.
End Function

DEMO PROGRAM

<« Debug Terminal A=
Budfae ety DaaBls grc) g

Port
comt v] [r1s200] nere =] [6 <] @rx

&7 CUBLOC studio [d:\cubloc_test\functest.cul]
Fle Edit Device Run Setup Help

Q0D @ K2R A > n it B &
[FI1BASIC | [F2] LADDER | Ladder Mnemonic |

Const Device = CB280
Dim A As Byte
A=10
Do
Delay 100
Debug Dec A,Cr
A=ADD_VALUE (A)
Loop

End Close [~ Fix Rlight Side

Function ADD_VALUE (B As Byte) As Byte
ADD _VALUE = B + 1
End Function

Xild ¥i3

73

Global and Local Variables

When you declare variables inside a Sub or Function, it is considered to be a
“Local” variable. The Local Variables are created upon call of the Sub or
Function and removed at exit. This means that the Local Variables will use
the Data Memory and then free it for other resources. Local Variables may
only be referred to or used inside the Sub or Function.

On the other hand, Global variables may be used in all parts of your code.

Main Program

Global Variable

Sub Program A Sub Program B
Local Variable Local Variable

Dim A As Integer ' Declare A as Global Variable
LOOP1:

A=A+1

Debug Dp(A),CR ' Display A on Debug screen

DELAYTIME ' Call Sub DELAYTIME

Goto LOOP1

End ' End of Main Program

Sub DELAYTIME ()

Dim K As Integer ' Declare K as Local Variable
For K=0 To 10
Next

End Sub

In the program above, “A” is declared as Global Variable and “K” is declared
as Local Variable. A can be used anywhere in your code but K may only be
used inside the subroutine DELAYTIME().

Arrays may not be used for Local Variables. Arrays must be declared as
Global Variables.

74

Calling subroutines

Once the subroutine is created, you can use them like a regular command.
For Sub, you do not need parenthesis around the parameters. For multiple
parameters, use a comma to separate them.

The example shows how this is done:

\

DELAYTIME 100 Call subroutine

End

Sub DELAYTIME (DL As Integer)

Dim K As Integer ' Declare K as Local Variable
For K=0 To DL
Next

End Sub

For Function, you need parenthesis around the parameters. Parenthesis is
required even when there is no parameters.

Dim K As Integer

K = SUMAB(100,200) ‘Call subroutine and store return value in K
Debug Dec K, cr

End

Function SUMAB (A AS INTEGER, B AS INTEGER) As Integer

SUMAB = A + B
End Function

75

Subroutine Position

Subroutines must be created after the main program. To do this, simply
put “End” at the end of your main program like shown here:
(“End” is only required if you have subroutines)

Dim A As Integer
LOOP1:
A=A+1
Debug DP(A),CR
DELAYTIME
Goto Loopl

End ' End of main program

Sub DELAYTIME ()
Dim K As Integer
For K=0 To 10
Next

End Sub

Sub and Function subroutines come after the “End.” Gosub subroutines
must be within the main program like shown here:

Dim AAs Integer
Gosub ABC
ABC:

End

Sub DEF(B as Byte)

End Sub

Function GHI(C as Byte)

En‘d Function

* End command is used to differentiate between BASIC main program and
the subroutines. END command used in Ladder Logic is to indicate the
end of Ladder Logic.

76

Subroutine Parameters and Return Values

Function may use any data type as parameters and return values.

Dim A(10) As Integer

Function ABC(A AS Single) as Single ' Return Single value
End Function

Function ABC (A AS String * 12) as String *12 ' Return String value
End Function

Function ABC(A AS long) ' Long value as a parameter
End Function ' When return value is not declared, Long
' will be used as return value.

Exceptions includes using arrays as parameters.

Function ARRAYUSING (A(10) AS Integer) ' Arrays may not be used as
' parameters.
End Function

But you may use one element of an array as a parameter.

Dim b(10) as integer
K = ARRAYUSING (b (10)) ' Use 10" element of array b as a parameter.

Function ARRAYUSING (A AS Integer) as integer
End Function

All subroutines’ parameters are “Call by value,” meaning the values are only
used as reference. Even if the parameter value is changed within a
subroutine, it will not affect the actual variable used as a parameter like
shown here:

Dim A As Integer

Dim K As Integer

A = 100

K = ADDATEN (A)

Debug Dec? A, Dec? K,CR ' A is 100 and K is 110
End

Sub ADDATEN (V As Integer)
V=V + 10 ' A does not change when V is changed.
ADDATEN = V

End Sub

77

In contrast, there is “Reference by Address,” in which the actual Data
Memory address is passed to the subroutine. CUBLOC only supports
“Call by Value.”

Too many characters in one line?
If you run out of room, you can use an underscore character (_) to go to
the next line like shown here:

ST = “COMFILE TECHNOLOGY"”

ST = “COMFILE
TECHNOLOGY"”
Comments

Use an apostrophe (*) to add comments. Comments are discarded during
compile, meaning it will not take up extra Program Memory.

\

ADD VALUE = B + 1 Add 1 to B. (Comment)

Nested subroutines
Nested subroutines are supported in CUBLOC.

\

A=FLOOR (SQR (F)) Do Floor () on SQR(F) .

Colons
Colons may not be used to put append commands in CUBLOC BASIC.

A=1: B=1 : C=1 ' Incorrect.
A=1 ' Correct.

B=1

Cc=1

78

Variables

There are 5 types of variables in CUBLOC BASIC.

BYTE 8 bit Positive Number, 0 to 255
INTEGER 16 bit Positive Number, 0 to 65535
LONG 32 bit Positive/Negative Number,

(-2147483648 to +2147483647)
SINGLE 32 bit Floating Point Number,

(-3.402823E+38 to 3.402823E+38)
STRING String, 0 TO 127 bytes

A Byte is an 8 bit positive number representing 0 to 255.

An Integer is a 16 bit positive number representing 0 to 65535.
A Long is a 32 bit positive or negative number representing
-2,147,483,648 to 2,147,483,647.
A Single is a 32 bit positive or negative floating point number representing

-3.402823x10%® to 3.402823 x 10%,

LoNG |]|

*For storing negative numbers, please use LONG or SINGLE.
Use DIM command for declaring variables as shown below:

Dim
Dim
Dim
Dim
Dim
Dim
Dim

A As Byte

B As Integer, C As Byte
STl As String * 12

ST2 As String

AR(10) As Byte

AK(10,20) As Integer

ST (10) As String*10

'Declare A as BYTE.
'Comma may NOT be used.

'Set String size for String.

'Set as 64 bytes (default).
'Declare as Byte Array.
'Declare as 2D Array
'Declare a String Array

79

DEMO PROGRAM

&2 CUBLOC studio [d:\cubloc_test\variable.cul |
Fle Edit Device Run Setup Help

EEFIEIFY-FIL A R o +* Debug Terminal

[FI1 BASIC | [F2] LADDER | Ladder Mnsmonic | Baud Rete Parity

Data Bits

Fort
Const Device = CB280 [com =] [11s200 ¥| [none ~] [

=]

= 3]
™A

RX

Dim A Az Byte

Dim B As Integer
Dim C As Long
Dim D As Single
A = 123

E = 5000

C = 329%%000

D =3.14

Debug Dec A,Cr
Debug Dec EB,Cr
Debug Dec C,Cr

‘Debug Float D, Cr I Fix Right Side

Line : 16

VAR Command (Same function as DIM)

VAR can be used in place of DIM to declare variables. Below are examples

of how to use VAR:

A Var Byte ' Declare A as BYTE.

ST1 Var String * 12 ' Declare ST1 as String of 12 bytes.

AR Var Byte (10) ' Declare AR as Byte Array of 10.
AK Var Integer (10, 20) ' Declare AK as 2-D Integer Array
ST Var String *12 (10) ' Declare String Array

80

String

A String size can be set up to 127 bytes. When size is not set, default
value of 64 bytes will be used as the String size.

Dim ST As String * 14 ' For maximum usage of 14 bytes
Dim ST2 As String ' Set as 64 byte String variable

When setting a String as 14 bytes, another byte is allocated by the
processor to store NULL. When storing "COMFILE TECHNOLOGY” in a 14
byte String, the last 4 characters (bytes) will not be stored.

Dim ST As String * 14
ST = “COMFILE TECHNOLOGY

"o\

“LOGY” is not stored

COMFILE TECHNOLOGY

[CIOMETLE] HECEND] HOSY

do not fit here

In CUBLOC BASIC, (*) must be used for String. An apostrophe (‘) may not
be used.

ST = “COMFILE " TECHNOLOGY” ' (") can not be used inside the String.
ST = “COMFILE ‘' TECHNOLOGY” ‘' (‘) can not be used inside the String.
ST = “COMFILE , TECHNOLOGY” ‘ (,) can not be used inside the String.

You can use CHR(&H22) to express () and CHR(&H27) to express (‘) and
CHR(&H2C) to express (,).

Example for printing to LCD:

Print Chr (&H22),"“COMFILE “ TECHNOLOGY”,Chr (&H22) * (%)
Print Chr (&H27),"“COMFILE “ TECHNOLOGY”,Chr (§H27) ‘' (') Apostrophe

81

To connect multiple Strings, you can use a comma as shown below:
Print “ABC”,”DEF”,”GHI” ' Same as PRINT “ABCDEFGHI”.
Use CR for Carriage Return (Next Line).

Print “California”,CR ' Print California and go to the next line.

DEMO PROGRAM

+* Debug Terminal
Port Baud Rate Parity Deta Bits g1y an

com w| [115200 v| uone | [8 =] @gx

7 CUBLOC studio [d:\cubloc_test\string.cul]

File Edit Device Run Setup Help

EEFIE IR - R

[FIT BASIC | [F2] LADDER | Ladder Mnemonic |
Const Device = CB280

Dim §1 As String
Dim §2 As String * 10

FILE TECHNOLOGY
‘E4 S0CC

81
82

"COMFILE TECHNOLO
"KOREA SOCCER"

Debug 81,Cr
Debug 82, Cr

[~ Fix Right Side

X1y

82

Merge Multiple Strings

To merge multiple strings together, use & as shown below:

Dim al As String * 30
Dim a2 As String * 30
al = "Comfile "

a2 = "Technology "

al = al + a2 + ",Inc"
Debug al,cr

The above program will show “Comfile Technology, Inc” on the debug

screen.

DEMO PROGRAM

& CUBLOC studio [d:\cubloc_test\string.cul]
File Edt Deviee Run Sehup Help

e @ XA A > an H@E

[F1] BASIC | [F2] LADDER | Ladder Mnemonic |

Const Device = CBZB0
Dim al As String * 30
Dim a2 As String * 30

al = "Comfile "

azZ = "Technology "
al = al + a2 + ",Inc"
Debug al

+ Debug Terminal
Baud Rate

Port
[comt =] [115200] Jrione ~] [a

Parity Data Bits

j @RY

@

Comfile Techno

[~ Fix Right Side

Line : 7

83

How to Access Individual Characters within a
String

You can use strings like an array. Simply append “_A" after the name of
your string variable like shown here:

DIM ST1 AS STRING * 12 ' ST1 A Array is created at the same time.
STl = “123"
ST1 A(0) = ASC("A") ' Store A in the first character of STI1.

When you declare Dim Stl as String * 12, Stl1_A(12) is also declared
automatically by the RTOS. The string and the array use the same
memory space. Whether you use the string or the array, you are still
accessing same memory location.

The example below shows how to convert blank characters to z.

+* Debug Terminal [_ [E]
Port Baud Rate Parity Data Bits

[comt ~| [115200 v [mene ~| [z ~]

27 CUBLOC studio [d:\cubloc_testistring.cul]
File Edit Device Run Setup Help
o @ HEE A > ot B =
[FI] BASIC | [F2) LADDER | Ladder Mnemanic |

Const Device = CBZE0

Dim A Az Integer

Dim st As String * 30

st = "COMFITLE"

Debug =t,Cr

For A = 0 To 12|
If =t _a(A) = Azc(" ") Then

=t_a(A) = Asci("z")

End If

Next

Debug st,Cr

[~ Fix Right Side

Line : 6 I

With string arrays, you may not use this feature.

Dim st (10) As String * 3

84

About Variable Memory Space

In the case of CB220 and CB280, 2KB (2048 bytes) of data memory is
available. You may not use the whole data memory for variables. Part of
the data memory space is reserved for use by peripherals such as DISPLAY
and the RS232 buffers. The 80 bytes are used for DEBUG command.

Sub and Function routines and interrupt routines use up data memory space.
Of the available 2048 bytes, about 1800 bytes can be used for global
variables. The more Sub/Function routines you use, you will have less
memory available for variables and constants.

When the user uses buffers with command SET DISPLAY or OPENCOM, the

data memory will lose that much amount of memory space to use for
variables.

Initializing Memory
CUBLOC BASIC data memory is not cleared at POWER UP. The user must
initialize variables to zero or use RAMCLEAR command to clear the whole
memory.

Ramclear

The data memory will contain garbage values at POWER UP.

In the case of Battery-backed up modules, the variables will remember their
values after a Power-cycle (powering Off and On).

85

Arrays

CUBLOC BASIC supports up to 8 dimensional arrays, each dimension
allowed up to 65535 members.

DIM A(20) AS BYTE ' Declare A's array size as 20
DIM B(200) AS INTEGER ' Declare Integer array
DIM C(200) AS LONG ' Declare Long array

DIM D(20,10) AS SINGLE ' 2-dimensional Single array
DIM ST1(10) AS STRING * 12 ' Declare String array

ae [[T]]
A(3,6)

y a4 -
A(3,3,6) 777

CUBLOC supports multi-dimension arrays including character arrays. Up to
8-D arrays are supported. Please make note of how much memory is used
when using multi-dimensional arrays.

\

13 * 10 = 130 Bytes of Data Memory
DIM ST1(10) AS STRING * 12

v

4*10 * 20 = 800 Bytes of Data Memory
DIM D(20,10) AS SINGLE

86

Bits and Bytes modifiers

A variable’s bits and bytes can individually be accessed by using the
commands shown below.

DIM A AS INTEGER
DIM B AS BYTE

A.LOWBYTE = &H12 ' Store &H12 at A's lowest byte
LOWBIT Variable’s bit 0
BITO to 31 Variable’s bit 0 through 31

A.BIT2 = 1 'Make bit 2 of A 1.

Nibble

A Nibble is for 4 bits. By using Nibbles, the user has more flexibility to
manipulate the data.

LOWNIB Variable’s NIBBLE 0
NIBO to 7 Variable’s NIBBLE 0 to 7

A.NIB3 = 7 ' Store 7 in Nibble 3 of A

(
LONG|I|I||III\KI)||I||I|I

A P A A g

NIB7 NIB6 NIB1 NIBO
LOWNIB

87

Byte
To specify certain bytes of a variable, the below names can be used.
(A Byte is 8 bits)

LOWBYTE, BYTEQ BYTE 0 of Variable
BYTE1 BYTE 1 of Variable
BYTE2 BYTE 2 of Variable
BYTE3 BYTE 3 of Variable

A.BYTEl = &HAB 'Store shab in byte 1 of A

LONG | sBvtes || Byte2 || BYTE®1 || BYTEO |
LOWBYTE

Word

To specify certain Word of a variable, the below names can be used:
(A Word is 16 bits)

LOWWORD, WORDO Word 0 of variable

WORD1 Word 1 of variable

A.WORD1 = &HABCD ‘Store &habcd in word 1 of A

LONG | WORD1 | WORDO
LOWWORD

* Tips: Need to access 5 bits of a variable?
Try NewVariable = Variable and 0x1F.
This will mask the last 5 bits of the variable.

88

DEMO PROGRAM

=]
+ Debug Terminal

%7 CUBLOC studio [d:\cubloc_test\ongbyte.cul |
Eile Edit Device Run Setup Help

EEWIE Y TR | BauiRele Paty DeaBis g 3

Port
[FI1 BASIC | [FZ] LADDER | Ladder Mnemanic |COM1 j |115200 j |NDHB j |3 j :RK

Const Dewvice = CBZ80
Dim A As Long

A = gH1Z345678

Debug Hex A.BYTEOD,Cr
Debug Hex A.BYTEL, Cr
Debug Hex A.BYTEZ,Cr
Debug Hex A.BYTE3, Cr

A.WORD1 = &hAECD

Debug Hex A, Cr

I~ Fix Right Side

89

Constants

Constants can be used to declare a fixed value at the beginning of the
program. By doing this, readability and debuggability of the source code
will be easier.

The command CONST can be used to declare constants in CUBLOC.

CONST PI AS SINGLE = 3.14159
CONST WRTTIME AS BYTE = 10
CONST MSG1 AS STRING = “ACCESS PORT”

When the constant is not given a type, the compiler will find an appropriate
type for it as shown below:

v

CONST PI = 3.14159 Declare as SINGLE

CONST WRTTIME = 10 ' Declare as Byte

CONST MYROOM = 310 ' Declare as Integer since it’s over
255.

CONST MSGl = “ACCESS PORT”

\

Declare as String

CON (Another way of CONST)
The Command CON can be also used to declare constants in the following
way:

PI CON 3.14159 ' Declare as SINGLE.
WRTTIME CON 10 ' Declare as Byte
MYROOM CON 310 ' Declare as Integer

\

MSG1 CON “ACCESS PORT” Declare as String

90

Constant Arrays...

By using constant arrays, the user is able to store a list of numbers before
the program begins. By using constant arrays, the program can be
simplified as shown below:

Const Byte DATAl = (31, 25, 102, 34, 1, 0, 0, 0, 0, 0, 65, 64, 34)
I=0

A = DATAIL (I) ' Store 31 in A.

I=1I+1

A = DATAIL (I) ' Store 25 in A.

Const Byte DATAl = ("CUBLOC SYSTEMS")

String data can be store in Byte constant arrays. The ASCII code of the
character is returned.

If DATA1(0) is read, ASCII code of ‘C’ is returned. Likewise if DATA1(1) is
read, ASCII code of ‘U’ is returned.

Whole and floating point numbers can be used as shown next:

CONST INTEGER DATAl = (6000, 3000, 65500, 0, 3200)
CONST LONG DATA2 = (12345678, 356789, 165500, 0, 0)
CONST SINGLE DATA3 = (3.14, 0.12345, 1.5443, 0.0, 32.0)

For multi-lines of constants, following ways can be used:

1)
CONST BYTE DATAl = (31, 25, 102, 34, 1, O, O, O, O, O, 65, 64, 34,
12, 123, 94, 200, O, 123, 44, 39, 120, 239,
132, 13, 34, 20, 101, 123, 44, 39, 12, 39)
2)

CONST BYTE DATA2 = (31, 25, 102, 34, 1, 0, 65, 64, 34,
101, 123, 44, 39, 12, 39)

Strings can be used as shown next:

CONST STRING * 6 STRTBL = (“COMFILE”, “BASIC”, “ERROR”, “PICTURE")

91

Please set the size of the String to be greater than any of the members of
the constants.

Only 1 dimensional array is allowed for constants.

Comparison Array Constant Array
Storage Data Memory (SRAM) Program Memory (FLASH)
Stored Time During Program run During Download
Can be Changed Yes No
Purpose Changing Values Unchanging values
Power OFF Disappear Kept

DEMO PROGRAM

&7 CUBLOC studio [d:\cubloc_test\constarray.cul]
Elle Edit Device Bun Setup Help
B8 @ BB & > nn B &
[F11 BASIC | [F2] LADDER | Ladder Mnsmonic |
Const Device = CBZ280
Const Byte DATALl = (31, =25, 102, 34, 1, 0, 0O, 0O, 0O, 0, A5, &4, 34,
12, 123, 94, =200, 0, 123, 44, 39, 120, 239,
132, 13, 34, 20, 101, 123, 44, 39, 12, 33

Debug Dec DATAL(3),Cr
Debug Dec DATALl (&), Cr =
Debug Dec DATAL(1),Cr +* Debug Terminal E]

Port Baud Rate Parity Data Bits

[com = f115200 =] [mone =] fs |

2

[Fix Right Side

92

Operators

When using many logical operators, the below priority table is used to
determine which operator is operated on first.

Operator Explanation Type Priority
~ To the power of Math Highest
*,/,MOD Multiply, Divide, MOD Math
+,- Add, Subtract Math
<<, >> Left Shift, Right Shift Logic
<, >, <=,>= Less than, Compare

Larger than,
Less or Equal to , Larger

or Equal to.
=, <> Same, Different Compare
AND, XOR, OR AND,XOR,0OR Logic Lowest

Please refer to the above table for checking priority of operator used. In the
rows, the highest priority is calculated from the left to right.

You can use operators as conditions like below:
IF A+l = 10 THEN GOTO ABC

Whole numbers and floating point numbers can be mixed. The final result
follows the type of variable it will be stored in.

DIM F1 AS SINGLE

DIM A AS LONG

Fl = 1.1234

A =Fl * 3.14 ' A gets 3 even though result is 3.525456.

Please make sure to include a period(.) when using floating point numbers.

Fl1 = 3.0/4.0 ' Write 3/4 as 3.0/4.0 for floating values
Fl1 = 200.0 + FLOOR(A) * 12.0 + SQR(B) '200 as 200.0, 12 as 12.0...

AND, XOR, OR is used for logical operations and as Bit operators.

\

IF A=1 AND B=1 THEN C=1 if A=1 and B=1 ...(Logical Operation)
IF A=1 OR B=1 THEN C=1 ‘' if A=1 or B=l...(Logical Operation)

A = B AND &HF ‘Set the upper 4 bits to zero. (Bit Operation)
A = B XOR &HF ‘Invert the lower 4 bits. (Bit Operation)
A = B OR &HF ‘Set the lower 4 bits to 1. (Bit Operation).

93

Strings can be compared with the “=" sign. ASCII values are compared for
Strings.

DIM ST1 AS STRING * 12

DIM ST2 AS STRING * 12

ST1 = “COMFILE”

sT2 = “cuBLoC”

IF ST1=ST2 THEN ST2 = “OK” ' Check if STl is same as ST2.

Operators used in our BASIC language may slightly differ with actual Math
operators. Please refer to the below table:

Operator Math Basic Example
Add + + 3+4+5, 6+A
Subtract - - 10-3, 63-B
Multiply X * 2*%4, A*S5
Division —_ / 1234/3, 3843/A
To the power of 53 A 573, AN2
MOD Remainder of mod 102 mod 3

In CUBLOC BASIC, a slash (/) is used in place of division sign.
Please make sure to use parenthesis appropriately for correct calculations.

1 5
1/2 —_—

2 > 3+4
2+6
3+4

P 5/(3+4)

P (2+6)/3+4)

94

Operator Priority

When multiple operators are used, the following operator priority is used:

1) Operator inside parenthesis

2) Negative Sign (=)

M)

4) Multiplication, Division, Remainder (*, /, MOD)
5) Addition/Subtraction (+,-)

6) Left Shift, Right Shift (<<, >>)

Ax*xB-C/MD+B-X=G+H

DEMO PROGRAM

&7 CUBLOC studio [d:\cubloc_test\math1.cul]
File Edit Dewice Run Setup Help

B¢ #0E Ay it BE

[FI1] BASIC | [FZ] LADDER | Ladder Mnemonic |

Const Device = CBZ80
Dim A As Integer

Dim B Az Integer
Dim C As Integer «* Debug Terminal

A=;~U Port BaudRate Parity DalaBis gy 7
B=. v v v -

e 1z3 4 p * oA [com =] [11szo0 v [vere =] 5 +| @px
Debug Dec C,Cr
c= (123 + B) * A
Debug Dec C,Cr

[~ Fix Right Side

95

Expressing Numbers in Bits

3 ways of bit representation of humbers are possible with CUBLOC. Binary
(2 bit), Decimal (10 bit), and Hexadecimal (16 bit) can be used.

Examples of how-to:

Binary : &B10001010, &B10101,
0b1001001, Obl100
Decimal : 10, 20, 32, 1234
Hexadecimal : &HA, &H1234, &HABCD
0xABCD, 0x1234 €& Similar to C
$1234, S$ABCD € Similar to Assembly Language

96

The BASIC Preprocessor

The BASIC preprocessor is a macro processor that is used automatically by
the compiler to transform your program before compilation. It is called a
macro processor because it allows you to define macros, which are brief
abbreviations for longer constructs.

In CUBLOC BASIC, a Preprocessor similar to C language can be used.

Preprocessor directives like #include and #define can be used to include
files and process code before compiling.

#include “filename”

Include file in the source code. For files in the same directory as the source
file, you can do the following:

#INCLUDE “MYLIB.cub”

For files in other directories, you will need to include the full path name like
shown here:

#INCLUDE “c:\mysource\CUBLOC\lib\mylib.cub”
By using include files, you can store all of your sub-routines in a separate
file.

Please make sure to use pre-processor directive #include at the very end of
your program. (After “End” for subroutines)

#define name constants
By using #define, you can define constants before compiling.

#define motorport 4

low motorport

For the example above, motorport will be compiled as 4. You can also just
use CONST for such examples like this:

CONST motorport = 4

low motorport

The following example uses #define for replacing a line of command:

97

#define FLAGREGL 2
#define f led FLAGREG1.BITO
#define calc (4+1i)*256

f led =1 ' Set FLAGREGl's bit zero to 1.
IF £ led = 1 then £ led = 0 ' Make it easier to read.
j = calc ‘Calculations can be simplified

#define will not differentiate uppercase and lowercase letters. They will all
be processed as uppercase character. For example, #define ALPHA 0 and

#define alpha 0 are both considered the same.

DEMO PROGRAM

+* Debug Terminal

%7 CUBLOC studio [d:\cubloc_test\abe.cul]
File Edit Device Rum Setup Help |COM'I ﬂ |1152EIEI ﬂ ‘None ﬂ |E ﬂ @R

Port Baud Rate Parity Data Bits g 1y a

BOH ¢ 22 A> ot B =
[FI1 BASIC | [F2] LADDER | Ladder Mnemonic |

Const Device = CE2B80
#define Rep Debug Dec
Dim A As Integer

A= 123

rep A,Cr

Claze [~ Fix Right Side

Line : 6

98

Conditional

A conditional is a directive that instructs the preprocessor to select whether
or not to include a part of code before compilation. Preprocessor
conditionals can test arithmetic expressions, or whether a name is defined
as a macro, or both simultaneously using the special defined operator.

Here are some reasons to use a conditional.

®m A program may need to use different code depending on the
module it is to run on. In some cases the code for one module
may be different on another module. With a preprocessing
conditional, a BASIC program may be programmed to compile on
any of CUBLOC/CUTOUCH modules without making changes to
the source code.

m If you want to be able to compile the same source file into two
different programs. One version might print the values of data for
debugging, and the other not.

#if constant
#endif

The preprocessor directive #if will compare a constant declared with CONST
to another constant. If the #if statement is true, the statements inside the
#if...#endif block will be compiled, otherwise statements will be discarded.

Const Device = CB280

Delay 500

' Device only returns the decimal number
#If Device = 220

Debug "CB220 module used!"

#endif

The above example shows how depending on the module of
CUBLOC/CUTOUCH, you can decided to include a command in the final
compilation of your program. By using conditional directives, you will be
able to manage multiple modules of your CUBLOC/CUTOUCH with just one
source code.

99

By using preprocessor directive #elseif or #else, you can create more
complex #if...#endif blocks.

Const Device = CB220

Delay 500
' Device only returns the decimal number

#If Device = 220

Debug "CB220 module used!"
#elseif device = 280

Debug "CB220 module used!"
#elseif device = 290

Debug "CB290 module used!"
#elseif device = 1720

Debug "CT1720 module used!"
#endif

#else may only be used ONCE in a #if statement. You may only compare
constants declared with CONST command for the #if statements.

#ifdef name

#endif

When using #if to compare constants, you can use #ifdef to see if a
constant has been defined previously using #define or CONST.

If the constant has been defined previously, the statements inside the
#if...#endif block will be compiled, otherwise it will be discarded.

#define LOWMODEL 0

#ifdef LOWMODEL
LOW 0

#endif

In the above example, since LOWMODEL is defined, the statement LOW 0 is
compiled.
#else #elseifdef may be used for more complex blocks like shown here:

#ifdef LOWMODEL
LOW 0
#elseifdef HIGHMODEL
HIGH 0
#else
Low 1
#endif

100

#ifndef name
#endif

#ifndef is exactly the opposite of #ifdef directive. If a constant has not
been defined, the statements inside #if...#endif block will be compiled,
otherwise statements are discarded.

#define LOWMODEL 0

#ifndef LOWMODEL
LOW 0

#endif

#elseifndef and #else may be used for more complex blocks like shown
here:

#ifndef LOWMODEL
Low 0
#elseifndef HIGHMODEL
HIGH 0
#else
Low 1
#endif

Finally, the directives may be mixed as shown below:

#if MODELNO = 0
LOW 0
#elseifdef HIGHMODEL
HIGH 0
#else
Low 1
#endif

An exception is that #if may not be used inside another #if.

101

To use LADDER ONLY

If you do not need to use BASIC, you can just program in LADDER. But
you will need the most basic BASIC-code as shown below:

Const Device = CB280 'Select device

Usepin 0, In, START 'Declare pins to use
Usepin 1,0ut,RELAY

Alias MO0 = MOTORSTATE 'Set Aliases
Alias M1 = RELAY1STATE

Set Ladder On 'Start Ladder.

Device model, aliases, and pin input and output status must be set in BASIC.
Ladder must be started in BASIC with SET LADDER ON command.

To use BASIC ONLY

Simply use BASIC! Ladder is off as default

Set Ladder On ' Just don’t use this command.

Ladderscan ' And this one too.

102

Interrupt

An interrupt can occur during the main program to process immediate
needs of some sort. ON..GOSUB command can be used to set a new
interrupt. When that interrupt occurs, the main program stops execution
and jumps to the label designated by the previous ON...GOSUB command.
Once the interrupt routine in the label is finished, RETURN command is used
to return back to the main program.

e

—
\

S~

INTERRUPT
ROUTINE

MAIN PROGRAM

External Key input can be pressed and RS232 serial data can be received at
any moment. Since the main program cannot wait forever to receive these
inputs, we need interrupts. If a key is pressed or serial data is received
while the Main program is running, an interrupt occurs and the Main
program jumps to an interrupt routine.

CUBLOC possesses one of the most flexible interrupts in the world. While
an interrupt routine is running, another interrupt request of the same
type is ignored. If an RS232 RECV interrupt occurs during execution of an
RS232 RECV interrupt routine, it will be ignored. On the other hand, if an
INT Edge interrupt occurs during execution of an RS232 RECV interrupt
routine, it will be executed immediately before returning to the RS232 RECV
interrupt routine.

Interrupt Type Explanation

On Timer Create interrupt within the set interval

On Int Create interrupt when external input is received.

On Recv Create interrupt when RS232 receives data

On LadderInt Create interrupt when Ladder Logic requests for an interrupt
On Pad Create interrupt when Pad receives data

103

More about Interrupts---

The CUBLOC and CUTOUCH have RTOS which controls interrupt events.
This is slightly different from microcontroller’s hardware interrupts.

1. When an interrupt A occurs, during the interrupt A, another interrupt A
cannot occur. But a different interrupt B can occur. Here A and B are
different types of interrupts. (e.g. On Timer and On Recv)

2. When an interrupt B occurs during the interrupt A, interrupt B will be
executed immediately and the Main Program will return to interrupt A to
finish.

3. At the end of your interrupt routine, please make sure to include a
Return command. Otherwise, your program can mal-function.

4. There is no limit on the number of interrupts and how long an interrupt
routine may be.

5. Delay, Pulsout commands can be used during an interrupt. BUT,
Delay and Pulsout time may be affected by other interrupts that occur
during its execution. To protect against such situations, please use Set
Onglobal Off before calling Delay or Pulsout command like shown here:

Set Onglobal Off
Delay 100 ' Delay command not affected
Set Onglobal On

6. If no interrupt is required for your program, you can actual increase the
execution speed of CUBLOC or CUTOUCH by setting all interrupt off using
the command, Set Onglobal Off.

*By Default, Set Onglobal is set to On.

7. In case of On Recv, data received during an On Recv routine will simply
be stored in the receive buffer. Therefore the data will not be lost. After
the current On Recv interrupt routine is finished, if there’s new data in the
receive buffer, another On Recv interrupt will be called immediately. Bclr
command can be used in case the user does not want to process another
On Recv Interrupt.

8. If you declare an interrupt twice, the last one called will be in effect.

104

Pointers using Peek, Poke,
and Memadr

Following is an example that uses EEWRITE command and EEREAD
command to read floating point data:

Const Device = CB280

Dim f1 As Single, f2 As Single
fl1 = 3.14

Eewrite 0,f1,4

f2 = Eeread(0,4)

Debug Float f2,cr

When you run this code, the debug window will show 3.00000 instead of
3.14. The reason is that EEWRITE command automatically converts
floating point values to whole numbers.

In order to store floating point values, we can use Peek and Poke to read
the data directly. The following is how we would accomplish that:

Const Device = CB280

Dim F1 As Single, F2 As Single
Fl = 3.14

Eewrite 10, Peek (Memadr (F1),4),4
Poke Memadr (F2) ,Eeread(10,4),4

Debug Float F2,CR

The Debug Window will now show 3.14.

We use Memadr(F1) to find the memory address of F1 and then use Peek
command to directly access the memory and write 4 bytes. We store that
value in EEPOM. Conversely, we use Memadr(F2) and Poke to read 4 bytes
directly.

Warning : Please use caution when using this command as pointers can

affect the whole program. Peek and Poke may only access data memory
SRAM.

105

Sharing Data

CUBLOC has individual BASIC and LADDER data memory.

BASIC DATA MEMORY

LADDER DATA MEMORY

Variable A
Variable B
Variable C
Variable D
Variable E
Variable F

LADDER data memory can be accessed from BASIC easily by using system
By using these system variables, data can easily be read or

variables.
written from and to LADDER.

System Variable
(Array)

Access Units

LADDER Register

_P Bits _P(0) to _P(127) P Register
M Bits _M(0) to _M(511) M Register
_WP Words _WP(0) to _WP(7) P Register (Word Access)
_WM Words _WM(0) to _WM(31) M Register (Word Access)
T Words _T(0) to _T(99) T Register (Timer)
_C Words _C(0) to _C(49) C Register (Counter)
_D Words _D(0) to _D(99) D Register (Data)

Registers P and M can be accessed in units of bits and the rest of the
Registers C, T, and D can be accessed in units of Words. To access P and M
Registers in units of Words, use _WP and _WD.

represents PO through P15.

The following is an example program :

D(0) = 1234
_D(1) = 3456
D(2) = 100
FOR I = 0 TO 99
M(I) =0
NEXT
IF P(3) = 1 THEN M(127) =1

For example, _WP(0)

Reversely, accessing BASIC variables from Ladder is not possible but you
can use Ladder interrupts to get around this.

106

Use Ladder pins in BASIC using ALIAS command

ALIAS command can be used to set aliases for Registers (all except D)
used in LADDER. Both BASIC and LADDER may freely use these set aliases.

Usepin 0, In, START
Usepin 1,0ut,RELAY
Alias MO = MOTORSTATE
Alias M1 = RELAY1STATE
Alias Tl = SUBTIMER

RELAY = 0 ' Set port 1 to LOW

MOTORSTATE = 1 ' Set MO to 1. Same as M(0) = 1.
A = RELAY1STATE ' Store M1 status in variable A.
B = SUBTIMER ' Store Tl status in variable B.

107

MEMO

108

Chapter 5
CUBLOC
BASIC
functions

Math Functions

SIN, COS, TAN
Return Sine, Cosine, and Tangent values. CUBLOC uses radians as units.
Use SINGLE for most precise results.

\

A=SIN B Return Sine value.
A=COS B ' Return Cosine value.
A=TAN B ' Return Tangent value.

ASIN, ACOS, ATAN
Return Arc Sine, Arc Cosine, and Arc Tangent values. CUBLOC uses
radians as units. Use SINGLE for most precise results.

A=ASIN B ' Return Arc Sine value.

\

A=ACOS B Return Arc Cosine value.

A=ATAN B

\

Return Arc Tangent value.

SINH, COSH, TANH

Return Hyperbolic Sine, Hyperbolic Cosine, and Hyperbolic Tangent values.
A=SINH B ' Return Hyperbolic Sine value of B.
A=COSH B ' Return Hyperbolic Cosine value of B.

\

A=TANH B Return Hyperbolic Tangent value of B.

SQR Return Square Root value.

A=SQR B ' Return square root value of B

EXP Return EX.

A=EXP X ‘Return E*.

LOG, LOG10 Return LOG or LOG10 value.

A=LOG B or A=LOG10 B

Tips
“For natural logarithm (Ln), simply do: A= Log(B)/Log(Exp(1))"

110

ABS Return Absolute value.(for long type)
Dim A As Long, B As Long
B = -1234
A=ABS B ‘Return |B].
Debug Dec A ‘Print 1234

FABS Return Absolute value.(for Single type)
Dim A As Single, B As Single
B = -1234.0
A=FABS B ‘Return |B].
Debug Float A ‘Print 1234.00

FLOOR Round down to the whole number.

Dim A As Single, B As Single

B = 3.14
A=FLOOR B 'FLOOR 3.14 gives 3.
Debug Float A ‘Print 3.0

111

Type Conversion

Type conversion can be used to convert the variable to desired bit
representation.

HEX

Converts the variable to hex (16 bit). HEX8 means to convert to 8 decimal
places. (1 to 8 can be used for decimal places)

DEBUG HEX A ‘if A is 123ABC, 123ABC is printed

DEBUG HEX8 A ‘if A is 123ABC, bb123ABC is printed,
' b is a blank space in this case.

DEBUG HEX5 A ‘if A is 123ABC, 23ABC is printed, first character
‘is cut.

&7 CUBLOC studio [d:\cubloc_test\format.cul | [;Hi‘g]
File Edit Device Run Setup Help

O g XBE A B =

[F11 BASIC | [F2] LADDER | Ladder Mnemonic | i)
] [m]
Const Device = CBZE0 = B o e 7|g
Dim A As Long o aud Rete Parity LN
A = §H1234 [com | [115200 ¥| Jwore »| [8 v| apx
Debug Hex A,Cr
Debug HEXS8 A, Cr
Debug HEXS A, Cr

+* Debug Terminal

I~ Fix Right Side

112

DEC
Converts the variable to a decimal (10 bit). DEC8 means to convert to 8
decimal places. (1 to 11 can be used for decimal places)

DEBUG DEC A ‘'If A is 1234, 1234 is printed.

DEBUG DEC10 A ‘'If A is 1234, bbbbbbl234 is printed,
' b is a blank space in this case.

If A is 1234, 234 is printed, first

character is cut

DEBUG DEC3 A

CEX

+ Debug Terminal

7 CUBLOC studio [d:\cubloc_test\format.cul]
Fie Edt Device Run Setup Help

EEIRIEFIEY- T K -
Baud Rate Parity Data Bits. @TH

Port

[F11BASIC | [F2] LADIDEH | Ladder Mnemenic | feowr =] rezm =] fiore I =] o
Const Device = CBZ80
Dim A As Long
A = 523478
Debug Dec A, Cr
Debug DEC10 A,Cr
Debug DEC3 A,Cr
Debug Dec 2 A,Cr

i Close ;I I~ Fix Right Side

?

Include the name of the variable by using question mark (?). This question
mark can only be used with HEX or DEC.

DEBUG DEC ? A Y'If A is 1234, “A=1234" will be printed.
DEBUG HEX ? A ‘'If A is ABCD, “A=ABCD” will be printed.
DEBUG HEX ? B If B is a sub-routine variable let’s say of
sub-routine CONV, “B_ @ CONV=ABCD"”

will be printed. (B is in CONV)

113

FLOAT
Use FLOAT to convert floating point values to String.

Const Device = cb280
Dim F1 As Single

Fl = 3.14

Debug Float Fl,cr ' Print "3.14000".

Dim ST As String * 15

ST = Float F1 ' First store in a String.

ST = Left (ST, 3) ' Convert to 3 decimal places
Debug ST ' Print "3.14".

BLO d d e O

Fle Edit Device Run Setup Help

BOME @ A£BE & » nit B @® ebug le =
[FI1 BASIC | [F2] LADDER | Ladder Mnemonic | Part Baud Rate Parity DetaBits @1x 47 n
Const Device = CBZS80 ‘COM'I ﬂ |115200 j |N0ne ﬂ |3 J BRX

Dim F1 Az Single
Fl = 3.14 |

Debug Float F1 ‘

3.140000

Close I~ Fix Right Side

You can also store into a string before printing debug statements or
displaying to the LCD.

&2 CuBLOC studio [d:\cubloc_test\format.cul]
File Edit Device Run Setup Help

o @ LBE M > nut B

[F1] BASIC | [F2] LADDER | Ladder Mnemani o L Tt (S [[=1e)
Const Device = CE280 Al Bl [y DataBits g7y "@ n
Dim F1l As Single [comt ~| J11s200 =] [mone =] Jo ~| @Ry
Dim 81 As String * 12 |
Fl = 3.14
81 = Fleoat F1
Debug 81

Close [~ Fix Right Side

114

String Functions

String Ructions are provided to assist the user in accessing data within the
String.

DP(Variable, Decimal Places, ZeroPrint)
The command DP converts Variable into decimal String representation.

If ZeroPrint is set to 1, zeros are substituted for blank spaces.

Dim A as Integer

DEBUG DP (A,10,0) ' Convert A into decimal String representation.
' Set display decimal places to 10.

If A is 1234, bbbbbl234 will be displayed.

(b stands for blank spaces.)

\

\

DEBUG DP (A,10,1) If A is 1234, 0000001234 will be displayed.

+® Debug Terminal
Baud Rate Parity Diata Bits @TH :A‘tj

Paort
lcomt v| [115200 ~| fmore | 8+ @Ry

&7 CUBLOC Studio [D:\CUBLOC_Test\FORMAT.cul |
Eile Edit Device Run Setup Help

BOE & LBE M mit| B @
[F1] BASIC | [F2] LADDER | Ladder Mnemonic |

Const Device = CEZB0
Dim A Az Integer

A = 1234

Debug Dp (A, 8),Cr
Debug Dp (A, 10, 1)

I~ Fix Right Side

Hlovi

115

HP(Variable, Decimal Places, ZeroPrint)
This command HP converts Variable into hexadecimal String representation.
If ZeroPrint is set to 1, zeroes are substituted for blank spaces.

DEBUG HP(A,4,0) ' Convert A into HEX String representation
' Set display decimal places to 4.

If A is ABC, bABC will be displayed.

(b stand for blank spaces.)

DEBUG HP (A, 4,1) ‘'If A is ABC, OABC will be displayed.

Port Baud Rate Parity Data Bits

File Edit Device Run Sstup Help @TH ﬁ

2809 X A sk B [comt =] 115200 | wore | fs w| @my
[FI1BASIC | [F2] LADDER | Laddar Mnemonic

Const Device = CE280
Dim A Az Integer

A = &hablZ

Debug Hp(A,6),Cr
Debug Hp (A, 8, 1)

[~ Fix Right Side

116

FP(Value, Whole Number Digits,
Fractional Number Digits)

Convert Floating Point variables into a formatted String with user defined
whole and fractional number digits.

Dim A as Single

A=3.14

DEBUG Float A ' 3.1400000 Prints all digits.
DEBUG FP (A, 3,2) ' 3.14 Print user defined digits.

By using FP function, the user can control the number of digits to be used
for string data when using Debug commands or displaying to an LCD.

+* Debug Terminal

Port Baud-Rate Parity DataBis gry Y g
[coms =] [115200 =] fmore =] [6 ¥| gy
|

K2 cubloc Studio [d:\cubloc_test\fptest.cul]
File Edit Device Run Setup Help

EEFIEIEY AL R

[FI] BASIC | [F2l LADDER | Ladder Mnemar]
Const Device = CB280
Dim A As Single

A= 3.14 3.140000

Debug Fleoat A,Cr 3,14
Debug FP(A,3,2),Cr

Close I Fix Right Side

®1 v

CUBLOC Floating Point Values are in accordance with the IEEE724 format.
The values of FP() and Float may differ but the value stored in the variable
will be the same.

117

LEFT(Variable, Decimal Places)
Cut specified decimal places of the String from the left side and return the
value.

DIM ST1 AS STRING * 12
ST1 = “cuBLOC”
DEBUG LEFT (ST1, 4)

v

CUBL"” is printed.

RIGHT(Variable, Decimal Places)

Cut specified decimal places of the String from the right side and return the
value.

DIM ST1 AS STRING * 12
ST1 = “cuBLoc”
DEBUG RIGHT (ST1,4) ' “BLOC” is printed.

MID(Variable, Location, Decimal Places)
Cut specified decimal places starting from the Location specified and return
the value.

DIM ST1 AS STRING * 12
ST1 = “cuBLOC”
DEBUG MID(ST1,2,4)

v

UBLO” is printed.

+ Debug Terminal
Baud Rate

Parity Dat= Bits @TH D

&7 CUBLOC studio [d:\cubloc_test\stringfunc.cul]
File Edit Device Runm Setup Help

BOE 3 LB 4 ot B H
[F1] BASIC 1 [F2] LADDER | Ladder Mnemonic |

Const Device = CEZ80
Dim stl As String * 12
=stl = "CUBLOC"

Debug Left (stl, 4),Cr
Debug Right (stl, 4),Cr
Debug Mid(stl,2,4),Cr

Fort
[comt =] [115200 | [vere ~| 8 ~| @gy

[~ Fix Right Side

X v

118

LEN(Variable)
Return the length of the String specified.

DIM ST1 AS STRING * 12
ST1 = “cuBLoC”
DEBUG DEC LEN(ST1) ‘6 is printed since there are 6 characters in ST1.

STRING(ASCII code, length)
Create a specified length String with specified ASCII code value.
DIM ST1 AS STRING * 12

ST1 = STRING (&H41,5)
DEBUG ST1 ‘AAAAA is printed. &H41 is ASCII code for character A.

SPC(decimal places)
Create specified amount of blank space
DIM ST1 AS STRING * 12

ST1 = SPC(5)
DEBUG “A”,ST1,”A” ‘AbbbbbA is printed. Here, b is for blank space.

+* Debug Terminal E‘&l

Paort Baud Rate Parity Dtz Bits @Tx ﬁ
= 5 7
a2 CUBLOC studio [d:\cubloc_test\stringfunc.cul] | | | |
= COmM1 o« | 115200 | |Mone | [& | @Ry
File Edit Device Run Setup Help

EERIFIEYE- LI R o |
[FI] BASIC | [F2] LADDER | Ladder Mnemonic |

Const Device = CEZB0
Dim stl As String * 12
stl = "CUBLOC"

Debug Dec Len(stl),Cr
=tl = String(&h4l,5)
Debug stl,Cr

stl = 8pc(5)

Debug "A",stl, "A",Cr

Close I Fix Right Side

Line : 9

119

LTRIM(String variable)

Cut all blank spaces on the left side of the String and return the value.

DIM ST1 AS STRING * 12
ST1 = COMFILE”
ST1 = LTRIM(ST1)

DEBUG “AAA”,ST1 ' AAACOMFILE is printed.

RTRIM(String variable)

Cut all blank spaces on the right side of the String and return the value.

DIM ST1 AS STRING * 12

ST1 = “COMFILE
ST1 = RTRIM(ST1)

DEBUG ST1,"TECH” ' COMFILETECH is printed.
Blank spaces on the right are removed.

"

\

&% CUBLOC studio [d:\cubloc_test\stringfunc.cul]
Elle Edit Device Run Setup Help

Baidl ¢ LsE2R M > a B

[FIT BASIC | [F2] LADDER | Ladder Mnemoric |

Const Device = CEZ80

Dim =tl As String * 12

stl = " CUEBLOC =

Debug Ltrim(stl), "Core”,Cr
Debug Rtrim(stl), "Core"”,Cr

+ Debug Terminal
Port Baud Rate Parity DataBits g7y

lcom ~| [11s200 v Juone ~| 6 ~| @re

Close [~ Fix Right Side

Line @ 4

120

VAL(String variable)

Return a converted numerical value of the String.

DIM ST1 AS STRING * 12
DIM I AS INTEGER

ST1 = “123”
I = VAL(ST1) ' 123 is stored in variable I as a number.

VALSNG(String variable)

Return a converted floating point numerical value of the String.

DIM ST1 AS STRING * 12
DIM F AS SINGLE

ST1 = “3.14"

F = VALSNG(ST1) ' 3.14 is stored in variable F as a floating

' point number.

«® Debug Terminal

art BauciRate Parity Data Bits gy 1y

%7 CUBLOC studio [d:\cubloc_testistringfunc.cul]
File Edit Device Run Setup Help

P
[comt =] J115200 «] |mone =] |8 +| @rx

Ba @ 2R A an B & |
[FI] BASIC | [F2] LADDER | Ladder Mnemaric |

Const Device = CE280
Dim stl As String * 12
Dim i1 As Integer

=tl = "123"

i = wval(stl)

Debug Dec i,Cr

Dim £1 As Single
stl = "3.14"

fl = valsngi(stl)
Debug Float f1,Cr Close [~ Fix Right Side

v

LAl

VALHEX(String variable)

Return a converted hexadecimal value of the String.

DIM ST1 AS STRING * 12

DIM I AS LONG

ST1 = “ABCD123"

I = VALHEX(ST1) ‘&HABCD123 is stored in variable I

121

CHR(ASCII code)

Return the character of desired ASCII code.

DIM ST1 AS STRING * 12
ST1 = CHR(&H41)
DEBUG ST1 ' Print A,. &H41 is ASCII code of character A.

ASC(String variable or Constant)
Return the converted ASCII code of the first character of the String.

DIM ST1 AS STRING * 12
DIM I AS INTEGER

ST1 = “123”
I = ASC(ST1) ' &H31 is stored in variable I. ASCII code of 1
' is &H31 or 0x31.
Caution 1

A variable must be used when using string functions.

\

DEBUG LEFT (“INTEGER”, 4)
ST1 = “INTEGER”
DEBUG LEFT (ST1, 4)

A string by itself cannot be used.

v

A string must be stored as a variable first.

+ Debug Terminal = ||
Part Baud Rate Parity Data Bits @TH

[comt =] J11s200 ~| uone =6 =] @rx

&2 CUBLOC studio [d:\cubloc_test\chr.cul]
File Edit Device Run Setup Help
B¢ SBE & nit B
[FI1 BASIC | [F2] LADDER %&rl\dnemonic]
Ear
Const Device = CEZ80
Dim stl As String * 12
stl = Chr(&h4l)
Debug stl,Cr
stl = "123"
Debug Hex (Asc(stl)),Cr

Close [~ Fix Right Side

Line : 6

122

Chapter 6
CUBLOC
BASIC
Statements
& Library

Adin()

Variable = ADIN (Channel)
Variable : Variable to store results (No String or Single)
Channel : AD Channel Number (not I/O Pin Number)

CUBLOC has 10bit ADCs and 16bit PWMs. The user can use ADC to convert
analog to digital signals or use PWM to convert digital to analog signal.

ADIN command reads the analog signal value and store the result in a
variable. Depending on the model, the number of AD ports may vary. For
the CB280, there are 8 AD ports (P24 to P31). The AD port must be set
to input before use.

When voltage between 0 and AVREF in inputted, that voltage is converted
to a value from 0 to 1023. AVREF can accept voltage between 2 to 5 V.
Generally, 5V is used. If the user inputs 3V to AVREF, voltage between 0
and 3V is converted to a value between 0 and 1023.

(*Note: CB220 AVREF is fixed to 5V)

Return value

A
1023]

n
oV 5V'Inputvoltage

Dim A As Integer

Input 24 Set port to input.

A=Adin (0) ‘' Do a A/D conversion on channel 0 and
' store result in A

\

124

The following is AD input ports shown for CB220 and CB280.

CB220
SOUT 1® ® 17 VDD ™1 33@ @ 49 | TTLTX1
souT O 1 247 VIN SIN| 2@ @18 vss RX1 34 @ @ 50 | TTLRX1
SIN [2 23[7] vss ATN | 3@ @ 19 RES AVDD 35 @ @ 51 [AVREF
ATN O 3 2211 RES vss | 4@ @ 20 NiC N/C 36 @ @ 52| P48
vss O 4 21h1 vop Pl et s e eu|m | ADINPUT
Po O 20 P15 p2| 7 23 P18 P26 39 55 | P29
P1 [2 190 P14 P3 s: :24 P19 p27 40: : 56 | P28 PORT
P2g7 18P P13 Mlesen e b 2@ @5 |r%
AD INPUT P38 1703 P12 Ps 110 26 P21
PORT P4 Qo 16H P11 rlie o v s i@ @5 |05
P5 O 10 1503 P10 ps [13@ @29 P15 P43 45 @ @ 61| P36
P6 O 11 140 P9 P9 |14@® @30 P14 P42 46 @ @ 62 | P37
P7 [12 133 P8 P10 [15@ ® 31 P13 P41 47 @ @ 63 [P38
P11 [16® @32 P12 P40 43 @ @ 64 | P39
Please refer to the table below for AD channels.
CB220 CB280 CB290 CT17X0 CB405
A/D channel 0 1I/00 1/0 24 1/0 8 I/0 0 I/0 16
A/D channel 1 /01 1/0 25 I/09 I/01 /017
A/D channel 2 /0 2 1/0 26 1/0 10 1/0 2 1/0 18
A/D channel 3 /03 1/0 27 I[/0 11 I/03 1/0 19
A/D channel 4 1/0 4 1/0 28 /0 12 I1/04 1/0 20
A/D channel 5 /05 1/0 29 1/0 13 I/05 /0 21
A/D channel 6 I/0 6 1/0 30 1/0 14 I/0 6 1/0 22
A/D channel 7 /07 /0 31 1/0 15 /07 1/0 23
A/D channel 8 1/0 32
A/D channel 9 1/0 33
A/D channel 10 I1/0 34
A/D channel 11 I/0 35
A/D channel 12 I/0 36
A/D channel 13 1/0 37
A/D channel 14 I/0 38
A/D channel 15 I/0 39

ADIN command only converts once upon execution. In comparison TADIN
returns the average of 10 conversions, there by giving the user more
precise results. If you need more precision, we recommend the use of
TADIN instead of ADIN.

125

Alias

ALIAS Registername = AliasName
Registername : Register name such as PO, MO, TO (Do not use D area)
AliasName : An Alias for the Register chosen (up to 32 character)

Aliases may be made up for Registers like PO, MO, CO. With Aliases, the
user will be able to write more clear and easy-to-read code.

Alias MO Rstate
Alias MO = Kstate
Alias PO = StartSw

126

Bcd2bin

Variable = BCD2BIN(bcdvalue)
Variable : Variable to store results (Returns LONG)
bcdvalue : BCD value to convert to binary

This command does the exact opposite of BIN2BCD command.

Dim A As Integer
A=Bcd2bin (&h1234)
Debug Dec A ' Print 1234

127

Bclr

BCLR channel, buffertype
channel : RS232 Channel (0 to 3)
buffertype : 0=Receive, 1=Send, 2=Both

Clear the specified RS232 Channel’s buffer. Buffer type can be chosen.

\

Bclr 1,0 Clear RS232 Channel 1's rx buffer
Bclr 1,1 ' Clear RS232 Channel 1’'s tx buffer
Bclr 1,2 ' Clear RS232 Channel 1's rx & tx buffers

128

Beep

BEEP Port, Length
Port : Port number (0 to 255)
Length : Pulse output period (1 to 65535)

The BEEP command is used to create a beep sound. Piezo or a speaker can
be connected to the Port. A short beep will be outputted. This is useful for
creating Key touch sound effects or alarm sounds. When this command is
used, the specified Port is automatically set to output.

BEEP 2, 100 ‘Output BEEP on P2 for a period of 100

- =

129

Bfree()

Variable = BFREE(channel, buffertype)
Variable : Variable to store results (No String or Single)
channel : RS232 Channel number (0 to 3)
buffertype: O=Receive Buffer, 1=Send Buffer

This function will return the number of free bytes that either receive buffer
or send buffer has currently. For sending data, this command can be used
to avoid overflowing the buffer.

DIM A AS BYTE
OPENCOM 1,19200,0, 100, 50
IF BFREE(1,1)>10 THEN

PUT “TECHNOLOGY”
END IF

If buffer size is set to 50, up to 49
free bytes can be returned. The
function will return 1 less than the
set buffer size when buffer is empty.

130

Bin2bcd

Variable = BIN2BCD(binvalue)
Variable : Variable to store results (Returns Long)
binvalue : Binary value to be converted

This command BIN2BCD converts binary value to BCD code. BCD code is a
way of expressing binary values as decimals.

For example. 3451 in binary is as shown below:

3451

0000 1101 0111 1011

0 D 7 B

The below is 3451 converted to BCD code. As you can see, each 4 bits
represent one of the digits.

3451

0011 0100 0101 0001

3 4 5 1

This command is useful when the user needs to convert a variable to be
representable in a device such as the 7 segment display.

i 123456
4 = bin2bed (1)
Debug Hex j ' Print 123456

131

Blen()

Variable = BLEN(channel, buffertype)
Variable : Variable to store results (No String or Single)
channel : RS232 Channel number (0 to 3)
buffertype: O=Receive Buffer, 1=Send Buffer

This function Blen() returns current number of bytes of data in the specified
RS232 Channel’s buffer. If the buffer is empty, 0 will be returned. When
receiving data, this function can be used to check how much data has been
received before using GET or GETSTR to read the data received.

If the receive buffer is full, it will not be able to receive any more data. To
avoid these situations, receive interrupts should be used or plenty of receive
buffer size should be used.

Dim A As Byte

Opencom 1,19200,0,100,50

On Recvl DATARECV_RTN ' When data is received through
' RS232, jump to DATARECV RIN

Do

Loop ' infinite loop

DATARECV_RTN:

If Blen(1,0) > O Then ' If there is at least 1 byte...
A = Get (1) ' Read 1 Byte
End If
Return ' End Interrupt routine

132

Bytein()
Variable = BYTEIN(PortBlock)

Variable : Variable to store results (No String or Single)
PortBlock : I/O Port Block Number (0 to 15)

Read the current status of the I/O Port Block. 8 I/O ports are collectively
called as a Port Block. Port 0 to 7 is Block 0 and Port 8 to 15 is Block 1.
Depending on the model of CUBLOC, the Port Block number can vary.
When using this command, all I/O Ports within the Port Block are set to
input and the received input value is stored in a variable..

DIM A AS BYTE
A = BYTEIN(O) ‘Read from Port Block 0 and store in variable A.

The following is how Port Blocks are set according to the CUBLOC model.

sout O 1 2401 VIN
SIN [2 2301 vss
ATN O 3 22[] RES
vss O 4 210 vDD
PO 05 2000 P15
P16 1901 P14
P2 07 181 P13
BLOCK 0 P3 [8 1700 P12 BLOCK 1
P49 161 P11
P5] 10 1500 P10
P6 O] 11 140 P9
P7 [12 13[7 P8

TTLTX1
TTLRX1
AVREF
P48

P31

P30

P29 3
P28

P32

P33

P34

P35

P36 4
P37

P38

P39

souT | 1@ @ 17 VDD
SIN|[2® @18 vss
ATN | 3@ @ 19 RES
vss | 4@ @20 NiC

PO 5@ @21 P16
P1| 6@ @22 P17
P2| 7@ @23 P18

P20
P5 [10@ @ 26 P21
P6 [11® @27 P22
P7 [12@ @ 28 P23 5
P8 |13@ @29 P15
P9 [14@ @30 P14
1 P10 [15@® @ 31 P13
P11 |16 @ @32 P12

133

Byteout

BYTEOUT PortBlock, value
PortBlock : I/O Port Block Number. (0 to 15)
value : Value to be outputted between 0 and 255.

Output the value to a Port Block. 8 I/O Ports are collectively called as a
Port Block.
Port 0 to 7 is Block 0 and Port 8 to 15 is Block 1. Depending on the model
of CUBLOC, the Port Block number can vary. When using this command,
all I/O Ports within the Port Block are set to output and the value is
outputted.

\

Byteout 1,255 Output 255 to Port Block 1.

Ports 8 through 15 are set to HIGH.

\

* 1/0 Port 1 only supports input. Therefore, BYTEOUT O will not set Port 1
to Output.

134

CheckBf()

Variable = CheckBf(channel)
Variable : Variable to store results (No String or Single)
channel : RS232 Channel (0 to 3)

Without affecting the RS232 receive buffer, the command CheckBf() can be
used to check the current data in the receive buffer. Although it will read

what is in the buffer, it will not erase the data after reading unlike the GET
command. Only 1 byte can be read at a time.

A = Checkbf (1) ‘Check current data in the receive buffer

135

Compare

COMPARE channel, target#, port, targetstate

Channel : High Counter channel

Target# : Target # of Pulses (CHO: 0 to 65535, CH1: 0 to 255)
Port : Output Port (DO NOT USE Input-only Ports)
Targetstate : Target Output Port State

[eowr J—. U

[covmare]—fL

When high counter value reaches a
set target point, the processor will set
an I/0 Port to Low or High.

If Targetstate is set to 1 and when the Target number of pulses have been

received, the Port will output logic HIGH.

Likewise, if the Targetstate is set

to 0 and when the Target number of pulses have been received, the Port
will output logic LOW.

Channel Compare Range
HCOUNT Channel 0 0 to 255
HCOUNT Channel 1 0 to 65535

The high counter itself supports upto 32-bits, but the COMPARE command is
limited since this command was designed to not affect the overall multi-
tasking of the CUBLOC main processor.
*Note: For channel 0, please use the Set Count0 On command before using
the Compare command.

The

0 with target # of 10.

Dim i As Integer
Set Count0 On
Compare 0,10,61,1

Do
i = Count (0)
Debug Goxy,0,0,decd4 i,Cr
Delay 100

Loop

above uses High Counter Channel
When the

Counter 0 value becomes 11, Port 61
will ouput logic HIGH.
This command is supported for CUBLOC STUDIO 2.0.X and above.

136

Port Baud-Rate Parity Data Bits BTH ﬁ n

[comr w] [115200 | frore =] (8 v| gpx

[FizRight Side

Count()

Variable = COUNT(channel)
Variable : Variable to store results. (No String or Single)
Channel : Counter Channel number (0 to 1)

Return the counted value from the specified Count Channel. Please set the
Counter Input Ports to input before use of this command.

Up to 32bits can be counted. (Byte, Integer, Long) Maximum frequency is
500kHz.

CUBLOC's counter is hardware driven, meaning it runs independently from
the main program. It is able to count in real-time. No matter how busy
the CUBLOC processor gets, counter will count reliably.

CUBLOC has 2 Counter inputs. Counter Channel 0 uses same resources as
PWMO, 1, 2 and cannot be used together. But you are free to use Counter
Channel 1 as freely as you'd like. To use Counter Channel 0, SET COUNTO
command must be used beforehand. Channel 1 requires no additional
settings.

VIN

VBN

RES

VDD

P15 *— COUNT1
P14 «—— COUNTO
P13

P12

P11

P10

P9

P8

souT O
SIN
ATN
vss

PO
P1
P2
P3
P4
P5
P6
P7

23
22
21
20
19
18
17
16

® N oA WwN =

©

1" 14
12 13

OO0o0o0o0oOoOoOoOooOooOoQg

ONO0OO0O00O00[nMnn

Dim R As Integer
Input 15
R = Count (1)

Set port 15 as input. (Counter Channel 1)
Read current Counter value.

Activate Counter Channel 0

(PWMO, 1,2 becomes deactivated.)

Set port 14 as input (Counter Channel 0)
Read current Counter value.

Set Count0 On

Input 14
R = Count (0)

137

Since counter 0 uses the same resources as Pwm as shown below, please
be careful. Not to use PWM at the same time.

COUNTERDO

i

TIMERA

TIMERB [+ WM4

PWM5

Tl |T Tl |T

t: II Hi : ii
< 4l ES

@ I S

\
' Measure frequency from pulse output PWM 0 channel
\

Const Device = CB280

Dim A as Integer

Input 15

Low 5

Fregout 0,2000

Low 0

On Timer (100) Gosub GetFreg

Do

Loop

GetFreq:

A = Count (1)
Debug goxy, 10,2
Debug dec5 A
Countreset 1
Reverse 0
Return

138

Countreset

COUNTRESET channel
Channel : Counter Channel (0 to 1)

Reset the specified Counter Channel to 0.

Countreset 0 ‘Clear Channel 0
Countreset 1 ‘Clear channel 1

139

Dcd

Variable = DCD source
Variable : Variable to store results. (No String or Single)
Source : source value

This command DCD is opposite of NCD command.
It will return the bit position(starting at LSB bit 0) of the highest bit that is a
1.

I = DCD 15 ' Result is 3 since 15 = 0b00001111

&7 CUBLOC studio [d:\cubloc_test\unary.cul]
File Edit Device Run Setup Help

EaE F LE2E M > i

+* Debug Terminal

[FI]1 BASIC | [F2] LADDER | Ladder Mnemj Port Baud Rate Parity Data Bits gy
Const Device = cpzsn | |Comt v| [115200 +| [more «| |8 +| @px
Dim A As Long
A= -10

Debug Dec A,Cr

A= Not 1
Debug Dec A,Cr

A = Nod 4
Debug Dec A,Cr

A = Dcd 15
Debug Dec A, Cr

Close [~ Fix Right Side

140

Debug

DEBUG data
data : data to send to PC

CUBLOC supports DEBUG command by allowing the user to insert DEBUG
commands as he wishes during the execution of a program.

The results of DEBUG commands inserted in the source code is displayed on
the DEBUG Terminal.

DIM A AS INTEGER + Debug Terminal =100 x|
_ Fort Baud Rate Parity Data Bits gy ﬁ n
B =123 [comr =] [r1s200 =] rone = [a =] @ry

DEBUG DEC A

Use DEC or HEX to display numbers. Without DEC or HEX, the numbers
will be printed as ASCII codes. Please use DEC or HEX for variables to see

the actual values.
If you insert question mark (?) before DEC or HEX, the variable’s name will

be printed together.

« Debug Terminal -0l =l

DEBUG DEC? A,CR Port Baud Rate Parity DataBits @y 47 1
DEBUG HEX? A,CR fcom | fr15200 =|fnere =] e ¥| @mx

141

You can also use numbers to limit the number of decimal places to print.

DEBUG HEX8 A

+* Debug Terminal =10 x|
Port Baud Rate Parity Data Bits @ T ﬁ n

Joomi = [115200 =] fmere ¢ e =] @R

1 through 8 can be used with HEX. HEX8 will print as 8 digit hexadecimal
number. 1 through 10 can be used with DEC.

You are free to mix strings, numbers, and etc...

DEBUG “CHECK VALUE “ HEX? A, CR

Debug Terminal =10l
Port Baud Rate Parity Data Bits g1 ﬁ]

fcomt x| [11sz200 = [rone =] & =] @Ry
[

CHECKE VALUE &=7H

DEBUG command is useful for printing out strings and numbers in a user
friendly format. During execution of CUBLOC BASIC program, when
DEBUG command is encountered, the resulting values are displayed on the
DEBUG Terminal.

142

If you insert a DEBUG command to a certain part of the program and the
DEBUG Terminal displays the values during execution, it proves that the
program has executed to that point. By using these DEBUG commands,
you will be able to find bugs in your program and monitor variables change
in real-time.

If you enter character in the white part of the Debug Terminal, it will be
sent to the DOWNLOAD port of CUBLOC. We have added this feature for
future/advanced development.

Warning

DEBUG command may not be used while monitoring in Ladder Logic.
Likewise, Ladder Logic monitoring can not be used while debugging using
DEBUG commands.

The following is a chart of commands that can be used with the DEBUG
command. You can control the DEBUG screen just like a real LCD.

Command Code Explanation Example Usage
CLR 0 Clear Debug screen Debug CLR
HOME 1 Move cursor to the upper left corner of | Debug HOME
the Debug screen
GOXY 2 Move cursor to X, Y Debug GOXY, 4, 3
CSLE 3 Move cursor one to the left.
CSRI 4 Move cursor one to the right
CSUP 5 Move cursor one up
CSDN 6 Move cursor one down
BELL 7 Make beeping sound
BKSP 8 BACK SPACE
LF 10 LINE FEED Debug “"ABC",LF
CLRRI 11 Erase all characters on the right of
cursor to the end of line.
CLRDN 12 Erase all characters on the bottom of
cursor
CR 13, 10 | Carriage Return (go to next line) Debug, "ABC",CR

You must use above commands in line with the DEBUG command.

Debug Goxy,5,5,Dec I
Debug Clr,"TEST PROGRAM”

143

Decr

DECR variable
Variable : Variable for decrementing. (No String or Single)

Decrement the variable by 1. (similar to “A - - in C language)

Decr A ' Decrement A by 1.

144

Delay
DELAY time
Time : interval variable or constant (up to Long type)

Delay for the specified time in milliseconds. Delay should be only used for
slight delays in getting something to work. We recommend not using it for
time measurements and time-specific applications.

Delay 10 ' Delay about 10 ms.
Delay 200 ' Delay about 200 ms.

Delay is pre-made system’s sub program.

sub delay(dl as long)
dll var long
dl2 var integer
for dl11=0 to dl
for d12=0 to 1
nop
nop
nop
next
next
end sub

145

DOlllLoop

DO...LOOP will loop the commands within itself unless DO WHILE or DO
UNTIL is used to set a condition in which DO...LOOP can be terminated.
EXIT DO command can also be used within the DO...LOOP to exit from the
loop.

Do
Commands
Loop

Dim K As Integer

Do
K=Adin (0) ‘Read AD input from channel 0
Debug Dec K,Cr
Delay 1000

Loop

In the above example, the program will loop infinitely within DO and LOOP.
EXIT DO or GOTO command must be used to get out of the infinite loop.

Do While [Condition]

Commands
[Exit Do]
Loop
Do
Commands
[Exit Do]

Loop While [Condition]

DO..WHILE will infinitely loop until condition in WHILE is met.

Do Until [Condition]

Commands
[Exit Do]
Loop
Do
Commands
[Exit Do]

Loop Until [Condition]

DO..UNTIL will infinitely loop until condition in UNTIL is met.

146

DEMO PROGRAM

« Debug Terminal =]
Baud Rate Parity Data Bits

Port
comt v| 115200 w| |mNone v | |8 -

&7 CUBLOC Studio [D:\CUBLOC_Test\SELECT.cul |
Eile Edit Device Bun Setup Help

B0 @ KEBE A mu B

[FI1 BASIC | [F2] LADDER | Ladder Mnemari

Const Device = CB2E0

Dim A Az Integsr

A =4

Do While A < 10
Debug Dec A, Cr
Incr A

Loop

+ Debug Terminal
Baud Rate Parity Data Bits

Fort 4
com v| 115200 | |None s ~| 4

&2 CUBLOC Studio [D:\CUBLOC_Test\SELECT.cul]
Ele Edt Device Run Setup Help
o0 & LBR &4 > nut| B

[F11 BASIC | [F2] LADDER | Ladder Mnemonic |

Const Device = CB280
Dim A As Integer
A =4
Do
Debug Dec A,Cr
Incr A
Loop Until A>S

147

Dtzero
DTZERO variable
Variable : Variable for decrement. (No String or Single)

Decrement the variable by 1. When variable reaches 0, the variable is no
longer decremented.

DTZERO A ' Decrement A by 1.

148

EAdin()

Variable = EADIN (mux)

Variable : Variable to store results (No String or Single)

mux : AD input Port Combination MUX (0 to 21)

This command is used for a more precise AD conversion.
internal OPAMP. When using ADIN command, the OPAMP is not used. By
using this command EAdin, the user can utilize the OPAMP for more precise

results.

+

ADC

OP AMP.

Please set the MUX value accordingly by following the chart below:

CUBLOC has an

MUX OPAMP + OPAMP - Multiplier Resolution
0 ADCO ADCO 10 8 Bits
1 ADC1 ADCO 10 8 Bits
2 ADCO ADCO 200 7 Bits
3 ADC1 ADCO 200 7 Bits
4 ADC2 ADC2 10 8 Bits
5 ADC3 ADC2 10 8 Bits
6 ADC2 ADC2 200 7 Bits
7 ADC3 ADC2 200 7 Bits
8 ADCO ADC1 1 8 Bits
9 ADC1 ADC1 1 8 Bits
10 ADC2 ADC1 1 8 Bits
11 ADC3 ADC1 1 8 Bits
12 ADC4 ADC1 1 8 Bits
13 ADC5 ADC1 1 8 Bits
14 ADC6 ADC1 1 8 Bits
15 ADC7 ADC1 1 8 Bits
16 ADCO ADC2 1 8 Bits
17 ADC1 ADC2 1 8 Bits
18 ADC2 ADC2 1 8 Bits
19 ADC3 ADC2 1 8 Bits
20 ADC4 ADC2 1 8 Bits
21 ADC5 ADC2 1 8 Bits

149

The EADIN port must be set to input beforehand. By using the OPAMP,
more precise results or a noise-filtering effect can be obtained.

Dim J As Long

Input 24 'Set the port to input (Use port 24,25 for CB280
Input 25
Do
j = Eadin(8) ' AD Conversion from ADO and Adl, use OPAMP, 1
Locate 0,0
Print hex5 J,cr ' Print results to LCD
Delay2 500 ' Little Delay
Loop
End

Sub Delay2 (DL As Integer)
Dim I As Integer
For I = 0 To DL
Next

End Sub

The EADIN command does not support full 10-bit resolution that
the regular EADIN supports. When using 1X and 10X multipliers,
8-bit resolution is used. When using 8X and 200X multipliers, 7-bit
resolution is used.

WARNING: The OPAMP has characteristics that it will read between
0.5V and 4.5V. With the CB405, EADIN command can only be used
with Channel 0 through 7.

Please refer to the following table for AD Channel and its corresponding Port
Number according to your CUBLOC module or CUTOUCH:

Channel CB220 CB280 CB290 CT17X0 CB405
ADCO 1/00 1/0 24 /08 /00 1/0 16
ADC1 /01 1/0 25 1/09 /01 1/0 17
ADC2 1/0 2 1/0 26 1/0 10 1/0 2 1/0 18
ADC3 1/0 3 1/0 27 1/0 11 1/0 3 1/0 19
ADC4 1/0 4 1/0 28 /0 12 1/0 4 1/0 20
ADC5 1/05 1/0 29 1/0 13 1/05 1/0 21
ADC6 1/06 1/0 30 /0 14 /06 1/0 22
ADC7 /07 1/0 31 1/0 15 1/07 1/0 23

150

Eeread()

Variable = EEREAD (Address, BytelLength)
Variable : Variable to store result (No String or Single)
Address : 0 to 4095
BytelLength : Number of Bytes to read (1 to 4)

Read data from the specified address in EEPROM.

DIM A AS INTEGER

DIM B AS INTEGER

A = 100

EEWRITE 0,A,2 ' Store A in Address 0.

B = EEREAD(0,2) ' Read from Address 0 and store in B.

151

Eewrite

EEWRITE Address, Data, Bytelength
Address : 0 to 4095
Data : Data to write to EEPROM (up to Long type values)
BytelLength : Number of Bytes to write (1 to 4)

Store data in the specified Address in EEPROM.

Dim A As Integer
Dim B As Integer

A = 100
Eewrite 0,A,2 ' Store A in Address 0.
B = Eeread(0,2) ' Read from Address 0 and store in B.

When writing to the EEPROM, it takes about 3 to 5 milliseconds.
When reading from the EEPROM, it takes less than 0 milliseconds.
There is a physical limit of around 100,000 writes to the EEPROM.

If you are using EEPROM for data acquisition or data that requires a lot of
writes, we rather recommend use of the data memory with backup battery

included modules such as the CB290.

The following is a table showing comparisons betweens SRAM and EEPROM.

Type Battery Backup SRAM EEPROM

Life of Data 3 Months to 1 Year 40 Years
(Depending on Battery
Capacity)

Maximum Writes Infinite About 100,000

Writing Time 0 ms 3to5ms

General use Backup Necessary Equipment | Small amount of data to
in the case of power outage. record.
Example) Production Line | Long data life requirement.
Counter Example) Product Serial

Number

152

Ekeypad

Variable = EKEYPAD(portblockin, portblockOut)
Variable : Variable to store results (Returns Byte)
Portblockin : Port Block to receive input (0 to 15)
PortblockOut : Port Block to output (0 to 15)

This command EKEYPAD extends KEYPAD to read up to 64 key inputs. Two
Port Blocks can be used to read up to 64 key inputs. Input Port Block and
output Port Block must be selected separately.

For ports not used within the input Port Block, a resistor must be connected
to 5V. This Port may not be used for other purpose when using this
command.

For ports not used within the output Port Block, they can be left in OPEN
state. This Port also may not be used for other purposes. The following is
an example of using Port Block 0 as input and Port Block 1 as output.

If no keys are pressed, 255 will be returned. Otherwise, the pressed key’s
scan code will be returned.

153

For...Next

FOR...NEXT will loop the commands within itself for a set amount of times.

For Variable = Starting Value To Ending Value [Incremental Step]
Commands
[Exit For]

Next

In the below example, Incremental Step is not set. FOR...NEXT loop will
increment 1 every loop as default.

Dim K As Long
For K=0 To 10

Debug Dp (K) ,CR
Next
For K=10 To 0 Step -1 *
Debug Dp (K) ,CR

Negative Step, step from 10 to 0.

Next

EXIT FOR command can be used within the FOR..NEXT loop to exit any
desired moment.
For K=0 To 10
Debug Dp (K) ,CR
If K=8 Then Exit For

\

If K equals 8 exit the FOR..NEXT loop.
Next

When choosing a variable to use for FOR...NEXT loop, please make sure the
chosen variable is able to cover desired range. Byte variables can cover
from O to 255. For larger values, a variable with larger range must be
chosen.

Dim K As Byte

For K=0 To 255

Debug Dp (K) ,CR
Next

When using negative STEP, please choose LONG as it can handle negative
numbers.
Dim LK As Long
For LK=255 To 0 Step -1 ‘This will reach -1 as last step
Debug Dp (LK) ,CR
Next

154

DEMO PROGRAM

Const Device

= CB280

Dim A As Integer

For A=1 To 9

Debug "3 * "
Debug Dec A
Debug " ="
Debug Dec 3*A,Cr
Next
Const Device = CB280

Dim A As Integer,

For A=2 To 9
For B=1
Debug
Debug

B As Integer

To 9
Dec A," * "

Dec B

Debug " ="

Debug

Next

Dec A*B,Cr

Debug Cr

Next

Debug, Terminal

Port BaudRate Perty DalaBils gy {7 g

[comn ~| [115200 v| [uone ~[|8 | gy

I Fix Right Side

«* Debug Terminal

Port BaudRate Parity Data Bits
com1

e m
115200 v | [Mone w8

T @Rrx

I~ Fix Right Side

155

Freepin
FREEPIN I/O
/O : I/O PORT Number

Free I/O Port set to LADDER using Usepin back to BASIC
(Use with CUBLOC STUDIO V2.0.X and above)

156

Freqout

FREQOUT Channel, FreqValue
Channel : PWM Channel (0 to 15)
FreqValue : Frequency value between 1 and 65535

Output desired frequency to the desired PWM channel. Please make sure
to specify the PWM channel, not I/O port number. For CB220 and CB280,
ports 5,6, and 7 are PWM Channel 0,1, and 2, respectively.

The following is a basic chart showing the different FreqValues and
corresponding frequencies. 1 is for the highest possible frequency and
65535 is for the lowest possible frequency. 0 does not produce any output.

FregValue Frequency FregValue Frequency

1 1152 KHz 200 11.52 KHz

2 768 kHz 1000 2.3 KHz

3 576 KHz 2000 1.15 KHz

4 460.8KHz 3000 768 Hz

5 384 KHz 4000 576 Hz

10 209.3 KHz 10000 230 Hz

20 109.7 KHz 20000 115.2 Hz

30 74.4 KHz 30000 76.8 Hz

100 22.83 KHz 65535 35.16 Hz

You can also calculate the FregValue to use by using the following formula:
FreqValue = 2304000 / Desired Frequency

Before using this command, please set the specified PWM Port to output
mode. To stop PWM, you can use the command PWMOFF.
The following is an example:

Const Device = cb280
Dim i As Integer

\

Low 5 Set Port 5 to low and output.
i=1

Freqout 0,10 ' Produce a 209.3Khz wave

Do ' Infinite loop

Loop

Since Freqout uses the same resources as PWM, there are a couple of
restrictions you must be aware of. PWM Channel 0,1, and 2 use the same
timer. If PWM Channel 0 is used for Freqout command, channel 0,1, and 2
all cannot be used for PWM command.

157

Likewise, PWM Channel 3, 4, and 5 act the same.

If you use Fregout on

PWM Channel 3, PWM Channels 3, 4, and 5 cannot be used for PWM

command.

You can product different frequencies on PWM Channel 0 and 3.

To sum up, the user may produce two different frequencies at one time and
when using the Freqout command, the PWM command cannot be used.

The following is a chart that shows corresponding FregValue to the music

notes.

Note Octave 2 Octave 3 Octave 4 Octave 5
A 20945 10473 5236 2618
Bb 19770 9885 4942 2471
B 18660 9330 4665 2333
C 17613 8806 4403 2202
Db 16624 8312 4156 2078
D 15691 7846 3923 1961
Eb 14811 7405 3703 1851
E 13979 6990 3495 1747
F 13195 6597 3299 1649
Gb 12454 6227 3114 1557
G 11755 5878 2939 1469
Ab 11095 5548 2774 1387

Freqout 0,5236
Freqgout 0,1469

Note A in Octave 4 (440Hz)
Note G in Octave 5

158

Get()

Variable = GET(channel, length)
Variable : Variable to store results (Cannot use String, Single)
channel : RS232 Channel (0 to 3)
length : Length of data to receive (1 to 4)

Read data from RS232 port. This command Get() actually reads from the
receive buffer. If there is no data in the receive buffer, it will quit without
waiting for data.

The command BLEN() can be used to check if there is any data in the
receive buffer before reading trying to read data.

The length of data to be read must be between 1 and 4. For receiving a
Byte type data, it would be one. For receiving a Long type data, it would
be 4. For larger data, please use GETSTR().

TIPS
Use SYS(1) after GET() or GETSTR() to verify how much data was actually
read. If 5 bytes were received and only 4 bytes got verified, 1 byte was lost.

Const Device = cb280

Dim A as Byte

Opencom 1,115200,3,50,10

On Recvl Gosub GOTDATA

Do
Do while In(0) = 0
Loop ' Wait until press button (Connect P0)
Put 1,asc(
Put 1,asc(
Put 1,asc(
Put 1,asc(
Put 1,asc(
Put 1,13,1 ' HELLO + Chr (13) + Chr (10)
Put 1,10,1
Do while In(0) = 1
Loop

Loop

GOTDATA:
A=Get (1,1)
Debug A
Return

159

Geta

GETA channel, ArrayName, bytelength
channel : RS232 Channel (0 to 3)
ArrayName : Array to store Received data (Byte type only)
Bytelength : Number of Bytes to store (1 to 65535)

The command Geta can be used to store received RS232 data into a Byte
array. Data will be stored starting from the first element of the array.
Again, please check the receive buffer with BLEN() before reading to avoid
reading garbage data.

Const Device = cb280

Dim A(10) As Byte

Opencom 1,115200,3,50,10

Set Until 1,8

On Recvl Gosub GOTDATA

Do
Do While In(0) = 0
Loop ' Wait until press button (Connect PO)
Putstr 1,"CUBLOC",Cr
Do While In(0) = 1
Loop

Loop

GOTDATA:
Geta 1,A,8
Debug A(0),A(1),A(2),A(3),A(4),A(5),A(6),A(7)
Return

CcB280

oo |———

TTLRX TTLTX T

160

Geta2

GETA channel, ArrayName, bytelength, stopchar
channel : RS232 Channel (0 to 3)
ArrayName : Array to store Received data (Byte type only)
Bytelength : Number of Bytes to store (1 to 65535)
Stopchar : Stop character ascii code

Same as GETA command except it will stop reading data at the StopChar
even if there are data left to read set by the Length. If StopChar is not
found, then it will operate just like a GETA command.

(StopChar is stored into the String Variable)

You can use SYS(1) command to read # of bytes read afterwards.

Dim A(10) As Byte
Opencom 1,19200,0,50,10
Geta2 1,A,20,10 ' Read until Stop Character ascii code 10 is found

' or 20 bytes have been read

Use with CUBLOC STUDIO 2.0.X and above.

161

Getcrc

GETCRC Variable, ArrayName, Bytelength

variable : String Variable to store results (Integer type)
ArrayName : Array with data(Must be a Byte array)
Bytelength : # of bytes to calculate CRC

This function is for calculating CRC when using MODBUS RTU Master Mode.
GETCRC will return a 16-bit integer CRC value of the set Array. You can set
the number of bytes to use for CRC calculation from the Array starting at 0.

Const Device = CB280
Opencom 1,115200,3,80,20
Set Modbus 1,9

Dim A(20) As Byte

Dim B As Integer
Ramclear

Usepin 0,0ut

Usepin 9,0ut

Set Ladder On

A(0)
A(1)
A(2) =
A (3)
A(4)
A(5)

N PO WwN WY

0
3

Getcrc B,A, 6 ‘Name of Array.
Debug Hex B,Cr

* Please use byte arrays when using this function.

162

Getstr()

Variable = GETSTR(channel, length)
Variable : String Variable to store results
channel : RS232 Channel
length : Length of data to receive

Same as Get() except the variable to store results can only be String and
length of data is not limited.

Const Device = cb280

Dim A As String * 10

Opencom 1,115200,3,50,10

Set Until 1,8

On Recvl Gosub GOTDATA

Do
Do While In(0) = 0
Loop ' Wait until press button (Connect PO)
Putstr 1, "CUBLOC",Cr
Do While In(0) =1
Loop

Loop

GOTDATA:
A=Getstr (1, 8)
Debug A
Return

CB280

oofF——————

TTLRX TTLTX T

163

Getstr2()

Variable = GETSTR(channel, length, stopchar)
Variable : String Variable to store results
channel : RS232 Channel
length : Length of data to receive
StopChrar : Stop character ascii code

Same as GETSTR command except it will stop reading data at the StopChar
even if there are data left to read set by the Length. If StopChar is not
found, then it will operate just like a GETSTR command.

(Use with CUBLOC STUDIO 2.0.X and above.)

164

Gosub..Return

GOSUB command can call a sub-routine. RETURN command must be used
at the end of the sub-routine.

GOSUB ADD VALUE

ADD VALUE:
A=A+1
RETURN

Goto

GOTO command will instruct the current Program to jump to specified label.
This is part of every BASIC language but we do not recommend the use of
GOTO as it can interfere with structural programming.

If I = 2 Then
Goto LAB1
End If
LAB1:
I=23

About Label...
A Label can be set with character *:’ to set a point for GOTO or GOSUB to
jump to.

ADD_VALUE:
LINKPOINT:

A label cannot use reserved constants, numbers, or included a blank space.
Below are some not-to-do examples:

Ladder: ‘Reserved constant
123: ‘Number .
Aboot 10: ‘Blank space.

165

HEAP Memory Access

The HEAP memory access is a special feature only available on the CB405
module. The new CUBLOC CB405 has a HEAP memory. The user may use
this memory from address 0 through 56831 in byte units or 0 through
&HDDFF in hex. There’s about 55KB of memory. You can store large data
for graphics, temperature tables, etc...etc... With a backup battery, the
HEAP memory can be used similar to an EEPROM memory.

55K bytes
0000
4K bytes
e [
&HDDFF &HFFF
Heap Memory EEPROM Memory

There are 5 types of HEAP memory access functions.

Function Syntax Feature
HEAPCLEAR Heapclear Erase the entire Heap
memory.
HREAD Variable = HREAD(Address, Length) | Read the designated number

of bytes set by Length from
the Heap memory address
and store into a variable.

HWRITE HWRITE Address, Variable, Length Store the designated number
of bytes set by Length to the
Heap memory Address.

HEAPW HEAPW Address, Variable Store one byte to the Heap
memory Address.
HEAP Variable = HEAP(Address) Read one byte from the Heap

memory Address and store
into a variable.

166

Hread()

Variable = HREAD (Address, BytelLength)
Variable : Variable to store results
Address : HEAP memory address
Bytelength : # of bytes to read, constant or variable (1to4)

Read data from the HEAP memory address. You can read up to a
maximum of 4 bytes at a time.

Hwrite

HWRITE Address, Data, BytelLength
Address : HEAP memory address
Data : Constant or Variable with data (whole numbers only)
Bytelength : # of bytes to write

Write data in HEAP memory address.

DIM A AS INTEGER
DIM B AS INTEGER
A = 100

HWRITE 0,2,2

B = HREAD(0,2)

\

Write integer A to address 0.

\

Read from address 0 and store in B.

NOTE
EEREAD and EEWRITE have same syntax as HREAD and HWRITE.
Function Memory Feature
Type
EEWRITE, EEREAD | EEPROM Retains data during power-cycles without a
battery.

EEWRITE command takes about 5mS.
4KB of available memory

HREAD, HWRITE SRAM Retains data during power-cycles with a backup
battery. Without a backup battery, data is lost.
HWRITE command takes about 20 micro-seconds
to execute.

Faster speed in comparison with EEWRITE.

55KB of available memory

167

Heapclear

HEAPCLEAR

Clear all 55KB of HEAP memory to 0.

Heap()

Variable = HEAP (Address)
Variable : Variable to store results
Address : HEAP memory address
Heap() function returns 1 byte of data from the HEAP memory address.
Heapw
HEAPW Address, Data
Address : HEAP memory address
Data : Constant or Variable with data (Byte only)
Write 1 byte of data to Heap memory address.
HEAP Memory Address

The HEAP memory is divided into byte unit addresses. When a LONG
variable is stored, 4 bytes is stored, and 4 memory addresses are used.

HWRITE 0, &H1234ABCD, 4

0 CD
1 AB
2 34
3 12

As you can see in the above table, when a LONG variable is stored in HEAP
memory address 0, four memory addresses are taken.

HWRITE 0, &HABCD, 2
HWRITE 1, &H6532, 2

168

The above example will overwrite HEAP memory address 1. Please be
careful to not overwrite your data.

DEMO PROGRAM

Const Device = CB405
Dim A As Byte
Dim I As Long,J As Long

I = &HABCD1234
Heapclear
Hwrite 0,I,4

Do

Heapw 56830,100
Heapw 56831,123

Debug Dec Heap (56830) ,Cr
Debug Dec Heap (56831),Cr
J = Hread(0,4)

Debug Hex J,Cr

Delay 100

Loop

169

High
HIGH Port
Port : I/O Port number

Set the Port to HIGH state. This command sets the Port to output state
and outputs HIGH or 5V.

OUTPUT 8 ‘set Port 8 to output state.
HIGH 8 ‘Set Port 8 to HIGH (5V).

When a port is set to High, the port is internally connected to VDD, whereas
if it's set to Low, the port is internally connected to VSS.

170

I2Cstart

I2CSTART

Set I2C SDA and SCL to Start mode. After this command, SDA and SCL go

LOW.

S;/-\VF‘{T
I2Cstop
12CSTOP

Set I2C SDA and SCL to Stop mode. After this command, SDA and SCL go
HIGH.

171

I2Cread()

Variable = I2CREAD(dummy)
Variable : Variable to store results. (No String or Single)
dummy : dummy value. (Normally 0)

Read a byte from the I2C Ports set by SET I12C command. Use any value
for dummy value.

A = I2CREAD(0)

SCL

SDA

This command will send back acknowledge ACK signal back to the slave I2C
device. After reading a byte, a SCL pulse will be send while SDA is kept
LOW. This will send back an acknowledge signal to your 12C slave device.

172

I2Creadna()

Variable = 2CREADNA(dummy)
Variable : Variable to store results. (No String or Single)
dummy : dummy value. (Normally 0)

Same function as I2CREAD command without acknowledgement.

A = I2CREADNA (0)

173

I2Cwrite()

Variable = 2CWRITE data
Variable : Acknowledge
(0=Acknowledged, 1=No Acknowledgement)
data : data to send (Byte value : 0 to 255)

Send one byte of data through I2C. This command creates Acknowledge
pulse and returns 0 if there is acknowledgement and 1 if there isn't. If
there is no acknowledgement, it could mean two things. Either I2C lines
are not connected properly or power is not supplied correctly. In case this
happens, please setup an error processing function such as below:

IF I2CWRITE (DATA)=1 THEN GOTO ERR PROC

When you don’t need to check for acknowledgement you can just use any
variable to receive the acknowledgement as shown below:

A = I2CWRITE (DATA)

One byte of data transfer takes approximately 60 micro-seconds.
Please refer to Chapter 8 “About I2C...” for detailed I2C communications
description.

174

If..Then..Elseif...Endif

You can use If..Then...Elseif...Else...EndIf conditional statements to set
conditions for your program.

If Conditionl Then
[Expression2]
[Elseif Condition2 Then

[Expressionl]

[Expression3]]
[Else
[Expression4]]
[End If]
Usage 1
If A<10 Then B=1
Usage 2
If A<10 Then B=1 Else C=1
Usage 3
If A<10 Then ** When using more than 1 line of if,
B=1 ‘* do not put any Expressions after “Then”.
End If
Usage 4
If A<10 Then
B=1
Else
c=1
End If
Usage 6
Usage 5 If ?iio Then
IE A<i0 Then Elseif A<20 Then
. c=1
Elgfif A<20 Then Elseif A<40 Then
Cc=2
End If Else
D=1
End If

175

In()

Variable = IN(Port)
Variable : The variable to store result (No String or Single)
Port : I/O Port number (0 to 255)

Read the current state of the specified Port. This function reads the state of
the I/O Port and stores it in the Variable. When you execute this command,
CUBLOC will automatically set the Port to input and read the status. You do
not need to use Input command to set the Port beforehand when using this
command.

DIM A AS BYTE

A = IN(8) ' Read the current state of Port 8

and store in variable A(0 or 1)

\

TIPS

All CUBLOC I/O ports support both input/output. You have many options in
setting the Port status to input or output. By default, all I/O Ports are set
to HIGH-Z at power ON.

When Port is set to output, it will either output HIGH or LOW signal. HIGH
is 5V and LOW is OV or GND (ground).

176

Incr

INCR variable
Variable : Variable for increment. (No String or Single)

Increment the variable by 1.

INCR A ‘Increment A by 1.

177

Input
INPUT Port
Port : I/O Port number (0 to 255)

Set the specified Port to High-Z (High Impedance) input state.

All I/0O Ports of CUBLOC module are set to HIGH-Z input as default at power
ON.

High Impedance means that the value of resistor is so high that it's neither
HIGH nor LOW.

INPUT 8 ‘Set Port 8 to HIGH-Z input state.

178

Keyin

Variable = KEYIN(Port, debouncingtime)
Variable : Variable to store results (No String or Single)
Port : Input Port (0 to 255)
deboucingtime : Debouncing Time (1 to 65535)

This command KEYIN removes bouncing effect before reading the input.
You can use KEYIN only when inputting LOW ACTIVE as shown below. For
inputting HIGH ACTIVE, please use KEYINH. When there’s input, Keyin will
return 0 and 1 when there isn't.

If you use 10 for deboucing time, CUBLOC will check input for bouncing for
10 ms. Bouncing usually lasts around 10ms, so our recommendation is
10ms for most applications

A = KEYIN(1,10) ‘Read from port after removing bouncing effect.

/ Bouncing effect

179

Keyinh

Variable = KEYINH(Port, debouncingtime)
Variable : Variable to store results (No String or Single)
Port : Input Port (0 to 255)
deboucingtime : Debouncing Time (0 to 65535)

KEYINH is for HIGH ACTIVE inputs. For LOW ACTIVE inputs, KEYIN

command must be used.
When there’s input, Keyinh will return 1 and 0 when there isn't.

A = KEYINH(1,100) ‘Read from port 1 after removing bouncing effect.

180

Keypad
Variable = KEYPAD(PortBlock)

Variable : Variable to store results (Returns Byte, No String or Single)
PortBlock : Port Block (0 to 15)

Use this command Keypad to read input from keypad. A Port Block can be
used to read a 4 by 4 keypad input. Keypad input can be connected to the
lower 4 bits of the Port Block and keypad output can be connected to higher
4 bits of the Port Block.

Please refer to the below diagram.

05142831 ¥ 12%’
. 15052057 2 s
) 235168708 514 %

3515050 ¥

A = KEYPAD(0) ' Read the status of keypad connected to Port Block 0

If no keys are pressed, 255 will be returned. Otherwise, the pressed key’s
scan code will be returned.

181

Ladderscan

LADDERSCAN

This command LadderScan will force 1 scan of LADDER. When put inside an
infinite loop like DO...Loop, it can enhance the speed of Ladder program
more than 10 ms per scan time.

If using this command as shown below, you will not be able to use BASIC at
the same time.

Const Device = CB280 'Device Declaration
Usepin 0, In, START 'Port Declaration
Usepin 1,In,RESETKEY
Usepin 2,In,BKEY
Usepin 3,0ut, MOTOR
Alias MO=RELAYSTATE 'Aliases
Alias M1=MAINSTATE
Do
LadderScan
Loop

182

Low

LOW Port
Port : I/0 Port number (0 to 255)

Set the Port to LOW state. This command sets the Port to output state and
outputs LOW or OV (GND).

OUTPUT 8 ‘Set Port 8 to output state.
LOW 8 ‘Set Port 8 to LOW (OV).

When a port is set to High, the port is internally connected to VDD, whereas
if it's set to Low, the port is internally connected to VSS.

LOWO

183

Memadr()

Variable = MEMADR (TargetVariable)
Variable : Variable to store results (No String or Single)
TargetVariable : Variable to find physical memory address

Like C language, you can use pointers in BASIC. By using pointers, you will
be able to find the physical memory address of RAM and use it to store or
read data.

Dim A as Single
Dim Adr as Integer
Adr = Memadr (A) ‘Return the physical address of A.

184

Ncd

Variable = NCD source
Variable : Variable to store results. (No String or Single)
Source : source value (0 to 31)

The command NCD can

return a 32 bit value.

HoH H H H H H H

= NCD 0 ‘Result
= NCD 1 '‘Result
= NCD 2 ‘Result
= NCD 3 '‘Result
= NCD 4 ‘Result
= NCD 5 '‘Result
= NCD 6 ‘Result
= NCD 7 ‘Result

use used to set desired bit of 0x00000000 to 1 and

is
is
is
is
is
is
is

is

%2 CUBLOC studio [d:\cubloc_test\unary.cul]
File Edit Device Run Setup Help

oM @ KXE2E HAl> mi

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

Congt Device =
Dim A As Long
A = -10

Debug Dec A,Cr

A= Mot 1
Debug Dec A, Cr

A = Ncd 4
Debug Dec A,Cr

A = Dcd 15
Debug Dec A, Cr

CEZ80

[FI1BASIC | [F2] LADDER | Ladder Mnemf Fort

+® Debug Terminal

Baud Rate Parity Crata Bits

- EX

|comt =] 115200 | frone | |a

_:J @R

@TH

Close [~ Fix Right Side

185

Nop

Nop
This command does a no operation command.

command cycle time.

It simply takes up one

Low 8
Nop
High 8
Nop
Low 8

‘Output very short pulse to port 8. (About 50 micro Sec)

186

On Int

ON INTx GOSUB label
x : 0 to 3, External Interrupt Channel

This command On Int must be called before accepting external interrupt
inputs. CUBLOC has 4 external interrupt Ports. The interrupt Ports can be
set to sense input on the Rising-edge, Falling Edge, and Both.

SET ONINTx command must be used with this command in order for the
interrupt to work.

*CB220 has no external interrupt inputs.

A4

Rising Edge Falling Edge

Dim A As Integer

On INTO Gosub GETINTO

Set INTO O 'Falling Edge Input
Do

Loop

GETINTO:

A=A+1 'Record number of interrupts
Return

187

On Ladderint Gosub

ON LADDERINT GOSUB label

If Register F40 turns on in LADDER, and ON LADDERINT GOSUB command
is used, then the processor will jump to the routine specified by On
Ladderint command.

This can be used when LADDER part of the program needs to jump to
BASIC code.

Please use the SETOUT and DIFU command to write 1 to the Register F40.
When BASIC interrupt routine is finished, Register F40 can be cleared by
writing a zero to it.

During the interrupt routine execution, writing a 1 to Register F40 will not
allow another interrupt. If Register F40 is cleared from BASIC, it signs the
end of the interrupt routine and is ready to receive another interrupt.

Usepin 0, In

Set Ladder On

Set Display 0,0,16,77,50

On Ladderint Gosub msgl_rtn
Dim i As Integer

Low 1

Do
i=i+1
Byteout 1,i
Delay 200
Loop
msgl rtn:
Locate 0,0
Print "ON Ladderint",Dec i
Reverse 1
Return

Pa SETOUT F40
| - r 1
I | =

When PO turns ON, it will turn on F40 and when Register F40 turns ON,
msgl_rtn interrupt routine in BASIC will be executed. In the interrupt
routine, a string is printed to the LCD.

188

Although there is only one Register F40 to create an interrupt in BASIC from
LADDER, we can use data Register D to process many different types of

interrupts.

PO WMOY 3,00
1 — r
— | .| L 1
SETOUT F40
T]
p2 WO 2,00
iy r - 1
I .| L
SETOUT F40
L 1

When PO turns ON, DO gets 3 and interrupt routine is executed. If P2 turns
ON, DO gets 2 and interrupt routine is executed. In the interrupt routine,
the user can then process the type of interrupt based on the value stored in

DO.

msgl rtn:
If D(0)=3 Then
Locate 0,0
Print "ON Ladderint",Dec i
End If
If D(0)=2 Then
Locate 0,0
Print "TEST PROGRAM",Dec i
End If
Return

For short version of above LADDER commands, the user can use INTON
command, which accomplishes both WMOV and SETOUT in one command.
The following is the equivalent shortened version of the above ladder:

PO INTOM 3.00
| r r 1
I il | =

P INTOM 2.00
| r r 1
I - =

189

On Pad Gosub

ON PAD GOSUB label

You can set the packet size using SET PAD command. The ON PAD
interrupt will jump to the label when the buffer amount is equal to the set
packet size. Please make sure to use RETURN command after the label.

Const Device = Ctl720

Dim TX1 As Integer, TYl As Integer
Contrast 450

Set Pad 0,4,5

On Pad Gosub GETTOUCH

Do

Loop

GETTOUCH
TX1 = Getpad(2)
TY1l = Getpad(2)
Circlefill TX1,TY1,10
Pulsout 18,300
Return

190

On RecvX

ON RECV0O GOSUB label
ON RECV1 GOSUB label
ON RECV2 GOSUB label
ON RECV3 GOSUB label

When data is received on RS232 Channel X (0 to 3), this command ON
RECVX will automatically let the program jump to the specified label. The
processor will automatically check for receiving data and cause interrupts
when this command is used.

Dim A(5) As Byte

Opencom 1,19200,0, 100, 50

On Recvl DATARECV_RTN ' Jump to DATARECV_RTN when RS232
Do ' Channel 1 receives any data

Loop ' Infinite Loop

DATARECV_RTN:

If Blen(1,0) > 4 Then
A(0) = Get(1,1) ' Read 1 Byte.
A(l) = Get(1,1) ' Read 1 Byte.
A(2) = Get(1,1) ' Read 1 Byte.
A(3) = Get(1,1) ' Read 1 Byte.
A(4) = Get(1,1) ' Read 1 Byte.
End If
Return ' End of interrupt routine
IMPORTANT

When RECVX interrupt routine is being executed, another RECVX
interrupt routine will not be allowed to be executed. After it
finishes current interrupt routine execution, the processor will come
right back to another ON RECVX interrupt routine when there’s still
data being received. (data in receive buffer)

191

On Timer()

ON TIMER(interval) GOSUB label

On Timer() can be used to execute a interrupt routine at every specified
interval. Set the desired interval in milliseconds and a label to jump to when

Interval : Interrupt Interval 1=10ms, 2=20ms...... 65535=655350ms

1 to 65535 can be used

interrupt occurs.

192

On TIMER(100) Gosub TIMERTN
Dim I As Integer

Loop

TIMERTN:

Incr I ' I is incremented 1 every second.
Return

IMPORTANT

Please pay caution when creating the interrupt routine. It
must be less than the interval itself. If interval is set at 10ms,
the interrupt routine, from the label to its return, must be
within 10 ms (About 360 instructions/lines). Otherwise,
collisions can occur within the program.

Opencom

OPENCOM channel, baudrate, protocol, recvsize, sendsize
channel : RS232 Channel (0 to 3)
Baudrate : Baudrate (Do not use variable)
protocol : Protocol (Do not use variable)
recvsize : Receive Buffer Size (Max. 1024, Do not use variable)
sendsize : Send Buffer Size (Max. 1024, Do not use variable)

To use RS232 communication, this command Opencom must be declared
beforehand.

CUBLOC has 2 or 4 channels for RS232C communication. Channel 0 is
used for Monitor/Download but the user can use it for RS232
communication, if she/he wishes to forego monitoring. Download will still
work fine regardless.

The following are allowed baudrate settings for CUBLOC RS232:

2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800,
115200, 230400

For the protocol parameter, please refer to the table below:

Bit7 | Bit6 | Bit5 | Bit4 Bit3 Bit2 Bitl Bit0
Parity Stop Bit Bit # of Bits
0 0 = NONE 0=1 Stop Bit 0 0 = 5 bit
0 1 = Reserve* | 1=2StopBits | 1 =6 bit
1 0 = Even 1 0 =7 bit
1 1 = 0dd 1 1 = 8 bit

The below table shows typical settings based on the previous table:

Bits Parity Stop Bit Value to Use
8 NONE 1 3

8 EVEN 1 19 (Hex = 13)
8 OoDD 1 27 (Hex = 1B)
7 NONE 1 2

7 EVEN 1 18 (Hex = 12)
7 OoDD 1 26 (Hex = 1A)

OPENCOM 1, 19200, 3, 30, 20 ‘Set to 8-N-1

193

The user can set the send and receive buffer size. The send and receiver
buffers take up space in the data memory. Although you can set each
buffer up to 1024 bytes, it will take up that much of the data memory. The
number of variables you use may decrease. We recommend receive buffer
size from 30 to 100 and send buffer size from 30 to 50.

For CB220 module, port 1 and 2 can be used for Channel 0.
Port 10 and 11 can be used for RS232C Channel 1.

CHANNELO
TX «——souT O
RX—— sIN
ATN
vss

VIN

vss

RES

VDD

P15

P14

P13

p12 CHANNEL1
P11 —— TX
P10 «— RX
P9

P8

o000 0o0o0O0oO0o0oOoog

O
O
O
O
O
P2 O
O
O
O
O
O

For the CB280 module, there are dedicated RS232 ports. For Channel 1,
there are 2 types of outputs, +/- 12V and TTL (+5/0V).

Please make sure to use only one of them at one time.
+12V\|_|_|_|_|_|_|_|_|J7
-12v

oo | Emxi s @ @ 40 | Trim —> +5V
vss RX1 34 @ @ 50 | TTLRX1 4—
AVDD AVREF GND

RES %@ @51

+12V

-12v NiC NG 35 @ @52 [Pas
P16 P24 37 @ @ 53| P31
P17 P25 38 @ @ 54| P30
P18 P26 39 @ @ 55|P29
P19 P27 40 @ @ 56 | P28
P20 Pi7 41 @ @57 |P32
P21 Pi6 42 @ @ 50| P33
P22 Pis 43 @ @ 59 | P3d
P23 Pi4 44 @ @60 | P35
P15 P43 45 @ @ 61 | P36
[Pi2 45 @ @ 62 | P37
P13 P4l 47 @ @ 63 | P38
P11 [16@ @32 pi2 P40 45 @ @ 64 | P39

*Use Set RS232 command to re-set your baudrate and parameter during
execution of your program.

194

CB405 RS232 HOWTO

The following is a table of 5V TTL signal pins of the CB405

Channel 1/0O Port 5V TTL
1 P42 RX
P43 TX
2 P8 RX
P9 X
3 P56 RX
P57 TX

The CB405 has a internal MAX232 that can be used to connect any of the

5V TTL signals to +/- 12V level signals.

connecting the Channel 3:

Now you can simply connect +/- 12V RS232 signal to TXE and RXE.

Input
Only

N

w
Sout Vdd TxE[41 @@ 61] THTXE
Sin Vss RXE THRXE TN
Atn RES CB405 AVdd AVref
Vss VBB vdd Vss
PO P16/ ADO AD8 /P32 P48
SCK/P1 P17/ AD1 AD9 /P33 P49
[MOSI/ P2 P18/ AD2 AD10/ P34 P50
MISO / P3 P19/ AD3 AD11/P35 P51/ PWM9
P4 P20/ AD4 AD12/P36 P52/PWM10
PWMO/P5 P21/ AD5 AD13/P37 P53/PWM11
PWM1/P6 P22/ AD6 AD14/ P38 P54
PWM2/P7 P23/ AD7 AD15/P39 P55
RX2 /P8 P24 HCNT1/ P47 P63
TX2/P9 P25 HCNTO/ P46 P62
P10 P26 P45 P61
PWM6 / P11 P27/ PWM3 P44 P60
PWM7 /P12 P28/ PWM4/INTO TX1/P43 P59
PWM8 /P13 P29/ PWMS5/ INT 1 RX1/P42 P58
P14 P30/INT2 SDA/P41| 59 ® ®79| P57/ TX
P15|20 @ ® 40 [P31/INT3 SCL/P40| 60 ® ® 80| P56/ RX3

The following is an example of

195

Out

OUT Port, Value
Port : I/O Port number (0 to 255)
Value : Value to be outputted to the I/O Port (1 or 0)

Output 1 or 0 to the specified Port. When you execute this command,
CUBLOC will automatically set the Port to output and output the Value set.
You do not need to use the Output command to set the Port beforehand
when using this command.

ouT 8,1 ‘Output HIGH signal on Port 8.
‘(This is same as using command High 8)

OouT 8,0 ‘Output LOW signal on Port 8.
‘(This is same as using Low 8)

196

Output

OUTPUT Port
Port : I/0 Port number (0 to 255)

Set the Port to output state. All I/O Ports of CUBLOC module are set to
HIGH-Z input as default at power ON.

OUTPUT 8 ‘Set Port 8 to output state.

You can also use HIGH, LOW command to set to output state. When using
Output command, HIGH or LOW state is not clearly defined. We
recommend the use of HIGH or LOW command to set to output mode.

LOW 8 ‘Set Port 8 to output mode and output LOW signal.

197

Outstat()

Variable = OUTSTAT(Port)
Variable : Variable to store results. (No String or Single)
Port : I/O Port Number (0 to 255)

Read the current outputted value for the specified Port. This command is
different from IN() command in that it reads the status of output, not input.

DIM A AS BYTE
A = OUTSTAT (0) ‘Read from Port 0 and store the current status in A.

Pause

PAUSE value

Exact same function as DELAY

198

Peek()

Variable = PEEK (Address, Length)
Variable : Variable to Store Result. (No String or Single)
Address : RAM Address.
length : Length of Bytes to read (1 to 4)

Read specified length of data from RAM Address.

Poke

POKE Address, Value, Length
Address : RAM Address
Value : Variable to store results (up to Long type value)
length : length of bytes to read (1 to 4)

Write specified length of data to the RAM Address.

Const Device = CB280

Dim F1 As Single, F2 As Single
Fl = 3.14

Eewrite 10, Peek (Memadr (F1),4),4
Poke Memadr (F2) ,Eeread(10,4),4

Debug Float F2,CR

199

Pulsout

PULSOUT Port, Period
Port : Output Port (0 to 255)
Period : Pulse Period (1 to 65535)

This is a SUB library that outputs a pulse. To create a High pulse, the
output Port must be set to LOW beforehand. To create a Low pulse, the
output Port must be set to HIGH before hand.

If you set the Pulse Period to 10, you will create a pulse of about 2.6mS.
Likewise, a Pulse Period of 100 will give you about 23mS pulse.

Low 2 HIGH 2
PULSOUT 2, 100 ‘23mS HIGH Pulse PULSOUT 2, 100 ‘23mS LOW
Pulse

Pulsout is pre-made system’s sub program.

sub pulsout (pt as byte, 1ln as word)
dim dl11 as integer
reverse pt
for dl11=0 to 1ln
next
reverse pt
end sub

200

Put

PUT channel, data, bytelength
channel : RS232 Channel (0 to 3)
Data : Data to send (up to Long type value)
Bytelength : Length of Data (1 to 4)

This command sends data through the specified RS232 port. For Data,
variables and constants can be used. To send String, please use Putstr
command instead.

IMPORTANT OPENCOM 1,19200,0,50,10
The command DIM A AS BYTE

A = &HAO
OPENCOM must be

PUT 1,A,1 ' Send &HAO (0xA0)
used beforehand .
to RS232 Channel 1.

Within CUBLOC, the data is first stored in the send buffer. CUBLOC BASIC
Interpreter will automatically keep sending the data in send buffer until it's
empty.

If the send buffer is full when PUT command is executed, the PUT command
will not wait for the buffer to flush. In other words, the data to send will be
thrown away. The command BFREE can be used to check the send buffer
beforehand for such cases.

IF BFREE(1,1) > 2 THEN ‘' If send buffer has at least 2 bytes free
PUT 1,A,2
END IF

BFREE() checks for how much space the buffer currently has.

TIPS
After using PUT or PUTSTR, the function SYS(0) can be used to verify that
the data has been stored in the send buffer.

OPENCOM 1,19200,0,50,10
PUTSTR 1, " COMFILE”
DEBUG DEC SYS (0) ' If output is 7, all data has been stored
' in the send buffer
*Please refer to On Recv interrupt routine for receiving data using the
hardware serial buffer.

201

Puta

PUTA channel, ArrayName, bytelength
channel : RS232 Channel. (0 to 3)
ArrayName : Array Name
Bytelength : Bytes to Send (1 to 65535)

The command Puta can be used to send a Byte Array.
Simply put name of the array and number of bytes to send.
The array data will be sent starting from the first element of the array.

Dim A(10) As Byte
Opencom 1,19200,0,50,10
Puta 1,A,10 ' Send 10 Bytes of Array A

IMPORTANT
If you try to send more bytes than the array has, CUBLOC will send

garbage values.

*Please refer to On Recv interrupt routine for receiving data using the
hardware serial buffer.

202

Puta2

PUTA channel, ArrayName, bytelength, stopchar
channel : RS232 Channel. (0 to 3)
ArrayName : Array Name
Bytelength : Bytes to Send (1 to 65535)
Stopchar : Stop character ascii code

Same as PUTA command except it will stop transmission upto a set
character in the array. (StopChar will be the last character to be send)

Use with CUBLOC STUDIO 2.0.X and above.

203

Putstr

PUTSTR channel, data...
channel : RS232 Channel. (0 to 3)
Data : String Data (String variable or String constant or Constant)

Send String data to RS232 Channel.

OPENCOM 1,19200,0,50,10
PUTSTR 1,"”COMFILE TECHNOLOGY”, DEC I, CR

Similar to Put command, Putstr stores data to be sent in the send buffer.
Afterwards, the CUBLOC BASIC Interpreter takes care of the actual sending.
Please also be careful to not overload the send buffer when it’s full, so you
do not lose any data that needs be sent.

204

Pwm

PWM Channel, Duty, Period
Channel : PWM Channel Number (0 to 15)
Duty : Duty Value, must be less than the Period.
Period : Maximum of 65535

Use PWM to Output desired PWM frequency. When using this command,
please be aware that PWM Channel Number is different from I/O port
number. For CB280, Ports 5, 6, and 7 are used for PWM 0, 1, and 2,
respectively. Before using PWM, please make sure to set the Ports used to
OUTPUT mode.

According to the set value of Period, a maximum of 16-bit precision PWM
signal is created.

When Period is set to 1024, it will be a 10 bit PWM.

When Period is set to 65535, it will be a 16 bit PWM. Please set the Duty to
be less than the Period. Duty can be 50% of Period to create a square wave.

PWM is independently hardware driven within CUBLOC. Once the PWM
command is executed, it will keep running until PWMOFF command is called.

‘ 1024
LOW 5 ' Set port 5 output and output LOW signal.
PWM 0,200,1024 ' Output 10-bit PWM with duty of 200 and
' Width of 1024

IMPORTANT

PWM 0, 1, and 2 must used the same value of Period since they
share the same resources. Their duty values can be different.

PWM Channel 3, 4, and 5 also must use the same value of Width
since they share the same resources. Their duty values can be
different.

205

Pwmoff

PWMOFF Channel

Channel : PWM Channel. (0 to 15)

Stop the PWM output.

Following is available PWM channels according to the models:

sout

sIN O

ATN

vss

Po O

P1Q

P2 O

P3O

P4 O

PWMO «—— P50
PWM1 «—— P6 [
PWM2 «—— p7 O

[vin
B vss
0 RES
0 voo
g P15
g P14
0 P13
g P12
g P
g P10
]

pps

For CB220, 3 PWM channels are provided on the Ports P5, P6, and P7.

1@ @17 VoD
SN[2@ @18 vss
ATN | 3@ @19 Res
vss [@ @20 e
Po| 5@ @21 Pi6
P1|c® @22 pi7
P2| 7@ @23 P

5|10 @27 P22

PWM2 «——r7 |120 @28 P23

P8 |13@ @29 Pis
Po|14® @30 P14
P10 |15@® @31 P13
P11[16@® @32 P12

18
P3| 8@ @2 p1g> PWM3
pi| 9@ @25 p2o> PWM4
PWMO «—— o5 100 @26 P21 » PWM5

X 3@ @49

RX1 34 @
AVDD 35 @
NC 36 @

50
51
52

P2 37 @ @53
P25 33 @ @ 54

P26 39@ @55
P27 40 @ @ 56
P47 41 @ @57
Pi6 2@ @ 58

Pas 43 @ @ 59
P44 44 @ @ 60
P43 45 @ @ 61
Pi2 45 @ @ 62
P4l 47 @ @63
P40 43 @ @ 64

TILTX
TTLRX1
AVREF
Pag
P31
P30
P29
P28
P32
P33
P34
P35
P36
Pa7
P3g
Pag

Please refer to the table below for PWM Channels and corresponding I/O
ports..

CB220 CB280 CB290 CT17X0 CB405
PWMO /05 /05 /05 /08 /05
PWM1 1/06 1/06 1/06 /09 1/0 6
PWM2 /07 /07 /07 1/0 10 /07
PWM3 1/0 19 1/0 89 /0 11 1/0 27
PWM4 1/0 20 1/0 90 /0 12 1/0 28
PWM5 1/0 21 1/0 91 1/0 13 1/0 29
PWM6 /0 11
PWM7 1/0 12
PWM8 1/0 13
PWM9 1/0 51
PWM10 1/0 52
PWM11 1/0 53

206

Ramclear

RAMCLEAR

Clear CUBLOC BASIC's RAM. BASIC's data memory can hold garbage
values at power on. Ramclear can be used as a type of garbage collector
to clear the ram.

*There are CUBLOC modules that support battery backup of the RAM. If

you don’t use Ramclear command in these modules, CUBLOC will remember
previous values of RAM before powering off.

207

Reverse

REVERSE Port
Port : I/O Port Number. (0 to 255)

Reverse the specified Port output. High to Low or Low to High.

OUTPUT 8 ‘set Port 8 to output.
LOW 8 ‘Set output to LOW.
REVERSE 8 ‘Reverse LOW to HIGH.

208

Rnd()

Variable = RND(0)

The command Rnd() creates random numbers. A random number between
0 and 65535 is created and stored in the specified variable. The number
inside Rnd() has no meaning.

DIM A AS INTEGER
A = RND(0)

Internally within CUBLOC, this function is Pseudo Random, it creates a
random number based on the previous values. When powered off and
turned back on again, the same pattern of random values are generated.
Thus, this function is not a true random number generator.

209

Select...Case

Select..Case

If the condition Value of Case is met, the Statement under the case is
executed.

Select Case Variable
[Case Value [,Value],...
[Statement 1]]
[Case Value [,Value], ...
[Statement 2]]
[Case Else
[Statement 3]]
End Select

Select Case A
Case 1

Case 2

Use Comma (,) for more than 1 value.

Weo N

B
Case 3,4,5,
B =

—
0
N

Case Use < for logical operations.

Case Else Use ELSE for all other cases.

End Select

Select Case K
Case Is < 10 ' If less than 10

Case Is < 40 ' If less than 40
Case Is < 80

Case Is < 100

Case Else

End select

210

Set Debug

SET DEBUG On[/Off]
Set Debug is set to On by default.

You can use this command to turn OFF and turn ON the DEBUG window in
BASIC.

When you don’t need DEBUG feature, you can use this command to turn off
DEBUG feature instead of erasing all the code with Debug code. When this
command is used, all DEBUG commands are not compiled, in effect, they
are simply discarded from the program.

Debug Command How-to

When used correctly, the Debug command can help the user identify and fix
bugs in the program. The user can check the value of variables during
execution of a program, simulate an LCD, and also do other tasks to help
save development time.

1. How to Check if program is being reset
Sometimes you will want to check if your program is being reset. This is

usually due to faulty programming.
Simply put a Debug statement at the beginning of your program, such as

‘Debug "=========Reset========="" as shown below:
] o e e o
" Reset: "
Do
High 0
Delay 200
Low 0
Delay 200
Loop I~ Fix Fight Side

211

2. How to check if a particular point of the program is
being executed

Simply insert a Debug command where you would like to tell if that part of
the program is being executed, like shown here:

+* Debug Terminal

Const Device = CB280 Fart Baud Rate Parity Data Bits g1y 2
Do [com ~| fr1s20 v| [more w| 5 7| @ry
High 0
Delay 200
Low O

Delay 200
Loop
Debug "This Part!"

 Fix Right Side

(The debug statement above will never execute as the program stays in the
Do...Loop and will never get out of it)

212

3. How to simulate an LCD

You can simulate an LCD using the Debug terminal.

Simply use the

Goxy,XX,YY to locate a particular location on the LCD like shown here:

& CUBLOC studio [d:\cubloc_test\debuscreen.cul]
Fle Edt Dsvice Run Sstup Help

BOL ¢ LEBE A o B =

EE&

[F1] BASIC | [F2] LADDER | Ladder Mnemonic |

Dim A As Integer
Debug CLR
Debug
Debug "==:
Debug Goxy, 2,3
Debug "Input Status "
Debug Goxy, 2,5
Debug "Output Status
Debug Goxy, 2,7
Debug "AC current : "
Debug Goxy, 2,9
Debug "DC current : "

1

Debug Gowy, 16,3
Debug "0k"

Debug Gowy, 16,5
Debug "0k"

Debug Goxy, 16,7
Debug "1.7A"
Debug Goxy, 16,9
Debug " "
Debug Goxy, 1,12

POWER METER $YSTEM MONITOR SCREEN

Debug "

Do
Debug Goxy, 30, 5
Debug "Counter ",DecS A
Incr A

Loop

onfile Te

X vl

Program !

+% Debug Terminal

Port
|comt ~|

Baud Rate Parity Data Bits @TH ﬁ n

[115200 | [veme | 8 =] mx

EBX

== 1 M SYSTEM MONITOR

INPUT

OUTFUT COUNTEE. 11417

AC C

DC CURRENT :

[~ Fix Right Side

Use the command
Debug CLR to clear
the Debug window.
At any time during
development, you
can disable and also
not include Debug
statement during
Compiling by using
the command, “Set
Debug Off"”.

213

Set I2c

SET 12C DataPort, ClockPort
DataPort : SDA, Data Send/Receive Port. (0 to 255)
ClockPort : SCL, Clock Send/Receive Port. (0 to 255)

This command sets the 12C DataPort and ClockPort, SDA and SCL for 12C
communication. Once this command is executed, both Ports become to
OUTPUT, HIGH state. Please use Input/Output Port for I2C and use two
4.7K resistors as shown below.

SCL
SDA

Some of the I/0 ports only support Input or Output. Please check the Ports
in the data sheet for the model you are using.

214

Set Int

SET INTx mode

x : 0 to 3, External Interrupt Channel

mode : 0=Falling Edge, 1=Rising Edge, 2=Changing Edge

This command must be used with On Int command in order to receive

external interrupt inputs.

The mode of interrupt input can be set here to either falling edge, rising
edge, or changing edge.

SET INTO 0 ' Set external interrupt to

be on

the Falling Edge.

® 17
® 15
® 19
® 20
® 21
® 22
® 23
® 2
® 25
® 26
® 27
® 28
® 29
® 30
® 31
® 32

VDD
vss
RES
N/C
P16
P17
P18
P19
P20 «—— [INTO
P21 «—— INT1
P22 «—— INT2
P23 «—— [INT3
P15
P14
P13
P12

X1
RX1
AVDD

P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

3O
34 @
KER)

37 @
38 @
39 @
40 @
4“1 @
42 @
43 @
44 @
45 @
46 @
47 @
48 @

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

215

Set Ladder on/off

SET LADDER On[/Off]

Ladder is set to Off by default.
Use this command to turn On Ladder Logic.

The following is an example of such minimal BASIC code for Ladder logic.

Const Device = CB280 'Device Declaration

Usepin 0, In, START 'Port Declaration
Usepin 1, In,RESETKEY

Usepin 2,In,BKEY

Usepin 3,0ut,MOTOR

Alias MO=RELAYSTATE 'Aliases
Alias M1=MAINSTATE

Set Ladder On 'Start Ladder
Do
Loop 'BASIC program will run in infinite loop/

216

Set Modbus

Set Modbus mode, slaveaddress, returninterval
mode : 0=ASCII, 1=RTU
slaveaddress : Slave Address (1 to 254)
returninterval : return interval (1 to 255)

CUBLOC supports MODBUS protocol. MODBUS can connect to RS232
Channel 1.

To enable MODBUS slave mode, please use the Set modbus command. This
command set modbus is to enable the MODBUS slave. It must come after
OPENCOM command and only runs on RS232 Channel 1. Baudrate, bit, and
parity can be set with OPENCOM.

Opencom 1,115200,3,80,80 ' Please set receive buffer
' of at least 50.
Set Modbus 0,1,100 ' ASCII Mode, Slave Address=1

After this command, CUBLOC responds automatically. CUBLOC supports
MODBUS commands 1,2,3,4,5,6,15, and 16.

Command Command Name
01, 02 Bit Read

03, 04 Word Write

05 1 Bit Write

06 1 Word Write

15 Multiple Bit Write
16 Multiple Word Write

Please refer to Chapter 9 for detailed MODBUS description and MOBUS
ASCII and RTU examples.

The term returninterval is the delay time for CUBLOC or CUTOUCH to
respond to the Master MODBUS device. If the returninterval is set too fast,
the Master device might not be able to receive all data. The default setting
is 1, which is about 200 micro-seconds. The user may also set this value to
100, which is about 4.5ms or to 255, which is about 11ms.

217

Set Onglobal

SET ONGLOBAL On|[/Off]
At power On, Set Onglobal is ON by default.
This command turns on or off the ability to receive ALL interrupts.

When Onglobal is turned Off and turned On, all interrupt settings set before
turning Off will be in effect.

SET ONGLOBAL OFF ' Turn ALL interrupts OFF.

If you don't use any interrupts, you can turn off all interrupts to increase the
execution speed of CUBLOC.

218

Set Onint

SET ONINTx On[/Off]
At power On, Set Onint is ON by default.

This command turns On or Off the ability to receive individual external
interrupts using global flags. The names of these flags correspond to the
interrupt number supported by the device. For example ONINT1 is used for
Interrupt 1.

When the ONINTx global is set to ON for a specific interrupt, then an
interrupt can be received using the ON INTx command. If the global is set
to OFF, then the code for ON INTx will not be executed if the corresponding
external interrupt occurs. See also the SET INTx command which controls
external interrupts to fire.

Set ONINTO On
Set ONINT1 On
Set ONINT1 Off
Set ONINT2 Off
Set ONINT3 On

219

Set OnLadderint

SET ONLADDERINT On[/Off]
At power On, Set OnLadderint is ON by default.

This command turns On or Off the ability to receive Ladder interrupts using
global flags.

When the OnLadderint is set to On, then an interrupt can be received using
the On Ladderint command. If the global is set to OFF, then the code for
On Ladderint will not be executed if the Ladder interrupt occurs. See also
the On Ladderint command.

[CUBLOC studio [d:WH 0 & 2W_cubloc 5 0i#Wiadderlabd_1.cul 1

—ioix
O BAE) CHOAD &80 &3O caed
EEWIEIES AN R]
[F1] BASIC [F2] LADDER |Ladder Mnemanic |
FO [1HO

pic | HF -m—‘—l L[{Jl{c:‘_r I i
Wizard] F3 F4 F5. F6 7 F8 3 Undo | Copy

| 7 ‘{-»:l o
Flt F12_| NOT | END | Insert

F30 INTON 3,00 A
tHTF 1

END

i
Delete

2

3

-]

[X1 v Modiied Program : 1452 Bytes, Data: 1 ,

2 CUBLOC studio [d:WHEH2W _cubloc =503 — |3 x|
OF(E) ME(E) CIHHADy Z3(R) &ZE(E) ZSE(H)

(Bo ¢ aBE > B
[FI1 BASIC | [F2] LADDER | Ladder Mnemonic |
Const Device = CBZE0 ;I

Dim A As Integer

gainciezg 5 « Debug Terminal = [=] 5}

Oe y zd er tnG b FROMLADDER Fort BaudRats Parity DataBits 4

n Ladderin Q5

COM1 | 1115200 = | [Mone | |8 4

on [eom =] fr1z00 = frore =] s =]

Loop
FROMLADDER:

Debug Dec A, CR

Incr A

Return

Close I~ Fix Right Side

220

Set Onpad

SET ONPAD On[/Off]
At power On, Set Onpad is On by default.

This command turns On or Off the ability to receive Onpad interrupts using
global flags.

When the Onpad is set to on, then an interrupt can be received using the
On Pad command. If the Onpad is set to OFF, then the code for On Pad will
not be executed if the interrupt occurs. See also the Set Pad and On Pad
commands.

221

Set Onrecv

SET ONRECVO On[/Off]
SET ONRECV1 On[/Off]
SET ONRECV2 Onl[/Off]
SET ONRECV2 Onl[/Off]

At power On, Set Onrecv is On by default.

This command turns On or Off the ability to receive On RecvX interrupts
using global flags. A On RecvX interrupt occurs after data is received on
the serial port AND stored into the receive buffer.

When the Onrecv is set to On, then an interrupt can be received using the
On RecvX command. If the Onrecv is set to OFF, then the code for On
RecvX will not be executed if the interrupt occurs. See also the On Recv
command.

Set ONRECV1 On
Set ONRECV1 Off

222

Set Ontimer

SET ONTIMER On[/Off]
At power On, Set Onrecv is On by default.

This command turns On or Off the ability to receive On Timer interrupts
using global flags. An interrupt occurs at every time interval set by the On
Timer() command.

When the Ontimer is set to on, then an interrupt can be received using the
On Timer() command. If the Ontimer is set to OFF, then the code for On
Timer() will not be executed if the interrupt occurs. See also the On Timer()
command.

223

Set Outonly

SET OUTONLY On|/Off]

The CB290/CT1720 (Rev B) output ports are in high impendence (High-Z)
state in order to prevent garbage values outputting at power ON.

You must use “Set OUTONLY ON” command to set the CB290 / CT1720
output ports to output status.

Const device = cb290
Set outonly on

Low 24
Sout 1@ @21 Vdd e TX1 41 @ @61 THTX1
Sin 2@ ®22 Vss RX1 42 @ @62 TtRX1
cB290 i
VBB vern Y6444 0.8 84 VSS i uninanafenn.,
P8_ADCO ~""Poa""4s
(Input of P9_ADC1 P25 46
P10_ADC2 P26 47
P11_ADC3 e P27 48
P12_ADC4 wig P28 49
P13TADGS £ e o Qutput Only
P14_ADC6 ©03 P30 51
P15_ADC7 soIpy P31 52
P64 =00zz P40 53
P65 &9 5T P41 54
pee gogereeNetegsyg B2
P67 Zoooooooooaoaaan P43 56
P68 CNOYTVON DO NOT P44 57
P69 S3BIRLERBBI5583 P45 58
P70 o0 P46 59
P71 (X] P47 60
worno
88583
o NnONDOIDLON
S>INNRRNRRILS
Q.‘D. aoonooo0000O0
I ||
g8 9%
Model Output only port
CB290 P24 to P55
CT1720/ CT1721 P24 to P55

224

Set Pad

SET PAD mode, packet, buffersize
mode : Bit Mode (0 to 255)
packet : Packet Size (1 to 255)
buffersize : Receive Buffer Size (1 to 255)

The CUBLOC has a dedicated port for Keypad / Touchpad inputs similar to a
PC’s Keyboard and Mouse ports. This port can be used with the Set Pad
command to create interrupts when input is received on the Keypad,
Touchpad, etc... This port is basically a Slave mode SPI communication.

To use the PAD communications, you must use Set Pad command at the
beginning of your program. The PAD communication uses 4 wires. SCK is
used as clock signal, SS as Slave Select, MOSI as Master Out Slave In, and
MISO as Master In Slave Out signals.

SS [—| SS
SCK |——| SCK
MOS| |—— | MOSI
MISO |¢——| MISO

avd HONO.L

TOUCH PAD
CONTROLLER CUBLOC

I/0 ports PO through P3 can be used for PAD communications.

souT 1 240 VIN
SIN 02 23[1 vss
ATN O3 221 RES
vss 4 21[vDD

SS «——P0 5 200 P15
SCK «——P1 06 190 P14
MOS| «—— P2 [7 18 [P13
MISO «——P3 8 17[A P12
P49 16 [P11

P5] 10 15[P10

P6 O 11 1403 P9

P7 12 137 P8

225

TTLTX1
TTLRX1

souT | 1@ @ 17 VDD

P5 |10@ @ 26 P21
P6 |11@ @27 P22
P7 |12@ @ 28 P23
P8 [13@ @29 P15
P9 |14@ @ 30 P14
P10 |[15@ @ 31 P13
P11 |16 @ @ 32 P12

Packet is for size of packet that will cause an interrupt.
For example, the touchpad require 4 bytes to be received before an
interrupt is called. Here, the size of the packet is 4.

Buffersize is the total size of the receive buffer. The buffer size must be at
least 1 greater than packet size. (buffersize = packet+1) A larger buffer
will essentially give you more time to process the interrupt routine. The
buffer size is usually set to 5 or 10 times the packet size.

Mode will set the receiving mode of the received data. Please refer to the
below table:

Mode Value Bit Diagram
Pattern
LSB First &H20 | 0010
XXXX
MSB First &H00 | 0000
XXXX
SCK Low- | &HO8 | xxxx | || | ||
Edge 1xxx
Triggered
SCK High-Edge | &H0O | Xxxx || || |
Triggered 0XXX
Sampling &HO04 | xxxx
after SCK X1xx —
Sampling &HO0 | xxxx ot f "1 tt
before SCK X0xx

226

You can add the values of the receiving modes. For example, for MSB first,
High-Edge Triggered SCK and sampling after SCK:

0x00 + 0x00 + 0x04 = 0x04

Here are some of the common examples:

&HO0 sampie | L L L[] [
MSB Bité Bit5 Bit4 Bit3 Bit2 Bit1 LSB
&HO04 sampe | LI LI 11|
MSB Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 LSB
&HO08 sampie | L L L[]
MSB Bit6é Bit5 Bit4 Bit3 Bit2 Bit1 LSB
&HOC Sample ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

MSB Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 LSB
For PAD communications, you can use Comfile’s Keypads or Touch screens.

The Set Pad command will automatically set the ports PO through P3, the
user doesn’t have to set them.

227

Set Rs232

Set Rs232 channel, baudrate, protocol
channel : RS232 Channel (0 to 3)
Baudrate : Baudrate (Do not use variable)
protocol : Protocol (Do not use variable)

You can only use Opencom command once to open a serial port.
to change the baudrate and protocol, the Set Rs232 command can be used.

For the protocol parameter, please refer to the table below:

Bit7 | Bit6 | Bit5 | Bit4 Bit3 Bit2 Bit1 Bit0

Parity Stop Bit Bit # of Bits

0 0 = NONE 0= 0 0 = 5bit
1 Stop Bit

0 1 = Reserve* 1= 0 1 = 6 bit
2 Stop Bits

1 0 = Even 1 0 =7 bit

1 1 =0dd 1 1 = 8 bit

The below table shows typical settings based on the previous table:

Bits Parity Stop Bit Value to Use

8 NONE 1 3

8 EVEN 1 19 (Hex = 13)

8 ODD 1 27 (Hex = 1B)

7 NONE 1 2

7 EVEN 1 18 (Hex = 12)

7 ODD 1 26 (Hex = 1A)
Opencom 1, 19200, 3, 30, 20 ‘Open Rs232 channel 1
Set Rs232 1, 115200, 19

228

‘Change Baudrate & Parity

In order

Set Rs485

Set Rs485 Channel, PortNumber
Channel : RS232 Channel (0 to 3)
PortNumber : Transmit Enable Port Number

RS485 allows you to daisy link multiple CUBLOCs up to a distance of 1.2km.
With RS485, there must be 1 master and the rest must be slave devices.
You can either use a chip such as the SN75176B or use a RS232 to RS485
converters.

With RS485, transmitting and receiving data must occur one at a time. The
RS485 is known for being stable under noisy conditions.

You can refer to the following circuit schematic for connecting TTL signals
from CB280 to RS485 chip, SN75176B:

% 560.0
CUBLOC CB280 SN75176B

e sHo]
[loe A

S| 4es+

P48 D /
12000
% 5600

The RS485 communication needs a “Transmit Enable” signal to signal when
the device is sending and receiving. There can only be one device
transmitting while all the other devices are in receiving mode.

Example:

When the PC is transmitting, all the slave devices can only receive data.

PC

Slave Adr"01" Slave Adr"02" Slave Adr "03"

229

The SET RS485 command allows CUBLOC or CUTOUCH to control the data

line whenever it want to send or receive.

While the data is being sent, the

Transmit Enable pin will output Active High. This will automatically be done
by the CUBLOC RTOS.

*NOTE: If you are using a RS232-to-RS485 converter and it supports
automatic mode, then you don’t need to use this command.

SET RS485 1,48 ' Set P48 as Trasmit Enable pin

TTLTX —||—||—||—||—||_

P48 |

When using the SET RS485 command, the Port being used may not be used

SN75176B

% 5600

} 560N

SN75176B

R B

RE
DE

%120!1

D A

230

1: Please refer to the diagram on
the left when connecting multiple
CUBLOCs or CUTOUCH using
RS485.

Please use a 120 Ohm
terminating resistor for the device
at the end.

The two 560 Ohm Pull-Up and
Pull-Down resistors are required
for proper communication.

Set Until

SET UNTIL channel, packetlength, stopchar
channel : RS232 Channel. (0 to 3)
packetlength : Length of packet (0 to 255)
stopchar : Character to catch

This is a conditional statement you can put right after the ON RECV
command. Since the ON RECV command will cause an interrupt even when
there 1 byte of data received, this command Set Until can be used to set
when the interrupt will be called.

When the specified character is received or length of bytes received has
exceed the set packetlength value, then ON RECV will jump to the specified

interrupt routine. This way, you can control when you want to process
received data.

The packet length is set in case the specified character never arrives.

You MUST use this command with ON RECV command.
The following is an example:

Dim A(5) As Byte

Opencom 1,19200,0, 100, 50
On Recvl DATARECV_RTN

Set Until 1,99,"S"

As you can see above, the packet size is 99 bytes. In other words, if
character "S” is not received within 99 bytes, interrupt will occur.

SET UNTIL 1,5

The user may also just set the packet size and not set the character as
shown above.

The character may also be written in decimal as shown below:

SET UNTIL 1,100,4

231

Shiftin()

Variable = SHIFTIN(clock, data, mode, bitlength)

Variable : Variable to store results. (No String or Single)

Clock : Clock Port. (0 to 255)

Data : Data Port. (0 to 255)

Mode : 0 = LSB First (Least Significant Bit First), After Rising Edge
1 = MSB First (Most Significant Bit First), After Rising Edge
2 = LSB First (Least Significant Bit First), After Falling Edge
3 = MSB First (Most Significant Bit First), After Falling Edge
4 = LSB First (Least Significant Bit First), Before Rising Edge
5 = MSB First (Most Significant Bit First), Before Rising Edge

bitlength : Length of bits (1 to 16)

This command Shiftin() receives shift input. It uses 2 Ports, CLOCK and
DATA to communicate.

SHIFTIN and SHIFTOUT command can be used to communicate with SPI,
MIcrowire, and similar communication protocols. When using EEPROM,
ADC, or DAC that requires SPI communication, this command can be used.

After Rising After Falling Edge
Edge

Before Rising Edge

DIM A AS Byte
A = SHIFTIN(3,4,0,8)

\

Port 3 is Clock, Port 4 is Data,
' Mode 0, 8 bit received.

o JUUUHUUTL
DATA_| |_| I_

o 1t 1 0 0 1 0 0 =26H
LSB MSB

232

Shiftout

SHIFTOUT clock, data, mode, variable, bitlength
Clock : Clock Port. (0 to 255)
Data : Data Port. (0 to 255)
Mode : 0 = LSB First (Least Significant Bit First)
1 = MSB First (Most Significant Bit First)
2 = MSB First(Most Significant Bit First) , Create ACK (For 12C)
variable : Variable to store data (up to 65535)
bitlength : Bit Length (1 to 16)

This command Shiftout sends shift output. There are 3 modes. Mode 2 is
for 12C protocol. In I2C communication, there requires an acknowledgement
(ACK) signal for every 8 bits.

SHIFTOUT 3,4,0,&H55,8 ' Port 3 = Clock,
' Port 4 = Data, Mode = 0, send 0x55
' bitlength 8 bit,

DATA J_| |_| |_| |_|_

1 1 0 = 55H
LSB MSB

233

Steppulse

STEPPULSE Channel, Port, Freq, Qty
Channel : StepPulse Channel(0 or 1)
Port : Output Port
Freq : Output Frequency (Up to 15kHz)
Qty : # of pulses to output (up to 2147483647)

Output a set of number of pulses at a set frequency (up to 15kHz).
FREQOUT and PWM can also output pulses but user cannot control the
number of pulses and must use the PWM ports. With STEPPULSE, the user
can use any of the output ports and control the number of pulses at a
desired frequency.

Depending on the core module used, the number of available channels may
change. Please refer to the following table for detailed info:

Module Channels Channel PWM Channels that
cannot be used during use
of the command

CB220, 280, 290, |1 0 Channel 0: PWM 3, 4, 5
CT17XX
CB405 2 Oorl Channel 0: PWM 3, 4, 5

Channel 1: 6,7, 8

STEPPULSE uses the CUBLOC processor's PWM counters meaning when
using this command, PWM3, PWM4, and PWM5 cannot be used.

For CB405, when using Channel 1, PWM6, PWM7, and PWM8 cannot be
used. With CB2XX series, only Channel 0 may be used. With CB405, 2
Channels may be used simultaneously.

You can use any of the available output I/O ports on the CUBLOC. When
the STEPPULSE command is executed, that Port is automatically set to
ouput state. Even after the output of pulses have finished, the Port
remains in output state.

Output Frequency can be set from 1hz to 15000Hz or 15kHz.
Number of pulses can be set from 1 to 2147483647.

This command will run in the background independently, so the user may
use system resources for other tasks.

234

Stepstop

STEPSTOP Channel
Channel : StepPulse Channel (0 or 1)

STEPSTOP command will stop Pulse Output Channel immediately.

Stepstat()

Variable = STEPSTAT (Channel)
Variable : Variable to store results
Channel : StepPulse Channel(0 or 1)

STEPSTAT allows you to monitor how many pulses have been outputted
since the last STEPPULSE command.

STEPSTAT will return double the number of pulses remaining to be
outputted. If there are 500 pulses left to output, STEPSTAT will return 1000.

You can also check the output status of pulses using _F(56) or F56 in
Ladder Logic. When Channel 0 is outputting pulses, _F(56) will be logic
HIGH, 1. When Channel 1 is outputting pulses, _F(57) will be set to logic
HIGH, 1. If no pulses are outputting at the moment, the F registers will be
set to logic LOW, 0.

STEPPULSE CHO
F56 _

STEPPULSE CH1 4”_|-|_|-|_|-|_|-|_|-|_|-|_|-|_|-|_|-L

235

DEMO PROGRAM

& Cubloc Studio [[d:\cubloc_testisteppulse.cul | =13
Fle Edt Device Run Setup Help

ol @ XER M > mit B =

[F11 BASIC | [F2] LADDER | Ladder Mnemanic | Func Script |
Const Device = CEZ80

Do
Do While In(0)=0
Loop
Steppulse 0,5,5000,300
Do While In(0) = 1
Loop

Loop

Line: 5

When Port 0 switch is pressed, Port 5 or P5, will output 300 pulses at the
speed of 5kHz. The following is a circuit diagram for the above code:

CB280 5V

i

PO .—;

5KHz, 130 Pulses 15KHz, 300 Pulses

R AL

236

You can connect a stepper motor and stepper motor driver such as below to
control a stepper motor.

CONTROLLER

DRIVER

POWER GROUND
+24 TO 80 VDC

+5VDC

—
PWR GND
T DISABLE
SIGNAL GN| DIRECTION

STEP

5VDC
57 SIGNAL GN| CURRENT SET
CNW—— cunnenr ser

R

@lw > [>

pve
GND

Connect 3 I/Os of CUBLOC to the stepper motor driver. The DISABLE and
DIRECTION pins are only to enable and set the direction of the stepper
motor.

Please refer to your stepper motor specifications on how many pulses are
required to move the stepper motor one step.

237

Sys()
Variable = SYS(address)
Variable : Variable to store results. (No String or Single)

address : Address. (0 to 255)

Use command Sys() to read the status of RS232 buffers for both Channel 0
and 1.

o Address 0 : Actual bytes of sent data in send buffer after executing commands
PUT or PUTSTR.

o Address 1 : Actual bytes of sent data in receive buffer after executing
commands GET or GETSTR

° Address 5 : Timer value that increments every 10ms

° Address 6 : Data Memory (RAM) Address

SYS(5) will return the value of the system timer which increments every
10ms.

You may only read the value, not change it. The Timer will increment up to
65535 and then reset to 0. You can use this system timer for applications
requiring extra timer.

SYS(6) will return the current Data Memory Address. At power ON, the
Data Memory Address is reset to 0. After calling Sub routines or Functions,
the Data Memory Address will increment.

If will also increment when Sub routines or Functions are called within a Sub
routine or a function. Interrupts will also increment the Data Memory
Address. When the Data Memory Address exceeds the total Data Memory
available, it will cause Overflow. By using this function, you can avoid
Overflow. CB280 has maximum of 1948 bytes of Data Memory. Please
make sure to have at least 100 bytes of free Data Memory for safety.

A = Sys (6) 'Store the current Data Memory Address in A

238

Tadin()

Variable = TADIN(Channel)
Variable : Variable to store results. (No String or Single)
Channel : AD Channel Number (Not Port number, 0 to 15)

This command Tadin() is similar to Adin(). It returns the average of 10
ADIN converted value. When working under noisy environments, using
Tadin() could help in obtaining more precise results.

Tadin() is pre-made system'’s functions program

function tadin(num as byte) as integer
dim ii as integer, ta as long
ta =0
For ii = 0 To 9
ta = ta + Adin (num)
Next
TADIN = TA / 10
End Function

239

Time()

Variable = TIME (address)
Variable : Variable to store results. (No String or Single)
address : Address of time value (0 to 6)

CUBLOC module CB290 has an RTC chip internally. You can use Time()
and Timeset commands to set and return time values to and from the RTC.
Time information such as current time, day of the week and year can be set
to the RTC and read from it in real-time.

Time is kept alive even when module powers off through use of its backup
battery.

The following is a chart showing the addresses of the RTC and its
corresponding values.

* You cannot use these commands for CB220 and CB280 since they do not
have an RTC.

Addres | Value Range Bit Structure
s
0 Secon 0to 59 2" digit place 1t digit place
d
1 Minute | 0to59 2" digit place 1% digit place
2 Hour Oto23 2" digit place 1% digit place
3 Date 01 to 31 2" digit place 1% digit place
4 Day Oto6 1t digit
place
5 Month | 1to12 2" digit 1% digit place
6 Year 00 to 99 2" digit place 1% digit place

Please refer to the chart below for day of the week and its corresponding
numerical value:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

N |h(WIN|-=|O

240

System clock RTC

This command will allow you to use the system timer of CUBLOC as an RTC.
You can use TIME() and TIMESET functions to access the following
addresses:

Address Returning Value Range
10 Seconds 0to 59
11 Minutes 0 to 59
12 Hours 0 to 65535
13 Continuous 0 to 65535

Seconds

The Address 10 will increment its value by 1 every one second. When its
value becomes 60, Address 11 will increment its value by 1. When Address
11’s value becomes 60, Address 12 will increment its value by 1. When
Address 12’'s value becomes 65535, it will reset back to 0. At power ON, all
Addresses are set to 0. TIMESET command can be used to set the time at
beginning of user’s program.

The system clock RTC (Address 10 to 13) values are stored as raw binary
values, unlike the on-chip RTC on CB290 and CB405. There is no need for
the user to convert the values using BCD2BIN and BIN2BCD.

System Clock RTC uses the processor’s system clock and there can be slight
time difference (< 1%) during a 24 hour period.

Port Baud-Rate Parity DataBits gy ﬁ n
Dim i As Integer e e e e
Cls |

Timeset 10,58
Timeset 13,254
Do
i = Time (10)
Debug Goxy,0,0,decd4 i,Cr

Debug Goxy,0,1,dec4 Time (13)

Delay 100 Dlose I Fix light Side

Loop

Address 13 will increment its value by 1 every one second similar to
Address 10 except it will increment until 65535 before resetting to 0.
Address 10 through 13 must be used with CUBLOC STUDIO 2.0.X and
above versions.

241

Timeset

TIMESET address, value
address : Address of time value (0 to 6)
value : time value. (0 to 255)

Use TIMESET command to store new time values.

Address Value Range Bit Structure
0 Second | Oto59 2" digit place 1% digit place
1 Minute | O0to59 2™ digit place 1% digit place
2 Hour 0to 23 2nd digit | 1% digit place
place
3 Date 01to31 2nd digit | 1% digit place
place
4 Day 0to6 | 1% digit place
5 Month 1to12 10 1% digit place
6 Year 00 to 99 2" digit place 1% digit place

The following is an example code showing how to set new time, and
outputting current time to the debug window:

Const Device =CB290
Dim I As Byte

Timeset 0,0 'Sec
Timeset 1, &H32 'Min
Timeset 2, &H11 'Hour
Timeset 3, &H1 'Date
Timeset 4, &H5 'Day of the week
Timeset 5, &H6 'Month
Timeset 6, &H5 'Year
Do
I = Time (6)
Debug "Year ","200",Hex I, " "
I = Time (5)
Select Case I
Case 0

Debug "January"
Case 1

Debug "February"
Case 2

Debug "March"
Case 3

Debug "April"
Case 4

Debug "May"
Case 5

Debug "June"

242

Case 6

Debug "July"
Case 7

Debug "August"
Case 8

Debug "September"
Case 9

Debug "November"
Case 10

Debug "December"
End Select
I = Time(3) 'Print date
Debug " ", Hex2 I
Debug " "
I = Time (4)
Select Case I
Case 0

Debug "Sunday "
Case 1

Debug "Monday "
Case 2

Debug "Tuesday "
Case 3

Debug "Wednesday "
Case 4

Debug "Thursday "
Case 5

Debug "Friday "
Case 6

Debug "Saturday "
End Select
Debug cr

Debug Hex2 I,":"

I = Time (1)

Debug Hex2 I,":"

I = Time (0)

Debug Hex I,cr

Delay 1000
Loop

Debug Terminal Screenshot:

ort Baud Rate Parity Data Bits

I
[com =] [115200 | [wore] [&

@ T

ﬂ B RE

Friday

Friday

Friday

243

Udelay

UDELAY time
time : interval (1 to 65535)

A more specific delay function. Delay will start out at about 70 micro-
seconds. Every unit added will add 14 to 18 micro-seconds.

For example. Udelay 0 would be about 70 micro-seconds. Udelay 1 would
be about 82 to 84 micro-seconds. When Interrupt or LADDER code is being
executed at the same time, this delay function might be affected. During
this delay, BASIC interrupts are enabled and could cause further delay when
using this command.

To not get affected by LADDER or BASIC, we recommend stopping LADDER
and all interrupts before using this command.

v

Udelay 100 Delay about 1630 micro-seconds.

244

Usepin
Usepin I/O, In/Out, AliasName
I/0 : I/O Port Number. (0 to 255)
In/Out : “In” or “Out”
AliasName : Alias for the port (Optional)

This command Usepin is used to set the I/O Port status and alias nhame for

LADDER program.
Please use this command to set the I/O Ports before using them in LADDER.

Usepin 0, IN, START
Usepin 1,0UT,RELAY
Usepin 2, IN,BKEY

Usepin 3,0UT,MOTOR

245

Utmax

UTMAX variable
Variable : Variable for decrement. (No String or Single)

Increment the variable by 1. When maximum is reached, the variable is no
longer incremented. The Maximum here refers to the variable’s maximum

value. In the case with Byte, the maximum would be 255 and in the case
with Integer, the maximum would be 65535.

Utmax A ' Increment A by 1

246

Wait
Wait time
Time : interval variable or constant (mS unit) 10 to 2147483640

Wait for the specified time in milliseconds.

This command will delay using the system clock. This delay function is
accurate to 10ms units.

Wait 10 ' Delay 10 ms.
Wait 15 ' Delay 10 ms.
Wait 110 ' Delay 110 ms.
Wait 115 ' Delay 110 ms.

Use with CUBLOC STUDIO 2.0.H and above.

247

WaitTx

WAITTX channel
channel : RS232Channel. (0 to 3)

This command WaitTx will wait until the send buffer is flushed.
This one command accomplishes same functions as shown below:

OPENCOM 1,19200,0, 100, 50
PUTSTR 1,“ILOVEYOU”,CR

DO WHILE BFREE(1,1)<49 ' Wait until all data have been sent

LOOP

By using WaitTx, the process of sending data becomes simpler as shown
below:

OPENCOM 1,19200,0, 100, 50
PUTSTR 1,“ILOVEYOU”,CR

WAITTX 1 ' Wait until all data have been sent

When this command is waiting, other interrupts may be called. In other
words, this command will not affect other parts of the CUBLOC system.

248

Chapter 7
CUBLOC
Display
Library

With CUBLOC, you can easily control LCD through Comfile LCD products
such as the GHLCD or CLCD. Drawing lines, circles, boxes and printing
strings can be done with single line of code. Below are some of our LCD
specifications that will aid the user in understanding the basics.

Character LCD : CLCD

CLCD is a blue-screen LCD that can print characters and numbers. A
control board that receives serial data and outputs to the LCD is attached to
the back of the CLCD.

o X
— a5t 97
Lk

|
|H[H|H‘ifw°34 OOV |
o
L 72D footrit a0
¢ e X

CLCD receives data through the I2C communication protocol.

250

Set Display

SET DISPLAY type, method, baud, buffersize

type 1 0=RS232LCD, 1= GHB3224, 2=CLCD

Method : Communication Method 0=CuNET, 1=RS232 CH1

baud : Slave Address when Method = 0
Baudrate when Method = 1
Buffersize : Send Buffer Size (up to 128)

This command SET DISPLAY can be used to set the settings for display.

can only be used once.
here.

Please choose the type of LCD, the method, baud rate, and buffer size.

CLCD will use Method 0.

It

All displays will communicate using method set

Method = 1 (RS232 Channel 1)

Use RS232 Channel 1 for display. For the CB220, port 11(TX) is used.

CHANNEL 0
TX «——sout O
RX—— sin

ATN [

vss O

PO [
P1 O
P2 [
P3 [
P4 [
P5 O
P6 [
P7 O

240 VIN
2301 vss
221 RES
2103 vDbD

190 P14

1801

1
2
3
4
5 203 P15
6
7
8

P13
D p1z CHANNEL1

9 160 P11 —— TX
10 15 P10 «—— RX
" 1403 P9
12 1303 P8

For the CB280, pin 33 or pin 49 can be used.
signal and 33 outputs 5V level signal.

CHANNEL 0

CHANNEL 1

Pin 49 outputs 12V level

CHANNEL 1

TX +— sout

10 @17
20 @138
30 @19
4@ @20
50 @21
60 @22
70 @23
8@ @24
9@ @25
100 @26
10 @27
120 @28
130 @29
140 @30
150 @31
160 @32

VoD
vss
RES
NIC
Pi6
P17
P1

8
P19

TX 4 X1
RX — RX1
AVDD

NiC

P24

P25

P26

PWM3 P27

P20 » PWM4 P47
P21 > PWM5 P45

P22
P23
25
P14
P13
P12

P45
P44
P43
P42
P41
P40

330 @40
3@ @50
350 @51
60 @52
70 @5
380 @54
390 @55
400 @56
1o @57
20 @58
30 @50
4@ @60
450 @61
6@ @62
7@ @63
©0 @6t

TTLTXT ——>
TTLRX1 4—
AVREF

Pag

P31

P30

P29

P28

P32

P33

P34

P35

P36

P37

P38

P39

251

The possible Baud Rate settings are as follows:

2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800,
115200, 230400.

The recommended buffer size is around 50 to 128. If the send buffer size

too small, data will not be displayed correctly. If the send buffer size is too
big, it will take up that much data memory space.

SET DISPLAY 0,1,19200,50 ' Set Baud rate to 19200 and
' send buffer to 50..

SET DISPLAY command can only be used once at the beginning of the
program.

Method = 0 (Use CuNET)

CuNET is a type of I12C protocol that is part of CUBLOC.
For CB220 , use I/O Port 8 (Clock) and Port 9 (Data).

souT O 1 240 VIN

SIN O 2 23] vss

ATN O 3 221 RES

vss 04 211 VDD
PO 5 2001 P15
P16 190 P14
P27 1800 P13
P3 O 8 170 P12
P4 9 1600 P11
P5 [10 15[P10
P6 [11 1400 P9 —SDA
P7 O 12 130 P8 —SCL

CuNET can be used with displays that support it. CuNET does not used
Baud Rate Settings, it uses slave address settings instead.

SET DISPLAY 2,0,1,50 ‘CLCD, Slave address of 1, Send buffer of 50

Although multiple devices can be connected to the I2c, for displays, only
ONE device may be attached.

252

Cls

Initialize the LCD and clear all layers.
(Set a little bit of delay for the LCD to initialize.)

CLS
DELAY 200

Csron

Turn Cursor ON. (Default if OFF).

Csroff

Turn Cursor OFF.

Locate

LOCATE x,y
X : X-axis position of LCD
Y : Y-axis position of LCD

Set the position of the text layer. After the CLS command, the LCD
defaults to position 0,0.

LOCATE 1,1 ' Move cursor to 1,1
PRINT “COMFILE”

Print

PRINT String/Variable
String : String
Variable : When using variables/constants,

String representation of the variable/constant will be printed.
Print characters on the text layer. To print characters to the graphic layer,

GPRINT command can be used.

LOCATE 1,1 ' Move to position 1,1
PRINT “COMFILE”,DEC I

253

CLCD Module

On the back of the CLCD, a control board is attached. This control board
receives CuNET signal and prints on the CLCD.

DIP S/W

v

@E@

CUNET RS232 5V RS232

CLCD can also communicate using RS232. There are two RS232 connector,
one for 3-pin 5V level signals and the other for 4-pin +/- 12V level signals.

CUNET RS232 5V RS232

Use the CLCD DIP switch to set the I2C slave address. The 4™ DIP switch
is not used.

DIP Switch RS232 Baud rate I12C Slave
Address
12 3
°”E 2400 0
12 3
' am"] 4800 1
o 12 3
E 9600 2
o 12 3
E 19200 3
o 12 3
E 28800 4
12 3
g 38400 5
12 3
o 57600 6
12 3
°“E 115200 7

254

One of CUNET or RS232 communication can be used. If both are
connected, please make sure when one of them is working, other is not.

The following is CLCD command table:

Command Example Byte Execution | Explanation
(hex) S Time

ESC’'C’ 1B 43 2 15mS Clear screen. A 15ms delay
must be given after this
command.

ESC'S’ 1B 53 2 Cursor ON (Default)

ESC's’ 1B 73 2 Cursor OFF

ESC'B’ 1B 42 2 Backlight ON (Default)

ESC'b’ 1B 62 2 Backlight OFF

ESC‘H’ 1B 48 2 LOCATE 0,0

ESC'L'XY 1B4Cxxyy | 4 100 uS Change the position of the
cursor.

ESC 1B 44 Code | 11 Character code 8 through 15 is

‘D’ 8byte 8bytes 8 custom characters that the
user is free to create and use.
This command will store the
bitmap in this custom
character memory area.
Code : 8-15 Character code

1 01 1 Move to beginning of row 1

2 02 1 Move to beginning of row 2

3 03 1 Move to beginning of row 3

4 04 1 Move to beginning of row 4

If received data is not a command, the CLCD will display it on the screen.

When connecting RS232, maximum baud rate settings for 12V(4-pin) level
For TTL 5V level (3-pin), up to 115200bps can be used.

is 38400bps.

The following is an example code when using the CB280 to connect to the

CLCD module through CUNET protocol.

CLCD will display increment of numbers.

Const Device = Cb280
Set Display 2,0,1,50

Dim i As Integer
Delay 100

Cls

Delay 200

When you execute this program,

Set the SLAVE ADDRESS to 1 by
manipulating the DIP switch.

' Delay for start up of CLCD

' Delay for initializing and clearing CLCD

255

* The slave address of CLCD and SET DISPLAY command should match.

256

GHLCD Graphic LCD :
GHB3224 Series

GHLCD is able to display characters and graphic on 3 different layers.
Unlike our CLCD, the GHLCD supports many different commands for easy
drawing of lines, circles, and boxes. There are also commands such as
copy, cut, paste, and a graphic software CuCanvas for downloading BMP
images to the GHLCD.

The GHB3224 model is a black and white STN type LCD with display area of
320 by 240 pixels. There are 3 layers. The first layer is for text and the
other 2 layers can be used for graphics.

* GHLCD Library is 99% compatible with CUTOUCH modules.

Layer1

Layer2 I
Layer3 I

257

The text layer size is 40x15 as you can see in the below grid. Each
character size is 8 by 16.

111111111122222222223333333333
0123456789012345678901234567890123456789

O©CoONOOOUPAWN-O0O

For graphics, 320 by 240 pixels are provided for the GHLCD series.

0 319

239

Please note that graphics or characters will be printed in random places
when trying to print outside the specified range of pixels shown here.

With the graphic layer, you have a complete control over where to display
graphics over the 320 x 240 pixels.

258

With the text layer, you can display text over the specified text pixels of 40
by 15.

We recommend to draw the background in the graphic layer and to print
characters in the text layer.

GHB3224C supports CuNET.
GHB3224C model support CuUNET. When using CUBLOC, please use the
GHB3224C model as you have one more RS232 port free to use for

something else.

GHB3224C CuNET setup settings:

Set Display 1,0,1,50 ‘GHLCD, CUNET, Set Address to 1,
‘Send buffer to 50..

*Warning : CUNET Slave address and Display Slave address must match.
Display Slave address can be set with the DIP switch.

259

Cls

CLS
Initialize the LCD and clear all layers.
(Set a little bit of delay for the LCD to initialize.)

CLS
DELAY 200

Clear

CLEAR layer
Erase the specified layer(s).

v

CLEAR 1 Erase (Text) Layer 1.
CLEAR 2 ' Erase (Graphic) Layer 2.
CLEAR 0 ' Erase all layers. Same as CLS.

Csron

CSRON
Turn Cursor ON. (Default if OFF).

Csroff

CSROFF
Turn Cursor OFF.

Locate

LOCATE x,y
X : X-axis position of LCD
Y : Y-axis position of LCD

Set the position of the text layer. After the CLS command, the LCD
defaults to position 0,0.

LOCATE 1,1 ' Move cursor to 1,1
PRINT “COMFILE”

260

Print

PRINT String / Variable
String : String
Variable : When using variables/constants,
String representation of the variable/constant will be printed.

Print characters on the text layer. To print characters to the graphic layer,
GPRINT command can be used.

LOCATE 1,1 ' Move to position 1,1
PRINT “COMFILE”,DEC I

PRINT

Layer

LAYER layerimode, layer2 mode, layer3 mode
Layerimode : Set Layer 1 mode (0=off, 1=on, 2=flash)
Layer2mode : Set Layer 2 mode (0=off, 1=on, 2=flash)
Layer3mode : Set Layer 3 mode (0=off, 1=on, 2=flash)

Set the mode of the specified layer. The flash mode will flash the layer at
16Hz. Layer 1 and 2 are ON and Layer 3 if OFF when LCD is first turned
ON.

Use this command to hide the process of drawing lines, circles, and etc...

Set the layer OFF when drawing and set the layer ON, when you are
finished drawing everything.

261

GLayer

GLAYER layernumber
Layernumber : Set the graphic layer. (0,1,2)

There are 3 layers of GHLCD GHB3224 series. One of the layers may be
used as graphic layer. Graphic commands such as LINE, CIRLCLE, and
BOX can be used for the layer set a the graphic layer. Normally, Layer 1 is
used for text while Layer 2 is used for graphics. Layers 2 and 3 have slight
different characteristics. We recommend Layer 2 for graphics that require
a lot of erasing.

Layer 1 can also be used as graphic layer. In this case, you can even erase
text characters with graphic commands. To set Layer 3 to graphic layer,
use command LAYER to turn Layer 3 ON to use Layer 3.

Overlay
OVERLAY overmode
overmode : Logical Mode (0=or, 1=and, 2=xor)

This command Overlay determines the logic mode between Layer 1 and
Layer 2.

Layer 1 is text and Layer 2 is graphics.

By using this command, the user can decided what to do when Layer 1 and
Layer 2 are displaying on the same position. The default is XOR, which will
invert when Layer 1 and Layer 2 print to the same positions. To no invert,
you can set this to OR state.

262

Contrast

CONTRAST value
value : Contrast Value (1 to 1024)

Control the contrast of the LCD with CONTRAST command.

Contrast 450

Light
LIGHT value
value : Back light 0=OFF, 1=ON

Turn back light ON and OFF. Default is ON.

263

Font

FONT fontsize, efontwidth
fontsize : 0 to 8 Font Selection
efontwidth : 0 = fixed width, 1=variable width

GHB3224 has 4 different size and 2 different width.

Font Type Font

0,1 10x 16
2,3,4,5 16 x 16
6,7 24 x 24
8 48 x 48

Const Device = CB290

Cls
Delay 100
Font 0,0

Glocate 10,10

GPrint "FONT 0,0 :ABCDEFGHIJKLMN"
Font 2,0

Glocate 10,30

GPrint "FONT 2,0 :ABCDEFGHIJKLMN"
Font 6,0

Glocate 10,50

GPrint "FONT 6,0 :ABCDEFGHIJKLMN"
Font 8,0

Glocate 10,72

GPrint "FONT 8,0 "

Font 0,1

Glocate 10,120

GPrint "FONT 0,1 :ABCDEFGHIJKLMN"
Font 2,1

Glocate 10,140

GPrint "FONT 2,1 :ABCDEFGHIJKLMN"
Font 6,1

Glocate 10,160

GPrint "FONT 6,1 :ABCDEFGHIJ"
Font 8,1

Glocate 10,185

GPrint "FONT 8,1 "

264

Style

STYLE bold, inverse, underline
bold : 0=Normal, 2 or 3 =Bold
inverse : 0=Normal, 1=Inverse
underline : 0=Normal, 1=Underline

You can use STYLE command to add Bold,
Inverse, or Underline to your fonts. /'MAX BoLD

MAX £— INVERSE

\MAX UNDERLINE

265

Cmode
CMODE value
value : 0=BOX type, 1=Underline type

Choose the type of cursor to use. Default
is the Underline type. |

Line

LINE x1,y1, x2, y2
Draw a line from x1,y1 to x2,y2.

LINE 10,20,100,120 ' Draw line

Lineto

LINETO x,y
Draw line from the last point to x,y.

LINETO 200,50

\

Continue drawing line from the last point

266

0:BOX Type

1:Under Line Type

Box

BOX x1,y1, x2, y2

Draw a box with diagonal positions of X1,Y1 and
X2,Y2.

BOX 10,20,200,100 ' Draw box

Boxclear

BOXCLEAR x1, y1, x2, y2

Clear the box with diagonal positions of X1,Y1
and X2,Y2.

BOXCLEAR 10,20,200,100 ' Clear box '

Boxfill

BOXFILL x1, y1, x2, y2,logic
logic : 0=OR, 1=AND, 2=XOR

Draw a box with diagonal positions of X1,Y1 and
X2,Y2 and fill according to specified logic.

0 OR will display all overlapped areas. -
1 AND will display only the overlapped areas.

2 XOR will display the overlapped areas
inversed.

BOXFILL 10,20,200,100,0 ' Draw and fill box

267

Circle

CIRCLE x,y,r

Draw a circle with center of circle at x,y, and r

as radius. ,

CIRCLE 200,100,50 ‘ Draw circle

Circlefill

CIRCLEFILL x,y,r
Draw a circle and fill with center of circle at

x,y, and r as radius.

CIRCLEFILL 200,100,50
' Draw and fill circle

268

Ellipse
ELLIPSE x,y,r1,r2
Draw an ellipse with center of circle at x,y, and

rl as horizontal radius and r2 as vertical radius.

ELLIPSE 200,100,100,50 ' Draw ellipse

Elfill

ELFILL x,y,r1,r2
Draw an ellipse and fill with center of circle at
x,y, and rl as horizontal radius and r2 as

vertical radius.

ELFILL 200,100,100,50
' Draw and fill ellipse .

269

Glocate

GLOCATE x,y

Locate new position for the graphic layer.
GLOCATE 128,32 '

Gprint “CUTOUCH”

locate new position

Gprint

GPRINT string

Print String on the graphic layer. You have
more freedom in the graphic layer as you can
use GLOCATE to specify exact position. Then
you can use this command GPRINT to print a
string at that location.

GPRINT “CUBLOC IS FASTER”,CR

\

Print String and go to next line(CR)

270

CUTOUCH

CUBLOC IS FASTER

Dprint

DPRINT string

DPRINT is similar to GPRINT except it will over-write the current graphics.

DPRINT “WE LOVE CUBLOC”,CR ' Print String and go to next line

0 319

WE LOVE CUBLOC

239

This command will allow a much faster printing speed as it will simply
overwrite the background. When trying to display animations or numbers

that change rapidly such as moving ball or current time, Dprint will allow
smooth transitions.

Dprint can only be used with X-Axis that is multiple of 8.
For example, you can use Glocate 8,2 or Glocate 16,101.

271

Offset

OFFSET x,y

You can set offset for the printed strings on the graphic layer. The default
value is 0. You can control either the x or the y axis offsets.

CUBLOC IS FUN
COMFILE TECHNOLOGY

239

OFFSET 3,3 ' Set x and y offset to 3.

0 319

CUBLOC IS FUN
COMFILE TECHNOLOGY

239

After the command, the strings will automatically adjust to the new offsets.

272

Pset

PSET x,y
Place a dot on x,y

PSET 200,100 ' Place a dot

Color

COLOR value
Set the color of LCD. 1 is black and 0 is white. Default value is 0.

\

COLOR 0 Set color to 0.

Linestyle

LINESTYLE value

Set line style using this command. You can make dotted lines by increasing
the value. The default value is 0, a straight line.

LINESTYLE 1 ' Use dotted lines

Dotsize

DOTSIZE value, style

Set the dot size. Value is the size of the dot and style can either be 0 for
rectangular or 1 for circular dot.

DOTSIZE 1,1 ' Set dot size to 1 and dot type to circle

273

Paint

PAINT X,y
Fill the enclosed area within position x,y.

PAINT 100,100 ' Fill the enclosed area
within 100,100

Arc

ARC x,y, r, start, end
Draw an arc with x and y as the center.
Start and end are the values between 0 and

360 degrees.

ARC 200,60, 100, 10, 20 ' Draw an arc
from 10 to 20 degrees.

274

Defchr

DEFCHR code, data
Code : Custom character code (&hdb30 to &hdbff)

Data : 32byte bitmap data

Create custom characters using this code. A character of size 16 by 16 can
be created and stored in the LCD memory. Then the character can be used
just like any other regular character using the command PRINT or GPRINT,
DPRINT. Total of 207 custom characters can be stored in the memory.

At power off, the characters are not preserved.

DEFCHR &HDB30, SHAA, &§HAA, SHAA, §HAA, §HAA, §HAA, SHAR, SHAA,
GHAR, §HAA, GHAA, §H55, ¢HAA, §HAA, GHAR, §HAA,
GHAR, §HAA, GHAA, §HAA, GHAA, §HAA, GHAR, §HAA,
SHAA, &HAA, &HAA, §HARA, ¢HAA, §HAA, &HAA, §HAA

print CHR (&HDB30)

Bmp

BMP X, y, filenumber, layer
X, y : x,y position to display BMP
Filenumber : BMP File number
Layer : Layer to display BMP

GHB3224has FLASH memory to store BMP files. Use the BMP Downloader
to download BMP files. Once BMP files are stored in the LCD, you can
simply use this command BMP to print to the LCD.

*The GHB3224 has 102,400 bytes of Flash memory space to store BMP files.
You can store about 10 of 320x240 full screen size files.

275

Graphic Data PUSH, POP Commands

On the GHB3224 series, there is a separate stack for storing graphic data.
You can push and pop current screen or part of the current screen to this
stack. By storing to the stack, you can easily implement a copy, cut, and
paste feature, similar to text editors.

GPUSH and GPOP can be used for precise cutting of the current screen while
HPUSH and HPOP can be used for high speed push and pop.

The stack is a LIFO (Last in First out) that will pop the last data that was
pushed.

There is about 32KB of Stack memory. You can store about 3 to 4 full
screens. Please refer to the picture below for how the stack works:

O
- ©
0
0000 ©

276

Gpush

GPUSH x1, y1, x2, y2, layer
Push x1,y1 to x2, y2 box to the stack.

GPUSH 10,20,200,100,2

Gpop
GPOP x, y, layer, logic
logic =0 : OR
logic =1 : AND
logic =2 : XOR
logic =3 : Clear screen then pop

Pop from stack and display on the specified layer at position x,y with
specified logic.

GPOP 120,20,2,0

277

Gpaste
GPASTE X, y, layer, logic
logic =0 : OR
logic =1 : AND
logic =2 : XOR
logic =3 : Clear screen then pop

Paste from stack and display on the specified layer at position x,y with
specified logic.

This is exact same command as GPOP except it will not pop from stack.
Therefore, you can use this command if there is further need to use the
current item in stack.

278

Hpush

HPUSH x1, y1, x2, y2, layer

HPUSH, HPOP, HPASTE commands are similar to GPUSH, GPOP, and
GPASTE except that the columns can only be multiple of 8 as shown below:
*The 320 pixels have been divided by 8, there are only 40 columns, each 8
pixels wide.

1 222222222
1 123456789

11111111112
012345678901234567890

239

HPUSH 6,20,12,100,2
Hpop
HPOP x, y, layer
Same as GPOP, except x value is 0 to 39.

HPOP 10,20,2,0

Hpaste

Hpaste x, y, layer,

Same as GPASTE except x is between 0 and 39.

279

GHB3224C DIP Switch Settings

On the back of the GHB3224B, there are DIP switches to set the RS232

baud rate and I2Cslave address.

used.

Please choose one communication method to use at a single time.

DIP Switch RS232 Baud Rate 12C Slave
Address
12 3
ON
EEE 2400 0
12 3
ON [
- 4800 1
12 3
oN] MW
EEm 9600 2
12 3
ON/ HHE
- 19200 3
12 3
ON|H
. 28800 4
12 3
ONH N
- 38400 5
12 3
ONH N
- 57600 6
12 3
oNEEmE 115200 7

CuNET or RS232)

280

GHB3224 DIP Switch number 4 is not

(Either

Seven Segment Display
CSG Series

The seven segment display can be used to display numbers. 8 LEDs are
used for most seven segment displays as shown below.

To incorporate a seven segment display into products, in the past, people
had to create a dynamic display method that is very complicated for the
average user. To simplify the matter, we have developed an easy to use
seven segment display called the CSG module.

[si=luln

[

CSG-4S © 6 ® © COMFILE

As you can see above, the front has 4 digit seven segment display and the
back has two I2C connections. After connecting the CSG to CUBLOC, you
can use the commands in the below table to easily and quickly display
numbers you want.

Command Explanation Example Usage
CSGDEC SlaveAdr, Data Output decimal value. CSGDECO, I
CSGHEX SlaveAdr, Data Output hex as decimal value CSGHEX 0,1
CSGNPUT SlaveAdr, Digit, | Control digit places CSGNPUT 0,0,8
Data
CSGXPUT SlaveAdr, Digit, | Control digit places and output data | CSGNPUT 0,0,9
Data as binary number

281

Csgdec

Use CSGDEC command to print decimal values to the SGN.

Const Device = cb280

Set I2c 9,8 ‘€-- must be used before csgdec command
b=8
Do

Csgdec 0,b ‘é-- csgdec command

Delay 100

b=Db+1

If b=0 Then b=200
Loop

To use CSG commands,
SET 12C command must be used beforehand.

Slave Address

Set the slave address of the CSG module at the back. 0 to 3 can be set. A
total of 4 addresses can be set per 12C line pair.

CSG Dip switch:

DIP Switch Slave Address
12 3

ON |
H B 0
12 3

ON/ HHNE 1
|
12 3

ON |
HE 2
12 3

ON|H

1 3

282

To display more than 4 digits, use 2 CSG modules like shown below and set
different slave addresses for each.

AOQooo0o0oo
o1, 1. 1. 3.1 1. 3.

Csgnput

CSGNPUT slaveadr, digit, data
slaveadr : CSG module Slave Address
digit : Digit position (0 to 3)
data : Data (&h30 to &h39, &h41 to &h46)

&h30 is print “0”
&h31 is print “1”

&h39 is print "9”
&h41 is Print “A”
&h42 is Print “b”
&h46 is Print “F”

Display the desired number to the specified CSG module. DATA most
upper bit is for setting the DOT of the CSG.

You can use &H30 to 39 and &H41 to &H46 only.

283

Csgxput

CSGXPUT slaveadr, digit, data
slaveadr : CSG module Slave Address
digit : Position (0 to 3)
data : Data

Set the LED ON at the specified position. When displaying anything other
than numbers, this command can be used to control each position of the

LED itself.
A
[]
F, ,B
G
—
I
oy
D
Bit 7 6 5 4 3 2 1 0
LED H G F E D C A
To print character ‘'L’, positions D, E, and F must be turned ON. Since the

bit value would be 0011 1000, in hex that's &H38 or 0x38.
CSGXPUT 0, 0, &H38 would be the exact command to use.

Csgdec

CSGDEC slaveadr, data
slaveadr : CSG Slave Address
data : Data

Print decimal value to the CSG.

Csghex

CSGHEX slaveadr, data
slaveadr : CSG Slave Address
data : Data

Print hexadecimal value to the CSG.

284

Chapter 8
Interface

Input/Output Circuits

How to connect LEDs
Please connect the LED as shown below and output HIGH to the connected
I/0 port to turn the LED ON.

330 ohm
. CuBLOC 1/0 Port

How to connect push-switches

Please connect the push-switch as shown below and set the connected 1/O
port to INPUT mode. When the switches in pressed, CUBLOC will read HIGH
and when LOW otherwise.

T~
CuBLOC I/0O Port

10Kohm

How to connect Volume knob
Please connect the Volume knob as shown below to a A/D I/O port and use
ADIN command to read the input value of the Volume knob.

10Kkohm s4¢——O CuBLOC 1/0O Port

The CUBLOC core module uses 5V power. When using larger voltage,
please use appropriate voltage converter or regulator.

286

How to Connect a Output Relay.

The following diagram shows how to connect a output relay to a CUBLOC
I/O port. A photocoupler can be used to separate 24V and 5V and protect
against noise. Noise coming from 24V side will not affect the 5V side and
vice versa.

CuBLOC
1/0 Port

How to Connect a NPN TR Output

This circuit diagram shows a NPN TR photocoupler separating 5V from the
LOAD.

24V +
CuBLOC
+
1/0 Port p %
gy 4.7K ¢ T —

24V-

How to Connect DC24V Input

Use a double polarity photocoupler to convert 24V signals to 5V. When
input is received, CUBLOC will receive a HIGH(5V) signal.

22K (1W)

CuBLOC 01UF 47K

1/0 Port O__L_/\N\,__[
e T otk

°
22K KPC714
5V

287

How to connect AD Input

To connect an AD input to the CB280, AVDD and AVREF pins must be
connected to 5V. AVDD supplies power to the ADC of CUBLOC and AVREF
is the reference voltage that the ADC uses to do conversions. If 5V is
inputted to AVREF pin, 0 to 5V input voltage will be converted and if 3V is
inputted to AVREF pin, 0 to 3V input voltage will be converted.

DC5V
DC5V
W DC5V
souT | 1@ @17 vbD X1 |33 @ @ 49 | TTLTX1
SIN| 2@ @18 vss RX1 [34 @ @ 50 | TTLRX1
ATN | 3@ @ 19 RES AVDD L35 @ @ 51 | AVREF
ves | 4@ @ 20 N/C N/C 36 @ @ 52 | P48
PO| 5@ @21 P16 P24 37 @ @ 53 | P31
P1|6® @22 P17 P25 38 @ @ 54 | P30
P2| 7@ @23 P18 P26 39 @ @ 55 | P29
P3| 3@ @24 P19 P27 40 @ @ 56 | P28
P4| 9@ @25 P20 P47 41 @ @ 57 | P32
P5[10@® @ 26 P21 P46 42 @ @ 58 | P33
P6 |11® @27 P22 P45 43 @ @ 59 | P34
P7 |12@® @ 28 P23 P44 44 @ @ 60 | P35
P8 [13@ @29 P15 P43 45 @ @ 61 | P36
P9 |14@® @ 30 P14 P42 46 @ @ 62 | P37
P10 [15@® @ 31 P13 P41 47 @ @ 63 | P38
P11 [16 ® @ 32 P12 P40 48 @ @ 64 | P39

The CB220’s AVDD and AVREF are internally connected to 5V.
The following is the simplest type of AD input circuit using a Volume knob.

When you turn the knob, the input will be converted by the CUBLOC ADC to
a value from 0 to 1023

5V

10Kkohm s4—O CUBLOC 1/0 Pori

288

The following is AD input that receives 4 to 20mA of input. You can use a
230 Ohm and 20 Ohm resistors in serial instead of a 250 Ohm resistor.

4~20mA CUBLOC /O Pori
2500hm

For O to 10V of input, use 2 resistors as shown below. This is also called a
voltage divider.

1Kohm
0~10V CUBLOC |/0 Port

1Kohm

How to use PWM as Digital-to-Analog converter

CUBLOC has 6 PWM ports. If you use the simple circuit shown below, you
can make a D/A converter.

10Kohm

0~5V
OUTPUT CUBLOC PWM Port
47uF

i

289

RS232 HOWTO

Pin 1 and 2 are for connecting to the +/- 12V signals of RS232 Channel 0
(Download port). The CB220 model has ports 10 and 11 for RS232

Channel 1 5V signals.

+12V

-12v

g1 ~ah i
2 23 vss
Os 220 RES
=K} 210 voD
Os 2000 P15
= 190 P14
=g 180 P13
gs 170 P12
go 160 P11 —— v
g1o 150 P10 ¢——
g 140 P9 GND
g2 130 P8

For CB280, there is are 5V and 12V signals for RS232C Channel 1.

HZVM
-12v.

+12V
+— sout
—> sn
ATN
-12v vss

PO
P
P2
3
Pa
Ps
Pe
P7
Pe
P

P10

P11

The reason for two 5V and

10 @17
20 @15
30 @1
10 @2
50 @2
50 @2
70 ®23
50 @20
90 ®25
100 @25
10 @27
120 @28
130 @29
140 @30
150 @31
150 @32

oo | xt s @ @ 4 | i —» +5V
Ves v rxi 5@ @ 0 | i e—
AVREF GND

pas
P31
P30
P29
P28
P2
P33
P34
P35
P36
P37
P38
P12 Pa0 45 @ @ 64 | P39

12v

signal level exist is as follows. Since PC

uses RS232 12V signals, we will need to make a separate circuit for
converting to 5V signals for CUBLOC.

But since there are 12V signal outputs, the user doesn't have to worry
about making a separate circuit.
For downloading to CUBLOC, it is very easy since you can connect a PC
cable directly to pins 1 and 2.
signals are provided for RS232 Channel 1.

290

For RS422 and RS485 conversions, 5V

For CB280, 12V signals are provided for RS232 communication. Please be
careful to use only one of the 5V or 12V connections at one time.

The following shows a simple circuit diagram of RS232 conversion from 12V
to 5V signal using a MAX232 chip.

PC
RS232C
Port
5V
e
0.1uF 2
;3
owF =1 4 ¢
— 15 N 12 [I—» cuBLOC RX
e '—_Ef 0 1 [Je¢—— CuBLOC TX
- N 0H
Os 9

MAX232 is a very useful chip for converting between 5V and 12V of RS232
signals.

@ vAX232 [116
115

10

2 [

3 1 14 Rrs2s2c ouTPUT
4] 13 Rs232CINPUT
5 [E:I 12 TTLOUTPUT
6 [111 TiLmeuT
70

8 [

(ﬁ 110 Tineur
I'>O :| 9 TTLOUTPUT

RS232C OUTPUT

RS232C INPUT

291

CuNET

CuNET is a communication protocol for CUBLOC peripherals such as CLCD,
GHLCD, CSG modules. With just 2 pins, SCL and SDA, you can
communicate with up to 127 devices simultaneously. = CuNET uses
CUBLOC's I2C protocol to communicate.

To use CuNET, please make sure to add pull up resistors(4.7K each) to the
SCL and SDA lines. SCL and SDA pins are in a open-collector style,
protecting against outside noise. It automatically removes pulses less than
50ns.

sSouT O 1 1 VIN
SIN [2 23[1 vss -9
ATN O 3 22[1 RES
vss O 4 213 vbDD
Po 5 20 P15 1 GND
P1 O6 190 P14 2 5V (RESET)
P2 O7 183 P13 SCL
P3 Os 173 P12 3 SDA
P4 o 161 P11 4
P5] 10 151 P10
P6 [11 14 P9
P7 O 12 131 P8

4.7Kohm x 2

For using CuNET, the 4 pin connector’s pin 1 must be connected to ground,
pin 2 to 5V or RESET, pin 3 to SCL, and pin 4 to SDA. This 4 pin connector
will be used as standard for CUNET communications.

When using CuNET, the CUBLOC core module will act as the “master” and
the device connected to as the “slave”. All CuNET devices will respond to
CUBLOC while in idle state.

CuNET operates in a Master-Slave mode. Slave cannot start
communication with the master. For this type of communication, you must
use PAD communication. PAD can receive inputs from other devices.
Please refer to ON PAD command for detailed information.

292

CuNET device’s connector’s pin 2 connects to 5V of the main module:

Power

GND
5V
SCL
SDA

MAIN

|1 lbh'
L
a
<

CuNET Module

CuNET device’s connector’s pin 2 connects to RESET of the main module
when power is supplied to the CUNET device. (Active LOW to RESET

causes CUBLOC to reset)

anp [[®] ® | GND
RESET ||®- ® | RESET
scL ||e o |scL
soA [le e | SDA

CuNET Module

MAIN

CuNET lines can be used within 3 feet. For longer communications(up to
about 1mile), you can use Phillips 12C Long distance interface chip. (P82B96

or P82B715)

293

CUBLOC STUDY BOARD Circuit

Diagram

Study board is especially for first timers and developers of CUBLOC.
Simple experiments including switches, LED, RS232 communication, I2C,

piezo, ADC, toggle switches, and LCDs are included.

Communication

protocol CuNET, I2C, and LCD connections are also provided.

Reset Switch

e

Download Port

(1) R$232 CH1
Contact (2) CB280 TX/RX

Contact

Contact
(LED, S/Ws)

O oooooag

£ R
@
:wswc STUDY BOARD 1 B

(3)ALCD
Connector

1/0 Ports
Contact

CuNET

(4)CuNET
Jumper

Bread Board

DC 9V INPUT

RS232 CHANNEL 1

POWER S/W

When 9V is inputted, the 5V regulator inside the Study Board will

automatically provide 5V to the module and peripherals.
For normal operation, please use a 9V

polarity can be used either way.
adaptor with at least 200mA of current.

294

DC Adaptor

Cubloc Study board 1 Schematic

5V(VDD)

/// GN%\;TSS) ////
/ TRV n

N
V.

R
@
m
m

ﬁ

UIUUUOUOUTUUooIUoT)

CB220

Cae 2]
DOWNLOAD piezo !

o b bbb

deb
LED AD TOGGLE ~ PUSHSMW ALCD
110 PORTS (POT)
01234567 891011213455 57 BINA2D GUN ET
. s

/
1108 [[=10 9 Yy,

D

BREAD BOARD CsG

P e
S

DA Raeal
ARVl
Barall
el
ui—-i
el
inFall

0

(1) RS232 Channel 1 Connection point : to use the RS232 Channel 1,
please connect wires to the appropriate pin input on the upper right hand
corner labeled RS232C.

(2) For CB280, connect RS232 Channel 1 as shown below:

K|

O]TX
ef
O

“]Rx

X[
RX[

oooo

(3) For using CuNET, all jumpers must be shorted. If using pin 8 and 9
directly, please leave all jumpers to open state.

295

About I2C...

CUBLOC provides easy set of commands to communicate using I2C protocol.
I2C communication is a widely used protocol, mainly used for
communicating with ADC, EEPROM, DAC, External I/O chips.

I12C uses two lines, SDA and SCL, and operates in either MASTER or SLAVE
mode. CUBLOC can only be used as a MASTER.

Please make sure to use command SET I2C before using I2C commands.

I2C’'s START, STOP

When SCL(Clock) and SDA(Data) are HIGH, I2C is in idle state. If START
command is executed during idle state, I2C begins.

When SCL and SDA are both LOW, I2C is in busy state. If STOP command
is executed during busy state, 12C stops.

There is also a Repeated Start in I2C. If START command is executed
during busy state, I12C Restarts.

N N N4
START STOP Repeated STOP
Start

296

Using EEPROM through I2C

We will go through an example showing I2C communication between
CUBLOC and EEPROM 24LC32. The following is a picture taken from the
EEPROM’s data sheet. It shows how to send data to the EEPROM.

R/W

[S| CONTROLBYTE [0[A[HIGHADDRESS [A[LOWADDRESS [A[DATA) [A|P]

“““““““ P Sl Sl

S : Start
A:Acknowledge
P : Stop

The first bit is for Start command. The 4 upper bits of CONTROL BYTE
must be 1010 and the 3 lower bits are for selecting the Chip’s address. The
user may change the EEPROM chip’s address by configuring the chip.

For a read, 1 can be written for R/W and for a write, 0 can be written for
R/W. A is for acknowledgement of the 8 bits(1 byte) sent. Then HIGH
ADDRESS, LOW ADDRESS and DATA can be sent. When all data are sent,
Stop command can be sent.

It takes about 5ms of time for EEPROM write.

The following is a write EEPROM sequence in CUBLOC's BASIC code:

Set I2c 8,9 ' Set P8 as SDA, P9 as SCL

I2cstart

If I2cwrite(&H10100000) = 1 Then ERR PROC ' Chip Address = 0
If I2cwrite (ADR.BYTE1l) = 1 Then ERR PROC ' ADDRESS WRITE
If I2cwrite (ADR.LOWBYTE) = 1 Then ERR PROC

If I2cwrite(DATA) = 0 Then ERR PROC 'l Byte WRITE
I2cstop

Delay 5 ' Wait until WRITE is done

Next, we will look at how to read 1 byte from the EEPROM. Although it
might look more complex than writing 1 byte, we will soon find out that
they are very similar.

297

R/W Repeated Start R/W NoAck

v v

[S] conotsyE Jo[A] moracoress, [A] [towaopress [A[s[conroceyre [1[A[| | pAm | | [X]P]

S : Start /

A:Acknowledge :
P Stop Read Point

Read Point is where the actual DATA will be read from the EERPOM. The
front part of the command is for setting the address to read data.

Set I2c 8,9

I2cstart

If I2cwrite(&H10100000) = 1 Then ERR PROC ' Chip Address = 0
If I2cwrite (ADR.BYTE1l) = 1 Then ERR PROC ' ADDRESS WRITE

If I2cwrite (ADR.LOWBYTE) = 1 Then ERR_PROC

I2cstart ' Repeated Start
If I2cwrite(&H10100001) = 1 Then ERR PROC ' Read command. .
DATA = I2cread(0) ' Result store in DATA.
I2cstop

And now, we will look at how to read multiple data from the EEPROM.
Without using the STOP command, we can keep reading from the EEPROM
since it automatically increments its address.

In this way, we can set the address to read from only once, and then read
the rest of the data much faster.

Set I2c 8,9

I2cstart
If I2cwrite(&H10100000) = 1 Then ERR PROC ' Chip Address = 0
If I2cwrite (ADR.BYTEl) = 1 Then ERR PROC ' ADDRESS WRITE
If I2cwrite (ADR.LOWBYTE) = 1 Then ERR PROC
I2cstart ' Repeated Start
If I2cwrite(&H10100001) = 1 Then ERR PROC ' Read command. .
For I = 0 To 10
ADATA (I) = I2cread(0) ' Read 10 bytes continuously,
' ADATA is an array
Next
I2cstop

298

I2c example

The following example shows CB280 and EEPROM 24LC32 connected. A
value will be written to a specified address of the EEPROM and then read

back to display on

Const Device =

the DEBUG window of CUBLOC Studio.

cb280

Dim adr As Integer
Dim data As Byte
Dim a As Byte

data = &hal
adr = &h3
Set I2c 3,2
Do
' Write 1 Byte
I2cstart
If I2cwrite(&b10100000)= 1 Then Goto err proc
a=I2cwrite (adr.bytel)
a=I2cwrite (adr.lowbyte)
a=I2cwrite (data)
I2cstop
Delay 1000
' Read 1 Byte
I2cstart
a=I2cwrite (&10100000
a=I2cwrite (adr.bytel)
a=I2cwrite (adr.lowbyte)
I2cstart
a=I2cwrite (&010100001
a=I2cread(0)
I2cstop
' Print Results
Debug Hex a,cr 24LC32 CB280
Delay 500
Loop A0
A1 SCL 1 P2
. A2 SDA P3
err proc:
Debug "Error !"
Do
Loop

299

More About I2C... (Advanced)

I2C is a common protocol used by many industrial controllers today.
CUBLOC uses I2C as one of its main communication protocols.

CuNET is built on the I2C protocol. The main advantage of CuNET is that
it's hardware controlled for LCD displays. (Not CSG modules or I/O ports)

12C commands such as I2CWRITE and I2CREAD are software commands.
The advantage of I2C commands is that it does not require receive
interrupts like serial communications. This allows the CUBLOC to multi-task,
not letting any situations where the processor can “freeze” indefinitely.

As a result, a CUBLOC CB280 module can interface with almost 24 separate
12C buses! (That's buses, you can add multiple I2C device per I2C bus!)

The CUBLOC simulates a Master I2C device. Since it can only simulate a
Master I2C device, the I2C devices connected must be Slave I12C devices.

The main advantage of 12C protocol is that it does not cause any delays as
CUBLOC is the Master I12C devices. CUBLOC can simply request for data
when it wants to, it does not have to wait for the I2C Slave device to
respond.

*Note: The I/0 port used for I2C communication must be an Input/Output
port, not Input Only or Output Only.
V

1’5
scL ¥

SDA

Slave Slave Slave Slave Slave
Address Address Address Address Address
"1 "o2" nqon ng4n nqo7m

Even though maximum range for typical I2C bus is around 12 feet, a long
distance extender chip such as the P82B715 can be used to extend the bus
almost up to 3/4 mile. P82B96 can also be used as buffer to protect the
12C devices in case of electrical surges and interferences.

300

N/C

LX [
sx [] P82B715

vcec
LY LX, LY : Buffered Bus, LDAor LCL

SY SX, SY:12C Bus, SDAor SCL

ooogd

GND [N/C

Extend up to about of 3/4 mile using the P82B715.

SDA SDA

SCL SCL

CUBLOC P82B715 P82B715

12C DEVICE

By using the P82B96, ground and power can be isolated on the device ends.

sba O 0 VeC spa — —TX
RX [] [] scL —RX
P82B96
= SO I > T A
GND [Ty —RY
PB2B96
12v 12v

5V

SDA -%-
SCL ?

SDA

et Pt o

SCL

fr
H
-

P82B96 P82B96

Please refer to Phillips website for more information on the specific chips
discussed here: http://www.standardics.nxp.com/.

301

If you are using I2C interface within 12 feet, we recommend to use the
following protection circuit:

If the I2C devices are connected with no buffers, electrical interference can
cause damage to either CUBLOC or the I2C Slave device. By using diodes
as shown below, you can protect against most of the electrical interference.
If the devices are in a heavy, industrial environment, we recommend to use
P82B96 chips as buffers.

vee
A0] 1 - - -
wp s
A O = % = z 3
241032 [oL CABLE r _%_
A2 [! e—peo scL
GND [[} SDA e c—Ppo SDA
x £ =X
CUBLOC

302

Chapter 9
MODBUS

About MODBUS...

MODBUS is a protocol developed by MODICON to help interface peripherals
for their PLCs.

It is usually used with devices like Touch screens, HMI devices, and SCADA
software. A lot of Touch screen panels, HMI and SCADA software now
days support MODBUS.

In MODBUS, there is Master and Slave mode. The Master provides data
while the Slave receives the data. The slave can only respond to master
and cannot communicate on its own.

Each slave has a unique address called Slave Address. The Master, using
those Slave Addresses, can talk to one of the slaves at a time.

For 1 to 1 connections, RS232 can be used. For 1 to N connections, RS485
can be used.

The master sends messages in units of “Frames”. Each Frame contains the
Slave address, command, Data, Error Checksum codes. Slave receives a
Frame and analyzes it. When responding to the Master, Slave also sends in
“Frames”.

In other words, MODBUS send and receive can be seen as composed of
Frames that are sent and received.

There are two types of MODBUS, ASCII and RTU. RTU type can be
implemented by using less bytes in the communication.
ASCII use LRM for error checking and RTU uses CRC.

The next is how ASCII and RTU are used:

Field Hex ASCIIL RTU
Header : (colon) None
Slave Address 0X03 03 0X03
Command 0Xx01 01 0x01
Start Address HI 0X00 00 0X00
Start Address LO 0X13 13 0X13
Length HI 0X00 00 0X00
Length LO 0X25 25 0X25
Error Check LRC (2 Bytes) CRC(2 Bytes)
Ending Code CR LF None
Total Bytes 17 Bytes 8 Bytes

304

ASCII type uses a colon (:) to start and ends with CR or LF.

START

SLAVE ADR

FUNCTION

DATA

LRC

END

: (COLON)

2 Bytes

2 Bytes

n Bytes

2 Bytes

CR,LF

RTU requires no special characters to start and finish.
blank space to indicate start and finish.

It uses 4 bytes of

START

SLAVE ADR

FUNCTION

DATA

CRC

END

T1-T2-T3-T4

1 Byte

1 Byte

N Bytes

2 Byte

T1-T2-T3-T4

CUBLOC supports MODBUS command & Address

CUBLOC supports MODBUS commands 1,2,3,4,5,6,15, and 16.

Command Command Name
01, 02 Bit Read

03, 04 Word Write

05 1 Bit Write

06 1 Word Write

15 Multiple Bit Write
16 Multiple Word Write

In MODBUS, there are addresses which stand for Registers in CUBLOC.
CUBLOC's Registers P, M, F, C, T, and D can be accessed using the following

table:
Bit Units Word Units

Address Register Address Register

0000H P

1000H M

2000H Not Used

3000H Not Used

4000H F
5000H T
6000H C
7000H D
8000H WP
9000H WM
0A000H WF

305

Device Address...

The above table shows MODBUS device addresses. Device Addresses are
used to identify different registers on the CUBLOC or CUTOUCH. Most Host
equipment including CUBLOC, CUTOUCH, PC, and HMI will use the following
rules:

Device Address Modbus Address Explanation

1...10000 Device Address - 1 Subtract one to get Modbus Address.

40001 ... 50000 Device Address — 40001 | Subtract 40001 to get Modbus
Address.

Device Address after 40000 are word registers, meaning you can access 16-
bits at one time.

Please refer to the below Device Address when using MODBUS with CUBLOC
or CUTOUCH. Device Address here is shown in decimals. Earlier Modbus
Addresses were in hexadecimals.

Bit Access (Coil, Input Status)

Function Codes : 1,2,4,15

Device Address (Decimal) Data

1to 128 P Registers
385 to 512 F Registers
4097 to 8192 M Register

Word Access (Holding/Input Registers)

Function Codes : 3,4,6,16

Device Address (Decimal) Data

40001 to 41000 D Registers
41001 to 42000 T Registers
42001 to 43000 C Registers
43001 to 44000 WM Registers

Floating Device Addresses...

Please use the Device Addresses within the available number of registers in
the module used.

For example, the CUBLOC CB280 has data registers from DO through D99.
There can only exist Device Addresses from 40001 to 40099. The rest of
400100 through 41000, the floating device addresses, are not to be used
for future firmware updates, we ADVISE NOT to use them.

306

Function Code 01: Read Coil Status
Function code 02 : Read Input Status

This function code can read the bit status of PLC’s Register.
is an example of reading Registers P20 through P56 from Slave Address of

3.

Query:

Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 03 2
Function Code 0X01 1 01 2
Start Address HI 0X00 1 00 2
Start Address LO 0X14 1 14 2
Length HI 0X00 1 00 2
Length LO 0X25 1 25 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

The following

LRC is the 2's complement of 8-bit sum of all values except Colon, CR, and

LF.

For the table above, 0x03 + 0x01 + 0x13 + 0x25 =

0011 1100

Then we can invert the bits.
1100 0011

Then add one which is:
1100 0100 = 0xC4

0x3C.
To fin d the 2’s complement of 0x3C, we can write it in binary first.

LRC = OxC4
Asci | : o [3 Jo |1 Jo Jo |1 |3 o Jo |2 |5 |c |4 |cr]|ILF
Hex 3 [30 [33 |30 |31 [30 30|31 |3)30 [3 |3 |3 |43 [34]13]10

307

Response to the query above is ..

Response:

Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 03 2
Function Code 0x01 1 01 2
Byte Count 0X05 1 05 2
Data 1 0X53 1 53 2
Data 2 0X6B 1 6B 2
Data 3 0X01 1 01 2
Data 4 0XF4 1 F4 2
Data 5 0X1B 1 1B 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

If you look at the response to the query, you can see that bit 20 through 27
makes one byte.

P20 is placed as LSB of Data 1 and P27 is placed as MSB of Data 1.

Likewise we can acquire all of P20 through P56 and the left over bits can
just be disregarded.

308

Function Code 03:
Function Code 04:

Read Holding Registers
Read Input Registers

This function code can read 1 Word (16 bits), usually used for Counters,

Timers, and Data Registers.
Slave Address 3’s D Register 0 to 2.

Query:

Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 03 2
Function Code 0X03 1 03 2
Start Address HI 0X70 1 70 2
Start Address LO 0X00 1 00 2
Length HI 0X00 1 00 2
Length LO 0X03 1 03 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

1 Word is has 2 bytes,

so we are going to get 6 bytes total as response.

Response:
Field RTU Bytes ASCII Bytes

Header : (colon) 1
Slave Address 0X03 1 03 2
Function Code 0X03 1 03 2
Byte Count 0X06 1 06 2
Data 1 LO 0X03 1 03 2
Data 1 HI OXE8 1 ES8 2
Data 2 LO 0X01 1 01 2
Data 2 HI O0XF4 1 F 4 2
Data 3 LO 0X05 1 05 2
Data 3 HI 0X33 1 33 2
Length LO 0X03 1 03 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

The following shows an example that reads

309

Function Code 05 : Force Single Coil

PLC’s can remotely control the status of its Registers in units of bits through
this function code. The following is an example showing Slave Address 3's
P1 Register being turned ON.

To turn ON Registers, FF 00 is sent and to turn OFF Registers, 00 00 is sent.

Query:

Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 03 2
Function Code 0X05 1 05 2
Start Address HI 0Xx01 1 01 2
Start Address LO 0X00 1 00 2
Length HI OXFF 1 FF 2
Length LO 0X00 1 00 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

The response shows that the data was entered correctly.
You MUST use FF 00 and 00 00 to turn ON/OFF Registers, other values will
simply be ignored.

Response:

Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 03 2
Function Code 0X05 1 05 2
Start Address HI 0X01 1 01 2
Start Address LO 0X00 1 00 2
Length HI OXFF 1 FF 2
Length LO 0X00 1 00 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

310

Function Code 06 : Preset Single Registers

PLC’s can remotely control the status of its Registers in units of Words
through this function code.
The following is an example showing Slave Address 3’s D1 being written.

Query:

Field RTU Bytes ASCII Bytes
Header 1 : (colon) 1
Slave Address 0X03 2 03 2
Function Code 0X06 2 06 2
Start Address HI 0X70 2 01 2
Start Address LO 0Xx01 2 70 2
Length HI 0X12 2 12 2
Length LO 0X34 2 34 2
Error Check CRC 2 LRC 2
Ending Code 2 CR LF 2
Response:

Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 03 2
Function Code 0X06 1 06 2
Start Address HI 0X70 1 01 2
Start Address LO 0X01 1 70 2
Length HI 0X12 1 12 2
Length LO 0X34 1 34 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

311

Function Code 15: Force Multiple Coils

PLC’s can remotely control the status of its Registers in units of multiple bits
The following is an example showing Slave
Address 3’s P20 through P30 being turned ON/OFF.

through this function code.

Query:

Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 03 2
Function Code O0XOF 1 OF 2
Start Address HI 0X00 1 00 2
Start Address LO 0X14 1 14 2
Length HI 0X00 1 00 2
Length LO 0X0B 1 0B 2
Byte Count 0X02 1 02 2
Data 1 0XD1 1 D1 2
Data 2 0X05 1 05 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

Below table shows how the DATA in the above query is divided.

first Byte. There will be total of 2 bytes sent in this manner.

can be set to zero.

P27 is
placed in the MSB of the first Byte send and P20 is placed in the LSB of the

Left over bits

Bit 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1
| Reg. P27 P26 P25 P24 P23 P22 P21 P20 P30 P29 P28

Response:

Field RTU Bytes ASCII Bytes

Header : (colon) 1

Slave Address 0X03 1 03 2

Function Code 0XOF 1 OF 2

Start Address HI 0X00 1 00 2

Start Address LO 0X14 1 14 2

Length HI 0X00 1 00 2

Length LO 0X0B 1 0B 2

Error Check CRC 2 LRC 2

Ending Code CR LF 2

312

Function Code 16 : Preset Multiple Registers

PLC’s can remotely control the status of its Registers in units of Multiple
Words at a time through this function code. The following is an example

showing Slave Address 3’s DO through D2 being written.

Query:

Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 03 2
Function Code 0X10 1 10 2
Start Address HI 0X70 1 70 2
Start Address LO 0X00 1 00 2
Length HI 0X00 1 00 2
Length LO 0X03 1 03 2
Byte Count 0X06 1 06 2
Data 1 HI 0XD1 1 D1 2
Data 1 LO 0X03 1 03 2
Data 2 HI 0X0A 1 0A 2
Data 2 LO 0X12 1 12 2
Data 3 HI 0X04 1 04 2
Data 3 LO 0X05 1 05 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2
Response:

Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 03 2
Function Code 0X10 1 10 2
Start Address HI 0X70 1 70 2
Start Address LO 0X00 1 00 2
Length HI 0X00 1 00 2
Length LO 0X03 1 03 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

313

Error Check

If there is error in the data from the Master, Slave will send back an error

code.

Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 03 2
Function Code 0X81 81 2
Error Code 0X09 09 2
Error Check LRC 2
Ending Code CR LF 2

There are the following types of error codes:

Code Error Name Explanation

01 ILLEGAL FUNCTION When a non-supported function code is
received.

02 ILLEGAL DATA ADDRESS When an incorrect address is received.

03 ILLEGAL DATA VALUE When bad data is received.

09 LRC UNMATCH When LRC is incorrect.

The error check is only for MODBUS ASCII, there are no error check in RTU.
MODBUS RTU uses CRC to check for errors in transmission.

314

MODBUS ASCII Master Mode

There are no special commands to set CUBLOC to Master Mode for MODBUS
communication. Master Mode simply needs to be able to use RS232 data
communication using commands like CUBLOC’s GET and PUT.

The following is an example of ASCII Master Mode implemented in CUBLOC
BASIC:

'Master Source

Const Device = cb280
Dim RDATA As String * 80
Dim a As Byte, ct As Byte
Dim b As String * 17
Dim Port As Integer

Opencom 1,115200,3,80,80
On Recvl Gosub GETMODBUS ' Data Receive Interrupt routine
Set Until 1,60,10 ' When Ending Code (10)

' on Channel 1 is discovered,

' create an interrupt

Do
For Port=2 To 4
BitWrite Port, 1 'Turn PO, P1,P2 ON!
Delay 100
Next
For Port=2 To 4
BitWrite Port, 0 '"Turn PO, P1,P2 OFF!
Delay 100
Next
Loop
GETMODBUS :
If Blen(1,0) > O Then ' If buffer empty then
A=Blen (1,0) ' Store the buffer length in A!
Debug "GOT RESPONSE: "
B=Getstr(l,A) ' Store received data in B
Debug B
End If
Return

End
Sub BitWrite (K As Integer, D As Integer)
Dim LRC As Integer
Putstr 1,":0305"
Putstr 1,Hp(k,4,1)

315

If D=0 Then
Putstr 1,"0000"

LRC = - (3+5+K.Bytel+K.Byte0) 'Calculate LRC
Else
Putstr 1,"OOFF"
LRC = - (3+5+K.Bytel+K.Byte0+0xFF) ' LRC
End If
Putstr 1,Hex2(LRC),13,10 'Send
End Sub

MODBUS ASCII Slave Mode

v

Slave Source

Const Device = cb280
Opencom 1,115200,3,80,80
set modbus 0,3

Usepin 2, Out

Usepin 3, Out

Usepin 4, Out

Set Ladder On

Master Slave
Rs232 1X RX rs232 P2——wW—pH
CH1 CH1 oy w—P
RX >
P4 |——AW—P—
GND GND mr
CB280 CB280

When the Slave finishes processing the Data sent by the Master, the Slave
will jump to the label GETMODBUS. We can use SET UNTIL command to
check for ending code LF (10).

Then Getstr command is used to store all received data in RDATA.
The data in RDATA can be analyzed to verify if the communication was

achieved soundly or not.

When the slave is not connected, the program will never jump to
GETMODBUS.

316

MODBUS RTU Master Mode

The following is an example of RTU Master Mode implemented in CUBLOC
BASIC to write 32-bit floating point values (2 Word Registers) to an RTU
slave device 1:

Const Device = CB280

#include "crctable.inc"

! Open serial port for MODBUS

! [Set Baudrate as 115200bps and 8-N-1 with]

' [receive buffer of 200 bytes and send buffer of 100 bytes]
Opencom 1,115200, 3,200,100

' [Data Receive Interrupt routine]
On Recvl Gosub GETMODBUS

! [Clear All Buffers]
Bclr 1,2

' [User Timer for MODBUS Timeout]
On timer(l) Gosub MyClock

Debug " [MODBUS FloatingPoint Value Write RTU Example] ", Cr

'Test writing 32bit SINGLE to Register Address 0 of device 1
Debug "writing 3.14 and 6.99 Long value to register 0",Cr
writesingle 1,0,3.14

writesingle 1,0,6.99

'Example showing how to send multiple floating point variables
'by making a simple function as WriteMultipleSingle ()
SDataArray(0)=1.11

SDataArray(1)=2.22

SDataArray (2)=3.33

Debug "Writing multiple Single values to address 0",Cr
writemultiplesingle 1,0,3

Do
Loop

'Modbus Receive routine
#include "ModbusRTUrecv.bas"

End

'Modbus Low-Level include file
#include "ModbusRTULib016.bas"

*Please check our Forum on the internet, www.cubloc.com for more Modbus
ASCII and RTU examples and MODBUS BASIC include file downloads.

317

MEMO

318

Chapter 10
Application
Notes

NOTE 1. Switch Input

Let’s say for example you are developing some kind of a machine, the first
thing you need is a user interface. Our task today is to build a machine
that will receive input from a switch and processes it to its assigned task..

We will make a START and STOP button that will light a lamp ON and OFF.

SouT VIN
SIN VEE

!

O
O
O aTn RES [1
— O vss VDD
START KEY y PO P15 b an
O p1 P14
! B S
—
STOP KEY P4 P11 A
O ps P10 [0
10Kohm. O re PO
O p7]

P8

CB220

As you can see above, PO and P4 ports will be connected to a pull-down
resistor (resistor attached to ground). CB220 will read these switches as
LOW or OFF when the switch is not pressed. To find out if these switches
are pressed or unpressed, we can use CUBLOC BASIC command IN().

<Filename: startstopkey.cul>
Const Device = cb220

Dim a As Byte

Do
If In(0) = 1 Then a =1
If In(4) 1 Then a = 0
Out 14,a

Loop

When the switch is pressed, a “bouncing” effect occurs from the switch’s
mechanical spring.

320

The above picture shows how bouncing can confuse CUBLOC controller by
bouncing up and down. To get rid of this bouncing effect, a capacitor and
resistor can be added to filter it out.

A simpler method is to use the command KEYINH() rather than IN() which
will remove the bouncing effect by software.

<Filename: keyinhinput.cul>

Const Device = cb220

Dim a As Byte

Do
If Keyinh(0,20) = 1 Then a =
If Keyinh(4,20) = 1 Then a
Out 14,a

I
.

Loop

The 2™ parameter of KEYINH(0, 20) sets the time for removing the
bouncing effect, also called debouncing time. In other words, the 20
means to wait 20ms before accepting input.

For the industrial field, there can be a lot of noisy environments where it can
affect the switch signals. In order to block noise, the user can implement a
circuit diagram similar to one shown below. By using a photocoupler, the
user is able to raise the voltage and minimize the noise from affecting the
switch.

DC24V DC5V

2.2Kohm.
—
*—\\—]

)
}\‘{ CUBLOC I/0

PC-18T1 10Kohm.

<END>

321

NOTE 2. Keypad Input

Application note 2 will cover a 4 by 4 Keypad by taking its input and
outputting the results to a 4 digit 7 segment module (CSG module)

CB280
I i} P8 05143188 212
Iy oy | P9 PO
130537057 213
P1
N 651,851 &
p2 2 6 10; 14
321210271 2

P3

P4

P5

P6

P7

The CSG module is a 4 digit seven segment LED module that can be
connected via CUNET or I2C protocol to display numbers and custom
characters.

minl=l=

0. 0. 0.,

<Filename: csgprint.cul>

Const Device = CB280
Set I2c 9,8
Dim I As Byte
Do

Csgdec 0,I

I=I+1
Loop

322

If you connect CUNET to CSG and execute the above program, the CSG
module will show numbers that will count up.

The key matrix can be read easily through the command KEYPAD. If you
look carefully at the keypad, you will see that scancode does not match the
actual key pressed. In order to read the correct key, we will use a
KEYTABLE before outputting the value to the CSG.

<Filename: keypadnum.cul>
Const Device = CB280
Set I2c 9,8
Dim I As Integer
Dim K As Integer

Const Byte KEYTABLE = (1,4,7,10,2,5,8,0,3,6,9,11,12,13,14,15)

Do
I=Keypad (0)
If I < 16 Then
I = KEYTABLE (I)
Csgdec 0, I
End If
Loop

And now, we will make a simple program that receives input. When a
number key input is received, it is displayed to the CSG module as a 4 digit
number. The number is stored into the variable K, which is in BCD code.
We then use the function BCD2BIN to convert the BCD value back into
binary.
<Filename: num4in.cul>
Const Device = CB280
Set I2c 9,8
Dim I As Integer
Dim K As Integer
Dim M As Integer
K=0
Const Byte KEYTABIE = (1,4,7,10,2,5,8,0,3,6,9,11,12,13,14,15)
Do
I=Keypad (0)
If I < 16 Then
I = KEYTABLE (I)
If I < 10 Then
K=K<< 4
K=K+ I
Csghex 0,K
End If

v

! WAIT UNTIL KEY DEPRESS

323

Do While Keypad(0) < 255
Loop
M = Bcd2bin (K)
Debug Dec M,CR
End If
Loop

When there is no input, the returned scancode is 255. By using Do While
keypad(0) < 255, we will wait until a key is unpressed which will return a
scancode of 255. This is to let the processor stop reading input while a key
is pressed. Otherwise, the processor might receive multiple key inputs
since execution time of CUBLOC is very fast.

By using _D(0) = M, you can pass the scancode value to Register DO of
Ladder Logic. If you need to use a keypad in LADDER, you can modify this
code a little bit to get your results quick.

<END>

324

NOTE 3. Temperature Sensor

In our world today, there are countless number of devices that senses
temperature. Refrigerator, heater, air conditioner, automobiles, and many
other devices that uses temperature sensors. Therefore, this is one of the
very basic components we must know.

What types of temperature sensors are there? There is PT100, NTC, PTC
thermistor, and other chip-type sensors such as the DS1620.

Today, we will dive into the NTC thermistor and figure out how to connect
and use it with CUBLOC.

The NTC thermistor can be comparable to a very sensitive resistor.
Depending on the temperature, the value of resistance will change. By
reading the value of this resistance, we can figure out the current
temperature. Among NTC thermistors, the ceramic types can sense around
-20 to 130 degrees Celcius temperature.

There is an NTC thermistor that resembles a diode. With this thermistor,
we can sense between -30 and 250 degrees Celcius temperature.

g

You can acquire R-T(Resistance — Temperature) conversion table from the
maker of the thermistor. The following is a diode-type 10K Ohm NTC
Thermistor R-T conversion chart and table.

Temperature Minimum Average Maximum
0 31260.0 32610.0 33987.7
1 29725.7 30993.7 32286.7
2 28275.6 29466.8 30680.6
3 26904.5 28023.9 29163.6
4 25607.8 26660.0 27730.3
5 24381.0 25370.2 26375.7
6 23220.0 24150.1 25094.9
7 22120.9 22995.7 23883.7
8 21080.1 21903.1 22737.7
9 20094.1 20868.5 21653.3
10 19159.9 19888.7 20626.7
11 18274.4 18960.5 19654.6
12 17434.8 18080.8 18733.8
13 16638.5 17246.9 17861.4
14 15883.1 16456.1 17034.4
15 15166.2 15706.0 16250.4

325

16 14485.7 14994.4 15506.9
17 13839.6 14318.9 14801.5
18 13225.9 13677.7 14132.2
19 12642.8 13068.7 13496.9
20 12088.7 12490.3 12893.6
21 11561.9 11940.6 12320.7
22 11061.0 11418.2 11776.4
23 10584.6 10921.6 11259.2
24 10131.3 10449.3 10767.5
25 9700.0 10000.0 10300.0
26 9281.3 9572.5 9864.0

For connecting the sensor to the CUBLOC, please refer to the following
circuit diagram. To protect against voltage surges, the Zener diode must

be used.

1Kohm.
1%

NTC TH.

5.1V
ZENER

DIODE 0.47uF

CUBLOC
A/D CHANNEL O

As you can see in the circuit diagram, we will be using A/D (Analog-to-
Digital) converter to read the current voltage flowing through the sensor.
The A/D converter will convert the current voltage into a value between 0

and 1024.

The most important part of this application note is the following table which
converts the value of voltage to A/D value between 0 and 1024. (Only
some of the temperatures are shown.)

Temp

Resistance |Voltage

A/D value

-30

175996.6 14.971750865

1018

-29

165473.9 14.969965259

1018

-28

155643.6 |4.968080404

1017

-27

146456.3 |4.966091647

1017

-26

137866.4 |4.963994167

1017

-25

129831.7 14.961782976

1016

24

122313.4 14.959452909

1016

-23

115275.4 |4.956998627

1015

108684.3 4.954414614

1015

102509.3 [4.951695171

1014

52288.3 [4.90617073

1005

49549.7 4.901087406

1004

326

-7 46970.5 4.895769279 1003
-6 44540.6 4.890207868 1002
-5 42250.5 4.884394522 1000
-4 40091.5 4.878320427 999
-3 38055.4 4.871976604 998
-2 36134.4 4.865353924 996
-1 34321.5 4.858443112 995
0 32610.0 4.851234752 994
1 30993.7 4.8437193 992
2 29466.8 4.835887094 990
3 28023.9 4.827728362 989
4 26660.0 4.819233234 987
5 25370.2 4.810391755 985
6 24150.1 4.801193902 983
7 22995.7 4.79162959 981
8 21903.1 4.781688696 979
9 20868.5 4.771361072 977
10 19888.7 4.760636561 975
11 18960.5 4.749505017 973
12 18080.8 4.737956327 970
13 17246.9 4.725980424 968
14 16456.1 4.713567319 965
15 15706.0 4.700707114 963
16 14994.4 4.68739003 960
17 14318.9 4.673606431 957
18 13677.7 4.659346849 954
19 13068.7 4.644602011 951
20 12490.3 4.629362861 948
21 11940.6 4.613620595 945
22 11418.2 4.597366683 942
23 10921.6 4.580592903 938
24 10449.3 4.563291365 935
25 10000.0 4.545454545 931
26 9572.5 4.527075313 927
27 9165.6 4.508146964 923
28 8778.3 4.488663246 919
29 8409.4 4.468618396 915
30 8058.1 4.448007162 911
31 7723.3 4.426824842 907
32 7404.3 4.405067304 902
33 7100.2 4.382731022 898
34 6810.2 4.359813102 893
35 6533.7 4.336311306 888
36 6269.8 4.312224084 883
37 6018.0 4.287550592 878
38 5777.7 4.262290722 873
39 5548.3 4.236445118 868
50 3606.1 3.914475937 802
51 3472.1 3.881948015 795
52 3343.7 3.848917708 788
53 3220.8 3.815397329 781
54 3103.1 3.781399998 774
55 2990.2 3.746939622 767

327

328

56 2882.1 3.712030877 760
57 2778.4 3.676689176 753
58 2679.0 3.640930651 746
59 2583.6 3.604772114 738
81 1220.4 2.748157207 563
82 1181.9 2.7084025 555
83 1144.8 2.668747011 547
84 1109.0 2.629210536 538
85 1074.5 2.589812422 530
86 1041.3 2.550571543 522
87 1009.2 2.511506263 514
88 978.3 2.472634416 506
89 948.5 2.433973277 498
90 919.8 2.395539544 491
91 892.0 2.357349316 483
92 865.3 2.319418079 475
93 839.4 2.281760687 467
94 814.5 2.244391354 460
95 790.4 2.207323646 452
96 767.1 2.170570465 445
97 744.7 2.134144055 437
98 723.0 2.098055989 430
99 702.0 2.062317177 422
100 681.8 2.026937858 415
101 662.2 1.99192761 408
102 643.3 1.957295352 401
103 625.0 1.92304935 394
104 607.3 1.889197225 387
105 590.2 1.855745964 380
106 573.7 1.822701928 373
107 557.7 1.790070865 367
108 542.2 1.757857926 360
109 527.2 1.726067674 353
239 33.5 0.162295782 33
240 33.0 0.159800146 33
241 32.5 0.157350769 32
242 32.0 0.154946682 32
243 31.5 0.152586936 31
244 31.0 0.150270604 31
245 30.5 0.147996779 30
246 30.0 0.145764577 30
247 29.6 0.143573131 29
248 29.1 0.141421596 29
249 28.7 0.139309144 29
250 28.2 0.137234968 28

! NTC THERMISTOR READ TABLE
! 10K DIODE TYPE

Const Device = cb280

Const Integer TH TABLE = (992,990,989,987,985,983,981,979,977, 975,
973,970, 968, 965, 963, 960, 957, 954, 951, 948,
945,942,938, 935,931, 927, 923,919,915, 911,
907,902,898,893,888,883,878,873, 868,862,
857,851, 845,839, 833,827,821,815,808, 802,
795,788,781,774,767,760,753,746,738,731,
723,716,708,700, 692, 684,677,669, 661,652,
644,636,628, 620,612,604,596,587,579,571,
563,555,547,538,530,522,514,506,498,491,
483,475,467,460,452,445,437,430,422,415)

Dim a As Integer,b As Integer
Do
b = Tadin (0)
If b > 990 Or b < 400 Then
Debug "Out of Range" 'Check short or open th.
End If
For a=0 To 100
If b > TH_TABLE (a) Then Exit For
Next
Debug Dec a,cr
Delay 500
Loop

<Filename: ntcth.cul>

By using the TADIN command for AD conversion, CUBLOC will automatically
calculate the average of 10 A/D conversion reads. By using this command,
you get more precise results. The sample program shown here will be able
to sense between 0 to 100 degrees. For larger range, you can simply
modify the code.

The formula for acquiring A/D conversion value from the R-T table is as
follows:

——————— xTHR
(1000 + THR)

THR is the resistance value. 1000 is for 1K Ohm resistor and 5 is for 5
volts. The 10 bit A/D converter of CUBLOC will return a value between 0
and 1024. There for to get the A/D value, you must multiply result V by
204.8. You can easily make a chart by using an excel spreadsheet to enter
these formulas. <END>

329

NOTE 4. Sound Bytes

In this application note, I will be showing you simple ways to create key
touch sound, musical notes, and alert sound. An I/O port or a PWM
Channel of CUBLOC can be used for sound. With a PWM Channel, you have
the advantage of creating different tones of sounds.

souT VIN
SIN Vss
ATN RES
Vss VDD
PO P15
P14

P2 P13
Speaker 0.047uF

P3 P12
P11
< P10
P7 P8
CB220

The above example shows PWM Channel 0 of CB220 being used with
Freqout command to produce a sound.

nn ooononQonn
vV o

o a & 2

)

©

|SpEpEpEpEpEpEEE) U;U

Const Device = cb280

Dim PLAYSTR As String

Low 5

Fregout 0,5236 ‘Create a sound with frequency of 440Hz
Delay 500 ‘Delay

Pwmoff 0 ‘Stop Sound by turning off PWM

With commands like Freqout and Delay, simple sounds can be created.

<Filename: playcdec.cul>
Const Device = CB280
Low 5
Freqout 0,4403
Delay 200
Fregout 0,3703
Delay 200
Freqout 0,3114
Delay 200
Freqout 0,2202
Delay 200
Pwmoff 0

330

By changing frequencies, we have made a simple program that can play
musical notes.

Octave 4 Octave 5

A B C D E F G A B C D E F G

A B C D E F G H I J K L M N

To express one note, you can use 2 characters. The first character is for
the note and second character is for the length of the note.
<Filename: play.cul>

Const Device = cb280

Dim PLAYSTR As String
Low 5

PLAYSTR = "G5E3E3G3E3C5"
PLAY 0,PLAYSTR

Do
Loop
End

Sub PLAY (CH As Byte,NOTE As String)
Dim PL As Byte
Dim CHAR As Byte
Const Integer PLAYTABLE = (5236,4665,4403,3923,3495,3299,2939,
2618,2333,2202,1961,1747,1649,1469,0)
For PL=1 To Len (NOTE) Step 2

CHAR = Asc(Mid(NOTE,PL,1)) - &H41
Freqout CH,PLAYTABLE (CHAR)
CHAR = Asc (Mid (NOTE,PL+1,1)) - &H30
Delay CHAR*100
Next
Pwmoff CH
End Sub

When using PWM port for other purposes, Freqout command no longer
becomes available for use. In this case, we can use any regular I/O port to
create sound.

We will use TOGGLE and UDELAY commands to set the I/O Port to HIGH
and LOW. The following example shows how to make an alert sound with a
regular I/O port, P4.

331

<Filename: playport.cul>

<END>

332

NOTE 5. RC Servo Motor

RC Servo Motors are used by many hobbyist to make remote control cars,
planes, and etc... In the recent years, it has been used for robot arms, legs,
and other body parts.

With CUBLOC, you can use the PWM to easily implement an RC Servo motor
into your project.

There are 3 wires to the RC servo motor. The black wire is ground and red
wire is for power. The other yellow wire is for inputting PWM signal. For
PWM signal, you can input about 60 pulses per second to enable the RC
servo.

O sout vIN O

O siN vss
O ATN RES [

O vss VDD
. O ro P15 A
Red: 5V O et P14
O p2 P13 A
O p3 P12
O p4 P11 A
P5 P10 [
O rs Po 0
O r7 P8 1

Black:GND CB220

The RC Servo motor will move to a location set by pulse and duty value and
will hold its position. By being able to control the exact angles at which the
RC servo stops, we can control the RC servo as freely as we want.

El

S 1.5mS 2ms

Lol
B
aﬂ

-45 0° +45°

333

A pulse of 1ms will stop the RC servo at -45 Degrees.

A pulse of 1.5ms will stop the RC servo at 0 Degrees.

A pulse of 2ms will stop the RC servo at +45 Degrees.
Depending on the RC servo you use, these specification will vary.

<Filename: rcservo.cul>

Const Device = CB280
Low 5
Pwm 0,2500,32768

When the code above is executed, a 1ms pulse will be outputted from port
number 5. RC servo will position itself to -45 degrees.

Const Device = CB280
Low 5
Pwm 0,4000,32768

When the code above is executed, a 1.5ms pulse will be outputted from
port number 5. RC servo will position itself to +45 degrees.

As you can see, by simply change the duty value of PWM command, RC
servo can easily be controlled. For the CB220, 3 RC servos can be
controlled simultaneously while the CB280 and CB290 can control 6 RC

Servos.

Warning: When the RC servo is in operation, it will need about 500mA of
current, please make sure to use a power supply of at least 500mA.

<END>

334

NOTE 6.
DS1620 Digital Thermometer

The DS1620 is a digital thermometer. The chip internally has a
temperature conversion table so the user does not have to make a separate
conversion table. Temperature range between -55 and 125 degrees
Celcius can be obtained by the DS1620 in units of 0.5 Degrees.

O

O

O atn RES

O vss VDD

g ro P15

g p1 P14

O p2 P13

O ps P12

O pa P11
P5 P10
P6 P9
P7 P8

e} VoD
CLK T(HI)
RST T(LO)

GND T(COM)
7J,,—[DS1620
Const Device = CB280
Const iorst = 7
Const ioclk = 6
Const iodg = 5
Dim I As Integer
Delay 100
High iorst * init dsl1620
Shiftout ioclk,iodqg,0,12,8
Shiftout ioclk,iodq,O0, 3,8
Low iorst
Do

v v
z
S
5=
%3
oo UUUUUUUUTU:U

<Filename: ds1620.cul>

High iorst
Shiftout ioclk,iodg, 0, &haa, 8
i = Shiftin(ioclk,iodqg, 4,9
i=1
debug dec i,cr
Low iorst
Delay 100
Loop

The final value received can be divided into 2 to obtain the current
temperature.<END>

335

NOTE 7. DS1302 RTC

DS1302 RTC (Real Time Clock) is a chip that will acts as an electronic time
keeper. It has the ability to keep time and date in real-time. We will show
you how to implement this clock chip into your application in this note.

O sout VIN [
O siN vss
O ATN RES O
O vss VDD
O Po P15 A
O p1 P14 A
32768Hz E gi zlj g
T h——dn% b
T T 5% «whb——d5 np
m;c DS1302 CB220
Pin Function I/O Direction | Explanation
RST Reset Input Data transfer when High
SCLK System Clock Input Clock signal
1/0 Data Input / | Data input/output
Input/Output Output

<Filename: ds1302.cul>

Const Device = CB220

Const iorst = 7

Const iodio = 6

Const ioclk = 5

Dim I As Integer

Dim adr As Byte

High iorst

Shiftout ioclk,iodio, 0, &h8e,8

Shiftout ioclk,iodio,0,0,8

Low iorst

Delay 1

High iorst

Shiftout ioclk,iodio, 0, &h80,8

Shiftout ioclk,iodio,0,&H50,8

Low iorst

Do
High iorst
adr = &h81
Shiftout ioclk,iodio,0,adr, 8
1 = Shiftin(ioclk, iodio, 4, 8)

336

Debug Hex i,cr

Low iorst

Delay 1000
Loop

The above code will read ADDRESS 0, second’s value, and display it onto
the DEBUG window.

At the beginning of the program, we will enable writes to the DS1302 chip
and set the ADDRESS 0 to 50 seconds.

Within the Do Loop, we will read the data from DS1302. The DS1302 chip
has 6 addresses as shown below:

ADDRESS 0 (sec) |CH| 1:035: | sm |
ADDRESS 1 (min) | 0 | 1:0 MII:\I | . M:IN . |
ADDRESS 2 (hour) |1zm| 0 |,1,°P| HR| . HE? . |
ADDRESS 3 (date) | 0 | 0 |1OD:ATE| . DA:TE . |
ADDRESS4(momh)| 0 | 0| o|10q :MOhTH: |
ADDRESS 6 (day) | 0 | o| o| o| o| :DAY: |
AODRESS 6 bea) [1 HONER) | L e |

These addresses can be used to read and write to the DS1302.
Please note that the data is in BCD code format.
<END>

337

NOTE 8. MCP3202
12 Bit A/D Conversion

The CUBLOC has a 10 bit A/D converter.

get up to 10 bits of A/D conversion.

Without a separate chip, you can
But for greater resolution, meaning

greater precision, you can use a chip like the MCP3202. MCP3202 is a 12
bit A/D converter that supports SPI protocol. Here we will show you how to
implement this 12 bit A/D converter into your project.

O sout VIN A
O sin Vss
O ATN REs O
O vss VDD
«— O po P15 A
O rt P14
O r2 P13 [0
Oes P12
cs vce P4 P11
— X cHo cLk f——H Ps P10 f
L cH1 DO [F———1] P6 PO
GND DI [F————] P7 P8 O
pu— 77;(MCS3202 CB220
Pin Function I/0 Direction Explanation
CS Chip Select Input Low for data communication
CLK Clock Input Clock signal
DI Data Input Input Data input from MCP3202
DO Data Output Output Data output from MCP3202
<Filename: mcp3202.cul>
Const Device = CB280
Const iodi = 7
Const iodo = 6
Const ioclk = 5
Const iocs = 4
Dim I As Byte
Dim ad As Integer
Do
Low iocs

338

i1 =

i o=

&b1011 'Channel 0
&hl1111 'Channel 1

Shiftout ioclk,iodi,0,1,4
ad = Shiftin(ioclk,iodo,3,12)

Loop

High iocs
Debug Dec ad,cr
Delay 100

The MCP3202 will convert voltage coming into CHO and CH1 ports to a data
value and retain it. The user can simply use SPI communication to read
the value that the MCP3202 has converted.

The voltage inputted to the MCP320 CHO and CH1 pins must not be greater
than the voltage supplied to the MCP3202. The result of A/D conversion is
displayed to the DEBUG window.

<« Debug Terminal =1o] x|
Part Baud Rate Parity Data Bits gy 1y ﬁ]

fcomt =] [115200 =] [mone = [=] @R

Close [~ Fix Right Side

<END>

339

NOTE 9.
Read and write to the EEPROM

With the EEPROM, you can store between 0.5 to 64 KB of data. Data is
retained even after powering off, allowing it to act almost as a small hard
drive. If you want to retain a temperature setting for a temperature
controller, you can simply store the value of the temperature in the EEPROM
in case of power-outs.

CUBLOC has an internal EEPROM of 4KB. For small and simple data, you
may use this internal EEPROM. In the case of larger data, you can use an
EEPROM like 24LC512 to store up to 64KB of data.

Here we will show you how to access the 24LC32 4KB EEPROM through 12C
protocol. The serial EEPROMs usually support either SPI or I2C. I2C
EEPROMs name starts with 24XXXX and SPI EEPROMs name starts with
93XXX.

O sout VIN O
O siN vss
O At RES O
O vss VDD
O po P15 1
O p1 P14 1
O p2 P13 1
Ors P12 A
A0 vce O ps4 P11
A1 ne B O ps P10 [0
A2 scL P6 Po O
GND SDA p7 ps A
24L.C32 4.7Kohm CB220

<Filename: eeprom.cul>

Const Device = CB280
Dim adr As Integer
Dim data As Byte
Dim a As Byte

data = &ha6

adr = &h3
Set I2c 7,6
Do
I2cstart

If I2cwrite(&b10100000)= 1 Then Goto err proc
a=I2cwrite (adr.bytel)
a=I2cwrite (adr.lowbyte)

340

a=I2cwrite (data)
I2cstop
Delay 1000
I2cstart
a=I2cwrite (&010100000
a=I2cwrite (adr.bytel)
a=I2cwrite (adr.lowbyte)
I2cstart
a=I2cwrite (&010100001
a=I2cread(0)
I2cstop
Debug Hex a,cr
ADR = ADR + 1
DATA = DATA + 1

Loop

err proc:
Debug "Error !"

Do
Loop

This example program will write a number to EEPROM and read from it.
When this program runs correctly, nhumbers will increment on the DEBUG
screen. You can easily modify this code to support other EEPROMs.

Note: Please wait at least 5ms after a write to the EEPROM.

<END>

341

MEMO

342

Chapter 12
Ladder Logic

WARNNING

If you do not use SET LADDER ON command, Ladder Logic will not be
executed.

343

LADDER Basics

The following is an example of one switch and a lamp.

L
If you take out the power, the following results:

If you express the above circuit diagram as Ladder Logic, the following
results:

As you can see, LADDER is simply an easy way to express circuit diagrams.
A switch is comparable to the PO port and P9 is comparable to the LAMP.

There are many ways to connect other devices such as timers, counters,
and etc... The following is an OR and AND connection in Ladder Logic:

PO P2 P9

344

In this circuit diagram, PO and P2 and connected in logical combination of
AND. PO and P3 are ORed. (Which mean either PO or P3 has to be on) If
you express the above circuit diagram in Ladder Logic, it will be as follows:

PO P2 Py
| ¢
a ()

P3

In CUBLOC STUDIO, the right side is not shown. In the Ladder Logic of
CUBLOC, PO, P1, P2 are called “Registers”.

345

Creating LADDER

The below screen shows you how Ladder Logic is created in CUBLOC
STUDIO.

&% CUBLOC studio [c:¥¥cubloc_testWu3-1018.cul 1

File Edit Device Fun Setup Help
B8H ¢ K2R A E @&
[FI] BASIC [F2] LADDER \LauderMnemnm:
M |-|/|—‘ FE FT |{C:I Fil | FIZ ‘ NﬁT -END] I‘n’;?r\ D"JSE ‘u';ﬁ g;g
P2 FE3 PBS MO PR Pl =
1 4/D—1 H)
P3l
2 H I:l
PED PBI P2 PR3 PBE PES MO
3 HAA A1)
P3l "MI=WORK_ON TOGLE' Ml
+ HHF ()
"M2=WORK_OFF TOGLE' M2
5 T ()
6
P2 MPG OM INPUT M3
T ()
M3 P PE2 "MPG OM-OFF TOGLE' M5
8 = | ()
M3 M5
9 H/H
M4 M5 "MPG ON LED' P4l
10 HA | (1 |
*:13 v2 Modified Program @ 154 Bytes, Data: 1001

The red box shown above is the cursor for Ladder Logic. You may use the
keyboard up, down, left, and right keys or the mouse to control the red box.
After moving to the desired position, you can use keys F3 to F12 to put the
desired symbol. You can also enter text for those required symbols.

346

1 Press F3 to make a contact.
‘ ‘ ‘ ‘{C]‘I“L‘/ ‘-[wn:l
Fg 1 WOT | END

‘|'|
-
ra

2. Type "START” and press ENTER.
1]‘{C]‘ I ‘ L ‘ / ‘-[mn]
] F9 F11 F NOT | EMD

ra

-|/|-‘— [‘—o
F4 | Fs | F6 | F7
BTA

A

2

3. Press F5 couple times and you will see that |t creates a line.
4 -m—‘—‘ I ‘—o -[]‘-[C] o]
F3 | F4 | F5 | FE | F7 | FB | F8

F11 ‘ Fi12 NOT END
START | |

4 Press F7 and type RELA

‘ ‘ ‘ ‘-[C] Z || €3] —¢a| —¢
F5 Fi1 FIE NOT | END | Insert|Delete| Undo
ST?HT ﬁ\’
2
5. Go to the next rung Ilne) and pres END.
—m—‘— ‘{CJ ‘ s || = <] =0
Fd F& Fl1 Fi12 | MOT | END Insert | Delete| Undo
START REL &%
1HI)

2 7

Please press the ENTER key at the end of entering TEXT. At the very end

of the Ladder Logic, you must put an END command.

347

Editing LADDER Text

Editing Text
To edit an existing TEXT, please place the cursor in the desired location and
press ENTER. Now you can edit the TEXT freely as you like.

START TOM T1.100
1 / L]

Erasing a Cell

START
0 3
Enter SPACE key.

START D
14

Erasing a Rung (one line)

START REL&Y
| ¢
1 I \
N2 I I ouT2
| ¢ J
2 I L 1 \
END
3 L 1

A rung is a row in Ladder. You can press CTRL-D to erase a rung. This
actually moves the rung to a buffer

START RELAY
1 ()
I_I EMD
£]

2 | — t

348

Rung Recovery
To recover an erased rung, press CTRL-U.

START RELAY
1 ¢
1 I L
N2 I I ouTz
1 ¢)
2 I L 1 5\
END
-

Cell Insert and Delete

START TON T0.100
| r
1 I L]

If you press DEL button from current position, the cell is erased and items
on the right are pulled one cell to the left.

START TOM T0,100
1 | r b |
I L

If you press INS button from the current position, a blank cell is inserted
and items on the right are moved one cell right.

START TON T0.100
|
1 I —t]

Rung Copy
When same style of rung is needed, you can press CTRL-A and it will copy
the above rung except text will not be copied.

START TOM TO, 100
1 I r]
2 | c 1

349

Comments
You can enter comments by adding an apostrophe (*).

THIS 15 SAMPLE PROGRAM

—~32
—

You can use a semi-colon (;) to display to the next line.

For example:
“This is Sample Program ; Date 24-Sep-2007 Comfile Technology”

‘THIS IS SAMPLE PROGRAM
DATE 24-5EP-2007 COMFILE TECHNOLOGY

~3

350

LADDER BLOCK COPY and PASTE

You can make a selection of a block to copy and paste to different parts of

the LADDER.

UBLOC studio [c:¥eubloc_testWu3-1018,cul 1 FEx
Eile Edit Dewice Hun Setup Help
Boldlw BRI A » m 0 E =5
[F1] BASIC [F2] LADDER | Ladder Mnemonic |
PLC| AF |44+ | — | I [|L1|4C1| I | | ~ |L=1| 4FO | O | HD | 1HO
‘Wizard F3 F4 F5 FE Fi F8 F3 Fi1 F12 | NOT | END Insert | Delete| Unda | Copy
P3l =
P L]
)
M0
{
)
MI=WORK_OMN TOGLE" M1
)
‘M2=WORK_OFF TOGLE" M2
)
N\
MPG ON IMPUT M3
)
N\
‘MPG OM-OFF TOGLE" M5
)
N\
‘MPG OM LED" Pdn
{1 |
=il Modified Program : 154 Bytes, Data : 1001

Press

Use the mouse to click and drag to select the desired copy area.

CTRL-C to copy and CTRL-V to paste. Similar to text editing, you can press

CTRL-X to cut and paste also.

*Please be aware that in LADDER editing, UNDO is not supported.

351

Monitoring

CUBLOC STUDIO supports real-time monitoring of Ladder Logic.
Click Here

Bl @ AEE M4 » 0 iF B H

Status of contacts that are ON will be displayed GREEN. Timer and
counter values will be displayed as decimal values. You can control the
monitoring speed by going to Setup Menu-> Studio option->
Monitoring speed. When the monitoring speed is too fast, it can affect
CUBLOC’s communications as monitoring takes up resources. We
recommend value of 5 for the monitoring speed.

& CUBLOC studio [c:¥¥cubloc_testWu3-1018.cul 1

File Edit Device Run Setup Help
EEIEIES W IR
[FI1BASIC [F2) LADDER | Ladder Mnemonic |
Monitoring
=] Il W e i o W
M0 TO W30 =
96 H a} (
M301 TOM T0.50
97 H Do04g 1
P MIT M Mz3
1 ¢
98 i I ()
HL
M1 Mese
99 1} (1)
mz62 “JOG HI SPEED PULS P33
| ¢
100 O
RpULsH
101
oM Mae
1 (
102 jL A+ ()
M TI M3
103 H u} ()
w303
104 H
PR MT R 2 SPEED LOW END TIHE® TON T1.20
105 Huk /-l £ omsl =
Xilovay Modified Program : 9602 Bytes, Data : 101

*Please make sure to stop monitoring before editing or downloading.

352

Time Chart Monitoring

ClickHere

Bk @ AEE M4y m it =

With Time Chart Monitoring, you will be able to see Ladder Logic contacts as
a time chart. The minimum width of the time chart is 40ms. You can use
the Zoom control function to measure the width of each pulse after stopping.
Up to 8 Registers can be monitored at one time.

Device Select Com Port Select

Start / Stop

B3| Tima Chart Manhor

Sampling Time —_ |7,
Zoom control —

Cursor Move
control icon

Relay select—"_

Use/ Unuse

Time interval display- X position

To use the Time Chart Monitor, you must set Debug off in Basic. To do this,
simple add “Set Debug Off” command at the very beginning of your code.

Set Debug Off

While using Time Chart Monitor, Ladder Monitoring may not be used either.

353

WATCH POINT

When you want to watch the status of Registers and timers outside the
current Ladder Monitoring screen, you can use Watch Point feature.

You can use two apostrophes (') to add a WATCH POINT. For example,
you want to see PO right next to some other Register that is on exact
opposite side of the screen.

Examples:
YPO YP1 “DO

%% CUBLOC studio [c:¥cubloc_test#u3-1018.cul 1
File Edit Device Run Setup Help

BEOUH gl LE2E A mu B @=

[F11BASIC [F2] LADDER | Ladder Mnemanic |

73

Monftoting
Stop

4

P30 PSE P30=J0G -LOW MODE

s /e
HL -HCW
PA7 ' J0G-%- INPUT* 18
il ({
76 a} ()

-XCCW
P30 P5E JOG - Y+ INPUT Mg
77 A)
HL =YCW
P59 JOG=¥=- INPUT™ M20
il e
78 a} ()
-YCCW
P30 PEO JOG-Z+ INPUT" M2l
1 {
79 I ()
HL -ZCW
P&l ' J0G-Z- INPUT* M2
il ({
80 a} ()
-ZCCW
81
P30 P56 'P30=J0G-HI MODE" JOG-HI MODE M23
g2 Hul-al {n E

®ig Y2 Modified Program : 9602 Bytes. Data i 101

* Please be aware that it's two APOSTROPHES(‘'), not a QUOTATION

MARK(").
Onn

X EEH

354

Options Window

| —— LADDER size adjust

LADDER line space adjust

[+] Optlnns =10l
Ladder Style
Sizg ———p——— <]
Ling Space ——f <
Boarder Calar - ¢~ Black @ White <

Monitoring Speed
’7 Fast p————— GSlow :‘*

’—Auto Excute mode

¥ Auto Run when download R S—

LADDER background color

| —LADDER monitorring speed setting

Auto run when download

If you select to use “Auto Run when download”,

the program will

automatically reset itself after downloading. This can become a problem for

machines that are sensitive to resets.
be able to control when the program is resetted after downloading.

By turning this option OFF, you will

In the help menu, you will find Upgrade information, and the current version

of CUBLOC Studio.

355

PLC Setup Wizard

To use Ladder Logic in CUBLOC, you must create the most basic BASIC
code. Although very simple, this can be hard for first-timers. You can use
the PLC Setup Wizard and setup the I/Os you will be using and create the
BASIC source automatically.

PLC SETUP WIZARD

_F11 B45; [FZ] LACLER]
PLC | AF A+ | — 1| =<3 |41/ 4¢1 I°
Wzad| T rd r I3 7 T ra i
]
PLC Setup Wizard X
Ladder environment edit | Output BASIC code review |
Device Select 140 maps A/D converlor
P2 — N all ouT 3l [AD channel 0-> D10
e Wsml) [A0 channel | > D11
[~ AD channel 2 > D12
Use Maine: no Alias Group I~ A0 channel 3-> D13
. W~ [Out @ FO~FT = [~ AD channel 4 => D14
[High Countl ->D33 R in I~ AD channel 5 -> D15
¥ B2 out @ [~ AD channel § - D16
¥ P3 out & [~ AD channel 7-> D17
& High Count ->D38 g B o gwaym
o 7 e ot Blsolout! Alias (Nick Name)
£ PWM 0,1,2 <- (D25~) v oxt Bttt A
] o el R M0 = SubRel
4 Py out @ SEMAEER
I~ PWM 3.4.5 <- (D28~ ¥ ro cuel =5
o o b
) Out & -
P oeel MIKOREA
[use MODBUS on CHI ¥ooP4 ouel
2 P15 out @
(1 R—
Fone, 8,1 -

[~ Uze Fast Scantims

Load,., Save As.., Feplace Basic Code ‘ Cancel ‘

As you can see in above screen, Device name, I/O status, alias, and other
features can be set simply by clicking.

You can set aliases for Registers, set Modbus to be ON, and set the baud
rate for the Modbus.

You can always review the current BASIC code generated in real-time by
pressing [Output BASIC code review] tab.

356

PLC Setup Wizard 3
Ladder envi edit | Outgul BASIC Cade raview)|

Const Device = CE220
Qpencom 1. HEZUU 3,80.20
set Modbus

Heeei & Bt Retoyout
Usepin & Out Salout]
Usepin 7 Gut Motarl

Usepin 16,0ut
Aliason

D=4
1=CUBLOC

1l
M2=RELAY1
M3=KOREA

Cnuntrasal o

\ it ()
”n”” = Adin(0)

DD(H) Adin(1)
\rlvjpu

_D(38) = COUNT(D)
Loop

Load. Save As... Replace Basic Code | Cancel ‘

For using A/D, PWM, or COUNT, you can simply read from the D Registers
for the results. For ADCO, the AD value is stored in D(10). The user can
simply read from Register D10 to find the value of ADO.

For PWM3, the user can simply write to Register D29 to output PWM.

For HIGH COUNT1, simply read Register D39. If the user wishes, he can
change the Register to store or write values by changing the BASIC code.
Please press [Replace Basic Code] when you are done to product the final
BASIC code. Please be aware that older code will be deleted at this point.

You can also save the setup to a file by clicking on [SAVE AS..]. Click on
[LOAD...] to bring back saved setup values.

357

Usage of Ladder Register

With this feature, the user can see alias of all Registers. By using this
feature, the user will be able to save a great deal of time while debugging
and developing the final product. Please go to Run->View Register
Usage to open this window.

|

IM JF]s |T]c |D

P relay usage ~

Pl -HL
P2 -MPG_DN

358

Register Expression

CB220, CB280 Registers

The following is a chart that shows CB220, CB280 Registers.

Register Name Range Units Feature

Input/Output Register | PO to P127 1 bit Interface w/

P External devices

Internal Registers M MO to M511 1 bit Internal Registers

Special Register F FO to F127 1 bit System Status

Timer T TO to T99 16 bit (1 Word) For Timers

Counter C CO0 to C49 16 bit (1Word) For Counters

Step Enable S SO to S15 256 steps For Step Enabling
(1 Byte)

Data Memory D DO to 99 16bit (1 Word) Store Data

P, M, and F Registers are in bit units whereas T, C, and D are in word units.
To access P, M, and F Registers in word units, you can use WP, WM, or WF.

Register Range Units Feature

Name

WP WPO to 7 16 bit (1 Word) | Register P Word Access
WM WMO to WM31 16 bit (1 Word) | Register M Word Access
WF WFO to WF7 16 bit (1 Word) | Register F Word Access

WPO contains PO through P15.
located in the MSB of the WPO.

commands like WMOV.

PO is located in the LSB of WPO and P15 is
These Registers are very useful to use with

PO MO Fo TO co DO
C49
T99 , D99
P127 F127 16bit
N N 16bit 16bit
Tbit 1bit
M511
NS
1bit

359

CB290, CB405 Registers

The following is a chart that shows CB290 Registers.

T, and D Registers than CB220 and CB280.

CB290 has more M, C,

Register Name Range Units Feature

Input/Output Register | PO to P127 1 bit Interface w/ External

P devices

Internal Registers M MO to M2047 | 1 bit Internal Registers

Special Register F FO to F127 1 bit System Status

Timer T TO to T255 16 bit (1 Word) | For Timers

Counter C CO0 to C255 16 bit (1 Word) | For Counters

Step Enable S SO to S15 256 steps For Step Enabling
(1 Byte)

Data Memory D DO to 511 16 bit (1 Word) | Store Data

P, M, and F Registers are in bit units whereas T, C, and D are in word units.
To access P, M, and F Registers in word units, you can use WP, WM, or WF.

Register Range Units Feature

Name

WP WPO to 7 16 bit (1 Word) Register P Word Access

WM WMO to WM63 16 bit (1 Word) Register M Word
Access

WF WFO to WF7 16 bit (1 Word) Register F Word Access

WPO contains PO through P15. PO is located in the LSB of WPO and P15 is
located in the MSB of the WPO. These Registers are very useful to use with

commands like WMOV.

WPO

P15

WP1

WpP2

WP3

360

Ladder symbols

Contact A, Contact B
Contact A is “Normally Open” and closes when a signal is received. On the

other hand, Contact B is “Normally Closed” and opens when a signal is
received.

—o_l_o— —elo—

4+ G4t

(A) Normal Open (B)Normal Close
Input, Output Register Symbol

Input/Output Registers are the most basic symbols among the Registers in
Ladder Logic.

ContactA
PO /F‘I P2
I—|II ('/)
ContactB Output Relay

Function Registers

Function Registers include timers, counters, and other math operation
Registers.

FO TON T0.100
| r 1
I T

AN

Function Relay

361

Internal Register

Internal Register (M) only operates within the program. Unless connected
to an actual external port, it is only used internally. You may use M
Register as input or output symbol.

ACTION
|
I
K0 WhADY 100,00
| r 1
I L

MO
()

P Registers that are not used as I/0 ports

CUBLOC supports P Registers from PO to P127. P Register is directly
connected to I/O ports 1 to 1. But most models of CUBLOC have less than
128 I/O ports. In this case, you may use the unused portion of P Registers
like M Registers.

362

Using I/0s

CUBLOC I/O ports can be used by both BASIC and LADDER. Without
defined settings, all I/O ports are controlled in BASIC. To control I/O ports
in LADDER, you must use the “Usepin” command and set the I/O ports to
be used in LADDER.

USEPIN 0, IN
USEPIN 1,0UT

The above code sets PO as input and P1 as output for use in LADDER.
The inner processes require that USEPIN will be re-flashed in LADDER. Re-
flashing means that the Ladder will read I/O status beforehand and store

the status in P Registers. After scanning, LADDER will re-write the status of
I/0 ports into P Registers.

INPUT REFLASH
LADDER SCAN

OUTPUT REFLASH

il

In BASIC, IN and OUT commands can be used to control I/O ports. This
method directly accesses the I/O ports, whether it is read or writes. In
order to avoid collision among the two, the I/Os used in BASIC and LADDER
should be specified.

One a port is declared with USEPIN command, it can only be used in
LADDER and cannot be accessed in BASIC.

USEPIN 0,IN, START
USEPIN 1,0UT, RELAY

You can also add an alias such as START or RELAY as shown above for easy
reading of the Ladder Logic.

363

Use of Aliases

When creating Ladder Logic using “Register numbers” such as PO, P1, and
MO, the user can use alias to help simplify their programs.

PO PE
)

STARTKEY MAIMMOTOR
| '
I b

S

In order to use alias, you need to declare them in BASIC. You can simply
use ALIAS command to use ALIAS for Registers you desire to use.

ALIAS MO = MAINMOTOR
ALIAS M2 = STATUS1
ALIAS M4 = MOTORSTOP

You have an option of either using USEPIN or ALIAS command to use
aliases in LADDER.

364

Beginning of LADDER

CUBLOC executes BASIC first. You can set LADDER to start by using the
command “SET LADDER ON”. When this command is executed, LADDER is
executed consistently within the specified scan time of 10 milliseconds.

If you do not use SET LADDER ON command, Ladder Logic will not be
executed.

SET LADDER ON

Declare devices to use

You must declare the device to be used so the compiler knows. The
following are examples of how to use the CONST DEVICE command.

CONST DEVICE = CB220 ' Use CB220.
or

CONST DEVICE = CB280 ' Use CB280.

This command must be placed at the very start of the program.

365

To Use Ladder Only,
without BASIC

You must at least do a device declaration, port declaration, and turn on the
LADDER for BASIC even if you are going to only use Ladder.

The following is an example of such minimal BASIC code:

Const Device = CB280 'Device Declaration

Usepin 0, In, START 'Port Declaration
Usepin 1,In,RESETKEY

Usepin 2,In,BKEY

Usepin 3,0ut, MOTOR

Alias MO=RELAYSTATE 'Aliases
Alias M1=MAINSTATE

Set Ladder On 'Start Ladder
Do
Loop 'BASIC program will run in infinite loop/

366

Enable Turbo Scan Time Mode

In order to use both BASIC and LADDER, a scan time of 10ms is supported
for LADDER. If you would like to enable Turbo Scan Time Mode when not
using BASIC, you can follow the example below.

LADDERSCAN command can be used inside a DO...LOOP to enable Turbo
Scan Time Mode.

Depending on the size of the Ladder program, this scan time MAY change.
For small programs less than 50 rungs, a scan time of 500us to 1ms are
possible.

Const Device = CB280 'Device Declaration
Usepin 0, In, START 'Port Declaration
Usepin 1, In,RESETKEY
Usepin 2, In,BKEY
Usepin 3,0ut,MOTOR
Alias MO=RELAYSTATE 'Aliases
Alias M1=MAINSTATE
Do
LadderScan
Loop

F16 is a special Register for checking the current scan time. You can
connect it to an I/O port as shown below and check it with an oscilloscope.

F16

PO
I)

Below is an example of a conditional case where Turbo Scan Time is used.
Only when Register M0 is ON, will the Turbo Scan Time be enabled.

Do
Set Ladder On 10 ms Scan when MO is OFF
Do While M(0) =1
LadderScan ‘Only Execute when M is ON
Loop
Loop

367

Things to Remember in LADDER

Input symbol must be placed at the very left side of the Ladder Logic.

* Output symbol must be placed at the very right side of the Ladder Logic.

E3 CuBLOCstudio [untitled.cul 1 =] F]
File Edit Run Setup Help

BOLF & BR A n |

[F11 BASIC [F2] LADDER |

| I |—o 1]|-[C] o]
F&

END

| F& Fii T

A1z vd

368

Identical outputs must not collide.

PO P5

I ¢

I {

PO FB
/| ()

You may not use more than one vertical line as shown below.

More than 1 division will give compile error

PO P1 P5
H A | @

_P{E PB
| O

P3 P
| O

PO P1 P5
| —)

EE PB
| O

PO P3 P7
H O

369

Ladder Logic moves from top to bottom.

PO 1

- m I—‘

FD F3 P5
- | ()
_P|D 1 . F:S j
_|

Function Register can not be on the left side of the Ladder Logic.

- X

When a Ladder Logic becomes complex, simply divide them so you can see
and understand them better as shown below.

_F'|U F‘WI P.’EJ
F‘ZI F‘kﬁ
I ()
P3 P7
\—H ()
PO PI P5
sy ()
i O :
'_pf 7
I ()

370

ladder instructions

Ladder low level instructions

Command Symbol Explanation
LOAD —l I— Contact A (Normally Open)
LOADN _l ; I_ Contact B (Normally Closed)
ouT :) Output
NOT NOT (Inverse the result)
—_— _."I —_—
STEPSET Step Controller Output (Step Set)
L]
STEPOUT I] Step Controller Output (Step Out)
MCS Master Control Start
L]
MCSCLR Master Control Stop
€L]
DIFU Set ON for 1 scan time when HIGH signal
__I__ received
DIFD Set ON for 1 scan time when LOW signal
__I__ received
SETOUT Maintain output to ON
€L]
RSTOUT Maintain output to OFF
€L]
END End of Ladder Logic
€L]
GOTO Jump to specified label
€L]
LABEL Label Declaration
€L]
CALLS Call Subroutine
€L]
SBRT Declare subroutine
RET End Subroutine
TND conditional exit command

371

High level instructions

Command |

Parameter

| Explanation

Data Transfer Commands

WMOV s,d Word Data Move

DWMOV s, d Double Word Data Move
WXCHG s, d Word Data Exchange
DWXCHG s,d Double Word Data Exchange
FMOV s,d,n Data fill command

GMOoV s, d,n Group move command

Increment/Decrement Commands

WINC d Increment 1 to the Word
DWINC d Increment 1 to the Double Word
WDEC d Decrement 1 to the Word
DWDEC d Decrement 1 to the Double Word
Math Commands

WADD s1,52,d Word Add

DWADD sl,s2,d Double Word Add

WSUB sl,s2,d Word Subtract

DWSUB s1,s2,d Double Word Subtract

WMUL sl,s2,d Word Multiplication

DWMUL sl,s2,d Double Word Multiplication
WDIV sl,s2,d Word Division

DWDIV s1,s2,d Double Word Division

Logical Operation Commands

WAND sl,s2,d Word AND

DWAND sl,s2,d Double Word AND

WOR sl,s2,d Word OR

DWOR sl,s2,d Double Word OR

WXOR sl,s2,d Word XOR

DWXOR sl,s2,d Double Word XOR

Bit Shift Commands

WROL d Word 1 bit Shift Left

DWROL d Double Word 1bit Shift Left
WROR d Word 1 bit Shift Right
DWROR d Double Word 1 bit Shift Right

372

LOAD,LOADN,OUT

LOAD is for Normally Open Contacts and LOADN is for Normally Closed
Contacts.

LOAD ouT
e & T~
| {)
| \
P1 Pa
/| ()

Registers that | P M F S C T D Constants
can be used

LOAD O (0] o O O o)
LOADN
ouT (6] (0]

PO []
P2 I I

P3

373

NOT, AND,OR

NOT Symbol
il

al /

] F1

THLE

ay

_F'|] }J AND
\OR

NOT symbol inverses the results. If PO is ON then P5 will be OFF.

-

AR NBE AR
-

e

AND is when two Registers are horizontally placed next to each other. Both
Registers PO and P1 must be True(ON) in order for P5 to be True (ON).

For OR operation, two Registers are vertically placed next to each other.
When either PO or P1 is ON, P5 will be ON.

The following is an example of BLOCK AND and BLOCK OR.

BLOCKAND
PO P Fa
H | ()
P1 P3
H FH H
PO P2 P&
H H |)
P1 P3
_| I_I I_ BLOCK OR

374

SETOUT, RSTOUT

SETOUT will turn ON P5 when PO turns ON and will keep P5 ON even if PO
turns off.

On the other hand, RSTOUT will output OFF when P1 is ON and will keep P5
off even when P1 turns OFF.

PO SETOUT PS

| r

I L]
P1 RSTOUT P5

} C]

Registers that | P M F S C T D Constant
can be used s
SETOUT 6] 0 o
RSTOUT o) o

po _ []

P1 I I

p5s __| |

375

DIFU, DIFD

This command DIFU turns ON the output 1 scan time when input goes from
OFF to ON.
Conversely, DIFD turns OFF the output 1 scan time when input goes from
ON to OFF.

DIFU
PO F5
I r ¢)
I u | LS
Pi FB
I .| ()
[C .
DIFD
PO ! .
P1 l
p5 —>ﬂ<—1 SCAN :
- 5 »ﬂ« 1 SCAN

376

MCS, MCSCLR

The command MCS and MCSCLR allow for the Ladder Logic between MCS X
and MCSCLR X to be executed when turned ON. If MCS is OFF, the Ladder
Logic in between MCS X and MCSCLR X will not be executed.

By using this command, the user is able to control a whole block of Ladder
Logic.

MCS # (0~7)

kA0 MCS 0

I \d b
MCSCLA 0

T 1

In the above example, when MO turns ON, Ladder Logic between MCS 0 and
MCSCLR are executed normally. If MO is OFF, P5 and P6 will turn OFF.

MCS number can be used from 0 to 7. MCS number should be used from 0
increasingly to 1, 2, 3, etc... MCS 1 must exist inside MCS 0 and MCS 2
must exist inside MCS 0. Likewise up to 7 MCS blocks can be used. When
MCS 0 is OFF, all MCS inside MCS 0 will turn OFF.

When MCS turns OFF, all outputs within that MCS block will turn OFF, Timer
will be resetted, Counter will be stopped.

Command When MCS is ON When MCS is OFF

ouT Normal Operation OFF

SETOUT Normal Operation Maintain status after MCS turned OFF
RSTOUT Normal Operation Maintain status after MCS turned OFF
Timer Normal Operation Reset to default value

Counter Normal Operation Maintain status after MCS turned OFF
Other Normal Operation Stop Operation

Commands

377

The following screenshot shows MCS used within another MCS.

: MO MCS 0 :
] _|I E :I 1
I |Po P51
| | e

A)]
I MCE T 1 I
:|4I L 1. !
,: P : PE
hoH | —C)
1 MCSCLR | | !
1 r 1 I 1
||_ ________________ - 1 |
! MCSCLR 0 1
! £ 1 !
I 1
I |
e e e e e e e e e e e 4

MCS.

|
M0 MCS 0
i : I
| 4|I L 1 1
| PO P& 1
I ¢

p H {) |
| MCSCLR 0 1
| C 1 |
S 1
P T T T T T T Ty, T T T T T T T 1
el £ 1 !
] P |
' ¢y
| MESCLA O |
| C 1 |
| |
| |

378

Step Control
S Register are used for step control. The following is the correct format for
step control.

Relay (0~15)

/ St (0-255)
S$7:126

In Step Control, there’s “normal step” and “reverse step”. For normal step,
we can simply use the STEPSET command.

STEPSET

PO STEPSET S0:1
| r 1
I L

P1 STEPSET 30:2
| r 1
I L

P2 STEPSET 30:0
| £ |

This command STEPSET will turn ON the current step if the previous step
was ON. Since it operates in one step at a time, we call it STEPSET. For
example, in the above ladder diagram, when P1 turns ON, S0:2 is turned
ON if S0:1 is turned ON. SO0:1 is turned OFF. When P2 turns ON, SO0:0 is
turned ON and other steps are turned off. S0:0, or step 0 is used for reset.
Otherwise STEPSET will move in order.

po [

P]

P2 [
so:0 [/1
soit [

$0:2

379

STEPOUT

This command STEPOUT will only 1 step to be enabled at all times. The
last step to be turned ON will be the step to be enabled at any given
moment.

PO STEPOUT S0:1
| r 1
I L)

P1 STEPOUT 80:2
| r 1
I L)

P2 STEPOUT S0:0
| £ |

When P1 turns ON, S0:2 turn ON. When PO turns on S0:1 turns ON. A
step will be kept on until another step is turned ON.

po []
P

P2 [
S0:0
s0:1 | |

so:2 [1

380

TON, TAON

When input turns ON, timer value is decremented and output turns on when
timer is done. There are two kinds of timers, one that works in 0.01
second units and another that works in .1 second units.

Type of Timer Time units Maximum Time
TON 0.01 sec 655.35 sec
TAON 0.1 sec 6553.5 sec
START TOM T0,100
I r]
I =
START TADM T1.100
I r]
I =

There are 2 parameters with commands TON, TAON. For the first
parameter, you can choose between TO to T99 and for the second
parameter, you may use a humber or a data memory such as DO.

Usable P M F S C T D Constants
Registers
TON, TAON o 6] 0] o

In the above LADDER diagram, when START turns ON, TO Timer will start
from zero to 100. When 100 is reached, TO will turn on. Here, 100 is
equal to 1 second for TON and 10 seconds for TAON.

1sec
+—>

START | |

TO

When START turns OFF, the timer is reset to original set value of 100 and
TO turn off too. TON, TAON commands will reset its timer values upon
powering OFF. To use the features of battery backup, you can use KTON,
KTAON which will maintain its values when powered OFF. Below is an
example of how to reset TAON.

Fi M0 TAON T0, 100
} 4} L 1
0 I_l MO
l r ()
I = \

381

TOFF, TAOFF

When input turns ON, output turns ON immediately. When the input turns
OFF, the output is kept ON until set amount of time. Like TON and TAON,
there are 2 commands for two different time units.

Type of Timer Time units Maximum Time
TOFF 0.01 sec 655.35 sec
TAOFF 0.1 sec 6553.5 sec
START TOFF T0.100

I r J

| LY
START TAOFF T1.100

I r J

I LY

There are 2 parameters with commands TOFF, TAOFF For the first
parameter, you can choose between TO to T99 and for the second
parameter, you may use a number or a data memory such as DO.

Usable P M F S C T D Constants
Registers
TOFF, TAOFF 0] [e] 0] 0]

In the above LADDER diagram, when START turns ON, TO Timer will
immediately turn ON. After START turns OFF, timer will start decreasing
from 100 to 0. When 0 is reached, TO will turn OFF.

Here, 100 is equal to 1 second for TON and 10 seconds for TAOFF.

1sec
+—>

START

10 | |

382

CTU

This command is an UP Counter. When input is received the counter is
incremented one. When the counter counts to a specified value, the set
Register will turn ON at that point. There is a Reset input so the counter
can be reset as needed.

PULSE CTU 0100
| -
I C
RESET
| A
I L
100 pulse
puLse —OOASANMAN
RESET |_| |_|
Cco

CTD

This command is a DOWN Counter. When input is received the counter is
decremented one. When the counter reaches 0, the set Register will turn
ON at that point. There is a Reset input so the counter can be reset as
needed.

PULSE CTD C1, 100
I [
RESET
| R
I L
100 pulse
purse — OO AAAN
RESET |_| |_|
C1

383

UP/DOWN COUNTER

Below is a simple way of how UP Counter can be used to make a UP/DOWN
Counter.

FO CTU 0,100
| -

sl c

F1
| R

all L

Pz WOEC C0

= | = c]
I i | =

PO is for counting UP, P2 is for counting DOWN, and P1 is for resetting the
COUNTER. When Counter reaches 100, CO turns ON.

po _[NNONOAOND DOAORAD

P2 fnnonn

pt [0
co
COUNT

co 1

384

KCTU

This command is exactly same as CTU command except, this command will
be able to remember counter value when module is powered off. The
module used for this command MUST support battery backup(CB290). In
comparison, CTU command will lose its count value when the module is
powered off.

P1 KCTU <0100
I ¢
Pz }
| f
I R
100 pulse
—
o __ OOO[IOONMO
p1 [\ [l

//Af | ==
1

Use RESET to set the
counter to 0 atthe Power off & on

beginning

When using this command for the very first time, please use the RESET
signal to reset the counter value. Otherwise counter will start at the last
value it was set. (random if not set before)

KCTD

This command is exactly same as CTD command except, this command will
be able to remember counter value when module is powered off. The
module used for this command MUST support battery backup(CB290). In
comparison, CTD command will lose its count value when the module is
powered off.

KCTU, KCTD must be used with modules that support “Battery-Backup”
such as the CB290.

385

Comparison Logic

Compare 2 Words(16 bit) or 2 Double Words(32 bit) values and turn on
Output when the conditions are satisfied.

Comparison Data Types Explanation

Command

=,s1,s2 Word(16 bit) When s1 and s2 are same Output turns ON.

<>,6sl,s2 Word(16 bit) When s1 and s2 are different, Output turns
ON.

>,s1,s2 Word(16 bit) When s1 > s2, Output turns ON.

<,s1,s2 Word(16 bit) When s1 < s2, Output turns ON.

>=,5s1,s2 Word(16 bit) When s1 >= s2, Output turns ON.

<=,s1,s2 Word(16 bit) When s1 <= s2, Output turns ON.

D=, s1,s2 DWord(32 bit) When s1 and s2 are same Output turns ON.
D<>, s1, s2 DWord(32 bit) When s1 and s2 are different, Output turns
ON.

D>, s1,s2 DWord(32 bit) When s1 > s2, Output turns ON.
D<, s1,s2 DWord(32 bit) When s1 < s2, Output turns ON.
D>=, s1, s2 DWord(32 bit) When s1 >= s2, Output turns ON.
D<=, s1, s2 DWord(32 bit) When s1 <= s2, Output turns ON.

= D0 T 0
| s]
I \

You can mix different comparisons as shown below:

»=, C0, 99 rA0

When either DO=T1 or D1<100 and if C0>=99, MO will turn ON. In other
words, either DO has to equal to value of T1 or D1 has to be less than 100
while CO must be larger or equal to 99.

386

How to store
Words and Double Words

Byte is 8 bits, Word is 16 bits, and Double Word is 32 bits.

1BYTE
~
NN NN I NN NN

1 WORD

DOUBLE WORD

There are 2 ways to store Word of Double Word size of data. A Word or
Double Word can be stored starting from the LOW BYTE or from the HIGH
BYTE. In CUBLOC, it is stored from the LOW BYTE or LSB(Least Significant
Byte).

As you can see below, 1234H is 0 34

stored in Memory Address 0 and ; 12

12345678H is stored in Memory 3

Address 5. In every Memory 4

Address, 1 byte of data is stored. g ;g
7 34
8 12
9

The Registers C, T, D are in units of Words. To store a Double Word data,
2 Word spaces will be required, meaning two Register spaces. Below is an
example of store a Double Word data, 12345678H. D1 gets 1234H and DO
gets 5678H.

DO 5678
D1 1234
D2
D3
D4

387

Binary, Decimal, Hexadecimal

To program well, we need to know binary decimal, and hexadecimal
numbers. The following chart shows the relationships between these three
types of humber representation.

Decimal Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

In CUBLOC's Ladder Logic, we express binary and hexadecimal numbers in
the following manner:

Binary: 00101010B
Hexadecimal: OABCDH

We put a B at the end of the binary number and an H for hexadecimal
numbers. To clearly identify that ABCD is a nhumber, we can put a 0 in
front of the hexadecimal number.

(E.g. : OABH, OA1H, OBCDH)

*In BASIC, it is slightly different from LADDER in the way you express

binary and hexadecimal numbers. We use &B100010 or &HAB to express
those type of humbers.

388

WMOV, DWMOV

WMOV s, d
DWMOV s, d

The command WMOV moves 16 bit data from s to d. DWMOV can be used

for 32 bit data.

Usable Register C T D Constants
s (Source) (6] 0 o o
d (Destination) 0] 0 0]
START W0y 100, DO
I I]
I L)
1IN0 OO 1234H, D2

r

When input START turns ON, DO will get 100.

get 1234H.

DO
D1
D2
D3
D4

=

1

When INO turns ON, D2 will

100

1234H

389

WXCHG, DWXCHG

WXCHG s, d
DWXCHG s, d

The command WXCHG exchanges data between s and d. WXCHG is for
exchanging 1 Word and DWXCHG is for exchanging Double Word.

Usable P M F S C T D Constants
Registers
s 0] 6] 0]
d 0] 0] 0
START W0y 100, DO
- | C 1
W0y 123, D1
T]
IO WACHG DO, D1
} c 1

When START turns ON, DO gets 100 and D1 gets 123. When INO turns ON,
D0 and D1 exchange their data. The result is as shown below:

DO 123
D1 100
D2
D3
D4

390

FMOV

FMOV s, d, n

Store value in s to d and n number of times after that to additional locations.
This command is usually used for initializing or clearing memory.

Usable P M F S C T D Constants
Registers
s 6] 0] o)
d [e) 0 o)
n (6]
START WMoY 100, DO
I r]
| L
ACTION FMOY 00015
I r]
I L

Below is result of LADDER execution:

DO 100
D1 100
D2 100
D3 100
D4 100
D5 100

*Notice: Please Set n less than 255.

391

GMOV

GMOV s, d, n

Store value starting at s to d by n memory locations. Please make sure not
to overlap memory locations as this could cause data collisions.

Usable P M F S C T D Constants
Registers
s 0] 6] 0]
d [e] [¢] 0
n (6]
ACTION GMOY DO,D10.5
| r 1
I L

Below is result of LADDER execution:

DO 12
D1 34
D2 56
D3 78
D4 90
D5
D6
D7
D8
D9
D10 12
D11 34
D12 56
D13 78
D14 90
D15
D16

*Notice: Please Set n less than 255.

392

WINC, DWINC, WDEC, DWDEC

WINC d
DWINC d
WDEC d
DWDEC d

WINC increments Word value in d by one.

DWINC increments Double Word value in d by one.
WDEC decrements Word value in d by one.

DWDEC decrements Double Word value in d by one.

Usable P M F S C T D Constants
Registers
d [¢] 0 0]
START WwhkAOY 100, DO
| r 1
| =
ACTION WINC D0
| r 1
| =
Below is result of LADDER execution:
DO 99
D1
D2
D3

393

WADD, DWADD

WADD si,s2,d
DWADD si, s2, d

Add s1 and s2 and store result in d.
WADD is for Word values and DWADD is for Double Word Values.

Usable P M F S C T D Constants
Registers

sl o 6] 0] 0]

s2 0] [e) 0] 0]

d 0] (6] 0]

WSUuUB, DWSUB

WSUB s1,s2,d
DWSUB sl1,s2,d

Subtract s2 from s1 and store result in d.
WSUB is for Word values and DWSUB is for Double Word Values.

Usable P M F S C T D Constants
Registers
sl 0] [e] 0] 0]
s2 o 6] 0] o
d 0] 0] 0
START WAOY 100, DD

I r]

| L
ACTION WSUE D0, 5 D1

I r]

I L

D1 gets 95 in the above LADDER diagram.

394

WMUL, DWMUL

WMUL si,s2,d
DWMUL sl, s2, d

Multiply s1 and s2 and store result in d.
WMUL is for Word values and DWMUL is for Double Word Values.

Usable P M F S C T D Constants
Registers
sl 0 0] 0] 6]
s2 [e] 0] 0] 0]
d (6] 0] 0]
STPiHT WHOY 1234H, DO
I T]

ACTION WhUL D0, 1234H, D1
| r 1
I L

The result of 1234H * 1234H is stored in D1 as a double word of 14B5A90H.

DO 1234H
D1 5A90H
D2 14BH
START DWMOY 123456H, DO
| r 1
I L
ACTION DwMUL DO, 1234H, D2
| C 1

The result of 123456H * 1234H is stored as 4B60AD78H in D2

DO 3456H
D1 0012H
D2 0AD78H
D3 4B60H
D4 0
D5 0

395

WDIV, DWDIV

WDIV si,s2,d
DWDIV sl, s2, d

Divide s1 by s2 and store the result in d and leftover in d+1.
WDI1V is for Word values and DWDIV is for Double Word Values.

Usable M F S @ T D Constants
Registers
sl (0] o (o] 0
s2 (0] (0] (] (0]
d 0 (0] o
F{CTION WDl D0.D2.04
| r 1
DO 1234H
D1
D2 3
D3
D4 611H
D5 1
F{CTION OWDIY D0,02.04
| L ;|
DO 5678H
D1 1234H
D2 7
D3 0
D4 0C335H
D5 299H
D6 5
D7 0

396

WOR, DWOR

WOR si,
DWOR sl

s2, d
s2, d

Do Logical operation OR on s1 and S2 and store result in d.
WOR is for Word values and DWOR is for Double Word Values.

The result of above ladder diagram:

DO
D1
D2

Usable P M S C T D Constants
Registers
sl O |O |O |O
s2 O |0 |]O |O
d O |0 |O
STaRT WhA0Y 1200H.00
_| | r 1
I L

WrAOY 34H. D1

L]
ACTION WOR D0,D1.D2
| c 3

1200H

34H

1234H

397

WXOR, DWXOR

WXOR s1, s2, d
DWXOR s1, s2, d

Store result of s1 XOR s.
WXOR is for logical operation XOR in WORD units whereas DWXOR is for
DOUBLE WORD units.

Usable P M F S C T D Constants
Registers
sl [e]) 0] o)
s2 0] 6] o (6]
d [e] [e) 0
START WADY 1234H.00
_1 1 r 1
I L)

Whi0W OFFH.D1

T 1
ACTION Wx0OR D0,D1.02
ay c 1

The following is result of above LADDER:

DO 1234H
D1 OFFH
D2 12CBH

When you want to invert specific bits, you can use XOR logical operation.

398

WAND, DWAND

WAND si,
DWAND si,

s2, d
s2, d

Store result of s1 AND s2. WAND is for logical operation AND in WORD
units whereas DWAND is for DOUBLE WORD units.

The results of execution of LADDER above:

You can use AND operation when you want to use specific bits only.

DO
D1
D2

Registers that | P M S C T D Constants
may be used
sl 6] o o 6]
s2 o 0] o o
D 6] o o
START WO 1234H,00
_| | r 1
I =
WO OFFH, D1
L]
ACTION WanD D0.01,D2
} c]

1234H

OFFH

34H

399

WROL, DWROL

WROL d
DWROL d

Rotate the value on Register d 1 (double) word to the left. The value left
gets stored in the Carry flag. WROL moves one word whereas DWROL

moves double word.

Registers that | P | M F S C T D Constants
may be used
d o o)
L ‘ —d — ‘J
BKEY - WROL DD
|
/| - C]

If DO has 8421H, the following results:

DO 0843H
D1

400

WROR, DWROR

WROR d
DWROR d

Rotate the value on Register d 1 (double) word to the right. The value left
gets stored in the Carry flag. WROL moves one word whereas DWROL
moves double word.

Registers that | P M F S C T D Constants
may be used
d [e] 0 o
L=
BKEY - WROR D1
|
| = C]

If D1 has 8421H, the following results:

DO
D1 0C210H

401

GOTO, LABEL

GOTO label
LABEL label

The command GOTO will jump to the specified label. Label is for declaring
labels.

START GOTO Sk_1
_| | r 1
I C
BEKY TOM T0,100
— | C 1
I
LABEL Sk_1
L]

When START turns ON, the LADDER program will jump to label SK_1

In the below example LADDER diagram, when DO equals CO, the program
will jJump to SK_1.

=.00.C0 GOTO SK_1
| r 1
I L)

402

CALLS, SBRT, RET

CALLS label
SBRT label

CALLS will call a sub-routine.
SBRT is the starting point for a sub-routine.
RET is the ending point for a sub-routine.

there are sub-routines

————————————————————————————— Main Program
i o ’
: START CALLS CHE_RTN 1
r M c 1 |
! RET :
: T 1 RETmust be used when
|

0
Start of sub-routine

! l
: - 1 |
| |BKEY TOM T0,100 !
| | r 1 |
I ' - !
| FET < 1 : End of sub-routine
E—
L N i
EMD ¢
L 1 End of Ladder

Please be aware that when adding sub-routines to your program, you need
to add RET to the end of main program to differentiate from sub-routines.
END goes at the very end of main program and sub-routines in this case.

403

INTON

INTON s,d

INTON is same as WMOV command except it can cause an interrupt in
BASIC part of CUBLOC.

Usually P M F S C T D Constants

Registers

s (Source) 0] 0] 0] 6]

d (Destination) (6] [¢] 0]

PO INTOM 3,00
| I r 1
I | =

P INTOM 2.00
l [r 1
I | =

404

TND

TND is a conditional exit command. When the user wants to abort Ladder
scanning during operation, TND can be used.

F29 P2
1 H)
PO THD
2 H 1
F30 P4
s HI ()
EMND
4 L 1

When PO turns ON, Ladderscan will abort.

SBRT CHK_RTM
— 1
PO Mz
| {
H)
Pl THD
1
Pz M3
| {
il ()
RET
E— 1

You can also use it for exiting from sub-routines when a certain condition is
met. In the above example, when P1 turns ON, the subroutine will be
aborted, but Ladder scanning will keep executing.

405

Special Registers

You can use special Registers to find out about the current status of
CUBLOC or use them for timing functions and applications.

Special Explanation

Register
FO Always OFF
F1 Always ON
F2 Turn on 1 SCAN time at POWER UP (Set Ladder On).
F3
F4
F5
F6
F7
F8 1 SCAN On every 10ms
F9 1 SCAN On every 100ms
F10
F11
F12
F13
F14
F15
F16 Repeat ON/OFF every 1 Scan time.
F17 Repeat ON/OFF every 2 Scan times.
F18 Repeat ON/OFF every 4 Scan times.
F19 Repeat ON/OFF every 8 Scan times.
F20 Repeat ON/OFF every 16 Scan times.
F21 Repeat ON/OFF every 32 Scan times.
F22 Repeat ON/OFF every 64 Scan times.
F23 Repeat ON/OFF every 128 Scan times.
F24 Repeat ON/OFF every 10ms
F25 Repeat ON/OFF every 20ms
F26 Repeat ON/OFF every 40ms
F27 Repeat ON/OFF every 80ms
F28 Repeat ON/OFF every 160ms
F29 Repeat ON/OFF every 320ms
F30 Repeat ON/OFF every 640ms
F31 Repeat ON/OFF every 1.28 seconds
F32 Repeat ON/OFF every 5.12 seconds
F33 Repeat ON/OFF every 10.24 seconds
F34 Repeat ON/OFF every 20.48 seconds
F35 Repeat ON/OFF every 40.96 seconds
F36 Repeat ON/OFF every 81.92 seconds
F37 Repeat ON/OFF every 163.84 seconds
F38 Repeat ON/OFF every 327.68 seconds
F39 Repeat ON/OFF every 655.36 seconds
F40 Call LADDERINT in BASIC
F41
F42

406

* If you write 1 to F40, you can create a LADDERINT in BASIC. Please
refer to ON LADDERINT GOSUB command for details.

* F2 causes 1 Scan ON at the time of BASIC's SET LADDER ON command.

*Blank special Registers are reserved. Please do not use them.

407

408

Integrated Touch Screen Controller

CUTOUCH

User Manual

“Everything for Embedded Control”

COMFILE

TECHNOLOGY
Comfile Technology Inc.
www.comfiletech.com

409

Preface

CUTOUCH is a complete integration of a Touch panel, graphic LCD, and
CUBLOC embedded computer. In the recent years, there has been
increase of use of touch screens in the industrial field. But to use one, the
user required connecting to a PLC and learning complex methods in order to
use it. In addition, cost of touch screen has been very expensive.

Our CUTOUCH is a new type of embedded controller that integrates Touch
screen, PLC, and graphic LCD, all into one.

The biggest difference between CUTOUCH and other touch screens is that
it's the only Visual Touch screen controller that can be programmed with
BASIC and LADDER in the world today.

BASIC language can be used to draw graphics and print characters to the
LCD and receive input from the touch screen before processing the x and y
positions. Sensor input through I/O, turning relays on/off, AD/DA
conversion, and RS232 communication are very easy to implement in
comparisons to traditional non-BASIC PLCs. With the Ladder Logic side of
CUBLOC, the user may do sequential processing and real-time logic
processing as in traditional PLCs.

CUTOUCH has a flash memory for BASIC and LADDER programs. A serial
port can be used to download and debug. After downloading is done, it can
run in a “Stand-alone” state.

If you are thinking about developing a device that uses a touch screen,
please review CUTOUCH and we guarantee you that you will ultimately

spend more time designing and less time developing.

Comfile Technology Inc.

410

What is CUTOUCH?

CUTOUCH is different from the traditional Touch-screens you may associate
with. Traditional Touch-screens are not a complete integrated solution to
your application. They are usually Touch-screen panels that will only
process graphics and touch input. In other words, most Touch-screens can
not be used as a industrial controller as well as graphic LCD and touch input.

CUTOUCH is complete integration of a traditional PLC with a Touch-screen
graphic LCD. By integrating user input, display output, and control,
developers now can put one Touch panel as a control system.

CUTOUCH

411

CUTOUCH Specifications

Processor CUTOUCH CT1720 CUTOUCH CT1721
Microprocessor Dual Core Atmegal28 @ 18.432Mhz Dual Core Atmegal28 @ 18.432Mhz
Program
Memory (Flash) BOKB BOKB
Data) !
Memory (RAM) 24KB(BASIC)+4KB(Ladder Logic) 24KB(BASIC)+4KB(Ladder Logic)
EEPROM 4KB EEPROM 4KB EEPROM
Program Speed 36,000/sec 36,000/sec

General Purpose
I/0

- 82 1/0 lines (ALL 5V TTL) (33 input
only + 32 output only + 17
input/output configurable)

=82 1/0 lines (TTL & 24V DC) (1 TTL
input, 32 24V opto-isolated inputs +
32 24V TR outputs + 17 TTL
input/output configurable)

Serial Ports for
Communication

- 2 High-speed hardware-independent
serial ports (Channel 0 & 1 : RS232C
12V)

- Configurable Baud rates: 2400bps to
230,400 bps

- 2 High-speed hardware-independent
serial ports (Channel 0 & 1 : RS232C
12V)

- Configurable Baud rates: 2400bps to
230,400 bps

Analog Inputs

8 channel 10-bit ADCs
Input Voltage Range: 0 to 5V

8 channel 10-bit ADCs
Configurable Voltage: 0 to 5V OR 0 to
i0v

Analog Outputs

- 6 Channel 16-bit PWMs (DACs)

- Output Voltage Range: 0 to 5V

- Configurable Frequency: 35hz to
1.5Mhz

- 6 Channel 16-bit PWMs (DACs)

- Output Voltage Range: 0 to 5V

- Configurable Frequencies: 35hz to
1.5Mhz

External Interrupts 4 Channels 4 Channels
High Speed 2 Channel 16-bit Counters (up to 2 Channel 16-bit Counters (up to
Counters Mhz) Mhz)
- Required Power: 9-24V DC - Required Power: 24V DC
- Current Consumption w/ ports - Current Consumption w/ ports
unloaded: unloaded:
Power @ 24V w/ Backlight ON: 170mA @ 24V w/ Backlight ON: 170mA
@ 24V w/ Backlight OFF: 70mA @ 24V w/ Backlight OFF: 70mA
@ 12V w/ Backlight ON: 340mA @ 12V w/ Backlight ON: 340mA
12V w/ Backlight OFF: 130mA 12V w/ Backlight OFF: 130mA

RTC (Real Time
Clock)

Yes

Yes

Timers

- 1 User Configurable Timer

- Configurable Interval Units = 10ms

- 1 User Configurable Timer

- Configurable Interval Units = 10ms

Data Memory Back-

*Yes, a 1 Farad rechargeable Super-

*Yes, a 1 Farad rechargeable Super-

up Capacitor is included. Capacitor is included.
Operating 0°Cto 70 °C 0°Cto 70 °C
Temperature
Integrated Touch-screen Panel w/ Integrated Touch-screen Panel w/
Package 2mm Headers and 2mm Headers and
2.5mm RCABLE Headers 2.5mm RCABLE Headers
-7.17" x 5.17" x 0.98" -7.17"x 5.17" x 0.98"
- (182.2 x 131.4 x 25 mm) - (182.2 x 131.4 x 25 mm)
Size - Viewing Area (Touch-sensitive): - Viewing Area (Touch-sensitive):

4.5" x 3.4" (5.6" diagonal)

4.5" x 3.4" (5.6" diagonal)

412

Hardware Requirements

To use CUTOUCH, the user may use a Windows XP, 2000, or 98 operating
system equipped computer. If you would like to use it in
Linux/Unix/Macintosh environment, you will need to install a virtual machine
software of some type (such as VMware, etc..) that allows Windows
operating system to run on it.

An RS232 port is also required or you may use a USB-to-RS232C
converter. Download and Monitoring is possible when connected with the
PC.

When CUTOUCH is disconnected from the PC, it goes into a STAND-ALONE
state. The main program is stored in CUTOUCH's flash memory, and will be
retained even with no power. The user may download new programs and
erase them as many times as he or she wishes.

{ i) (}
| o [

COMFILE

TECHNOLOGY

|
|

(Above: Picture of CUTOUCH ready for p}ogramming)

413

Software
Development Environment

CUTOUCH uses CublocStudio as its main development environment. For
graphics, we have automatic code-generating GUI (Graphic User
Interface) software called CUCANVAS and PixelStudio.

CublocStudio is used for BASIC and Ladder Logic programming on the
CUTOUCH.

CuCANVAS is mainly used for creating boxes, circles, and menu
buttons while PixelStudio allows the user to create up to 200 custom
characters.

All development software can be downloaded on our website under
Download->Integrated.

HS QLS - Pixel Studio

KA et [S ANGI)
BoQ Qi q--utw* 54

>

¥ Numkey.cvs - CuCANVAS
File Edit Generate Tools View Help
~ o - =

< | & DEd Q@R 8

| Numkey skt Form
Source Code Type

O [Use tab key o ssiectnelghbor ones
Startg CHR Coce aH [DB30 oase=aHDB30) nert [0 - T
PeFcrR arpeso, o
50D SHOD,5HOG,&HO0 8HOC,2HOD,5HOB,EH00,_
‘SHO1,5HO0 £HO0,8HCD SHOF £HCD,8HOB, 8HED. °
5405 SHT0,GHO7 GHDD SHO3,SHDSHOO,GHID, N
SHO 8H1B,GHO1 HEB SHOD 8H00,3HOD,5HOO A

a

a8

Copy To Ciphoard | Save ToFie.

BASICIHLADDERJL S A0I S=ot= HEIHAZ T2HH - FES

vezwfiessr x| [v[-] sme| [

414

CUTOUCH 1/0 Ports

o
I
N
i
U32 o
™m0 |Nfoo| o
~
o
~
=
p -
o
N
~5
o| a4l
=5
=
FIREEE
El><c|S|E| v
o| |0l 3| 3|9
Z0| o & 2=
|25l clolT
e;W.D.I ol=
dpchhm
OnU/.mJtO
=|=|0|<|T|Of—

CT1720

The 82 I/O ports on the CT1720 can be accessed using the connectors

shown here:

°
.
J1

J2

6543210

e

GND 1514131211109 8 GND 7
ARRRR RN

oLL
G5

J1

J2

PPA® @ PPA
PPAe @ PPA

SS\ @ @ SSA
SS\ e @ SSA
SSA\ @ @ SSA
SS\ @ @ SSA\
SS\ @ @ SSA

vzd e @ Ovd
Gede e Lyd
9zd e e zyd
lzde e gvd
8Zd e @ vid
62d e ® Sid
0ed e ® 9vd
lede e Lvd
Zed e e 8vd
€€d e e 67d
¥€d @ @ 05d

Gede e LGd
9¢d e @ 2Gd
L€de e €£5d
8€d e @ ¥Sd

PPA ® ® sSA

0d e e 8d
Zd e e 6d
Zde e 0ld
ede e lid
vdeelld
Gdeec€ld
9de e vid
LdeeSld

PPA @ @ 0IUD B
SS\ @ @ LIUD

95de e z/d
15de e £/d
g5de ® vid
65d® ® G/d
09d e ® 9/d
Lode e //d
Z9de e 8/d
€9de e 6.d
v9d e @ 08d
Gode e L8d
99d @ e 28d
19d e e £8d
89d e e ¥8d
69d e e 58d
0lde e 98d
lide e /8d
OIN & ¢ OIN
AVZ ® ® OIN
Avz®®ssp <t
AVZ ® ® sSp =)

*]1, 32, 13, J4 are 2mm pitch. A PCB board is recommended for TTL access.

Comfile RCABLE

J12, 113, J14 are 2.5mm pitch RCABLE headers.

connectors can be used.

415

Connector Name 1/0 Port Block | Explanation
PO 1/0 ADCO
P1 I/0 ADC1
P2 1/0 ADC2
J12 P3 1/0 Block O ADC3
(I3) P4 /0 ADC4
P5 1/0 ADC5
P6 1/0 ADC6
P7 I/0 ADC7
P8 1/0 PWMO
P9 I/0 PWM1
P10 1/0 PWM2
J13 P11 1/0 Block 1 PWM3
(I3) P12 /0 PWM4 / INTO
P13 I/0 PWMS5 / INT1
P14 1/0 INT2
P15 I/0 INT3
J14 P16 1/0 HIGH COUNT INPUT O
P17 IN HIGH COUNT INPUT 1
P18 OuUTPUT Internally connected to Piezo
BUZZER
(Cannot be accessed from Ladder)
P19 to N/C
P23
P24 to 31 | OUTPUT Block 3 8 Output Ports
J2 P32 to 39 | OUTPUT Block 4 8 Output Ports
P40 to 47 | OUTPUT Block 5 8 Output Ports
P48 to 55 | OUTPUT Block 6 8 Output Ports
P56 to 63 | INPUT Block 7 8 Input Ports
J4 P64 to 71 | INPUT Block 8 8 Input Ports
P72 to 79 | INPUT Block 9 8 Input Ports
P80 to 87 | INPUT Block 10 8 Input Ports

N/C = No Connection

The CUTOUCH CT1720 I/O Ports are TTL 5V.

The CUTOUCH Add-On Board allows opto-isolated 24V DC inputs and 24V

TR outputs for J1 to J4.

The CUTOUCH CT1721 is a combination of CT1720 and the Add-On Board.

*Please be careful to not input more than 5V into a CUTOUCH TTL ports as

it can damage the product.

416

There are extra RS232 connectors as shown below so you have the
flexibility to be able to access CUTOUCH when in an enclosed area.

— O

RS232 RS232 Download
Addtional Channel 1 cable
Connector

The Download RS232 Channel is a 4-pin type connector and RS232 Channel
1 is a 3 pin type connector as shown below. You can connect them to the

PC SIDE RS232 Pins as shown below:
GND
DTR)
™ Download / Monitoring
RD

GND
TD RS232 Channel 1
PC SIDE RD

417

Backup Battery

CUTOUCH will maintain data in its data memory after power OFF by using
its backup battery. If backup is not needed, the program must clear the
memory at the beginning of the program. Use RAMCLEAR at the beginning
of your BASIC code section to clear all data memory at the start of the
program.

*The CUTOUCH comes with a self-charging 1.0F super-capacitor which can
last about a day (to 30hrs). You can replace it with a 10.0F super-
capacitor to extend the duration to about 300 hours(12.5 days). Adding a
battery can add up to 5+ years of backup depending on the battery
capacity. For adding backup battery, please connect to the pins labeled,
“External Battery,” under the super-capacitor.

' DEMO FOR CUTOUCH

'

Const Device = CT1720

Dim TX1 As Word, TY1l As Word

TX1 = 0
Yl = 0 ' Clear just this variable
RAMCLEAR ' Clear all RAM

For LADDER, all Registers S, M, C, T, and D are backed up by the backup
battery. Register P is cleared at power ON by default. If you only want to
clear parts of the Register, not all Registers, you can use the following
method to clear:

Const Device = CT1720

Dim I As Integer

For I=0 to 32 ' Clear only Register MO to M32
M(I) =0

Next

Set Ladder On

Most traditional PLCs have KEEP memory for storing and restoring data in
case of power down. CUTOUCH also has this feature by using a super
capacitor, which recharges itself and acts as a backup battery. You also
have the option of using larger capacity capacitor or an actual battery.

418

KEEP Timer and KEEP Counter

KEEP timer will retain its data values when powered off and restart from the
data values when power is turned on. KCTU and KCTD commands can be
used in place of CTU and CTD commands in order to make use of this KEEP
timer and KEEP counter. Please refer to KCTU, KCTD commands for
detailed information.

419

Menu System Library

CUTOUCH supports extra commands for easy-to-use menus. These
commands make for easy creation and manipulation of the menus. With
the menu system library, a menu system shown in the below picture can be
made in less than 5 minutes.

Comfile Automobile gas pressurizer

Selectgas Gas pressure Auto type

‘ Gas left ‘ Initialize Total cost

MENU Commands

CUTOUCH has memory space for about 100 MENU buttons. Use MENUSET
command to set the x and y axis positions and the style of the MENU.
Then MENUTITLE command can be used to name the MENU. When touch
input is received, MENUCHECK command can be used to decide which
MENU button was pressed.

0 99

»

Each MENU button can be reset to another x and y axis positions and style
by using MENUSET command. The only restriction is that up to 100 button
can be inputted at time in one screen. But the user is free to reset each
button to another usage after each screen, allowing infinite buttons.

420

Menuset

MENUSET index, style, x1, y1, x2, y2
Index : Menu Index Number
Style : Button Style; 0O=none, 1=Box, 2=Box with Shadow
X1,y1,x2,y2 : Menu Button location

Index value must be between 0 to 99. Style is the shape of the button,
where 0 is for no box, 1 is for a box, and 2 is for a showed box.

0 1 2

x1,y1, x2, y2 are the x and y axis positions of the left upper and lower right
corners. When this command is executed, the set part of the screen
becomes part of the button’s area.

Menutitle

MENUTITLE index, X, y, string
Index :Menu index number
X,y : Title location based on left upper corner of button
string : Name of the menu

Menuset only draws the box itself. Use Menutitle command to set the
name of the menu like shown here:

Menutitle 0,13,13,"Gas Left”
Menutitle 1,16,13,"Initialize”
Menutitle 2,13,13,"Total Cost”

Gas left Initialize Total cost

421

Menucheck()

Variable = MENUCHECK(index, touchx, touchy)
Variable : Variable to store results (1 if selected, 0 if unselected)
Index : Menu Index Number
Touchx : Touch pad x axis point
Touchy : Touch pad y axis point

Use this command Menucheck to see which menu is selected. Touchx and
Touchy are the user’s touchpad input points. If the Menu is selected, 1 is
returned, otherwise 0 is returned.

If Menucheck(0,TX1,TY1l) = 1 Then
Menureverse 0
Beep 18,180

End If

Menureverse

MENUREVERSE index
Index : Menu index number

Selected menu box is inverted.

Initialize Total cost

Menu()

Variable = MENU(index, pos)
Variable : Variable to store results (1 = selected, 0 = unselected)
Index : Menu Index
pos : Position (0=x1, 1=y1, 2=x2, 3=y2)

When you need to find the current status of Menu buttons set by Menuset
command, you can use Menu() function to return the current status.

0 will read x2, 1 will read y1, 2 will read x2, and3 will read y2. It's as
though the MENU is accessed as 2 dimensional array.

If Menu(0,1) < 100 THEN ‘' If Menu button 0’ s Y1 is less than 100

422

Waitdraw

WAITDRAW

This command will wait for a drawing command to finish before resuming
execution.

ELFILL 200,100,100,50 ' Fill an ellipse
WAITDRAW ' Wait until drawing is finished.

This command is especially useful for animations and when you have
trouble displaying graphics because of the speed.

CUTOUCH has an internal buffer for receiving graphic commands from
CUBLOC. If this buffer fills up and data is sent to it, the data could get
corrupted. In order to avoid these situations, you can use the WAITDRAW
command to wait until the buffer has enough space before sending graphic
commands.

If you need to draw graphics repeatedly, we recommend you use
WAITDRAW to avoid situations where the LCD might get blurry or received

noise.

This command can only be used with CUTOUCH.

423

Touch Pad Input Example
You can use SET PAD, ON PAD, and GETPAD commands to find out which
menus were pressed from the user.

All PAD commands are geared for receiving and processing touch input.

We can use ON PAD interrupts to receive touch inputs. The following is an
example program that uses the touch pad:

' DEMO FOR CUTOUCH

'

Const Device = CT1720

Dim TX1 As Word, TY1l As Word

Set pad 0,4,5 ‘€ (1) Activate Touch PAD Input
On Pad Gosub abc ‘€ (2) Declare pad interrupts
Do
Loop
abc:
TX1 = Getpad(2) ‘€ (3) Interrupt Service routine
TY1l = Getpad(2)
Circlefill TX1,TY1,10 ‘¢ (4) Draw a circle where it
' was touched
Return

(1) SET PAD 0, 4, 5 : This command will activate the PAD inputs. (Syntax:
SET PAD mode, packet size, buffer size). CUTOUCH has a separate touch
controller that will sense touch input and send back to the CPU through SPI
protocol. This “touch controller” will create a signal that is equal to mode =
0. (MSB, RISING EDGE sampling) Input packets are 4 bytes each (X and Y
each get 2 bytes). Buffer size is 5, 1 more than the actual packet size.

(2) ON Pad Gosub ABC: This command is for PAD interrupt declaration.
When PAD input occurs, it will jump to label ABC.

(3) This is interrupt service routine. When PAD input occurs, this is part of
the code until return will be executed. Getpad will read the data received
from touch pad, 2 bytes for x position and 2 bytes for y position.

(4) Draw a circle where touch input was received.

When this program is executed, you will be able to see that wherever you
press on the screen, a circle will appear. Please use this program as a
skeleton for your touch programs.

The following is MENU command and ON PAD command example: When

424

button is pressed, a beep will sound from the piezo and the button will be

inversed.

abc:

' DEMO FOR CUTOUCH
'

Const Device = CT1720

Dim TX1 As Integer, TYl As Integer
Dim k As Long

Contrast 550

Set Pad 0,4,5

On Pad Gosub abc

Menuset 0,2,8,16,87,63
Menutitle 0,13,13,"Start"
Menuset 1,2,96,16,176,63
Menutitle 1,13,13,"End"
Menuset 2,2,184,16,264,63
Menutitle 2,13,13,"Restart"
Low 18

Do

Loop

TX1 Getpad (2)
TY1l = Getpad(2)
Circlefill TX1,TY1,10
If Menucheck(0,TX1,TY1l) = 1 Then
Menureverse 0
Pulsout 18,300
End If
If Menucheck(l,TX1,TY1l) = 1 Then
Menureverse 1
Pulsout 18,300
End If
If Menucheck(2,TX1,TY1l) = 1 Then
Menureverse 2
Pulsout 18,300
End If
Return

v

Send out beep to piezo

‘ st ” ns H Rostar

425

CUTOUCH Sample Programs

SAMPLE 1

Let's make a simple counter that will print to the screen. The source files
used here are in your CUBLOC Studio installation directory. (Usually
C:\Program Files\Comfile Tools\CublocStudio)

3241

<Filename : CT001.CUL>
Const Device = Ctl720
Dim I As Integer
Contrast 550 ' LCD CONTRAST SETTING

Do
Locate 15,6
Print DEC5 I
Incr I
Delay 200
Loop

Please adjust your screen’s contrast accordingly using CONTRAST command.
* Depending on the model, you may be able to adjust the contrast using a
adjustable knob on the back of CUTOUCH. In this case, you have the
option to set the contrast manually.

426

SAMPLE 2
The following example program will display RESET button and will increment
number shown every time the button is pressed.

3241

RESET I

<Filename : CT002.CUL>
Const Device = Ctl720
Dim I As Integer
Dim TX1 As Integer, TYl As Integer
Contrast 550
Set Pad 0,4,5
On Pad Gosub GETTOUCH
Menuset 0,2,120,155,195,200
Menutitle 0,20,14,"RESET"

Do
Locate 15,6
Print DEC5 I
Incr I
Delay 200

Loop

GETTOUCH:

TX1 = Getpad(2)

TY1l = Getpad(2)

If Menucheck(0,TX1,TYl) = 1 Then
Pulsout 18,300
I=0

End If

Return

SET PAD command activates touch input. ON PAD command is used to
jump to a label when touch input is received. MENUSET command is used
to set the desired touch input area and MENUTITLE command is used to set
the name of the button itself. PULSEOUT outputs BEEP sound to the piezo.

427

SAMPLE 3

Draw a circle where your finger touches.

<Filename : CT003.CUL>
Const Device = Ctl1l720
Dim TX1 As Integer, TYl As Integer
Contrast 550
Set Pad 0,4,5
On Pad Gosub GETTOUCH
Do
Loop

GETTOUCH:
TX1 = Getpad(2)
TY1l = Getpad(2)
Circlefill TX1,TY1,10
Pulsout 18,300
Return

428

SAMPLE 4

Make a virtual keypad and accept numerical values.

<Filename : CT004.CUL>

Const Device = Ctl1l720
Dim TX1 As Integer, TYl As Integer
Dim I As Integer
Contrast 550
Set Pad 0,4,5
On Pad Gosub GETTOUCH
Menuset 0,2,165,50,195,75
Menutitle 0,11,4,"1"
Menuset 1,2,205,50,235,75
Menutitle 1,11,4,"2"
Menuset 2,2,245,50,275,75
Menutitle 2,11,4,"3"
Menuset 3,2,165,85,195,110
Menutitle 3,11,4,"4"
Menuset 4,2,205,85,235,110
Menutitle 4,11,4,"5"
Menuset 5,2,245,85,275,110
Menutitle 5,11,4,"6"
Menuset 6,2,165,120,195,145
Menutitle 6,11,4,"7"
Menuset 7,2,205,120,235,145
Menutitle 7,11,4,"8"
Menuset 8,2,245,120,275,145
Menutitle 8,11,4,"9"
Menuset 9,2,165,155,195,180
Menutitle 9,11,4,"0"
Menuset 10,2,205,155,275,180
Menutitle 10,17,4, "ENTER"
I =0
Do
Loop

GETTOUCH:

429

TX1 = Getpad(2)

TY1 Getpad (2)

If Menucheck (0,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+1
Pulsout 18,300

Elseif Menucheck(l,TX1,TY1l) = 1 Then
I =1I<<4
I=1+2
Pulsout 18,300

Elseif Menucheck(2,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+3
Pulsout 18,300

Elseif Menucheck(3,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+4
Pulsout 18,300

Elseif Menucheck (4,TX1,TY1l) = 1 Then
I =1I<<4
I=I+5
Pulsout 18,300

Elseif Menucheck(5,TX1,TY1l) = 1 Then
I =1I<<4
I=I1+6
Pulsout 18,300

Elseif Menucheck(6,TX1,TY1) = 1 Then
I =1I<<4
I=1I+7
Pulsout 18,300

Elseif Menucheck(7,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+38
Pulsout 18,300

Elseif Menucheck(8,TX1,TY1l) = 1 Then
I =1I<<4
I=I+29
Pulsout 18,300

Elseif Menucheck(9,TX1,TY1l) = 1 Then
I =1I<<4
Pulsout 18,300

Elseif Menucheck (10,TX1,TYl) = 1 Then
I=0
Pulsout 18,300

End If

Locate 3,3

Print HEX4 I

Return

The final value I is stored as BCD code, you can use BCD2BIN command to
convert back to a binary number.

430

SAMPLE 5

Let's try using CuCANVAS to make some menus. To create the virtual
keypad shown in the previous page, it would take a longer time to just code
it. We can save ourselves time by using CuCANVAS.

Please run CuCANVAS and press Add Form button on the upper right hand
corner. Enter a desired name for your new form. (Here we used NUMKEY)

T HIZE'S - CuCANVAS

File Edit Generate Tools View Help
- L R

Numkey Add Form

Use tab key to selectneighbor ones

1 Humkey

H O & OO

nezsw| w[~] w[o[s [x|

On the left side of CuCANVAS, you will see a tool bar with an arrow, box,
filled box, circle, filled circle, line, text, and menu box. Please select the
last button, menu box, and draw a small box on the screen.

The 0 on the button means the menu number is 0. In the actual screen,

this number will not be displayed. Please type “1” in the Title field on the
top. You have successfully made a “1” button.

431

Y Numkey.cys - CuCANVAS

File Edit Generate Toolz View Help
DS @& . g

Numkey Add Form

Use tab key to select neighbor oneg.

1 Humkey

BO>» . ® ON O™

measw [x| [w[- e[<[

You can make the rest of the buttons and the keypad like the one shown
below can be made in less than 5 minutes.

X< Numkey.cvs - CUCANVAS

File Edit Generate Tools View Help
DEH |G e . E

Numkey Add Farm

bie)
Use tab key to select neighbor ones L

1 Humkey

BO¥». -6 O 0O

neass fiessr k[[v[[e[x[

432

Now is the fun part. Simply click on Generate on the menu bar and click
“View Basic Code.” CuCANVAS will generate a sub function that includes
the button that you have just created. Simply copy(Ctrl+C) and
paste(CTRL+V) to CUBLOC Studio and wala! You have a menu in couple
minutes. For copying, you can either press Ctrl+C or press on the “To
Clipboard” button at the bottom.

Real-Time Code Generation E

BASIC Code for CUBLOC

[SLIE MUMKET)
FONT 0,0
STYLED,0,0
MEMUSET 0,2,180 65,215 80
WEMUITITLE 0,34,
MENLISET 1,2 225 £:5 250 80
WEMUITITLE 1,3,4,"2"
MENLISET 2,2 260 fi5 255 80
MEMUITITLE 2,3,4,"3"
MWENUSET 3,2,180,100,215,125
MEMUTITLE 3,2,4,"4"
WENUSET 4,2,225,100,250,125
MEMUITITLE 4,3,4,"5"
WEMUSET 5,2 260,100,285,125
MENLITITLE 59,4 "6
WEMUSET 6,2,180,135,215,160
MENLITITLE £,3,4,'7"
WEMUSET 7,2, 225 135,250,160
MENUITITLE 7,3,4,"5"
MENUSET 8,2 260,135,285,160
WENUITITLE 8,3,4,"3"
MEMUSET 9,2,190,170,215,195
WEMUITITLE 9,9,4,"0"
MENLISET 10,2 225 170,265 195
MWEMUITITLE 10,124 "ENTER"
FONT 40

EMD SLUD

To Clipboardl SavetoFile... | Close I

You can also use include files instead of copying and pasting for repetitive
menu creations.

433

Click “Save to File” button and save as an include (*.inc) file.

Save Your Design To BASIC Code,

2lx

Z oA [APPNOTE =] + ®=EckE-
[e=t| CTOOG, INC
mZosm: HEE)
Ih 4T |CUBLOC BASIC Cade(~inc) =l Fl

Using the include file, you will be able to save lots of time and be able to
make changes to your menus without making it a big copy and paste hassle.

The following program is exactly same as SAMPLE4 except we use include
file for the virtual keypad.

434

<Filename : CT005.CUL>

Ct1720
TY1l As Integer

Const Device =
Dim TX1 As Integer,
Dim I As Integer
Contrast 550

Set Pad 0,4,5

On Pad Gosub GETTOUCH

NUMKEY ' Execute the Sub-routine in INCLUDE file
I =0
Do
Loop
GETTOUCH:
TX1 = Getpad(2)
TY1l = Getpad(2)
If Menucheck (0,TX1,TYl) = 1 Then
I =1I<<4
I=I+1
Pulsout 18,300
Elseif Menucheck(l,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+2
Pulsout 18,300
Elseif Menucheck(2,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+3
Pulsout 18,300
Elseif Menucheck(3,TX1,TY1l) = 1 Then

I =I<4

I=1+4
Pulsout 18,300

Elseif Menucheck (4,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+5
Pulsout 18,300

Elseif Menucheck (5,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+6
Pulsout 18,300

Elseif Menucheck (6,TX1,TY1l) = 1 Then
I =1I<<4
I=1+7
Pulsout 18,300

Elseif Menucheck(7,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+38
Pulsout 18,300

Elseif Menucheck (8,TX1,TY1l) = 1 Then
I =1I<<4
I=1I+29
Pulsout 18,300

Elseif Menucheck(9,TX1,TY1l) = 1 Then
I =1I<<4
Pulsout 18,300

Elseif Menucheck(10,TX1,TY1l) = 1 Then
I=0
Pulsout 18,300

End If

Locate 3,3

Print HEX4 I

Return

End

#INCLUDE "CTOO5.INC"

We must include #include command at the end of the code. This is slightly

different from other languages such as C++.

CUCANVS can download at www.comfiletech.com. CUCANVAS is free-ware.

435

436

APPENDIX

Appendix A. ASCII CODE

Code char. Code char. Code char. Code char.
00H NUL 20H SPACE 40H @ 60H)
01H SOH 21H ! 41H A 61H a
02H STX 22H " 42H B 62H b
03H ETX 23H # 43H C 63H C
04H EOT 24H $ 44H D 64H d
05H ENQ 25H % 45H E 65H e
06H ACK 26H & 46H F 66H f
07H BEL 27H) 47H G 67H g
08H BS 28H (48H H 68H h
09H HT 29H) 49H I 69H I
0AH LF 2AH * 4AH J 6AH i
0BH VT 2BH + 4BH K 6BH k
OCH FF 2CH , 4CH L 6CH |
ODH CR 2DH - 4DH M 6DH m
OEH SO 2EH . 4EH N 6EH n
OFH SI 2FH / 4FH (0] 6FH o)
10H DLE 30H 0 50H P 70H p
11H DC1 31H 1 51H Q 71H q
12H DC2 32H 2 52H R 72H r
13H DC3 33H 3 53H S 73H s
14H DC4 34H 4 54H T 74H t
15H NAK 35H 5 55H U 75H u
16H SYN 36H 6 56H V 76H \
17H ETB 37H 7 57H W 77H w
18H CAN 38H 8 58H X 78H X
19H EM 39H) 59H Y 79H y
1AH SUB 3AH : 5AH Z 7AH z
1BH ESC 3BH ; 5BH [7BH {
1CH FS 3CH < 5CH \ 7CH |
1DH GS 3DH = 5DH] 7DH ¥
1EH RS 3EH > 5EH N 7EH ~
1FH us 3FH ? 5FH 7FH DEL

438

Appendix B.
Note for BASIC STAMP users

When using Parallax’s Basic Stamp compatible development board, please
be aware of the following:

There is a capacitor on the Basic Stamp compatible development boards
which causes download error in CUBLOC Studio. Please short (or take out)
the extra capacitor connected to the DTR of the board as shown below.
CB220 has a this capacitor on the chip itself.

sout 1 >~ _ 223N

SIN [2 23 vss

ATN [3 221 RES

vss [4 21[1 vDD

PO O 5 203 P15

P16 191 P14

P27 181 P13

P3 s 173 P12

P4 o 161 P11

P5] 10 15[P10

; P6 O 11 140 P9
P7 [12 13 P8

sout 1~ 243 viN

SIN O 2 231 vss

ATN O 3 221 RES

vss O 4 213 vbD

Po O 5 203 P15

P16 19 P14

P27 183 P13

P3 8 170 P12

P4 o 161 P11

P5 [10 15[P10

; P6 O 11 14 P9
Short here Pr g2 3P pe

439

Appendix C. Using Output Port
on the CB290 / CT1720

Warning : CB290 rev A/ CT1720 rev A Output ports

Please be aware of the following when using CB290 (rev A) or CT1720 (rev
A) with output ports (24 through 55).

When using CB290 or CT1720 with a backup battery (CB290 Proto-Board,
Baseboard 64M, and CT1720), the data memory is saved during power OFF.

Even the output on the I/O ports are saved to memory.

When powered ON, the output ports will recover from the status it was in at
power OFF.

This is to let the modules be able to continue their existing processes in case
of power outage.

Please be aware that when there are unknown values and battery backup is
used, there can be garbage values at power ON, meaning unknown values

outputting on the output ports.

Please use regular I/O ports if you need to make sure that the output needs
to be OFF at power ON.

Using Output ports on the CB290 / CT1720 (Rev B)

The CB290/CT1720 (Rev B) output ports (P24-P55) are in high impendence
(High-Z) state in order to prevent garbage values outputting at power ON.

You must use “Set OUTONLY ON” command to set the CB290 / CT1720
output ports to output status.

Set Outonly On

440

Appendix D.
CUBLOC BASIC Command
summary

Command

Usage

Adin ()

Variable = ADIN (Channel)
Variable : Variable to store results (No String or Single)
Channel : AD Channel Number (not I/O Pin Number)

Alias

ALIAS Registername = AliasName
Registername : Register name such as PO, MO, TO (Do not use D area)
AliasName : An Alias for the Register chosen (up to 32 character)

Arc

ARC x, vy, r, start, end

Bcd2bin

Variable = BCD2BIN (bcdvalue)
Variable : Variable to store results (Returns LONG)
bcdvalue : BCD value to convert to binary

Bclr

BCLR channel, buffertype
channel : RS232 Channel (0 to 3)
buffertype : 0=Receive, 1=Send, 2=Both

Beep

BEEP Port, Length
Port : Port number (0 to 255)
Length : Pulse output period (1 to 65535)

Bfree

Variable = BFREE (channel, buffertype)
Variable : Variable to store results (No String or Single)
channel : RS232 Channel number (0 to 3)
buffertype: 0=Receive Buffer, 1=Send Buffer

Bin2bcd

Variable = BIN2BCD (binvalue)
Variable : Variable to store results (Returns Long)
binvalue : Binary value to be converted

Blen

Variable = BLEN (channel, buffertype)
Variable : Variable to store results (No String or Single)
channel : RS232 Channel nhumber (0 to 3)
buffertype: 0=Receive Buffer, 1=Send Buffer

Bmp

BMP X, y, filenumber, layer
X, y 1 X,y position to display BMP
Filenumber : BMP File number
Layer : Layer to display BMP

441

Box BOX x1,vyl1, x2,y2
Boxclear BOXCLEAR x1,y1, x2,y2
Boxfill BOXFILL x1, y1, x2, y2,logic
logic : 0=0R, 1=AND, 2=XOR
Bytein Variable = BYTEIN (PortBlock)
Variable : Variable to store results (No String or Single)
PortBlock : 1/O Port Block Number (0 to 15)
Byteout BYTEOUT PortBlock, value
PortBlock : I/O Port Block Number. (0 to 15)
value : Value to be outputted between 0 and 255.
Circle CIRCLE x,vy,r
Circlefill CIRCLEFILL x,vy,r
Checkbf Variable = CHECKBF (channel)
Variable : Variable to store results (No String or Single)
channel : RS232 Channel (0 to 3)
Color COLOR value
Cls CLS
Clear CLEAR layer
Cmode CMODE value
value : 0=BOX type, 1=Underline type
Compare COMPARE channel, target#, port, targetstate
Channel : High Counter channel
Target# : Target # of Pulses (CHO: 0 to 65535, CH1: 0 to 255)
Port : Output Port (DO NOT USE Input-only Ports)
Targetstate : Target Output Port State
Const CONST name [as type] = value
Const CONST type name [as type] = value [,value, value, value...]
(Array) Type = Byte, Integer, Long, String Single
Contrast CONTRAST value
value : Contrast Value
Count Variable = COUNT (channel)

Variable : Variable to store results. (No String or Single)
Channel : Counter Channel number (0 to 1)

442

Countreset COUNTRESET channel
Channel : Counter Channel (0 to 1)
Csroff CSROFF
Csron CSRON
Dcd Variable = DCD source
Variable : Variable to store results. (No String or Single)
Source : source value
Debug DEBUG data
data : data to send to PC
Decr DECR variable
Variable : Variable for decrementing. (No String or Single)
Defchr DEFCHR code, data
Code : Custom character code (&nhdb30 to &hdbff)
Data : 32byte bitmap data
Delay DELAY time
Time : interval variable or constant
Dim DIM variable As variabletype [,variable As variabletype]
Variabletype : Byte, Integer, Long, Single, String
Dotsize DOTSIZE value, style
Dp Variable = DP(Variable, Decimal Places, ZeroPrint)
ZeroPrint :If ZeroPrint is set to 1, zeros are substituted for blank spaces.
Dprint DPRINT string
Dtzero DTZERO variable
Variable : Variable for decrement. (No String or Single)
Eadin Variable = EADIN (mux)
Variable : Variable to store results (No String or Single)
mux : AD input Port Combination MUX (0 to 21)
Eeread Variable = EEREAD (Address, ByteLength)
Variable : Variable to store result (No String or Single)
Address : 0 to 4095
ByteLength : Number of Bytes to read (1 to 4)
Eewrite EEWRITE Address, Data, BytelLength

Address : 0 to 4095
Data : Data to write to EEPROM (up to Long type values)
ByteLength : Number of Bytes to write (1 to 4)

443

Ekeypad

Variable = EKEYPAD (portblockIn, portblockOut)
Variable : Variable to store results (Returns Byte)
PortblockIn : Port Block to receive input (0 to 15)
PortblockOut : Port Block to output (0 to 15)

Ellipse

ELLIPSE x,vy, rl, r2

Elfill

ELFILL x,y, rl,r2

Freepin

FREEPIN I/O0
I/0 : I/O PORT Number

Font

FONT fontsize, efontwidth
fontsize : 0 to 8 Font Selection
efontwidth : 0 = fixed width, 1=variable width

Fp

Variable = FP (Value, , Whole Number Digits, Fractional Number Digits)

Fregout

FREQOUT Channel, FreqValue
Channel : PWM Channel (0 to 15)
FreqValue : Frequency value between 1 and 65535

Get

Variable = GET (channel, length)
Variable : Variable to store results (cannot use String, Single)
channel : RS232 Channel (0 to 3)
length : Length of data to receive (1 to 4)

Getcrc

GETCRC Variable, ArrayName, Bytelength
variable : String Variable to store results (Integer type)
ArrayName : Array with data(Must be a Byte array)
Bytelength : # of bytes to calculate CRC

Getstr

Variable = GETSTR (channel, length)
Variable : String Variable to store results
channel : RS232 Channel
length : Length of data to receive

Getstr2

Variable = GETSTR (channel, length, stopchar)
Variable : String Variable to store results
channel : RS232 Channel
length : Length of data to receive
Stopchar : Stop character ascii code

Geta

GETA channel, ArrayName, bytelength
channel : RS232 Channel (0 to 3)
ArrayName : Array to store Received data (No String or Single)
Bytelength : Number of Bytes to store (1 to 65535)

444

Geta2

GETA channel, ArrayName, bytelength, stopchar
channel : RS232 Channel (0 to 3)
ArrayName : Array to store Received data (No string or Single)
Bytelength : Number of Bytes to store (1 to 65535)
Stopchar : Stop character ascii code

Glayer

GLAYER layernumber
Layernumber : Set the graphic layer. (0,1,2)

Glocate

GLOCATE x,y

Gpaste

GPASTE x, vy, layer, logic
logic =0 : OR
logic =1 : AND
logic =2 : XOR
logic =3 : Clear screen then pop

Gprint

GPRINT string

Gpush

GPUSH x1, y1, x2, y2, layer

Gpop

GPOP x, y, layer, logic
logic =0 : OR
logic =1 : AND
logic =2 : XOR
logic =3 : Clear screen then pop

Heap

Variable = HEAP (Address)
Variable : Variable to store results
Address : HEAP memory address

Heapclear

HEAPCLEAR

Heapw

HEAPW Address, Data
Address : HEAP memory address
Data : Constant or Variable with data (Byte only)

Hread

Variable = HREAD (Address, ByteLength)
Variable : Variable to store results
Address : HEAP memory address
ByteLength : # of bytes to read, constant or variable

Hwrite

HWRITE Address, Data, BytelLength
Address : HEAP memory address
Data : Constant or Variable with data (whole numbers only)
ByteLength : # of bytes to write

High

HIGH Port
Port : I/O Port number

Hpaste

HPASTE x, vy, layer

445

Hp Variable = DP(Variable, Heximal Places, ZeroPrint)
ZeroPrint :If ZeroPrint is set to 1, zeros are substituted for blank spaces.

Hpop HPOP x, vy, layer

Hpush HPUSH x1, y1, x2, y2, layer

I2cstart I2CSTART

I2cstop I2CSTOP

I2cread Variable = I2CREAD (dummy)
Variable : Variable to store results. (No String or Single)
dummy : dummy value. (Normally 0)

I2creadna | Variable = I2CREADNA (dummy)
Variable : Variable to store results. (No String or Single)
dummy : dummy value. (Normally 0)

I2cwrite Variable = I2CWRITE data
Variable : Acknowledge
(0=Acknowledged, 1=No Acknowledgement)
data : data to send (Byte value : 0 to 255)

In Variable = IN (Port)
Variable : The variable to store result (No String or Single)
Port : I/O Port number (0 to 255)

Incr INCR variable
Variable : Variable for increment. (No String or Single)

Input INPUT Port
Port : I/O Port number (0 to 255)

Keyin Variable = KEYIN (Port, debouncingtime)

Variable : Variable to store results (No String or Single)
Port : Input Port (0 to 255)

deboucingtime : Debouncing Time (1 to 65535)

Keyinh Variable = KEYINH (Port, debouncingtime)

Variable : Variable to store results (No String or Single)
Port : Input Port (0 to 255)

deboucingtime : Debouncing Time (0 to 65535)

446

Keypad

Variable = KEYPAD (PortBlock)
Variable : Variable to store results (Returns Byte, No String or Single)
PortBlock : Port Block (0 to 15)

Layer LAYER layerimode, layer2 mode, layer3 mode
Layerimode : Set Layer 1 mode (0=off, 1=0n, 2=flash)
Layer2mode : Set Layer 2 mode (0=off, 1=on, 2=flash)
Layer3mode : Set Layer 3 mode (0=off, 1=0n, 2=flash)
Ladderscan LADDERSCAN
Light LIGHT value
value : Back light 0=OFF, 1=0ON
Line LINE x1,vy1, x2,y2
Linestyle LINESTYLE value
Lineto LINETO X,y
Low LOW Port
Port : I/O Port number (0 to 255)
Locate LOCATE X,Y
Menu Variable = MENU (index, pos)
Variable : Variable to store results
(1 = selected, 0 = unselected)
Index : Menu Index
pos : Position (0=x1, 1=y1, 2=x2, 3=y2)
Memadr Variable = MEMADR (TargetVariable)
Variable : Variable to store results (No String or Single)
TargetVariable : Variable to find physical memory address
Menucheck | Variable = MENUCHECK (index, touchx, touchy)
Variable : Variable to store results
(1 if selected, 0 if unselected)
Index : Menu Index Number
Touchx : Touch pad x axis point
Touchy : Touch pad y axis point
Menu MENUREVERSE index
Reverse Index : Menu index number
Menuset MENUSET index, style, x1, y1, x2, y2

Index : Menu Index Number
Style : Button Style; 0=none, 1=Box, 2=Box with Shadow
X1,y1,x2,y2 : Menu Button location

447

Menutitle MENUTITLE index, X, y, string
Index :Menu index number
X,y : Title location based on left upper corner of button
string : Name of the menu
Ncd Variable = NCD source
Variable : Variable to store results. (No String or Single)
Source : source value (0 to 31)
Nop NOP
Offset OFFSET X,y
On int ON INTx GOSUB label
x : 0 to 3, External Interrupt Channel
On ON LADDERINT GOSUB label
ladderint
On pad ON PAD GOSUB label
On recv ON RECV1 GOSUB label
On timer ON TIMER (interval) GOSUB label
Interval : Interrupt Interval 1=10ms,
2=20ms......65535=655350ms
1 to 65535 can be used
Opencom OPENCOM channel, baudrate, protocol, recvsize, sendsize
channel : RS232 Channel (0 to 3)
Baudrate : Baudrate (Do not use variable)
protocol : Protocol (Do not use variable)
recvsize : Receive Buffer Size (Max. 1024, Do not use variable)
sendsize : Send Buffer Size (Max. 1024, Do not use variable)
Out OUT Port, Value
Port : I/O Port number (0 to 255)
Value : Value to be outputted to the I/0O Port (1 or 0)
Output OUTPUT Port
Port : I/O Port number (0 to 255)
Outstat Variable = OUTSTAT (Port)
Variable : Variable to store results. (No String or Single)
Port : I/O Port Number (0 to 255)
Overlay OVERLAY overmode
overmode : Logical Mode (O=or, 1=and, 2=xor)
Paint PAINT X,y

448

Pause

PAUSE value

Peek

Variable = PEEK (Address, Length)
Variable : Variable to Store Result. (No String or Single)
Address : RAM Address.
length : Length of Bytes to read (1 to 4)

Poke

POKE Address, Value, Length
Address : RAM Address
Value : Variable to store results (up to Long type value)
length : length of bytes to read (1 to 4)

Print

PRINT String / Variable
String : String
Variable : When using variables/constants,
String representation of the variable/constant will be printed.

Pset

PSET X,y

Pulsout

PULSOUT Port, Period
Port : Output Port (0 to 255)
Period : Pulse Period (1 to 65535)

Put

PUT channel, data, bytelength
channel : RS232 Channel (0 to 3)
Data : Data to send (up to Long type value)
Bytelength : Length of Data (1 to 3)

Puta

PUTA channel, ArrayName, bytelength
channel : RS232 Channel. (0 to 3)
ArrayName : Array Name
Bytelength : Bytes to Send (1 to 65535)

Puta2

PUTA2 channel, ArrayName, bytelength, Stopchar
channel : RS232 Channel. (0 to 3)
ArrayName : Array Name
Bytelength : Bytes to Send (1 to 65535)
Stopchar : Stop character ascii code

Putstr

PUTSTR channel, data...
channel : RS232 Channel. (0 to 3)
Data : String Data (String variable or String constant)

Pwm

PWM Channel, Duty, Period
Channel : PWM Channel Number (0 to 15)
Duty : Duty Value, must be less than the Width.
Period : Maximum of 65535

Pwmoff

PWMOFF Channel
Channel : PWM Channel. (0 to 15)

449

Ramclear

RAMCLEAR

Reverse REVERSE Port
Port : I/O Port Number. (0 to 15)
Set SET DISPLAY type, method, baud, buffersize
display type : 0=Rs232LCD, 1=GHLCD GHB3224, 2=CLCD
Method : Communication Method 0=CuNET, 1=COM1
baud : Baud rate (CuNET Slave address)
Buffersize : Send Buffer Size
Set SET DEBUG On[/Off]
debug
Set i2c SET 12C DataPort, ClockPort
DataPort : SDA, Data Send/Receive Port. (0 to 255)
ClockPort : SCL, Clock Send/Receive Port. (0 to 255)
Set SET LADDER On [/Off]
ladder
Set Set MODBUS mode, slaveaddress, returninterval
modbus mode : 0=ASCII, 1=RTU
slaveaddress : Slave Address (1 to 254)
returninterval : return interval value (1 to 255, default value is 1)
Set SET OUTONLY On[/Off]
outolny
Set SET PAD mode, packet, buffersize
Pad mode : Bit Mode (0 to 255)
packet : Packet Size (1 to 255)
buffersize : Receive Buffer Size (1 to 255)
Set SET RS232 channel, baudrate, protocol
rs232 channel : RS232 Channel (0 to 3)
Baudrate : Baudrate (Do not use variable)
protocol : Protocol (Do not use variable)
Set SET UNTIL channel, packetlength, stopchar
until channel : RS232 Channel. (0 to 3)
packetlength : Length of packet (0 to 255)
stopchar : Character to catch
Set SET INTx mode
Int x : 0 to 3, External Interrupt Channel
mode : 0=Falling Edge, 1=Rising Edge, 2=Changing Edge
Set SET ONGLOBAL On[/Off]
Onglobal
Set SET ONINTx On[/Off]
onint
Set SET ONLADDERINT On[/Off]
onladderint

450

Set SET ONPAD On[/Off]
onpad
Set SET ONRECVO On[/Off]
onrecv SET ONRECV1 On[/Off]
SET ONRECV2 On[/Off]
SET ONRECV3 On[/Off]
Set SET ONTIMER On[/Off]
Ontimer
Shiftin Variable = SHIFTIN (clock, data, mode, bitlength)
Variable : Variable to store results. (No String or Single)
Clock : Clock Port. (0 to 255)
Data : Data Port. (0 to 255)
Mode : 0 = LSB First (Least Significant Bit First), After Rising Edge
1 = MSB First (Most Significant Bit First), After Rising Edge
2 = LSB First (Least Significant Bit First), After Falling Edge
3 = MSB First (Most Significant Bit First), After Falling Edge
4 = LSB First (Least Significant Bit First), Before Rising Edge
5 = MSB First (Most Significant Bit First), Before Rising Edge
bitlength : Length of bits (8 to 16)
Shiftout SHIFTOUT clock, data, mode, variable, bitlength
Clock : Clock Port. (0 to 255)
Data : Data Port. (0 to 255)
Mode : 0 = LSB First (Least Significant Bit First)
1 = MSB First (Most Significant Bit First)
2 = MSB First(Most Significant Bit First) , create ACK (For 12C)
variable : Variable to store data (up to 65535)
bitlength : Bit Length (8 to 16)
Steppulse | STEPPULSE Channel, Port, Freq, Qty
Channel : StepPulse Channel(0 or 1)
Port : Output Port
Freq : Output Frequency (Up to 15kHz)
Qty : # of pulses to output (up to 2147483647)
Stepstat Variable = STEPSTAT (Channel)
Variable : Variable to store results
Channel : StepPulse Channel(0 or 1)
Stepstop STEPSTOP Channel
Channel : StepPulse Channel (0 or 1)
Style STYLE bold, inverse, underline
bold : 0=Normal, 2 or 3 =Bold
inverse : 0=Normal, 1=Inverse
underline : 0=Normal, 1=Underline
Sys Variable = SYS (address)

Variable : Variable to store results. (No String or Single)
address : Address. (0 to 255)

451

Tadin

Variable = TADIN (Channel)
Variable : Variable to store results. (No String or Single)
Channel : AD Channel Number (Not Port number, 0 to 15)

Time Variable = TIME (address)
Variable : Variable to store results. (No String or Single)
address : Address of time value (0 to 6)
Timeset TIMESET address, value
address : Address of time value (0 to 6)
value : time value. (0 to 255)
Udelay UDELAY time
time : interval (1 to 65535)
Usepin USEPIN I/0O, In/Out, AliasName
I/0O : 1/O Port Number. (0 to 255)
In/Out : "In” or "Out”
AliasName : Alias for the port (Optional)
Utmax UTMAX variable
Variable : Variable for decrement. (No String or Single)
Wait WAIT time
time : delay time (mS) 10 to 2147483640
Waittx WAITTX channel
channel : RS232Channel. (0 to 3)
Wmode WMODE value

value : 0=FAST, 1=SLOW

452

Backup Battery

BASIC interpreter
battery backup

BYTEOUT ..o, 134
bytes....ocoviiiiiii 87
C
CALLS....ciiieeieereeeeee e 403
CB220 ..iviiiiiiieeiieneieeaeneie e 41
CB280 ..cvuiuieiiieieiieeeeeaeeas 44
CB280 relays.......covvenrennnen. 359
CB280CSivveeeeeneeeennennns 57
CB290ccivvieiiiiiienieennen 47,51
CB290 relays.....cocevvenrennnnn. 360
CheckBfcvvviiiiiiiiiiiieiee, 135
chipset..cooviviiiiiiiiien 57
CHR e, 122
CIRCLE ...ciiiiieiiiieeceeee, 268
CIRCLEFILL vvvivvivenieeeeneeens 268
CLCD ivieieeeeereeeeeeee e 250
CLCD command table 255
CLCD DIP switchc.c.u...e. 254
CLEAR ..eiiiieieeeeeeeee e 260
CLS o 253, 260
CMODE.....c.oivveiiiiiiieeiaen, 266
COLOR....eieiieieeiee e 273
COMPAFISONS...uivrinieninreniananss 386
CON i 90
constant arrayscoeeennn 91
Constantsccoeeveiiiiieninnenne. 90
Contact Ao, 361
Contact B.....oovvvvveniiiiniininnn, 361
CONTRAST .., 263
COS cinriiiieieei e 110
COUNT v 137
COUNTRESET 136, 139
CSG Dip switch....covvvvenninnnes 282
CSG module........ccceenennenen. 281
CSGDEC ...coivvivvieieeeeneenes 284

CSGHEX ..iviiiiiiiiniiiiiii 284

CSGNPUT ..o, 283
CSGXPUT o, 284
(O] o] i 253
CSROFF...ccviiiiiiiiiniiieeeieen, 260
(6] o] o TP 253
CSRON....cvieienrieeeeeenenn 260
(O I B 383
CTU coiiiiccei e, 383
CUBLOC I/O portS ...ceuvevnenns 176
CUBLOC STUDIO.......ccuvenrennes 62
Cubloc Study board 1 Schemetic
...................................... 295
CUCANVAS ..., 431
CUTOUCH. ..o, 410
CuTOUCH I/0 Ports.............. 415
D
data memory space............... 85
DCD.uvviieeeeeeeeee e 140
DEBUG.....ccevvviniiiieeeeineannn 141
AeC i 113
declare the device................ 365
(] = O 144
DEFCHR ...c.covviniiiiieceiean, 275
DELAY ...oviiiiiieiieenaanns 145, 247
DF i 376
[376
digital thermometer............. 335
DIM e 79
Din Rail .cvvvvieiiiiiiiieiiineeeenns 29
DO...LOOP.....coviveeeieneennen 146
DOTSIZE....ccoveiviiiieiiiniannn 273
Double Word size 387
DOWN Counterc...u... 383
[P
DPRINT
DS1620....cciiiiiniiiieiiiinnnnnns 335
DTZERO ...cevvveniiieeieieennes 148
DWADD......cceiviniiiieieieennes 394
DWAND.....oovvviiiiiieiniineinn 399

DWDEC......ciiiivieiieneenenn 393
DWDIV .oeviviiiiieiieeeenneeeeaees 396
DWINC ...ovviiiiieiieeeeneeeenes 393
DWMOV ...ovviiiiiiiiiiieneaeeaen 389
DWMUL....ivuieiierieieenneenenes 395
DWORoviiiiiiiieeeeneeneaes 397
DWROL....ovvieiireeienneeeens 400
DWROR ...cvviiiiiiiiiieiieaneaenn 401
DWSUB.......ovvivriiiienneenenn 394
DWXCHGcvvvvieieieeiens 390
DWXOR ...ovviiieiiereneeeens 398
E
EADIN ...ovvniiiiiiiiieeneeeee 149
EEPROM........c...eu.. 152, 297, 340
EEREAD 151, 167, 168
EEWRITE.............. 152, 167, 168
EKEYPAD......ccovviiiiiiieiennann 153
ELFILL ©ovvveieeeeeeeeneee e 269
ELLIPSE ...ccvvvvivveeeeeeeeens 269
EXP oo 110
express binary and hexadecimal
....................................... 388
F
FABS ..ot 111
Flash Memoryocceveviinnnen, 40
FLOAT ..t een e 114
FLOORuvvniiiieneeeenneeeenes 111
FMOV .., 391
FONT .ouiiiii e 264
FOR“*NEXT ..cvvvviiiinniiiennnnn 154
FREQOUT 157, 234, 235
function code..........ccoevvnenne. 307
Function Relays 361
G
GET oo 159

GETSTR .evvvvvviiieiiieenns 163, 164
GHB3224 ... 257
GHB3224 DIP Switch 280
GHLCD....vvvvvvieecene, 37, 257
GLAYER......covivviiiveeieeieens 262
GLOCATE ... 270
GMOV ...cviviiiiiiiicieeiceieen 392
GOSUB ...vviiiiiniiieieeieeas 165
GOTO cvvvvviiiiireeeeneenns 165, 402
GPASTE ... 278
(] 20 PN 277
GPRINT ..ot 270
GPUSH.....c.cvviviiveeeeieee 277
H
NEX. i 112
HIGH ..o, 170
HIGH-Z ..o, 176
HP oo, 116
HPastecoovvveviiiiiiiiieen 279
HPOPovviiviiieiciceee, 279
HPUSH ..o, 279
Hyperbolic Cos.........ccevvennens 110
Hyperbolic Sinccoeenvee. 110
Hyperbolic Tan..........c....uvee. 110
I
I/O portS..cvviniiiiiiiiiiicecaenns 42
I2C . s 296
I2CREADccvveniianaenns 172,173
I2CSTART .ovviviiiiveeeineeeenns 171
I2CSTOP ... 171
I2CWRITE ..ovvvvviiiveieieeaneenns 174
If---Then---Elseif...Else---EndIf 175
IN e 176
INCR. e 177
INPUT .o 178
input-only pinccovevviniinnnes 54
INtei e 187

Integer....cocviviiiiiiiiiinien, 79
Internal Relay.......c.ccovevneeneen 362
interrupt ...oooovii 103
INTON i 404
K
KCTD . iviieveevieeeeeeeneaneanas 385
KCTU i 385
KEYIN...oiiviieiiieeiineeieeeeeeennn 179
KEYINH.....oiiiiiiiieeieeeieeenn, 180
KEYPADceviiiiiieiieniennannns 181
KTAON....cuiiiiiieeeeeeeeneanas 381
KTON e, 381
L
Label ..o, 165
LABEL....ieuieeiiieeieineeeenennns 402
LADDER LOGIC.............. 24, 344
LADDERSCAN.......ccvuiennnnnn. 182
LAYER......itiiiiirieinennenennns 261
LCD displays ...cccovevvvieninnennnnns 36
left v, 118
LEN oo 119
LIGHT i 263
LINE ..oieiiieeeieeee e 266
LINESTYLE ..ccvnviviiiieceeeeenn, 273
LINETO ..ceviiieiierieeeeeeieeennn 266
LN 110
LOAD ... i 373
LOADN ..ooviiiiiierineeeeeeieennnn 373
LOCATE ...covevniiinneennnns 253, 260
LOG.. it eneas 110
LOG10..iiiiiiiiiieieeeeeeeens 110
o o o 79
[0 T 183
LTRIM.ceiiiieiiieeeeeeeeneens 120

455

M
MCP3202....c.iiviiiiinieiiinnnne 338
MCS...iiii 377
MCSCLRcvviiviiiiiiieiieennnns 377
Memadrocovviviiniiiiien 105
MEMADRcoviviiiiiiiiiinnns 184
MENU buttons.........cc.ccueeneee 420
MENUCHECK........ccovvvviennnns 422
MENUREVERSEcccccvunee 422
MENUSET ...covviviiiiiiiiicennnns 421
MENUTITLE ..o 421
MID v 118
MODBUSccoviiiiviieieennnns 438
MONItOriNg......covvvieinienenen, 352
multi-taskingcoceveiiinennen 26

N
NCD ..ot 185
NOP ceiiee e 186
Normally Closed.................. 361
Normally Open........c..cceeeneee 361
NOT e 374
NTC thermistor 325

O
OFFSET ceuiivieiieieneeeeeeie 272
ON INT ..ttt e 187
ON LADDERINTovvvniennnens 188
ON PADctvviiiiininiiiieiiens 190
ON RECV....oiiviiiiniiiiainns 191
ON TIMER ...covniiiiiiiiicenne 192
ON-Chip «vvveiiinieeeeeeeeeas 28
OPENCOMccvvvvinninnn, 193, 229
operatorsoeviveiiiiiinea, 93
OR.iiiiiiireiee e 374
OUT i 196
OUTPUT .. 197
OUTSTAT oveieiiieineeeeeeaes 198

456

P
PAINT .o 274
PAUSEcccvivviiiieiieeeeeee, 198
Peek .o 105
PEEK ...ovvieieeeeeeneeeen e 199
PLC Setup Wizard 356
PLC/Micro-computer.............. 29
POKE ..oviiiiiiiee 105
POKE.....oivierierieiinennennenes 199
power regulator................... 43
PRINT ..ovveeiieieeieeeennas 253, 261
proto-boardsccoccveinnnnn. 35
PSET..ciiiiiieieeeieeereneen e 273
PULSOUT .. 200
PUT o 201
PUTA .o 202, 203
PUTSTR eiviiieccieeneen e 204
PWM ..o 205
PWMOFFoiviiiiiiiiiniinean 206
R
RAMCLEARccevvennenn. 85, 207
RC Servo motor........cc...eevee. 333
Real Time ClocKccccvvvnnen. 336
re-flashedcoooveiiininenns 363
Relay Expression.................. 359
Relay numberscccevenee. 364
representation of numbers..... 96
RET oo 403
RETURN ...cvviiiiieieenneeneaes 165
REVERSEcovviiiiiiiieeiennees 208
Gt e 118
RND .oviiiiiiceeeiceeeea e 209
RSTOUT .euvveiviiiiceeeeneee e 375
RTRIM ..oviiviieiieeeeeenneee e 120
RTU.coooviiiiiiniineenns 315, 316, 317

SBRT ..o e 403
Select..Caseccovvveeniennenns 210
SET DEBUG.....cccviviiiiinennns 211
SET DISPLAY ..covviieiiienenns 251
SETI2C i 214
ST =3 I 215
SET LADDER On......cccvvenenens 216
Set Modbuscoveviiiiinienns 217
SET MODBUSccoeviniiiienans 5
SET ONGLOBALcvvvneeeen 218
SET ONINTX vevvviniiiininenenns 219
SET ONLADDERINT 220
SET ONPADccevviieinienenns 221
SET ONRECVvvevniinnnnn, 222
SET ONTIMER......c.covviininnns 223
Set Outonly ONn.....ccvvvvvevninnnns 50
SET PAD.....coviiiiiiieiienens 225
Set RS232 ..viviiiiiiiiiiien, 228
SET UNTIL.eiiiiiiiiiiineenns 231
SETOUT .o 375
Seven Segment display 37
Sharing Datac..covvvevnenns 106
SHIFTIN ... 232
SHIFTOUT ..oeviiiieii e, 233
SiN i, 110
SIN i 42
Single ..o 79
SOUNAS ..cvvivniiniiininnirinereens 330
SOUT vt 42
special relays.......cccovuvennennn. 406
5T0] - SO 110
step controloceeviviiiniinnns 379
STEPOUT.....ccvvviviiinienienn, 380
STEPSET ..ovviiiiiiiiiiiccnie e, 379
SEANG covvi 81
STRING(veeeeveeeerveeereeesrneeans 119
Study boardcoecviiiiinennnn 36
STYLE i, 265
SYS 238

T
TADIN ..o, 125, 239
TAN cii 110
TAOFF i 382
TAON ..o 381
TCP e 31
Temperaturecoceevvnvnienens 325
Text Editor....cocvvvvviviiiiniinennns 64
text layer size........ccoveniennnnn, 258
TIME i, 235, 240
Time Chart Monitoring.......... 353
TIMESET ...ovviiiiiieiieeeeeeans 242
TOFF it 382
TON coiiieeeee e 381
Touch Pad......ccooevvviiviniininnnn 424
Turbo Scan Timecc.cuene. 367
U
UDELAY ...oovvvvierieennnn, 244, 331
UDP...ieiieieeeeeeeeeee e 31
UP Counter......ccovvnvnviennnnnns 383
UP/DOWN Counter............... 384
Usepin ...cccovevveennenenen. 245, 363
USEPIN.....ccviiiieieiieeeenennns 156
UTMAX i 246
Vv
VAL coviiiiiii e 121
VALSNG....oceiiiiiieieerennennns 121
VAR .ot 80
VBB..oiiiiii i, 54
W
WADD ..o 394
WAITDRAWcvvvvvineenennenn, 423
WAITTX i 248
WAND .o, 399

458

WXCHG.....cooiiiiiiiniiiinn 390
WXOR...ooiiiiiiiiiiiiis 398
XPORT .oviiiiiiiiiiniiniieins 31

	Chapter 1 �CUBLOC�Getting� started…
	What is CUBLOC?
	CUBLOC Specifications
	Ladder Logic and BASIC
	Multi-tasking of Ladder Logic and BASIC
	Advantages of “On-Chip” �PLC/Embedded Computer
	Development Environment
	Download and Monitoring�through the Internet
	Hints for traditional PLC User
	Hints for Micro Controller User
	CUBLOC’s Internal Structure
	CUBLOC Peripherals

	Chapter 2 �Hardware
	Hardware Features
	CB220
	Supplying power to the CB220
	CB280
	How to supply power to �the CB280
	CB290
	CB405
	How to connect Battery to�CB290/CB405
	Dimensions
	CUBLOC Chipset : CB280CS

	Chapter 3 �CUBLOC STUDIO Editor/�Compiler
	CUBLOC STUDIO Basics
	Creating BASIC
	Debugging
	Menus

	Chapter 4 �CUBLOC �BASIC Language
	CUBLOC BASIC Features
	Simple BASIC program
	Sub and Function
	Variables
	String
	About Variable Memory Space
	Arrays
	Bits and Bytes modifiers
	Constants
	Constant Arrays...
	Operators
	Expressing Numbers in Bits
	The BASIC Preprocessor
	Conditional
	To use LADDER ONLY
	To use BASIC ONLY
	Interrupt
	More about Interrupts…
	Pointers using Peek, Poke, �and Memadr
	Sharing Data

	Chapter 5 �CUBLOC �BASIC functions
	Math Functions
	Type Conversion
	String Functions

	Chapter 6 �CUBLOC BASIC Statements�& Library
	Adin()
	Alias
	Bcd2bin
	Bclr
	Beep
	Bfree()
	Bin2bcd
	Blen()
	Bytein()
	Byteout
	CheckBf()
	Compare
	Count()
	Countreset
	Dcd
	Debug
	Decr
	Delay
	Do...Loop
	Dtzero
	EAdin()
	Eeread()
	Eewrite
	Ekeypad
	For...Next
	Freepin
	Freqout
	Get()
	Geta
	Geta2
	Getcrc
	Getstr()
	Getstr2()
	Gosub..Return
	Goto
	Hread()
	Hwrite
	Heapclear
	Heap()
	Heapw
	High
	I2Cstart
	I2Cstop
	I2Cread()
	I2Creadna()
	I2Cwrite()
	If..Then..Elseif…Endif
	In()
	Incr
	Input
	Keyin
	Keyinh
	Keypad
	Ladderscan
	Low
	Memadr()
	Ncd
	Nop
	On Int
	On Ladderint Gosub
	On Pad Gosub
	On RecvX
	On Timer()
	Opencom
	Out
	Output
	Outstat()
	Pause
	Peek()
	Poke
	Pulsout
	Put
	Puta
	Puta2
	Putstr
	Pwm
	Pwmoff
	Ramclear
	Reverse
	Rnd()
	Select...Case
	Set Debug
	Debug Command How-to
	Set I2c
	Set Int
	Set Ladder on/off
	Set Modbus
	Set Onglobal
	Set Onint
	Set OnLadderint
	Set Onpad
	Set Onrecv
	Set Ontimer
	Set Outonly
	Set Pad
	Set Rs232
	Set Rs485
	Set Until
	Shiftin()
	Shiftout
	Steppulse
	Stepstop
	Stepstat()
	Sys()
	Tadin()
	Time()
	Timeset
	Udelay
	Usepin
	Utmax
	Wait
	WaitTx

	Chapter 7 �CUBLOC�Display Library
	Cls
	Csron
	Csroff
	Locate
	Print
	CLCD Module
	GHLCD Graphic LCD :�GHB3224 Series
	Cls
	Clear
	Csron
	Csroff
	Locate
	Print
	Layer
	GLayer
	Overlay
	Contrast
	Light
	Font
	Style
	Cmode
	Line
	Lineto
	Box
	Boxclear
	Boxfill
	Circle
	Circlefill
	Ellipse
	Elfill
	Glocate
	Gprint
	Dprint
	Offset
	Pset
	Color
	Linestyle
	Dotsize
	Paint
	Arc
	Defchr
	Bmp
	Gpush
	Gpop
	Gpaste
	Hpush
	Hpop
	Hpaste
	Seven Segment Display :�CSG Series
	Csgdec
	Csgnput
	Csgxput
	Csgdec
	Csghex

	Chapter 8 �Interface
	Input/Output Circuits
	RS232 HOWTO
	CuNET
	CUBLOC STUDY BOARD Circuit Diagram
	About I2C…
	More About I²C… (Advanced)

	Chapter 9 �MODBUS
	About MODBUS…
	MODBUS ASCII Master Mode
	MODBUS ASCII Slave Mode
	MODBUS RTU Master Mode

	Chapter 10 �Application Notes
	NOTE 1. Switch Input
	NOTE 2. Keypad Input
	NOTE 3. Temperature Sensor
	NOTE 4. Sound Bytes
	NOTE 5. RC Servo Motor
	NOTE 7. DS1302 RTC
	NOTE 8. MCP3202 �12 Bit A/D Conversion
	NOTE 9.�Read and write to the EEPROM

	Chapter 12 �Ladder Logic
	LADDER Basics
	Creating LADDER
	Editing LADDER Text
	Monitoring
	Time Chart Monitoring
	WATCH POINT
	Register Expression
	Ladder symbols
	Using I/Os
	Use of Aliases
	Beginning of LADDER
	Declare devices to use
	To Use Ladder Only, �without BASIC
	Enable Turbo Scan Time Mode
	Things to Remember in LADDER
	ladder instructions
	LOAD,LOADN,OUT
	NOT, AND,OR
	SETOUT, RSTOUT
	DIFU, DIFD
	MCS, MCSCLR
	STEPSET
	STEPOUT
	TON, TAON
	TOFF, TAOFF
	CTU
	CTD
	UP/DOWN COUNTER
	KCTU
	KCTD
	Comparison Logic
	How to store �Words and Double Words
	Binary, Decimal, Hexadecimal
	WMOV, DWMOV
	WXCHG, DWXCHG
	FMOV
	GMOV
	WINC, DWINC, WDEC, DWDEC
	WADD, DWADD
	WSUB, DWSUB
	WMUL, DWMUL
	WDIV, DWDIV
	WOR, DWOR
	WXOR, DWXOR
	WAND, DWAND
	WROL, DWROL
	WROR, DWROR
	GOTO, LABEL
	CALLS, SBRT, RET
	INTON
	TND
	Special Registers

	CUTOUCH
	What is CUTOUCH?
	CUTOUCH Specifications
	Hardware Requirements
	Software �Development Environment
	CUTOUCH I/O Ports
	Backup Battery
	KEEP Timer and KEEP Counter
	Menu System Library
	MENU Commands
	Menuset
	Menutitle
	Menucheck()
	Menureverse
	Menu()
	Waitdraw
	Touch Pad Input Example
	CUTOUCH Sample Programs

	APPENDIX
	Appendix A. ASCII CODE
	Appendix B.�Note for BASIC STAMP users
	Appendix C. Using Output Port on the CB290 / CT1720
	Appendix D.�CUBLOC BASIC Command �summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [360.000 518.740]
>> setpagedevice

