
"Everything for Embedded Control"

Comfile Technology Inc. www.comfiletech.com

Copyright 1996,2006 Comfile Technology

Blank Page

Warranty

Comfile Technology provides 1 Year warranty on its products against defects in materials and workmanship. If you discover a defect, Comfile Technology will, at its option, repair, replace, or refund the purchase price. Simply return the product with a description of the problem and a copy of your invoice (if you do not have your invoice, please include your name and telephone number).

This warranty does not apply if the product has been modified or damaged by accident, abuse, or misuse.

30-Day Money-Back Guarantee

If, within 30 days of having received your product, you find that it does not suit your needs, you may return it for a refund. Comfile Technology will refund the purchase price of the product, excluding shipping/handling costs. This does not apply if the product has been altered or damaged.

Copyright & Trademarks

Copyright © 2006 by Comfile Technology Inc. All rights reserved. CUBLOC[™] is a registered trademark of Comfile Technology Inc. WINDOWS is a trademark of Microsoft Corporation. XPORT is trademark of Lantronix inc. Other trademarks are of their respective companies.

Notice

This Data Book may be changed and updated without notice. For the addition of new features, information can be updated without notice. Comfile Technology Inc. is not responsible for any actions taken outside the explanation of this data book. This product is protected by patents across the world. You may not change, copy, reproduce, or translate without the consent of Comfile Technology Inc.

Disclaimer of Liability

Comfile Technology Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, and costs or recovering, reprogramming, or reproducing any data stored in or use with Comfile Technology products.

NEW in CublocStudio v.2.0.X

1. You can simple upgrade to CUBLOC STUDIO V2.X to use new features of CUBLOC and CUTOUCH.

New Functions	Syntax	Features	
SET RS485	SET RS485 Channel, Port	Set Port Number for automatic control of TE (Transmit Enable) signal for RS485 converter (Comfile RS485 Converter)	
GETCRC	GETCRC Variable, Array, Length	Calculate the CRC	
VALHEX()	Variable = VALHEX(String Variable)	Convert hexadecimal String number to a decimal variable.	
FREEPIN	FREEPIN Port	Free I/O Port set to LADDER using Usepin back to BASIC	
FP()	FP(Single Variable, Whole Number Digits, Fractional Number Digits)	Convert Floating Point variable to a formatted String	
COMPARE	COMPARE Channel, Set point, PortNumber, PortStatus	When high counter value reaches a set point, set an I/O Port to Low or High.	
I2CREADNA	Variable = I2CREADNA(0)	I2CREAD command without acknowledgement	

2. Modbus RTU Slave Mode

SET MODBUS mode, slaveaddress, returninterval mode : 0=ASCII, 1=RTU slaveaddress : Slave Address (1 to 254) returninterval : return interval value (1 to 255, default value is 1)

3. Pulse Control Command.

Function	Syntax	Features	
STEPPULSE	STEPPULSE Channnel, PortNumber, Freqency, Number of Pulses	Output a set of number of pulses at a set frequency (up to 15kHz)	
STEPSTOP	STEPSTOP Channel	Stop Pulse Output Channel immediately.	
STEPSTAT()	Variable = STEPSTAT(Channel)	Return number of pulses outputted since last STEPPULSE command	

Function	Syntax	Features
PUTA2	PUTA2 Channel, ArrayName, Length, StopChar	Same as PUTA command except it will stop transmission upto a set character in the array. (StopChar will be the last character to be send)
GETA2	GETA2 Channel, Array name, ByteLength, StopChar)	Same as GETA command except it will stop reading data at the StopChar even if there are data left to read set by the Length. If StopChar is not found, then it will operate just like a GETA command.
GETSTR2	String Variable = GETSTR2(Channel, Length, StopChar)	Same as GETSTR command except it will stop reading data at the StopChar even if there are data left to read set by the Length. If StopChar is not found, then it will operate just like a GETSTR command. (StopChar is read from the buffer, but not stored into the String Variable)

4. RS232 Receive and Send Commands Added.

5. RTC using the system timer for CUBLOC without RTC.

This command will allow you to use the system timer of CUBLOC as an RTC. You can use TIME() and TIMESET functions to access the following addresses:

address	Returning Value Range	
10	Seconds 0 to 59	
11	Minutes 0 to 59	
12	Hours	0 to 65535
13	3 Continuous Seconds 0 to 65535	

NEW CUBLOC Module - CB405

The new CUBLOC Module CB405 has more program and data memory with additional 2 RS232 serial channels over older CUBLOC modules.

Core Module	Features
CB405	200KB Program memory, 110KB Data memory, 64 I/Os, 4 RS232 Channels

To use the CUBLOC module CB405, you need to use CublocStudio v.2.0.X and above.

1. New functions for the CB405

New Functions	Commands
Use the following commands for	OPENCOM
RS232 Channel 0 through 3.	SET RS232
	GET, GETA, GETSTR, PUT, PUTA, PUTSTR,
	BLEN, BFREE, CHECKBF, BCLR
	ON RECV, SET ONRECV, WAITTX
Use the AD commands from Channel 0	ADIN, TADIN
through 15.	
Use PWM commands from Channel 0	PWM, PWMOFF
through 11.	

2. Heap Access for the CB405

The HEAP memory access is a special feature only available on the CB405 module.

Function	Syntax	Feature	
HEAPCLEAR	Heapclear	Erase the entire Heap memory.	
HREAD	Variable = HREAD(Address, Length)	Read the designated number of bytes set by Length from the Heap memory address and store into a variable.	
HWRITE HWRIT	HWRITE Address, Variable, Length	Store the designated number of bytes set by Length to the Heap memory Address.	
HEAPW	HEAPW Address, Variable	Store one byte to the Heap memory Address.	
HEAP	Variable = HEAP(Address)	Read one byte from the Heap memory Address and store into a variable.	

Preface

Comfile Technology has been developing PLC and BASIC controllers since 1997. With our past knowledge of this field, we are giving you a brand new product that is more powerful, flexible, and has the best features of both BASIC controllers and PLCs (Programmable Logic Controllers).

After experiences developing and selling TinyPLC and PicBASIC, which are chip based PLCs and BASIC controllers, we have been able to improve our engineering efforts every year. CUBLOC is able to adapt to the user's strengths, whether that be BASIC or LADDER. Unlike other products, you can simply use CUBLOC as a BASIC controller or as a PLC controller.

Ladder Logic, which is the traditional way of programming PLCs for its outstanding control sequence, is neither sufficient nor easy to use for graphic interface and other modern technology that require complex programming. In comparison, the BASIC language proves to be simple yet easy to implement those modern devices.

CUBLOC is able to handle both BASIC and Ladder Logic through on-chip multi-tasking. By sharing memory data, it's able to integrate both BASIC and LADDER efficiently and become a new type of controller by itself.

"CUBLOC" is created for beginners and advanced users in mind. Its basic purpose is to cut design time for those who are just entering the field of microcontrollers, engineers from other backgrounds such as Chemical or Mechanical, and anyone who would like to make something that they envision quickly and get a head start on their project.

With our Plug-N-Play displays, development boards, and relay boards, you will be able to put something together in matter or hours, instead of months.

Comfile Technology, Inc.

Notice

The Start Kit or Industrial Kit you receive comes with the latest version of Cubloc Studio.

- Please be aware that the software may be upgraded often.
- Please check <u>www.comfiletech.com</u> to download the latest version of CublocStudio.
- Please do Setup->Firmware Download after installing new version of CublocStudio as firmware of the modules is upgraded along with our software. (Firmware is comes automatically along w/ your new version of CublocStudio.
- Please check <u>www.comfiletech.com</u> often for latest Manual.
- Please make sure to insert the CUBLOC module correctly as inserting it upside-down can cause damage to the chip.
- Please be aware that our 1 Year Warranty only covers defective items.

Special thanks goes to:

- Mr. Alexandre Braun & Lextronics for applications on the Forum
- Mr. Batman for applications on the Forum
- Mr. Mauro Russo & Uniplan Software srl, Italy for User Manual Revisions
- Mr. Steve Yang & Mr. Bill Ebert for Modbus RTU
- Mr. Spence for website links and website bugs

Table of Contents

What is CUBLOC?20CUBLOC Specifications21Ladder Logic and BASIC24Multi-tasking of Ladder Logic and BASIC26Advantages of "On-Chip" PLC/Embedded Computer28Development Environment30Download and Monitoring through the Internet31Hints for traditional PLC User32Hints for Micro Controller User33CUBLOC'S Internal Structure34CUBLOC Peripherals35CHAPTER 2 HARDWARE39Hardware Features40CB22041Supplying power to the CB22043CB28044How to supply power to the CB28046CB29051How to connect Battery to CB290/CB40554Dimensions55CUBLOC STUDIO Basics62Creating BASIC64Debugging65Menus66CHAPTER 4 CUBLOC BASIC LANGUAGE69CUBLOC BASIC Features70Simple BASIC program72Sub and Function73Variables79String81About Variable Memory Space81	CHAPTER 1 CUBLOC GETTING STARTED	
CUBLOC Specifications21Ladder Logic and BASIC24Multi-tasking of Ladder Logic and BASIC26Advantages of "On-Chip" PLC/Embedded Computer28Development Environment30Download and Monitoring through the Internet.31Hints for traditional PLC User32Hints for Micro Controller User33CUBLOC's Internal Structure.34CUBLOC Peripherals35CHAPTER 2 HARDWARE39Hardware Features40CB22041Supplying power to the CB22043CB28044How to supply power to the CB28046CB29047CB40551How to connect Battery to CB290/CB40554Dimensions55CUBLOC STUDIO Basics62Creating BASIC64Debugging65Menus66CHAPTER 4 CUBLOC BASIC LANGUAGE69CUBLOC BASIC Features70Simple BASIC program72Sub and Function73Variables79String81	What is CUBLOC?	
Ladder Logic and BASIC24Multi-tasking of Ladder Logic and BASIC26Advantages of "On-Chip" PLC/Embedded Computer28Development Environment30Download and Monitoring through the Internet31Hints for traditional PLC User32Hints for Micro Controller User33CUBLOC's Internal Structure34CUBLOC Peripherals35CHAPTER 2 HARDWARE39Hardware Features40CB22041Supplying power to the CB22043CB28044How to supply power to the CB28046CB29047CB40551How to connect Battery to CB290/CB40554Dimensions55CUBLOC STUDIO Basics62Creating BASIC64Debugging65Menus66CHAPTER 4 CUBLOC BASIC LANGUAGE69CUBLOC BASIC Features70Simple BASIC program72Sub and Function73Variables79String81		
Multi-tasking of Ladder Logic and BASIC 26 Advantages of "On-Chip" PLC/Embedded Computer 28 Development Environment 30 Download and Monitoring through the Internet 31 Hints for traditional PLC User 32 Hints for Micro Controller User 33 CUBLOC's Internal Structure 34 CUBLOC Peripherals 35 CHAPTER 2 HARDWARE 39 Hardware Features 40 CB220 41 Supplying power to the CB220 41 Supplying power to the CB220 44 How to supply power to the CB280 46 CB290 47 CB405 51 How to connect Battery to CB290/CB405 54 Dimensions 55 CUBLOC Chipset : CB280CS 57 CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER 61 CUBLOC STUDIO Basics 62 Creating BASIC 64 Debugging 65 Menus 66 CHAPTER 4 CUBLOC BASIC LANGUAGE 69 CUBLOC BASIC Features 70 Simple BASIC pro	•	
Development Environment30Download and Monitoring through the Internet31Hints for traditional PLC User32Hints for Micro Controller User33CUBLOC's Internal Structure34CUBLOC Peripherals35CHAPTER 2 HARDWARE39Hardware Features40CB22041Supplying power to the CB22043CB28044How to supply power to the CB22043CB29047CB40551How to connect Battery to CB290/CB40551How to connect Battery to CB290/CB40557CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER61CUBLOC STUDIO Basics62Creating BASIC64Debugging65Menus66CHAPTER 4 CUBLOC BASIC LANGUAGE69CUBLOC BASIC Features70Simple BASIC program72Sub and Function73Variables79String81	Multi-tasking of Ladder Logic and BASIC	
Download and Monitoring through the Internet31Hints for traditional PLC User32Hints for Micro Controller User33CUBLOC's Internal Structure34CUBLOC Peripherals35CHAPTER 2 HARDWARE39Hardware Features40CB22041Supplying power to the CB22043CB28044How to supply power to the CB28046CB29047CB40551How to connect Battery to CB290/CB40554Dimensions55CUBLOC Chipset : CB280CS57CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER61CUBLOC STUDIO Basics62Creating BASIC64Debugging65Menus66CHAPTER 4 CUBLOC BASIC LANGUAGE69CUBLOC BASIC Features70Simple BASIC program72Sub and Function73Variables79String81	Advantages of "On-Chip" PLC/Embedded Computer	
Hints for traditional PLC User32Hints for Micro Controller User33CUBLOC's Internal Structure34CUBLOC Peripherals35CHAPTER 2 HARDWARE39Hardware Features40CB22041Supplying power to the CB22043CB28044How to supply power to the CB28046CB29047CB40551How to connect Battery to CB290/CB40554Dimensions55CUBLOC Chipset : CB280CS57CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER61CUBLOC STUDIO Basics62Creating BASIC64Debugging65Menus66CHAPTER 4 CUBLOC BASIC LANGUAGE69CUBLOC BASIC Features70Simple BASIC program72Sub and Function73Variables79String81		
Hints for Micro Controller User33CUBLOC's Internal Structure34CUBLOC Peripherals35CHAPTER 2 HARDWARE39Hardware Features40CB22041Supplying power to the CB22043CB28044How to supply power to the CB28046CB29047CB40551How to connect Battery to CB290/CB40554Dimensions55CUBLOC Chipset : CB280CS57CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER61CUBLOC STUDIO Basics62Creating BASIC64Debugging65Menus66CHAPTER 4 CUBLOC BASIC LANGUAGE69CUBLOC BASIC Features70Simple BASIC program72Sub and Function73Variables79String81	Download and Monitoring through the Internet	31
CUBLOC's Internal Structure 34 CUBLOC Peripherals 35 CHAPTER 2 HARDWARE 39 Hardware Features 40 CB220 41 Supplying power to the CB220 43 CB280 44 How to supply power to the CB280 46 CB290 47 CB405 51 How to connect Battery to CB290/CB405 54 Dimensions 55 CUBLOC Chipset : CB280CS 57 CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER 61 CUBLOC STUDIO Basics 62 Creating BASIC 64 Debugging 65 Menus 66 CHAPTER 4 CUBLOC BASIC LANGUAGE 69 CUBLOC BASIC Features 70 Simple BASIC program 72 Sub and Function 73 Variables 79 String 81	Hints for traditional PLC User	32
CUBLOC Peripherals 35 CHAPTER 2 HARDWARE 39 Hardware Features 40 CB220 41 Supplying power to the CB220 43 CB280 44 How to supply power to the CB280 46 CB290 47 CB405 51 How to connect Battery to CB290/CB405 54 Dimensions 55 CUBLOC Chipset : CB280CS 57 CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER 61 CUBLOC STUDIO Basics 62 Creating BASIC 64 Debugging 65 Menus 66 CHAPTER 4 CUBLOC BASIC LANGUAGE 69 CUBLOC BASIC Features 70 Simple BASIC program 72 Sub and Function 73 Variables 79 String 81	Hints for Micro Controller User	33
CHAPTER 2 HARDWARE39Hardware Features40CB22041Supplying power to the CB22043CB28044How to supply power to the CB28046CB29047CB40551How to connect Battery to CB290/CB40554Dimensions55CUBLOC Chipset : CB280CS57CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER61CUBLOC STUDIO Basics62Creating BASIC64Debugging65Menus66CHAPTER 4 CUBLOC BASIC LANGUAGE69CUBLOC BASIC Features70Simple BASIC program72Sub and Function73Variables79String81	CUBLOC's Internal Structure	
Hardware Features 40 CB220 41 Supplying power to the CB220 43 CB280 44 How to supply power to the CB280 46 CB290 47 CB405 51 How to connect Battery to CB290/CB405 54 Dimensions 55 CUBLOC Chipset : CB280CS 57 CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER 61 CUBLOC STUDIO Basics 62 Creating BASIC 64 Debugging 65 Menus 66 CHAPTER 4 CUBLOC BASIC LANGUAGE 69 CUBLOC BASIC Features 70 Simple BASIC program 72 Sub and Function 73 Variables 79 String 81	CUBLOC Peripherals	35
CB220 41 Supplying power to the CB220 43 CB280 44 How to supply power to the CB280 46 CB290 47 CB405 51 How to connect Battery to CB290/CB405 54 Dimensions 55 CUBLOC Chipset : CB280CS 57 CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER 61 CUBLOC STUDIO Basics 62 Creating BASIC 64 Debugging 65 Menus 66 CHAPTER 4 CUBLOC BASIC LANGUAGE 69 CUBLOC BASIC Features 70 Simple BASIC program 72 Sub and Function 73 Variables 79 String 81	CHAPTER 2 HARDWARE	
CB220 41 Supplying power to the CB220 43 CB280 44 How to supply power to the CB280 46 CB290 47 CB405 51 How to connect Battery to CB290/CB405 54 Dimensions 55 CUBLOC Chipset : CB280CS 57 CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER 61 CUBLOC STUDIO Basics 62 Creating BASIC 64 Debugging 65 Menus 66 CHAPTER 4 CUBLOC BASIC LANGUAGE 69 CUBLOC BASIC Features 70 Simple BASIC program 72 Sub and Function 73 Variables 79 String 81	Hardware Features	40
Supplying power to the CB220 43 CB280 44 How to supply power to the CB280 46 CB290 47 CB405 51 How to connect Battery to CB290/CB405 54 Dimensions 55 CUBLOC Chipset : CB280CS 57 CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER 61 CUBLOC STUDIO Basics 62 Creating BASIC 64 Debugging 65 Menus 66 CHAPTER 4 CUBLOC BASIC LANGUAGE 69 CUBLOC BASIC Features 70 Simple BASIC program 72 Sub and Function 73 Variables 79 String 81		
CB280 44 How to supply power to the CB280 46 CB290 47 CB405 51 How to connect Battery to CB290/CB405 54 Dimensions 55 CUBLOC Chipset : CB280CS 57 CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER 61 CUBLOC STUDIO Basics 62 Creating BASIC 64 Debugging 65 Menus 66 CHAPTER 4 CUBLOC BASIC LANGUAGE 69 CUBLOC BASIC Features 70 Simple BASIC program 72 Sub and Function 73 Variables 79 String 81		
How to supply power to the CB280 46 CB290 47 CB405 51 How to connect Battery to CB290/CB405 54 Dimensions 55 CUBLOC Chipset : CB280CS 57 CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER 61 CUBLOC STUDIO Basics 62 Creating BASIC 64 Debugging 65 Menus 66 CHAPTER 4 CUBLOC BASIC LANGUAGE 69 CUBLOC BASIC Features 70 Simple BASIC program 72 Sub and Function 73 Variables 79 String 81		
CB290		
How to connect Battery to CB290/CB405 54 Dimensions 55 CUBLOC Chipset : CB280CS 57 CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER 61 CUBLOC STUDIO Basics 62 Creating BASIC 64 Debugging 65 Menus 66 CHAPTER 4 CUBLOC BASIC LANGUAGE 69 CUBLOC BASIC Features 70 Simple BASIC program 72 Sub and Function 73 Variables 79 String 81	CB290	47
Dimensions 55 CUBLOC Chipset : CB280CS 57 CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER 61 CUBLOC STUDIO Basics 62 Creating BASIC 64 Debugging 65 Menus 66 CHAPTER 4 CUBLOC BASIC LANGUAGE 69 CUBLOC BASIC Features 70 Simple BASIC program 72 Sub and Function 73 Variables 79 String 81	CB405	51
CUBLOC Chipset : CB280CS	How to connect Battery to CB290/CB405	54
CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER 61 CUBLOC STUDIO Basics 62 Creating BASIC 64 Debugging 65 Menus 66 CHAPTER 4 CUBLOC BASIC LANGUAGE 69 CUBLOC BASIC Features 70 Simple BASIC program 72 Sub and Function 73 Variables 79 String 81	Dimensions	55
CUBLOC STUDIO Basics 62 Creating BASIC 64 Debugging 65 Menus 66 CHAPTER 4 CUBLOC BASIC LANGUAGE 69 CUBLOC BASIC Features 70 Simple BASIC program 72 Sub and Function 73 Variables 79 String 81	CUBLOC Chipset : CB280CS	57
Creating BASIC	CHAPTER 3 CUBLOC STUDIO EDITOR/ COMPILER	61
Creating BASIC	CUBLOC STUDIO Basics	62
Debugging		
Menus 66 CHAPTER 4 CUBLOC BASIC LANGUAGE 69 CUBLOC BASIC Features 70 Simple BASIC program 72 Sub and Function 73 Variables 79 String 81		
CUBLOC BASIC Features70Simple BASIC program72Sub and Function73Variables79String81		
Simple BASIC program	CHAPTER 4 CUBLOC BASIC LANGUAGE	69
Simple BASIC program	CUBLOC BASIC Features	70
Sub and Function		
Variables		
String		

Arrays	
Bits and Bytes modifiers	87
Constants	
Constant Arrays	
Operators	
Expressing Numbers in Bits	96
The BASIC Preprocessor	
Conditional	
To use LADDER ONLY	
To use BASIC ONLY	
Interrupt	
More about Interrupts	
Pointers using Peek, Poke, and Memadr	
Sharing Data	106
CHAPTER 5 CUBLOC BASIC FUNCTIONS	109
Math Functions	
Type Conversion	
String Functions	115
CHAPTER 6 CUBLOC BASIC STATEMENTS & LIBRARY	
Adin()	124
Adin() Alias	
	126
Alias	126 127
Alias Bcd2bin	126 127 128
Alias Bcd2bin Bclr	126 127 128 129
Alias Bcd2bin Bclr Beep	126 127 128 129 130
Alias Bcd2bin Bclr Beep Bfree()	126 127 128 129 130 130
Alias Bcd2bin Bclr Beep Bfree() Bin2bcd Blen()	
Alias Bcd2bin Bclr Beep Bfree() Bin2bcd Bin2bcd	
Alias Bcd2bin Bclr Beep Bfree() Bin2bcd Blen()	
Alias Bcd2bin Bclr Beep Bfree() Bin2bcd Blen() Bytein()	126 127 128 129 130 130 131 132 133 134
Alias. Bcd2bin Bclr. Beep Bfree() Bin2bcd Blen() Bytein() Byteout	126 127 128 129 130 131 131 132 133 134 135
Alias Bcd2bin Bclr Beep Bfree() Bin2bcd Blen() Bytein() Byteout CheckBf()	126 127 128 129 130 131 131 132 133 134 135 136
Alias Bcd2bin Bclr Beep Bfree() Bin2bcd Blen() Bytein() Byteout CheckBf() Compare	126 127 128 129 130 130 131 132 133 134 135 136 137
Alias Bcd2bin Bclr Beep Bfree() Bin2bcd Blen() Bytein() Byteout CheckBf() Compare Countreset Dcd	126 127 128 129 130 131 131 132 133 134 135 136 137 139 140
Alias Bcd2bin Bclr Beep Bfree() Bin2bcd Bin2bcd Blen() Bytein() Byteout CheckBf() Compare Countreset Dcd Debug	126 127 128 129 130 131 131 132 133 134 135 136 137 139 140 141
Alias Bcd2bin Bclr Beep Bfree() Bin2bcd Bin2bcd Blen() Bytein() Byteout CheckBf() Compare Countreset Dcd Debug Decr	126 127 128 129 130 131 131 132 133 134 135 136 137 139 140 141
Alias Bcd2bin Bclr Beep Bfree() Bin2bcd Bin2bcd Blen() Bytein() Byteout CheckBf() Compare Countreset Dcd Debug	126 127 128 129 130 131 131 132 133 134 135 136 137 139 140 141
Alias Bcd2bin Bclr Beep Bfree() Bin2bcd Bin2bcd Blen() Bytein() Byteout CheckBf() Compare Countreset Dcd Debug Decr	126 127 128 129 130 130 131 132 133 134 135 136 137 139 140 141 144 145

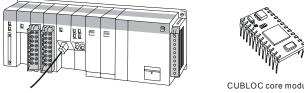
EAdin()	
Eeread()	
Eewrite	
Ekeypad	
ForNext	
Freepin	
Freqout	
Get()	
Geta	
Geta2	
Getcrc	
Getstr()	163
Getstr2()	
GosubReturn	
Goto	
Hread()	167
Hwrite	
Heapclear	
Heap()	
Неарм	
High	170
I2Cstart	171
I2Cstop	171
I2Cread()	172
I2Creadna()	173
I2Cwrite()	174
If. Then. ElseifEndif	175
In()	176
Incr	177
Input	178
Keyin	
Keyinh	180
Keypad	181
Ladderscan	182
Low	
Memadr()	184
Ncd	185
Nop	
On Int	
On Ladderint Gosub	
On Pad Gosub	190
On RecvX	191

On Timer()	192
Opencom	
Out	
Output	
Outstat()	
Pause	
Peek()	
Poke	
Pulsout	
Put	
Puta	
Puta2	
Putstr	
Pwm	
Pwmoff	
Ramclear	
Reverse	
Rnd()	
SelectCase	
SelectCase	
Debug Command How-to	
Set I2c	
Set Int	
Set Ladder on/off	
Set Modbus	
Set Onglobal	
Set Onint	
Set OnLadderint	
Set Onpad	
Set Onrecv	
Set Ontimer	
Set Outonly	
Set Pad	
Set Rs232	
Set Rs485	
Set Until	
Shiftin()	
Shiftout	233
Steppulse	
Stepstop	
Stepstat()	
Sys()	238

	Tadin()	239
	Time()	240
	Timeset	242
	Udelay	244
	Usepin	
	Utmax	
	Wait	247
	WaitTx	248
СН	APTER 7 CUBLOC DISPLAY LIBRARY	
	Cls	253
	Csron	
	Csroff	
	Locate	
	Print	
	CLCD Module	
	GHLCD Graphic LCD : GHB3224 Series	
	Cls	
	Clear	
	Csron	
	Csroff	
	Locate	
	Print	
	Layer	
	GLayer	
	Overlay	
	Contrast	
	Light	
	Font	
	Style	
	Cmode	
	Line	
	Lineto	
	Box	
	Boxclear	
	Boxfill	
	Circle	
	Circlefill	
	Ellipse	
	Elfill	
	Glocate	
	Gprint	270

	Dprint	271
	Offset	272
	Pset	273
	Color	273
	Linestyle	273
	Dotsize	
	Paint	274
	Arc	274
	Defchr	
	Bmp	
	Gpush	277
	Gpop	
	Gpaste	
	Hpush	
	Нрор	
	Hpaste	
	Seven Segment Display : CSG Series	
	Csgdec	
	Csqnput	
	Csqxput	
	Csgdec	
	Csghex	
CH	APTER 8 INTERFACE	.285
	Input/Output Circuits	286
	RS232 HOWTO	
	CuNET	
	CUBLOC STUDY BOARD Circuit Diagram	
	About I2C	
	More About I ² C (Advanced)	
	ζ, γ	
CH	APTER 9 MODBUS	
		.303
	About MODBUS	304
	About MODBUS MODBUS ASCII Master Mode	304 315
	About MODBUS MODBUS ASCII Master Mode MODBUS ASCII Slave Mode	304 315 316
	About MODBUS MODBUS ASCII Master Mode MODBUS ASCII Slave Mode MODBUS RTU Master Mode	304 315 316 317
СН	About MODBUS MODBUS ASCII Master Mode MODBUS ASCII Slave Mode	304 315 316 317
СН	About MODBUS MODBUS ASCII Master Mode MODBUS ASCII Slave Mode MODBUS RTU Master Mode APTER 10 APPLICATION NOTES	304 315 316 317 . 31 9
СН	About MODBUS MODBUS ASCII Master Mode MODBUS ASCII Slave Mode MODBUS RTU Master Mode APTER 10 APPLICATION NOTES NOTE 1. Switch Input	304 315 316 317 . 319 320
СН	About MODBUS MODBUS ASCII Master Mode MODBUS ASCII Slave Mode MODBUS RTU Master Mode APTER 10 APPLICATION NOTES NOTE 1. Switch Input NOTE 2. Keypad Input	304 315 316 317 . 319 320 322
СН	About MODBUS MODBUS ASCII Master Mode MODBUS ASCII Slave Mode MODBUS RTU Master Mode APTER 10 APPLICATION NOTES NOTE 1. Switch Input	304 315 316 317 .319 320 322 325

	NOTE 5. RC Servo Motor	333
	NOTE 7. DS1302 RTC	
	NOTE 8. MCP3202 12 Bit A/D Conversion	338
	NOTE 9. Read and write to the EEPROM	340
сн	APTER 12 LADDER LOGIC	343
	LADDER Basics	
	Creating LADDER	
	Editing LADDER Text	
	Monitoring	
	Time Chart Monitoring	
	WATCH POINT	
	Register Expression	
	Ladder symbols	
	Using I/Os	
	Use of Aliases	
	Beginning of LADDER	
	Declare devices to use	
	To Use Ladder Only, without BASIC	
	Enable Turbo Scan Time Mode	
	Things to Remember in LADDER	
	ladder instructions	
	LOAD,LOADN,OUT	
	NOT, AND,OR	
	SETOUT, RSTOUT	
	DIFU, DIFD	
	MCS, MCSCLR	
	STEPSET	
	STEPOUT	
	TON, TAON	
	TOFF, TAOFF	
	СТU	
	CTD	
	UP/DOWN COUNTER	
	KCTU	
	KCTD	
	Comparison Logic	
	How to store Words and Double Words	
	Binary, Decimal, Hexadecimal	
	WMOV, DWMOV	
	WXCHG, DWXCHG	
	FMOV	391


	GMOV	
	WINC, DWINC, WDEC, DWDEC	
	WADD, DWADD	
	WSUB, DWSUB	
	WMUL, DWMUL	
	WDIV, DWDIV	
	WOR, DWOR	
	WXOR, DWXOR	
	WAND, DWAND	
	WROL, DWROL	400
	WROR, DWROR	401
	GOTO, LABEL	402
	CALLS, SBRT, RET	
	INTON	
	TND	
	Special Registers	406
CL	JTOUCH	
	What is CUTOUCH?	411
	CUTOUCH Specifications Hardware Requirements	
	Software Development Environment	
	CUTOUCH I/O Ports	
	Backup Battery	
	KEEP Timer and KEEP Counter	
	Menu System Library	
	MENU Commands	
	Menuset	
	Menutitle	
	Menucheck()	
	Menureverse	
	Menu()	
	Waitdraw	
	Touch Pad Input Example	
	CUTOUCH Sample Programs	
AF	PPENDIX	
	Appendix A. ASCII CODE	420
	Appendix A. ASCII CODE Appendix B. Note for BASIC STAMP users	
	Appendix B. Note for BASIC STAMP users Appendix C. Using Output Port on the CB290 / CT1720	
	Appendix D. CUBLOC BASIC Command summary	

Chapter 1 CUBLOC Getting started...

What is CUBLOC?

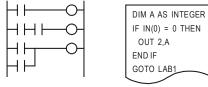
CUBLOC is different from the traditional PLCs that you may associate with. Traditional PLCs have cases and connections like the picture below but CUBLOC is an "On-Chip" PLC/Industrial Controller, meaning you have more freedom and flexibility to the final product size and design.

CUBLOC Modules are similar to traditional PLCs in that Ladder Logic can be used. But its small size allows developers to design custom PCBs just like a microcontroller.

traditional PLC

CUBLOC core module

There are different models, each with a unique program memory size and number of I/O ports. Please make a selection based on your product's reauirement.



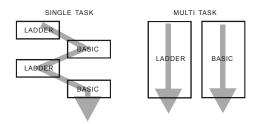
CUBLOC Specifications

	СВ220	CB280	CB290	CB405
Picture				
Program Memory	80KB	80KB	80KB	200KB
Data Memory	2KB(BASIC)+1K B(Ladder Logic)	2KB(BASIC)+1K B(Ladder Logic)	24KB(BASIC)+4KB(Ladd er Logic)	51KB(BASIC)+4KB(Ladd er Logic)+55KB(Heap)
EEPROM	4KB EEPROM	4KB EEPROM	4KB EEPROM	4KB EEPROM
Program Speed	36,000 inst./sec	36,000 inst./sec	36,000 inst./sec	36,000 inst./sec
General Purpose I/O	16 I/O lines (5V TTL) (input/output configurable)	49 I/O lines (5V TTL) (input/output configurable)	91 I/O lines (5V TTL) (33 input only + 32 output only + 26 input/output configurable)	64 I/O lines (5V TTL) (input/output configurable)
Serial Ports for Communic ation	2 serial ports (Channel 0: RS2 32C 12V, Channel 1: TTL 5V) - Configurable Baud rates: 2400bps to 230,400 bps	2 serial ports (Channel 0: RS2 32C 12V, Channel 1: RS232C 12V & TTL 5V) - Configurable Baud rates: 2400bps to 230,400 bps	2 serial ports (Channel 0: RS232C 12V, Channel 1: RS232C 12V & TTL 5V) - Configurable Baud rates: 2400bps to 230,400 bps	4 serial ports (Channel 0: RS232C 12V, Channel 1 to 3: RS232C TTL SV) - Configurable Baud rates: 2400bps to 230,400 bps
Analog Inputs	8 Channel 10-bit ADCs	8 Channel 10-bit ADCs	8 channel 10-bit ADCs	16 channel 10-bit ADCs
Analog Outputs	- 3 Channel 16- bit PWMs (DACs) - Configurable Fre quency: 35hz to 1.5Mhz	- 6 Channel 16- bit PWMs (DACs) - Configurable Fre quency: 35hz to 1.5Mhz	- 6 Channel 16-bit PWMs (DACs) - Configurable Frequency: 35hz to 1.5Mhz	- 12 Channel 16-bit PWMs (DACs) - Configurable Frequency: 35hz to 1.5Mhz
External Interrupts	None	4 Channels	4 Channels	4 Channels
High Speed Counters	2 Channel 32-bit Counters (up to 2Mhz)	2 Channel 32-bit Counters (up to 2Mhz)	2 Channel 32-bit Counters (up to 2Mhz)	2 Channel 32-bit Counters (up to 2Mhz)
Power	5 to 12V, 40mA (ports unloaded)	5V, 40mA (ports unloaded)	5V, 70mA (ports unloaded)	5V, 50mA (ports unloaded)
RTC	No	No	Yes	No
Data Memory Back-up	None	None	Optional	Optional
Operating Temperat ure	-40 °C to 120 °C	-40 °C to 120 °C	-40 °C to 120 °C	-40 °C to 120 °C
Package	24-pin DIP 600mil	64-pin Module	108-pin Module	80-pin Module
Size	1.2"L x 0.6"W x 0.4"H (30 x 15.3 x 11 mm)	1.4"L x 1"W x 0.4"H (35 x 25.4 x 11 mm)	2.4"L x 1.9"W x 0.5"H (59.4 x 47.8 x 13 mm)	2.4"L x 1.9"W x 0.5"H (59.4 x 47.8 x 13 mm)

The main advantage of CUBLOC over other PLCs is that it fills Ladder Logic's weaknesses with BASIC language. Ladder Logic is good enough to replace sequence diagrams, but to collect data, print graphics, and process complex tasks is asking a little bit too much. That is why we added the BASIC language. You can now run both Ladder Logic and/or BASIC!

Another advantage over other BASIC processors is that CUBLOC is able to separate the amount of work and programming between Ladder Logic and BASIC as necessary. The user is able to debug easier by having two processes work together, instead of grudging through lines of BASIC codes.

LADDER LOGIC


BASIC

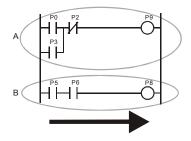
🗐 ဩ 📗 [F1] BA	🔜 🥩 🔏 🖺 🛃 🚺 🕨 🔳 🚻 🧮 SIC [F2] LADDER Ladder Mnemonic			
43			× 1	
44	Print 27, "BWBWRT", pagesi	e cui	SLOC studio [c:Wcubloc_testWu3-1018.cul]	
45	Delay 500		dit Device Bun Setup Help	,
46	Put RS232CH, Asc("K"), 1	1	🛄 🥪 X 🖄 🖏 🗛 🕨 🔳 🖬 🔳 🔳	
47		[F1]	BASIC [F2] LADDER Ladder Mnemonic	
48	For J=1 To pagesize	PLC	H H H/H H/H H H H H H H H H H H H H H H	Insert Delete Undo Copy
49		Wizar		
50	Do '========Wait u	31		MB
51	Delay 20		-TSENS-XCW -XCCW	XCW-T
52	Loop Until Blen(RS232	32		M8=XCW -TOUCH
53	Delay 10	32	XCW-T -LSXP	
54	Geta RS232CH,dt,256	00	P91 P57 P56 F2	M9
55	Belr RS232CH,0	33		XCCW-T
56	For I = 0 To 127 Step			'M9=XCCW -TOUCH
57	Print dt(I)	34		
58	Print dt (I+1)		P91 P58 P59 F2	MID
59	Delay 5	35		усу-т
6.0	Next		M10 P82 TOUCH SENS INPUT-P91.	'M10-YCW -TOUCH
61	Delay 100	36	YCW-T -LSYP	
62	For I = 128 To 255 St		P91 P59 P58 F2	MIL
63	Print dt(I)	37		YCCW-T
64	Print dt (I+1)		M11 P83 TOUCH SENS INPUT-P91,	MIT=YCCW -TOUCH
65	Delay 5	38		
6.6	Next		P91 P60 P61 F2	M12
6.7	Delay 100	39		
68	Print "W"			MI2=ZCW -TOUCH
6.9	Delay 100	140		
70	Put RS232CH, Asc("K"),		X:6 Y:35	Program: 9602 Bytes, Data: 1

Picture of "CUBLOC Studio" is shown above.

There are PLCs on the current market that supports both LADDER and BASIC. These PLCs do not multi-task and run "Single-task." BASIC is part of their Ladder Logic and does not run independently like CUBLOC or CUTOUCH. This can prove to be costly since BASIC is not real-time oriented and can affect the Ladder Logic of the program. CUBLOC covers these weaknesses through its multi-tasking features, guaranteeing accuracy and precision of timing. Unlike many BASIC processors on the market today, CUBLOC supports Ladder Logic and multi-tasking with BASIC language.

CUBLOC has a multi-tasking structure that runs BASIC and LADDER simultaneously that allows accurate LADDER scan timing and still process BASIC. You even have a choice of simply using BASIC or LADDER by itself.

CUBLOC is a brand new type of industrial controller. By being able to do things that traditional PLCs couldn't through BASIC language, we have expanded the horizons of both PLCs and BASIC micro-computers.


Unlike some BASIC controllers out on the market today, CUBLOC is fully backed by many Plug-N-Play peripherals such as our CuBASE industrial I/O Boards and Plug-N-Play Relay8 Boards. With these peripherals, controlling DC/AC devices becomes a walk in the park.

With 32-bit IEEE floating point math support and MODBUS ASCII/RTU support, the user will find that CUBLOC and CUTOUCH are one of the most versatile BASIC/PLC hybrid chip on the market today.

Another analogy to real life would be to automobiles. Do you have a very small fast car? Or do you have a monster truck? How would it be to use an SUV? Yes, CUBLOC is sort of like an SUV in the automobile world. You have the best of the worlds. Although it's not as fast as a raw MCU, you can take advantage over the overall savings in development cost and time using our Plug-N-Play peripherals.

Ladder Logic and BASIC

The biggest advantage of Ladder Logic is that all circuits are processed in "Parallel," meaning they are all processed at the same time.

As you can see above, both A and B circuits are in a waiting state, ready to turn output On as soon as input is turned On. For example, if input P3 turned On, P9 would turn On.

In comparison, BASIC processes code in order, a type of "Sequential Processing."

	Dim A As In	teger	
	Dim B As In	teger	
	A = 0		Jump
	Again:	÷	
	For B=0 to	10	1
	Debug DE	EC A, CR	
	A = A + 10		Loop
V	Next		J
•	Goto Again		

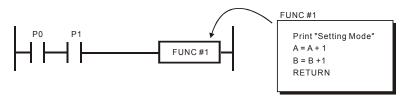
These 2 types of programming languages have been used in different fields for a long time. Ladder Logic is used in automation controllers such as PLCs. On the other hand, BASIC and other programming languages such as C and Assembly have been used in PCs and MCUs.

Whether you are an experienced MCU or PLC user, you will be able to benefit by integrating both BASIC and Ladder Logic in your designs.

The biggest advantage that Ladder Logic possesses is the ability to process input within a guaranteed slot of time. No matter how complex the circuit becomes, Ladder Logic is always ready to output when it receives input. This is the main reason why it's used for machine control and other automation fields.

Ladder Logic is more logic oriented, not a complete programming language. To do complex processes, it has its limits. For example, to receive input from a keypad, display to 7 Segment or LCD, and process user's input is a daring task for Ladder Logic.

But these things are rarely a problem for programming languages such as BASIC. BASIC is able to process floating point numbers, data communications, and other things beyond the scope of what Ladder Logic can do alone. Another advantage that BASIC has is that its language is very similar to the English language (IF, GOTO, etc...), allowing the beginners and the developers to learn in matter of hours, instead having to deal with months of learning curves.


	Ladder Logic	Programming Languages (BASIC, C, ASM)
Device	PLC	PC or Micro-Computer
Application	Automation, Machine- Control	General Computing
Advantages	Sequencer, Bit Logic, Timers, Counters	Complex Math, Data Communication, Data Collection & Process, Analysis, Graphic Interface
Basic Mechanism	Parallel	Sequential

Ladder Logic's parallelism and BASIC sequential language both have its advantages over each other. Ladder Logic is able to process what couldn't be done with BASIC. On the other hand, BASIC can easily process what is either hard to do or couldn't be done in Ladder Logic.

That is why we created "CUBLOC," which the user is free to use both Ladder Logic and/or BASIC based on the application being created. After understanding the advantages of both Ladder Logic and BASIC, the user will be able to create more efficient final products while saving development time and costs.

Multi-tasking of Ladder Logic and BASIC

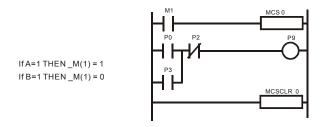
There are many ways to implement both BASIC and Ladder Logic in one processor. The current products on the market use BASIC as part of Ladder Logic. These products support BASIC and Ladder Logic but there is one clear weakness.

The first weakness is that based on the execution time of BASIC, Ladder Logic also gets affected. If the BASIC code is made up of an infinite loop, Ladder Logic will also stop.

Ladder Logic's main advantage is that it can process input in a guaranteed scan-time. If Ladder Logic cannot process within this guaranteed scan-time because of BASIC, it might be better to not include BASIC capabilities.

The second weakness is that BASIC can only be used as part of Ladder Logic. BASIC is a powerful language by being able to process complex algorithms. But if we can only use BASIC as part of Ladder Logic, we are not fully using BASIC to its maximum performance.

The third point has to do with I/Os. BASIC language's execution of I/Os can create unwanted collisions with LADDER. The reason is that Ladder Logic I/Os are updated while in BASIC, I/Os are directly accessed.

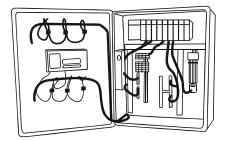

After solving these problems, we have created a BASIC and Ladder Logic processor that supports real-time "multi-tasking." BASIC runs BASIC and LADDER runs LADDER, simultaneously without causing collision between the each other.

With just BASIC, you will be able to create many devices. In comparison to other BASIC processor on the market today, CUBLOC's BASIC clearly has faster processing speed and the upper hand on the main features. If Ladder Logic is not necessary, the user may use just BASIC.

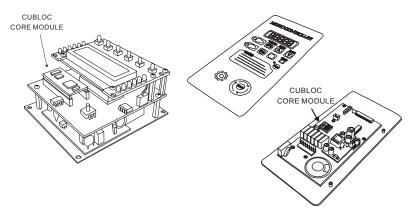
In the case of I/Os, the user can specifically control the I/Os used by BASIC and LADDER, thereby eliminating I/O collision problems.

CUBLOC uses BASIC as its main language. We recommend controlling LADDER from BASIC.

For example, there is a MASTER CONTROL feature in Ladder Logic, allowing the user to set Control Zones. Control Zones are sections within the Ladder Logic that the user can set entire sections of the control circuit. With the MASTER CONTROL feature, the user can enable/disable Ladder Logic's Control Zones easily.



In BASIC, the user may read or write to Ladder Logic's data memory. In the above example, you can access Register M1 as M(1) and write to it from BASIC.


As you can see, CUBLOC supports BASIC and LADDER multi-tasking simultaneously through "data memory sharing."

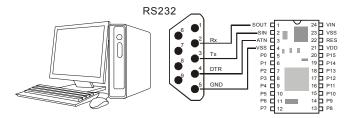
Advantages of "On-Chip" PLC/Embedded Computer

One of the main advantages of CUBLOC is that it is an "On-Chip" PLC. Normally, we think of PLC as a block type case with input and output lines. When using these PLCs, an external case, and cabinet must be used in addition to other mind-bogging wiring requirements

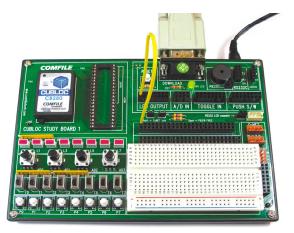
When using just a couple of sets, this might not present a big problem. But when mass-producing such PLCs, labor cost for assembling the PLCs and faulty parts could lead to many problems. Most importantly, the overall design of you final product will be bigger and will cost more to produce.

CUBLOC is an "On-Chip" PLC, allowing easy fit on a PCB. You may use the PLC almost like an MCU. You can design a customized PCB for the desired product which reduces the cost and size of your final product, and most importantly, allow the product to be one-of-a-kind.

The following table shows differences between a traditional PLC and "On-Chip" PLC/Micro-computer, CUBLOC.


	Traditional PLC	CUBLOC
Picture		
Production	Din Rail Attachment	Din Rail or PCB
Labor Costs	High	Low
Mass-	Difficult	Easy
Production		
Final Product	High	Low
Cost		
Final Size	Large	Compact

If you are currently using a traditional PLC, please review our product and compare the costs if you change it to a PCB type. We believe that you will have much more satisfactory final product at a fractional cost.


Development Environment

To use CUBLOC, the user may use a Windows XP, 2000, or 98 operating system equipped computer. If you would like to use it in Linux/Unix/Macintosh environment, you will need to install a virtual machine software of some type (such as VMware, etc...) that allows Windows operating system to run on it.

An RS232 port is also required or you may use a USB-to-RS232C converter. Download and Monitoring is possible when connected with the PC.

When CUBLOC is disconnected from the PC, it goes into a STAND-ALONE state. The main program is stored in CUBLOC's flash memory, and will be retained even with no power. The user may download new programs and erase them as many times as he or she wishes.

Cubloc core module with Study board

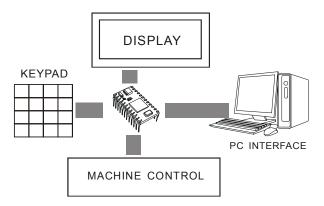
Download and Monitoring through the Internet

XPORT is an internet module that converts RS232 signals into TCP or UDP packets. You can use XPORT and CUBLOC to download and monitor programs through the internet.

By using this feature, you will be able to update and provide customer service for your products even if it's located in other parts of the world. We provide custom MAXPORT firmware, Downloading/Monitoring Server programs and embeddable applets for downloading and monitoring your CUBLOC module. You may use this program to manage thousands of devices.

MAXPORT module

🞇 MaxPORT Downloader v.1.2.8			
Search Local Area Network(LAN) for XPORTs 192,158,0,4 Port: 59004 MAC: 00-20-4A-86-32-90		CB280 CUBLOC Firmware CUBLOC Firmware Downloader	CUBLOC Object File Downloader
Ready	Search Use This IP	- Status Monitor	MaxPORT Firmware Downloader via TFTP
- Set IP Address (Set all to ZERO for Auto	matic IP via DHCP)Set IP	Clear Set Debug C	»


Monitoring/Download Server Program for multiple MAXPORTs

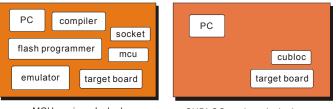
Hints for traditional PLC User

For users with much experience in traditional PLCs, they will find BASIC a completely new language. CUBLOC is a PLC with BASIC language capabilities added. The user may program only using the ladder language. By having the option of using the BASIC language, even the PLC user may be able to incorporate new features to the final product by making use of BASIC, which has much powerful capability and flexibility in communicating with other devices than PLCs.

To use CUBLOC, the user does not have to know BASIC. He/She may simply use only LADDER for development. If the user does not require LCD display or keypad usage, he or she does not need to use BASIC at all.

As you can realize, more emphasis on user interface is becoming apparent in our industrial world. CUBLOC is able to overcome the deficiencies and disadvantages of traditional PLCs by being able to use both BASIC and LADDER language.

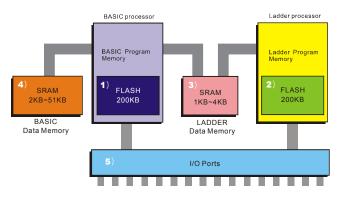
We provide many BASIC libraries for user interfaces which you can simply copy & paste to achieve the user interface structure desired.


Hints for Micro Controller User

MCU, Micro Controller Unit, is programmable micro-computers such as PIC, AVR, and 8051. For mass-production, MCUs can cut costs and reduce the overall product size. But the main disadvantage of MCUs is that it is hard to develop and takes a long time. For simple projects, this might be a good route.

Even those experienced engineers feel that MCU programming is timeconsuming and not a simple task. To make a final product, it takes many hours programming and debugging with an MCU. Even after development, if bugs arise, it becomes almost impossible to update the MCU.

In comparison, Comfile's CUBLOC will cut the users development time as much as 20 times and provide a MCU-like chip that is upgradeable through RS232 cable or even through the internet by using an XPORT. By being able to provide a way to upgrade the final product, the value of your final product is much more than what you thought.


If you have experience programming with MCUs, we guarantee you that development of your final product will be much easier. You will be able to spend more time designing the features of your final product, instead of spending hours and hours in front of a computer.

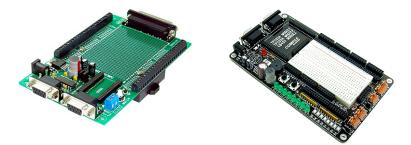
MCU engineer's desk

CUBLOC engineer's desk

CUBLOC's Internal Structure

The BASIC interpreter contains a "Flash memory" for user's BASIC programs. LADDER processor also has a "Flash memory" for user's LADDER program. I/O ports are shared among BASIC and LADDER, allowing free access to both.

BASIC data Memory can only be accessed by BASIC interpreter while LADDER data memory can be accessed by both BASIC Interpreter and LADDER Processor.


BASIC program memory(1) and LADDER(2) share the same Flash Memory. The total available memory space is 80KB. BASIC can use the whole memory or LADDER may use the whole memory. As long as the BASIC and LADDER program total is within 200KB, the user is free to program as he/she wills. (CB2XX series allow 80KB)

 $\rm I/O$ ports (5) can be used both by BASIC and LADDER. The user must specify I/O ports to use in LADDER and BASIC. All I/O ports can be used in LADDER or BASIC.

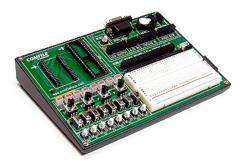
CUBLOC Peripherals

PROTO BOARD Series

Proto-boards for CUBLOC can be used for testing and debugging your future products before starting PCB artwork or production. These proto-boards all include basic power and interface circuits.

BASE BOARD / SB Series

Base-boards for CUBLOC, SB series, are especially geared for the industrial field applications. Simply attach our **Plug-N-Play** relays to the output ports for implementing solenoids, magnetic switches, and etc... With 24V input ports and DIN-RAIL Mount Brackets, the user does not have to re-invent the wheel by using CUBASE.



STUDY BOARD

Study board is geared for first timers and experienced developers to CUBLOC. Peripherals for simple experiments including switches, LED, RS232 communication, I2C, piezo, ADC, toggle switches, and LCDs are included.

We recommend the Start Kit for first-timers, which includes this study board, a CUBLOC module, necessary cables, and a manual.

LCD DISPLAY Module (CLCD, GHLCD Series)

Various LCD displays are provided for use with CUBLOC using CUNET (I2C) protocol. With one line commands (PRINT, CLS, etc...), you can easily start printing to the LCD without hassling with complex lines and commands.

CUNET is especially engineered for CUBLOC displays, therefore, we recommend to use CUNET supported LCDs for quick and easy development. Our Graphic Display GHLCD allows you to download Black and White BMP images from your computer and store it in its memory.

7 Segment Display Modules (CSG Series)

7 Segment display, modules can be easily implemented using CUBLOC's I2C protocol and native commands.

CUTOUCH Series

CUTOUCH is an integration of our graphic LCD, touch panel, and CUBLOC core module. With BASIC, you can control the GHLCD, touch panel. With Ladder Logic, I/O ports can be controlled in real-time.

We are constantly upgrading and developing new peripherals for CUBLOC core modules. Please check out our website <u>www.comfiletech.com</u> often for these updates.

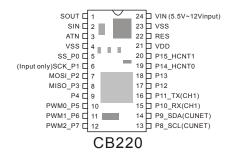
MEMO

Chapter 2 Hardware

Hardware Features

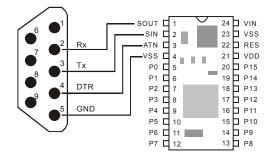
CUBLOC have the following features:

- (BASIC and Ladder Logic) 80KB or 200KB Flash Memory
- BASIC Execution Speed : 36,000 Instr./sec
- LADDER Execution Speed : 10ms Scan time (Turbo Mode ~= 100 Micro Second)
- Data Memory for BASIC: 2 to 51KB
- Data Memory for LADDER: 1 to 4KB
- EEPROM Memory: 4KB
- 16 to 91 I/O pins (Ports)
- 10 bit, 16 Channel ADC
- 8 to 16bit, 3 to 12 Channel PWM (DAC)
- UART (H/W RS232C ports) 4 Channels
- RS232C port PC interface
- RTC chip included (CB290)


Model Comparison Chart

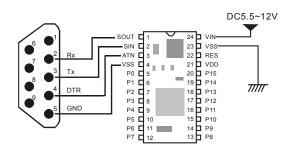
Feature	CB220	CB280	CB290	CB405
Program Memory	80KB	80KB	80KB	200КВ
Data Memory	BASIC 2KB LADDER 1KB	BASIC 2KB LADDER 1KB	BASIC 24KB LADDER 4KB	BASIC 51KB LADDER 4KB HEAP 55KB
Battery Backup	N/A	N/A	Available	Available
EEPROM	4KB	4KB	4KB	4KB
I/O ports	16	49 + 2	91 + 2	64 + 2
Package	24 pin DIP	64 pin Module	108 pin Module	80 pin Module
ADC	8 Channel	8 Channel	8 Channel	16 Channel
PWM	3 Channel	6 Channel	6 Channel	12 Channel
RS232	2 Channel	2 Channel	2 Channel	4 Channel
External Interrupt	None	4	4	4
HIGH COUNT INPUT	2 Channel	2 Channel	2 Channel	2 Channel
RTC	None	None	Yes	None

CB220

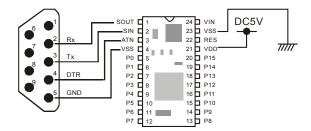

CB220 is comes as a 24pin DIP type package. It has 16 I/O ports and an internal 5V power regulator.

Port	Pin	I/O	Port Block	Explanation
SOUT	1	OUT		DOWNLOAD SERIAL OUTPUT
SIN	2	IN		DOWNLOAD SERIAL INPUT
ATN	3	IN		DOWNLOAD SERIAL INPUT
VSS	4	POWER		GROUND
P0	5	I/O		ADC0 / SPI SS
P1	6	Input		ADC1 / SPI SCK
P2	7	I/O		ADC2 / SPI MOSI
P3	8	I/O	Block 0	ADC3 / SPI MISO
P4	9	I/O		ADC4
P5	10	I/O		PWM0 / ADC5
P6	11	I/O		PWM1 / ADC6
P7	12	I/O		PWM2 / ADC7
P8	13	I/O		CuNET SCL
P9	14	I/O		CuNET SDA
P10	15	I/O		RS232C Channel 1 RX
P11	16	I/O	Block 1	RS232C Channel 1 TX
P12	17	I/O		
P13	18	I/O		
P14	19	I/O		High Count channel 0
P15	20	I/O		High Count channel 1
VDD	21	I/O		5V Output/Input
RES	22	IN		RESET Input (LOW signal resets!)
VSS	23	IN		GROUND
VIN	24	IN		5.5V to 12V Input Power

SIN, SOUT, ATN are connection pins to the PC/XPORT for DOWNLOAD, DEBUG, and MONITORING. All CUBLOC models have SOUT, SIN, ATN pins and you can connect to the PC serial cable as shown below.

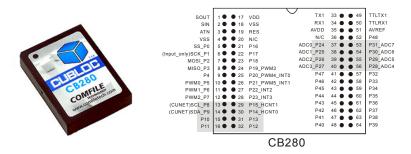

Other pins are mostly I/O ports. The user may select which ports (pins) to use as INPUT or OUTPUT. When set to INPUT, the pin enters a HIGH impedance state whereas when set to OUTPUT, the pin ether outputs LOW or HIGH. The maximum current coming out of the output ports is 25mA. The user is free to choose which I/O ports he/she will use for which purpose (such as AD, PWM, etc...).

Supplying power to the CB220


CB220 has an internal 5V power regulator that accepts anything between 5.5 to 12V of power.

It will produce a stable 100mA 5V. When using the internal regulator, voltage can be inputted to pin 24 and 5V will output on pin 21. If 5V is used for power, the user may simply connect to pin 21. If your application requires more than 100mA of current that can be supplied by the internal regulator, please use a separate power supply.

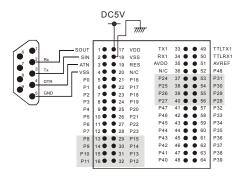
Method 1



Method 2

CB280

CB280 is in a 64 pin module package and 49 of those pins can be used for I/O. The CB280 does not have a 5V internal regulator.

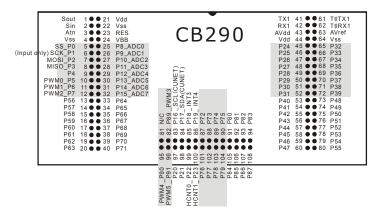

The pin numbers below are categorized by features, not by pin numbers.

Port	Pin	I/O	Port Block	Explanation
SOUT	1	OUT		DOWNLOAD SERIAL OUTPUT
SIN	2	IN		DOWNLOAD SERIAL INPUT
ATN	3	IN		DOWNLOAD SERIAL INPUT
VSS	4	POWER		GROUND
P0	5	I/O		SPI SS
P1	6	Input		SPI SCK
P2	7	I/O		SPI MOSI
P3	8	I/O	Block 0	SP MISO
P4	9	I/O		
P5	10	I/O		PWM Channel 0
P6	11	I/O		PWM Channel 1
P7	12	I/O		PWM Channel 2
P8	13	I/O		CuNET SCL
P9	14	I/O		CuNET SDA
P10	15	I/O		
P11	16	I/O	Block 1	
P12	32	I/O		
P13	31	I/O		
P14	30	I/O		High Count Channel 0
P15	29	I/O		High Count Channel 1
P16	21	I/O		
P17	22	I/O		
P18	23	I/O		
P19	24	I/O	Block 2	PWM Channel 3
P20	25	I/O		PWM Channel 4 / INT Channel 0
P21	26	I/O		PWM Channel 5 / INT Channel 1
P22	27	I/O		INT Channel 2
P23	28	I/O		INT Channel 3

			r	
P24	37	I/O		ADC0 : AD Channel 0
P25	38	I/O		ADC1 : AD Channel 1
P26	39	I/O		ADC2 : AD Channel 2
P27	40	I/O	Block 3	ADC3 : AD Channel 3
P28	56	I/O		ADC4 : AD Channel 4
P29	55	I/O		ADC5 : AD Channel 5
P30	54	I/O		ADC6 : AD Channel 6
P31	53	I/O		ADC7 : AD Channel 7
P32	57	I/O		
P33	58	I/O		
P34	59	I/O		
P35	60	I/O	Block 4	
P36	61	I/O		
P37	62	I/O		
P38	63	I/O		
P39	64	I/O		
P40	48	I/O		
P41	47	I/O		
P42	46	I/O		
P43	45	I/O	Block 5	
P44	44	I/O		
P45	43	I/O		
P46	42	I/O		
P47	41	I/O		
P48	52	I/O		
VDD	17	IN		Power, 4.5V to 5.5V
VSS	18	IN		GROUND
RES	19	IN		RESET Input (LOW signal resets!),
				Normally HIGH or OPEN
TX1	33			RS232 Channel 1, +/- 12V Data Output
RX1	34			RS232 Channel 1, +/- 12V Data Input
AVDD	35			ADC Power
TTLTX1	49			RS232 Channel 1, 5V (TTL level) Data
				Output
TTLRX1	50			RS232 Channel 1, 5V (TTL level) Data
				Input
AVREF	51			ADC Reference Voltage

How to supply power to the CB280

The CB280 does not have a 5V regulator; you must provide your own 5V power like shown below.



* Pin 20 and 36 are not used, please DO NOT CONNECT anything.

CB290

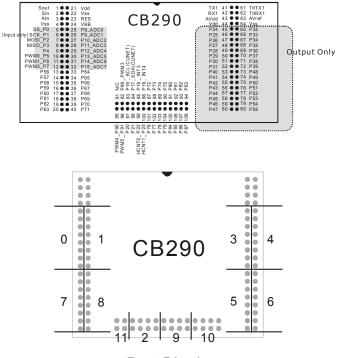
CB290 is in a 108 pin module package, of which 91 pins can be used as I/O ports.

It has a battery backup-able 28KB of data memory and RTC. CB290 does not have an internal 5V regulator. Of the I/O ports, 32 ports are Output only, 32 ports are Input only, and rest can be set as desired by the user.

The pin numbers below are categorized by features, not by pin numbers.

Port	Pin	I/O	Port Block	Explanation
SOUT	1	OUT		DOWNLOAD SERIAL OUTPUT
SIN	2	IN		DOWNLOAD SERIAL INPUT
ATN	3	IN		DOWNLOAD SERIAL INPUT
VSS	4	POWER		GROUND
P0	5	I/O		SPI SS
P1	6	Input		SPI SCK
P2	7	I/O		SPI MOSI
P3	8	I/O	Block 0	SPI MISO
P4	9	I/O		
P5	10	I/O		PWM Channel 0
P6	11	I/O		PWM Channel 1
P7	12	I/O		PWM Channel 2
P8	25	I/O		ADC0 : AD Channel 0
P9	26	I/O		ADC1 : AD Channel 1
P10	27	I/O		ADC2 : AD Channel 2
P11	28	I/O	Block 1	ADC3 : AD Channel 3
P12	29	I/O		ADC4 : AD Channel 4
P13	30	I/O]	ADC5 : AD Channel 5
P14	31	I/O]	ADC6 : AD Channel 6
P15	32	I/O		ADC7 : AD Channel 7

P16	83	I/O		CUNET SCL
P10 P17	84	I/O I/O	4	CUNET SDA
P17 P18	85	I/O I/O	4	INT Channel 2
P18 P19	86	I/O I/O	Block 2	INT Channel 3
P19 P20	97	I/O I/O	DIOCK 2	
P20 P21	97	I/O I/O	-	
P21 P22	99	I/O I/O	-	High Count Channel 0
P22 P23	100	I/O I/O	-	High Count Channel 0 High Count Channel 1
P23 P24	45	Output		
P24 P25	45	Output	-	
P26	40	Output	-	
P20 P27	47	Output	Block 3	
P27 P28	40		DIOCK 5	
P28 P29	49 50	Output	-	
P29 P30	50	Output	-	
P30 P31	51	Output	-	
	-	Output		
P32 P33	65	Output	-	
P33 P34	66	Output	-	
P34 P35	67 68	Output	Block 4	
		Output	DIOCK	
P36	69	Output	-	
P37	70	Output	-	
P38	71	Output	-	
P39	72	Output		
P40	53	Output	-	
P41	54	Output	-	
P42	55	Output	Block 5	
P43	56	Output	DIOCK J	
P44	57	Output	-	
P45	58	Output	-	
P46	59	Output	-	
P47	60	Output		
P48	73	Output	-	
P49	74	Output	4	
P50	75	Output	Block 6	
P51	76	Output	DIOCK U	
P52	77	Output	4	
P53	78	Output	4	
P54	79	Output	4	
P55	80	Output		
P56	13	Input	4	
P57	14	Input	4	
P58	15	Input	Block 7	
P59	16	Input	DIUCK /	
P60	17	Input	4	
P61	18	Input	4	
P62	19	Input	4	
P63	20	Input		


P64	33	Input	1	
P65	34	Input	-	
P66	35	Input	-	
P67	36	Input	Block 8	
P68	37	Input	-	
P69	38	Input	-	
P70	39	Input	-	
P71	40	Input	-	
P72	87	Input		
P72	88	Input	-	
P74	89	Input	-	
P75	90	Input	Block 9	
P76	101	Input	Diodicy	
P70 P77	101	Input	-	
P78	102	Input	-	
P70 P79	103	Input	-	
P79 P80	-	Input	+	
P80 P81	91 92	Input	-	
P81 P82	92		-	
		Input	Block 10	
P83	94	Input	DIOCK IU	
P84	105	Input	_	
P85	106	Input	_	
P86	107	Input	_	
P87	108	Input	-	
P88	81	N/C	_	N/C (Do not use this I/O number)
P89	82	I/O	Dia als 11	PWM Channel 3
P90	95	I/O	Block 11	PWM Channel 4 / INT Channel 0
P91	96	I/O		PWM Channel 5 / INT Channel 1
VDD	21,44	IN		Power, 4.5V to 5.5V
VSS	22,64	IN	_	GROUND
RES	23	IN		RESET Input (LOW signal resets!), Normally HIGH or OPEN
VBB	24	IN		Battery Backup
TX1	41			RS232 Channel 1, +/- 12V Data
RX1	42			Output RS232 Channel 1, +/- 12V Data
KXI	42			RS232 Channel I, +/- 12V Data Input
AVDD	43			ADC Power
TTLTX1	61			RS232 Channel 1, 5V (TTL level) Data Output
TTLRX1	62			RS232 Channel 1, 5V (TTL level) Data Input
AVREF	63			ADC Reference Voltage

The CB290 output-only pins P24 to P55 are in high impedance state(High-Z) at power ON. You can use "Set Outonly On" to set them all to output states.

Set Outonly On

This command only works with CB290 rev B. The revision number is written on the bottom side of the CB290 module.

A fake port 88 was made to make the Set OUTOnly command, which is same as LOW 88. Therefore, when using the CB290 Rev B, you may not use port 88 (P88) for other purposes. Please do not use USEPIN 88 when using with LADDER.

Port Blocks

CB405

CB405 is in a 80 pin module package, of which 64 pins can be used as I/O ports. It has a battery backup-able 55KB of data memory. CB405 does not have an internal 5V regulator.

	Sout	1 • • 21	Vdd	•	TXE	41 • • 61	TtITXE
	Sin	2 • • 22	Vss		RXE	42 • • 62	TtIRXE
	Atn	3 • • 23	RES	CB405	AVdd	43 • • 63	AVref
	Vss	4 • • 24	VBB	CD403	Vdd	44 • • 64	Vss
	P0	5 • • 25	P16/AD0		AD8 / P32	45 • • 65	P48
	SCK/P1	6 • • 26	P17/AD1		AD9 / P33	46 • • 66	P49
Input Only	MOSI/P2	7 • • 27	P18/AD2		AD10/P34	47 • • 67	P50
01117	MISO / P3	8 • • 28	P19/AD3		AD11/P35	48 • • 68	P51/PWM9
	P4	9 • • 29	P20/AD4		AD12/P36	49 • • 69	P52/PWM10
	PWM0 / P5	10 • • 30	P21/AD5		AD13/P37	50 • • 70	P53/PWM11
	PWM1/P6	11 • • 31	P22/AD6		AD14 / P38	51 • • 71	P54
	PWM2 / P7		P23 / AD7		AD15/P39	52 • • 72	P55
			P24		HCNT1/P47	53 • • 73	P63
	TX2 / P9	14 • • 34	P25		HCNT0/P46	54 • • 74	P62
	P10	15 • • 35	P26		P45	55 • • 75	P61
	PWM6 / P11	16 • • 36	P27 / PWM3		P44	56 • • 76	P60
	PWM7 / P12		P28/PWM4/INT0		TX1/P43	57 • • 77	P59
	PWM8/P13	18 • • 38	P29 / PWM5/ INT 1		RX1/P42	58 • • 78	P58
	P14	19 • • 39	P30 / INT2			59 • • 79	
	P15	20 • • 40	P31 / INT3		SCL/P40	60 \bullet \bullet 80	P56/RX3
			1				

The pin numbers below are categorized by features, not by pin numbers.

Name	Pin #	I/O	Explanation
SOUT	1	OUT	DOWNLOAD SERIAL OUTPUT
SIN	2	IN	DOWNLOAD SERIAL INPUT
ATN	3	IN	DOWNLOAD SERIAL INPUT
VSS	4, 22, 64	POWER IN	GROUND
VDD	21, 44	POWER IN	4.5V to 5.5V Power Supply
AVDD	43	POWER IN	ADC power
AVREF	63	IN	ADC Reference Voltage
VBB	24	POWER IN	Battery Backup
RES	23	IN	RESET pin
TTLTXE	61	OUT	RS232 to TTL232 curcuit, TX contact
TTLRXE	62	IN	RS232 to TTL232 curcuit, RX contact
TXE	41	OUT	RS232 Output, +/- 12V
RXE	42	IN	RS232 Input, +/- 12V

P0 5 I/O SPI SS Expanded P1 6 Input SPI SS Input Only P2 7 Input SPI MOSI Input Only P3 8 Input SPI MISO Input Only P4 9 I/O PM Input Only P5 10 I/O PWM CHANNEL 0 P P6 11 I/O PWM CHANNEL 1 P P7 12 I/O PWM CHANNEL 2 ITLRX channel 2 P9 14 I/O TTL232 RX2 TTLRX channel 2 P10 15 I/O PWM CHANNEL 6 P P11 16 I/O PWM CHANNEL 7 P P13 18 I/O P Incurrent channel 2 P14 19 I/O Incurrent channel 2 P P13 18 I/O P Incurrent channel 2 P14 19 I/O Incurrent channel 2 P P13	Block	Name	Pin#	I/O	Function	Explanation
P1 6 Input SPI SCK Input Only P2 7 Input SPI MOSI Input Only P3 8 Input SPI MISO Input Only P4 9 I/O P P P P5 10 I/O PWM CHANNEL 0 P P6 11 I/O PWM CHANNEL 1 P P7 12 I/O PWM CHANNEL 2 P P8 13 I/O TTL232 RX2 TTLRX channel 2 P9 14 I/O TTL232 RX2 TTLTX channel 2 P10 15 I/O P P P10 15 I/O P P P11 16 I/O PWM CHANNEL 6 P P12 17 I/O PWM CHANNEL 7 P P13 18 I/O PWM CHANNEL 8 P P14 19 I/O P P P P13 20 I	BIOCK			1 -		Explanation
P2 7 Input SPI MOSI Input Only P3 8 Input SPI MISO Input Only P4 9 I/O Input Only P5 10 I/O PWM CHANNEL 0 P5 10 I/O PWM CHANNEL 1 P7 12 I/O PWM CHANNEL 2 P8 13 I/O TTL232 RX2 TTLRX channel 2 P9 14 I/O TTL232 TX2 TTLX channel 2 P10 15 I/O PITLX channel 2 PITLX channel 2 P10 15 I/O PWM CHANNEL 6 PITLX channel 2 P11 16 I/O PWM CHANNEL 7 PITX channel 2 P13 18 I/O PWM CHANNEL 7 PIT P14 19 I/O PIT PIT PIT P15 20 I/O AD CHANNEL 8 PIT P17 26 I/O AD CHANNEL 1 PIT P18 27 I/O		-	-	1 -		Input Only
0 P3 8 Input SPI MISO Input Only P4 9 I/O PM Input Only P5 10 I/O PWM CHANNEL 0 PM P6 11 I/O PWM CHANNEL 1 PM P7 12 I/O PWM CHANNEL 2 PM P10 15 I/O PM PM P10 15 I/O PM PM P10 15 I/O PM PM P11 16 I/O PWM CHANNEL 6 PM P12 17 I/O PWM CHANNEL 7 PM P13 18 I/O PWM CHANNEL 7 PM P14 19 I/O PM PM PM P15 20 I/O PM PM PM P17 26 I/O AD CHANNEL 1 PM P17 26 I/O AD CHANNEL 1 PM P20 29 I/O </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
P4 9 I/O P3 P4 P5 10 I/O PWM CHANNEL 0 P6 P6 P7	0		-			
P5 10 1/0 PWM CHANNEL 0 P6 11 I/0 PWM CHANNEL 1 P7 12 I/0 PWM CHANNEL 2 Image: Colspan="2">TTLX channel 2 P8 13 I/0 TTL232 RX2 TTLRX channel 2 P9 14 I/0 TTL232 TX2 TTLTX channel 2 P10 15 I/0 P P P11 16 I/0 PWM CHANNEL 6 P P12 17 I/0 PWM CHANNEL 7 P P13 18 I/0 PWM CHANNEL 8 P P14 19 I/0 P P P15 20 I/0 P P P15 20 I/0 AD CHANNEL 1 P P17 26 I/0 AD CHANNEL 2 P P19 28 I/0 AD CHANNEL 3 P P20 29 I/0 AD CHANNEL 5 P P21 30 I/0			-		5111100	Input only
P6 11 I/O PWM CHANNEL 1 P7 12 I/O PWM CHANNEL 2 1 P8 13 I/O TTL232 RX2 TTLRX channel 2 P9 14 I/O TTL232 RX2 TTLRX channel 2 P10 15 I/O TTL232 TX2 TTLTX channel 2 P10 15 I/O TTL232 TX2 TTLTX channel 2 P11 16 I/O PWM CHANNEL 6 PMM CHANNEL 7 P11 16 I/O PWM CHANNEL 7 PMM CHANNEL 7 P13 18 I/O PWM CHANNEL 8 PMM CHANNEL 8 P14 19 I/O PMM CHANNEL 8 PMM CHANNEL 8 P14 19 I/O PMM CHANNEL 8 PMM CHANNEL 8 P15 20 I/O AD CHANNEL 1 PMM CHANNEL 1 P18 27 I/O AD CHANNEL 2 PMM CHANNEL 2 P19 28 I/O AD CHANNEL 3 PMM CHANNEL 5 P20 29 I/O AD CHANNEL 5<					PWM CHANNEL 0	
P7 12 I/O PWM CHANNEL 2 P8 13 I/O TTL232 RX2 TTLRX channel 2 P9 14 I/O TTL232 TX2 TTLTX channel 2 P10 15 I/O TTL232 TX2 TTLTX channel 2 P10 15 I/O PWM CHANNEL 6 P P11 16 I/O PWM CHANNEL 7 P P13 18 I/O PWM CHANNEL 7 P P14 19 I/O P P P P15 20 I/O P P P P18 27 I/O AD CHANNEL 1 P P P18 27 I/O AD CHANNEL 3 P P P P20 29 I/O AD CHANNEL 5 P		-	-			
P9 14 I/O TTL232 TX2 TTLTX channel 2 P10 15 I/O ITL232 TX2 TTLTX channel 2 P10 15 I/O PWM CHANNEL 6 Item constraints P11 16 I/O PWM CHANNEL 7 Item constraints P13 18 I/O PWM CHANNEL 8 Item constraints P14 19 I/O Item constraints Item constraints P15 20 I/O AD CHANNEL 0 Item constraints P16 25 I/O AD CHANNEL 0 Item constraints P17 26 I/O AD CHANNEL 1 Item constraints P18 27 I/O AD CHANNEL 2 Item constraints P20 29 I/O AD CHANNEL 3 Item constraints P21 30 I/O AD CHANNEL 5 Item constraints P22 31 I/O AD CHANNEL 7 Item constraints 3 P24 33 I/O Co-processor SCL 1) <		-	12		-	
P9 14 I/O TTL232 TX2 TTLTX channel 2 P10 15 I/O ITL232 TX2 TTLTX channel 2 P10 15 I/O PWM CHANNEL 6 Item constraints P11 16 I/O PWM CHANNEL 7 Item constraints P13 18 I/O PWM CHANNEL 8 Item constraints P14 19 I/O Item constraints Item constraints P15 20 I/O AD CHANNEL 0 Item constraints P16 25 I/O AD CHANNEL 0 Item constraints P17 26 I/O AD CHANNEL 1 Item constraints P18 27 I/O AD CHANNEL 2 Item constraints P20 29 I/O AD CHANNEL 3 Item constraints P21 30 I/O AD CHANNEL 5 Item constraints P22 31 I/O AD CHANNEL 7 Item constraints 3 P24 33 I/O Co-processor SCL 1) <						
P9 14 I/O TTL232 TX2 TTLTX channel 2 P10 15 I/O ITL232 TX2 TTLTX channel 2 P10 15 I/O PWM CHANNEL 6 Item constraints P11 16 I/O PWM CHANNEL 7 Item constraints P13 18 I/O PWM CHANNEL 8 Item constraints P14 19 I/O Item constraints Item constraints P15 20 I/O AD CHANNEL 0 Item constraints P16 25 I/O AD CHANNEL 0 Item constraints P17 26 I/O AD CHANNEL 1 Item constraints P18 27 I/O AD CHANNEL 2 Item constraints P20 29 I/O AD CHANNEL 3 Item constraints P21 30 I/O AD CHANNEL 5 Item constraints P22 31 I/O AD CHANNEL 7 Item constraints 3 P24 33 I/O Co-processor SCL 1) <		P8	13	1/0	TTI 232 BX2	TTLRX channel 2
P10 15 I/O PUM		-	-		-	
P11 16 I/O PWM CHANNEL 6 P12 17 I/O PWM CHANNEL 7 P13 18 I/O PWM CHANNEL 8 P14 19 I/O P P15 20 I/O P P16 25 I/O AD CHANNEL 0 P17 26 I/O AD CHANNEL 1 P18 27 I/O AD CHANNEL 2 P19 28 I/O AD CHANNEL 3 P20 29 I/O AD CHANNEL 4 P21 30 I/O AD CHANNEL 5 P22 31 I/O AD CHANNEL 6 P23 32 I/O AD CHANNEL 7 3 P24 33 I/O Co-processor SCL 1) P25 34 I/O Co-processor SDA 1) P26 35 I/O Porprocessor SDA 1) P26 35 I/O PWM3 P29 P29 38 I/O		-		1 -		
P12 17 I/O PWM CHANNEL 7 P13 18 I/O PWM CHANNEL 8 P14 19 I/O P15 20 I/O P15 20 I/O P17 26 I/O P18 27 I/O P18 27 I/O P19 28 I/O P20 29 I/O P21 30 I/O P22 31 I/O P23 32 I/O P24 33 I/O AD CHANNEL 6 P23 P23 32 I/O AD CHANNEL 7 I/O P24 33 I/O Co-processor SCL 1) P25 34 I/O Co-processor SDA 1) P26 35 I/O P27 36 I/O P28 37 I/O P28 37 I/O <	1	-	-		PWM CHANNEL 6	
P13 18 I/O PWM CHANNEL 8 P14 19 I/O P15 20 I/O P15 20 I/O P17 26 I/O AD CHANNEL 0 P18 27 I/O AD CHANNEL 1 P18 27 I/O AD CHANNEL 2 P19 28 I/O AD CHANNEL 3 P20 29 I/O AD CHANNEL 4 P21 30 I/O AD CHANNEL 5 P22 31 I/O AD CHANNEL 6 P23 32 I/O AD CHANNEL 7 3 P24 33 I/O Co-processor SCL 1) P25 34 I/O Co-processor SDA 1) P26 35 I/O Porprocessor INT 1) P26 35 I/O PWM3 P29 P29 38 I/O PWM5 / INT1 P29 P30 39 I/O <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>			-			
P14 19 I/O Image: square s				1 -	-	
P15 20 I/O AD CHANNEL 0 P17 26 I/O AD CHANNEL 1 P17 26 I/O AD CHANNEL 1 P18 27 I/O AD CHANNEL 2 P19 28 I/O AD CHANNEL 3 P20 29 I/O AD CHANNEL 4 P21 30 I/O AD CHANNEL 5 P22 31 I/O AD CHANNEL 6 P23 32 I/O AD CHANNEL 7 3 P24 33 I/O Co-processor SCL 1) P25 34 I/O Co-processor SDA 1) P26 35 I/O Porprocessor SDA 1) P27 36 I/O PWM3 P28 P28 37 I/O PWM5 / INT1 P29 P30 39 I/O INT2 INT2		-	-			
P16 25 I/O AD CHANNEL 0 P17 26 I/O AD CHANNEL 1 P18 27 I/O AD CHANNEL 1 P18 27 I/O AD CHANNEL 2 P19 28 I/O AD CHANNEL 3 P20 29 I/O AD CHANNEL 4 P21 30 I/O AD CHANNEL 5 P22 31 I/O AD CHANNEL 6 P23 32 I/O AD CHANNEL 7 S P24 33 I/O Co-processor SCL 1) P25 34 I/O Co-processor SDA 1) P26 35 I/O Porocessor SDA 1) P27 36 I/O PWM3 P28 P29 38 I/O PWM5 / INT1 P29 P30 39 I/O INT2 INT2		P15	20			
P17 26 I/O AD CHANNEL 1 P18 27 I/O AD CHANNEL 2 P19 28 I/O AD CHANNEL 3 P20 29 I/O AD CHANNEL 4 P21 30 I/O AD CHANNEL 5 P22 31 I/O AD CHANNEL 6 P23 32 I/O AD CHANNEL 7 P24 33 I/O Co-processor SCL 1) P25 34 I/O Co-processor SDA 1) P26 35 I/O Processor SDA 1) P27 36 I/O PWM3 P29 P28 37 I/O PWM4 / INT0 P29 P30 39 I/O INT2 Interve						
P17 26 I/O AD CHANNEL 1 P18 27 I/O AD CHANNEL 2 P19 28 I/O AD CHANNEL 3 P20 29 I/O AD CHANNEL 4 P21 30 I/O AD CHANNEL 5 P22 31 I/O AD CHANNEL 6 P23 32 I/O AD CHANNEL 7 P24 33 I/O Co-processor SCL 1) P25 34 I/O Co-processor SDA 1) P26 35 I/O Processor SDA 1) P27 36 I/O PWM3 P29 P28 37 I/O PWM4 / INT0 P29 P30 39 I/O INT2 Interve		P16	25	I/O	AD CHANNEL 0	
2 P19 28 I/O AD CHANNEL 3 P20 29 I/O AD CHANNEL 4 P21 30 I/O AD CHANNEL 5 P22 31 I/O AD CHANNEL 6 P23 32 I/O AD CHANNEL 7 7 8 P26 35 I/O Co-processor SCL 1) P25 34 I/O Co-processor SDA P26 35 I/O Co-processor INT 1) P26 35 I/O PWM3 P27 36 I/O PWM3 P28 37 I/O PWM5 / INT1 P30 39 I/O INT2		P17			AD CHANNEL 1	
P20 29 I/O AD CHANNEL 3 P21 30 I/O AD CHANNEL 4 P21 30 I/O AD CHANNEL 5 P22 31 I/O AD CHANNEL 6 P23 32 I/O AD CHANNEL 7 P24 33 I/O AD CHANNEL 7 P25 34 I/O Co-processor SCL 1) P26 35 I/O Co-processor SDA 1) P26 35 I/O PWM3 P28 37 I/O PWM4 / INT0 P29 38 I/O PWM5 / INT1 P30 39 I/O INT2		P18	27	I/O	AD CHANNEL 2	
P21 30 I/O AD CHANNEL 5 P22 31 I/O AD CHANNEL 6 P23 32 I/O AD CHANNEL 7 3 P24 33 I/O Co-processor SCL 1) P25 34 I/O Co-processor SDA 1) P26 35 I/O Co-processor INT 1) P27 36 I/O PWM3 P28 37 I/O PWM4 / INT0 P29 38 I/O PWM5 / INT1 P30 39 I/O INT2	2	P19	28	Ι/Ο	AD CHANNEL 3	
P22 31 I/O AD CHANNEL 6 P23 32 I/O AD CHANNEL 7 3 P24 33 I/O Co-processor SCL 1) P25 34 I/O Co-processor SDA 1) P26 35 I/O Co-processor INT 1) P27 36 I/O PWM3 - P28 37 I/O PWM4 / INTO - P29 38 I/O PWM5 / INT1 - P30 39 I/O INT2 -		P20	29	I/O	AD CHANNEL 4	
P23 32 I/O AD CHANNEL 7 3 P24 33 I/O Co-processor SCL 1) P25 34 I/O Co-processor SDA 1) P26 35 I/O Co-processor SDA 1) P27 36 I/O PWM3 P28 37 I/O PWM4 / INTO P29 38 I/O PWM5 / INT1 P30 39 I/O INT2		P21	30	I/O	AD CHANNEL 5	
P24 33 I/O Co-processor SCL 1) P25 34 I/O Co-processor SDA 1) P26 35 I/O Co-processor SDA 1) P26 35 I/O Porpocessor INT 1) P27 36 I/O PWM3 P28 P28 37 I/O PWM4 / INTO P29 P29 38 I/O PWM5 / INT1 P30		P22	31	I/O	AD CHANNEL 6	
P25 34 I/O Co-processor SDA 1) P26 35 I/O Co-processor INT 1) P27 36 I/O PWM3 P28 37 I/O PWM4 / INTO P29 38 I/O PWM5 / INT1 P30 39 I/O INT2		P23	32	I/O	AD CHANNEL 7	
P25 34 I/O Co-processor SDA 1) P26 35 I/O Co-processor INT 1) P27 36 I/O PWM3 P28 37 I/O PWM4 / INTO P29 38 I/O PWM5 / INT1 P30 39 I/O INT2						
P25 34 I/O Co-processor SDA 1) P26 35 I/O Co-processor INT 1) P27 36 I/O PWM3 P28 37 I/O PWM4 / INTO P29 38 I/O PWM5 / INT1 P30 39 I/O INT2		P24	33	I/O	Co-processor SCL	1)
P26 35 I/O Co-processor INT 1) 3 P27 36 I/O PWM3 P28 37 I/O PWM4 / INT0 P29 38 I/O PWM5 / INT1 P30 39 I/O INT2						, ,
3 P27 36 I/O PWM3 P28 37 I/O PWM4 / INT0 P29 38 I/O PWM5 / INT1 P30 39 I/O INT2			-	1 -		, ,
P28 37 I/O PWM4 / INT0 P29 38 I/O PWM5 / INT1 P30 39 I/O INT2	3					
P29 38 I/O PWM5 / INT1 P30 39 I/O INT2						
P30 39 I/O INT2		P29	38		PWM5 / INT1	
		P31	40	I/O	INT3	

The following is I/O Ports explained in PortBlocks.

1) Communication line for connecting to co-processor (Please try to save these pins for future co-processor communication ports.)

Block	Name	Pin#	I/O	Function	Explanation
	P32	45	I/O	AD CHANNEL 8	
	P33	46	I/O	AD CHANNEL 9	
	P34	47	I/O	AD CHANNEL 10	
4	P35	48	I/O	AD CHANNEL 11	
	P36	49	I/O	AD CHANNEL 12	
	P37	50	I/O	AD CHANNEL 13	
	P38	51	I/O	AD CHANNEL 14	
	P39	52	I/O	AD CHANNEL 15	

	P40	60	I/O	SCL	CUNET clock pin
	P41	59	I/O	SDA	CUNET data pin
	P42	58	I/O	RX1	TTLRX channel 1
5	P43	57	I/O	TX1	TTLTX channel 1
	P44	56	I/O		
	P45	55	I/O		
	P46	54	I/O	HCNT0	High Counter 0
	P47	53	I/O	HCNT1	High Counter 1

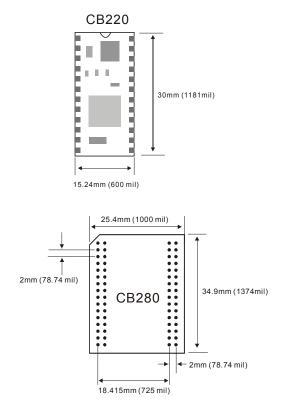
	P48	65	I/O		
	P49	66	I/O		
	P50	67	I/O		
6	P51	68	I/O	PWM CANNEL 9	
	P52	69	I/O	PWM CANNEL 10	
	P53	70	I/O	PWM CANNEL 11	
	P54	71	I/O		
	P55	72	I/O		

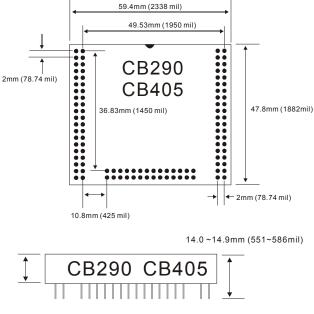
	P56	80	I/O	RX3	TTLRX channel 3
	P57	79	I/O	TX3	TTLTX channel 3
	P58	78	I/O		
7	P59	77	I/O		
	P60	76	I/O		
	P61	75	I/O		
	P62	74	I/O		
	P63	73	I/O		

How to connect Battery to CB290/CB405

When a super capacitor is used for VBB of CB290 /CB405, a length of couple days to couple weeks can be backed up once powered OFF. CB290 /CB405 consumes about 15-20mA of current when idling. For longer backup period, a battery can be used. Using a battery with large capacity could yield up to 1 year of data backup. Make sure to use a diode as shown below for using batteries.

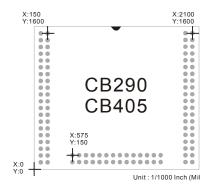
Power Features


- Operating Voltage : 4.5V to 5.5V
- Operating Clock : 18.432MHz
- I/O Port Source Current : 20mA
- I/O Port Sink Current : 25mA
- Operating Temperature : -40 to 125 Degrees(Celcius)
- Maintenance Temperature: -60 to 140 Degrees(Celcius)
- Operating Humidity : 5 to 95% RH (Keep the board's surface dry when testing and/or operating)


Additional Information

If CUBLOC module is supplied with power above recommended voltage, the chip can be destroyed. Please be careful of static electricity that could damage the chip. Please be aware that P1 is an input-only pin.

To block noise, please set all pins not used to input and set all outputs to Low when not being used. All I/Os are set to input as default at power-ON. When not using SIN, SOUT, and ATN pins, please do not connect them to anything.


Dimensions

9.5mm (374mil)

Please refer to the above picture for PCB design. The numbers are Offsets based on location 0, 0.

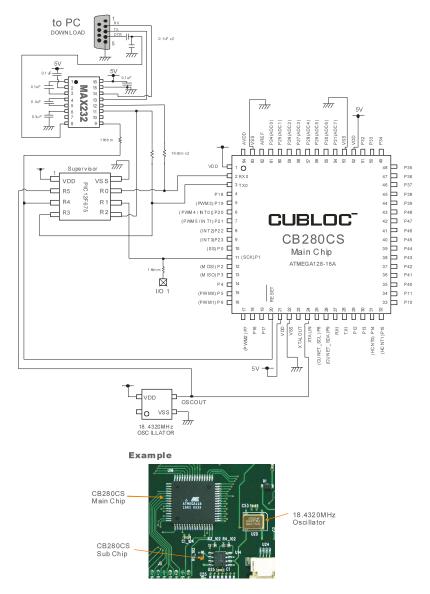


CUBLOC Chipset : CB280CS

The CB280CS has exactly the same features as a regular CB280 chip except it's in a chipset format. By using the CB280CS, the user is able to solder the chipset directly on to their PCB. This will lower your overall production cost while integrating CB280 into your product seamlessly.

Since this chipset has same features as a regular CB280, we recommend you develop your applications on the CB280 before going into production with the chipset version.

*The CB280CS includes: Main Chip, Sub Chip


Main chip pin out

Pin #	Port	Function	Desc.
1	VDD		Power Supply
2	RX0	DOWNLOAD RX	RS232-RX
3	TX0	DOWNLOAD TX	RS232-TX
4	P18		I/O port
5	P19	PWM3	I/O port
6	P20	PWM4 / INTO	I/O port
7	P21	PWM5 / INT1	I/O port
8	P22	INT2	I/O port
9	P23	INT3	I/O port
10	P0	SS	I/O port
11	P1	SCK	I/O port
12	P2	MOSI	I/O port
13	P3	MISO	I/O port
14	P4		I/O port

15 16 17 18 19 20 21 21	P5 P6 P7 P16 P17	PWM0 PWM1 PWM2	I/O port I/O port	
17 18 19 20 21	P7 P16			
18 19 20 21	P16	1 11112	I/O port	
19 20 21			I/O port	
20 21			I/O port	
21	/RESET		Reset (Low active)	
	VDD		Power supply	
22	VSS		Ground	
23	XTALOUT		Xtal output	
24	XTALIN		Xtal input	
25	P8	CUNET_SCL	I/O port	
26	P9	CUNET SDA	I/O port	
20	RX1	RS232 CH1 RX	RS232 Channel 1 Rx	
28	TX1	RS232 CH1 KX RS232 CH1 TX	RS232 Channel 1 Tx	
28	P12	K5252 CH1 1X		
			I/O port	
30	P13	HCOUNTO	I/O port	
31	P14	HCOUNT0	I/O port	
32	P15	HCOUNT1	I/O port	
33	P10		I/O port	
34	P11		I/O port	
35	P40		I/O port	
36	P41		I/O port	
37	P42		I/O port	
38	P43		I/O port	
39	P44		I/O port	
40	P45		I/O port	
41	P46		I/O port	
42	P47		I/O port	
43	P48		I/O port	
44	P39		I/O port	
45	P38		I/O port	
46	P37		I/O port	
47	P36		I/O port	
48	P35		I/O port	
49	P34		I/O port	
50	P33		I/O port	
51	P32		I/O port	
52	VDD		Power supply	
53	VSS		Ground	
54	P31	ADC7	I/O port	
55	P30	ADC6	I/O port	
56	P29	ADC5	I/O port	
57	P28	ADC4	I/O port	
58	P27	ADC3	I/O port	
59	P26	ADC2	I/O port	
60	P25	ADC1	I/O port	
61	P24	ADC0	I/O port	
62	AREF		Ref. for ADC	
63	VSS		Ground	
64	AVDD		Power supply for ADC	

Please refer to Appendix F for detailed CB280CS specification.

CB280CS Application Schematic

MEMO

Chapter 3 CUBLOC STUDIO Editor/ Compiler

CUBLOC STUDIO Basics

After installing CUBLOC STUDIO and executing it, you will see the following screen.

CUBLOC:	studio [[untitled.cul]	
<u>F</u> ile <u>E</u> dit <u>D</u>	evice <u>B</u>	un <u>S</u> etup <u>H</u> elp	
[F1] BASIC	[F2] LADDER Ladder Mnemonic	
	🔇 СИВ	LOCstudio [untitled.cul]	
	<u>File</u>	dit Device Bun Setup Help	
	🖹 🛳	🛄 🐠 🕺 🛍 👪 🕨 🔳 🗰 🧱 🔳	
	[F1] E	BASIC [F2] LADDER Ladder Mnemonic	
	PLC Wizard		
			_
	31		
	32		
	33		
	34		
	0.		
	05		
	35		
	36		
	37		
	38		
	39		
	40		-
		X:6 Y:35 Modified Program : 9602 Bytes, Data	: 101
			111

You will see that at first CUBLOC STUDIO will be in TEXT EDITOR Mode.

If you press F2, the screen will change to LADDER EDITOR Mode and if you press F1, it will switch back to TEXT EDITOR Mode.

Source files are saved under file extensions .CUL and .CUB, as TWO FILES. If you need to backup or move source files, you must save BOTH of these files.

Open					<u>?</u> ×
Look in:	🐴 My Documents		•	🕂 🖻 🖆 🎟 •	
History Desktop My Documents My Computer	My Pictures				
My Network P	File name: Files of type: CUI	BLOC Source file(*.cul)		•	Open Cancel

When opening a file, you will only see .CUL files. (.CUB files are not displayed, but they are in the same folder). When you open .CUL file, CUBLOC STUDIO automatically opens CUB file.

The source code can only be saved on the PC. Source code downloaded to the CUBLOC module can not be recovered.

error occurs.

IMPORTANT

CUBLOC module supports "Codeprotection." By encrypting download data, others can not simply read part of the chip's memory to access the source code. When you press the RUN button (or CTRL-R), Save-> **Compile-> Download-> Execute** are automatically processed. LADDER and BASIC both are compiled with one RUN button. If error is found during compilation, the screen will move to where the

Creating BASIC

You can create BASIC code as shown below. CUBLOC Text Editor is similar to most text editors and supports Coloring of certain commands.

Cubloc Studio [D:_Tpc_test\outofram.cul]	
[F1] BASIC [F2] LADDER Ladder Mnemonic	
1 Const Device = CB405	<u>^</u>
2 Dim st1 As String	
3 Dim st2 As String	
4 Dim aal As String	
5 Dim aa2 As String	
6 aal = "programmer"+Chr(10)	
<pre>7 aa2 = "timer"+Chr(10) 8 st1 = "comfile tech "</pre>	
<pre>st1 = "comfile tech " st2 = "cubloc & cutouch controller"</pre>	=
<pre>9 st2 = "Cubicc & Cutouch Controller" 10 Set Display 2,0,0,50</pre>	
11 Opencom 3,115200,3,100,100	
12 On recv3 Gosub aaa	
3 Set Until 3,100,10	
14 Cls	
15 Do	
16 Debug st1, Cr	
17 Debug addst (st1, st2), Cr	_
18 Delay 200	
19 Print loc, 0, 0, st2	
If In(4) = 1 Then	
21 Puta2 3,aa1_a,80,10	
Do While $In(4) = 1$	
23 Loop	
24 Endif	
25 If $In(10) = 1$ Then	
26 Puta2 3, aa2_a, 80, 10	
27 Do While In(10) = 1	×
X	I Y:1

Short-Cut	Explanation
CTRL-Z	UNDO
CTRL-O	OPEN
CTRL-S	SAVE
CTRL-C	COPY
CTRL-X	CUT
CTRL-V	PASTE
CTRL-F	FIND
CTRL-HOME	Go to the very beginning
CTRL-END	Go to the very end
CTRL-Y	REDO

Debugging

🔀 CUBLOC studio [d:\source\cub	locstudioWtestsourceW 🔳 🗖 🔀
<u>File Edit Device Run Setup H</u> elp	
[F1] BASIC [F2] LADDER Ladder N	Inemonic
Const Device = CB280 Delay 10	
Debug "Hello"	
	🧼 Debug Terminal 📃 🗆 🔀
	Port Baud Rate Parity Data Bits TX T
	Hello
	Close Fix Right Side

As you can see in the above example, DEBUG command can be used to debug your BASIC program while it's running. Be aware that you are not allowed to use both Debugging and LADDER Monitoring at the same time. You must remove Debug commands or comment them out with an apostrophe to use LADDER Monitoring. Another option is to use the command "Set Debug Off," which will turn OFF the DEBUG feature.

Menus

<u>Eile E</u> dit	<u>D</u> evice	<u>R</u> un	<u>S</u> etup	Help
File Menu				
New				
<u>O</u> pen	(Ctrl+O		
Ladder Import				
Save	(Ctrl+S		
Save <u>A</u> s				
Save Object				
Print Ladder				
Print BASIC				
Print Setup				
Download from ob	iect file			
BASIC Section	F	-1		
Ladder Section	F	2		
C:\Cubloc_Test	c290exouttest, cul			
C:₩Cubloc_Test₩	BCDTEST, cul			
C:₩Cubloc_Test₩				
C:₩Cubloc_Test₩	tata, cul			
E <u>x</u> it				

Menu	Explanation	
New	Create new file.	
Open	Open file.	
Ladder Import	Import Ladder Logic part of a CUBLOC program.	
Save	Save current file.	
Save As	Save current file under different name.	
Save Object	Save current program as an object file. Use this to protect your source code. Object file is strictly binary format file so others cannot reverse engineer it. You can use "Download from Object File" to download your object file to CUBLOC. Create object files for internet-downloading with CuMAX or CuMAX Server.	
Print Ladder	Print Ladder Logic Section only.	
Print Basic	Print Basic Section only.	
Print Setup	Setup Printer for printing Ladder Logic Section.	
Download from Object file	Download an Object file to the CUBLOC module.	
Basic Section	Switch to Basic Section for editing. (Or press F1).	
Ladder Section	Switch to Ladder Logic Section for editing. (Or press F2).	
Last 4 Files Edited	View last 4 files edited.	
Exit	Exit CUBLOC Studio	

Device Menu

If Const device statement does not exist in your source code, Device Menu will create a Const device statement at the very beginning of your source code. If it exists already, the Const device statement will simply be replaced.

Run Menu

<u>R</u> un	Ctrl+R
Rese <u>t</u>	
Ladder <u>M</u> onitor on	Ctrl+F7
BASIC <u>D</u> ebug Terminal	
Time <u>⊂</u> hart Monitor…	
clear CUBLOC fl <u>a</u> sh memory	
Write enable fuse of <u>f</u>	
<u>V</u> iew Relay Usage	
Check <u>S</u> yntax	

Menu	Explanation
Run	Compile Basic and Ladder, download to CUBLOC module if there are no errors, and restart the program automatically. To disable automatic restart, please go to Setup->Studio Option to change.
Reset	Reset CUBLOC Module.
Ladder Monitor on	Start Ladder Monitoring
BASIC Debug Terminal	Open BASIC Debug Terminal Window. This window opens automatically when there's a DEBUG command in the source code.
Time Chart Monitor	View Time chart monitor window
Clear CUBLOC's Flash Memory	Clear CUBLOC's Flash Memory.
Write enable fuse off	This will turn off download function for a CUBLOC Core module to protect against noisy environments where the flash memory can be affected. Once you choose this menu, you will be unable to download new programs to your CUBLOC module. BUT, you will be able to download again after a new Firmware Download.
View Register Usage	(After Compiling) View Register usage of Ladder Logic.
Check Syntax	Check Syntax

Setup Menu

Menu	Explanation
PLC Setup Wizard	Automatic BASIC source code generation for Ladder Logic
PC Interface Setup	Setup the RS232 COM PORT for Download/Monitor. Select COM1 through COM4.
Editor Environment Setup	Setup Editor Environment options for BASIC text editor.
Environment Options	CUBLOC Studio Options.
Firmware Download	Download Firmware to CUBLOC CORE. Please use this to download firmware to CUBLOC CORE manually.

MEMO

Chapter 4 CUBLOC BASIC Language

IMPORTANT

You must declare the device being used before using BASIC or LADDER. Below is an example of declaring CUBLOC CB220 module.

```
CONST DEVICE = CB220 ' Use CB220.
```

This should be the first line at the start of your program. When this command is not used, CB220 model will be chosen as default.

CONST DEVICE = CT1720 ' Use CT1720. CONST DEVICE = CB280 ' Use CB280.

CUBLOC BASIC Features

Interface PC with RS232C Port

CUBLOC uses RS232 port to interface with the PC. You also have option of using it to connect to MAXPORT and use monitoring/downloading via the internet.

CUBLOC BASIC supports functions and sub routines.

Like C language, the user is able to create sub-routines and functions to lessen the complexities of their programs. By being able to use subroutines and functions, it is now possible to simple copy & paste for new programs, instead of starting everything from scratch.

```
Function SUM( A As Integer, B As Integer) As Integer
Dim RES As Integer
RES = A + B
SUM = RES
End Function
```

Calculations can be done within conditional statements such as If, While, etc...

```
IF ((A + 1) = 100) THEN GOTO ABC 
IF ((A + 1) = 100) AND (B / 100 = 20) OR C = 3 THEN GOTO ABC
```

Multi-dimension arrays are supported.

CUBLOC supports multi-dimension arrays including character arrays. Maximum of 8-D arrays are supported and only 1 dimensional array is allowed for character arrays.

```
DIM A(100,10,20) AS BYTE
```

Hardware RS232 Communication are Supported

CUBLOC supports hardware RS232 communication, meaning it does not conflict with real-time processing.

Conditional Statements are supported.

CUBLOC BASIC supports SELECT CASE and DO...LOOP conditional statements.

A graphic LCD library is provided.

CUBLOC provides a complete graphic LCD library for GHLCD. Drawing boxes, lines, circles, and graphic commands are easily implemented in few lines of code.

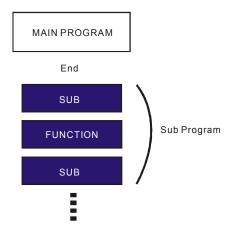
Various Communication Protocols are supported.

CUNET : Display Peripherals such as LCD RS232 : 4 channel MODBUS : HMI and Touch screen Protocol I2C : I2C commands supported (I2CREAD, I2CWRITE) SPI : SPI commands supported (SHIFTIN, SHIFTOUT) PAD: Keypad, touchpad supported.

Advanced Basic Language is Comparable to C Language.

#include support
#define support
#if..#ifdef..#endif conditional compile support
Incr, Decr commands: same function as C's + +, - Pointers allowed (PEEK, POKE, and MEMADR)
String Arrays (1-Dimension)

Simple BASIC program


Below is an example of simple BASIC program with Do...Loop statement.

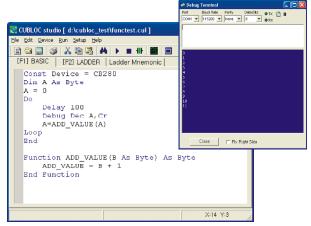
```
Dim A As Byte
Do
Byteout 0, A
A=A+1
Loop
```

This program outputs to Port P0-P7 an increasing value of A. The next program uses a function to accomplish the same task:

```
Dim A As Byte
Do
    Byteout 0, A
    A=ADD_VALUE(A)
Loop
End
Function ADD_VALUE(B As Byte) As Byte
    ADD_VALUE = B + 1
End Function
```

By separating A=A+1 to a function, the user will be able to separate one big program into small chunks. As you can see here, the main program ends when "END" comes and functions are added afterwards.

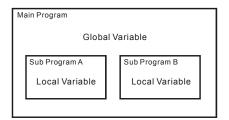
Sub and Function


For sub-routines, you can either use Sub or Function. Sub does not return any values whereas Function does return values.

```
Sub SubName (Paraml As DataType [,ParamX As DataType][,...])
Statements
[Exit sub] ' Exit during sub-routine
End Sub
Function FunctionName (Paraml As DataType [,...])[As ReturnDataType]
Statements
[Exit Function] ' Exit during sub-routine
End Function
```

To return values using Function, simply store the final value as the name of the Function like shown here:

```
Function ADD_VALUE(B As Byte) As Byte
ADD_VALUE = B + 1 ` Return B+1.
End Function
```


DEMO PROGRAM

Global and Local Variables

When you declare variables inside a Sub or Function, it is considered to be a "Local" variable. The Local Variables are created upon call of the Sub or Function and removed at exit. This means that the Local Variables will use the Data Memory and then free it for other resources. Local Variables may only be referred to or used inside the Sub or Function.

On the other hand, Global variables may be used in all parts of your code.


```
Dim A As Integer
                       ' Declare A as Global Variable
LOOP1:
   A = A + 1
   Debug Dp(A),CR
                       ' Display A on Debug screen
   DELAYTIME
                       ' Call Sub DELAYTIME
   Goto LOOP1
   End
                       ' End of Main Program
Sub DELAYTIME()
   Dim K As Integer 'Declare K as Local Variable
   For K=0 To 10
   Next
End Sub
```

In the program above, "A" is declared as Global Variable and "K" is declared as Local Variable. A can be used anywhere in your code but K may only be used inside the subroutine DELAYTIME().

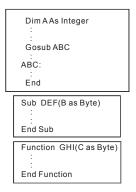
Arrays may not be used for Local Variables. Arrays must be declared as Global Variables.

Calling subroutines

Once the subroutine is created, you can use them like a regular command. For Sub, you do not need parenthesis around the parameters. For multiple parameters, use a comma to separate them.

The example shows how this is done:

```
DELAYTIME 100 'Call subroutine
End
Sub DELAYTIME(DL As Integer)
Dim K As Integer 'Declare K as Local Variable
For K=0 To DL
Next
End Sub
```


For Function, you need parenthesis around the parameters. Parenthesis is required even when there is no parameters.

```
Dim K As Integer
K = SUMAB(100,200) 'Call subroutine and store return value in K
Debug Dec K,cr
End
Function SUMAB(A AS INTEGER, B AS INTEGER) As Integer
SUMAB = A + B
End Function
```

Subroutine Position

Subroutines must be created after the main program. To do this, simply put "End" at the end of your main program like shown here: ("End" is only required if you have subroutines)

Sub and Function subroutines come after the "End." Gosub subroutines must be within the main program like shown here:

* End command is used to differentiate between BASIC main program and the subroutines. END command used in Ladder Logic is to indicate the end of Ladder Logic.

Subroutine Parameters and Return Values

Function may use any data type as parameters and return values.

Dim A(10) As Integer
Function ABC(A AS Single) as Single ` Return Single value
End Function
Function ABC(A AS String * 12) as String *12 ` Return String value
End Function
Function ABC(A AS long) ` Long value as a parameter
End Function ` When return value is not declared, Long
` will be used as return value.

Exceptions includes using arrays as parameters.

Function ARRAYUSING(A(10)	AS	Integer)	`	Arrays may not be	used as	j.
			`	parameters.		
End Function						
End Function				1		

But you may use one element of an array as a parameter.

```
Dim b(10) as integer K = ARRAYUSING(b(10)) 'Use 10^{\rm th} element of array b as a parameter. Function ARRAYUSING(A AS Integer) as integer End Function
```

All subroutines' parameters are "Call by value," meaning the values are only used as reference. Even if the parameter value is changed within a subroutine, it will not affect the actual variable used as a parameter like shown here:

```
Dim A As Integer
Dim K As Integer
A = 100
K = ADDATEN(A)
Debug Dec? A, Dec? K,CR `A is 100 and K is 110
End
Sub ADDATEN(V As Integer)
V = V + 10 `A does not change when V is changed.
ADDATEN = V
End Sub
```

In contrast, there is "Reference by Address," in which the actual Data Memory address is passed to the subroutine. **CUBLOC only supports** "Call by Value."

Too many characters in one line?

If you run out of room, you can use an underscore character (_) to go to the next line like shown here:

```
ST = "COMFILE TECHNOLOGY"
ST = "COMFILE ______
TECHNOLOGY"
```

Comments

Use an apostrophe (') to add comments. Comments are discarded during compile, meaning it will not take up extra Program Memory.

```
ADD VALUE = B + 1 'Add 1 to B.(Comment)
```

Nested subroutines

Nested subroutines are supported in CUBLOC.

```
A=FLOOR(SQR(F)) ' Do Floor() on SQR(F).
```

Colons

Colons may not be used to put append commands in CUBLOC BASIC.

```
A=1: B=1 : C=1 ' Incorrect.
A=1 ' Correct.
B=1
C=1
```

Variables

There are 5 types of variables in CUBLOC BASIC.

- BYTE 8 bit Positive Number, 0 to 255
- INTEGER 16 bit Positive Number, 0 to 65535
- LONG 32 bit Positive/Negative Number,
- (-2147483648 to +2147483647)
 SINGLE 32 bit Floating Point Number,
 - (-3.402823E+38 to 3.402823E+38)
- STRING String, 0 TO 127 bytes

A Byte is an 8 bit positive number representing 0 to 255.

An Integer is a 16 bit positive number representing 0 to 65535.

A Long is a 32 bit positive or negative number representing

-2,147,483,648 to 2,147,483,647.

A Single is a 32 bit positive or negative floating point number representing -3.402823×10^{38} to 3.402823×10^{38} .

*For storing negative numbers, please use LONG or SINGLE. Use DIM command for declaring variables as shown below:

```
      Dim A As Byte
      'Declare A as BYTE.

      Dim B As Integer, C As Byte
      'Comma may NOT be used.

      Dim ST1 As String * 12
      'Set String size for String.

      Dim ST2 As String
      'Set as 64 bytes (default).

      Dim AR(10) As Byte
      'Declare as Byte Array.

      Dim AK(10,20) As Integer
      'Declare as 2D Array

      Dim ST(10) As String*10
      'Declare a String Array
```

DEMO PROGRAM

💱 CUBLOC studio [d:\cubloc_test\variable.cul]	
<u>File Edit Device Run Setup Help</u>	
🖹 😂 🔜 🥩 🔏 🛍 🖏 🕨 🔳 💷 📰	🤝 Debug Terminal 📃 🗖 🔀
[F1] BASIC [F2] LADDER Ladder Mnemonic	Port Baud Rate Parity Data Bits TX 🏠 II
Const Device = CB280	COM1 - 115200 - None - 8 - RX
Dim A As Byte Dim B As Integer	
Dim C As Long	
Dim D As Single	
A = 123	123
A = 123 B = 5000	5000
C = 32999000	32999000
D = 3.14	3.140000
Debug Dec A,Cr Debug Dec B,Cr	
Debug Dec C, Cr	
Debug Float D,Cr	Close Fix Right Side
	Line : 16

VAR Command (Same function as DIM)

VAR can be used in place of DIM to declare variables. Below are examples of how to use VAR:

A	Var	Byte ' Declare A as BYTE.
ST1	Var	String * 12 ' Declare ST1 as String of 12 bytes.
AR	Var	Byte(10) ' Declare AR as Byte Array of 10.
AK	Var	Integer(10,20) ' Declare AK as 2-D Integer Array
ST	Var	String *12 (10) ' Declare String Array

String

A String size can be set up to 127 bytes. When size is not set, default value of 64 bytes will be used as the String size.

Dim ST As String * 14 ' For maximum usage of 14 bytes Dim ST2 As String ' Set as 64 byte String variable

When setting a String as 14 bytes, another byte is allocated by the processor to store NULL. When storing "COMFILE TECHNOLOGY" in a 14 byte String, the last 4 characters (bytes) will not be stored.

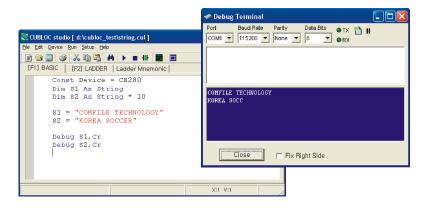
```
Dim ST As String * 14 ST = "COMFILE TECHNOLOGY" ` "LOGY" is not stored
```


In CUBLOC BASIC, (") must be used for String. An apostrophe (') may not be used.

You can use CHR(&H22) to express (") and CHR(&H27) to express (') and CHR(&H2C) to express (,).

Example for printing to LCD:

```
Print Chr(&H22), "COMFILE " TECHNOLOGY", Chr(&H22) ' (")
Print Chr(&H27), "COMFILE " TECHNOLOGY", Chr(&H27) ' (') Apostrophe
```


To connect multiple Strings, you can use a comma as shown below:

Print "ABC", "DEF", "GHI" ' Same as PRINT "ABCDEFGHI".

Use CR for Carriage Return (Next Line).

Print "California", CR ' Print California and go to the next line.

DEMO PROGRAM

Merge Multiple Strings

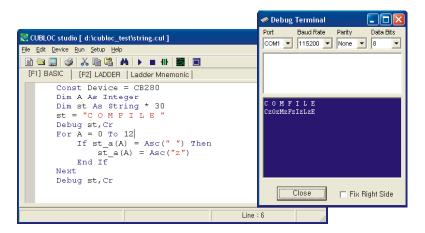
To merge multiple strings together, use & as shown below:

```
Dim al As String * 30
Dim a2 As String * 30
a1 = "Comfile "
a2 = "Technology "
a1 = a1 + a2 + ",Inc"
Debug a1,cr
```

The above program will show "Comfile Technology, $\ensuremath{\mathsf{Inc}}''$ on the debug screen.

DEMO PROGRAM

	🗢 Debug Terminal 📃 🗖 🔀
😵 CUBLOC studio [d:\cubloc_test\string.cul] Ele. Edit. Device. Bun. Setup. Heip	Port Baud Rate Parity Data Bits ⊕ TX 111 COMI ▼ 115200 ▼ None ▼ 8 ▼ ⊕ RX
Const Device = CB280 Dim al As String * 30	
Dim a2 As String * 30 a1 = "comfile" a2 = "Technology" a1 = a1 + a2 + ",Inc" Debug a1	Comfile Technology ,Inc
	Close Fix Right Side
	Line : 7


How to Access Individual Characters within a String

You can use strings like an array. Simply append $^{``}A''$ after the name of your string variable like shown here:

```
DIM ST1 AS STRING * 12 'ST1_A Array is created at the same time. ST1 = ``123'' ST1_A(0) = ASC(``A'') 'Store A in the first character of ST1.
```

When you declare Dim St1 as String * 12, St1_A(12) is also declared automatically by the RTOS. The string and the array use the same memory space. Whether you use the string or the array, you are still accessing same memory location.

The example below shows how to convert blank characters to z.

With string arrays, you may not use this feature.

Dim st(10) As String * 3

About Variable Memory Space

In the case of CB220 and CB280, 2KB (2048 bytes) of data memory is available. You may not use the whole data memory for variables. Part of the data memory space is reserved for use by peripherals such as DISPLAY and the RS232 buffers. The 80 bytes are used for DEBUG command.

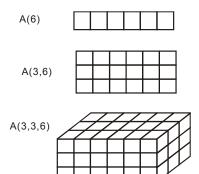
Sub and Function routines and interrupt routines use up data memory space. Of the available 2048 bytes, about 1800 bytes can be used for global variables. The more Sub/Function routines you use, you will have less memory available for variables and constants.

When the user uses buffers with command SET DISPLAY or OPENCOM, the data memory will lose that much amount of memory space to use for variables.

Initializing Memory

CUBLOC BASIC data memory is not cleared at POWER UP. The user must initialize variables to zero or use RAMCLEAR command to clear the whole memory.

Ramclear


The data memory will contain garbage values at POWER UP.

In the case of Battery-backed up modules, the variables will remember their values after a Power-cycle (powering Off and On).

Arrays

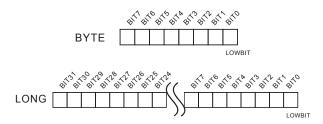
CUBLOC BASIC supports up to 8 dimensional arrays, each dimension allowed up to 65535 members.

DIMA(20)ASBYTE' Declare A's array size as 20DIMB(200)ASINTEGER' Declare Integer arrayDIMC(200)ASLONG' Declare Long arrayDIMD(20,10)ASSINGLE' 2-dimensional Single arrayDIMST1(10)ASSTRING * 12' Declare String array

CUBLOC supports multi-dimension arrays including character arrays. Up to 8-D arrays are supported. Please make note of how much memory is used when using multi-dimensional arrays.

```
' 13 * 10 = 130 Bytes of Data Memory
DIM ST1(10) AS STRING * 12
' 4*10 * 20 = 800 Bytes of Data Memory
DIM D(20,10) AS SINGLE
```

Bits and Bytes modifiers

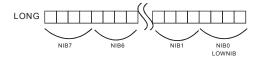

A variable's bits and bytes can individually be accessed by using the commands shown below.

```
DIM A AS INTEGER
DIM B AS BYTE
A.LOWBYTE = \&H12 ` Store \&H12 at A's lowest byte
```

Bit

LOWBIT	Variable's bit 0
BIT0 to 31	Variable's bit 0 through 31

A.BIT2 = 1 'Make bit 2 of A 1.



Nibble

A Nibble is for 4 bits. By using Nibbles, the user has more flexibility to manipulate the data.

LOWNIB	Variable's NIBBLE 0
NIB0 to 7	Variable's NIBBLE 0 to 7

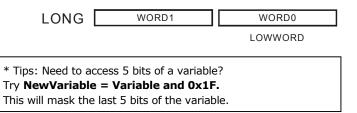
A.NIB3 = 7 ' Store 7 in Nibble 3 of A

Byte

To specify certain bytes of a variable, the below names can be used. (A Byte is 8 bits)

LOWBYTE, BYTE0	BYTE 0 of Variable
BYTE1	BYTE 1 of Variable
BYTE2	BYTE 2 of Variable
BYTE3	BYTE 3 of Variable

A.BYTE1 = &HAB 'Store &hab in byte 1 of A



Word

To specify certain Word of a variable, the below names can be used: (A Word is 16 bits)

LOWWORD, WORD0	Word 0 of variable
WORD1	Word 1 of variable

A.WORD1 = &HABCD 'Store &habcd in word 1 of A

DEMO PROGRAM

😪 CUBLOC studio [d:\cubloc_test\longbyte.cul]	
<u>Eile Edit Device Run Setup H</u> elp	🧇 Debug Terminal 📃 🗖 🔀
File Side A Construction of the second se	Port Baud Rate Parity Data Bits @TX 🎌 🏢
	Close Fix Right Side

Constants

Constants can be used to declare a fixed value at the beginning of the program. By doing this, readability and debuggability of the source code will be easier.

The command CONST can be used to declare constants in CUBLOC.

```
CONST PI AS SINGLE = 3.14159
CONST WRTTIME AS BYTE = 10
CONST MSG1 AS STRING = "ACCESS PORT"
```

When the constant is not given a type, the compiler will find an appropriate type for it as shown below:

```
      CONST PI = 3.14159
      ' Declare as SINGLE

      CONST WRTTIME = 10
      ' Declare as Byte

      CONST MYROOM = 310
      ' Declare as Integer since it's over

      255.
      CONST MSG1 = "ACCESS PORT"
```

CON (Another way of CONST)

The Command CON can be also used to declare constants in the following way:

PI	CON	3.14159	' Declare as SINGLE.
WRTTIME	CON	10	' Declare as Byte
MYROOM	CON	310	' Declare as Integer
MSG1	CON	"ACCESS PORT"	' Declare as String

Constant Arrays...

By using constant arrays, the user is able to store a list of numbers before the program begins. By using constant arrays, the program can be simplified as shown below:

```
Const Byte DATA1 = (31, 25, 102, 34, 1, 0, 0, 0, 0, 0, 65, 64, 34)

I = 0

A = DATA1(I) ' Store 31 in A.

I = I + 1

A = DATA1(I) ' Store 25 in A.

Const Byte DATA1 = ("CUBLOC SYSTEMS")
```

String data can be store in Byte constant arrays. The ASCII code of the character is returned.

If DATA1(0) is read, ASCII code of 'C' is returned. Likewise if DATA1(1) is read, ASCII code of 'U' is returned.

Whole and floating point numbers can be used as shown next:

CONST INTEGER DATA1 = (6000, 3000, 65500, 0, 3200) CONST LONG DATA2 = (12345678, 356789, 165500, 0, 0) CONST SINGLE DATA3 = (3.14, 0.12345, 1.5443, 0.0, 32.0)

For multi-lines of constants, following ways can be used:

1)

CONST BYTE DATA1 = (31, 25, 102, 34, 1, 0, 0, 0, 0, 0, 0, 65, 64, 34, 12, 123, 94, 200, 0, 123, 44, 39, 120, 239, 132, 13, 34, 20, 101, 123, 44, 39, 12, 39)

2)

CONST BYTE DATA2 = (31, 25, 102, 34, 1, 0, 65, 64, 34,______ 101, 123, 44, 39, 12, 39)

Strings can be used as shown next:

CONST STRING * 6 STRTBL = ("COMFILE", "BASIC", "ERROR", "PICTURE")

Please set the size of the String to be greater than any of the members of the constants.

Only 1 dimensional a	array is allowed for constants.
----------------------	---------------------------------

Comparison	Array	Constant Array
Storage	Data Memory (SRAM)	Program Memory (FLASH)
Stored Time	During Program run	During Download
Can be Changed	Yes	No
Purpose	Changing Values	Unchanging values
Power OFF	Disappear	Kept

DEMO PROGRAM

💸 CUBLOC studio [d:\cubloc_test\constarray.cul]		
<u>Eile Edit Device Run Setup Help</u>		
[F1] BASIC [F2] LADDER Ladder Mnemonic		
	L, O, O, O, O, O, 65, 64, 34, 123, 44, 39, 120, 239, L, 123, 44, 39, 12, 39)	
Debug Dec DATA1(3),Cr		
Debug Dec DATA1(6),Cr		
Debug Dec DATA1(1),Cr	🧼 Debug Terminal 📃 🗖 🔀	
X	Port Baud Rate Parity Data Bits COMI 115200 None 8 9 34 0 25 Close Fix Right Side	

Operators

When using many logical operators, the below priority table is used to determine which operator is operated on first.

Operator	Explanation	Туре	Priority
^	To the power of	Math	Highest
*,/,MOD	Multiply, Divide, MOD	Math	
+,-	Add, Subtract	Math	
<<, >>	Left Shift, Right Shift	Logic	
<, >, <=, >=	Less than, Larger than, Less or Equal to , Larger or Equal to.	Compare	
=, <>	Same, Different	Compare	
AND, XOR, OR	AND,XOR,OR	Logic	Lowest

Please refer to the above table for checking priority of operator used. In the rows, the highest priority is calculated from the left to right.

You can use operators as conditions like below:

IF A+1 = 10 THEN GOTO ABC

Whole numbers and floating point numbers can be mixed. The final result follows the type of variable it will be stored in.

```
DIM F1 AS SINGLE 
DIM A AS LONG 
F1 = 1.1234 
A = F1 * 3.14 'A gets 3 even though result is 3.525456.
```

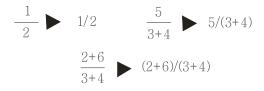
Please make sure to include a period(.) when using floating point numbers.

F1 = 3.0/4.0 'Write 3/4 as 3.0/4.0 for floating values F1 = 200.0 + FLOOR(A) * 12.0 + SQR(B) '200 as 200.0, 12 as 12.0...

AND, XOR, OR is used for logical operations and as Bit operators.

IF A=1 AND B=1 THEN C=1 ' if A=1 and B=1 ...(Logical Operation)
IF A=1 OR B=1 THEN C=1 ' if A=1 or B=1...(Logical Operation)
A = B AND & HF 'Set the upper 4 bits to zero. (Bit Operation)
A = B XOR & HF 'Invert the lower 4 bits. (Bit Operation)
A = B OR & HF 'Set the lower 4 bits to 1. (Bit Operation).

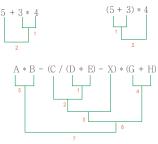
Strings can be compared with the "=" sign. ASCII values are compared for Strings.

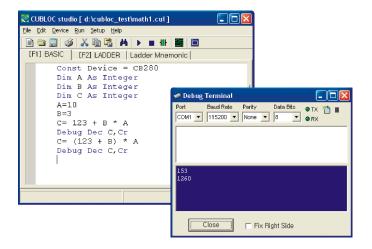

DIM ST1 AS STRING * 12 DIM ST2 AS STRING * 12 ST1 = "COMFILE" ST2 = "CUBLOC" IF ST1=ST2 THEN ST2 = "OK" ` Check if ST1 is same as ST2.

Operators used in our BASIC language may slightly differ with actual Math operators. Please refer to the below table:

Operator	Math	Basic	Example
Add	+	+	3+4+5, 6+A
Subtract	-	-	10-3, 63-B
Multiply	Х	*	2*4, A*5
Division	• •	/	1234/3, 3843/A
To the power of	5 ³	^	5^3, A^2
MOD	Remainder of	mod	102 mod 3

In CUBLOC BASIC, a slash (/) is used in place of division sign.


Please make sure to use parenthesis appropriately for correct calculations.


Operator Priority

When multiple operators are used, the following operator priority is used:

- 1) Operator inside parenthesis
- 2) Negative Sign (-)
- 3) (^)
- 4) Multiplication, Division, Remainder (*, /, MOD)
- 5) Addition/Subtraction (+,-)
- 6) Left Shift, Right Shift (<<, >>)

DEMO PROGRAM

Expressing Numbers in Bits

3 ways of bit representation of numbers are possible with CUBLOC. Binary (2 bit), Decimal (10 bit), and Hexadecimal (16 bit) can be used.

Examples of how-to:

Binary :	&B10001010, &B10101 Ob1001001, Ob1100	
Decimal :	10, 20, 32, 1234	
Hexadecimal :	&HA, &H1234, &HABCD 0xABCD, 0x1234 \$1234, \$ABCD	← Similar to C ← Similar to Assembly Language

The BASIC Preprocessor

The BASIC preprocessor is a macro processor that is used automatically by the compiler to transform your program before compilation. It is called a macro processor because it allows you to define macros, which are brief abbreviations for longer constructs.

In CUBLOC BASIC, a Preprocessor similar to C language can be used. Preprocessor directives like #include and #define can be used to include files and process code before compiling.

#include "filename"

Include file in the source code. For files in the same directory as the source file, you can do the following:

#INCLUDE "MYLIB.cub"

For files in other directories, you will need to include the full path name like shown here:

#INCLUDE "c:\mysource\CUBLOC\lib\mylib.cub"

By using include files, you can store all of your sub-routines in a separate file.

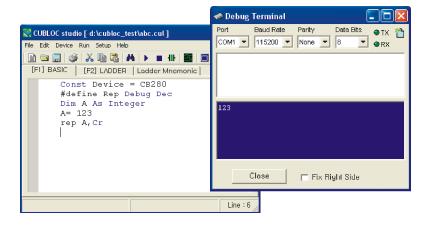
Please make sure to use pre-processor directive #include at the very end of your program. (After "End" for subroutines)

#define name constants

By using #define, you can define constants before compiling.

```
#define motorport 4
low motorport
```

For the example above, motorport will be compiled as 4. You can also just use CONST for such examples like this:


```
CONST motorport = 4
low motorport
```

The following example uses #define for replacing a line of command:

NOTE

#define will not differentiate uppercase and lowercase letters. They will all be processed as uppercase character. For example, #define ALPHA 0 and #define alpha 0 are both considered the same.

DEMO PROGRAM

Conditional

A *conditional* is a directive that instructs the preprocessor to select whether or not to include a part of code before compilation. Preprocessor conditionals can test arithmetic expressions, or whether a name is defined as a macro, or both simultaneously using the special defined operator.

Here are some reasons to use a conditional.

- A program may need to use different code depending on the module it is to run on. In some cases the code for one module may be different on another module. With a preprocessing conditional, a BASIC program may be programmed to compile on any of CUBLOC/CUTOUCH modules without making changes to the source code.
- If you want to be able to compile the same source file into two different programs. One version might print the values of data for debugging, and the other not.

#if constant #endif

The preprocessor directive #if will compare a constant declared with CONST to another constant. If the #if statement is true, the statements inside the #if...#endif block will be compiled, otherwise statements will be discarded.

```
Const Device = CB280
Delay 500
'Device only returns the decimal number
#If Device = 220
Debug "CB220 module used!"
#endif
```

The above example shows how depending on the module of CUBLOC/CUTOUCH, you can decided to include a command in the final compilation of your program. By using conditional directives, you will be able to manage multiple modules of your CUBLOC/CUTOUCH with just one source code.

By using preprocessor directive #elseif or #else, you can create more complex #if...#endif blocks.

```
Const Device = CB220
Delay 500
` Device only returns the decimal number
#If Device = 220
Debug "CB220 module used!"
#elseif device = 280
Debug "CB220 module used!"
#elseif device = 290
Debug "CB290 module used!"
#elseif device = 1720
Debug "CT1720 module used!"
#endif
```

#else may only be used ONCE in a #if statement. You may only compare constants declared with CONST command for the #if statements.

#ifdef name #endif

When using #if to compare constants, you can use #ifdef to see if a constant has been defined previously using #define or CONST.

If the constant has been defined previously, the statements inside the #if...#endif block will be compiled, otherwise it will be discarded.

```
#define LOWMODEL 0
#ifdef LOWMODEL
    LOW 0
#endif
```

In the above example, since LOWMODEL is defined, the statement LOW 0 is compiled.

#else #elseifdef may be used for more complex blocks like shown here:

```
#ifdef LOWMODEL
LOW 0
#elseifdef HIGHMODEL
HIGH 0
#else
LOW 1
#endif
```

#ifndef name #endif

#ifndef is exactly the opposite of #ifdef directive. If a constant has not been defined, the statements inside #if...#endif block will be compiled, otherwise statements are discarded.

```
#define LOWMODEL 0
#ifndef LOWMODEL
    LOW 0
#endif
```

#elseifndef and #else may be used for more complex blocks like shown here:

```
#ifndef LOWMODEL
LOW 0
#elseifndef HIGHMODEL
HIGH 0
#else
LOW 1
#endif
```

Finally, the directives may be mixed as shown below:

```
#if MODELNO = 0
LOW 0
#elseifdef HIGHMODEL
HIGH 0
#else
LOW 1
#endif
```

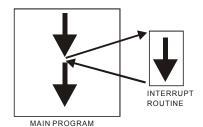
An exception is that #if may not be used inside another #if.

To use LADDER ONLY

If you do not need to use BASIC, you can just program in LADDER. But you will need the most basic BASIC-code as shown below:

```
Const Device = CB280 'Select device
Usepin 0,In,START 'Declare pins to use
Usepin 1,Out,RELAY
Alias M0 = MOTORSTATE 'Set Aliases
Alias M1 = RELAY1STATE
Set Ladder On 'Start Ladder.
```

Device model, aliases, and pin input and output status must be set in BASIC. Ladder must be started in BASIC with SET LADDER ON command.


To use BASIC ONLY

Simply use BASIC! Ladder is off as default

Set Ladder On 'Just don't use this command. Ladderscan 'And this one too.

Interrupt

An interrupt can occur during the main program to process immediate needs of some sort. ON...GOSUB command can be used to set a new interrupt. When that interrupt occurs, the main program stops execution and jumps to the label designated by the previous ON...GOSUB command. Once the interrupt routine in the label is finished, RETURN command is used to return back to the main program.

External Key input can be pressed and RS232 serial data can be received at any moment. Since the main program cannot wait forever to receive these inputs, we need interrupts. If a key is pressed or serial data is received while the Main program is running, an interrupt occurs and the Main program jumps to an interrupt routine.

CUBLOC possesses one of the most flexible interrupts in the world. While an interrupt routine is running, another **interrupt request of the same type** is ignored. If an RS232 RECV interrupt occurs during execution of an RS232 RECV interrupt routine, it will be ignored. On the other hand, if an INT Edge interrupt occurs during execution of an RS232 RECV interrupt routine, it will be executed immediately before returning to the RS232 RECV interrupt routine.

Interrupt Type	Explanation
On Timer	Create interrupt within the set interval
On Int	Create interrupt when external input is received.
On Recv	Create interrupt when RS232 receives data
On LadderInt	Create interrupt when Ladder Logic requests for an interrupt
On Pad	Create interrupt when Pad receives data

More about Interrupts…

The CUBLOC and CUTOUCH have RTOS which controls interrupt events. This is slightly different from microcontroller's hardware interrupts.

1. When an interrupt A occurs, during the interrupt A, another interrupt A cannot occur. But a different interrupt B can occur. Here A and B are different types of interrupts. (e.g. On Timer and On Recv)

2. When an interrupt B occurs during the interrupt A, interrupt B will be executed immediately and the Main Program will return to interrupt A to finish.

3. At the end of your interrupt routine, please make sure to include a **Return** command. Otherwise, your program can mal-function.

4. There is no limit on the number of interrupts and how long an interrupt routine may be.

5. **Delay, Pulsout** commands can be used during an interrupt. BUT, **Delay** and **Pulsout** time may be affected by other interrupts that occur during its execution. To protect against such situations, please use **Set Onglobal Off** before calling **Delay** or **Pulsout** command like shown here:

```
Set Onglobal Off
Delay 100 'Delay command not affected
Set Onglobal On
```

6. If no interrupt is required for your program, you can actual increase the execution speed of CUBLOC or CUTOUCH by setting all interrupt off using the command, **Set Onglobal Off**.

*By Default, **Set Onglobal** is set to On.

7. In case of On Recv, data received during an On Recv routine will simply be stored in the receive buffer. Therefore the data will not be lost. After the current On Recv interrupt routine is finished, if there's new data in the receive buffer, another On Recv interrupt will be called immediately. **BcIr** command can be used in case the user does not want to process another On Recv Interrupt.

8. If you declare an interrupt twice, the last one called will be in effect.

Pointers using Peek, Poke, and Memadr

Following is an example that uses EEWRITE command and EEREAD command to read floating point data:

```
Const Device = CB280
Dim f1 As Single, f2 As Single
f1 = 3.14
Eewrite 0,f1,4
f2 = Eeread(0,4)
Debug Float f2,cr
```

When you run this code, the debug window will show 3.00000 instead of 3.14. The reason is that EEWRITE command automatically converts floating point values to whole numbers.

In order to store floating point values, we can use Peek and Poke to read the data directly. The following is how we would accomplish that:

```
Const Device = CB280
Dim Fl As Single, F2 As Single
F1 = 3.14
Eewrite 10,Peek(Memadr(F1),4),4
Poke Memadr(F2),Eeread(10,4),4
Debug Float F2,CR
```

The Debug Window will now show 3.14.

We use Memadr(F1) to find the memory address of F1 and then use Peek command to directly access the memory and write 4 bytes. We store that value in EEPOM. Conversely, we use Memadr(F2) and Poke to read 4 bytes directly.

Warning : Please use caution when using this command as pointers can affect the whole program. Peek and Poke may only access data memory SRAM.

Sharing Data

CUBLOC has individual BASIC and LADDER data memory.

BASIC DATA MEMORY

P
M
С
Т

LADDER DATA MEMORY

LADDER data memory can be accessed from BASIC easily by using system variables. By using these system variables, data can easily be read or written from and to LADDER.

System Variable (Array)	Access Units	LADDER Register
_P	Bits _P(0) to _P(127)	P Register
_M	Bits _M(0) to _M(511)	M Register
_WP	Words _WP(0) to _WP(7)	P Register (Word Access)
_WM	Words WM(0) to WM(31)	M Register (Word Access)
_T	Words _T(0) to _T(99)	T Register (Timer)
_C	Words _C(0) to _C(49)	C Register (Counter)
_D	Words _D(0) to _D(99)	D Register (Data)

Registers P and M can be accessed in units of bits and the rest of the Registers C, T, and D can be accessed in units of Words. To access P and M Registers in units of Words, use _WP and _WD. For example, _WP(0) represents P0 through P15.

The following is an example program :

```
_D(0) = 1234

_D(1) = 3456

_D(2) = 100

FOR I = 0 TO 99

_M(I) = 0

NEXT

IF _P(3) = 1 THEN _M(127) = 1
```

Reversely, accessing BASIC variables from Ladder is not possible but you can use Ladder interrupts to get around this.

Use Ladder pins in BASIC using ALIAS command

ALIAS command can be used to set aliases for Registers (**all except D**) used in LADDER. Both BASIC and LADDER may freely use these set aliases.

```
Usepin 0, In, START

Usepin 1, Out, RELAY

Alias M0 = MOTORSTATE

Alias M1 = RELAY1STATE

Alias T1 = SUBTIMER

RELAY = 0 ' Set port 1 to LOW

MOTORSTATE = 1 ' Set M0 to 1. Same as _M(0) = 1.

A = RELAY1STATE ' Store M1 status in variable A.

B = SUBTIMER ' Store T1 status in variable B.
```

ΜΕΜΟ

Chapter 5 CUBLOC BASIC functions

Math Functions

SIN, COS, TAN

Return Sine, Cosine, and Tangent values. CUBLOC uses radians as units. Use SINGLE for most precise results.

A=SIN B	'Return Sine value.
A=COS B	'Return Cosine value.
A=TAN B	'Return Tangent value.

ASIN, ACOS, ATAN

Return Arc Sine, Arc Cosine, and Arc Tangent values. CUBLOC uses radians as units. Use SINGLE for most precise results.

A=ASIN	В	`	Return	Arc	Sine value.
A=ACOS	В	١	Return	Arc	Cosine value.
A=ATAN	В	`	Return	Arc	Tangent value.

SINH, COSH, TANH

Return Hyperbolic Sine, Hyperbolic Cosine, and Hyperbolic Tangent values.

A=SINH B	`	Return	Hyperbolic	Sine value of B.
A=COSH B	`	Return	Hyperbolic	Cosine value of B.
A=TANH B	`	Return	Hyperbolic	Tangent value of B.

SQR Return Square Root value.

A=SQR B 'Return square root value of B

EXP Return E^x.

A=EXP X

'Return E^{X} .

LOG, LOG10 Return LOG or LOG10 value.

A=LOG B or A=LOG10 B

Tips

"For natural logarithm (Ln), simply do: A= Log(B)/Log(Exp(1))"

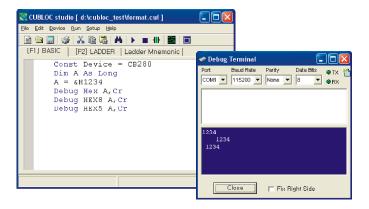
ABS Return Absolute value.(for long type)

Dim A As Long, B As Long B = -1234A=ABS B 'Return |B|. Debug Dec A 'Print 1234

FABS Return Absolute value.(for Single type)

FLOOR Round down to the whole number.

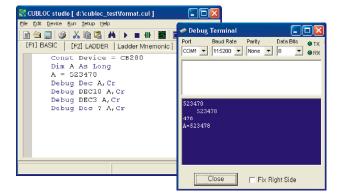
```
Dim A As Single, B As Single
B = 3.14
A=FLOOR B 'FLOOR 3.14 gives 3.
Debug Float A 'Print 3.0
```


Type Conversion

Type conversion can be used to convert the variable to desired bit representation.

HEX

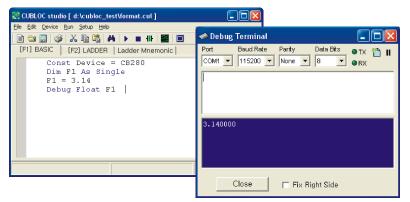
Converts the variable to hex (16 bit). HEX8 means to convert to 8 decimal places. (1 to 8 can be used for decimal places)


```
DEBUG HEX A 'if A is 123ABC, 123ABC is printed
DEBUG HEX8 A 'if A is 123ABC, bb123ABC is printed,
' b is a blank space in this case.
DEBUG HEX5 A 'if A is 123ABC, 23ABC is printed, first character
'is cut.
```


DEC

Converts the variable to a decimal (10 bit). DEC8 means to convert to 8 decimal places. (1 to 11 can be used for decimal places)

DEBUG DEC A	'If A is 1234, 1234 is printed.
DEBUG DEC10 A	' If A is 1234, bbbbbbb1234 is printed,
	' b is a blank space in this case.
DEBUG DEC3 A	'If A is 1234, 234 is printed, first
	' character is cut


?

Include the name of the variable by using question mark (?). This question mark can only be used with HEX or DEC.

DEBUG DEC ? A	'If A is 1234, "A=1234" will be printed.
DEBUG HEX ? A	'If A is ABCD, "A=ABCD" will be printed.
DEBUG HEX ? B	' If B is a sub-routine variable let's say of
	'sub-routine CONV, "B_@_CONV=ABCD"
	' will be printed. (B is in CONV)

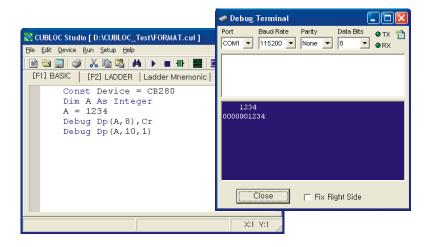
FLOAT Use FLOAT to convert floating point values to String.

Const Device = cb280 Dim Fl As Single Fl = 3.14 Debug Float Fl,cr ' Print "3.14000". Dim ST As String * 15 ST = Float Fl ' First store in a String. ST = Left(ST,3) ' Convert to 3 decimal places Debug ST ' Print "3.14".

You can also store into a string before printing debug statements or displaying to the LCD.

😵 CUBLOC studio [d:\cubloc_test\format.cul]	
<u>File Edit Device Run Setup H</u> elp	
Image: Second strain Image: Second strain Image: Second strain Image: Second strain Const Device = CB280 Dim F1 As Single Dim S1 As String * 12 F1 = 3.14 S1 = Float F1 Debug S1	Obbug Terminal Out Blaud Rate Parity Data Bits TX T II OUT III III
	3,140000
	Close Fix Right Side

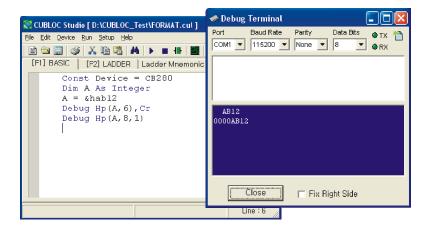
String Functions


String Ructions are provided to assist the user in accessing data within the String.

DP(Variable, Decimal Places, ZeroPrint)

The command DP converts Variable into decimal String representation.

If ZeroPrint is set to 1, zeros are substituted for blank spaces.


Dim A as Integer	
DEBUG DP(A,10,0)	Convert A into decimal String representation. Set display decimal places to 10.
	' If A is 1234, bbbbb1234 will be displayed.
	' (b stands for blank spaces.)
DEBUG DP(A,10,1)	' If A is 1234, 0000001234 will be displayed.

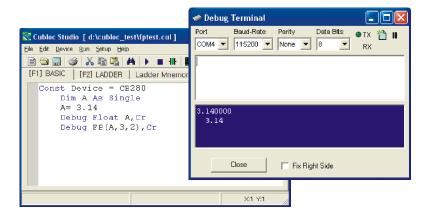
HP(Variable, Decimal Places, ZeroPrint)

This command HP converts Variable into hexadecimal String representation. If ZeroPrint is set to 1, zeroes are substituted for blank spaces.

DEBUG HP(A,4,0)	<pre>' Convert A into HEX String representation ' Set display decimal places to 4. ' If A is ABC, bABC will be displayed. ' (b stand for blank spaces.)</pre>	
DEBUG HP(A,4,1)	'If A is ABC, OABC will be displayed.	

FP(Value, Whole Number Digits, Fractional Number Digits)

Convert Floating Point variables into a formatted String with user defined whole and fractional number digits.


```
Dim A as Single

A = 3.14

DEBUG Float A `3.1400000 Prints all digits.

DEBUG FP(A,3,2) `3.14 Print user defined digits.
```

By using FP function, the user can control the number of digits to be used for string data when using Debug commands or displaying to an LCD.

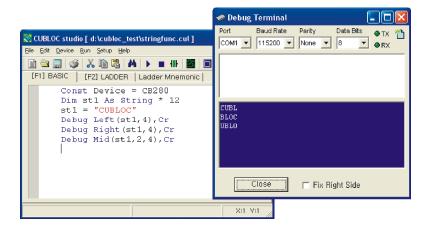
CUBLOC Floating Point Values are in accordance with the IEEE724 format. The values of FP() and Float may differ but the value stored in the variable will be the same.

LEFT(Variable, Decimal Places)

Cut specified decimal places of the String from the left side and return the value.

```
DIM ST1 AS STRING * 12
ST1 = "CUBLOC"
DEBUG LEFT(ST1,4) `"CUBL" is printed.
```

RIGHT(Variable, Decimal Places)


Cut specified decimal places of the String from the right side and return the value.

```
DIM ST1 AS STRING * 12
ST1 = "CUBLOC"
DEBUG RIGHT(ST1,4) `"BLOC" is printed.
```

MID(Variable, Location, Decimal Places)

Cut specified decimal places starting from the Location specified and return the value.

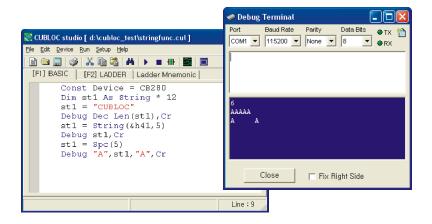
```
DIM ST1 AS STRING * 12
ST1 = "CUBLOC"
DEBUG MID(ST1,2,4) `"UBLO" is printed.
```


LEN(Variable)

Return the length of the String specified.

```
DIM ST1 AS STRING * 12
ST1 = "CUBLOC"
DEBUG DEC LEN(ST1) '6 is printed since there are 6 characters in ST1.
```

STRING(ASCII code, length)


Create a specified length String with specified ASCII code value.

```
DIM ST1 AS STRING * 12
ST1 = STRING(&H41,5)
DEBUG ST1 'AAAAA is printed. &H41 is ASCII code for character A.
```

SPC(decimal places)

Create specified amount of blank space

```
DIM ST1 AS STRING * 12 ST1 = SPC(5) DEBUG "A",ST1, "A" `AbbbbbA is printed. Here, b is for blank space.
```

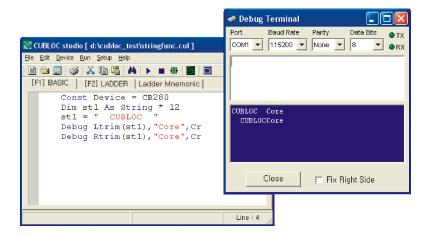

LTRIM(String variable)

Cut all blank spaces on the left side of the String and return the value.

```
DIM ST1 AS STRING * 12
ST1 = " COMFILE"
ST1 = LTRIM(ST1)
DEBUG "AAA",ST1 ' AAACOMFILE is printed.
```

RTRIM(String variable)

Cut all blank spaces on the right side of the String and return the value.


```
DIM ST1 AS STRING * 12

ST1 = "COMFILE"

ST1 = RTRIM(ST1)

DEBUG ST1,"TECH" COMFILETECH is printed.

' Blank spaces on the right are removed.
```

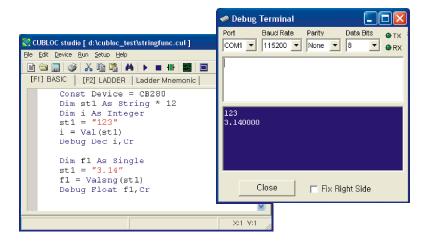

VAL(String variable)

Return a converted numerical value of the String.

```
DIM ST1 AS STRING * 12
DIM I AS INTEGER
ST1 = "123"
I = VAL(ST1) ` 123 is stored in variable I as a number.
```

VALSNG(String variable)

Return a converted floating point numerical value of the String.


```
DIM ST1 AS STRING * 12

DIM F AS SINCLE

ST1 = "3.14"

F = VALSNG(ST1) '3.14 is stored in variable F as a floating

' point number.
```


VALHEX(String variable)

Return a converted hexadecimal value of the String.

```
DIM ST1 AS STRING * 12
DIM I AS LONG
ST1 = "ABCD123"
I = VALHEX(ST1) '&HABCD123 is stored in variable I
```

CHR(ASCII code)

Return the character of desired ASCII code.

```
DIM ST1 AS STRING * 12
ST1 = CHR(&H41)
DEBUG ST1 ' Print A,. &H41 is ASCII code of character A.
```

ASC(String variable or Constant)

Return the converted ASCII code of the first character of the String.

```
DIM ST1 AS STRING * 12

DIM I AS INTEGER

ST1 = "123"

I = ASC(ST1) ` &H31 is stored in variable I. ASCII code of 1

` is &H31 or 0x31.
```

Caution 1

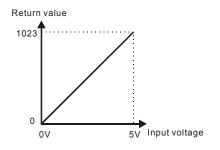
A variable must be used when using string functions.

```
DEBUG LEFT("INTEGER",4) ` A string by itself cannot be used.
ST1 = "INTEGER"
DEBUG LEFT(ST1,4) ` A string must be stored as a variable first.
```

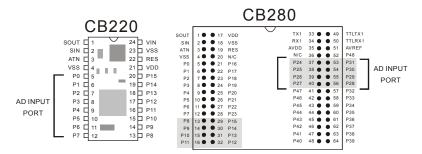
	🤝 Debug Terminal 📃 🗖 🔀
CUBLOC studio [d:\cubloc_test\chr.cul] File Edit Device Run Setup Help Image: State Setup Help Image: Setup Help	Port Baud Rate Parity Data Bits TX COM1 V 115200 V None V 8 V TX RX
st1 = "123" Debug Hex(Asc(st1)),Cr	Close Fix Right Side
	Line : 6

Chapter 6 CUBLOC BASIC Statements & Library

Adin()


Variable = ADIN (Channel)

Variable : Variable to store results (No String or Single) Channel : AD Channel Number (not I/O Pin Number)


CUBLOC has 10bit ADCs and 16bit PWMs. The user can use ADC to convert analog to digital signals or use PWM to convert digital to analog signal.

ADIN command reads the analog signal value and store the result in a variable. Depending on the model, the number of AD ports may vary. For the CB280, there are 8 AD ports (P24 to P31). The AD port **must be set to input** before use.

When voltage between 0 and AVREF in inputted, that voltage is converted to a value from 0 to 1023. AVREF can accept voltage between 2 to 5 V. Generally, 5V is used. If the user inputs 3V to AVREF, voltage between 0 and 3V is converted to a value between 0 and 1023. (*Note: CB220 AVREF is fixed to 5V)

Dim A As Integer Input 24 'Set port to input. A=Adin(0) 'Do a A/D conversion on channel 0 and 'store result in A The following is AD input ports shown for CB220 and CB280.

Please refer to the table below for AD channels.

	CB220	CB280	CB290	CT17X0	CB405
A/D channel 0	I/O 0	I/O 24	I/O 8	I/O 0	I/O 16
A/D channel 1	I/O 1	I/O 25	I/O 9	I/O 1	I/O 17
A/D channel 2	I/O 2	I/O 26	I/O 10	I/O 2	I/O 18
A/D channel 3	I/O 3	I/O 27	I/O 11	I/O 3	I/O 19
A/D channel 4	I/O 4	I/O 28	I/O 12	I/O 4	I/O 20
A/D channel 5	I/O 5	I/O 29	I/O 13	I/O 5	I/O 21
A/D channel 6	I/O 6	I/O 30	I/O 14	I/O 6	I/O 22
A/D channel 7	I/O 7	I/O 31	I/O 15	I/O 7	I/O 23
A/D channel 8					I/O 32
A/D channel 9					I/O 33
A/D channel 10					I/O 34
A/D channel 11					I/O 35
A/D channel 12					I/O 36
A/D channel 13					I/O 37
A/D channel 14					I/O 38
A/D channel 15					I/O 39

ADIN command only converts once upon execution. In comparison TADIN returns the average of 10 conversions, there by giving the user more precise results. If you need more precision, we recommend the use of TADIN instead of ADIN.

Alias

ALIAS Registername = AliasName

Registername : Register name such as P0, M0, T0 (Do not use D area) AliasName : An Alias for the Register chosen (up to 32 character)

Aliases may be made up for Registers like P0, M0, C0. With Aliases, the user will be able to write more clear and easy-to-read code.

Alias MO = Rstate Alias MO = Kstate Alias PO = StartSw

Bcd2bin

Variable = BCD2BIN(bcdvalue) Variable : Variable to store results (Returns LONG) bcdvalue : BCD value to convert to binary

This command does the exact opposite of BIN2BCD command.

Dim A As Integer A=Bcd2bin(&h1234) Debug Dec A ' Print 1234

Bclr

BCLR channel, buffertype channel : RS232 Channel (0 to 3) buffertype : 0=Receive, 1=Send, 2=Both

Clear the specified RS232 Channel's buffer. Buffer type can be chosen.

Bclr 1,0`Clear RS232 Channel 1's rx bufferBclr 1,1`Clear RS232 Channel 1's tx bufferBclr 1,2`Clear RS232 Channel 1's rx & tx buffers

Beep

BEEP Port, Length Port : Port number (0 to 255) Length : Pulse output period (1 to 65535)

The BEEP command is used to create a beep sound. Piezo or a speaker can be connected to the Port. A short beep will be outputted. This is useful for creating Key touch sound effects or alarm sounds. When this command is used, the specified Port is automatically set to output.

BEEP 2, 100 'Output BEEP on P2 for a period of 100

PIEZO

Bfree()

Variable = BFREE(channel, buffertype) Variable : Variable to store results (No String or Single) channel : RS232 Channel number (0 to 3) buffertype: 0=Receive Buffer, 1=Send Buffer

This function will return the number of free bytes that either receive buffer or send buffer has currently. For sending data, this command can be used to avoid overflowing the buffer.

DIM A AS BYTE OPENCOM 1,19200,0, 100, 50 IF BFREE(1,1)>10 THEN PUT "TECHNOLOGY" END IF

If buffer size is set to 50, up to 49 free bytes can be returned. The function will return 1 less than the set buffer size when buffer is empty.

Bin2bcd

Variable = BIN2BCD(binvalue) Variable : Variable to store results (Returns Long) binvalue : Binary value to be converted

This command BIN2BCD converts binary value to BCD code. BCD code is a way of expressing binary values as decimals.

For example. 3451 in binary is as shown below:

The below is 3451 converted to BCD code. As you can see, each 4 bits represent one of the digits.

This command is useful when the user needs to convert a variable to be representable in a device such as the 7 segment display.

```
i = 123456
j = bin2bcd(i)
Debug Hex j ` Print 123456
```

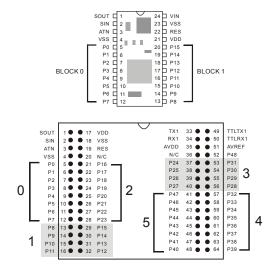
Blen()

Variable = BLEN(channel, buffertype) Variable : Variable to store results (No String or Single) channel : RS232 Channel number (0 to 3) buffertype: 0=Receive Buffer, 1=Send Buffer

This function Blen() returns current number of bytes of data in the specified RS232 Channel's buffer. If the buffer is empty, 0 will be returned. When receiving data, this function can be used to check how much data has been received before using GET or GETSTR to read the data received.

If the receive buffer is full, it will not be able to receive any more data. To avoid these situations, receive interrupts should be used or plenty of receive buffer size should be used.

```
Dim A As Byte
Opencom 1,19200,0,100,50
On Recv1 DATARECV RTN
                         ' When data is received through
                         ' RS232, jump to DATARECV RTN
Do
Loop
                         ' infinite loop
DATARECV RTN:
     If Blen(1,0) > 0 Then
                                ' If there is at least 1 byte...
         A = Get(1)
                                ' Read 1 Byte
    End If
                                ' End Interrupt routine
Return
```


Bytein()

Variable = BYTEIN(PortBlock) Variable : Variable to store results (No String or Single) PortBlock : I/O Port Block Number (0 to 15)

Read the current status of the I/O Port Block. 8 I/O ports are collectively called as a Port Block. Port 0 to 7 is Block 0 and Port 8 to 15 is Block 1. Depending on the model of CUBLOC, the Port Block number can vary. When using this command, all I/O Ports within the Port Block are set to input and the received input value is stored in a variable.

```
DIM A AS BYTE
A = BYTEIN(0) 'Read from Port Block 0 and store in variable A.
```

The following is how Port Blocks are set according to the CUBLOC model.

Byteout

BYTEOUT PortBlock, value PortBlock : I/O Port Block Number. (0 to 15) value : Value to be outputted between 0 and 255.

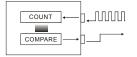
Output the value to a Port Block. 8 I/O Ports are collectively called as a Port Block.

Port 0 to 7 is Block 0 and Port 8 to 15 is Block 1. Depending on the model of CUBLOC, the Port Block number can vary. When using this command, all I/O Ports within the Port Block are set to output and the value is outputted.

Byteout 1,255 'Output 255 to Port Block 1. 'Ports 8 through 15 are set to HIGH.

* I/O Port 1 only supports input. Therefore, BYTEOUT 0 will not set Port 1 to Output.

CheckBf()


Variable = CheckBf(channel) Variable : Variable to store results (No String or Single) channel : RS232 Channel (0 to 3)

Without affecting the RS232 receive buffer, the command CheckBf() can be used to check the current data in the receive buffer. Although it will read what is in the buffer, it will not erase the data after reading unlike the GET command. Only 1 byte can be read at a time.

A = Checkbf(1) 'Check current data in the receive buffer

Compare

COMPARE channel, target#, port, targetstate Channel : High Counter channel Target# : Target # of Pulses (CH0: 0 to 65535, CH1: 0 to 255) Port : Output Port (DO NOT USE Input-only Ports) Targetstate : Target Output Port State

When high counter value reaches a set target point, the processor will set an I/O Port to Low or High.

If Targetstate is set to 1 and when the Target number of pulses have been received, the Port will output logic HIGH. Likewise, if the Targetstate is set to 0 and when the Target number of pulses have been received, the Port will output logic LOW.

Channel	Compare Range
HCOUNT Channel 0	0 to 255
HCOUNT Channel 1	0 to 65535

The high counter itself supports upto 32-bits, but the COMPARE command is limited since this command was designed to not affect the overall multi-tasking of the CUBLOC main processor.

*Note: For channel 0, please use the Set Count0 On command before using the Compare command.

```
Dim i As Integer
Set Count0 On
Compare 0,10,61,1
Do
i = Count(0)
Debug Goxy,0,0,dec4 i,Cr
Delay 100
Loop
```

The above uses High Counter Channel 0 with target # of 10. When the Counter 0 value becomes 11, Port 61 will ouput logic HIGH.

🥔 Debug	Terminal				
Port COM1 💌	Baud-Rate	Parity None	Data Bits 8	● TX ● RX	1
11					
	Class				
	Close	J Fix Rig	ht Side		

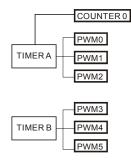
This command is supported for CUBLOC STUDIO 2.0.X and above.

Count()


Variable = COUNT(channel) Variable : Variable to store results. (No String or Single) Channel : Counter Channel number (0 to 1)

Return the counted value from the specified Count Channel. Please set the Counter Input Ports to input before use of this command.

Up to 32bits can be counted. (Byte, Integer, Long) Maximum frequency is 500kHz.


CUBLOC's counter is hardware driven, meaning it runs independently from the main program. It is able to count in real-time. No matter how busy the CUBLOC processor gets, counter will count reliably.

CUBLOC has 2 Counter inputs. Counter Channel 0 uses same resources as PWM0, 1, 2 and cannot be used together. But you are free to use Counter Channel 1 as freely as you'd like. To use Counter Channel 0, SET COUNT0 command must be used beforehand. Channel 1 requires no additional settings.

Dim R As Integer	
Input 15	' Set port 15 as input. (Counter Channel 1)
R = Count(1)	' Read current Counter value.
Set Count0 On	Activate Counter Channel 0(PWM0,1,2 becomes deactivated.)
Input 14 R = Count(0)	Set port 14 as input (Counter Channel 0)Read current Counter value.

Since counter 0 uses the same resources as Pwm as shown below, please be careful. Not to use PWM at the same time.


```
١
١
     Measure frequency from pulse output PWM 0 channel
Const Device = CB280
Dim A as Integer
Input 15
Low 5
Freqout 0,2000
Low 0
On Timer(100) Gosub GetFreq
Do
Loop
GetFreq:
A = Count(1)
Debug goxy, 10, 2
Debug dec5 A
Countreset 1
Reverse 0
Return
```

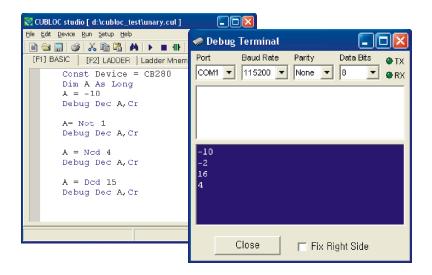
Countreset

COUNTRESET channel Channel : Counter Channel (0 to 1)

Reset the specified Counter Channel to 0.

Countreset 0 'Clear Channel 0 Countreset 1 'Clear channel 1

Dcd


Variable = DCD source

Variable : Variable to store results. (No String or Single) Source : source value

This command DCD is opposite of NCD command.

It will return the bit position(starting at LSB bit 0) of the highest bit that is a 1.

I = DCD 15 ' Result is 3 since 15 = 0b00001111

DEBUG data

data : data to send to PC

CUBLOC supports DEBUG command by allowing the user to insert DEBUG commands as he wishes during the execution of a program.

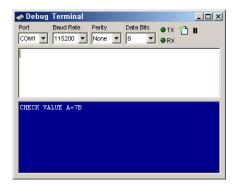
The results of DEBUG commands inserted in the source code is displayed on the DEBUG Terminal.

DIM A AS INTEGER	🧼 Debug	Terminal				<u>- 0 ×</u>
A = 123	Port	Baud Rate	Parity None 💌	Data Bits	● TX ● RX	*
DEBUG DEC A		,	,			
	123					

Use DEC or HEX to display numbers. Without DEC or HEX, the numbers will be printed as ASCII codes. Please use DEC or HEX for variables to see the actual values.

If you insert question mark (?) before DEC or HEX, the variable's name will be printed together.

DEBUG	DEC?	A CP	🧼 Debug	Terminal			- D ×
			Port	Baud Rate	Parity	Data Bits	🛛 тх 🎌 🗉
DEBUG	HEX?	A,CR	COM1 🔻	115200 🔻	None 🔻	8 -	@RX
			A=123 A=7Β				


You can also use numbers to limit the number of decimal places to print.

1 through 8 can be used with HEX. HEX8 will print as 8 digit hexadecimal number. 1 through 10 can be used with DEC.

You are free to mix strings, numbers, and etc...

DEBUG "CHECK VALUE " HEX? A, CR

DEBUG command is useful for printing out strings and numbers in a user friendly format. During execution of CUBLOC BASIC program, when DEBUG command is encountered, the resulting values are displayed on the DEBUG Terminal.

If you insert a DEBUG command to a certain part of the program and the DEBUG Terminal displays the values during execution, it proves that the program has executed to that point. By using these DEBUG commands, you will be able to find bugs in your program and monitor variables change in real-time.

If you enter character in the white part of the Debug Terminal, it will be sent to the DOWNLOAD port of CUBLOC. We have added this feature for future/advanced development.

Warning

DEBUG command may not be used while monitoring in Ladder Logic. Likewise, Ladder Logic monitoring can not be used while debugging using DEBUG commands.

The following is a chart of commands that can be used with the DEBUG command. You can control the DEBUG screen just like a real LCD.

Command	Code	Explanation	Example Usage	
CLR	0	Clear Debug screen	Debug CLR	
HOME	1	Move cursor to the upper left corner of	Debug HOME	
		the Debug screen		
GOXY	2	Move cursor to X, Y	Debug GOXY, 4, 3	
CSLE	3	Move cursor one to the left.		
CSRI	4	Move cursor one to the right		
CSUP	5	Move cursor one up		
CSDN	6	Move cursor one down		
BELL	7	Make beeping sound		
BKSP	8	BACK SPACE		
LF	10	LINE FEED	Debug "ABC",LF	
CLRRI	11	Erase all characters on the right of		
		cursor to the end of line.		
CLRDN	12	Erase all characters on the bottom of		
		cursor		
CR	13, 10	Carriage Return (go to next line)	Debug, "ABC",CR	

You must use above commands in line with the DEBUG command.

Debug Goxy, 5, 5, Dec I Debug Clr, "TEST PROGRAM"

Decr

DECR variable

Variable : Variable for decrementing. (No String or Single)

Decrement the variable by 1. (similar to "A - -" in C language)

Decr A 'Decrement A by 1.

Delay DELAY time

Time : interval variable or constant (up to Long type)

Delay for the specified time in milliseconds. Delay should be only used for slight delays in getting something to work. We recommend not using it for time measurements and time-specific applications.

Delay	10	`	Delay	about	10 r	ns.
Delay	200	`	Delay	about	200	ms.

Delay is pre-made system's sub program.

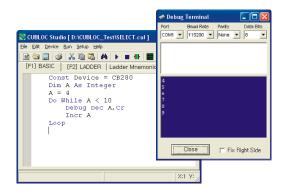
```
sub delay(dl as long)
    dl1 var long
    dl2 var integer
    for dl1=0 to dl
    for dl2=0 to 1
        nop
        nop
        nop
        next
    next
    end sub
```

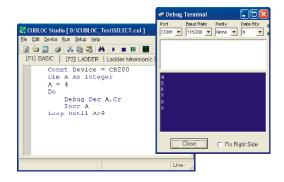
Do...Loop

DO...LOOP will loop the commands within itself unless DO WHILE or DO UNTIL is used to set a condition in which DO...LOOP can be terminated. EXIT DO command can also be used within the DO...LOOP to exit from the loop.

```
Do
Commands
Loop
Dim K As Integer
Do
K=Adin(0)
Debug Dec K,Cr
Delay 1000
Loop
```

In the above example, the program will loop infinitely within DO and LOOP. EXIT DO or GOTO command must be used to get out of the infinite loop.


```
Do While [Condition]
Commands
[Exit Do]
Loop
Do
Commands
[Exit Do]
Loop While [Condition]
```


DO...WHILE will infinitely loop until condition in WHILE is met.

```
Do Until [Condition]
Commands
[Exit Do]
Loop
Do
Commands
[Exit Do]
Loop Until [Condition]
```

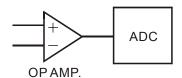
DO..UNTIL will infinitely loop until condition in UNTIL is met.

DEMO PROGRAM

Dtzero

DTZERO variable

Variable : Variable for decrement. (No String or Single)


Decrement the variable by 1. When variable reaches 0, the variable is no longer decremented.

DTZERO A ' Decrement A by 1.

EAdin()

Variable = EADIN (mux) Variable : Variable to store results (No String or Single) mux : AD input Port Combination MUX (0 to 21)

This command is used for a more precise AD conversion. CUBLOC has an internal OPAMP. When using ADIN command, the OPAMP is not used. By using this command EAdin, the user can utilize the OPAMP for more precise results.

Please set the MUX value accordingly by following the chart below:

MUX	OPAMP +	OPAMP -	Multiplier	Resolution
0	ADC0	ADC0	10	8 Bits
1	ADC1	ADC0	10	8 Bits
2	ADC0	ADC0	200	7 Bits
3	ADC1	ADC0	200	7 Bits
4	ADC2	ADC2	10	8 Bits
5	ADC3	ADC2	10	8 Bits
6	ADC2	ADC2	200	7 Bits
7	ADC3	ADC2	200	7 Bits
8	ADC0	ADC1	1	8 Bits
9	ADC1	ADC1	1	8 Bits
10	ADC2	ADC1	1	8 Bits
11	ADC3	ADC1	1	8 Bits
12	ADC4	ADC1	1	8 Bits
13	ADC5	ADC1	1	8 Bits
14	ADC6	ADC1	1	8 Bits
15	ADC7	ADC1	1	8 Bits
16	ADC0	ADC2	1	8 Bits
17	ADC1	ADC2	1	8 Bits
18	ADC2	ADC2	1	8 Bits
19	ADC3	ADC2	1	8 Bits
20	ADC4	ADC2	1	8 Bits
21	ADC5	ADC2	1	8 Bits

The EADIN port must be set to input beforehand. By using the OPAMP, more precise results or a noise-filtering effect can be obtained.

The EADIN command does not support full 10-bit resolution that the regular EADIN supports. When using 1X and 10X multipliers, 8-bit resolution is used. When using 8X and 200X multipliers, 7-bit resolution is used.

WARNING: The OPAMP has characteristics that it will read between 0.5V and 4.5V. With the CB405, EADIN command can only be used with Channel 0 through 7.

Please refer to the following table for AD Channel and its corresponding Port Number according to your CUBLOC module or CUTOUCH:

Channel	CB220	CB280	CB290	CT17X0	CB405
ADC0	I/O 0	I/O 24	I/O 8	I/O 0	I/O 16
ADC1	I/O 1	I/O 25	I/O 9	I/O 1	I/O 17
ADC2	I/O 2	I/O 26	I/O 10	I/O 2	I/O 18
ADC3	I/O 3	I/O 27	I/O 11	I/O 3	I/O 19
ADC4	I/O 4	I/O 28	I/O 12	I/O 4	I/O 20
ADC5	I/O 5	I/O 29	I/O 13	I/O 5	I/O 21
ADC6	I/O 6	I/O 30	I/O 14	I/O 6	I/O 22
ADC7	I/O 7	I/O 31	I/O 15	I/O 7	I/O 23

Eeread()

Variable = EEREAD (Address, ByteLength) Variable : Variable to store result (No String or Single) Address : 0 to 4095 ByteLength : Number of Bytes to read (1 to 4)

Read data from the specified address in EEPROM.

DIM A AS INTEGER DIM B AS INTEGER A = 100 EEWRITE 0,A,2 `Store A in Address 0. B = EEREAD(0,2) `Read from Address 0 and store in B.

Eewrite

EEWRITE Address, Data, ByteLength Address : 0 to 4095 Data : Data to write to EEPROM (up to Long type values) ByteLength : Number of Bytes to write (1 to 4)

Store data in the specified Address in EEPROM.

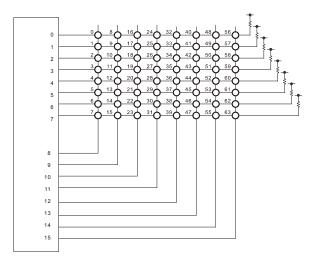
```
Dim A As Integer
Dim B As Integer
A = 100
Eewrite 0,A,2 ' Store A in Address 0.
B = Eeread(0,2) ' Read from Address 0 and store in B.
```

When writing to the EEPROM, it takes about 3 to 5 milliseconds. When reading from the EEPROM, it takes less than 0 milliseconds. There is a physical limit of around 100,000 writes to the EEPROM.

If you are using EEPROM for data acquisition or data that requires a lot of writes, we rather recommend use of the data memory with backup battery included modules such as the CB290.

The following is a table showing comparisons betweens SRAM and EEPROM.

Туре	Battery Backup SRAM	EEPROM
Life of Data	3 Months to 1 Year	40 Years
	(Depending on Battery	
	Capacity)	
Maximum Writes	Infinite	About 100,000
Writing Time	0 ms	3 to 5 ms
General use	Backup Necessary Equipment in the case of power outage.	Small amount of data to record.
	Example) Production Line	Long data life requirement.
	Counter	Example) Product Serial
		Number


Ekeypad

Variable = EKEYPAD(portblockIn, portblockOut) Variable : Variable to store results (Returns Byte) PortblockIn : Port Block to receive input (0 to 15) PortblockOut : Port Block to output (0 to 15)

This command EKEYPAD extends KEYPAD to read up to 64 key inputs. Two Port Blocks can be used to read up to 64 key inputs. Input Port Block and output Port Block must be selected separately.

For ports not used within the input Port Block, a resistor must be connected to 5V. This Port may not be used for other purpose when using this command.

For ports not used within the output Port Block, they can be left in OPEN state. This Port also may not be used for other purposes. The following is an example of using Port Block 0 as input and Port Block 1 as output.

If no keys are pressed, 255 will be returned. Otherwise, the pressed key's scan code will be returned.

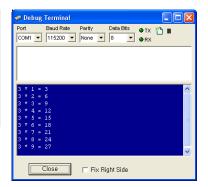
For...Next

FOR...NEXT will loop the commands within itself for a set amount of times.

In the below example, Incremental Step is not set. FOR...NEXT loop will increment 1 every loop as default.

EXIT FOR command can be used within the FOR...NEXT loop to exit any desired moment.

```
For K=0 To 10
Debug Dp(K),CR
If K=8 Then Exit For 'If K equals 8 exit the FOR...NEXT loop.
Next
```


When choosing a variable to use for FOR...NEXT loop, please make sure the chosen variable is able to cover desired range. Byte variables can cover from 0 to 255. For larger values, a variable with larger range must be chosen.

```
Dim K As Byte
For K=0 To 255
Debug Dp(K),CR
Next
```

When using negative STEP, please choose LONG as it can handle negative numbers.

DEMO PROGRAM

```
Const Device = CB280
Dim A As Integer
For A=1 To 9
Debug "3 * "
Debug Dec A
Debug " = "
Debug Dec 3*A,Cr
Next
```



```
🧼 Debug Terminal
                                                                    Const Device = CB280
                                     Port Baud Rate Parity Data Bits TX T
Dim A As Integer, B As Integer
For A=2 To 9
       For B=1 To 9
         Debug Dec A," * "
         Debug Dec B
         Debug " = "
         Debug Dec A*B,Cr
       Next
       Debug Cr
Next
                                         Close
                                                Fix Right Side
```

Freepin

FREEPIN I/O I/O : I/O PORT Number

Free I/O Port set to LADDER using Usepin back to BASIC (Use with CUBLOC STUDIO V2.0.X and above)

Freqout

FREQOUT Channel, FreqValue Channel : PWM Channel (0 to 15) FreqValue : Frequency value between 1 and 65535

Output desired frequency to the desired PWM channel. Please make sure to specify the PWM channel, not I/O port number. For CB220 and CB280, ports 5,6, and 7 are PWM Channel 0,1, and 2, respectively.

The following is a basic chart showing the different FreqValues and corresponding frequencies. 1 is for the highest possible frequency and 65535 is for the lowest possible frequency. 0 does not produce any output.

FreqValue	Frequency
1	1152 KHz
2	768 kHz
3	576 KHz
4	460.8KHz
5	384 KHz
10	209.3 KHz
20	109.7 KHz
30	74.4 KHz
100	22.83 KHz

FreqValue	Frequency
200	11.52 KHz
1000	2.3 KHz
2000	1.15 KHz
3000	768 Hz
4000	576 Hz
10000	230 Hz
20000	115.2 Hz
30000	76.8 Hz
65535	35.16 Hz

You can also calculate the FreqValue to use by using the following formula:

FreqValue = 2304000 / Desired Frequency

Before using this command, please set the specified PWM Port to output mode. To stop PWM, you can use the command PWMOFF. The following is an example:

```
Const Device = cb280

Dim i As Integer

Low 5 'Set Port 5 to low and output.

i = 1

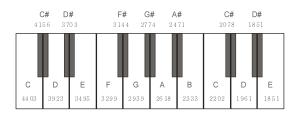
Freqout 0,10 'Produce a 209.3Khz wave

Do 'Infinite loop

Loop
```

Since Freqout uses the same resources as PWM, there are a couple of restrictions you must be aware of. PWM Channel 0,1, and 2 use the same timer. If PWM Channel 0 is used for Freqout command, channel 0,1, and 2 all cannot be used for PWM command.

Likewise, PWM Channel 3, 4, and 5 act the same. If you use Freqout on PWM Channel 3, PWM Channels 3, 4, and 5 cannot be used for PWM command.


You can product different frequencies on PWM Channel 0 and 3.

To sum up, the user may produce two different frequencies at one time and when using the Freqout command, the PWM command cannot be used.

The following is a chart that shows corresponding FreqValue to the music notes.

Note	Octave 2	Octave 3	Octave 4	Octave 5
A	20945	10473	5236	2618
Bb	19770	9885	4942	2471
В	18660	9330	4665	2333
С	17613	8806	4403	2202
Db	16624	8312	4156	2078
D	15691	7846	3923	1961
Eb	14811	7405	3703	1851
E	13979	6990	3495	1747
F	13195	6597	3299	1649
Gb	12454	6227	3114	1557
G	11755	5878	2939	1469
Ab	11095	5548	2774	1387

Freqout 0,5236 Freqout 0,1469 ` Note A in Octave 4(440Hz) ` Note G in Octave 5

Get()

Variable = GET(channel, length) Variable : Variable to store results (Cannot use String, Single) channel : RS232 Channel (0 to 3) length : Length of data to receive (1 to 4)

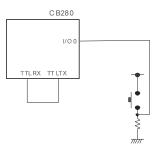
Read data from RS232 port. This command Get() actually reads from the receive buffer. If there is no data in the receive buffer, it will quit without waiting for data.

The command BLEN() can be used to check if there is any data in the receive buffer before reading trying to read data.

The length of data to be read must be between 1 and 4. For receiving a Byte type data, it would be one. For receiving a Long type data, it would be 4. For larger data, please use GETSTR().

TIPS

Use SYS(1) after GET() or GETSTR() to verify how much data was actually read. If 5 bytes were received and only 4 bytes got verified, 1 byte was lost.


```
Const Device = cb280
Dim A as Byte
Opencom 1,115200,3,50,10
On Recv1 Gosub GOTDATA
Do
     Do while In(0) = 0
                           'Wait until press button (Connect PO)
     Loop
     Put 1, asc("H"), 1
     Put 1, asc("E"), 1
     Put 1, asc ("L"), 1
     Put 1, asc ("L"), 1
     Put 1, asc("0"), 1
     Put 1,13,1
                           'HELLO + Chr (13) + Chr (10)
     Put 1,10,1
     Do while In(0) = 1
     Loop
Loop
GOTDATA:
     A=Get(1,1)
     Debug A
     Return
```

Geta

GETA channel, ArrayName, bytelength channel : RS232 Channel (0 to 3) ArrayName : Array to store Received data (Byte type only) Bytelength : Number of Bytes to store (1 to 65535)

The command Geta can be used to store received RS232 data into a Byte array. Data will be stored starting from the first element of the array. Again, please check the receive buffer with BLEN() before reading to avoid reading garbage data.

```
Const Device = cb280
Dim A(10) As Byte
Opencom 1,115200,3,50,10
Set Until 1,8
On Recv1 Gosub GOTDATA
Do
    Do While In(0) = 0
    Loop
                          ' Wait until press button (Connect PO)
    Putstr 1, "CUBLOC", Cr
    Do While In(0) = 1
    Loop
Loop
GOTDATA:
    Geta 1, A, 8
    Debug A(0), A(1), A(2), A(3), A(4), A(5), A(6), A(7)
    Return
```


Geta2

GETA channel, ArrayName, bytelength, stopchar channel : RS232 Channel (0 to 3) ArrayName : Array to store Received data (Byte type only) Bytelength : Number of Bytes to store (1 to 65535) Stopchar : Stop character ascii code

Same as GETA command except it will stop reading data at the StopChar even if there are data left to read set by the Length. If StopChar is not found, then it will operate just like a GETA command. (StopChar is stored into the String Variable)

You can use SYS(1) command to read # of bytes read afterwards.

```
Dim A(10) As Byte
Opencom 1,19200,0,50,10
Geta2 1,A,20,10 ` Read until Stop Character ascii code 10 is found
                    ` or 20 bytes have been read
```

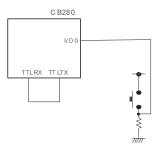
Use with CUBLOC STUDIO 2.0.X and above.

Getcrc

GETCRC Variable, ArrayName, Bytelength variable : String Variable to store results (Integer type) ArrayName : Array with data(Must be a Byte array) Bytelength : # of bytes to calculate CRC

This function is for calculating CRC when using MODBUS RTU Master Mode. GETCRC will return a 16-bit integer CRC value of the set Array. You can set the number of bytes to use for CRC calculation from the Array starting at 0.

```
Const Device = CB280
Opencom 1,115200,3,80,20
Set Modbus 1,9
Dim A(20) As Byte
Dim B As Integer
Ramclear
Usepin 0,Out
Usepin 9,Out
Set Ladder On
A(0) = 9
A(1) = 2
A(2) = 3
A(3) = 0
A(4) = 10
A(5) = 23
Getcrc B,A,6
                     'Name of Array.
Debug Hex B,Cr
```


* Please use byte arrays when using this function.

Getstr()

Variable = GETSTR(channel, length) Variable : String Variable to store results channel : RS232 Channel length : Length of data to receive

Same as Get() except the variable to store results can only be String and length of data is not limited.

```
Const Device = cb280
Dim A As String * 10
Opencom 1,115200,3,50,10
Set Until 1,8
On Recv1 Gosub GOTDATA
Do
     Do While In(0) = 0
    Loop
                         ' Wait until press button (Connect PO)
     Putstr 1, "CUBLOC", Cr
     Do While In(0) = 1
     Loop
Loop
GOTDATA:
     A=Getstr(1,8)
     Debug A
     Return
```


Getstr2()

Variable = GETSTR(channel, length, stopchar) Variable : String Variable to store results channel : RS232 Channel length : Length of data to receive StopChrar : Stop character ascii code

Same as GETSTR command except it will stop reading data at the StopChar even if there are data left to read set by the Length. If StopChar is not found, then it will operate just like a GETSTR command. (Use with CUBLOC STUDIO 2.0.X and above.)

Gosub..Return

GOSUB command can call a sub-routine. RETURN command must be used at the end of the sub-routine.

```
GOSUB ADD_VALUE:
ADD_VALUE:
A=A+1
RETURN
```

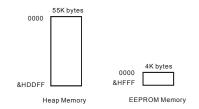
Goto

GOTO command will instruct the current Program to jump to specified label. This is part of every BASIC language but we do not recommend the use of GOTO as it can interfere with structural programming.

```
If I = 2 Then
Goto LAB1
End If
LAB1:
I = 3
```

About Label...

A Label can be set with character `:' to set a point for GOTO or GOSUB to jump to.


```
ADD_VALUE:
LINKPOINT:
```

A label cannot use reserved constants, numbers, or included a blank space. Below are some **not-to-do** examples:

Ladder:	'Reserved constant
123:	'Number.
Aboot 10:	'Blank space.

HEAP Memory Access

The HEAP memory access is a special feature only available on the CB405 module. The new CUBLOC CB405 has a HEAP memory. The user may use this memory from address 0 through 56831 in byte units or 0 through &HDDFF in hex. There's about 55KB of memory. You can store large data for graphics, temperature tables, etc...etc... With a backup battery, the HEAP memory can be used similar to an EEPROM memory.

There are 5 types of HEAP memory access functions.

Function	Syntax	Feature
HEAPCLEAR	Heapclear	Erase the entire Heap memory.
HREAD	Variable = HREAD(Address, Length)	Read the designated number of bytes set by Length from the Heap memory address and store into a variable.
HWRITE	HWRITE Address, Variable, Length	Store the designated number of bytes set by Length to the Heap memory Address.
HEAPW	HEAPW Address, Variable	Store one byte to the Heap memory Address.
HEAP	Variable = HEAP(Address)	Read one byte from the Heap memory Address and store into a variable.

Hread()

Variable = HREAD (Address, ByteLength) Variable : Variable to store results Address : HEAP memory address ByteLength : # of bytes to read, constant or variable (1to4)

Read data from the HEAP memory address. You can read up to a maximum of 4 bytes at a time.

Hwrite

HWRITE Address, Data, ByteLength Address : HEAP memory address Data : Constant or Variable with data (whole numbers only) ByteLength : # of bytes to write

Write data in HEAP memory address.

```
DIM A AS INTEGER

DIM B AS INTEGER

A = 100

HWRITE 0,A,2 `Write integer A to address 0.

B = HREAD(0,2) `Read from address 0 and store in B.
```

NOTE

EEREAD and EEWRITE have same syntax as HREAD and HWRITE.

Function	Memory Type	Feature	
EEWRITE, EEREAD	EEPROM	Retains data during power-cycles without a battery. EEWRITE command takes about 5mS. 4KB of available memory	
HREAD, HWRITE	SRAM	Retains data during power-cycles with a backup battery. Without a backup battery, data is lost. HWRITE command takes about 20 micro-seconds to execute. Faster speed in comparison with EEWRITE. 55KB of available memory	

Heapclear

HEAPCLEAR

Clear all 55KB of HEAP memory to 0.

Heap() Variable = HEAP (Address) Variable : Variable to store results Address : HEAP memory address

Heap() function returns 1 byte of data from the HEAP memory address.

Heapw

HEAPW Address, Data Address : HEAP memory address Data : Constant or Variable with data (Byte only)

Write 1 byte of data to Heap memory address.

HEAP Memory Address

The HEAP memory is divided into byte unit addresses. When a LONG variable is stored, 4 bytes is stored, and 4 memory addresses are used.

```
HWRITE 0, &H1234ABCD, 4
```

0	CD
1	AB
2	34
3	12

As you can see in the above table, when a LONG variable is stored in HEAP memory address 0, four memory addresses are taken.

```
HWRITE 0, &HABCD, 2
HWRITE 1, &H6532, 2
```

The above example will overwrite HEAP memory address 1. Please be careful to not overwrite your data.

DEMO PROGRAM

```
Const Device = CB405

Dim A As Byte

Dim I As Long,J As Long

I = &HABCD1234

Heapclear

Hwrite 0,I,4

Do

Heapw 56830,100

Heapw 56831,123

Debug Dec Heap(56830),Cr

Debug Dec Heap(56831),Cr

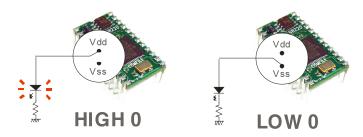
J = Hread(0,4)

Debug Hex J,Cr

Delay 100

Loop
```

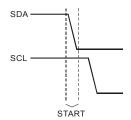
High


HIGH Port

Port : I/O Port number

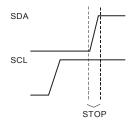
Set the Port to HIGH state. This command sets the Port to output state and outputs HIGH or 5V.

OUTPUT 8 'Set Port 8 to output state. HIGH 8 'Set Port 8 to HIGH (5V).


When a port is set to High, the port is internally connected to VDD, whereas if it's set to Low, the port is internally connected to VSS.

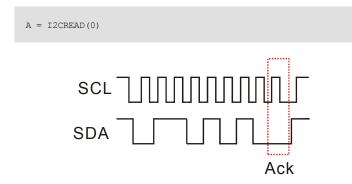
I2Cstart

I2CSTART


Set I2C SDA and SCL to Start mode. After this command, SDA and SCL go LOW.

I2Cstop

I2CSTOP


Set I2C SDA and SCL to Stop mode. After this command, SDA and SCL go HIGH.

I2Cread()

Variable = I2CREAD(dummy) Variable : Variable to store results. (No String or Single) dummy : dummy value. (Normally 0)

Read a byte from the I2C Ports set by SET I2C command. Use any value for dummy value.

This command will send back acknowledge ACK signal back to the slave I2C device. After reading a byte, a SCL pulse will be send while SDA is kept LOW. This will send back an acknowledge signal to your I2C slave device.

I2Creadna()

A = I2CREADNA(0)

Variable = I2CREADNA(dummy) Variable : Variable to store results. (No String or Single) dummy : dummy value. (Normally 0)

Same function as I2CREAD command without acknowledgement.

SCL

I2Cwrite()

Variable = I2CWRITE data Variable : Acknowledge (0=Acknowledged, 1=No Acknowledgement) data : data to send (Byte value : 0 to 255)

Send one byte of data through I2C. This command creates Acknowledge pulse and returns 0 if there is acknowledgement and 1 if there isn't. If there is no acknowledgement, it could mean two things. Either I2C lines are not connected properly or power is not supplied correctly. In case this happens, please setup an error processing function such as below:

IF I2CWRITE (DATA) =1 THEN GOTO ERR_PROC

When you don't need to check for acknowledgement you can just use any variable to receive the acknowledgement as shown below:

A = I2CWRITE (DATA)

One byte of data transfer takes approximately 60 micro-seconds. Please refer to Chapter 8 "About I2C..." for detailed I2C communications description.

If..Then..Elseif...Endif

You can use If...Then...Elseif...Else...EndIf conditional statements to set conditions for your program.

```
If Condition1 Then [Expression1]
    [Expression2]
[Elseif Condition2 Then
    [Expression3]]
[Else
    [Expression4]]
[End If]
```

Usage 1

If A<10 Then B=1

Usage 2

If A<10 Then B=1 Else C=1

Usage 3

If A<10 Then	۰*	When using	more than 1 line	e of if,
B=1 End If	۰*	do not put	any Expressions	after "Then".
End II				

Usage 4

If A<10 Then B=1 Else C=1 End If

Usage 5

Usage 6

5	If A<10 Then
5 If A<10 Then B=1 Elseif A<20 Then C=1	B=1 Elseif A<20 Then C=1 Elseif A<40 Then
End If	C=2 Else D=1 End If

In() Variable = IN(Port) Variable : The variable to store result (No String or Single) Port : I/O Port number (0 to 255)

Read the current state of the specified Port. This function reads the state of the I/O Port and stores it in the Variable. When you execute this command, CUBLOC will automatically set the Port to input and read the status. You do not need to use Input command to set the Port beforehand when using this command.

TIPS

All CUBLOC I/O ports support both input/output. You have many options in setting the Port status to input or output. By default, all I/O Ports are set to HIGH-Z at power ON.

When Port is set to output, it will either output HIGH or LOW signal. HIGH is 5V and LOW is 0V or GND (ground).

Incr

INCR variable

Variable : Variable for increment. (No String or Single)

Increment the variable by 1.

INCR A

'Increment A by 1.

Input

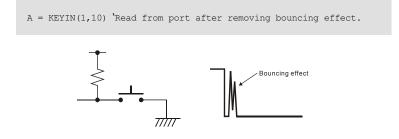
INPUT Port

Port : I/O Port number (0 to 255)

Set the specified Port to High-Z (High Impedance) input state.

All I/O Ports of CUBLOC module are set to HIGH-Z input as default at power ON.

High Impedance means that the value of resistor is so high that it's neither HIGH nor LOW.


INPUT 8 'Set Port 8 to HIGH-Z input state.

Keyin

Variable = KEYIN(Port, debouncingtime) Variable : Variable to store results (No String or Single) Port : Input Port (0 to 255) deboucingtime : Debouncing Time (1 to 65535)

This command KEYIN removes bouncing effect before reading the input. You can use KEYIN only when inputting LOW ACTIVE as shown below. For inputting HIGH ACTIVE, please use KEYINH. When there's input, Keyin will return 0 and 1 when there isn't.

If you use 10 for deboucing time, CUBLOC will check input for bouncing for 10 ms. Bouncing usually lasts around 10ms, so our recommendation is 10ms for most applications

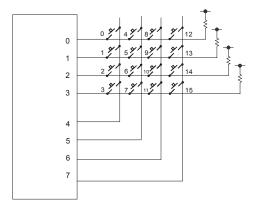
Keyinh

Variable = KEYINH(Port, debouncingtime) Variable : Variable to store results (No String or Single) Port : Input Port (0 to 255) deboucingtime : Debouncing Time (0 to 65535)

KEYINH is for HIGH ACTIVE inputs. For LOW ACTIVE inputs, KEYIN command must be used.

When there's input, Keyinh will return 1 and 0 when there isn't.

A = KEYINH(1,100) 'Read from port 1 after removing bouncing effect.


Keypad

Variable = KEYPAD(PortBlock)

Variable : Variable to store results (Returns Byte, No String or Single) PortBlock : Port Block (0 to 15)

Use this command Keypad to read input from keypad. A Port Block can be used to read a 4 by 4 keypad input. Keypad input can be connected to the lower 4 bits of the Port Block and keypad output can be connected to higher 4 bits of the Port Block.

Please refer to the below diagram.

$$A = KEYPAD(0)$$
 'Read the status of keypad connected to Port Block 0

If no keys are pressed, 255 will be returned. Otherwise, the pressed key's scan code will be returned.

Ladderscan

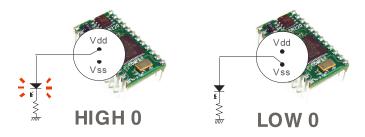
LADDERSCAN

This command LadderScan will force 1 scan of LADDER. When put inside an infinite loop like DO...Loop, it can enhance the speed of Ladder program more than 10 ms per scan time.

If using this command as shown below, you will not be able to use BASIC at the same time.

Const Device = CB280 'Device Declaration Usepin 0, In, START 'Port Declaration Usepin 1, In, RESETKEY Usepin 2, In, BKEY Usepin 3, Out, MOTOR Alias M0=RELAYSTATE 'Aliases Alias M1=MAINSTATE Do LadderScan Loop

Low


LOW Port

Port : I/O Port number (0 to 255)

Set the Port to LOW state. This command sets the Port to output state and outputs LOW or 0V (GND).

OUTPUT 8 'Set Port 8 to output state. LOW 8 'Set Port 8 to LOW (OV).

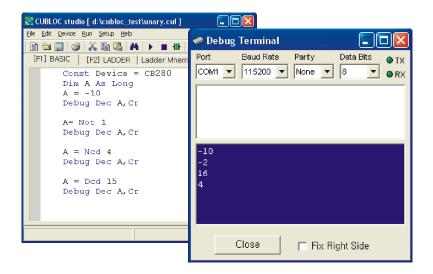
When a port is set to High, the port is internally connected to VDD, whereas if it's set to Low, the port is internally connected to VSS.

Memadr()

Variable = MEMADR (TargetVariable) Variable : Variable to store results (No String or Single) TargetVariable : Variable to find physical memory address

Like C language, you can use pointers in BASIC. By using pointers, you will be able to find the physical memory address of RAM and use it to store or read data.

Dim A as Single Dim Adr as Integer Adr = Memadr(A) 'Return the physical address of A.


Ncd

Variable = NCD source

Variable : Variable to store results. (No String or Single) Source : source value (0 to 31)

The command NCD can use used to set desired bit of 0x00000000 to 1 and return a 32 bit value.

Ι	=	NCD	0	'Result	is	0000001	=	1
Ι	=	NCD	1	'Result	is	00000010	=	2
Ι	=	NCD	2	'Result	is	00000100	=	4
Ι	=	NCD	3	'Result	is	00001000	=	8
Ι	=	NCD	4	'Result	is	00010000	=	16
Ι	=	NCD	5	'Result	is	00100000	=	32
Ι	=	NCD	6	'Result	is	01000000	=	64
Ι	=	NCD	7	'Result	is	10000000	=	128

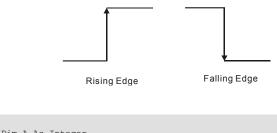
Nop

Nop

This command does a no operation command. It simply takes up one command cycle time.

Low 8 Nop High 8 'Output very short pulse to port 8. (About 50 micro Sec) Nop Low 8

On Int


ON INTx GOSUB label

x : 0 to 3, External Interrupt Channel

This command On Int must be called before accepting external interrupt inputs. CUBLOC has 4 external interrupt Ports. The interrupt Ports can be set to sense input on the Rising-edge, Falling Edge, and Both.

SET ONINTx command must be used with this command in order for the interrupt to work.

*CB220 has no external interrupt inputs.

DIM A AS INCEGEL	
On INTO Gosub GETIN	ΟΤΝ
Set INTO 0	'Falling Edge Input
Do	
Loop	
GETINTO:	
A=A+1	'Record number of interrupts
Return	

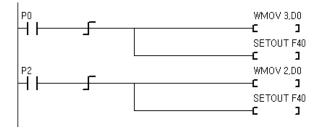
On Ladderint Gosub

ON LADDERINT GOSUB label

If Register F40 turns on in LADDER, and ON LADDERINT GOSUB command is used, then the processor will jump to the routine specified by On Ladderint command.

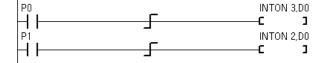
This can be used when LADDER part of the program needs to jump to BASIC code.

Please use the SETOUT and DIFU command to write 1 to the Register F40. When BASIC interrupt routine is finished, Register F40 can be cleared by writing a zero to it.


During the interrupt routine execution, writing a 1 to Register F40 will not allow another interrupt. If Register F40 is cleared from BASIC, it signs the end of the interrupt routine and is ready to receive another interrupt.

Usepin 0, In Set Ladder On Set Display 0,0,16,77,50 On Ladderint Gosub msg1 rtn Dim i As Integer Low 1 Do i=i+1 Byteout 1,i Delay 200 Loop msg1 rtn: Locate 0,0 Print "ON Ladderint", Dec i Reverse 1 Return ΡĤ SETOUT F40

When P0 turns ON, it will turn on F40 and when Register F40 turns ON, msg1_rtn interrupt routine in BASIC will be executed. In the interrupt routine, a string is printed to the LCD.


1

Although there is only one Register F40 to create an interrupt in BASIC from LADDER, we can use data Register D to process many different types of interrupts.

When P0 turns ON, D0 gets 3 and interrupt routine is executed. If P2 turns ON, D0 gets 2 and interrupt routine is executed. In the interrupt routine, the user can then process the type of interrupt based on the value stored in D0.

For short version of above LADDER commands, the user can use INTON command, which accomplishes both WMOV and SETOUT in one command. The following is the equivalent shortened version of the above ladder:

On Pad Gosub

ON PAD GOSUB label

You can set the packet size using SET PAD command. The ON PAD interrupt will jump to the label when the buffer amount is equal to the set packet size. Please make sure to use RETURN command after the label.

```
Const Device = Ct1720

Dim TX1 As Integer, TY1 As Integer

Contrast 450

Set Pad 0,4,5

On Pad Gosub GETTOUCH

Do

Loop

GETTOUCH:

TX1 = Getpad(2)

TY1 = Getpad(2)

Circlefill TX1,TY1,10

Pulsout 18,300

Return
```

On RecvX

ON RECV0 GOSUB label ON RECV1 GOSUB label ON RECV2 GOSUB label ON RECV3 GOSUB label

When data is received on RS232 Channel X (0 to 3), this command ON RECVX will automatically let the program jump to the specified label. The processor will automatically check for receiving data and cause interrupts when this command is used.

```
Dim A(5) As Byte
Opencom 1,19200,0, 100, 50
On Recv1 DATARECV RTN
                           ' Jump to DATARECV RTN when RS232
Do
                           ' Channel 1 receives any data
Loop ' Infinite Loop
DATARECV RTN:
     If Blen(1,0) > 4 Then
                                ' Read 1 Byte.
' Read 1 Byte.
            A(0) = Get(1,1)
            A(1) = Get(1, 1)
            A(2) = Get(1,1)
A(3) = Get(1,1)
                                ' Read 1 Byte.
                                ' Read 1 Byte.
            A(4) = Get(1,1) 'Read 1 Byte.
     End If
Return
                           ' End of interrupt routine
```

IMPORTANT

When RECVX interrupt routine is being executed, another RECVX interrupt routine will not be allowed to be executed. After it finishes current interrupt routine execution, the processor will come right back to another ON RECVX interrupt routine when there's still data being received. (data in receive buffer)

On Timer()

ON TIMER(interval) GOSUB label Interval : Interrupt Interval 1=10ms, 2=20ms......65535=655350ms 1 to 65535 can be used

On Timer() can be used to execute a interrupt routine at every specified interval. Set the desired interval in milliseconds and a label to jump to when interrupt occurs.

```
On TIMER(100) Gosub TIMERTN
Dim I As Integer
I = 0
Do
Loop
TIMERTN:
Incr I ' I is incremented 1 every second.
Return
```

IMPORTANT

Please pay caution when creating the interrupt routine. It must be less than the interval itself. If interval is set at 10ms, the interrupt routine, from the label to its return, must be within 10 ms (About 360 instructions/lines). Otherwise, collisions can occur within the program.

Opencom

OPENCOM channel, baudrate, protocol, recvsize, sendsize channel : RS232 Channel (0 to 3) Baudrate : Baudrate (Do not use variable) protocol : Protocol (Do not use variable) recvsize : Receive Buffer Size (Max. 1024, Do not use variable) sendsize : Send Buffer Size (Max. 1024, Do not use variable)

To use RS232 communication, this command Opencom must be declared beforehand.

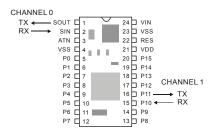
CUBLOC has 2 or 4 channels for RS232C communication. Channel 0 is used for Monitor/Download but the user can use it for RS232 communication, if she/he wishes to forego monitoring. Download will still work fine regardless.

The following are allowed baudrate settings for CUBLOC RS232:

2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 230400

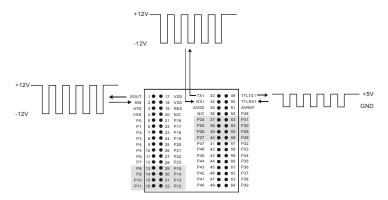
For the protocol parameter, please refer to the table below:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			Parity		Stop Bit	Bit	# of Bits
			0	0 = NONE	0=1 Stop Bit	0	0 = 5 bit
			0	1 = Reserve*	1=2 Stop Bits	0	1 = 6 bit
			1	0 = Even		1	0 = 7 bit
			1	1 = Odd		1	1 = 8 bit


The below table shows typical settings based on the previous table:

Bits	Parity	Stop Bit	Value to Use
8	NONE	1	3
8	EVEN	1	19 (Hex = 13)
8	ODD	1	27 (Hex = 1B)
7	NONE	1	2
7	EVEN	1	18 (Hex = 12)
7	ODD	1	26 (Hex = 1A)

OPENCOM 1, 19200, 3, 30, 20 'Set to 8-N-1

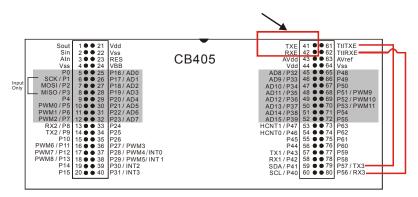

The user can set the send and receive buffer size. The send and receiver buffers take up space in the data memory. Although you can set each buffer up to 1024 bytes, it will take up that much of the data memory. The number of variables you use may decrease. We recommend receive buffer size from 30 to 100 and send buffer size from 30 to 50.

For CB220 module, port 1 and 2 can be used for Channel 0. Port 10 and 11 can be used for RS232C Channel 1.

For the CB280 module, there are dedicated RS232 ports. For Channel 1, there are 2 types of outputs, +/- 12V and TTL (+5/0V).

Please make sure to use only one of them at one time.

*Use Set RS232 command to re-set your baudrate and parameter during execution of your program.


CB405 RS232 HOWTO

The following is a table of 5V TTL signal pins of the CB405

Channel	I/O Port	5V TTL
1	P42	RX
	P43	TX
2	P8	RX
	P9	TX
3	P56	RX
	P57	TX

The CB405 has a internal MAX232 that can be used to connect any of the 5V TTL signals to +/- 12V level signals. The following is an example of connecting the Channel 3:

Now you can simply connect +/- 12V RS232 signal to TXE and RXE.

Out

OUT Port, Value

Port : I/O Port number (0 to 255) Value : Value to be outputted to the I/O Port (1 or 0)

Output 1 or 0 to the specified Port. When you execute this command, CUBLOC will automatically set the Port to output and output the Value set. You do not need to use the Output command to set the Port beforehand when using this command.

OUT 8,1	'Output HIGH signal on Port 8. '(This is same as using command High 8)
OUT 8,0	'Output LOW signal on Port 8. '(This is same as using Low 8)

Output

OUTPUT Port

Port : I/O Port number (0 to 255)

Set the Port to output state. All I/O Ports of CUBLOC module are set to HIGH-Z input as default at power ON.

OUTPUT 8 'Set Port 8 to output state.

You can also use HIGH, LOW command to set to output state. When using Output command, HIGH or LOW state is not clearly defined. <u>We</u> recommend the use of HIGH or LOW command to set to output mode.

LOW 8 'Set Port 8 to output mode and output LOW signal.

Outstat()

Variable = OUTSTAT(Port) Variable : Variable to store results. (No String or Single) Port : I/O Port Number (0 to 255)

Read the current outputted value for the specified Port. This command is different from IN() command in that it reads the status of output, not input.

DIM A AS BYTE A = OUTSTAT(0) `Read from Port 0 and store the current status in A.

Exact same function as DELAY

Peek()

Variable = PEEK (Address, Length) Variable : Variable to Store Result. (No String or Single) Address : RAM Address. length : Length of Bytes to read (1 to 4)

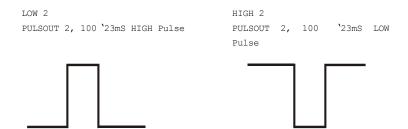
Read specified length of data from RAM Address.

Poke

POKE Address, Value, Length Address : RAM Address Value : Variable to store results (up to Long type value) length : length of bytes to read (1 to 4)

Write specified length of data to the RAM Address.

```
Const Device = CB280
Dim F1 As Single, F2 As Single
F1 = 3.14
Eewrite 10,Peek(Memadr(F1),4),4
Poke Memadr(F2),Eeread(10,4),4
```


Debug Float F2,CR

Pulsout

PULSOUT Port, Period Port : Output Port (0 to 255) Period : Pulse Period (1 to 65535)

This is a SUB library that outputs a pulse. To create a High pulse, the output Port must be set to LOW beforehand. To create a Low pulse, the output Port must be set to HIGH before hand.

If you set the Pulse Period to 10, you will create a pulse of about 2.6mS. Likewise, a Pulse Period of 100 will give you about 23mS pulse.

Pulsout is pre-made system's sub program.

```
sub pulsout(pt as byte, ln as word)
    dim dll as integer
    reverse pt
    for dll=0 to ln
    next
    reverse pt
end sub
```

Put

PUT channel, data, bytelength channel : RS232 Channel (0 to 3) Data : Data to send (up to Long type value) Bytelength : Length of Data (1 to 4)

This command sends data through the specified RS232 port. For Data, variables and constants can be used. To send String, please use Putstr command instead.

IMPORTANT

The command OPENCOM must be used beforehand OPENCOM 1,19200,0,50,10 DIM A AS BYTE A = &HA0 PUT 1,A,1 'Send &HA0 (0xA0) ' to RS232 Channel 1.

Within CUBLOC, the data is first stored in the send buffer. CUBLOC BASIC Interpreter will automatically keep sending the data in send buffer until it's empty.

If the send buffer is full when PUT command is executed, the PUT command will not wait for the buffer to flush. In other words, the data to send will be thrown away. The command BFREE can be used to check the send buffer beforehand for such cases.

```
IF BFREE(1,1) > 2 THEN ' If send buffer has at least 2 bytes free PUT 1,A,2 END IF
```

BFREE() checks for how much space the buffer currently has.

TIPS

After using PUT or PUTSTR, the function SYS(0) can be used to verify that the data has been stored in the send buffer.

```
OPENCOM 1,19200,0,50,10

PUTSTR 1,"COMFILE"

DEBUG DEC SYS(0) ' If output is 7, all data has been stored

' in the send buffer
```

*Please refer to On Recv interrupt routine for receiving data using the hardware serial buffer.

Puta

PUTA channel, ArrayName, bytelength channel : RS232 Channel. (0 to 3) ArrayName : Array Name Bytelength : Bytes to Send (1 to 65535)

The command Puta can be used to send a Byte Array. Simply put name of the array and number of bytes to send. The array data will be sent starting from the first element of the array.

Dim A(10) As Byte Opencom 1,19200,0,50,10 Puta 1,A,10 `Send 10 E

' Send 10 Bytes of Array A

IMPORTANT

If you try to send more bytes than the array has, CUBLOC will send garbage values.

*Please refer to On Recv interrupt routine for receiving data using the hardware serial buffer.

Puta2

PUTA channel, ArrayName, bytelength, stopchar channel : RS232 Channel. (0 to 3) ArrayName : Array Name Bytelength : Bytes to Send (1 to 65535) Stopchar : Stop character ascii code

Same as PUTA command except it will stop transmission upto a set character in the array. (StopChar will be the last character to be send)

Use with CUBLOC STUDIO 2.0.X and above.

Putstr

PUTSTR channel, data ...

channel : RS232 Channel. (0 to 3) Data : String Data (String variable or String constant or Constant)

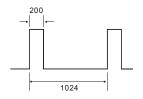
Send String data to RS232 Channel.

```
OPENCOM 1,19200,0,50,10
PUTSTR 1,"COMFILE TECHNOLOGY", DEC I, CR
```

Similar to Put command, Putstr stores data to be sent in the send buffer. Afterwards, the CUBLOC BASIC Interpreter takes care of the actual sending. Please also be careful to not overload the send buffer when it's full, so you do not lose any data that needs be sent.

Pwm

PWM Channel, Duty, Period Channel : PWM Channel Number (0 to 15) Duty : Duty Value, must be less than the Period. Period : Maximum of 65535


Use PWM to Output desired PWM frequency. When using this command, please be aware that PWM Channel Number is different from I/O port number. For CB280, Ports 5, 6, and 7 are used for PWM 0, 1, and 2, respectively. Before using PWM, please make sure to set the Ports used to OUTPUT mode.

According to the set value of Period, a maximum of 16-bit precision PWM signal is created.

When Period is set to 1024, it will be a 10 bit PWM.

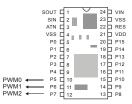
When Period is set to 65535, it will be a 16 bit PWM. Please set the Duty to be less than the Period. Duty can be 50% of Period to create a square wave.

PWM is independently hardware driven within CUBLOC. Once the PWM command is executed, it will keep running until PWMOFF command is called.

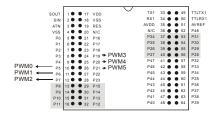
LOW 5 'Set port 5 output and output LOW signal. PWM 0,200,1024 'Output 10-bit PWM with duty of 200 and 'Width of 1024

IMPORTANT

PWM 0, 1, and 2 must used the same value of Period since they share the same resources. Their duty values can be different.


PWM Channel 3, 4, and 5 also must use the same value of Width since they share the same resources. Their duty values can be different.

Pwmoff


PWMOFF Channel Channel : PWM Channel. (0 to 15)

Stop the PWM output.

Following is available PWM channels according to the models:

For CB220, 3 PWM channels are provided on the Ports P5, P6, and P7.

Please refer to the table below for PWM Channels and corresponding I/O ports..

	CB220	CB280	CB290	CT17X0	CB405
PWM0	I/O 5	I/O 5	I/O 5	I/O 8	I/O 5
PWM1	I/O 6	I/O 6	I/O 6	I/O 9	I/O 6
PWM2	I/O 7	I/O 7	I/O 7	I/O 10	I/O 7
PWM3		I/O 19	I/O 89	I/O 11	I/O 27
PWM4		I/O 20	I/O 90	I/O 12	I/O 28
PWM5		I/O 21	I/O 91	I/O 13	I/O 29
PWM6					I/O 11
PWM7					I/O 12
PWM8					I/O 13
PWM9					I/O 51
PWM10					I/O 52
PWM11					I/O 53

Ramclear

RAMCLEAR

Clear CUBLOC BASIC's RAM. BASIC's data memory can hold garbage values at power on. Ramclear can be used as a type of garbage collector to clear the ram.

*There are CUBLOC modules that support battery backup of the RAM. If you don't use Ramclear command in these modules, CUBLOC will remember previous values of RAM before powering off.

Reverse

REVERSE Port

Port : I/O Port Number. (0 to 255)

Reverse the specified Port output. High to Low or Low to High.

OUTPUT 8'Set Port 8 to output.LOW 8'Set output to LOW.REVERSE 8'Reverse LOW to HIGH.

The command Rnd() creates random numbers. A random number between 0 and 65535 is created and stored in the specified variable. The number inside Rnd() has no meaning.

DIM A AS INTEGER A = RND(0)

Internally within CUBLOC, this function is Pseudo Random, it creates a random number based on the previous values. When powered off and turned back on again, the same pattern of random values are generated. Thus, this function is not a true random number generator.

Select...Case

Select..Case

If the condition Value of Case is met, the Statement under the case is executed.

```
Select Case Variable
       [Case Value [,Value],...
             [Statement 1]]
       [Case Value [,Value], ...
             [Statement 2]]
       [Case Else
            [Statement 3]]
End Select
Select Case A
       Case 1
             B = 0
       Case 2
             B = 2
       Case 3,4,5,6
                           ' Use Comma(,) for more than 1 value.
             B = 3
       Case Is < 1
                           ' Use < for logical operations.
             B = 3
                           ' Use ELSE for all other cases.
       Case Else
             B = 4
End Select
Select Case K
                          ' If less than 10
       Case Is < 10
             R = 0
                         ' If less than 40
       Case Is < 40
             R = 1
       Case Is < 80
             R = 2
       Case Is < 100
             R = 3
       Case Else
             R = 4
End select
```

Set Debug

SET DEBUG On[/Off]

Set Debug is set to On by default.

You can use this command to turn OFF and turn ON the DEBUG window in BASIC.

When you don't need DEBUG feature, you can use this command to turn off DEBUG feature instead of erasing all the code with Debug code. When this command is used, all DEBUG commands are not compiled, in effect, they are simply discarded from the program.

Debug Command How-to

When used correctly, the Debug command can help the user identify and fix bugs in the program. The user can check the value of variables during execution of a program, simulate an LCD, and also do other tasks to help save development time.

1. How to Check if program is being reset

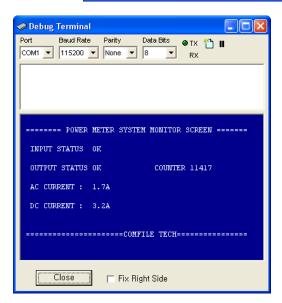
Sometimes you will want to check if your program is being reset. This is usually due to faulty programming.

Simply put a Debug statement at the beginning of your program, such as 'Debug "======Reset======"" 'as shown below:

Const Device = CB280	🥪 Debug Terminal
Debug "====================================	Port Baud Rate Parity Data Bits TX T
Do	
High 0	
Delay 200	RESET
Low 0	
Delay 200	
Loop	Close Fix Right Side

2. How to check if a particular point of the program is being executed

Simply insert a Debug command where you would like to tell if that part of the program is being executed, like shown here:

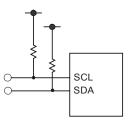


(The debug statement above will never execute as the program stays in the Do...Loop and will never get out of it)

3. How to simulate an LCD

You can simulate an LCD using the Debug terminal. Simply use the Goxy,XX,YY to locate a particular location on the LCD like shown here:

CUBLOC studio [d:\cubloc_test\debuscreen.cul]			×
Eile Edik Device Bun Setup Help			
🖹 😂 🛄 🥩 🔏 🎼 🖓 🔥 🕒 📲 🚟 🧮			
[F1] BASIC [F2] LADDER Ladder Mnemonic			
Dim A As Integer Debug CLR		<u> </u>	9
Debug Goxy, 1, 1			t I
Debug "====== POWER METER SY	STEM MONITOR SCR	REN ======"	
Debug Goxy, 2,3	bibli nonzion bon		
Debug "Input Status "			
Debug Goxy, 2,5			
Debug "Output Status "			
Debug Goxy, 2,7			
Debug "AC current : "			
Debug Goxy, 2,9			
Debug "DC current : "			
Debug Goxy, 16,3			
Debug "Ok"			
Debug Goxy, 16,5			
Debug "Ok"			
Debug Goxy, 16,7			
Debug "1.7A"			
Debug Goxy, 16,9			
Debug "3.2A"			
Debug Goxy, 1,12			
Debug "	Comfile Tech=====		
Do Debug Gozy, 30, 5			
Debug Goxy, 30, 5 Debug "Counter ",Dec5 A			
Incr A			J
Loop			
		~	1
	X:1 Y:1	Program :	



Use the command **Debug CLR** to clear the Debug window. At any time during development, you can disable and also not include Debug statement during Compiling by using the command, "**Set Debug Off**".

Set I2c

SET I2C DataPort, ClockPort DataPort : SDA, Data Send/Receive Port. (0 to 255) ClockPort : SCL, Clock Send/Receive Port. (0 to 255)

This command sets the I2C DataPort and ClockPort, SDA and SCL for I2C communication. Once this command is executed, both Ports become to OUTPUT, HIGH state. Please use Input/Output Port for I2C and use two 4.7K resistors as shown below.

Some of the I/O ports only support Input or Output. Please check the Ports in the data sheet for the model you are using.

Set Int

SET INTx mode

x: 0 to 3, External Interrupt Channel mode : 0=Falling Edge, 1=Rising Edge, 2=Changing Edge

This command must be used with On Int command in order to receive external interrupt inputs.

The mode of interrupt input can be set here to either falling edge, rising edge, or changing edge.

SET INTO 0 ' Set external interrupt to be on the Falling Edge. 1 • • 17 VDD TX1 33 🌒 🌒 49 TTLTX1 SOUT RX1 34 • • 50 TTLRX1 2 • • 18 VSS SIN 3 • • 19 RES AVDD 35 🌒 🌒 51 AVREE ATN N/C 36 🌒 🌒 52 P48 4 • • 20 vss N/C P24 37 🔴 🔴 53 P31 • 21 P16 P0 5 P25 38 • • 54 P30 P1 6 • • 22 P17 • 23 P18 P26 39 🌒 🌒 55 P29 P2 7 🔴 P28 P27 40 • • 56 Р3 8 • • 24 P19 9●●25 P20 ← INT0 P47 41 0 57 P32 P4 P46 42 🔴 • 58 P33 10 • • 26 P21 🔶 P5 INT1 43 • • 59 P45 P34 P6 11 🜒 🖲 27 P22 🗲 INT2 12 • • 28 P23 P44 44 🔴 60 P35 P7 INT3 P43 45 • • 61 P36 P8 13 • • 29 P15 P9 14 • • 30 P14 P42 46 🌒 62 P37

P10 15 • 31 P13 16 • • 32 P12

P11

P41 47 • • 63

P40 48 • • 64

P38

P39

Set Ladder on/off

SET LADDER On[/Off]

Ladder is set to Off by default. Use this command to turn On Ladder Logic.

The following is an example of such minimal BASIC code for Ladder logic.

```
Const Device = CB280 'Device Declaration
Usepin 0, In, START 'Port Declaration
Usepin 1, In, RESETKEY
Usepin 2, In, BKEY
Usepin 3, Out, MOTOR
Alias M0=RELAYSTATE 'Aliases
Alias M1=MAINSTATE
Set Ladder On 'Start Ladder
Do
Loop 'BASIC program will run in infinite loop/
```

Set Modbus

Set Modbus mode, slaveaddress, returninterval mode : 0=ASCII, 1=RTU slaveaddress : Slave Address (1 to 254) returninterval : return interval (1 to 255)

CUBLOC supports MODBUS protocol. MODBUS can connect to RS232 Channel 1.

To enable MODBUS slave mode, please use the Set modbus command. This command set modbus is to enable the MODBUS slave. It must come after OPENCOM command and only runs on RS232 Channel 1. Baudrate, bit, and parity can be set with OPENCOM.

Opencom 1,115200,3,80,80 'Please set receive buffer 'of at least 50. Set Modbus 0,1,100 'ASCII Mode, Slave Address=1

After this command, CUBLOC responds automatically. CUBLOC supports MODBUS commands 1,2,3,4,5,6,15, and 16.

Command	Command Name
01, 02	Bit Read
03, 04	Word Write
05	1 Bit Write
06	1 Word Write
15	Multiple Bit Write
16	Multiple Word Write

Please refer to Chapter 9 for detailed MODBUS description and MOBUS ASCII and RTU examples.

The term returninterval is the delay time for CUBLOC or CUTOUCH to respond to the Master MODBUS device. If the returninterval is set too fast, the Master device might not be able to receive all data. The default setting is 1, which is about 200 micro-seconds. The user may also set this value to 100, which is about 4.5ms or to 255, which is about 11ms.

Set Onglobal

SET ONGLOBAL On[/Off]

At power On, Set Onglobal is ON by default.

This command turns on or off the ability to receive ALL interrupts. When Onglobal is turned Off and turned On, all interrupt settings set before turning Off will be in effect.

SET ONGLOBAL OFF ' Turn ALL interrupts OFF.

If you don't use any interrupts, you can turn off all interrupts to increase the execution speed of CUBLOC.

Set Onint

SET ONINTx On[/Off]

At power On, Set Onint is ON by default.

This command turns On or Off the ability to receive individual external interrupts using global flags. The names of these flags correspond to the interrupt number supported by the device. For example ONINT1 is used for Interrupt 1.

When the ONINTx global is set to ON for a specific interrupt, then an interrupt can be received using the ON INTx command. If the global is set to OFF, then the code for ON INTx will not be executed if the corresponding external interrupt occurs. See also the SET INTx command which controls external interrupts to fire.

Set ONINTO On Set ONINTI On Set ONINTI Off Set ONINT2 Off Set ONINT3 On

Set OnLadderint


SET ONLADDERINT On[/Off]

At power On, Set OnLadderint is ON by default.

This command turns On or Off the ability to receive Ladder interrupts using global flags.

When the OnLadderint is set to On, then an interrupt can be received using the On Ladderint command. If the global is set to OFF, then the code for On Ladderint will not be executed if the Ladder interrupt occurs. See also the On Ladderint command.

Set Onpad

SET ONPAD On[/Off]

At power On, Set Onpad is On by default.

This command turns On or Off the ability to receive Onpad interrupts using global flags.

When the Onpad is set to on, then an interrupt can be received using the On Pad command. If the Onpad is set to OFF, then the code for On Pad will not be executed if the interrupt occurs. See also the Set Pad and On Pad commands.

Set Onrecv

SET ONRECV0 On[/Off] SET ONRECV1 On[/Off] SET ONRECV2 On[/Off] SET ONRECV2 On[/Off]

At power On, Set Onrecv is On by default.

This command turns On or Off the ability to receive On RecvX interrupts using global flags. A On RecvX interrupt occurs after data is received on the serial port AND stored into the receive buffer.

When the Onrecv is set to On, then an interrupt can be received using the On RecvX command. If the Onrecv is set to OFF, then the code for On RecvX will not be executed if the interrupt occurs. See also the On Recv command.

Set ONRECV1 On Set ONRECV1 Off

Set Ontimer

SET ONTIMER On[/Off]

At power On, Set Onrecv is On by default.

This command turns On or Off the ability to receive On Timer interrupts using global flags. An interrupt occurs at every time interval set by the On Timer() command.

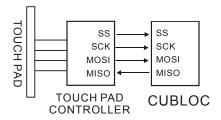
When the Ontimer is set to on, then an interrupt can be received using the On Timer() command. If the Ontimer is set to OFF, then the code for On Timer() will not be executed if the interrupt occurs. See also the On Timer() command.

Set Outonly

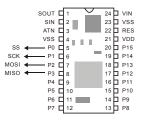
SET OUTONLY On[/Off]

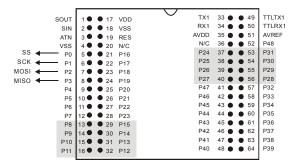
The CB290/CT1720 (Rev B) output ports are in high impendence (High-Z) state in order to prevent garbage values outputting at power ON. You must use "Set OUTONLY ON" command to set the CB290 / CT1720 output ports to output status.

Const device = cb290 Set outonly on Low 24


Model	Output only port			
CB290	P24 to P55			
CT1720 / CT1721	P24 to P55			

Set Pad


SET PAD mode, packet, buffersize mode : Bit Mode (0 to 255) packet : Packet Size (1 to 255) buffersize : Receive Buffer Size (1 to 255)


The CUBLOC has a dedicated port for Keypad / Touchpad inputs similar to a PC's Keyboard and Mouse ports. This port can be used with the Set Pad command to create interrupts when input is received on the Keypad, Touchpad, etc... This port is basically a Slave mode SPI communication.

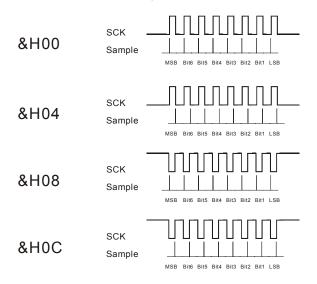
To use the PAD communications, you must use Set Pad command at the beginning of your program. The PAD communication uses 4 wires. SCK is used as clock signal, SS as Slave Select, MOSI as Master Out Slave In, and MISO as Master In Slave Out signals.

I/O ports P0 through P3 can be used for PAD communications.

Packet is for size of packet that will cause an interrupt.

For example, the touchpad require 4 bytes to be received before an interrupt is called. Here, the size of the packet is 4.

Buffersize is the total size of the receive buffer. The buffer size must be at least 1 greater than packet size. (buffersize = packet+1) A larger buffer will essentially give you more time to process the interrupt routine. The buffer size is usually set to 5 or 10 times the packet size.


Mode will set the receiving mode of the received data. Please refer to the below table:

Mode	Value	Bit Pattern	Diagram
LSB First	&H20	0010	
		XXXX	
MSB First	&H00	0000	
		XXXX	
SCK Low-	&H08	XXXX	
Edge		1xxx	
Triggered			
SCK High-Edge	&H00	XXXX	
Triggered		0xxx	
Sampling	&H04	XXXX	
after SCK		x1xx	
Sampling	&H00	XXXX	□ "0" ↑ ↑ ↓ − − − − − − − − − − − −
before SCK		x0xx	

You can add the values of the receiving modes. For example, for MSB first, High-Edge Triggered SCK and sampling after SCK:

0x00 + 0x00 + 0x04 = 0x04

Here are some of the common examples:

For PAD communications, you can use Comfile's Keypads or Touch screens.

The Set Pad command will automatically set the ports P0 through P3, the user doesn't have to set them.

Set Rs232

Set Rs232 channel, baudrate, protocol channel : RS232 Channel (0 to 3) Baudrate : Baudrate (Do not use variable) protocol : Protocol (Do not use variable)

You can only use Opencom command once to open a serial port. In order to change the baudrate and protocol, the Set Rs232 command can be used.

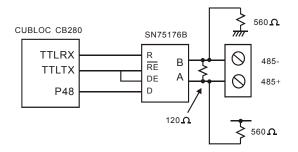
For the protocol parameter, please refer to the table below:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			Parity 0	0 = NONE	Stop Bit 0= 1 Stop Bit	Bit 0	# of Bits 0 = 5 bit
			0	1 = Reserve*	1= 2 Stop Bits	0	1 = 6 bit
			1 1	0 = Even 1 = Odd		1 1	0 = 7 bit 1 = 8 bit

The below table shows typical settings based on the previous table:

Bits	Parity	Stop Bit	Value to Use
8	NONE	1	3
8	EVEN	1	19 (Hex = 13)
8	ODD	1	27 (Hex = 1B)
7	NONE	1	2
7	EVEN	1	18 (Hex = 12)
7	ODD	1	26 (Hex = 1A)

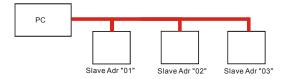
Opencom 1, 19200, 3, 30, 20 Set Rs232 1, 115200, 19 Open Rs232 channel 1 Change Baudrate & Parity


Set Rs485

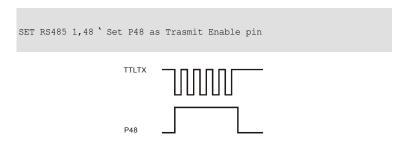
Set Rs485 Channel, PortNumber Channel : RS232 Channel (0 to 3) PortNumber : Transmit Enable Port Number

RS485 allows you to daisy link multiple CUBLOCs up to a distance of 1.2km. With RS485, there must be 1 master and the rest must be slave devices. You can either use a chip such as the SN75176B or use a RS232 to RS485 converters.

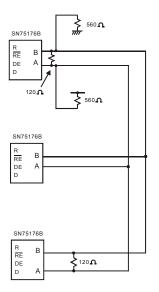
With RS485, transmitting and receiving data must occur one at a time. The RS485 is known for being stable under noisy conditions.


You can refer to the following circuit schematic for connecting TTL signals from CB280 to RS485 chip, SN75176B:

The RS485 communication needs a "Transmit Enable" signal to signal when the device is sending and receiving. There can only be one device transmitting while all the other devices are in receiving mode.


Example:

When the PC is transmitting, all the slave devices can only receive data.



The SET RS485 command allows CUBLOC or CUTOUCH to control the data line whenever it want to send or receive. While the data is being sent, the Transmit Enable pin will output Active High. This will automatically be done by the CUBLOC RTOS.

*NOTE: If you are using a RS232-to-RS485 converter and it supports automatic mode, then you don't need to use this command.

When using the SET RS485 command, the Port being used may not be used

1: Please refer to the diagram on the left when connecting multiple CUBLOCs or CUTOUCH using RS485.

Please use a 120 Ohm terminating resistor for the device at the end.

The two 560 Ohm Pull-Up and Pull-Down resistors are required for proper communication.

Set Until

SET UNTIL channel, packetlength, stopchar channel : RS232 Channel. (0 to 3) packetlength : Length of packet (0 to 255) stopchar : Character to catch

This is a conditional statement you can put right after the ON RECV command. Since the ON RECV command will cause an interrupt even when there 1 byte of data received, this command Set Until can be used to set when the interrupt will be called.

When the specified character is received or length of bytes received has exceed the set packetlength value, then ON RECV will jump to the specified interrupt routine. This way, you can control when you want to process received data.

The packet length is set in case the specified character never arrives.

You MUST use this command with ON RECV command. The following is an example:

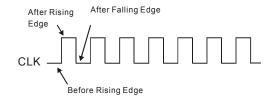
```
Dim A(5) As Byte
Opencom 1,19200,0, 100, 50
On Recv1 DATARECV_RTN
Set Until 1,99,"S"
```

As you can see above, the packet size is 99 bytes. In other words, if character "S" is not received within 99 bytes, interrupt will occur.

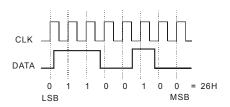
SET UNTIL 1,5

The user may also just set the packet size and not set the character as shown above.

The character may also be written in decimal as shown below:

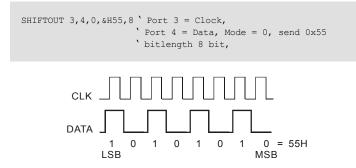

```
SET UNTIL 1,100,4
```

Shiftin()


Variable = SHIFTIN(clock, data, mode, bitlength) Variable : Variable to store results. (No String or Single) Clock : Clock Port. (0 to 255) Data : Data Port. (0 to 255) Mode : 0 = LSB First (Least Significant Bit First), After Rising Edge 1 = MSB First (Most Significant Bit First), After Rising Edge 2 = LSB First (Least Significant Bit First), After Falling Edge 3 = MSB First (Most Significant Bit First), After Falling Edge 4 = LSB First (Least Significant Bit First), Before Rising Edge 5 = MSB First (Most Significant Bit First), Before Rising Edge bitlength : Length of bits (1 to 16)

This command Shiftin() receives shift input. It uses 2 Ports, CLOCK and DATA to communicate.

SHIFTIN and SHIFTOUT command can be used to communicate with SPI, MIcrowire, and similar communication protocols. When using EEPROM, ADC, or DAC that requires SPI communication, this command can be used.


DIM A AS Byte A = SHIFTIN(3,4,0,8) 'Port 3 is Clock, Port 4 is Data, 'Mode 0, 8 bit received.

Shiftout

SHIFTOUT clock, data, mode, variable, bitlength Clock : Clock Port. (0 to 255)
Data : Data Port. (0 to 255)
Mode : 0 = LSB First (Least Significant Bit First)
1 = MSB First (Most Significant Bit First)
2 = MSB First(Most Significant Bit First) , Create ACK (For I2C)
variable : Variable to store data (up to 65535)
bitlength : Bit Length (1 to 16)

This command Shiftout sends shift output. There are 3 modes. Mode 2 is for I2C protocol. In I2C communication, there requires an acknowledgement (ACK) signal for every 8 bits.

Steppulse

STEPPULSE Channel, Port, Freq, Qty

Channel : StepPulse Channel(0 or 1) Port : Output Port Freq : Output Frequency (Up to 15kHz) Qty : # of pulses to output (up to 2147483647)

Output a set of number of pulses at a set frequency (up to 15kHz). FREQOUT and PWM can also output pulses but user cannot control the number of pulses and must use the PWM ports. With STEPPULSE, the user can use any of the output ports and control the number of pulses at a desired frequency.

Depending on the core module used, the number of available channels may change. Please refer to the following table for detailed info:

Module			Channels	Channel	PWM Channels that
					cannot be used during use
					of the command
CB220,	280,	290,	1	0	Channel 0: PWM 3, 4, 5
CT17XX	-	-			
CB405			2	0 or 1	Channel 0: PWM 3, 4, 5
					Channel 1: 6, 7, 8

STEPPULSE uses the CUBLOC processor's PWM counters meaning when using this command, PWM3, PWM4, and PWM5 cannot be used.

For CB405, when using Channel 1, PWM6, PWM7, and PWM8 cannot be used. With CB2XX series, only Channel 0 may be used. With CB405, 2 Channels may be used simultaneously.

You can use any of the available output I/O ports on the CUBLOC. When the STEPPULSE command is executed, that Port is automatically set to ouput state. Even after the output of pulses have finished, the Port remains in output state.

Output Frequency can be set from 1hz to 15000Hz or 15kHz.

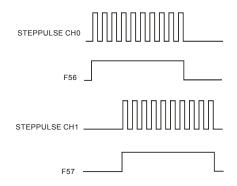
Number of pulses can be set from 1 to 2147483647.

This command will run in the background independently, so the user may use system resources for other tasks.

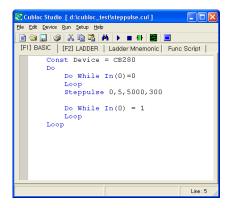
Stepstop

STEPSTOP Channel Channel : StepPulse Channel (0 or 1)

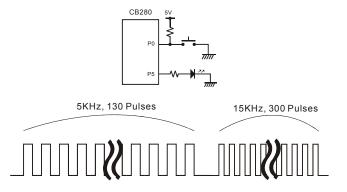
STEPSTOP command will stop Pulse Output Channel immediately.

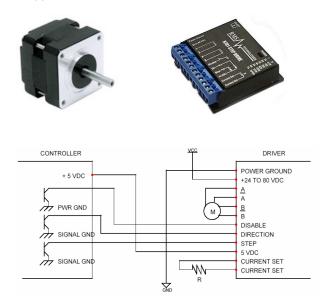

Stepstat()

Variable = STEPSTAT (Channel) Variable : Variable to store results Channel : StepPulse Channel(0 or 1)


STEPSTAT allows you to monitor how many pulses have been outputted since the last STEPPULSE command.

STEPSTAT will return double the number of pulses remaining to be outputted. If there are 500 pulses left to output, STEPSTAT will return 1000.


You can also check the output status of pulses using _F(56) or F56 in Ladder Logic. When Channel 0 is outputting pulses, _F(56) will be logic HIGH, 1. When Channel 1 is outputting pulses, _F(57) will be set to logic HIGH, 1. If no pulses are outputting at the moment, the F registers will be set to logic LOW, 0.


DEMO PROGRAM

When Port 0 switch is pressed, Port 5 or P5, will output 300 pulses at the speed of 5kHz. The following is a circuit diagram for the above code:

You can connect a stepper motor and stepper motor driver such as below to control a stepper motor.

Connect 3 I/Os of CUBLOC to the stepper motor driver. The DISABLE and DIRECTION pins are only to enable and set the direction of the stepper motor.

Please refer to your stepper motor specifications on how many pulses are required to move the stepper motor one step.

Sys()

Variable = SYS(address)

Variable : Variable to store results. (No String or Single) address : Address. (0 to 255)

Use command Sys() to read the status of RS232 buffers for both Channel 0 and 1.

- Address 0 : Actual bytes of sent data in send buffer after executing commands PUT or PUTSTR.
- Address 1 : Actual bytes of sent data in receive buffer after executing commands GET or GETSTR
- Address 5 : Timer value that increments every 10ms
- Address 6 : Data Memory (RAM) Address

 $\ensuremath{\mathsf{SYS}}(5)$ will return the value of the system timer which increments every 10ms.

You may only read the value, not change it. The Timer will increment up to 65535 and then reset to 0. You can use this system timer for applications requiring extra timer.

SYS(6) will return the current Data Memory Address. At power ON, the Data Memory Address is reset to 0. After calling Sub routines or Functions, the Data Memory Address will increment.

If will also increment when Sub routines or Functions are called within a Sub routine or a function. Interrupts will also increment the Data Memory Address. When the Data Memory Address exceeds the total Data Memory available, it will cause Overflow. By using this function, you can avoid Overflow. CB280 has maximum of 1948 bytes of Data Memory. Please make sure to have at least 100 bytes of free Data Memory for safety.

A = Sys(6) 'Store the current Data Memory Address in A

Tadin()

Variable = TADIN(Channel) Variable : Variable to store results. (No String or Single) Channel : AD Channel Number (Not Port number, 0 to 15)

This command Tadin() is similar to Adin(). It returns the average of 10 ADIN converted value. When working under noisy environments, using Tadin() could help in obtaining more precise results.

Tadin() is pre-made system's functions program

```
function tadin(num as byte) as integer
    dim ii as integer, ta as long
    ta = 0
    For ii = 0 To 9
        ta = ta + Adin(num)
    Next
    TADIN = TA / 10
End Function
```

Time()

Variable = TIME (address)

Variable : Variable to store results. (No String or Single) address : Address of time value (0 to 6)

CUBLOC module CB290 has an RTC chip internally. You can use Time() and Timeset commands to set and return time values to and from the RTC. Time information such as current time, day of the week and year can be set to the RTC and read from it in real-time.

Time is kept alive even when module powers off through use of its backup battery.

The following is a chart showing the addresses of the RTC and its corresponding values.

* You cannot use these commands for CB220 and CB280 since they do not have an RTC.

Addres s	Value	Range	Bit Structure						
0	Secon d	0 to 59	2 nd digit place 1 ^s			1 st digit p	lace		
1	Minute	0 to 59	2 nd digit place			1 st digit place			
2	Hour	0 to 23			2 nd (digit place	1 st digit p	lace	
3	Date	01 to 31		2 nd digit place		1 st digit p	lace		
4	Day	0 to 6						1 st place	digit
5	Month	1 to 12				2 nd digit	1 st digit p	lace	
6	Year	00 to 99	2 nd digit place			1 st digit p			

Please refer to the chart below for day of the week and its corresponding numerical value:

Sunday	0
Monday	1
Tuesday	2
Wednesday	3
Thursday	4
Friday	5
Saturday	6

System clock RTC

This command will allow you to use the system timer of CUBLOC as an RTC. You can use TIME() and TIMESET functions to access the following addresses:

Address	Returning Value	Range
10	Seconds	0 to 59
11	Minutes	0 to 59
12	Hours	0 to 65535
13	Continuous	0 to 65535
	Seconds	

The Address 10 will increment its value by 1 every one second. When its value becomes 60, Address 11 will increment its value by 1. When Address 11's value becomes 60, Address 12 will increment its value by 1. When Address 12's value becomes 65535, it will reset back to 0. At power ON, all Addresses are set to 0. TIMESET command can be used to set the time at beginning of user's program.

The system clock RTC (Address 10 to 13) values are stored as raw binary values, unlike the on-chip RTC on CB290 and CB405. There is no need for the user to convert the values using BCD2BIN and BIN2BCD.

System Clock RTC uses the processor's system clock and there can be slight time difference (< 1%) during a 24 hour period.

```
Const Device = CB405
Dim i As Integer
Cls
Timeset 10,58
Timeset 13,254
Do
i = Time(10)
Debug Goxy,0,0,dec4 i,Cr
Debug Goxy,0,1,dec4 Time(13)
Delay 100
Loop
```

Termin	au						
)its	●TX ●RX	<u>1</u>
Close	1	∏ Fi	x Rigl	nt Side			
73	11 💌 115200	н • 115200 •	1 👤 [115200 🖳 [None	1 1 115200 1 None 1	1 1 115200 1 None 1 8	1 v [115200 v [None v]8 v	

Address 13 will increment its value by 1 every one second similar to Address 10 except it will increment until 65535 before resetting to 0. Address 10 through 13 must be used with CUBLOC STUDIO 2.0.X and above versions.

Timeset

TIMESET address, value address : Address of time value (0 to 6) value : time value. (0 to 255)

Use TIMESET command to store new time values.

Address	Value	Range	Bit	Bit Structure				
0	Second	0 to 59		2 nd dig	git place	9	1 st dig	jit place
1	Minute	0 to 59	2 nd digit place			9	1 st dig	jit place
2	Hour	0 to 23			2 nd	digit	1 st dig	jit place
					place			
3	Date	01 to 31			2 nd	digit	1 st dig	git place
					place			
4	Day	0 to 6						1 st digit place
5	Month	1 to 12				10	1 st dig	jit place
6	Year	00 to 99	2 nd	digit pl	ace		1 st dig	jit place

The following is an example code showing how to set new time, and outputting current time to the debug window:

```
Const Device =CB290
      Dim I As Byte
      Timeset 0,0
                          'Sec
      Timeset 1,&H32
                         'Min
      Timeset 2,&H11
                         'Hour
                         'Date
      Timeset 3,&H1
                       'Day of the week
'Month
      Timeset 4,&H5
      Timeset 5,&H6
      Timeset 6,&H5
                          'Year
      Do
             I = Time(6)
             Debug "Year ","200",Hex I, " "
             I = Time(5)
             Select Case I
             Case 0
                   Debug "January"
             Case 1
                   Debug "February"
             Case 2
                   Debug "March"
             Case 3
                   Debug "April"
             Case 4
                   Debug "May"
             Case 5
                   Debug "June"
```

Case 6 Debug "July" Case 7 Debug "August" Case 8 Debug "September" Case 9 Debug "November" Case 10 Debug "December" End Select I = Time(3)'Print date Debug " ", Hex2 I Debug " " I = Time(4)Select Case I Case 0 Debug "Sunday " Case 1 Debug "Monday " Case 2 Debug "Tuesday " Case 3 Debug "Wednesday " Case 4 Debug "Thursday " Case 5 Debug "Friday " Case 6 Debug "Saturday " End Select Debug cr I = Time(2)🥔 Debug Terminal Debug Hex2 I,":" I = Time(1)Debug Hex2 I,":" I = Time(0)Debug Hex I,cr Delay 1000 Loop

Debug Terminal Screenshot:

Port Baud Rati	
Year 2005 July 11:36:49	l Friday
Year 2005 July 11:36:50	l Friday
Year 2005 July 11:36:51	l Friday
Year 2005 July 11:36:52	l Friday
Year 2005 July 11:36:53	l Friday

Udelay

UDELAY time time : interval (1 to 65535)

A more specific delay function. Delay will start out at about 70 microseconds. Every unit added will add 14 to 18 micro-seconds.

For example. Udelay 0 would be about 70 micro-seconds. Udelay 1 would be about 82 to 84 micro-seconds. When Interrupt or LADDER code is being executed at the same time, this delay function might be affected. During this delay, BASIC interrupts are enabled and could cause further delay when using this command.

To not get affected by LADDER or BASIC, we recommend stopping LADDER and all interrupts before using this command.

Udelay 100 ' Delay about 1630 micro-seconds.

Usepin

Usepin I/O, In/Out, AliasName I/O : I/O Port Number. (0 to 255) In/Out : "In" or "Out" AliasName : Alias for the port (Optional)

This command Usepin is used to set the I/O Port status and alias name for LADDER program.

Please use this command to set the I/O Ports before using them in LADDER.

Usepin 0,IN,START Usepin 1,OUT,RELAY Usepin 2,IN,BKEY Usepin 3,OUT,MOTOR

Utmax

UTMAX variable

Variable : Variable for decrement. (No String or Single)

Increment the variable by 1. When maximum is reached, the variable is no longer incremented. The Maximum here refers to the variable's maximum value. In the case with Byte, the maximum would be 255 and in the case with Integer, the maximum would be 65535.

Utmax A 'Increment A by 1

Wait

Wait time

Time : interval variable or constant (mS unit) 10 to 2147483640

Wait for the specified time in milliseconds.

This command will delay using the system clock. This delay function is accurate to $10 \, \text{ms}$ units.

10	`	Delay	10 ms.
15	`	Delay	10 ms.
110	`	Delay	110 ms.
115	`	Delay	110 ms.
	10 15 110 115	15 110	15 Delay 110 Delay

Use with CUBLOC STUDIO 2.0.H and above.

WaitTx

WAITTX channel

channel : RS232Channel. (0 to 3)

This command WaitTx will wait until the send buffer is flushed. This one command accomplishes same functions as shown below:

```
OPENCOM 1,19200,0, 100, 50
PUTSTR 1,"ILOVEYOU",CR
DO WHILE BFREE(1,1)<49 `Wait until all data have been sent
LOOP
```

By using WaitTx, the process of sending data becomes simpler as shown below:

```
OPENCOM 1,19200,0, 100, 50
PUTSTR 1,"ILOVEYOU",CR
WAITTX 1 'Wait until all data have been sent
```

When this command is waiting, other interrupts may be called. In other words, this command will not affect other parts of the CUBLOC system.

Chapter 7 CUBLOC Display Library

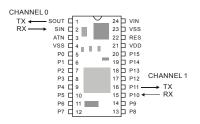
With CUBLOC, you can easily control LCD through Comfile LCD products such as the GHLCD or CLCD. Drawing lines, circles, boxes and printing strings can be done with single line of code. Below are some of our LCD specifications that will aid the user in understanding the basics.

Character LCD : CLCD

CLCD is a blue-screen LCD that can print characters and numbers. A control board that receives serial data and outputs to the LCD is attached to the back of the CLCD.

CLCD receives data through the I2C communication protocol.

Set Display


SET DISPLAY type,	method, baud, buffersize
type	: 0=RS232LCD, 1= GHB3224, 2=CLCD
Method	: Communication Method 0=CuNET, 1=RS232 CH1
baud	: Slave Address when Method = 0
	Baudrate when Method = 1
Buffersize	: Send Buffer Size (up to 128)

This command SET DISPLAY can be used to set the settings for display. It can only be used once. All displays will communicate using method set here.

Please choose the type of LCD, the method, baud rate, and buffer size. CLCD will use Method 0.

Method = 1 (RS232 Channel 1)

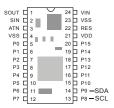
Use RS232 Channel 1 for display. For the CB220, port 11(TX) is used.

For the CB280, pin 33 or pin 49 can be used. Pin 49 outputs 12V level signal and 33 outputs 5V level signal.

CHANNEL 0	CHANNE	CHANNEL 1	
CHANNEL 0 TX \longleftrightarrow Sout RX \longrightarrow Sin P0 P1 P2 P3 P4 P5 P6 P7 P8	1 • • 17 VDD TX • 2 • 18 VSS RX -	TX1 33 49 RX1 34 50 AVDD 35 51 NIC 36 52 P24 37 53 P26 38 54 P27 40 56 P47 41 57 P46 42 58 P45 43 59 P43 45 61	TTLTX1 TTLRX1 AvRef P48 P31 P30 P29 P32 P32 P32 P33 P34 P35 P36
P9 P10 P11	14 • 30 P14 15 • 31 P13 16 • 32 P12	P42 46 ● 62 P41 47 ● 63 P40 48 ● 64	P37 P38 P39

The possible Baud Rate settings are as follows:

2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 230400.


The recommended buffer size is around 50 to 128. If the send buffer size too small, data will not be displayed correctly. If the send buffer size is too big, it will take up that much data memory space.

SET DISPLAY 0,1,19200,50 $\,$ ' Set Baud rate to 19200 and $\,$ ' send buffer to 50..

SET DISPLAY command can only be used once at the beginning of the program.

Method = 0 (Use CuNET)

CuNET is a type of I2C protocol that is part of CUBLOC. For CB220 , use I/O Port 8 (Clock) and Port 9 (Data).

CuNET can be used with displays that support it. CuNET does not used Baud Rate Settings, it uses slave address settings instead.

SET DISPLAY 2,0,1,50 'CLCD, Slave address of 1, Send buffer of 50

Although multiple devices can be connected to the I2c, for displays, **only ONE device may be attached.**

Cls

Initialize the LCD and clear all layers. (Set a little bit of delay for the LCD to initialize.)

> CLS DELAY 200

Csron

Turn Cursor ON. (Default if OFF).

Csroff

Turn Cursor OFF.

Locate

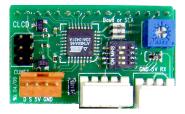
LOCATE x,y

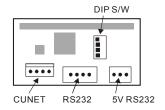
X : X-axis position of LCD Y : Y-axis position of LCD

Set the position of the text layer. After the CLS command, the LCD defaults to position 0,0.

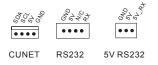
LOCATE 1,1 ' Move cursor to 1,1 PRINT "COMFILE"

Print


PRINT String/Variable String : String Variable : When using variables/constants,


String representation of the variable/constant will be printed. Print characters on the text layer. To print characters to the graphic layer, GPRINT command can be used.

LOCATE 1,1 ' Move to position 1,1 PRINT "COMFILE",DEC I


CLCD Module

On the back of the CLCD, a control board is attached. This control board receives CuNET signal and prints on the CLCD.

CLCD can also communicate using RS232. There are two RS232 connector, one for 3-pin 5V level signals and the other for 4-pin +/- 12V level signals.

Use the CLCD DIP switch to set the I2C slave address. The 4^{th} DIP switch is not used.

DIP Switch	RS232 Baud rate	I2C Slave Address				
0N	2400	0				
0N	4800	1				
	9600	2				
0N	19200	3				
	28800	4				
1 2 3 ON	38400	5				
0N	57600	6				
0N	115200	7				

One of CUNET or RS232 communication can be used. If both are connected, please make sure when one of them is working, other is not.

Command	Example (hex)	Byte s	Execution Time	Explanation	
ESC ' C'	1B 43	2	15mS	Clear screen. A 15ms delay must be given after this command.	
ESC `S'	1B 53	2		Cursor ON (Default)	
ESC `s'	1B 73	2		Cursor OFF	
ESC 'B'	1B 42	2		Backlight ON (Default)	
ESC `b'	1B 62	2		Backlight OFF	
ESC 'H'	1B 48	2		LOCATE 0,0	
ESC `L' X Y	1B 4C xx yy	4	100 uS	Change the position of the	
				cursor.	
ESC	1B 44 Code	11		Character code 8 through 15 is	
'D' 8byte	8bytes			8 custom characters that the	
				user is free to create and use.	
				This command will store the	
				bitmap in this custom	
				character memory area.	
				Code : 8-15 Character code	
1	01	1		Move to beginning of row 1	
2	02	1		Move to beginning of row 2	
3	03	1		Move to beginning of row 3	
4	04	1		Move to beginning of row 4	

The following is CLCD command table:

If received data is not a command, the CLCD will display it on the screen.

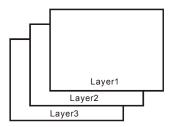
When connecting RS232, maximum baud rate settings for 12V(4-pin) level is 38400bps. For TTL 5V level (3-pin), up to 115200bps can be used.

The following is an example code when using the CB280 to connect to the CLCD module through CUNET protocol. When you execute this program, CLCD will display increment of numbers.

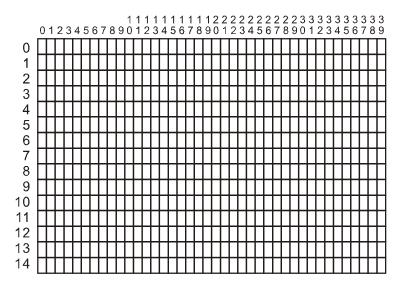
```
Const Device = Cb280
Set Display 2,0,1,50 'Set the SLAVE ADDRESS to 1 by
'manipulating the DIP switch.
Dim i As Integer
Delay 100 ' Delay for start up of CLCD
Cls
Delay 200 ' Delay for initializing and clearing CLCD
```

```
Csroff
Locate 5,2
Print "Start!!!"
Delay 500
Cls
Delay 100
Do
Incr i
Locate 0,0
Print "COMFILE"
Locate 1,3
Print "CUBLOC ",Dec i
delay 100
Loop
```

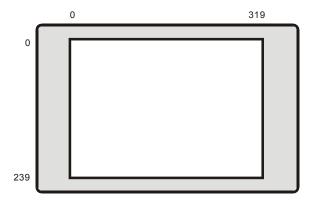
* The slave address of CLCD and SET DISPLAY command should match.


GHLCD Graphic LCD : GHB3224 Series

GHLCD is able to display characters and graphic on 3 different layers. Unlike our CLCD, the GHLCD supports many different commands for easy drawing of lines, circles, and boxes. There are also commands such as copy, cut, paste, and a graphic software CuCanvas for downloading BMP images to the GHLCD.



The GHB3224 model is a black and white STN type LCD with display area of 320 by 240 pixels. There are 3 layers. The first layer is for text and the other 2 layers can be used for graphics.


* GHLCD Library is 99% compatible with CUTOUCH modules.

The text layer size is 40x15 as you can see in the below grid. Each character size is 8 by 16.

For graphics, 320 by 240 pixels are provided for the GHLCD series.

Please note that graphics or characters will be printed in random places when trying to print outside the specified range of pixels shown here. With the graphic layer, you have a complete control over where to display graphics over the 320×240 pixels.

With the text layer, you can display text over the specified text pixels of 40 by 15.

We recommend to draw the background in the graphic layer and to print characters in the text layer.

GHB3224C supports CuNET.

GHB3224C model support CuNET. When using CUBLOC, please use the GHB3224C model as you have one more RS232 port free to use for something else.

GHB3224C CuNET setup settings:

```
Set Display 1,0,1,50 'GHLCD, CUNET, Set Address to 1, 'Send buffer to 50..
```

*Warning : CUNET Slave address and Display Slave address must match. Display Slave address can be set with the DIP switch.

Cls

CLS Initialize the LCD and clear all layers. (Set a little bit of delay for the LCD to initialize.)

> CLS DELAY 200

Clear

CLEAR layer Erase the specified layer(s).

> CLEAR 1 ' Erase (Text) Layer 1. CLEAR 2 ' Erase (Graphic) Layer 2. CLEAR 0 ' Erase all layers. Same as CLS.

Csron

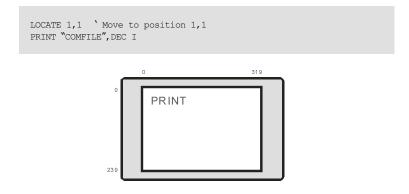
CSRON Turn Cursor ON. (Default if OFF).

Csroff

CSROFF Turn Cursor OFF.

Locate

LOCATE x,y X : X-axis position of LCD Y : Y-axis position of LCD


Set the position of the text layer. After the CLS command, the LCD defaults to position 0,0.

```
LOCATE 1,1 ' Move cursor to 1,1 PRINT "COMFILE"
```

Print

PRINT String / Variable String : String Variable : When using variables/constants, String representation of the variable/constant will be printed.

Print characters on the text layer. To print characters to the graphic layer, GPRINT command can be used.

Layer

LAYER layer1mode, layer2 mode, layer3 mode Layer1mode : Set Layer 1 mode (0=off, 1=on, 2=flash) Layer2mode : Set Layer 2 mode (0=off, 1=on, 2=flash) Layer3mode : Set Layer 3 mode (0=off, 1=on, 2=flash)

Set the mode of the specified layer. The flash mode will flash the layer at 16Hz. Layer 1 and 2 are ON and Layer 3 if OFF when LCD is first turned ON.

Use this command to hide the process of drawing lines, circles, and etc... Set the layer OFF when drawing and set the layer ON, when you are finished drawing everything.

GLayer

GLAYER layernumber Layernumber : Set the graphic layer. (0,1,2)

There are 3 layers of GHLCD GHB3224 series. One of the layers may be used as graphic layer. Graphic commands such as LINE, CIRLCLE, and BOX can be used for the layer set a the graphic layer. Normally, Layer 1 is used for text while Layer 2 is used for graphics. Layers 2 and 3 have slight different characteristics. We recommend Layer 2 for graphics that require a lot of erasing.

Layer 1 can also be used as graphic layer. In this case, you can even erase text characters with graphic commands. To set Layer 3 to graphic layer, use command LAYER to turn Layer 3 ON to use Layer 3.

Overlay

OVERLAY overmode overmode : Logical Mode (0=or, 1=and, 2=xor)

This command Overlay determines the logic mode between Layer 1 and Layer 2.

Layer 1 is text and Layer 2 is graphics.

By using this command, the user can decided what to do when Layer 1 and Layer 2 are displaying on the same position. The default is XOR, which will invert when Layer 1 and Layer 2 print to the same positions. To no invert, you can set this to OR state.

Contrast

CONTRAST value value : Contrast Value (1 to 1024)

Control the contrast of the LCD with CONTRAST command.

Contrast 450

Light

LIGHT value

value : Back light 0=OFF, 1=ON

Turn back light ON and OFF. Default is ON.

Font

FONT fontsize, efontwidth

fontsize : 0 to 8 Font Selection efontwidth : 0 = fixed width, 1=variable width

GHB3224 has 4 different size and 2 different width.

Font Type	Font
0,1	10 x 16
2,3,4,5	16 x 16
6,7	24 x 24
8	48 x 48

Const Device = CB290 Cls Delay 100 Font 0,0 Glocate 10,10 GPrint "FONT 0,0 :ABCDEFGHIJKLMN" Font 2,0 Glocate 10,30 GPrint "FONT 2,0 :ABCDEFGHIJKLMN" Font 6,0 Glocate 10,50 GPrint "FONT 6,0 :ABCDEFGHIJKLMN" Font 8,0 Glocate 10,72 GPrint "FONT 8,0 " Font 0,1 Glocate 10,120 GPrint "FONT 0,1 :ABCDEFGHIJKLMN" Font 2,1 Glocate 10,140 GPrint "FONT 2,1 :ABCDEFGHIJKLMN" Font 6,1 Glocate 10,160 GPrint "FONT 6,1 :ABCDEFGHIJ" Font 8,1 Glocate 10,185 GPrint "FONT 8,1 "

Style

STYLE bold, inverse, underline bold : 0=Normal, 2 or 3 =Bold inverse : 0=Normal, 1=Inverse underline : 0=Normal, 1=Underline

You can use STYLE command to add Bold, Inverse, or Underline to your fonts.

Cmode

CMODE value

value : 0=BOX type, 1=Underline type

Choose the type of cursor to use. Default is the Underline type.

0 : BOX Type

1 : Under Line Type

Line

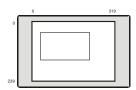
LINE x1, y1, x2, y2

Draw a line from x1,y1 to x2,y2.

LINE 10,20,100,120 ' Draw line

Draw line from the last point to x,y.

LINETO 200,50 `Continue drawing line from the last point



Box

BOX x1, y1, x2, y2

Draw a box with diagonal positions of X1,Y1 and X2,Y2.

BOX 10,20,200,100 ' Draw box

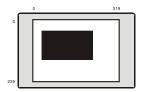


Boxclear

BOXCLEAR x1, y1, x2, y2

Clear the box with diagonal positions of X1,Y1 and X2,Y2.

BOXCLEAR 10,20,200,100 ' Clear box

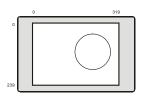


Boxfill

BOXFILL x1, y1, x2, y2,logic logic : 0=OR, 1=AND, 2=XOR

Draw a box with diagonal positions of X1,Y1 and X2,Y2 and fill according to specified logic.

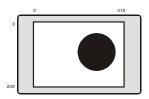
0 OR will display all overlapped areas.1 AND will display only the overlapped areas.2 XOR will display the overlapped areas inversed.


BOXFILL 10,20,200,100,0 'Draw and fill box

Circle

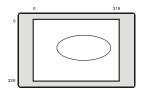
CIRCLE x, y, r

Draw a circle with center of circle at x,y, and r as radius.


CIRCLE 200,100,50 'Draw circle

Circlefill

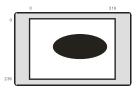
CIRCLEFILL x, y, r Draw a circle and fill with center of circle at x,y, and r as radius.


CIRCLEFILL 200,100,50 'Draw and fill circle

Ellipse

ELLIPSE x, y, r1, r2 Draw an ellipse with center of circle at x,y, and r1 as horizontal radius and r2 as vertical radius.

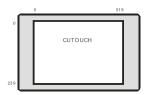
ELLIPSE 200,100,100,50 'Draw ellipse



Elfill

ELFILL x, y, r1, r2

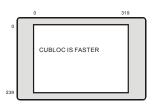
Draw an ellipse and fill with center of circle at x,y, and r1 as horizontal radius and r2 as vertical radius.


ELFILL 200,100,100,50 'Draw and fill ellipse

Glocate

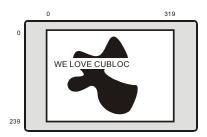
GLOCATE x, y Locate new position for the graphic layer.

GLOCATE 128,32 ' locate new position Gprint "CUTOUCH"



GPRINT string

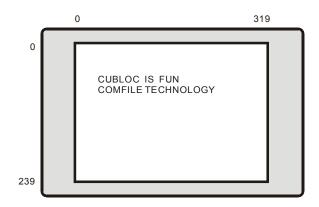
Print String on the graphic layer. You have more freedom in the graphic layer as you can use GLOCATE to specify exact position. Then you can use this command GPRINT to print a string at that location.


```
GPRINT "CUBLOC IS FASTER",CR
' Print String and go to next line(CR)
```

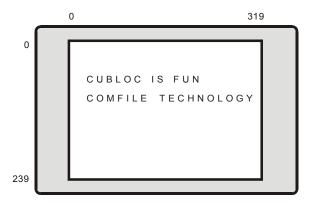

Dprint DPRINT string

DPRINT is similar to GPRINT except it will over-write the current graphics.

DPRINT "WE LOVE CUBLOC", CR ' Print String and go to next line


This command will allow a much faster printing speed as it will simply overwrite the background. When trying to display animations or numbers that change rapidly such as moving ball or current time, Dprint will allow smooth transitions.

Dprint can only be used with X-Axis that is multiple of 8. For example, you can use Glocate 8,2 or Glocate 16,101.


Offset

OFFSET x, y

You can set offset for the printed strings on the graphic layer. The default value is 0. You can control either the x or the y axis offsets.

OFFSET 3,3 ' Set x and y offset to 3.

After the command, the strings will automatically adjust to the new offsets.

Pset

PSET x, y

Place a dot on x,y

PSET 200,100 ' Place a dot

Color

COLOR value

Set the color of LCD. 1 is black and 0 is white. Default value is 0.

COLOR 0 'Set color to 0.

Linestyle

LINESTYLE value

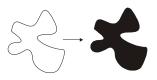
Set line style using this command. You can make dotted lines by increasing the value. The default value is 0, a straight line.

LINESTYLE 1 'Use dotted lines

Dotsize

DOTSIZE value, style

Set the dot size. Value is the size of the dot and style can either be 0 for rectangular or 1 for circular dot.


DOTSIZE 1,1 ' Set dot size to 1 and dot type to circle

Paint

PAINT x, y

Fill the enclosed area within position x,y.

```
PAINT 100,100 ' Fill the enclosed area within 100,100
```


Arc

ARC x, y, r, start, end

Draw an arc with x and y as the center. Start and end are the values between 0 and 360 degrees.

0 319 0 239

ARC 200,60, 100, 10, 20 ' Draw an arc from 10 to 20 degrees.

Defchr

DEFCHR code, data Code : Custom character code (&hdb30 to &hdbff) Data : 32byte bitmap data

Create custom characters using this code. A character of size 16 by 16 can be created and stored in the LCD memory. Then the character can be used just like any other regular character using the command PRINT or GPRINT, DPRINT. Total of 207 custom characters can be stored in the memory. At power off, the characters are not preserved.

```
DEFCHR \&HDB30, \&HAA, \\HAA, \&HAA, \&HAA, \&HAA, \&HAA, \&HAA, \&HAA, \&HAA, \&HAA, \&HAA, \\HAA, \\HAA, \&HAA, \\HAA, \\HAA
```

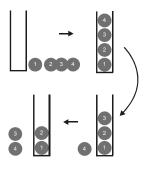
print CHR(&HDB30)

Bmp

BMP x, y, filenumber, layer X, y : x,y position to display BMP Filenumber : BMP File number Layer : Layer to display BMP

GHB3224has FLASH memory to store BMP files. Use the BMP Downloader to download BMP files. Once BMP files are stored in the LCD, you can simply use this command BMP to print to the LCD.

*The GHB3224 has 102,400 bytes of Flash memory space to store BMP files. You can store about 10 of 320x240 full screen size files.

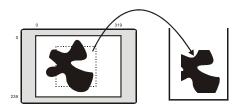

Graphic Data PUSH, POP Commands

On the GHB3224 series, there is a separate stack for storing graphic data. You can push and pop current screen or part of the current screen to this stack. By storing to the stack, you can easily implement a copy, cut, and paste feature, similar to text editors.

GPUSH and GPOP can be used for precise cutting of the current screen while HPUSH and HPOP can be used for high speed push and pop.

The stack is a LIFO (Last in First out) that will pop the last data that was pushed.

There is about 32KB of Stack memory. You can store about 3 to 4 full screens. Please refer to the picture below for how the stack works:

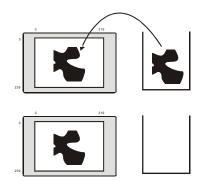


Gpush

GPUSH x1, y1, x2, y2, layer

Push x1,y1 to x2, y2 box to the stack.

GPUSH 10,20,200,100,2

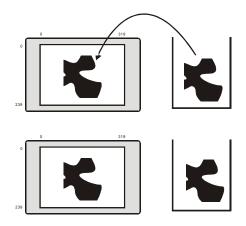


Gpop

GPOP x, y, layer, logic logic =0 : OR logic =1 : AND logic =2 : XOR logic =3 : Clear screen then pop

Pop from stack and display on the specified layer at position x,y with specified logic.

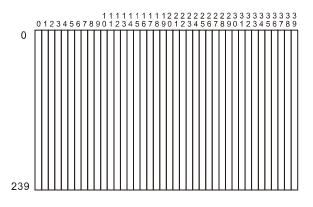
GPOP 120,20,2,0



Gpaste

GPASTE x, y, layer, logic logic =0 : OR logic =1 : AND logic =2 : XOR logic =3 : Clear screen then pop

Paste from stack and display on the specified layer at position x,y with specified logic.


This is exact same command as GPOP except it will not pop from stack. Therefore, you can use this command if there is further need to use the current item in stack.

Hpush

HPUSH x1, y1, x2, y2, layer

HPUSH, HPOP, HPASTE commands are similar to GPUSH, GPOP, and GPASTE except that the columns can only be multiple of 8 as shown below: *The 320 pixels have been divided by 8, there are only 40 columns, each 8 pixels wide.

HPUSH 6,20,12,100,2

Нрор

HPOP x, y, layer

Same as GPOP, except x value is 0 to 39.

HPOP 10,20,2,0

Hpaste

Hpaste x, y, layer,

Same as GPASTE except x is between 0 and 39.

GHB3224C DIP Switch Settings

On the back of the GHB3224B, there are DIP switches to set the RS232 baud rate and I2Cslave address. GHB3224 DIP Switch number 4 is not used.

DIP Switch	RS232 Baud Rate	I2C Slave Address		
0N	2400	0		
1 2 3 ON	4800	1		
0N	9600	2		
0N 1 2 3	19200	3		
1 2 3 ON	28800	4		
1 2 3 ON	38400	5		
1 2 3 ON	57600	6		
0N 1 2 3	115200	7		

Please choose one communication method to use at a single time. (Either CuNET or RS232) $\,$

Seven Segment Display : CSG Series

The seven segment display can be used to display numbers. 8 LEDs are used for most seven segment displays as shown below.

To incorporate a seven segment display into products, in the past, people had to create a dynamic display method that is very complicated for the average user. To simplify the matter, we have developed an easy to use seven segment display called the CSG module.

As you can see above, the front has 4 digit seven segment display and the back has two I2C connections. After connecting the CSG to CUBLOC, you can use the commands in the below table to easily and quickly display numbers you want.

Command	Explanation	Example Usage	
CSGDEC SlaveAdr, Data	Output decimal value.	CSGDEC 0, I	
CSGHEX SlaveAdr, Data	Output hex as decimal value	CSGHEX 0,I	
CSGNPUT SlaveAdr, Digit, Data	Control digit places	CSGNPUT 0,0,8	
CSGXPUT SlaveAdr, Digit, Data	Control digit places and output data as binary number	CSGNPUT 0,0,9	

Csgdec

Use CSGDEC command to print decimal values to the SGN.

```
Const Device = cb280

Set I2c 9,8 '--- must be used before csgdec command

b=8

Do

Csgdec 0,b '--- csgdec command

Delay 100

b = b + 1

If b=0 Then b=200

Loop
```

To use CSG commands,

SET I2C command must be used beforehand.

Slave Address

Set the slave address of the CSG module at the back. 0 to 3 can be set. A total of 4 addresses can be set per I2C line pair. CSG Dip switch:

DIP Switch	Slave Address
0N	0
0N 1 2 3	1
0N 1 2 3	2
0N	3

To display more than 4 digits, use 2 CSG modules like shown below and set different slave addresses for each.

Csgnput

CSGNPUT slaveadr, digit, data slaveadr : CSG module Slave Address digit : Digit position (0 to 3) data : Data (&h30 to &h39, &h41 to &h46)

&h30 is print "0" &h31 is print "1" : &h39 is print "9" &h41 is Print "A" &h42 is Print "b" : &h46 is Print "F"

Display the desired number to the specified CSG module. DATA most upper bit is for setting the DOT of the CSG.

You can use &H30 to 39 and &H41 to &H46 only.

Csgxput

CSGXPUT slaveadr, digit, data slaveadr : CSG module Slave Address digit : Position (0 to 3) data : Data

Set the LED ON at the specified position. When displaying anything other than numbers, this command can be used to control each position of the LED itself.

Bit	7	6	5	4	3	2	1	0
LED	Н	G	F	Е	D	С	В	А

To print character 'L', positions D, E, and F must be turned ON. Since the bit value would be 0011 1000, in hex that's &H38 or 0x38. CSGXPUT 0, 0, &H38 would be the exact command to use.

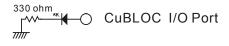
Csgdec

CSGDEC slaveadr, data slaveadr : CSG Slave Address data : Data

Print decimal value to the CSG.

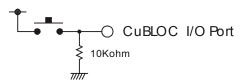
Csghex

CSGHEX slaveadr, data slaveadr : CSG Slave Address data : Data

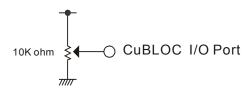

Print hexadecimal value to the CSG.

Chapter 8 Interface

Input/Output Circuits

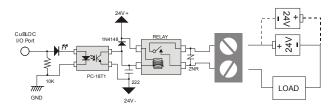

How to connect LEDs

Please connect the LED as shown below and output HIGH to the connected I/O port to turn the LED ON.

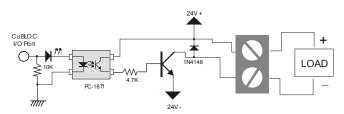

How to connect push-switches

Please connect the push-switch as shown below and set the connected I/O port to INPUT mode. When the switches in pressed, CUBLOC will read HIGH and when LOW otherwise.

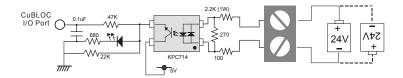
How to connect Volume knob


Please connect the Volume knob as shown below to a A/D I/O port and use ADIN command to read the input value of the Volume knob.

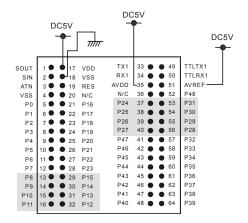
The CUBLOC core module uses 5V power. When using larger voltage, please use appropriate voltage converter or regulator.


How to Connect a Output Relay.

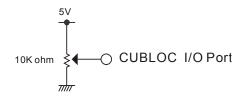
The following diagram shows how to connect a output relay to a CUBLOC I/O port. A photocoupler can be used to separate 24V and 5V and protect against noise. Noise coming from 24V side will not affect the 5V side and vice versa.


How to Connect a NPN TR Output

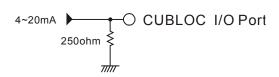
This circuit diagram shows a NPN TR photocoupler separating 5V from the LOAD.


How to Connect DC24V Input

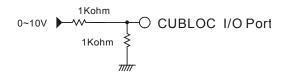
Use a double polarity photocoupler to convert 24V signals to 5V. When input is received, CUBLOC will receive a HIGH(5V) signal.


How to connect AD Input

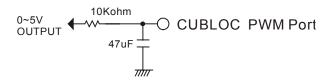
To connect an AD input to the CB280, AVDD and AVREF pins must be connected to 5V. AVDD supplies power to the ADC of CUBLOC and AVREF is the reference voltage that the ADC uses to do conversions. If 5V is inputted to AVREF pin, 0 to 5V input voltage will be converted and if 3V is inputted to AVREF pin, 0 to 3V input voltage will be converted.



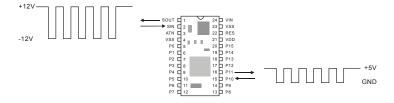
The CB220's AVDD and AVREF are internally connected to 5V.


The following is the simplest type of AD input circuit using a Volume knob. When you turn the knob, the input will be converted by the CUBLOC ADC to a value from 0 to 1023

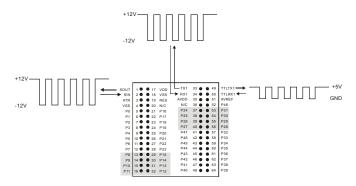
The following is AD input that receives 4 to 20mA of input. You can use a 230 Ohm and 20 Ohm resistors in serial instead of a 250 Ohm resistor.



For 0 to 10V of input, use 2 resistors as shown below. This is also called a voltage divider.


How to use PWM as Digital-to-Analog converter

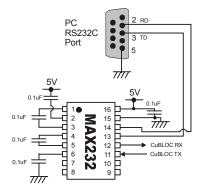
CUBLOC has 6 PWM ports. If you use the simple circuit shown below, you can make a D/A converter.



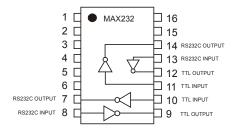
RS232 HOWTO

Pin 1 and 2 are for connecting to the +/- 12V signals of RS232 Channel 0 (Download port). The CB220 model has ports 10 and 11 for RS232 Channel 1 5V signals.

For CB280, there is are 5V and 12V signals for RS232C Channel 1.

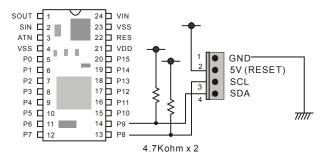

The reason for two 5V and 12V signal level exist is as follows. Since PC uses RS232 12V signals, we will need to make a separate circuit for converting to 5V signals for CUBLOC.

But since there are 12V signal outputs, the user doesn't have to worry about making a separate circuit.


For downloading to CUBLOC, it is very easy since you can connect a PC cable directly to pins 1 and 2. For RS422 and RS485 conversions, 5V signals are provided for RS232 Channel 1.

For CB280, 12V signals are provided for RS232 communication. Please be careful to use only one of the 5V or 12V connections at one time.

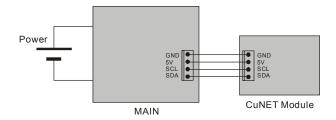
The following shows a simple circuit diagram of RS232 conversion from 12V to 5V signal using a MAX232 chip.


MAX232 is a very useful chip for converting between 5V and 12V of RS232 signals.

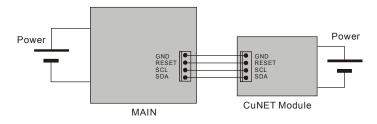
CuNET

CuNET is a communication protocol for CUBLOC peripherals such as CLCD, GHLCD, CSG modules. With just 2 pins, SCL and SDA, you can communicate with up to 127 devices simultaneously. CuNET uses CUBLOC's I2C protocol to communicate.

To use CuNET, please make sure to add pull up resistors(4.7K each) to the SCL and SDA lines. SCL and SDA pins are in a open-collector style, protecting against outside noise. It automatically removes pulses less than 50ns.

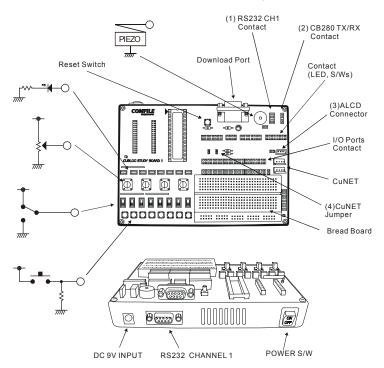


For using CuNET, the 4 pin connector's pin 1 must be connected to ground, pin 2 to 5V or RESET, pin 3 to SCL, and pin 4 to SDA. This 4 pin connector will be used as standard for CuNET communications.

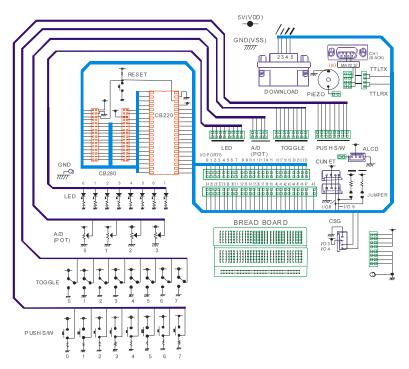

When using CuNET, the CUBLOC core module will act as the "master" and the device connected to as the "slave". All CuNET devices will respond to CUBLOC while in idle state.

CuNET operates in a Master-Slave mode. Slave cannot start communication with the master. For this type of communication, you must use PAD communication. PAD can receive inputs from other devices. Please refer to ON PAD command for detailed information.

CuNET device's connector's pin 2 connects to 5V of the main module:


CuNET device's connector's pin 2 connects to RESET of the main module when power is supplied to the CUNET device. (Active LOW to RESET causes CUBLOC to reset)

CuNET lines can be used within 3 feet. For longer communications(up to about 1mile), you can use Phillips I2C Long distance interface chip. (P82B96 or P82B715)


CUBLOC STUDY BOARD Circuit Diagram

Study board is especially for first timers and developers of CUBLOC. Simple experiments including switches, LED, RS232 communication, I2C, piezo, ADC, toggle switches, and LCDs are included. Communication protocol CuNET, I2C, and LCD connections are also provided.


When 9V is inputted, the 5V regulator inside the Study Board will automatically provide 5V to the module and peripherals. DC Adaptor polarity can be used either way. For normal operation, please use a 9V adaptor with at least 200mA of current.

Cubloc Study board 1 Schematic

(1) RS232 Channel 1 Connection point : to use the RS232 Channel 1, please connect wires to the appropriate pin input on the upper right hand corner labeled RS232C.

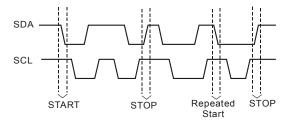
(2) For CB280, connect RS232 Channel 1 as shown below:

(3) For using CuNET, all jumpers must be shorted. If using pin 8 and 9 directly, please leave all jumpers to open state.

About I2C...

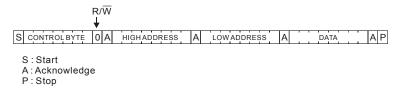
CUBLOC provides easy set of commands to communicate using I2C protocol. I2C communication is a widely used protocol, mainly used for communicating with ADC, EEPROM, DAC, External I/O chips.

I2C uses two lines, SDA and SCL, and operates in either MASTER or SLAVE mode. CUBLOC can only be used as a MASTER.


Please make sure to use command SET I2C before using I2C commands.

I2C's START, STOP

When SCL(Clock) and SDA(Data) are HIGH, I2C is in idle state. If START command is executed during idle state, I2C begins.


When SCL and SDA are both LOW, I2C is in busy state. If STOP command is executed during busy state, I2C stops.

There is also a Repeated Start in I2C. If START command is executed during busy state, I2C Restarts.

Using EEPROM through I2C

We will go through an example showing I2C communication between CUBLOC and EEPROM 24LC32. The following is a picture taken from the EEPROM's data sheet. It shows how to send data to the EEPROM.

The first bit is for Start command. The 4 upper bits of CONTROL BYTE must be 1010 and the 3 lower bits are for selecting the Chip's address. The user may change the EEPROM chip's address by configuring the chip.

For a read, 1 can be written for R/W and for a write, 0 can be written for R/W. A is for acknowledgement of the 8 bits(1 byte) sent. Then HIGH ADDRESS, LOW ADDRESS and DATA can be sent. When all data are sent, Stop command can be sent.

It takes about 5ms of time for EEPROM write.

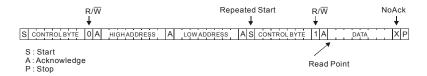
The following is a write EEPROM sequence in CUBLOC's BASIC code:

```
Set I2c 8,9 ' Set P8 as SDA, P9 as SCL

I2cstart

If I2cwrite(&H1010000) = 1 Then ERR_PROC ' Chip Address = 0

If I2cwrite(ADR.BYTE1) = 1 Then ERR_PROC ' ADDRESS WRITE


If I2cwrite(ADR.LOWBYTE) = 1 Then ERR_PROC

If I2cwrite(DATA) = 0 Then ERR_PROC '1 Byte WRITE

I2cstop

Delay 5 ' Wait until WRITE is done
```

Next, we will look at how to read 1 byte from the EEPROM. Although it might look more complex than writing 1 byte, we will soon find out that they are very similar.

Read Point is where the actual DATA will be read from the EERPOM. The front part of the command is for setting the address to read data.

```
Set I2c 8,9
I2cstart
If I2cwrite(&H10100000) = 1 Then ERR_PROC ' Chip Address = 0
If I2cwrite(ADR.BYTE1) = 1 Then ERR_PROC ' ADDRESS WRITE
If I2cwrite(ADR.LOWBYTE) = 1 Then ERR_PROC
I2cstart ' Repeated Start
If I2cwrite(&H10100001) = 1 Then ERR_PROC ' Read command..
DATA = I2cread(0) ' Result store in DATA.
I2cstop
```

And now, we will look at how to read multiple data from the EEPROM. Without using the STOP command, we can keep reading from the EEPROM since it automatically increments its address.

In this way, we can set the address to read from only once, and then read the rest of the data much faster.

```
Set I2c 8,9
T2cstart
If I2cwrite(&H10100000) = 1 Then ERR_PROC
                                                 ' Chip Address = 0
If I2cwrite(ADR.BYTE1) = 1 Then ERR PROC
                                                 ' ADDRESS WRITE
If I2cwrite(ADR.LOWBYTE) = 1 Then ERR PROC
                                          ' Repeated Start
I2cstart
If I2cwrite(&H10100001) = 1 Then ERR PROC
                                                 ' Read command..
For I = 0 To 10
       ADATA(I) = I2cread(0)
                                         ' Read 10 bytes continuously,
                                   ' ADATA is an array
Next
I2cstop
```

I2c example

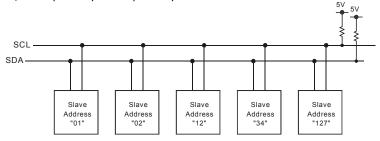
The following example shows CB280 and EEPROM 24LC32 connected. A value will be written to a specified address of the EEPROM and then read back to display on the DEBUG window of CUBLOC Studio.

```
Const Device = cb280
       Dim adr As Integer
       Dim data As Byte
       Dim a As Byte
       data = &hal
       adr = \&h3
       Set I2c 3,2
       Do
              'Write 1 Byte
              I2cstart
              If I2cwrite(&b10100000) = 1 Then Goto err proc
              a=I2cwrite(adr.byte1)
              a=I2cwrite(adr.lowbyte)
              a=I2cwrite(data)
              I2cstop
              Delay 1000
              ' Read 1 Byte
              I2cstart
              a=I2cwrite(&b10100000)
              a=I2cwrite(adr.byte1)
              a=I2cwrite(adr.lowbyte)
              I2cstart
              a=I2cwrite(&b10100001)
              a=I2cread(0)
              I2cstop
              ' Print Results
                                                                 CB280
                                                24LC32
              Debug Hex a, cr
              Delay 500
       Loop
                                               A0
                                                   SCL
                                                                 P2
                                               Α1
                                                   SDA
                                                                 Р3
                                               A2
err proc:
       Debug "Error !"
                                           TIT
       Do
       Loop
```

More About I²C... (Advanced)

 $\rm I^2C$ is a common protocol used by many industrial controllers today. CUBLOC uses $\rm I^2C$ as one of its main communication protocols.

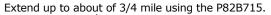
CuNET is built on the I²C protocol. The main advantage of CuNET is that it's hardware controlled for LCD displays. (Not CSG modules or I/O ports)

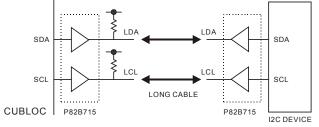

I²C commands such as I2CWRITE and I2CREAD are software commands. The advantage of I²C commands is that it does not require receive interrupts like serial communications. This allows the CUBLOC to multi-task, not letting any situations where the processor can "freeze" indefinitely.

As a result, a CUBLOC CB280 module can interface with almost 24 separate I2C buses! (That's buses, you can add multiple I²C device per I²C bus!)

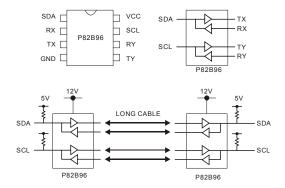
The CUBLOC simulates a Master I²C device. Since it can only simulate a Master I²C device, the I²C devices connected must be Slave I²C devices.

The main advantage of I²C protocol is that it does not cause any delays as CUBLOC is the Master I²C devices. CUBLOC can simply request for data when it wants to, it does not have to wait for the I²C Slave device to respond.

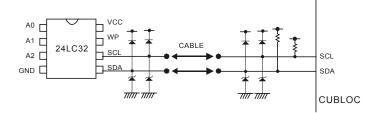

*Note: The I/O port used for I²C communication must be an Input/Output port, not Input Only or Output Only.



Even though maximum range for typical I²C bus is around 12 feet, a long distance extender chip such as the P82B715 can be used to extend the bus almost up to 3/4 mile. P82B96 can also be used as buffer to protect the I2C devices in case of electrical surges and interferences.



LX, LY : Buffered Bus, LDA or LCL SX, SY : I2C Bus, SDA or SCL


By using the P82B96, ground and power can be isolated on the device ends.

Please refer to Phillips website for more information on the specific chips discussed here: <u>http://www.standardics.nxp.com/</u>.

If you are using I²C interface within 12 feet, we recommend to use the following protection circuit:

If the I²C devices are connected with no buffers, electrical interference can cause damage to either CUBLOC or the I²C Slave device. By using diodes as shown below, you can protect against most of the electrical interference. If the devices are in a heavy, industrial environment, we recommend to use P82B96 chips as buffers.

Chapter 9 MODBUS

About MODBUS...

MODBUS is a protocol developed by MODICON to help interface peripherals for their PLCs.

It is usually used with devices like Touch screens, HMI devices, and SCADA software. A lot of Touch screen panels, HMI and SCADA software now days support MODBUS.

In MODBUS, there is Master and Slave mode. The Master provides data while the Slave receives the data. The slave can only respond to master and cannot communicate on its own.

Each slave has a unique address called Slave Address. The Master, using those Slave Addresses, can talk to one of the slaves at a time.

For 1 to 1 connections, RS232 can be used. For 1 to N connections, RS485 can be used.

The master sends messages in units of "Frames". Each Frame contains the Slave address, command, Data, Error Checksum codes. Slave receives a Frame and analyzes it. When responding to the Master, Slave also sends in "Frames".

In other words, MODBUS send and receive can be seen as composed of Frames that are sent and received.

There are two types of MODBUS, ASCII and RTU. RTU type can be implemented by using less bytes in the communication. ASCII use LRM for error checking and RTU uses CRC.

Field	Hex	ASCII	RTU
Header		: (colon)	None
Slave Address	0X03	03	0X03
Command	0X01	01	0X01
Start Address HI	0X00	0 0	0X00
Start Address LO	0X13	13	0X13
Length HI	0X00	0 0	0X00
Length LO	0X25	2 5	0X25
Error Check		LRC (2 Bytes)	CRC(2 Bytes)
Ending Code		CR LF	None
Total Bytes		17 Bytes	8 Bytes

The next is how ASCII and RTU are used:

ASCII type uses a colon (:) to start and ends with CR or LF.

START	SLAVE ADR	FUNCTION	DATA	LRC	END
: (COLON)	2 Bytes	2 Bytes	n Bytes	2 Bytes	CR,LF

RTU requires no special characters to start and finish. It uses 4 bytes of blank space to indicate start and finish.

START	SLAVE ADR	FUNCTION	DATA	CRC	END
T1-T2-T3-T4	1 Byte	1 Byte	N Bytes	2 Byte	T1-T2-T3-T4

CUBLOC supports MODBUS command & Address

CUBLOC supports MODBUS commands 1,2,3,4,5,6,15, and 16.

Command	Command Name
01, 02	Bit Read
03, 04	Word Write
05	1 Bit Write
06	1 Word Write
15	Multiple Bit Write
16	Multiple Word Write

In MODBUS, there are addresses which stand for Registers in CUBLOC. CUBLOC's Registers P, M, F, C, T, and D can be accessed using the following table:

Bit U	nits	Word L	Jnits
Address	Register	Address	Register
0000H	Р		
1000H	Μ		
2000H	Not Used		
3000H	Not Used		
4000H	F		
		5000H	Т
		6000H	С
		7000H	D
		8000H	WP
		9000H	WM
		0A000H	WF

Device Address...

The above table shows MODBUS device addresses. Device Addresses are used to identify different registers on the CUBLOC or CUTOUCH. Most Host equipment including CUBLOC, CUTOUCH, PC, and HMI will use the following rules:

Device Address	Modbus Address	Explanation
110000	Device Address – 1	Subtract one to get Modbus Address.
40001 50000	Device Address – 40001	Subtract 40001 to get Modbus
		Address.

Device Address after 40000 are word registers, meaning you can access 16bits at one time.

Please refer to the below Device Address when using MODBUS with CUBLOC or CUTOUCH. Device Address here is shown in decimals. Earlier Modbus Addresses were in hexadecimals.

Bit Access (Coil, Input Status)					
Function Codes : 1,2,4,15					
Device Address (Decimal)	Data				
1 to 128	P Registers				
385 to 512	F Registers				
4097 to 8192	M Register				

Word Access (Holding/Input Registers)					
Function Codes : 3,4,6,16					
Device Address (Decimal)	Data				
40001 to 41000	D Registers				
41001 to 42000	T Registers				
42001 to 43000	C Registers				
43001 to 44000	WM Registers				

Floating Device Addresses...

Please use the Device Addresses within the available number of registers in the module used.

For example, the CUBLOC CB280 has data registers from D0 through D99. There can only exist Device Addresses from 40001 to 40099. The rest of 400100 through 41000, the floating device addresses, are not to be used for future firmware updates, we ADVISE NOT to use them.

Function Code 01: Read Coil Status Function code 02 : Read Input Status

This function code can read the bit status of PLC's Register. The following is an example of reading Registers P20 through P56 from Slave Address of 3.

Query:				
Field	RTU	Bytes	ASCII	Bytes
Header			: (colon)	1
Slave Address	0X03	1	03	2
Function Code	0X01	1	01	2
Start Address HI	0X00	1	0 0	2
Start Address LO	0X14	1	14	2
Length HI	0X00	1	0 0	2
Length LO	0X25	1	2 5	2
Error Check	CRC	2	LRC	2
Ending Code			CR LF	2

LRC is the 2's complement of 8-bit sum of all values except Colon, CR, and LF.

For the table above, 0x03 + 0x01 + 0x13 + 0x25 = 0x3C. To fin d the 2's complement of 0x3C, we can write it in binary first. 0011 1100

Then we can invert the bits. $1100 \ 0011$

Then add one which is:

1100 0100 = 0xC4 LRC = 0xC4

ASCII	:	0	3	0	1	0	0	1	3	0	0	2	5	С	4	CR	LF
Hex	3A	30	33	30	31	30	30	31	33	30	30	32	35	43	34	13	10

Response to the query above is ..

Кезропзе.				
Field	RTU	Bytes	ASCII	Bytes
Header			: (colon)	1
Slave Address	0X03	1	03	2
Function Code	0X01	1	01	2
Byte Count	0X05	1	05	2
Data 1	0X53	1	53	2
Data 2	0X6B	1	6 B	2
Data 3	0X01	1	01	2
Data 4	0XF4	1	F 4	2
Data 5	0X1B	1	1 B	2
Error Check	CRC	2	LRC	2
Ending Code			CR LF	2

Response:

If you look at the response to the query, you can see that bit 20 through 27 makes one byte.

P20 is placed as LSB of Data 1 and P27 is placed as MSB of Data 1. Likewise we can acquire all of P20 through P56 and the left over bits

Likewise we can acquire all of P20 through P56 and the left over bits can just be disregarded.

Function Code 03: Read Holding Registers Function Code 04: Read Input Registers

This function code can read 1 Word (16 bits), usually used for Counters, Timers, and Data Registers. The following shows an example that reads Slave Address 3's D Register 0 to 2.

Query:				
Field	RTU	Bytes	ASCII	Bytes
Header			: (colon)	1
Slave Address	0X03	1	03	2
Function Code	0X03	1	03	2
Start Address HI	0X70	1	70	2
Start Address LO	0X00	1	0 0	2
Length HI	0X00	1	0 0	2
Length LO	0X03	1	03	2
Error Check	CRC	2	LRC	2
Ending Code			CR LF	2

1 Word is has 2 bytes, so we are going to get 6 bytes total as response.

-		
Doc	non	001
Res	DOL	ise.

^.........

Кезропзе.				
Field	RTU	Bytes	ASCII	Bytes
Header			: (colon)	1
Slave Address	0X03	1	03	2
Function Code	0X03	1	03	2
Byte Count	0X06	1	06	2
Data 1 LO	0X03	1	03	2
Data 1 HI	0XE8	1	E 8	2
Data 2 LO	0X01	1	01	2
Data 2 HI	0XF4	1	F 4	2
Data 3 LO	0X05	1	05	2
Data 3 HI	0X33	1	3 3	2
Length LO	0X03	1	03	2
Error Check	CRC	2	LRC	2
Ending Code			CR LF	2

Function Code 05 : Force Single Coil

PLC's can remotely control the status of its Registers in units of bits through this function code. The following is an example showing Slave Address 3's P1 Register being turned ON.

To turn ON Registers, FF 00 is sent and to turn OFF Registers, 00 00 is sent.

Query:				
Field	RTU	Bytes	ASCII	Bytes
Header			: (colon)	1
Slave Address	0X03	1	03	2
Function Code	0X05	1	05	2
Start Address HI	0X01	1	01	2
Start Address LO	0X00	1	0 0	2
Length HI	0XFF	1	FF	2
Length LO	0X00	1	0 0	2
Error Check	CRC	2	LRC	2
Ending Code			CR LF	2

The response shows that the data was entered correctly.

You MUST use FF 00 and 00 00 to turn ON/OFF Registers, other values will simply be ignored.

Response:

Field	RTU	Bytes	ASCII	Bytes
Header			: (colon)	1
Slave Address	0X03	1	03	2
Function Code	0X05	1	05	2
Start Address HI	0X01	1	01	2
Start Address LO	0X00	1	0 0	2
Length HI	0XFF	1	FF	2
Length LO	0X00	1	0 0	2
Error Check	CRC	2	LRC	2
Ending Code			CR LF	2

Function Code 06 : Preset Single Registers

PLC's can remotely control the status of its Registers in units of Words through this function code.

The following is an example showing Slave Address 3's D1 being written.

Query:				
Field	RTU	Bytes	ASCII	Bytes
Header		1	: (colon)	1
Slave Address	0X03	2	03	2
Function Code	0X06	2	06	2
Start Address HI	0X70	2	01	2
Start Address LO	0X01	2	70	2
Length HI	0X12	2	12	2
Length LO	0X34	2	34	2
Error Check	CRC	2	LRC	2
Ending Code		2	CR LF	2

Response:

Field	RTU	Bytes	ASCII	Bytes
Header			: (colon)	1
Slave Address	0X03	1	03	2
Function Code	0X06	1	06	2
Start Address HI	0X70	1	01	2
Start Address LO	0X01	1	70	2
Length HI	0X12	1	12	2
Length LO	0X34	1	34	2
Error Check	CRC	2	LRC	2
Ending Code			CR LF	2

Function Code 15: Force Multiple Coils

PLC's can remotely control the status of its Registers in units of multiple bits through this function code. The following is an example showing Slave Address 3's P20 through P30 being turned ON/OFF.

Query:				
Field	RTU	Bytes	ASCII	Bytes
Header			: (colon)	1
Slave Address	0X03	1	03	2
Function Code	0X0F	1	0 F	2
Start Address HI	0X00	1	0 0	2
Start Address LO	0X14	1	14	2
Length HI	0X00	1	0 0	2
Length LO	0X0B	1	0 B	2
Byte Count	0X02	1	02	2
Data 1	0XD1	1	D 1	2
Data 2	0X05	1	05	2
Error Check	CRC	2	LRC	2
Ending Code			CR LF	2

Below table shows how the DATA in the above query is divided. P27 is placed in the MSB of the first Byte send and P20 is placed in the LSB of the first Byte. There will be total of 2 bytes sent in this manner. Left over bits can be set to zero.

Bit	1	1	0	1	0	0	0	1	0	0	0	0	0	1	0	1
Reg.	P27	P26	P25	P24	P23	P22	P21	P20						P30	P29	P28
Res	Response:															
Field					RTU		Byt	es	AS	SCII		By	/tes			
Head	der								: (colo	n)	1				
Slav	e Add	ress			DX03		1		0	3		2				
Fund	tion C	Code)X0F		1		0	F		2				
Star	t Addr	ess H	I		00XC		1		0	0		2				
Star	t Addr	ess LO	C)X14		1		1	4		2				
Lenc	th HI				00XC		1		0	0		2				
Lend	, jth LO	1			DX0B		1		0	В		2				
Erro	r Cheo	ck			CRC		2		LR	C		2				
Endi	ng Co	de							CF	r lf		2				

Aug mar

Function Code 16 : Preset Multiple Registers

PLC's can remotely control the status of its Registers in units of Multiple Words at a time through this function code. The following is an example showing Slave Address 3's D0 through D2 being written.

Query:				
Field	RTU	Bytes	ASCII	Bytes
Header			: (colon)	1
Slave Address	0X03	1	03	2
Function Code	0X10	1	10	2
Start Address HI	0X70	1	70	2
Start Address LO	0X00	1	0 0	2
Length HI	0X00	1	0 0	2
Length LO	0X03	1	03	2
Byte Count	0X06	1	06	2
Data 1 HI	0XD1	1	D 1	2
Data 1 LO	0X03	1	03	2
Data 2 HI	0X0A	1	0 A	2
Data 2 LO	0X12	1	12	2
Data 3 HI	0X04	1	04	2
Data 3 LO	0X05	1	05	2
Error Check	CRC	2	LRC	2
Ending Code			CR LF	2

Response:

Field	RTU	Bytes	ASCII	Bytes
Header			: (colon)	1
Slave Address	0X03	1	03	2
Function Code	0X10	1	10	2
Start Address HI	0X70	1	70	2
Start Address LO	0X00	1	0 0	2
Length HI	0X00	1	0 0	2
Length LO	0X03	1	03	2
Error Check	CRC	2	LRC	2
Ending Code			CR LF	2

Error Check

If there is error in the data from the Master, Slave will send back an error code.

Field	Hex	ASCII	Bytes
Header		: (colon)	1
Slave Address	0X03	03	2
Function Code	0X81	81	2
Error Code	0X09	09	2
Error Check		LRC	2
Ending Code		CR LF	2

There are the following types of error codes:

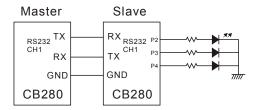
Code	Error Name	Explanation		
01	ILLEGAL FUNCTION	When a non-supported function code is		
		received.		
02	ILLEGAL DATA ADDRESS	When an incorrect address is received.		
03	ILLEGAL DATA VALUE	When bad data is received.		
09	LRC UNMATCH	When LRC is incorrect.		

The error check is only for MODBUS ASCII, there are no error check in RTU. MODBUS RTU uses CRC to check for errors in transmission.

MODBUS ASCII Master Mode

There are no special commands to set CUBLOC to Master Mode for MODBUS communication. Master Mode simply needs to be able to use RS232 data communication using commands like CUBLOC's GET and PUT.

The following is an example of ASCII Master Mode implemented in CUBLOC BASIC:


```
'Master Source
Const Device = cb280
      Dim RDATA As String * 80
      Dim a As Byte, ct As Byte
      Dim b As String * 17
      Dim Port As Integer
      Opencom 1,115200,3,80,80
      On Recv1 Gosub GETMODBUS ' Data Receive Interrupt routine
                               ' When Ending Code (10)
      Set Until 1,60,10
                                 ' on Channel 1 is discovered,
                                 ' create an interrupt
       Do
             For Port=2 To 4
                   BitWrite Port, 1 'Turn P0, P1, P2 ON!
                    Delay 100
             Next
             For Port=2 To 4
                    BitWrite Port, 0 'Turn P0, P1, P2 OFF!
                    Delay 100
             Next
       Loop
GETMODBUS:
      If Blen(1,0) > 0 Then ' If buffer empty then
             A=Blen(1,0) ' Store the buffer length in A!
             Debug "GOT RESPONSE: "
             B=Getstr(1,A) 'Store received data in B
             Debug B
      End If
      Return
End
       Sub BitWrite (K As Integer, D As Integer)
             Dim LRC As Integer
             Putstr 1,":0305"
             Putstr 1, Hp(k, 4, 1)
```

```
If D=0 Then
    Putstr 1,"0000"
    LRC = -(3+5+K.Byte1+K.Byte0) 'Calculate LRC
Else
    Putstr 1,"00FF"
    LRC = -(3+5+K.Byte1+K.Byte0+0xFF) ' LRC
End If
Putstr 1,Hex2(LRC),13,10 'Send
```

End Sub

MODBUS ASCII Slave Mode

```
Slave Source
Const Device = cb280
Opencom 1,115200,3,80,80
set modbus 0,3
Usepin 2, Out
Usepin 3, Out
Usepin 4, Out
Set Ladder On
```


When the Slave finishes processing the Data sent by the Master, the Slave will jump to the label GETMODBUS. We can use SET UNTIL command to check for ending code LF (10).

Then Getstr command is used to store all received data in RDATA. The data in RDATA can be analyzed to verify if the communication was achieved soundly or not.

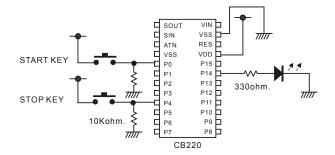
When the slave is not connected, the program will never jump to GETMODBUS.

MODBUS RTU Master Mode

The following is an example of RTU Master Mode implemented in CUBLOC BASIC to write 32-bit floating point values (2 Word Registers) to an RTU slave device 1:

```
Const Device = CB280
#include "crctable.inc"
   Open serial port for MODBUS
 [Set Baudrate as 115200bps and 8-N-1 with]
[receive buffer of 200 bytes and send buffer of 100 bytes]
Opencom 1,115200,3,200,100
[Data Receive Interrupt routine]
On Recv1 Gosub GETMODBUS
[Clear All Buffers]
Bclr 1,2
            [User Timer for MODBUS Timeout]
On timer(1) Gosub MvClock
Debug " [MODBUS FloatingPoint Value Write RTU Example] ",Cr
'Test writing 32bit SINGLE to Register Address 0 of device 1
Debug "writing 3.14 and 6.99 Long value to register 0", Cr
writesingle 1,0,3.14
writesingle 1,0,6.99
'Example showing how to send multiple floating point variables
'by making a simple function as WriteMultipleSingle()
SDataArray(0)=1.11
SDataArray(1)=2.22
SDataArray(2)=3.33
Debug "Writing multiple Single values to address 0", Cr
writemultiplesingle 1,0,3
Do
Loop
'Modbus Receive routine
#include "ModbusRTUrecv.bas"
End
'Modbus Low-Level include file
#include "ModbusRTULib016.bas"
```

*Please check our Forum on the internet, <u>www.cubloc.com</u> for more Modbus ASCII and RTU examples and MODBUS BASIC include file downloads.


MEMO

Chapter 10 Application Notes

NOTE 1. Switch Input

Let's say for example you are developing some kind of a machine, the first thing you need is a user interface. Our task today is to build a machine that will receive input from a switch and processes it to its assigned task..

We will make a START and STOP button that will light a lamp ON and OFF.

As you can see above, P0 and P4 ports will be connected to a pull-down resistor (resistor attached to ground). CB220 will read these switches as LOW or OFF when the switch is not pressed. To find out if these switches are pressed or unpressed, we can use CUBLOC BASIC command IN().

<Filename: startstopkey.cul>

```
Const Device = cb220

Dim a As Byte

Do

If In(0) = 1 Then a = 1

If In(4) = 1 Then a = 0

Out 14,a

Loop
```

When the switch is pressed, a "bouncing" effect occurs from the switch's mechanical spring.

The above picture shows how bouncing can confuse CUBLOC controller by bouncing up and down. To get rid of this bouncing effect, a capacitor and resistor can be added to filter it out.

A simpler method is to use the command KEYINH() rather than IN() which will remove the bouncing effect by software.

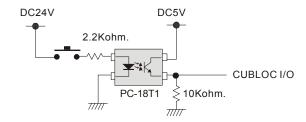
<Filename: keyinhinput.cul>

```
Const Device = cb220

Dim a As Byte

Do

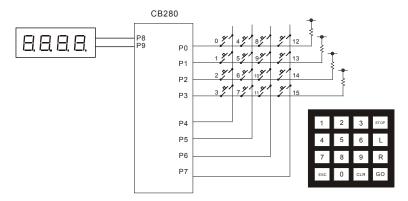
If Keyinh(0,20) = 1 Then a = 1


If Keyinh(4,20) = 1 Then a = 0

Out 14,a

Loop
```

The 2^{nd} parameter of KEYINH(0, 20) sets the time for removing the bouncing effect, also called debouncing time. In other words, the 20 means to wait 20ms before accepting input.


For the industrial field, there can be a lot of noisy environments where it can affect the switch signals. In order to block noise, the user can implement a circuit diagram similar to one shown below. By using a photocoupler, the user is able to raise the voltage and minimize the noise from affecting the switch.

<END>

NOTE 2. Keypad Input

Application note 2 will cover a 4 by 4 Keypad by taking its input and outputting the results to a 4 digit 7 segment module (CSG module)

The CSG module is a 4 digit seven segment LED module that can be connected via CUNET or I2C protocol to display numbers and custom characters.

<Filename: csgprint.cul>

```
Const Device = CB280
Set I2c 9,8
Dim I As Byte
Do
Csgdec 0,I
I = I + 1
Loop
```

If you connect CUNET to CSG and execute the above program, the CSG module will show numbers that will count up.

The key matrix can be read easily through the command KEYPAD. If you look carefully at the keypad, you will see that scancode does not match the actual key pressed. In order to read the correct key, we will use a KEYTABLE before outputting the value to the CSG.

<Filename: keypadnum.cul>

And now, we will make a simple program that receives input. When a number key input is received, it is displayed to the CSG module as a 4 digit number. The number is stored into the variable K, which is in BCD code. We then use the function BCD2BIN to convert the BCD value back into binary.

```
<Filename: num4in.cul>
Const Device = CB280
Set I2c 9,8
Dim I As Integer
Dim K As Integer
Dim M As Integer
K = 0
Const Byte KEYTABLE = (1,4,7,10,2,5,8,0,3,6,9,11,12,13,14,15)
Do
       I=Keypad(0)
      If I < 16 Then
             I = KEYTABLE(I)
              If I < 10 Then
                    K = K << 4
                    K = K + T
                    Csghex 0,K
              End If
              .
              .
                    WAIT UNTIL KEY DEPRESS
```

```
,
    Do While Keypad(0) < 255
    Loop
    M = Bcd2bin(K)
    Debug Dec M,CR
    End If
Loop</pre>
```

When there is no input, the returned scancode is 255. By using Do While keypad(0) < 255, we will wait until a key is unpressed which will return a scancode of 255. This is to let the processor stop reading input while a key is pressed. Otherwise, the processor might receive multiple key inputs since execution time of CUBLOC is very fast.

By using $_D(0) = M$, you can pass the scancode value to Register D0 of Ladder Logic. If you need to use a keypad in LADDER, you can modify this code a little bit to get your results quick.

<END>

NOTE 3. Temperature Sensor

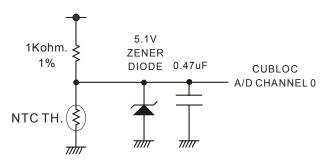
In our world today, there are countless number of devices that senses temperature. Refrigerator, heater, air conditioner, automobiles, and many other devices that uses temperature sensors. Therefore, this is one of the very basic components we must know.

What types of temperature sensors are there? There is PT100, NTC, PTC thermistor, and other chip-type sensors such as the DS1620.

Today, we will dive into the NTC thermistor and figure out how to connect and use it with CUBLOC.

The NTC thermistor can be comparable to a very sensitive resistor. Depending on the temperature, the value of resistance will change. By reading the value of this resistance, we can figure out the current temperature. Among NTC thermistors, the ceramic types can sense around -20 to 130 degrees Celcius temperature.

There is an NTC thermistor that resembles a diode. With this thermistor, we can sense between -30 and 250 degrees Celcius temperature.



You can acquire R-T(Resistance – Temperature) conversion table from the maker of the thermistor. The following is a diode-type 10K Ohm NTC Thermistor R-T conversion chart and table.

Temperature	Minimum	Average	Maximum
0	31260.0	32610.0	33987.7
1	29725.7	30993.7	32286.7
2	28275.6	29466.8	30680.6
3	26904.5	28023.9	29163.6
4	25607.8	26660.0	27730.3
5	24381.0	25370.2	26375.7
6	23220.0	24150.1	25094.9
7	22120.9	22995.7	23883.7
8	21080.1	21903.1	22737.7
9	20094.1	20868.5	21653.3
10	19159.9	19888.7	20626.7
11	18274.4	18960.5	19654.6
12	17434.8	18080.8	18733.8
13	16638.5	17246.9	17861.4
14	15883.1	16456.1	17034.4
15	15166.2	15706.0	16250.4

16	14485.7	14994.4	15506.9
17	13839.6	14318.9	14801.5
18	13225.9	13677.7	14132.2
19	12642.8	13068.7	13496.9
20	12088.7	12490.3	12893.6
21	11561.9	11940.6	12320.7
22	11061.0	11418.2	11776.4
23	10584.6	10921.6	11259.2
24	10131.3	10449.3	10767.5
25	9700.0	10000.0	10300.0
26	9281.3	9572.5	9864.0

For connecting the sensor to the CUBLOC, please refer to the following circuit diagram. To protect against voltage surges, the Zener diode must be used.

As you can see in the circuit diagram, we will be using A/D (Analog-to-Digital) converter to read the current voltage flowing through the sensor. The A/D converter will convert the current voltage into a value between 0 and 1024.

The most important part of this application note is the following table which converts the value of voltage to A/D value between 0 and 1024. (Only some of the temperatures are shown.)

Temp	Resistance	Voltage	A/D value
-30	175996.6	4.971750865	1018
-29	165473.9	4.969965259	1018
-28	155643.6	4.968080404	1017
-27	146456.3	4.966091647	1017
-26	137866.4	4.963994167	1017
-25	129831.7	4.961782976	1016
-24	122313.4	4.959452909	1016
-23	115275.4	4.956998627	1015
-22	108684.3	4.954414614	1015
-21	102509.3	4.951695171	1014
-9	52288.3	4.90617073	1005
-8	49549.7	4.901087406	1004

-7	46970.5	4.895769279	1003
-6	44540.6	4.890207868	1002
-5	42250.5	4.884394522	1000
-4	40091.5	4.878320427	999
-3	38055.4	4.871976604	998
-2	36134.4	4.865353924	996
-1	34321.5	4.858443112	995
0	32610.0	4.851234752	994
1	30993.7	4.8437193	992
2	29466.8	4.835887094	990
3	28023.9	4.827728362	989
4	26660.0	4.819233234	987
5	25370.2	4.810391755	985
6	24150.1	4.801193902	983
7	22995.7	4.79162959	981
8	21903.1	4.781688696	979
9	20868.5	4.771361072	977
10	19888.7	4.760636561	975
10	18960.5	4.749505017	973
12	18080.8	4.737956327	970
13	17246.9	4.725980424	968
14	16456.1	4.713567319	965
15	15706.0	4.700707114	963
15	14994.4	4.68739003	960
17		4.673606431	957
	14318.9		954
18	13677.7	4.659346849	
19	13068.7	4.644602011	951
20	12490.3	4.629362861	948
21	11940.6	4.613620595	945
22	11418.2	4.597366683	942
23	10921.6	4.580592903	938
24	10449.3	4.563291365	935
25	10000.0	4.545454545	931
26	9572.5	4.527075313	927
27	9165.6	4.508146964	923
28	8778.3	4.488663246	919
29	8409.4	4.468618396	915
30	8058.1	4.448007162	911
31	7723.3	4.426824842	907
32	7404.3	4.405067304	902
33	7100.2	4.382731022	898
34	6810.2	4.359813102	893
35	6533.7	4.336311306	888
36	6269.8	4.312224084	883
37	6018.0	4.287550592	878
38	5777.7	4.262290722	873
39	5548.3	4.236445118	868
50	3606.1	3.914475937	802
51	3472.1	3.881948015	795
52	3343.7	3.848917708	788
53	3220.8	3.815397329	781
54	3103.1	3.781399998	774
55	2990.2	3.746939622	767

56	2882.1	3.712030877	760
57	2778.4	3.676689176	753
58	2679.0	3.640930651	746
59	2583.6	3.604772114	738
81	1220.4	2.748157207	563
82	1181.9	2.7084025	555
83	1144.8	2.668747011	547
84	1109.0	2.629210536	538
85	1074.5	2.589812422	530
86	1041.3	2.550571543	522
87	1009.2	2.511506263	514
88	978.3	2.472634416	506
89	948.5	2.433973277	498
90	919.8	2.395539544	491
91	892.0	2.357349316	483
92	865.3	2.319418079	475
93	839.4	2.281760687	467
94	814.5	2.244391354	460
95	790.4	2.207323646	452
96	767.1	2.170570465	445
97	744.7	2.134144055	437
98	723.0	2.098055989	430
99	702.0	2.062317177	422
100	681.8	2.026937858	415
101	662.2	1.99192761	408
102	643.3	1.957295352	401
103	625.0	1.92304935	394
104	607.3	1.889197225	387
105	590.2	1.855745964	380
106	573.7	1.822701928	373
107	557.7	1.790070865	367
108	542.2	1.757857926	360
109	527.2	1.726067674	353
239	33.5	0.162295782	33
240	33.0	0.159800146	33
241	32.5	0.157350769	32
242	32.0	0.154946682	32
243	31.5	0.152586936	31
244	31.0	0.150270604	31
245	30.5	0.147996779	30
246	30.0	0.145764577	30
247	29.6	0.143573131	29
248	29.1	0.141421596	29
249	28.7	0.139309144	29
250	28.2	0.137234968	28
	2012	0.13/23/300	-0

NTC THERMISTOR READ TABLE

10K DIODE TYPE

Const Device = cb280

;

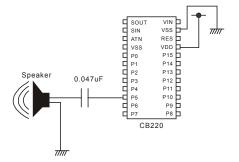
•

.

Const Integer TH TABLE = (992,990,989,987,985,983,981,979,977,975, 973,970,968,965,963,960,957,954,951,948, 945,942,938,935,931,927,923,919,915,911, 907,902,898,893,888,883,878,873,868,862, 857,851,845,839,833,827,821,815,808,802, 795,788,781,774,767,760,753,746,738,731, 723,716,708,700,692,684,677,669,661,652, 644,636,628,620,612,604,596,587,579,571, 563, 555, 547, 538, 530, 522, 514, 506, 498, 491, 483, 475, 467, 460, 452, 445, 437, 430, 422, 415) Dim a As Integer, b As Integer Do b = Tadin(0)If b > 990 Or b < 400 Then Debug "Out of Range" 'Check short or open th. End If For a=0 To 100 If b > TH TABLE(a) Then Exit For Next Debug Dec a, cr Delay 500 Loop

<Filename: ntcth.cul>

By using the TADIN command for AD conversion, CUBLOC will automatically calculate the average of 10 A/D conversion reads. By using this command, you get more precise results. The sample program shown here will be able to sense between 0 to 100 degrees. For larger range, you can simply modify the code.


The formula for acquiring A/D conversion value from the R-T table is as follows:

 $V = \frac{5}{(1000 + THR)} \times THR$

THR is the resistance value. 1000 is for 1K Ohm resistor and 5 is for 5 volts. The 10 bit A/D converter of CUBLOC will return a value between 0 and 1024. There for to get the A/D value, you must multiply result V by 204.8. You can easily make a chart by using an excel spreadsheet to enter these formulas. $\langle END \rangle$

NOTE 4. Sound Bytes

In this application note, I will be showing you simple ways to create key touch sound, musical notes, and alert sound. An I/O port or a PWM Channel of CUBLOC can be used for sound. With a PWM Channel, you have the advantage of creating different tones of sounds.

The above example shows PWM Channel 0 of CB220 being used with Freqout command to produce a sound.

```
Const Device = cb280

Dim PLAYSTR As String

Low 5

Freqout 0,5236 'Create a sound with frequency of 440Hz

Delay 500 'Delay

Pwmoff 0 'Stop Sound by turning off PWM
```

With commands like Freqout and Delay, simple sounds can be created.

```
<Filename: playcdec.cul>
Const Device = CB280
Low 5
Freqout 0,4403
Delay 200
Freqout 0,3703
Delay 200
Freqout 0,3114
Delay 200
Freqout 0,2202
Delay 200
Pwmoff 0
```

By changing frequencies, we have made a simple program that can play musical notes.

Octa	ave 4						Octa	ive 5					
Α	В	С	D	Е	F	G	А	В	С	D	Е	F	G
Α	В	С	D	Е	F	G	Н	Ι	J	К	L	М	Ν

To express one note, you can use 2 characters. The first character is for the note and second character is for the length of the note.

<Filename: play.cul>

```
Const Device = cb280
   Dim PLAYSTR As String
   LOW 5
   PLAYSTR = "G5E3E3G3E3C5"
   PLAY 0, PLAYSTR
   Do
   Loop
   End
Sub PLAY (CH As Byte, NOTE As String)
   Dim PL As Byte
   Dim CHAR As Byte
   Const Integer PLAYTABLE = (5236,4665,4403,3923,3495,3299,2939,
          2618,2333,2202,1961,1747,1649,1469,0)
   For PL=1 To Len(NOTE) Step 2
          CHAR = Asc(Mid(NOTE, PL, 1)) - &H41
          Fregout CH, PLAYTABLE (CHAR)
          CHAR = Asc(Mid(NOTE, PL+1, 1)) - &H30
          Delay CHAR*100
   Next
   Pwmoff CH
End Sub
```

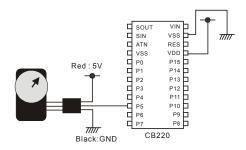
When using PWM port for other purposes, Freqout command no longer becomes available for use. In this case, we can use any regular I/O port to create sound.

We will use TOGGLE and UDELAY commands to set the I/O Port to HIGH and LOW. The following example shows how to make an alert sound with a regular I/O port, P4.

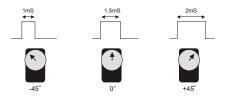
<Filename: playport.cul>

```
Const Device = CB280
   Low 4
   Do
   SOUND 4,110,60
   SOUND 4,80,60
   SOUND 4,40,160
   Loop
   End
Sub SOUND (PN As Byte, FR As Byte, LN As Byte)
   Dim SI As Byte, SJ As Byte
    For SJ = 0 To LN
          Reverse PN
          Udelay FR
          Reverse PN
          Udelay FR
   Next
End Sub
```

<END>


NOTE 5. RC Servo Motor

RC Servo Motors are used by many hobbyist to make remote control cars, planes, and etc... In the recent years, it has been used for robot arms, legs, and other body parts.


With CUBLOC, you can use the PWM to easily implement an RC Servo motor into your project.

There are 3 wires to the RC servo motor. The black wire is ground and red wire is for power. The other yellow wire is for inputting PWM signal. For PWM signal, you can input about 60 pulses per second to enable the RC servo.

The RC Servo motor will move to a location set by pulse and duty value and will hold its position. By being able to control the exact angles at which the RC servo stops, we can control the RC servo as freely as we want.

A pulse of 1ms will stop the RC servo at -45 Degrees. A pulse of 1.5ms will stop the RC servo at 0 Degrees. A pulse of 2ms will stop the RC servo at +45 Degrees. Depending on the RC servo you use, these specification will vary.

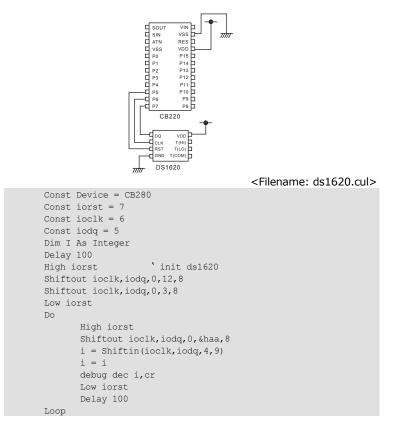
<Filename: rcservo.cul>

```
Const Device = CB280
Low 5
Pwm 0,2500,32768
```

When the code above is executed, a 1ms pulse will be outputted from port number 5. RC servo will position itself to -45 degrees.

```
Const Device = CB280
Low 5
Pwm 0,4000,32768
```

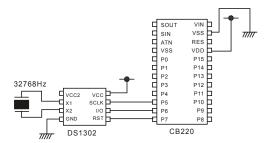
When the code above is executed, a 1.5ms pulse will be outputted from port number 5. RC servo will position itself to +45 degrees.


As you can see, by simply change the duty value of PWM command, RC servo can easily be controlled. For the CB220, 3 RC servos can be controlled simultaneously while the CB280 and CB290 can control 6 RC servos.

Warning: When the RC servo is in operation, it will need about 500mA of current, please make sure to use a power supply of at least 500mA.

<END>

NOTE 6. DS1620 Digital Thermometer


The DS1620 is a digital thermometer. The chip internally has a temperature conversion table so the user does not have to make a separate conversion table. Temperature range between -55 and 125 degrees Celcius can be obtained by the DS1620 in units of 0.5 Degrees.

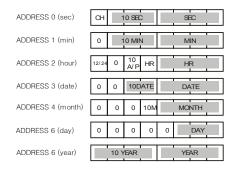
The final value received can be divided into 2 to obtain the current temperature.<END>

NOTE 7. DS1302 RTC

DS1302 RTC (Real Time Clock) is a chip that will acts as an electronic time keeper. It has the ability to keep time and date in real-time. We will show you how to implement this clock chip into your application in this note.

Pin	Function	I/O Direction	Explanation
RST	Reset	Input	Data transfer when High
SCLK	System Clock	Input	Clock signal
I/O	Data	Input /	Data input/output
	Input/Output	Output	

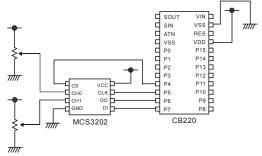
<Filename: ds1302.cul>


```
Const Device = CB220
       Const iorst = 7
       Const iodio = 6
        Const ioclk = 5
       Dim I As Integer
       Dim adr As Byte
       High iorst
       Shiftout ioclk, iodio, 0, &h8e, 8
       Shiftout ioclk, iodio, 0, 0, 8
       Low iorst
        Delay 1
       High iorst
       Shiftout ioclk, iodio, 0, &h80, 8
       Shiftout ioclk, iodio, 0, &H50, 8
        Low iorst
        Do
               High iorst
               adr = \&h81
               Shiftout ioclk, iodio, 0, adr, 8
               i = Shiftin(ioclk,iodio,4,8)
```

```
Debug Hex i,cr
Low iorst
Delay 1000
Loop
```

The above code will read ADDRESS 0, second's value, and display it onto the DEBUG window.

At the beginning of the program, we will enable writes to the DS1302 chip and set the ADDRESS 0 to 50 seconds.


Within the Do Loop, we will read the data from DS1302. The DS1302 chip has 6 addresses as shown below:

These addresses can be used to read and write to the DS1302. Please note that the data is in BCD code format. <END>

NOTE 8. MCP3202 12 Bit A/D Conversion

The CUBLOC has a 10 bit A/D converter. Without a separate chip, you can get up to 10 bits of A/D conversion. But for greater resolution, meaning greater precision, you can use a chip like the MCP3202. MCP3202 is a 12 bit A/D converter that supports SPI protocol. Here we will show you how to implement this 12 bit A/D converter into your project.

Pin	Function	I/O Direction	Explanation
CS	Chip Select	Input	Low for data communication
CLK	Clock	Input	Clock signal
DI	Data Input	Input	Data input from MCP3202
DO	Data Output	Output	Data output from MCP3202

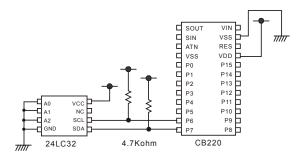
<Filename: mcp3202.cul>

```
Const Device = CB280
Const iodi = 7
Const iodo = 6
Const ioclk = 5
Const iocs = 4
Dim I As Byte
Dim ad As Integer
       Low iocs
       i = &b1011 'Channel 0
       'i = &h1111 'Channel 1
       Shiftout ioclk, iodi, 0, i, 4
       ad = Shiftin(ioclk,iodo,3,12)
       High iocs
       Debug Dec ad, cr
       Delay 100
gool
```

The MCP3202 will convert voltage coming into CH0 and CH1 ports to a data value and retain it. The user can simply use SPI communication to read the value that the MCP3202 has converted.

The voltage inputted to the MCP320 CH0 and CH1 pins must not be greater than the voltage supplied to the MCP3202. The result of A/D conversion is displayed to the DEBUG window.

🥔 Debug	Terminal					 ×
Port	Baud Rate	Parity	Data Bits	•тх	<u>ا 1</u>	
сом1 💌	115200 💌	None 💌	8 🔻	●RX		
				_	_	
1044						
1540						
1546						
1545						
1543						
1544						
1543						
1546						
1542						
1542 1543						
1543						
1544						
1541						
1544						
1541						
1545						
						-
						_
1	Close	E Fix B	ight Side			
		,				


<END>

NOTE 9. Read and write to the EEPROM

With the EEPROM, you can store between 0.5 to 64 KB of data. Data is retained even after powering off, allowing it to act almost as a small hard drive. If you want to retain a temperature setting for a temperature controller, you can simply store the value of the temperature in the EEPROM in case of power-outs.

CUBLOC has an internal EEPROM of 4KB. For small and simple data, you may use this internal EEPROM. In the case of larger data, you can use an EEPROM like 24LC512 to store up to 64KB of data.

Here we will show you how to access the 24LC32 4KB EEPROM through I2C protocol. The serial EEPROMs usually support either SPI or I2C. I2C EEPROMs name starts with 24XXXX and SPI EEPROMs name starts with 93XXX.

<Filename: eeprom.cul>

```
Const Device = CB280

Dim adr As Integer

Dim data As Byte

Dim a As Byte

data = &ha6

adr = &h3

Set I2c 7,6

Do

I2cstart

If I2cwrite(&b10100000) = 1 Then Goto err_proc

a=I2cwrite(adr.byte))

a=I2cwrite(adr.lowbyte)
```

```
a=I2cwrite(data)
              I2cstop
              Delay 1000
              I2cstart
              a=I2cwrite(&b10100000)
              a=I2cwrite(adr.byte1)
              a=I2cwrite(adr.lowbyte)
              I2cstart
              a=I2cwrite(&b10100001)
              a=I2cread(0)
              I2cstop
              Debug Hex a, cr
              ADR = ADR + 1
             DATA = DATA + 1
       Loop
err proc:
       Debug "Error !"
       Do
       Loop
```

This example program will write a number to EEPROM and read from it. When this program runs correctly, numbers will increment on the DEBUG screen. You can easily modify this code to support other EEPROMs.

Note: Please wait at least 5ms after a write to the EEPROM.

<END>

MEMO

Chapter 12 Ladder Logic

WARNNING

If you do not use SET LADDER ON command, Ladder Logic will not be executed.

LADDER Basics

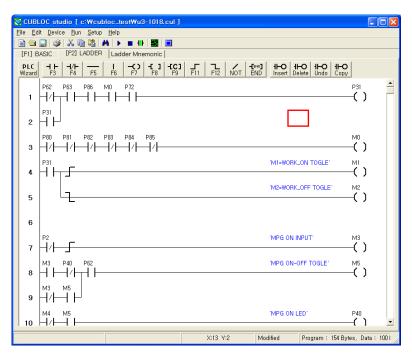
The following is an example of one switch and a lamp.

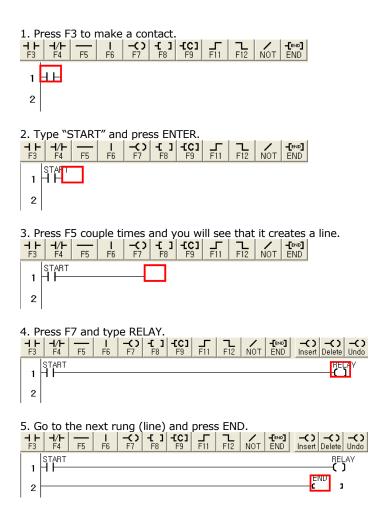
If you take out the power, the following results:

If you express the above circuit diagram as Ladder Logic, the following results:

As you can see, LADDER is simply an easy way to express circuit diagrams. A switch is comparable to the P0 port and P9 is comparable to the LAMP.

There are many ways to connect other devices such as timers, counters, and etc... The following is an OR and AND connection in Ladder Logic:

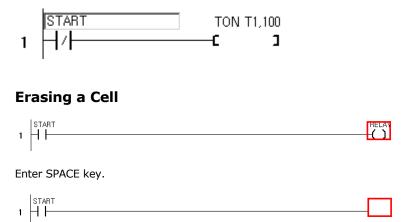

In this circuit diagram, P0 and P2 and connected in logical combination of AND. P0 and P3 are ORed. (Which mean either P0 or P3 has to be on) If you express the above circuit diagram in Ladder Logic, it will be as follows:


In CUBLOC STUDIO, the right side is not shown. In the Ladder Logic of CUBLOC, P0, P1, P2 are called "Registers".

Creating LADDER

The below screen shows you how Ladder Logic is created in CUBLOC STUDIO.

The red box shown above is the cursor for Ladder Logic. You may use the keyboard up, down, left, and right keys or the mouse to control the red box. After moving to the desired position, you can use keys F3 to F12 to put the desired symbol. You can also enter text for those required symbols.



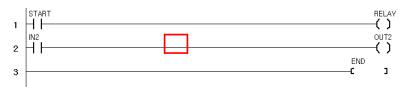
Please press the ENTER key at the end of entering TEXT. At the very end of the Ladder Logic, you must put an END command.


Editing LADDER Text

Editing Text

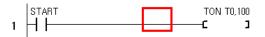
To edit an existing TEXT, please place the cursor in the desired location and press ENTER. Now you can edit the TEXT freely as you like.

Erasing a Rung (one line)



A rung is a row in Ladder. You can press CTRL-D to erase a rung. This actually moves the rung to a buffer

Rung Recovery


To recover an erased rung, press CTRL-U.

Cell Insert and Delete

If you press DEL button from current position, the cell is erased and items on the right are pulled one cell to the left.

If you press INS button from the current position, a blank cell is inserted and items on the right are moved one cell right.

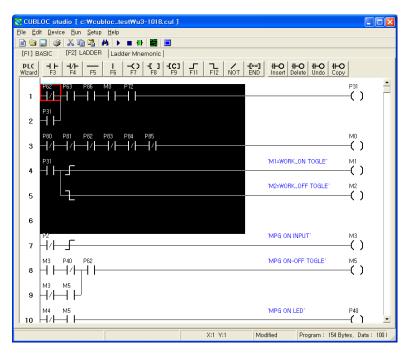
Rung Copy

When same style of rung is needed, you can press CTRL-A and it will copy the above rung except text will not be copied.

Comments

You can enter comments by adding an apostrophe (').

You can use a semi-colon (;) to display to the next line.

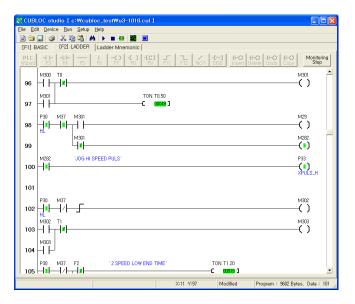

For example:

"This is Sample Program ; Date 24-Sep-2007 Comfile Technology"

LADDER BLOCK COPY and PASTE

You can make a selection of a block to copy and paste to different parts of the LADDER.

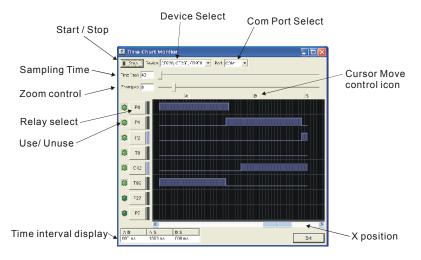
Use the mouse to click and drag to select the desired copy area. Press CTRL-C to copy and CTRL-V to paste. Similar to text editing, you can press CTRL-X to cut and paste also.


*Please be aware that in LADDER editing, UNDO is not supported.

Monitoring

CUBLOC STUDIO supports real-time monitoring of Ladder Logic.

Status of contacts that are ON will be displayed **GREEN**. Timer and counter values will be displayed as decimal values. You can control the monitoring speed by going to **Setup Menu-> Studio option-> Monitoring speed**. When the monitoring speed is too fast, it can affect CUBLOC's communications as monitoring takes up resources. We recommend value of 5 for the monitoring speed.



*Please make sure to stop monitoring before editing or downloading.

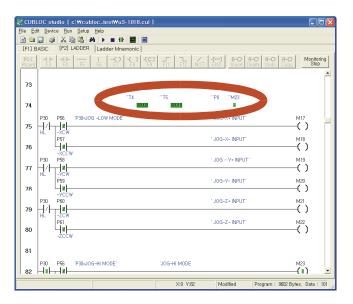
Time Chart Monitoring

With Time Chart Monitoring, you will be able to see Ladder Logic contacts as a time chart. The minimum width of the time chart is 40ms. You can use the Zoom control function to measure the width of each pulse after stopping. Up to 8 Registers can be monitored at one time.

To use the Time Chart Monitor, you must set Debug off in Basic. To do this, simple add "Set Debug Off" command at the very beginning of your code.

Set Debug Off

While using Time Chart Monitor, Ladder Monitoring may not be used either.


WATCH POINT

When you want to watch the status of Registers and timers outside the current Ladder Monitoring screen, you can use Watch Point feature.

You can use two apostrophes ('') to add a WATCH POINT. For example, you want to see P0 right next to some other Register that is on exact opposite side of the screen.

Examples:

''P0 \''P1 \''D0

* Please be aware that it's two APOSTROPHES(''), not a QUOTATION MARK(").

Options Window

🖉 Options	- 🗆 🗙	
Ladder Style-		
Size		LADDER size adjust
Line Space —j	- +	LADDER line space adjust
Boarder Color 🕜 Black 📀 White	•	LADDER background color
Monitoring Speed Fast J	₩ ◀	LADDER monitorring speed setting
Auto Excute mode		——— Auto run when download
Close		

If you select to use "Auto Run when download", the program will automatically reset itself after downloading. This can become a problem for machines that are sensitive to resets. By turning this option OFF, you will be able to control when the program is resetted after downloading.

In the help menu, you will find Upgrade information, and the current version of CUBLOC Studio.

PLC Setup Wizard

To use Ladder Logic in CUBLOC, you must create the most basic BASIC code. Although very simple, this can be hard for first-timers. You can use the PLC Setup Wizard and setup the I/Os you will be using and create the BASIC source automatically.

.FIJ PLC W zam		
PLC Setup Wizard Ladder environment edit Outp Device Select	ut BASIC code review L/O maps	A/D convertor
CB220 ▼ I High Count1 ->D39 I High Count0 ->D38 I PWM 0,1,2 << (D26~)	Ive all Iv all OUT all Use all Non Alse Orap P P0 Ote @ P0-P7 ■ P P2 Ote @ P0-P7 ■ P P3 Ote @ P0-P7 ■ P P4 Ote @ P0-P15 ■ P P10 Ote @ P1+1 P1+1 P1+1 P14 Ote @ P1+2 Ote @<	AD channel 0 → D10 AD channel 1 → D11 AD channel 1 → D11 AD channel 2 → D12 AD channel 3 → D13 AD channel 3 → D14 AD channel 5 → D15 AD channel 5 → D16 AD channel 5 → D16 AD channel 7 → D17 Alias (Nick Name) Example) M0 = Subfelay M10=R0EDC M2=RELAY1 M3=KOREA
Load Save As	Replace Basic Code	Cancel

As you can see in above screen, Device name, I/O status, alias, and other features can be set simply by clicking.

You can set aliases for Registers, set Modbus to be ON, and set the baud rate for the Modbus.

You can always review the current BASIC code generated in real-time by pressing [Output BASIC code review] tab.

👖 PLC Setup Wizard		
Ladder environment edit Output BASIC code review		
Conet Device = CB20 Operation Is 11 Usepin 10.0 Usepin 10.0 Usepin 20.0 Usepin 50.0 Usepin 50.0 Usepin 50.0 Usepin 50.0 Usepin 50.0 Usepin 50.0 Usepin 10.0 Usepin		3
Load Save As	Replace Basic Code	Cancel

For using A/D, PWM, or COUNT, you can simply read from the D Registers for the results. For ADC0, the AD value is stored in D(10). The user can simply read from Register D10 to find the value of AD0.

For PWM3, the user can simply write to Register D29 to output PWM. For HIGH COUNT1, simply read Register D39. If the user wishes, he can change the Register to store or write values by changing the BASIC code. Please press [Replace Basic Code] when you are done to product the final BASIC code. Please be aware that older code will be deleted at this point.

You can also save the setup to a file by clicking on [SAVE AS..]. Click on [LOAD...] to bring back saved setup values.

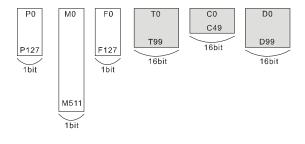
Usage of Ladder Register

With this feature, the user can see alias of all Registers. By using this feature, the user will be able to save a great deal of time while debugging and developing the final product. Please go to **Run->View Register Usage** to open this window.

III Usage of La	dder Re	lay			
(AIIII) P M	F 8	6 T	C	D	1
P relay usage P1 -HL P2 -MPG_ON P3 -MPG_X P4 -MPG_Y P5 -MPG_Z P6 -X1 P7 -X10 P14 TBEEP P15 X10W LED P192 -PULS P24 -XCW P25 XCCW P26 YCCW P27 YCCW P28 ZCCW P28 ZCCW P28 ZCCW P28 ZCCW P28 ZCCW P29 ZCCW P28 ZCCW P29 ZCCW P28 ZCCW P29 ZCCW		3 T	C	D	
P31 WORK_ON P32 XPULS_H P33 XPULS_H P35 YPULS_H P36 ZPULS_L P37 ZPULS_L P37 ZPULS_L P40 MPGON P41 MPG_Y P42 MPG_Y P42 MPG_Z					×

Register Expression

CB220, CB280 Registers


The following is a chart that shows CB220, CB280 Registers.

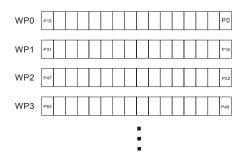
Register Name	Range	Units	Feature
Input/Output Register	P0 to P127	1 bit	Interface w/
P			External devices
Internal Registers M	M0 to M511	1 bit	Internal Registers
Special Register F	F0 to F127	1 bit	System Status
Timer T	T0 to T99	16 bit (1 Word)	For Timers
Counter C	C0 to C49	16 bit (1Word)	For Counters
Step Enable S	S0 to S15	256 steps	For Step Enabling
		(1 Byte)	_
Data Memory D	D0 to 99	16bit (1 Word)	Store Data

P, M, and F Registers are in bit units whereas T, C, and D are in word units. To access P, M, and F Registers in word units, you can use WP, WM, or WF.

Register Name	Range	Units	Feature
WP	WP0 to 7	16 bit (1 Word)	Register P Word Access
WM	WM0 to WM31	16 bit (1 Word)	Register M Word Access
WF	WF0 to WF7	16 bit (1 Word)	Register F Word Access

WP0 contains P0 through P15. P0 is located in the LSB of WP0 and P15 is located in the MSB of the WP0. These Registers are very useful to use with commands like WMOV.

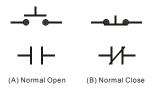
CB290, CB405 Registers


The following is a chart that shows CB290 Registers. CB290 has more M, C, T, and D Registers than CB220 and CB280.

Register Name	Range	Units	Feature
Input/Output Register P	P0 to P127	1 bit	Interface w/ External devices
Internal Registers M	M0 to M2047	1 bit	Internal Registers
Special Register F	F0 to F127	1 bit	System Status
Timer T	T0 to T255	16 bit (1 Word)	For Timers
Counter C	C0 to C255	16 bit (1 Word)	For Counters
Step Enable S	S0 to S15	256 steps (1 Byte)	For Step Enabling
Data Memory D	D0 to 511	16 bit (1 Word)	Store Data

P, M, and F Registers are in bit units whereas T, C, and D are in word units. To access P, M, and F Registers in word units, you can use WP, WM, or WF.

Register Name	Range	Units	Feature
WP	WP0 to 7	16 bit (1 Word)	Register P Word Access
WM	WM0 to WM63	16 bit (1 Word)	Register M Word Access
WF	WF0 to WF7	16 bit (1 Word)	Register F Word Access


WP0 contains P0 through P15. P0 is located in the LSB of WP0 and P15 is located in the MSB of the WP0. These Registers are very useful to use with commands like WMOV.

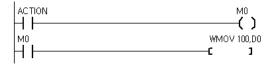
Ladder symbols

Contact A, Contact B

Contact A is "Normally Open" and closes when a signal is received. On the other hand, Contact B is "Normally Closed" and opens when a signal is received.

Input, Output Register Symbol

Input/Output Registers are the most basic symbols among the Registers in Ladder Logic.


Function Registers

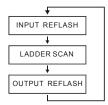
Function Registers include timers, counters, and other math operation Registers.

Internal Register

Internal Register (M) only operates within the program. Unless connected to an actual external port, it is only used internally. You may use M Register as input or output symbol.

P Registers that are not used as I/O ports

CUBLOC supports P Registers from P0 to P127. P Register is directly connected to I/O ports 1 to 1. But most models of CUBLOC have less than 128 I/O ports. In this case, you may use the unused portion of P Registers like M Registers.


Using I/Os

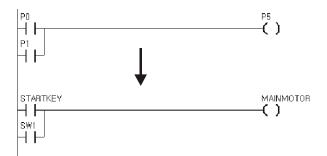
CUBLOC I/O ports can be used by both BASIC and LADDER. Without defined settings, all I/O ports are controlled in BASIC. To control I/O ports in LADDER, you must use the "Usepin" command and set the I/O ports to be used in LADDER.

```
USEPIN 0,IN
USEPIN 1,OUT
```

The above code sets P0 as input and P1 as output for use in LADDER.

The inner processes require that USEPIN will be re-flashed in LADDER. Reflashing means that the Ladder will read I/O status beforehand and store the status in P Registers. After scanning, LADDER will re-write the status of I/O ports into P Registers.

In BASIC, IN and OUT commands can be used to control I/O ports. This method directly accesses the I/O ports, whether it is read or writes. In order to avoid collision among the two, the I/Os used in BASIC and LADDER should be specified.


One a port is declared with USEPIN command, it can only be used in LADDER and cannot be accessed in BASIC.

USEPIN 0, IN, START USEPIN 1, OUT, RELAY

You can also add an alias such as START or RELAY as shown above for easy reading of the Ladder Logic.

Use of Aliases

When creating Ladder Logic using "Register numbers" such as P0, P1, and M0, the user can use alias to help simplify their programs.

In order to use alias, you need to declare them in BASIC. You can simply use ALIAS command to use ALIAS for Registers you desire to use.

```
ALIAS MO = MAINMOTOR
ALIAS M2 = STATUS1
ALIAS M4 = MOTORSTOP
```

You have an option of either using USEPIN or ALIAS command to use aliases in LADDER.

Beginning of LADDER

CUBLOC executes BASIC first. You can set LADDER to start by using the command "SET LADDER ON". When this command is executed, LADDER is executed consistently within the specified scan time of 10 milliseconds.

If you do not use SET LADDER ON command, Ladder Logic will not be executed.

SET LADDER ON

Declare devices to use

You must declare the device to be used so the compiler knows. The following are examples of how to use the CONST DEVICE command.

CONST DEVICE = CB220 'Use CB220. or CONST DEVICE = CB280 'Use CB280.

This command must be placed at the very start of the program.

To Use Ladder Only, without BASIC

You must at least do a device declaration, port declaration, and turn on the LADDER for BASIC even if you are going to only use Ladder.

The following is an example of such minimal BASIC code:

Const Device = CB280 'Device Declaration Usepin 0, In, START 'Port Declaration Usepin 1, In, RESETKEY Usepin 2, In, BKEY Usepin 3, Out, MOTOR Alias M0=RELAYSTATE 'Aliases Alias M1=MAINSTATE Set Ladder On 'Start Ladder Do Loop 'BASIC program will run in infinite loop/

Enable Turbo Scan Time Mode

In order to use both BASIC and LADDER, a scan time of 10ms is supported for LADDER. If you would like to enable Turbo Scan Time Mode when not using BASIC, you can follow the example below.

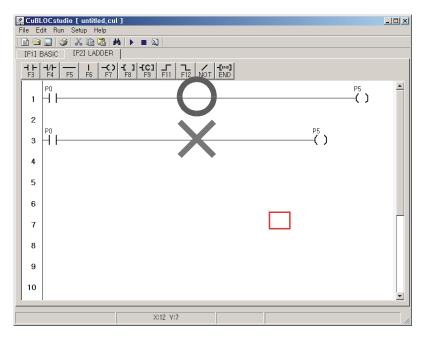
LADDERSCAN command can be used inside a DO...LOOP to enable Turbo Scan Time Mode.

Depending on the size of the Ladder program, this scan time MAY change. For small programs less than 50 rungs, a scan time of 500us to 1ms are possible.

Const Device = CB280 'Device Declaration Usepin 0,In,START 'Port Declaration Usepin 1,In,RESETKEY Usepin 2,In,BKEY Usepin 3,Out,MOTOR Alias M0=RELAYSTATE 'Aliases Alias M1=MAINSTATE Do LadderScan Loop

F16 is a special Register for checking the current scan time. You can connect it to an I/O port as shown below and check it with an oscilloscope.

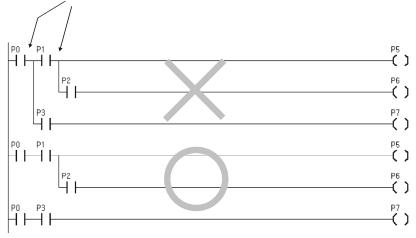
Below is an example of a conditional case where Turbo Scan Time is used. Only when Register M0 is ON, will the Turbo Scan Time be enabled.


```
Do
Set Ladder On '10 ms Scan when M0 is OFF
Do While _M(0) = 1
LadderScan 'Only Execute when M is ON
Loop
Loop
```

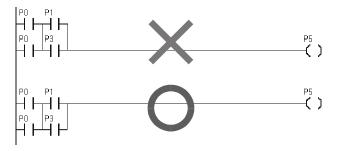
Things to Remember in LADDER

Input symbol must be placed at the very left side of the Ladder Logic.

* Output symbol must be placed at the very right side of the Ladder Logic.

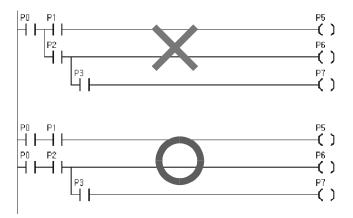


Identical outputs must not collide.



You may not use more than one vertical line as shown below.

More than 1 division will give compile error


Ladder Logic moves from top to bottom.

Function Register can not be on the left side of the Ladder Logic.

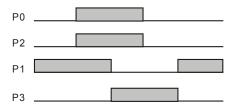
When a Ladder Logic becomes complex, simply divide them so you can see and understand them better as shown below.

ladder instructions

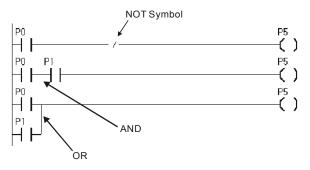
Ladder low level instructions


Command	Symbol	Explanation
LOAD		Contact A (Normally Open)
LOADN	HI	Contact B (Normally Closed)
OUT	()	Output
NOT	— / —	NOT (Inverse the result)
STEPSET	-C 1	Step Controller Output (Step Set)
STEPOUT	-C 1	Step Controller Output (Step Out)
MCS	-C 1	Master Control Start
MCSCLR	- 1	Master Control Stop
DIFU	- - -	Set ON for 1 scan time when HIGH signal received
DIFD	1	Set ON for 1 scan time when LOW signal received
SETOUT	- 1	Maintain output to ON
RSTOUT	-C 1	Maintain output to OFF
END	-C 1	End of Ladder Logic
GOTO	-C 1	Jump to specified label
LABEL	-C 1	Label Declaration
CALLS	-C 1	Call Subroutine
SBRT		Declare subroutine
RET		End Subroutine
TND		conditional exit command

High level instructions

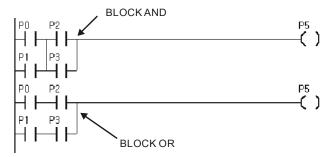

Command	Parameter	Explanation
Data Transfer Co	ommands	
WMOV	s,d	Word Data Move
DWMOV	s,d	Double Word Data Move
WXCHG	s,d	Word Data Exchange
DWXCHG	s,d	Double Word Data Exchange
FMOV	s,d,n	Data fill command
GMOV	s,d,n	Group move command
Increment/Decre	ement Commands	
WINC	d	Increment 1 to the Word
DWINC	d	Increment 1 to the Double Word
WDEC	d	Decrement 1 to the Word
DWDEC	d	Decrement 1 to the Double Word
Math Commands	5	
WADD	s1,s2,d	Word Add
DWADD	s1,s2,d	Double Word Add
WSUB	s1,s2,d	Word Subtract
DWSUB	s1,s2,d	Double Word Subtract
WMUL	s1,s2,d	Word Multiplication
DWMUL	s1,s2,d	Double Word Multiplication
WDIV	s1,s2,d	Word Division
DWDIV	s1,s2,d	Double Word Division
Logical Operation	n Commands	
WAND	s1,s2,d	Word AND
DWAND	s1,s2,d	Double Word AND
WOR	s1,s2,d	Word OR
DWOR	s1,s2,d	Double Word OR
WXOR	s1,s2,d	Word XOR
DWXOR	s1,s2,d	Double Word XOR
Bit Shift Comma	nds	
WROL	d	Word 1 bit Shift Left
DWROL	d	Double Word 1bit Shift Left
WROR	d	Word 1 bit Shift Right
DWROR	d	Double Word 1 bit Shift Right

LOAD,LOADN,OUT


LOAD is for Normally Open Contacts and LOADN is for Normally Closed Contacts.

Registers that can be used	Р	М	F	S	С	Т	D	Constants
LOAD	0	0	0	0	0	0		
LOADN								
OUT	0	0						

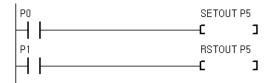
NOT, AND, OR

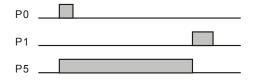


NOT symbol inverses the results. If P0 is ON then P5 will be OFF.

AND is when two Registers are horizontally placed next to each other. Both Registers P0 and P1 must be True(ON) in order for P5 to be True (ON).

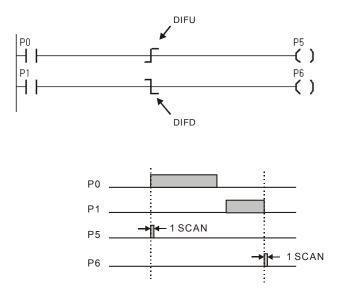
For OR operation, two Registers are vertically placed next to each other. When either P0 or P1 is ON, P5 will be ON.


The following is an example of BLOCK AND and BLOCK OR.


SETOUT, RSTOUT

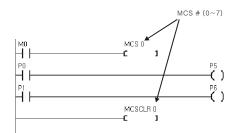
SETOUT will turn ON P5 when P0 turns ON and will keep P5 ON even if P0 turns off.

On the other hand, RSTOUT will output OFF when P1 is ON and will keep P5 off even when P1 turns OFF.


Registers that can be used	Р	М	F	S	С	Т	D	Constant s
SETOUT	0	0	0					
RSTOUT	0	0	0					

DIFU, DIFD

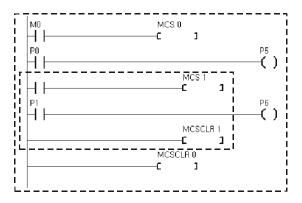
This command DIFU turns ON the output 1 scan time when input goes from OFF to ON.


Conversely, DIFD turns OFF the output 1 scan time when input goes from ON to OFF.

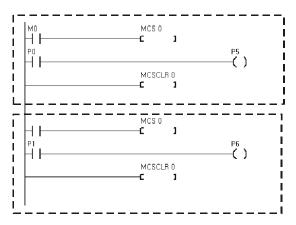
MCS, MCSCLR

The command MCS and MCSCLR allow for the Ladder Logic between MCS X and MCSCLR X to be executed when turned ON. If MCS is OFF, the Ladder Logic in between MCS X and MCSCLR X will not be executed.

By using this command, the user is able to control a whole block of Ladder Logic.


In the above example, when M0 turns ON, Ladder Logic between MCS 0 and MCSCLR are executed normally. If M0 is OFF, P5 and P6 will turn OFF.

MCS number can be used from 0 to 7. MCS number should be used from 0 increasingly to 1, 2, 3, etc... MCS 1 must exist inside MCS 0 and MCS 2 must exist inside MCS 0. Likewise up to 7 MCS blocks can be used. When MCS 0 is OFF, all MCS inside MCS 0 will turn OFF.

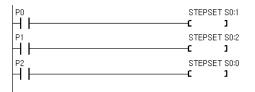

When MCS turns OFF, all outputs within that MCS block will turn OFF, Timer will be resetted, Counter will be stopped.

Command	When MCS is ON	When MCS is OFF
OUT	Normal Operation	OFF
SETOUT	Normal Operation	Maintain status after MCS turned OFF
RSTOUT	Normal Operation	Maintain status after MCS turned OFF
Timer	Normal Operation	Reset to default value
Counter	Normal Operation	Maintain status after MCS turned OFF
Other	Normal Operation	Stop Operation
Commands		

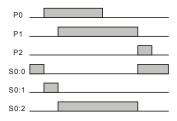
The following screenshot shows MCS used within another MCS.



*You may simply re use MCS 0 if no additional MCS needs to reside within MCS.

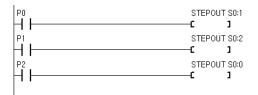

Step Control

S Register are used for step control. The following is the correct format for step control.

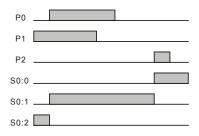


In Step Control, there's "normal step" and "reverse step". For normal step, we can simply use the STEPSET command.

STEPSET

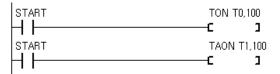


This command STEPSET will turn ON the current step if the previous step was ON. Since it operates in one step at a time, we call it STEPSET. For example, in the above ladder diagram, when P1 turns ON, S0:2 is turned ON if S0:1 is turned ON. S0:1 is turned OFF. When P2 turns ON, S0:0 is turned ON and other steps are turned off. S0:0, or step 0 is used for reset. Otherwise STEPSET will move in order.



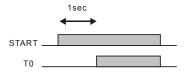
STEPOUT

This command STEPOUT will only 1 step to be enabled at all times. The last step to be turned ON will be the step to be enabled at any given moment.


When P1 turns ON, S0:2 turn ON. When P0 turns on S0:1 turns ON. A step will be kept on until another step is turned ON.

TON, TAON

When input turns ON, timer value is decremented and output turns on when timer is done. There are two kinds of timers, one that works in 0.01 second units and another that works in .1 second units.


Type of Timer	Time units	Maximum Time
TON	0.01 sec	655.35 sec
TAON	0.1 sec	6553.5 sec

There are 2 parameters with commands TON, TAON. For the first parameter, you can choose between T0 to T99 and for the second parameter, you may use a number or a data memory such as D0.

Usable Registers	Р	М	F	S	С	Т	D	Constants
TON, TAON					0	0	0	0

In the above LADDER diagram, when START turns ON, T0 Timer will start from zero to 100. When 100 is reached, T0 will turn on. Here, 100 is equal to 1 second for TON and 10 seconds for TAON.

When START turns OFF, the timer is reset to original set value of 100 and T0 turn off too. TON, TAON commands will reset its timer values upon powering OFF. To use the features of battery backup, you can use KTON, KTAON which will maintain its values when powered OFF. Below is an example of how to reset TAON.

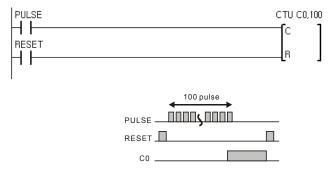
TOFF, TAOFF

When input turns ON, output turns ON immediately. When the input turns OFF, the output is kept ON until set amount of time. Like TON and TAON, there are 2 commands for two different time units.

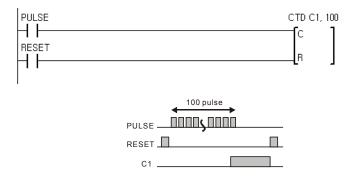
Type of Timer	Time units	Maximum Time
TOFF	0.01 sec	655.35 sec
TAOFF	0.1 sec	6553.5 sec
START		TOFF T0,100 C 3 TAOFF T1,100 C 3

There are 2 parameters with commands TOFF, TAOFF For the first parameter, you can choose between T0 to T99 and for the second parameter, you may use a number or a data memory such as D0.

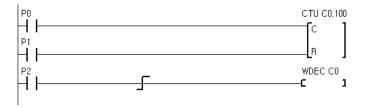
Usable Registers	Р	М	F	S	С	Т	D	Constants
TOFF, TAOFF					0	0	0	0


In the above LADDER diagram, when START turns ON, T0 Timer will immediately turn ON. After START turns OFF, timer will start decreasing from 100 to 0. When 0 is reached, T0 will turn OFF.

Here, 100 is equal to 1 second for TON and 10 seconds for TAOFF.


СТU

This command is an UP Counter. When input is received the counter is incremented one. When the counter counts to a specified value, the set Register will turn ON at that point. There is a Reset input so the counter can be reset as needed.


CTD

This command is a DOWN Counter. When input is received the counter is decremented one. When the counter reaches 0, the set Register will turn ON at that point. There is a Reset input so the counter can be reset as needed.

UP/DOWN COUNTER

Below is a simple way of how UP Counter can be used to make a UP/DOWN Counter.

P0 is for counting UP, P2 is for counting DOWN, and P1 is for resetting the COUNTER. When Counter reaches 100, C0 turns ON.

ксти

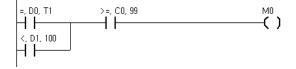
This command is exactly same as CTU command except, this command will be able to remember counter value when module is powered off. The module used for this command MUST support battery backup(CB290). In comparison, CTU command will lose its count value when the module is powered off.

When using this command for the very first time, please use the RESET signal to reset the counter value. Otherwise counter will start at the last value it was set. (random if not set before)

KCTD

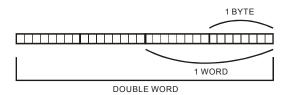
This command is exactly same as CTD command except, this command will be able to remember counter value when module is powered off. The module used for this command MUST support battery backup(CB290). In comparison, CTD command will lose its count value when the module is powered off.

KCTU, KCTD must be used with modules that support "Battery-Backup" such as the CB290.


Comparison Logic

Compare 2 Words(16 bit) or 2 Double Words(32 bit) values and turn on Output when the conditions are satisfied.

Comparison Command	Data Types	Explanation
=, s1, s2	Word(16 bit)	When s1 and s2 are same Output turns ON.
<>, s1, s2	Word(16 bit)	When s1 and s2 are different, Output turns ON.
>, s1, s2	Word(16 bit)	When $s1 > s2$, Output turns ON.
<, s1, s2	Word(16 bit)	When s1 < s2, Output turns ON.
>=, s1, s2	Word(16 bit)	When $s1 \ge s2$, Output turns ON.
<=, s1, s2	Word(16 bit)	When s1 <= s2, Output turns ON.
D=, s1, s2	DWord(32 bit)	When s1 and s2 are same Output turns ON.
D<>, s1, s2	DWord(32 bit)	When s1 and s2 are different, Output turns ON.
D>, s1, s2	DWord(32 bit)	When s1 > s2, Output turns ON.
D<, s1, s2	DWord(32 bit)	When s1 < s2, Output turns ON.
D>=, s1, s2	DWord(32 bit)	When $s1 \ge s2$, Output turns ON.
D<=, s1, s2	DWord(32 bit)	When s1 <= s2, Output turns ON.


You can mix different comparisons as shown below:

When either D0=T1 or D1<100 and if C0>=99, M0 will turn ON. In other words, either D0 has to equal to value of T1 or D1 has to be less than 100 while C0 must be larger or equal to 99.

How to store Words and Double Words

Byte is 8 bits, Word is 16 bits, and Double Word is 32 bits.

There are 2 ways to store Word of Double Word size of data. A Word or Double Word can be stored starting from the LOW BYTE or from the HIGH BYTE. In CUBLOC, it is stored from the LOW BYTE or LSB(Least Significant Byte).

As you can see below, 1234H is stored in Memory Address 0 and 12345678H is stored in Memory Address 5. In every Memory Address, 1 byte of data is stored.

0	34
1	12
2	
3	
4	
1 2 3 4 5 6 7 8 9	78
6	56
7	34
8	12
9	

The Registers C, T, D are in units of Words. To store a Double Word data, 2 Word spaces will be required, meaning two Register spaces. Below is an example of store a Double Word data, 12345678H. D1 gets 1234H and D0 gets 5678H.

D0	5678
D1	1234
D2	
D3	
D4	

Binary, Decimal, Hexadecimal

To program well, we need to know binary decimal, and hexadecimal numbers. The following chart shows the relationships between these three types of number representation.

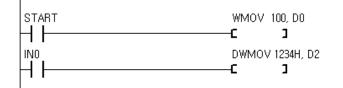
Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
2 3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	А
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

In CUBLOC's Ladder Logic, we express binary and hexadecimal numbers in the following manner:

Binary:	00101010B
Hexadecimal:	0ABCDH

We put a B at the end of the binary number and an H for hexadecimal numbers. To clearly identify that ABCD is a number, we can put a 0 in front of the hexadecimal number.

(E.g. : 0ABH, 0A1H, 0BCDH)


*In BASIC, it is slightly different from LADDER in the way you express binary and hexadecimal numbers. We use &B100010 or &HAB to express those type of numbers.

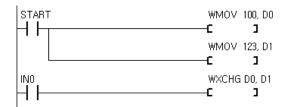
WMOV, DWMOV

WMOV s, d DWMOV s, d

The command WMOV moves 16 bit data from s to d. $\ensuremath{\mathsf{DWMOV}}$ can be used for 32 bit data.

Usable Register	Р	М	F	S	С	Т	D	Constants
s (Source)					0	0	0	0
d (Destination)					0	0	0	

When input START turns ON, D0 will get 100. When IN0 turns ON, D2 will get 1234H.


D0	100
D1	
D2	1234H
D3	0
D4	

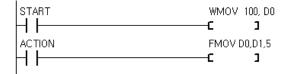
WXCHG, DWXCHG

WXCHG s, d DWXCHG s, d

The command WXCHG exchanges data between s and d. WXCHG is for exchanging 1 Word and DWXCHG is for exchanging Double Word.

Usable Registers	Р	М	F	S	С	Т	D	Constants
S					0	0	0	
d					0	0	0	

When START turns ON, D0 gets 100 and D1 gets 123. When IN0 turns ON, D0 and D1 exchange their data. The result is as shown below:


D0	123
D1	100
D2	
D3	
D4	

FMOV

FMOV s, d, n

Store value in s to d and n number of times after that to additional locations. This command is usually used for initializing or clearing memory.

Usable Registers	Р	М	F	S	С	Т	D	Constants
S					0	0	0	
d					0	0	0	
n								0

Below is result of LADDER execution:

D0	100
D1	100
D2 D3 D4 D5	100
D3	100
D4	100
D5	100

*Notice: Please Set n less than 255.

GMOV

GMOV s, d, n

Store value starting at s to d by n memory locations. Please make sure not to overlap memory locations as this could cause data collisions.

Usable Registers	Р	М	F	S	С	Т	D	Constants
S					0	0	0	
d					0	0	0	
n								0

Below is result of LADDER execution:

D0	12
D1	34
D2	56
D3	78
D4	90
D5	
D6	
D7	
D8	
D9	
D10	12
D11	34
D12	56
D13	78
D14	90
D15	
D16	

*Notice: Please Set n less than 255.

WINC, DWINC, WDEC, DWDEC

WINC d DWINC d WDEC d DWDEC d

WINC increments Word value in d by one. DWINC increments Double Word value in d by one. WDEC decrements Word value in d by one. DWDEC decrements Double Word value in d by one.

Usable Registers	Р	М	F	S	С	Т	D	Constants
d					0	0	0	

Below is result of LADDER execution:

D0	99
D1	
D2	
D3	

WADD, DWADD

WADD s1, s2, d DWADD s1, s2, d

Add s1 and s2 and store result in d. WADD is for Word values and DWADD is for Double Word Values.

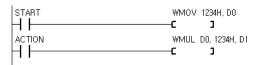
Usable Registers	Р	М	F	S	С	Т	D	Constants
s1					0	0	0	0
s2					0	0	0	0
d					0	0	0	

WSUB, DWSUB

WSUB s1, s2, d DWSUB s1, s2, d

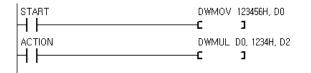
Subtract s2 from s1 and store result in d. WSUB is for Word values and DWSUB is for Double Word Values.

Usable Registers	Р	М	F	S	С	Т	D	Constants
s1					0	0	0	0
s2					0	0	0	0
d					0	0	0	


D1 gets 95 in the above LADDER diagram.

WMUL, DWMUL

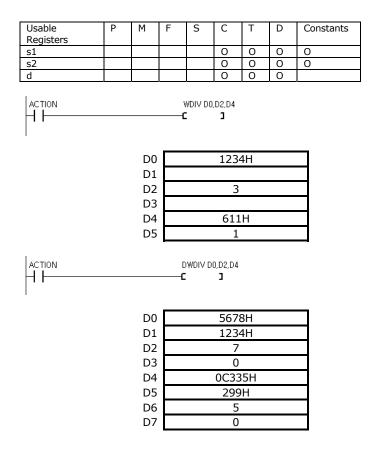
WMUL s1, s2, d DWMUL s1, s2, d


Multiply s1 and s2 and store result in d. WMUL is for Word values and DWMUL is for Double Word Values.

Usable Registers	Р	М	F	S	С	Т	D	Constants
s1					0	0	0	0
s2					0	0	0	0
d					0	0	0	

The result of 1234H * 1234H is stored in D1 as a double word of 14B5A90H.

D0	1234H
D1	5A90H
D2	14BH

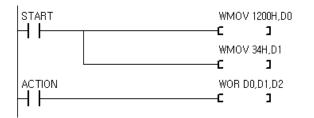

The result of 123456H * 1234H is stored as 4B60AD78H in D2

D0	3456H
D1	0012H
D2	0AD78H
D3	4B60H
D4	0
D5	0

WDIV, DWDIV

WDIV s1, s2, d DWDIV s1, s2, d

Divide s1 by s2 and store the result in d and leftover in d+1. WDIV is for Word values and DWDIV is for Double Word Values.



WOR, DWOR

WOR s1, s2, d DWOR s1, s2, d

Do Logical operation OR on s1 and S2 and store result in d. WOR is for Word values and DWOR is for Double Word Values.

Usable Registers	Р	М	F	S	С	Т	D	Constants
s1					0	0	0	0
s2					0	0	0	0
d					0	0	0	

The result of above ladder diagram:

D0	1200H
D1	34H
D2	1234H

WXOR, DWXOR

WXOR s1, s2, d DWXOR s1, s2, d

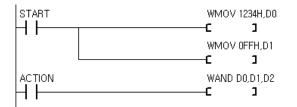
Store result of s1 XOR s.

WXOR is for logical operation XOR in WORD units whereas DWXOR is for DOUBLE WORD units.

Usable Registers	Р	М	F	S	С	Т	D	Constants
s1					0	0	0	0
s2					0	0	0	0
d					0	0	0	

The following is result of above LADDER:

D0	1234H
D1	0FFH
D2	12CBH


When you want to invert specific bits, you can use XOR logical operation.

WAND, DWAND

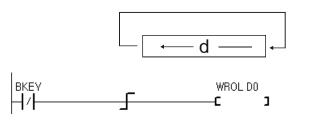
WAND s1, s2, d DWAND s1, s2, d

Store result of s1 AND s2. WAND is for logical operation AND in WORD units whereas DWAND is for DOUBLE WORD units.

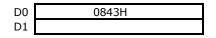
Registers that may be used	Р	М	F	S	С	Т	D	Constants
s1					0	0	0	0
s2					0	0	0	0
D					0	0	0	

The results of execution of LADDER above:

D0	1234H
D1	0FFH
D2	34H


You can use AND operation when you want to use specific bits only.

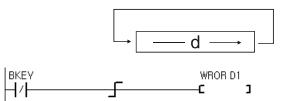
WROL, DWROL


WROL d DWROL d

Rotate the value on Register d 1 (double) word to the left. The value left gets stored in the Carry flag. WROL moves one word whereas DWROL moves double word.

Registers that	P	М	F	S	С	Т	D	Constants
may be used								
d					0	0	0	

If D0 has 8421H, the following results:

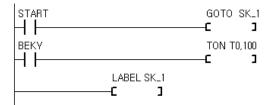


WROR, DWROR

WROR d DWROR d

Rotate the value on Register d 1 (double) word to the right. The value left gets stored in the Carry flag. WROL moves one word whereas DWROL moves double word.

Registers that may be used	Р	М	F	S	С	Т	D	Constants
d					0	0	0	


If D1 has 8421H, the following results:

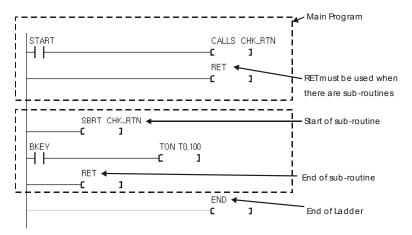
D0	
D1	0C210H

GOTO, LABEL

GOTO label LABEL label

The command GOTO will jump to the specified label. Label is for declaring labels.

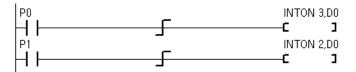
When START turns ON, the LADDER program will jump to label SK_1


In the below example LADDER diagram, when D0 equals C0, the program will jump to $\mathsf{SK}_1.$

CALLS, SBRT, RET

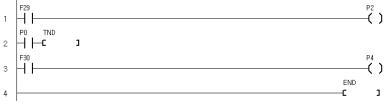
CALLS label SBRT label

CALLS will call a sub-routine. SBRT is the starting point for a sub-routine. RET is the ending point for a sub-routine.

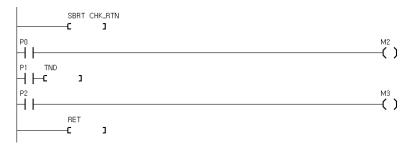

Please be aware that when adding sub-routines to your program, you need to add RET to the end of main program to differentiate from sub-routines. END goes at the very end of main program and sub-routines in this case.

INTON

INTON s,d


INTON is same as WMOV command except it can cause an interrupt in BASIC part of CUBLOC.

Usually Registers	Р	М	F	S	С	Т	D	Constants
s (Source)					0	0	0	0
d (Destination)					0	0	0	



TND

TND is a conditional exit command. When the user wants to abort Ladder scanning during operation, TND can be used.

When P0 turns ON, Ladderscan will abort.

You can also use it for exiting from sub-routines when a certain condition is met. In the above example, when P1 turns ON, the subroutine will be aborted, but Ladder scanning will keep executing.

Special Registers

You can use special Registers to find out about the current status of CUBLOC or use them for timing functions and applications.

Special	Explanation
Register	
F0	Always OFF
F1	Always ON
F2	Turn on 1 SCAN time at POWER UP (Set Ladder On).
F3	
F4	
F5	
F6	
F7	
F8	1 SCAN On every 10ms
F9	1 SCAN On every 100ms
F10	
F11	
F12	
F13	
F14	
F15	
F16	Repeat ON/OFF every 1 Scan time.
F17	Repeat ON/OFF every 2 Scan times.
F18	Repeat ON/OFF every 4 Scan times.
F19	Repeat ON/OFF every 8 Scan times.
F20	Repeat ON/OFF every 16 Scan times.
F21	Repeat ON/OFF every 32 Scan times.
F22	Repeat ON/OFF every 64 Scan times.
F23	Repeat ON/OFF every 128 Scan times.
F24	Repeat ON/OFF every 10ms
F25	Repeat ON/OFF every 20ms
F26	Repeat ON/OFF every 40ms
F27	Repeat ON/OFF every 80ms
F28	Repeat ON/OFF every 160ms
F29	Repeat ON/OFF every 320ms
F30	Repeat ON/OFF every 640ms
F31	Repeat ON/OFF every 1.28 seconds
F32	Repeat ON/OFF every 5.12 seconds
F33	Repeat ON/OFF every 10.24 seconds
F34	Repeat ON/OFF every 20.48 seconds
F35	Repeat ON/OFF every 40.96 seconds
F36	Repeat ON/OFF every 81.92 seconds
F37	Repeat ON/OFF every 163.84 seconds
F38	Repeat ON/OFF every 327.68 seconds
F39	Repeat ON/OFF every 655.36 seconds
F40	Call LADDERINT in BASIC
F41	
F42	
	1

* If you write 1 to F40, you can create a LADDERINT in BASIC. Please refer to ON LADDERINT GOSUB command for details.

* F2 causes 1 Scan ON at the time of BASIC's SET LADDER ON command.

*Blank special Registers are reserved. Please do not use them.

Integrated Touch Screen Controller

CUTOUCH

User Manual

"Everything for Embedded Control"

www.comfiletech.com

Preface

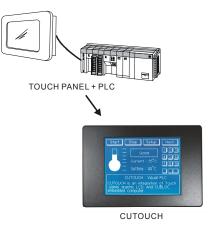
CUTOUCH is a complete integration of a Touch panel, graphic LCD, and CUBLOC embedded computer. In the recent years, there has been increase of use of touch screens in the industrial field. But to use one, the user required connecting to a PLC and learning complex methods in order to use it. In addition, cost of touch screen has been very expensive.

Our CUTOUCH is a new type of embedded controller that integrates Touch screen, PLC, and graphic LCD, all into one.

The biggest difference between CUTOUCH and other touch screens is that it's the only Visual Touch screen controller that can be programmed with BASIC and LADDER in the world today.

BASIC language can be used to draw graphics and print characters to the LCD and receive input from the touch screen before processing the x and y positions. Sensor input through I/O, turning relays on/off, AD/DA conversion, and RS232 communication are very easy to implement in comparisons to traditional non-BASIC PLCs. With the Ladder Logic side of CUBLOC, the user may do sequential processing and real-time logic processing as in traditional PLCs.

CUTOUCH has a flash memory for BASIC and LADDER programs. A serial port can be used to download and debug. After downloading is done, it can run in a "Stand-alone" state.


If you are thinking about developing a device that uses a touch screen, please review CUTOUCH and we guarantee you that you will ultimately spend more time designing and less time developing.

Comfile Technology Inc.

What is CUTOUCH?

CUTOUCH is different from the traditional Touch-screens you may associate with. Traditional Touch-screens are not a complete integrated solution to your application. They are usually Touch-screen panels that will only process graphics and touch input. In other words, most Touch-screens can not be used as a industrial controller as well as graphic LCD and touch input.

CUTOUCH is complete integration of a traditional PLC with a Touch-screen graphic LCD. By integrating user input, display output, and control, developers now can put one Touch panel as a control system.

CUTOUCH Specifications

Processor	CUTOUCH CT1720	CUTOUCH CT1721					
Microprocessor	Dual Core Atmega128 @ 18.432Mhz	Dual Core Atmega128 @ 18.432Mhz					
Program Memory (Flash)	80KB	80KB					
Data Memory (RAM)	24KB(BASIC)+4KB(Ladder Logic)	24KB(BASIC)+4KB(Ladder Logic)					
EEPROM	4KB EEPROM	4KB EEPROM					
Program Speed	36,000/sec	36,000/sec					
General Purpose I/O	 82 I/O lines (ALL 5V TTL) (33 input only + 32 output only + 17 input/output configurable) 	- 82 I/O lines (TTL & 24V DC) (1 TTL input, 32 24V opto-isolated inputs + 32 24V TR outputs + 17 TTL input/output configurable)					
Serial Ports for Communication	- 2 High-speed hardware-independent serial ports (Channel 0 & 1 : RS232C 12V)	- 2 High-speed hardware-independent serial ports (Channel 0 & 1 : RS232C 12V)					
	- Configurable Baud rates: 2400bps to 230,400 bps	- Configurable Baud rates: 2400bps to 230,400 bps					
Analog Inputs	8 channel 10-bit ADCs Input Voltage Range: 0 to 5V	8 channel 10-bit ADCs Configurable Voltage: 0 to 5V OR 0 to 10V					
Analog Outputs	 6 Channel 16-bit PWMs (DACs) Output Voltage Range: 0 to 5V Configurable Frequency: 35hz to 1.5Mhz 	 6 Channel 16-bit PWMs (DACs) Output Voltage Range: 0 to 5V Configurable Frequencies: 35hz to 1.5Mhz 					
External Interrupts	4 Channels	4 Channels					
High Speed Counters	2 Channel 16-bit Counters (up to 2Mhz)	2 Channel 16-bit Counters (up to 2Mhz)					
Power	- Required Power: 9-24V DC - Current Consumption w/ ports unloaded: @ 24V w/ Backlight ON: 170mA @ 24V w/ Backlight OFF: 70mA @ 12V w/ Backlight ON: 340mA 12V w/ Backlight OFF: 130mA	- Required Power: 24V DC - Current Consumption w/ ports unloaded: @ 24V w/ Backlight ON: 170mA @ 24V w/ Backlight OFF: 70mA @ 12V w/ Backlight ON: 340mA 12V w/ Backlight OFF: 130mA					
RTC (Real Time Clock)	Yes	Yes					
Timers	 1 User Configurable Timer Configurable Interval Units = 10ms 	 1 User Configurable Timer Configurable Interval Units = 10ms 					
Data Memory Back- up	*Yes, a 1 Farad rechargeable Super- Capacitor is included .	*Yes, a 1 Farad rechargeable Super- Capacitor is included .					
Operating Temperature	0 °C to 70 °C	0 °C to 70 °C					
Package	Integrated Touch-screen Panel w/ 2mm Headers and 2.5mm RCABLE Headers	Integrated Touch-screen Panel w/ 2mm Headers and 2.5mm RCABLE Headers					
Size	- 7.17" x 5.17" x 0.98" - (182.2 x 131.4 x 25 mm) - Viewing Area (Touch-sensitive): 4.5" x 3.4" (5.6" diagonal)	- 7.17" x 5.17" x 0.98" - (182.2 x 131.4 x 25 mm) - Viewing Area (Touch-sensitive): 4.5" x 3.4" (5.6" diagonal)					

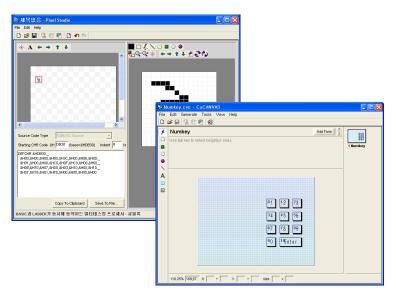
Hardware Requirements

To use CUTOUCH, the user may use a Windows XP, 2000, or 98 operating system equipped computer. If you would like to use it in Linux/Unix/Macintosh environment, you will need to install a virtual machine software of some type (such as VMware, etc...) that allows Windows operating system to run on it.

An **RS232 port** is also required or you may use a **USB-to-RS232C converter**. Download and Monitoring is possible when connected with the PC.

When CUTOUCH is disconnected from the PC, it goes into a STAND-ALONE state. The main program is stored in CUTOUCH's flash memory, and will be retained even with no power. The user may download new programs and erase them as many times as he or she wishes.

(Above: Picture of CUTOUCH ready for programming)

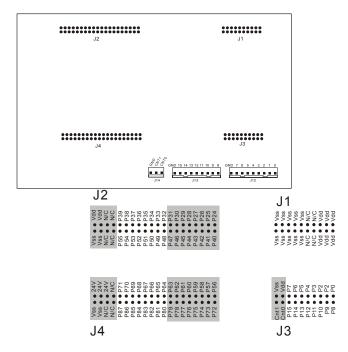

Software Development Environment

CUTOUCH uses **CublocStudio** as its main development environment. For graphics, we have *automatic code-generating GUI (Graphic User Interface) software* called **CuCANVAS** and **PixelStudio**.

CublocStudio is used for **BASIC and Ladder Logic programming** on the CUTOUCH.

CuCANVAS is mainly used for *creating boxes, circles, and menu buttons* while **PixelStudio** allows the user to create *up to 200 custom characters.*

All development software can be downloaded on our website under **Download->Integrated**.



CUTOUCH I/O Ports

Model Name	CT1720
Input Only	33
Output Only	32
A/D Input (or I/O)	8
High Counter Input (or I/O)	2
Other I/Os	8
Total	82

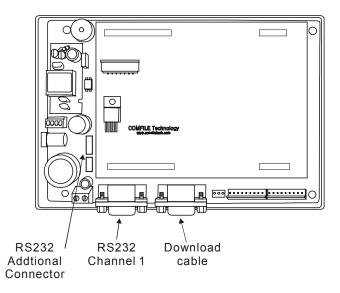
CT1720

The 82 I/O ports on the CT1720 can be accessed using the connectors shown here:

*J1, J2, J3, J4 are 2mm pitch. A PCB board is recommended for TTL access. J12, J13, J14 are 2.5mm pitch RCABLE headers. Comfile RCABLE connectors can be used.

Connector	Name	I/O	Port Block	Explanation
J12 (J3)	P0	I/O	Block 0	ADC0
	P1	I/O		ADC1
	P2	I/O		ADC2
	P3	I/O		ADC3
	P4	I/O		ADC4
	P5	I/O		ADC5
	P6	I/O	1	ADC6
	P7	I/O	1	ADC7
	P8	I/O		PWM0
J13 (J3)	P9	I/O]	PWM1
	P10	I/O]	PWM2
	P11	I/O	Block 1	PWM3
	P12	I/O]	PWM4 / INTO
	P13	I/O]	PWM5 / INT1
	P14	I/O]	INT2
	P15	I/O]	INT3
J14	P16	I/O		HIGH COUNT INPUT 0
	P17	IN		HIGH COUNT INPUT 1
	P18	OUTPUT		Internally connected to Piezo BUZZER
				(Cannot be accessed from Ladder)
	P19 to P23			N/C
J2	P24 to 31	OUTPUT	Block 3	8 Output Ports
	P32 to 39	OUTPUT	Block 4	8 Output Ports
	P40 to 47	OUTPUT	Block 5	8 Output Ports
	P48 to 55	OUTPUT	Block 6	8 Output Ports
]4	P56 to 63	INPUT	Block 7	8 Input Ports
	P64 to 71	INPUT	Block 8	8 Input Ports
	P72 to 79	INPUT	Block 9	8 Input Ports
	P80 to 87	INPUT	Block 10	8 Input Ports

N/C = No Connection


The CUTOUCH CT1720 I/O Ports are TTL 5V.

The CUTOUCH Add-On Board allows opto-isolated 24V DC inputs and 24V TR outputs for J1 to J4.

The CUTOUCH CT1721 is a combination of CT1720 and the Add-On Board.

*Please be careful to not input more than 5V into a CUTOUCH TTL ports as it can damage the product.

There are extra RS232 connectors as shown below so you have the flexibility to be able to access CUTOUCH when in an enclosed area.

The Download RS232 Channel is a 4-pin type connector and RS232 Channel 1 is a 3 pin type connector as shown below. You can connect them to the PC SIDE RS232 Pins as shown below:

Backup Battery

CUTOUCH will maintain data in its data memory after power OFF by using its backup battery. If backup is not needed, the program must clear the memory at the beginning of the program. Use RAMCLEAR at the beginning of your BASIC code section to clear all data memory at the start of the program.

*The CUTOUCH comes with a self-charging 1.0F super-capacitor which can last about a day (to 30hrs). You can replace it with a 10.0F supercapacitor to extend the duration to about 300 hours(12.5 days). Adding a battery can add up to 5+ years of backup depending on the battery capacity. For adding backup battery, please connect to the pins labeled, "External Battery," under the super-capacitor.

```
' DEMO FOR CUTOUCH
'
Const Device = CT1720
Dim TX1 As Word, TY1 As Word
TX1 = 0
TY1 = 0 'Clear just this variable
RAMCLEAR 'Clear all RAM
```

For LADDER, all Registers S, M, C, T, and D are backed up by the backup battery. Register P is cleared at power ON by default. If you only want to clear parts of the Register, not all Registers, you can use the following method to clear:

Most traditional PLCs have KEEP memory for storing and restoring data in case of power down. CUTOUCH also has this feature by using a super capacitor, which recharges itself and acts as a backup battery. You also have the option of using larger capacity capacitor or an actual battery.

KEEP Timer and KEEP Counter

KEEP timer will retain its data values when powered off and restart from the data values when power is turned on. KCTU and KCTD commands can be used in place of CTU and CTD commands in order to make use of this KEEP timer and KEEP counter. Please refer to KCTU, KCTD commands for detailed information.

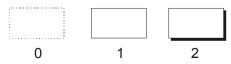
Menu System Library

CUTOUCH supports extra commands for easy-to-use menus. These commands make for easy creation and manipulation of the menus. With the menu system library, a menu system shown in the below picture can be made in less than 5 minutes.

Comfile Automobile gas pressurizer	
Select gas Gas pressure Auto type	
Gas left Initialize Total cost	
_	

MENU Commands

CUTOUCH has memory space for about 100 MENU buttons. Use MENUSET command to set the x and y axis positions and the style of the MENU. Then MENUTITLE command can be used to name the MENU. When touch input is received, MENUCHECK command can be used to decide which MENU button was pressed.



Each MENU button can be reset to another x and y axis positions and style by using MENUSET command. The only restriction is that up to 100 button can be inputted at time in one screen. But the user is free to reset each button to another usage after each screen, allowing infinite buttons.

Menuset

MENUSET index, style, x1, y1, x2, y2 Index : Menu Index Number Style : Button Style; 0=none, 1=Box, 2=Box with Shadow X1,y1,x2,y2 : Menu Button location

Index value must be between 0 to 99. Style is the shape of the button, where 0 is for no box, 1 is for a box, and 2 is for a showed box.

x1,y1, x2, y2 are the x and y axis positions of the left upper and lower right corners. When this command is executed, the set part of the screen becomes part of the button's area.

Menutitle

MENUTITLE index, x, y, string Index :Menu index number X,y : Title location based on left upper corner of button string : Name of the menu

Menuset only draws the box itself. Use Menutitle command to set the name of the menu like shown here:

Menutitle 0,13,13,"Gas Left" Menutitle 1,16,13,"Initialize" Menutitle 2,13,13,"Total Cost"

Menucheck()

Variable = MENUCHECK(index, touchx, touchy) Variable : Variable to store results (1 if selected, 0 if unselected) Index : Menu Index Number Touchx : Touch pad x axis point Touchy : Touch pad y axis point

Use this command Menucheck to see which menu is selected. Touchx and Touchy are the user's touchpad input points. If the Menu is selected, 1 is returned, otherwise 0 is returned.

```
If Menucheck(0,TX1,TY1) = 1 Then
    Menureverse 0
    Beep 18,180
End If
```

Menureverse

MENUREVERSE index Index : Menu index number

Selected menu box is inverted.

Menu()

Variable = MENU(index, pos)

Variable : Variable to store results (1 = selected, 0 = unselected) Index : Menu Index pos : Position (0=x1, 1=y1, 2=x2, 3=y2)

When you need to find the current status of Menu buttons set by Menuset command, you can use Menu() function to return the current status.

0 will read x2, 1 will read y1, 2 will read x2, and 3 will read y2. It's as though the MENU is accessed as 2 dimensional array.

If Menu(0,1) < 100 THEN ' If Menu button 0' s Y1 is less than 100

Waitdraw

WAITDRAW

This command will wait for a drawing command to finish before resuming execution.

ELFILL 200,100,100,50 'Fill an ellipse WAITDRAW 'Wait until drawing is finished.

This command is especially useful for animations and when you have trouble displaying graphics because of the speed.

CUTOUCH has an internal buffer for receiving graphic commands from CUBLOC. If this buffer fills up and data is sent to it, the data could get corrupted. In order to avoid these situations, you can use the WAITDRAW command to wait until the buffer has enough space before sending graphic commands.

If you need to draw graphics repeatedly, we recommend you use WAITDRAW to avoid situations where the LCD might get blurry or received noise.

This command can only be used with CUTOUCH.

Touch Pad Input Example

You can use SET PAD, ON PAD, and GETPAD commands to find out which menus were pressed from the user.

All PAD commands are geared for receiving and processing touch input.

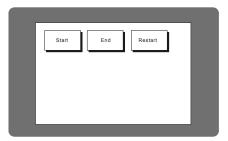
We can use ON PAD interrupts to receive touch inputs. The following is an example program that uses the touch pad:

```
۲
      DEMO FOR CUTOUCH
    Const Device = CT1720
    Dim TX1 As Word, TY1 As Word
    Set Pad 0,4,5 '< (1) Activate Touch PAD Input
                            '← (2) Declare pad interrupts
    On Pad Gosub abc
    Do
   Loop
abc:
   TX1 = Getpad(2)
                             '← (3) Interrupt Service routine
   TY1 = Getpad(2)
                             '← (4) Draw a circle where it
    Circlefill TX1, TY1, 10
                                   was touched
Return
```

(1) SET PAD 0, 4, 5 : This command will activate the PAD inputs. (Syntax: SET PAD mode, packet size, buffer size). CUTOUCH has a separate touch controller that will sense touch input and send back to the CPU through SPI protocol. This "touch controller" will create a signal that is equal to mode = 0. (MSB, RISING EDGE sampling) Input packets are 4 bytes each (X and Y each get 2 bytes). Buffer size is 5, 1 more than the actual packet size.

(2) ON Pad Gosub ABC: This command is for PAD interrupt declaration. When PAD input occurs, it will jump to label ABC.

(3) This is interrupt service routine. When PAD input occurs, this is part of the code until return will be executed. Getpad will read the data received from touch pad, 2 bytes for x position and 2 bytes for y position.


(4) Draw a circle where touch input was received.

When this program is executed, you will be able to see that wherever you press on the screen, a circle will appear. Please use this program as a skeleton for your touch programs.

The following is MENU command and ON PAD command example: When

button is pressed, a beep will sound from the piezo and the button will be inversed.

```
۰.
         DEMO FOR CUTOUCH
       Const Device = CT1720
       Dim TX1 As Integer, TY1 As Integer
       Dim k As Long
       Contrast 550
       Set Pad 0,4,5
       On Pad Gosub abc
      Menuset 0,2,8,16,87,63
      Menutitle 0,13,13, "Start"
      Menuset 1,2,96,16,176,63
       Menutitle 1,13,13,"End"
      Menuset 2,2,184,16,264,63
      Menutitle 2,13,13, "Restart"
       Low 18
       Do
      Loop
abc:
      TX1 = Getpad(2)
      TY1 = Getpad(2)
       Circlefill TX1, TY1, 10
       If Menucheck(0,TX1,TY1) = 1 Then
       Menureverse 0
             Pulsout 18,300 'Send out beep to piezo
       End If
       If Menucheck(1,TX1,TY1) = 1 Then
       Menureverse 1
             Pulsout 18,300
       End If
       If Menucheck(2,TX1,TY1) = 1 Then
       Menureverse 2
       Pulsout 18,300
       End If
       Return
```


CUTOUCH Sample Programs

SAMPLE 1

Let's make a simple counter that will print to the screen. The source files used here are in your CUBLOC Studio installation directory. (Usually C:\Program Files\Comfile Tools\CublocStudio)

<Filename : CT001.CUL>

```
Const Device = Ct1720

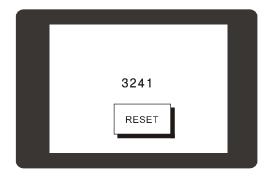
Dim I As Integer

Contrast 550 ' LCD CONTRAST SETTING

Do

Locate 15,6

Print DEC5 I

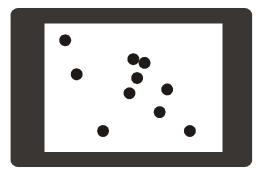

Incr I

Delay 200

Loop
```

Please adjust your screen's contrast accordingly using CONTRAST command. * Depending on the model, you may be able to adjust the contrast using a adjustable knob on the back of CUTOUCH. In this case, you have the option to set the contrast manually.

The following example program will display RESET button and will increment number shown every time the button is pressed.

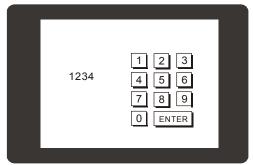



```
<Filename : CT002.CUL>
```

```
Const Device = Ct1720
       Dim I As Integer
       Dim TX1 As Integer, TY1 As Integer
       Contrast 550
       Set Pad 0,4,5
       On Pad Gosub GETTOUCH
       Menuset 0,2,120,155,195,200
       Menutitle 0,20,14, "RESET"
       Do
             Locate 15,6
              Print DEC5 I
              Incr I
              Delay 200
       Loop
GETTOUCH:
       TX1 = Getpad(2)
       TY1 = Getpad(2)
       If Menucheck(0, TX1, TY1) = 1 Then
              Pulsout 18,300
              T = 0
       End If
       Return
```

SET PAD command activates touch input. ON PAD command is used to jump to a label when touch input is received. MENUSET command is used to set the desired touch input area and MENUTITLE command is used to set the name of the button itself. PULSEOUT outputs BEEP sound to the piezo.

Draw a circle where your finger touches.


<Filename : CT003.CUL>

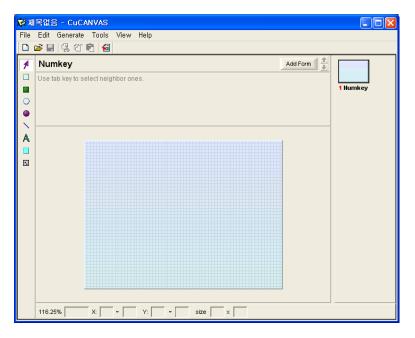
```
Const Device = Ct1720
Dim TX1 As Integer, TY1 As Integer
Contrast 550
Set Pad 0,4,5
On Pad Gosub GETTOUCH
Do
Loop
```

GETTOUCH:

TX1 = Getpad(2)
TY1 = Getpad(2)
Circlefill TX1,TY1,10
Pulsout 18,300
Return

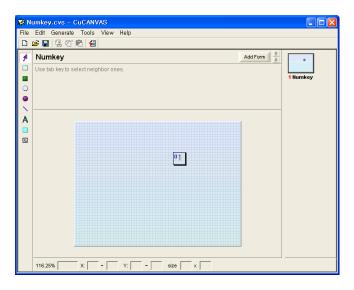
Make a virtual keypad and accept numerical values.

<Filename : CT004.CUL>

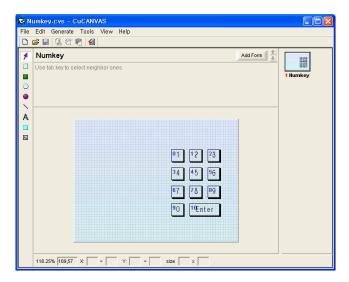

Const Device = Ct1720 Dim TX1 As Integer, TY1 As Integer Dim I As Integer Contrast 550 Set Pad 0,4,5 On Pad Gosub GETTOUCH Menuset 0,2,165,50,195,75 Menutitle 0,11,4,"1" Menuset 1,2,205,50,235,75 Menutitle 1,11,4,"2" Menuset 2,2,245,50,275,75 Menutitle 2,11,4,"3" Menuset 3,2,165,85,195,110 Menutitle 3,11,4,"4" Menuset 4,2,205,85,235,110 Menutitle 4,11,4,"5" Menuset 5,2,245,85,275,110 Menutitle 5,11,4,"6" Menuset 6,2,165,120,195,145 Menutitle 6,11,4,"7" Menuset 7,2,205,120,235,145 Menutitle 7,11,4,"8" Menuset 8,2,245,120,275,145 Menutitle 8,11,4,"9" Menuset 9,2,165,155,195,180 Menutitle 9,11,4,"0" Menuset 10,2,205,155,275,180 Menutitle 10,17,4,"ENTER" I =0 Do Loop GETTOUCH:

```
TX1 = Getpad(2)
TY1 = Getpad(2)
If Menucheck(0,TX1,TY1) = 1 Then
      I = I << 4
      I = I + 1
      Pulsout 18,300
Elseif Menucheck(1,TX1,TY1) = 1 Then
      I = I << 4
      I = I + 2
      Pulsout 18,300
Elseif Menucheck(2,TX1,TY1) = 1 Then
      I = I << 4
      I = I + 3
      Pulsout 18,300
Elseif Menucheck(3,TX1,TY1) = 1 Then
      I = I << 4
      I = I + 4
      Pulsout 18,300
Elseif Menucheck(4,TX1,TY1) = 1 Then
      I = I << 4
      I = I + 5
      Pulsout 18,300
Elseif Menucheck(5,TX1,TY1) = 1 Then
      I = I << 4
      I = I + 6
      Pulsout 18,300
Elseif Menucheck(6, TX1, TY1) = 1 Then
      I = I << 4
      I = I + 7
      Pulsout 18,300
Elseif Menucheck(7,TX1,TY1) = 1 Then
      I = I << 4
      I = I + 8
      Pulsout 18,300
Elseif Menucheck(8,TX1,TY1) = 1 Then
      I = I << 4
      I = I + 9
      Pulsout 18,300
Elseif Menucheck(9,TX1,TY1) = 1 Then
      I = I << 4
      Pulsout 18,300
Elseif Menucheck(10,TX1,TY1) = 1 Then
      I = 0
      Pulsout 18,300
End If
Locate 3,3
Print HEX4 I
Return
```

The final value I is stored as BCD code, you can use BCD2BIN command to convert back to a binary number.


Let's try using CuCANVAS to make some menus. To create the virtual keypad shown in the previous page, it would take a longer time to just code it. We can save ourselves time by using CuCANVAS.

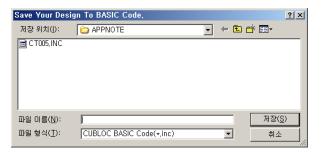
Please run CuCANVAS and press Add Form button on the upper right hand corner. Enter a desired name for your new form. (Here we used NUMKEY)



On the left side of CuCANVAS, you will see a tool bar with an arrow, box, filled box, circle, filled circle, line, text, and menu box. Please select the last button, menu box, and draw a small box on the screen.

The 0 on the button means the menu number is 0. In the actual screen, this number will not be displayed. Please type "1" in the Title field on the top. You have successfully made a "1" button.

You can make the rest of the buttons and the keypad like the one shown below can be made in less than 5 minutes.



Now is the fun part. Simply click on Generate on the menu bar and click "View Basic Code." CuCANVAS will generate a sub function that includes the button that you have just created. Simply copy(Ctrl+C) and paste(CTRL+V) to CUBLOC Studio and wala! You have a menu in couple minutes. For copying, you can either press Ctrl+C or press on the "To Clipboard" button at the bottom.

SUB	NUMKEYO	_
	FONT 0,0	
	STYLE 0.0.0	
	MENUSET 0,2,190,65,215,90	
	MENUTITLE 0,9,4,"1"	
	MENUSET 1,2,225,65,250,90	
	MENUTITLE 1,9,4,"2"	
	MENUSET 2,2,260,65,285,90	
	MENUTITLE 2,9,4,"3"	
	MENUSET 3,2,190,100,215,125	
	MENUTITLE 3,9,4,"4"	
	MENUSET 4,2,225,100,250,125	
	MENUTITLE 4,9,4,"5"	
	MENUSET 5,2,260,100,285,125	
	MENUTITLE 5,9,4,"6"	
	MENUSET 6,2,190,135,215,160 MENUTITLE 6,9,4,"7"	
	MENUSET 7,2,225,135,250,160	
	MENUTITLE 7,9,4,"8"	
	MENUSET 8,2,260,135,285,160	
	MENUTITLE 8,9,4,"9"	
	MENUSET 9,2,190,170,215,195	
	MENUTITLE 9,9,4,"0"	
	MENUSET 10,2,225,170,285,195	
	MENUTITLE 10,12,4,"ENTER"	
	FONT 4,0	
END	SUB	

You can also use include files instead of copying and pasting for repetitive menu creations.

Click "Save to File" button and save as an include (*.inc) file.

Using the include file, you will be able to save lots of time and be able to make changes to your menus without making it a big copy and paste hassle.

The following program is exactly same as SAMPLE4 except we use include file for the virtual keypad.

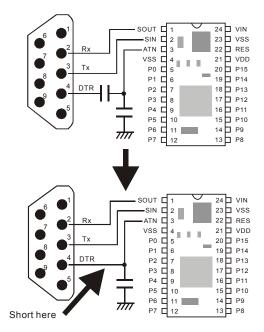
```
<Filename : CT005.CUL>
       Const Device = Ct1720
       Dim TX1 As Integer, TY1 As Integer
       Dim I As Integer
       Contrast 550
       Set Pad 0,4,5
       On Pad Gosub GETTOUCH
                    ' Execute the Sub-routine in INCLUDE file
       NUMKEY
       I =0
       Do
       Loop
GETTOUCH:
       TX1 = Getpad(2)
       TY1 = Getpad(2)
       If Menucheck(0,TX1,TY1) = 1 Then
              I = I << 4
              I = I + 1
              Pulsout 18,300
       Elseif Menucheck(1,TX1,TY1) = 1 Then
              I = I << 4
              I = I + 2
              Pulsout 18,300
       Elseif Menucheck(2,TX1,TY1) = 1 Then
              I = I << 4
              I = I + 3
              Pulsout 18,300
       Elseif Menucheck(3,TX1,TY1) = 1 Then
              I = I << 4
```

```
I = I + 4
              Pulsout 18,300
       Elseif Menucheck(4,TX1,TY1) = 1 Then
             I = I << 4
              I = I + 5
              Pulsout 18,300
       Elseif Menucheck(5,TX1,TY1) = 1 Then
              I = I << 4
             I = I + 6
              Pulsout 18,300
       Elseif Menucheck(6,TX1,TY1) = 1 Then
             I = I << 4
              I = I + 7
             Pulsout 18,300
       Elseif Menucheck(7,TX1,TY1) = 1 Then
             I = I << 4
             I = I + 8
             Pulsout 18,300
       Elseif Menucheck(8,TX1,TY1) = 1 Then
              I = I << 4
              I = I + 9
              Pulsout 18,300
       Elseif Menucheck(9,TX1,TY1) = 1 Then
             I = I << 4
             Pulsout 18,300
       Elseif Menucheck(10,TX1,TY1) = 1 Then
             I = 0
             Pulsout 18,300
       End If
       Locate 3,3
       Print HEX4 I
       Return
       End
#INCLUDE "CT005.INC"
```

We must include #include command at the end of the code. This is slightly different from other languages such as C++.

CUCANVS can download at <u>www.comfiletech.com</u>. CUCANVAS is free-ware.

APPENDIX


Appendix A. ASCII CODE

Code	char.	Code	char.	Code	char.	Code	char.
00H	NUL	20H	SPACE	40H	@	60H	`
01H	SOH	21H	!	41H	А	61H	а
02H	STX	22H	"	42H	В	62H	b
03H	ETX	23H	#	43H	С	63H	с
04H	EOT	24H	\$	44H	D	64H	d
05H	ENQ	25H	%	45H	Е	65H	е
06H	ACK	26H	&	46H	F	66H	f
07H	BEL	27H	`	47H	G	67H	g
08H	BS	28H	(48H	Н	68H	h
09H	HT	29H)	49H	Ι	69H	Ι
0AH	LF	2AH	*	4AH	J	6AH	j
0BH	VT	2BH	+	4BH	К	6BH	k
0CH	FF	2CH	,	4CH	L	6CH	1
0DH	CR	2DH	-	4DH	М	6DH	m
0EH	SO	2EH		4EH	Ν	6EH	n
0FH	SI	2FH	/	4FH	0	6FH	0
10H	DLE	30H	0	50H	Р	70H	р
11H	DC1	31H	1	51H	Q	71H	q
12H	DC2	32H	2	52H	R	72H	r
13H	DC3	33H	3	53H	S	73H	S
14H	DC4	34H	4	54H	Т	74H	t
15H	NAK	35H	5	55H	U	75H	u
16H	SYN	36H	6	56H	V	76H	v
17H	ETB	37H	7	57H	W	77H	w
18H	CAN	38H	8	58H	Х	78H	х
19H	EM	39H	9	59H	Y	79H	у
1AH	SUB	3AH	:	5AH	Z	7AH	z
1BH	ESC	3BH	;	5BH	[7BH	{
1CH	FS	3CH	<	5CH	١	7CH	
1DH	GS	3DH	=	5DH]	7DH	}
1EH	RS	3EH	>	5EH	^	7EH	~
1FH	US	3FH	?	5FH	_	7FH	DEL

Appendix B. Note for BASIC STAMP users

When using Parallax's Basic Stamp compatible development board, please be aware of the following:

There is a capacitor on the Basic Stamp compatible development boards which causes download error in CUBLOC Studio. Please short (or take out) the extra capacitor connected to the DTR of the board as shown below. CB220 has a this capacitor on the chip itself.

Appendix C. Using Output Port on the CB290 / CT1720

Warning : CB290 rev A/ CT1720 rev A Output ports

Please be aware of the following when using CB290 (rev A) or CT1720 (rev A) with output ports (24 through 55).

When using CB290 or CT1720 with a backup battery (CB290 Proto-Board, Baseboard 64M, and CT1720), the data memory is saved during power OFF. Even the output on the I/O ports are saved to memory.

When powered ON, the output ports will recover from the status it was in at power OFF.

This is to let the modules be able to continue their existing processes in case of power outage.

Please be aware that when there are unknown values and battery backup is used, there can be garbage values at power ON, meaning unknown values outputting on the output ports.

Please use regular I/O ports if you need to make sure that the output needs to be OFF at power ON.

Using Output ports on the CB290 / CT1720 (Rev B)

The CB290/CT1720 (Rev B) output ports (P24-P55) are in high impendence (High-Z) state in order to prevent garbage values outputting at power ON.

You must use "Set OUTONLY ON" command to set the CB290 / CT1720 output ports to output status.

Set Outonly On

Appendix D. CUBLOC BASIC Command summary

Command	Usage
Adin ()	Variable = ADIN (Channel) Variable : Variable to store results (No String or Single) Channel : AD Channel Number (not I/O Pin Number)
Alias	ALIAS Registername = AliasName Registername : Register name such as P0, M0, T0 (<i>Do not use D area</i>) AliasName : An Alias for the Register chosen (<i>up to 32 character</i>)
Arc	ARC x, y, r, start, end
Bcd2bin	Variable = BCD2BIN (bcdvalue) Variable : Variable to store results (Returns LONG) bcdvalue : BCD value to convert to binary
Bclr	BCLR channel, buffertype channel : RS232 Channel <i>(0 to 3)</i> buffertype : 0=Receive, 1=Send, 2=Both
Веер	BEEP Port, Length Port : Port number <i>(0 to 255)</i> Length : Pulse output period <i>(1 to 65535)</i>
Bfree	Variable = BFREE (channel, buffertype) Variable : Variable to store results (No String or Single) channel : RS232 Channel number (0 to 3) buffertype: 0=Receive Buffer, 1=Send Buffer
Bin2bcd	Variable = BIN2BCD (binvalue) Variable : Variable to store results (Returns Long) binvalue : Binary value to be converted
Blen	Variable = BLEN (channel, buffertype) Variable : Variable to store results (No String or Single) channel : RS232 Channel number (0 to 3) buffertype: 0=Receive Buffer, 1=Send Buffer
Bmp	BMP x, y, filenumber, layer X, y : x,y position to display BMP Filenumber : BMP File number Layer : Layer to display BMP

Box	BOX x1, y1, x2, y2
Boxclear	BOXCLEAR x1, y1, x2, y2
Boxfill	BOXFILL x1, y1, x2, y2,logic logic : 0=OR, 1=AND, 2=XOR
Bytein	Variable = BYTEIN (PortBlock) Variable : Variable to store results (No String or Single) PortBlock : I/O Port Block Number (0 to 15)
Byteout	BYTEOUT PortBlock, value PortBlock : I/O Port Block Number. (0 to 15) value : Value to be outputted between 0 and 255.
Circle	CIRCLE x, y, r
Circlefill	CIRCLEFILL X, y, r
Checkbf	Variable = CHECKBF (channel) Variable : Variable to store results (No String or Single) channel : RS232 Channel (0 to 3)
Color	COLOR value
Cls	CLS
Clear	CLEAR layer
Cmode	CMODE value value : 0=BOX type, 1=Underline type
Compare	COMPARE channel, target#, port, targetstate Channel : High Counter channel Target# : Target # of Pulses (CH0: 0 to 65535, CH1: 0 to 255) Port : Output Port (DO NOT USE Input-only Ports) Targetstate : Target Output Port State
Const	CONST name [as type] = value
Const (Array) Contrast	CONST type name [as type] = value [,value, value, value] Type = Byte, Integer, Long, String Single CONTRAST value value : Contrast Value
Count	Variable = COUNT (channel) Variable : Variable to store results. (No String or Single) Channel : Counter Channel number (0 to 1)

Countreset	COUNTRESET channel
	Channel : Counter Channel (0 to 1)
Csroff	CSROFF
Csron	CSRON
Dcd	Variable = DCD source Variable : Variable to store results. (No String or Single) Source : source value
Debug	DEBUG data data : data to send to PC
Decr	DECR variable Variable : Variable for decrementing. (No String or Single)
Defchr	DEFCHR code, data Code : Custom character code (&hdb30 to &hdbff) Data : 32byte bitmap data
Delay	DELAY time Time : interval variable or constant
Dim	DIM variable As variabletype [,variable As variabletype] Variabletype : Byte, Integer, Long, Single, String
Dotsize	DOTSIZE value, style
Dp	Variable = DP(Variable, Decimal Places, ZeroPrint) ZeroPrint :If ZeroPrint is set to 1, zeros are substituted for blank spaces.
Dprint	DPRINT string
Dtzero	DTZERO variable Variable : Variable for decrement. (No String or Single)
Eadin	Variable = EADIN (mux) Variable : Variable to store results (No String or Single) mux : AD input Port Combination MUX (0 to 21)
Eeread	Variable = EEREAD (Address, ByteLength) Variable : Variable to store result (No String or Single) Address : 0 to 4095 ByteLength : Number of Bytes to read (1 to 4)
Eewrite	EEWRITE Address, Data, ByteLength Address : 0 to 4095 Data : Data to write to EEPROM (<i>up to Long type values</i>) ByteLength : Number of Bytes to write (1 to 4)

Ekeypad	Variable = EKEYPAD (portblockIn, portblockOut) Variable : Variable to store results (Returns Byte) PortblockIn : Port Block to receive input (0 to 15) PortblockOut : Port Block to output (0 to 15)
Ellipse	ELLIPSE x, y, r1, r2
Elfill	ELFILL x, y, r1, r2
Freepin	FREEPIN I/O I/O : I/O PORT Number
Font	FONT fontsize, efontwidth fontsize : 0 to 8 Font Selection efontwidth : 0 = fixed width, 1=variable width
Fp	Variable = FP (Value, , Whole Number Digits, Fractional Number Digits)
Freqout	FREQOUT Channel, FreqValue Channel : PWM Channel <i>(0 to 15)</i> FreqValue : Frequency value between 1 and 65535
Get	Variable = GET (channel, length) Variable : Variable to store results (Cannot use String, Single) channel : RS232 Channel (0 to 3) length : Length of data to receive (1 to 4)
Getcrc	GETCRC Variable, ArrayName, Bytelength variable : String Variable to store results (Integer type) ArrayName : Array with data(Must be a Byte array) Bytelength : # of bytes to calculate CRC
Getstr	Variable = GETSTR (channel, length) Variable : String Variable to store results channel : RS232 Channel length : Length of data to receive
Getstr2	Variable = GETSTR (channel, length, stopchar) Variable : String Variable to store results channel : RS232 Channel length : Length of data to receive Stopchar : Stop character ascii code
Geta	GETA channel, ArrayName, bytelength channel : RS232 Channel (0 to 3) ArrayName : Array to store Received data (No String or Single) Bytelength : Number of Bytes to store (1 to 65535)

Geta2	GETA channel, ArrayName, bytelength, stopchar channel : RS232 Channel <i>(0 to 3)</i> ArrayName : Array to store Received data (No String or Single) Bytelength : Number of Bytes to store <i>(1 to 65535)</i> Stopchar : Stop character ascii code
Glayer	GLAYER layernumber Layernumber : Set the graphic layer. (0,1,2)
Glocate	GLOCATE x, y
Gpaste	GPASTE x, y, layer, logic logic =0 : OR logic =1 : AND logic =2 : XOR logic =3 : Clear screen then pop
Gprint	GPRINT string
Gpush	GPUSH x1, y1, x2, y2, layer
Gpop	GPOP x, y, layer, logic logic =0 : OR logic =1 : AND logic =2 : XOR logic =3 : Clear screen then pop
Неар	Variable = HEAP (Address) Variable : Variable to store results Address : HEAP memory address
Heapclear	HEAPCLEAR
Неарм	HEAPW Address, Data Address : HEAP memory address Data : Constant or Variable with data (Byte only)
Hread	Variable = HREAD (Address, ByteLength) Variable : Variable to store results Address : HEAP memory address ByteLength : # of bytes to read, constant or variable
Hwrite	HWRITE Address, Data, ByteLength Address : HEAP memory address Data : Constant or Variable with data (whole numbers only) ByteLength : # of bytes to write
High	HIGH Port Port : I/O Port number
Hpaste	HPASTE x, y, layer

Нр	Variable = DP(Variable, Heximal Places, ZeroPrint) ZeroPrint :If ZeroPrint is set to 1, zeros are substituted for blank spaces.
Нрор	HPOP x, y, layer
Hpush	HPUSH x1, y1, x2, y2, layer
I2cstart	I2CSTART
I2cstop	I2CSTOP
I2cread	Variable = I2CREAD (dummy) Variable : Variable to store results. (No String or Single) dummy : dummy value. (Normally 0)
I2creadna	Variable = I2CREADNA (dummy) Variable : Variable to store results. (No String or Single) dummy : dummy value. <i>(Normally 0)</i>
I2cwrite	Variable = I2CWRITE data Variable : Acknowledge (<i>0</i> =Acknowledged, <i>1</i> =No Acknowledgement) data : data to send (Byte value : 0 to 255)
In	Variable = IN (Port) Variable : The variable to store result (No String or Single) Port : I/O Port number <i>(0 to 255)</i>
Incr	INCR variable Variable : Variable for increment. (No String or Single)
Input	INPUT Port Port : I/O Port number <i>(0 to 255)</i>
Keyin	Variable = KEYIN (Port, debouncingtime) Variable : Variable to store results (No String or Single) Port : Input Port (0 to 255) deboucingtime : Debouncing Time (1 to 65535)
Keyinh	Variable = KEYINH (Port, debouncingtime) Variable : Variable to store results (No String or Single) Port : Input Port (0 to 255) deboucingtime : Debouncing Time (0 to 65535)

Keypad	Variable = KEYPAD (PortBlock) Variable : Variable to store results (Returns Byte, No String or Single) PortBlock : Port Block (0 to 15)
Layer	LAYER layer1mode, layer2 mode, layer3 mode Layer1mode : Set Layer 1 mode (0=off, 1=on, 2=flash) Layer2mode : Set Layer 2 mode (0=off, 1=on, 2=flash) Layer3mode : Set Layer 3 mode (0=off, 1=on, 2=flash)
Ladderscan	LADDERSCAN
Light	LIGHT value value : Back light 0=OFF, 1=ON
Line	LINE x1, y1, x2, y2
Linestyle	LINESTYLE value
Lineto	LINETO X, Y
Low	LOW Port Port : I/O Port number <i>(0 to 255)</i>
Locate	LOCATE X,Y
Menu	Variable = MENU (index, pos) Variable : Variable to store results (1 = selected, 0 = unselected) Index : Menu Index pos : Position (0=x1, 1=y1, 2=x2, 3=y2)
Memadr	Variable = MEMADR (TargetVariable) Variable : Variable to store results (No String or Single) TargetVariable : Variable to find physical memory address
Menucheck	Variable = MENUCHECK (index, touchx, touchy) Variable : Variable to store results (1 if selected, 0 if unselected) Index : Menu Index Number Touchx : Touch pad x axis point Touchy : Touch pad y axis point
Menu Reverse	MENUREVERSE index Index : Menu index number
Menuset	MENUSET index, style, x1, y1, x2, y2 Index : Menu Index Number Style : Button Style; 0=none, 1=Box, 2=Box with Shadow X1,y1,x2,y2 : Menu Button location

Menutitle	MENUTITLE index, x, y, string Index :Menu index number X,y : Title location based on left upper corner of button string : Name of the menu
Ncd	Variable = NCD source Variable : Variable to store results. (No String or Single) Source : source value (0 to 31)
Nop	NOP
Offset	OFFSET x, y
On int	ON INTx GOSUB label x : 0 to 3, External Interrupt Channel
On ladderint	ON LADDERINT GOSUB label
On pad	ON PAD GOSUB label
On recv	ON RECV1 GOSUB label
On timer	ON TIMER (interval) GOSUB label Interval : Interrupt Interval 1=10ms, 2=20ms65535=655350ms 1 to 65535 can be used
Opencom	OPENCOM channel, baudrate, protocol, recvsize, sendsize channel : RS232 Channel (0 to 3) Baudrate : Baudrate (Do not use variable) protocol : Protocol (Do not use variable) recvsize : Receive Buffer Size (Max. 1024, Do not use variable) sendsize : Send Buffer Size (Max. 1024, Do not use variable)
Out	OUT Port, Value Port : I/O Port number <i>(0 to 255)</i> Value : Value to be outputted to the I/O Port (1 or 0)
Output	OUTPUT Port Port : I/O Port number <i>(0 to 255)</i>
Outstat	Variable = OUTSTAT (Port) Variable : Variable to store results. (No String or Single) Port : I/O Port Number <i>(0 to 255)</i>
Overlay	OVERLAY overmode overmode : Logical Mode (0=or, 1=and, 2=xor)
Paint	PAINT x, y

Pause	PAUSE value
Peek	Variable = PEEK (Address, Length) Variable : Variable to Store Result. (No String or Single) Address : RAM Address. length : Length of Bytes to read (1 to 4)
Poke	POKE Address, Value, Length Address : RAM Address Value : Variable to store results <i>(up to Long type value)</i> length : length of bytes to read <i>(1 to 4)</i>
Print	PRINT String / Variable String : String Variable : When using variables/constants, String representation of the variable/constant will be printed.
Pset	PSET x, y
Pulsout	PULSOUT Port, Period Port : Output Port (0 to 255) Period : Pulse Period (1 to 65535)
Put	PUT channel, data, bytelength channel : RS232 Channel (0 to 3) Data : Data to send (up to Long type value) Bytelength : Length of Data (1 to 3)
Puta	PUTA channel, ArrayName, bytelength channel : RS232 Channel. <i>(0 to 3)</i> ArrayName : Array Name Bytelength : Bytes to Send <i>(1 to 65535)</i>
Puta2	PUTA2 channel, ArrayName, bytelength, Stopchar channel : RS232 Channel. (0 to 3) ArrayName : Array Name Bytelength : Bytes to Send (1 to 65535) Stopchar : Stop character ascii code
Putstr	PUTSTR channel, data channel : RS232 Channel. (0 to 3) Data : String Data (String variable or String constant)
Pwm	PWM Channel, Duty, <i>Period</i> Channel : PWM Channel Number (0 to 15) Duty : Duty Value, must be less than the Width. <i>Period</i> : Maximum of 65535
Pwmoff	PWMOFF Channel Channel : PWM Channel. (0 to 15)

Ramclear	RAMCLEAR
Reverse	REVERSE Port Port : I/O Port Number. (0 to 15)
Set display	SET DISPLAY type, method, baud, buffersize type : 0=Rs232LCD, 1=GHLCD GHB3224, 2=CLCD Method : Communication Method 0=CuNET, 1=COM1 baud : Baud rate (CuNET Slave address) Buffersize : Send Buffer Size
Set debug	SET DEBUG On[/Off]
Set i2c	SET I2C DataPort, ClockPort DataPort : SDA, Data Send/Receive Port. (0 to 255) ClockPort : SCL, Clock Send/Receive Port. (0 to 255)
Set ladder	SET LADDER On [/Off]
Set modbus	Set MODBUS mode, slaveaddress, returninterval mode : 0=ASCII, 1=RTU slaveaddress : Slave Address (1 to 254) returninterval : return interval value (1 to 255, default value is 1)
Set outolny	SET OUTONLY On[/Off]
Set Pad	SET PAD mode, packet, buffersize mode : Bit Mode (0 to 255) packet : Packet Size (1 to 255) buffersize : Receive Buffer Size (1 to 255)
Set rs232	SET RS232 channel, baudrate, protocol channel : RS232 Channel (0 to 3) Baudrate : Baudrate (Do not use variable) protocol : Protocol (Do not use variable)
Set until	SET UNTIL channel, packetlength, stopchar channel : RS232 Channel. (0 to 3) packetlength : Length of packet (0 to 255) stopchar : Character to catch
Set Int	SET INTx mode x : 0 to 3, External Interrupt Channel mode : 0=Falling Edge, 1=Rising Edge, 2=Changing Edge
Set Onglobal	SET ONGLOBAL On[/Off]
Set onint	SET ONINTx On[/Off]
Set onladderint	SET ONLADDERINT On[/Off]

<u> </u>	
Set onpad	SET ONPAD On[/Off]
Set	SET ONRECV0 On[/Off]
onrecv	SET ONRECV1 On[/Off]
	SET ONRECV2 On[/Off]
	SET ONRECV3 On[/Off]
Set	SET ONTIMER On[/Off]
Ontimer	
Shiftin	Variable = SHIFTIN (clock, data, mode, bitlength)
	Variable : Variable to store results. (No String or Single)
	Clock : Clock Port. (0 to 255)
	Data : Data Port. (0 to 255)
	Mode : 0 = LSB First (Least Significant Bit First), After Rising Edge
	1 = MSB First (Most Significant Bit First), After Rising Edge
	2 = LSB First (Least Significant Bit First), After Falling Edge
	3 = MSB First (Most Significant Bit First), After Falling Edge
	4 = LSB First (Least Significant Bit First), Before Rising Edge
	5 = MSB First (Most Significant Bit First), Before Rising Edge
	bitlength : Length of bits (8 to 16)
Shiftout	SHIFTOUT clock, data, mode, variable, bitlength
	Clock : Clock Port. (0 to 255)
	Data : Data Port. (0 to 255)
	Mode : 0 = LSB First (Least Significant Bit First)
	1 = MSB First (Most Significant Bit First)
	2 = MSB First(Most Significant Bit First), Create ACK (For I2C)
	variable : Variable to store data (up to 65535)
	bitlength : Bit Length (8 to 16)
Steppulse	STEPPULSE Channel, Port, Freq, Qty
	Channel : StepPulse Channel(0 or 1)
	Port : Output Port
	Freq : Output Frequency (Up to 15kHz)
	Qty : # of pulses to output (up to 2147483647)
Ctonstat	Variable = STEPSTAT (Channel)
Stepstat	Variable = STEPSTAT (Channel) Variable : Variable to store results
	Channel : StepPulse Channel(0 or 1)
Stepstop	STEPSTOP Channel
	Channel : StepPulse Channel (0 or 1)
Style	STYLE bold, inverse, underline
	bold : 0=Normal, 2 or 3 =Bold
	inverse : 0=Normal, 1=Inverse
	underline : 0=Normal, 1=Underline
Sys	Variable = SYS (address)
	Variable : Variable to store results. (No String or Single)
	address : Address. (0 to 255)

Tadin	Variable = TADIN (Channel) Variable : Variable to store results. (No String or Single) Channel : AD Channel Number (Not Port number, 0 to 15)
Time	Variable = TIME (address) Variable : Variable to store results. (No String or Single) address : Address of time value (0 to 6)
Timeset	TIMESET address, value address : Address of time value (0 to 6) value : time value. <i>(0 to 255)</i>
Udelay	UDELAY time time : interval (1 to 65535)
Usepin	USEPIN I/O, In/Out, AliasName I/O : I/O Port Number. <i>(0 to 255)</i> In/Out : "In" or "Out" AliasName : Alias for the port (Optional)
Utmax	UTMAX variable Variable : Variable for decrement. (No String or Single)
Wait	WAIT time time : delay time (mS) 10 to 2147483640
Waittx	WAITTX channel channel : RS232Channel. (0 to 3)
Wmode	WMODE value value : 0=FAST, 1=SLOW

Index

А

ABS	111
ADIN	124
ALIAS107, 126,	364
AND	374
Application Notes	319
ARC	274
Arc Cos	110
Arc Sine	110
Arc Tan	110
arrays	86
ASC	
ATN	42
AVREF	124

В

Backup Battery	418
BASE-Board	35
BASIC interpreter	
battery backup	47, 51
baudrate	193
BCD2BIN	127
BCLR	128
BEEP	129
BFREE	130
BIN2BCD	131
bits	
BLEN	132
ВМР	275
BOX	267
BOXCLEAR	267
BOXFILL	267
Byte	
BYTEIN	133

BYTEOUT	134
bytes	87

С

CALLS	.403
СВ220	41
СВ280	
CB280 relays	
CB280CS	
CB29047	', 51
CB290 relays	
CheckBf	
chipset	
CHR	
CIRCLE	
CIRCLEFILL	
CLCD	
CLCD command table	
CLCD DIP switch	
CLEAR	.260
CLS 253,	
CMODE	
COLOR	
comparisons	.386
CON	
constant arrays	91
Constants	90
Contact A	
Contact B	
CONTRAST	
Cos	
COUNT	
COUNTRESET 136,	
CSG Dip switch	
CSG module	
CSGDEC	.284

284
283
284
253
260
253
260
383
383
176
62
etic
295
431
410
415

D

data memory space	85
DCD	140
DEBUG	141
dec	113
declare the device	365
DECR	
DEFCHR	
DELAY	
DF	376
DFN	376
digital thermometer	
DIM	
Din Rail	
	29
Din Rail	29 146
Din Rail DOLOOP DOTSIZE Double Word size	29 146 273 387
Din Rail DOLOOP DOTSIZE	29 146 273 387
Din Rail DOLOOP DOTSIZE Double Word size	
Din Rail DOLOOP DOTSIZE Double Word size DOWN Counter	
Din Rail DOLOOP DOTSIZE Double Word size DOWN Counter DP	
Din Rail DOLOOP DOTSIZE Double Word size DOWN Counter DP DPRINT	
Din Rail DOLOOP DOTSIZE Double Word size DOWN Counter DP DPRINT DS1620	
Din Rail DOLOOP DOTSIZE Double Word size DOWN Counter DP DPRINT DS1620 DTZERO	

DWDEC	393
DWDIV	396
DWINC	393
DWMOV	389
DWMUL	395
DWOR	397
DWROL	400
DWROR	401
DWSUB	394
DWXCHG	390
DWXOR	398

Е

EADIN	149
EEPROM	152, 297, 340
EEREAD	151, 167, 168
EEWRITE	152, 167, 168
EKEYPAD	153
ELFILL	269
ELLIPSE	269
EXP	110
express binary a	nd hexadecimal

F

FABS Flash Memory	
FLOAT	
FLOOR	.111
FMOV	.391
FONT	.264
FOR…NEXT	.154
FREQOUT157, 234,	235
function code	.307
Function Relays	.361

G

GETA160, 161, 1	162
GETSTR 163, 1	164
GHB3224	257
GHB3224 DIP Switch	280
GHLCD	257
GLAYER	262
GLOCATE 2	
GMOV	392
GOSUB 1	165
GOTO165, 4	
GPASTE	278
GPOP	277
GPRINT	270
GPUSH2	277

Η

hex	112
HIGH	170
HIGH-Z	176
НР	116
HPaste	279
НРОР	279
HPUSH	279
Hyperbolic Cos	110
Hyperbolic Sin	110
Hyperbolic Tan	110

I

I/O ports
I2C 296
I2CREAD 172, 173
I2CSTART 171
I2CSTOP 171
I2CWRITE 174
If…Then…ElseifElse…EndIf 175
IN 176
INCR 177
INPUT 178
input-only pin 54
Int 187

Integer	79
Internal Relay	362
interrupt	103
INTON	404

Κ

KCTD3	885
КСТU3	885
KEYIN1	.79
KEYINH1	.80
KEYPAD1	.81
KTAON3	881
KTON3	881

L

Label	
LABEL	
LADDER LOGIC	24, 344
LADDERSCAN	
LAYER	
LCD displays	
left	
LEN	
LIGHT	
LINE	
LINESTYLE	273
LINETO	
Ln	110
LOAD	
LOADN	
LOCATE	253, 260
LOG	110
LOG10	110
Long	79
LOW	
LTRIM	120

MCP3202	338
MCS	377
MCSCLR	377
Memadr	105
MEMADR	184
MENU buttons	420
MENUCHECK	422
MENUREVERSE	422
MENUSET	421
MENUTITLE	421
MID	118
MODBUS	438
monitoring	352
multi-tasking	
-	

Ν

NCD	185
Nop	186
Normally Closed	361
Normally Open	361
NOT	374
NTC thermistor	325

0

272
187
188
190
191
192
. 28
229
.93
374
196
197
198

Ρ

PAINT	274
PAUSE	198
Peek	105
PEEK	199
PLC Setup Wizard	356
PLC/Micro-computer	
Poke	105
POKE	199
power regulator	43
PRINT	253, 261
proto-boards	35
PSET	273
PULSOUT	200
PUT	201
PUTA	202, 203
PUTSTR	204
PWM	205
PWMOFF	206

R

RAMCLEAR	85, 207
RC Servo motor	333
Real Time Clock	336
re-flashed	363
Relay Expression	359
Relay numbers	364
representation of number	ers 96
RET	403
RETURN	165
REVERSE	208
right	118
RND	209
RSTOUT	
RTRIM	120
RTU315,	316, 317

SBRT	403
SelectCase	
SET DEBUG	211
SET DISPLAY	251
SET I2C	214
SET INTx	
SET LADDER On	216
Set Modbus	217
SET MODBUS	5
SET ONGLOBAL	218
SET ONINTX	219
SET ONLADDERINT	220
SET ONPAD	221
SET ONRECV	
SET ONTIMER	
Set Outonly On	
SET PAD	225
Set Rs232	228
SET UNTIL	231
SETOUT	
Seven Segment display	
Sharing Data	
SHIFTIN	
SHIFTOUT	
Sin	
SIN	
Single	
sounds	
SOUT	
special relays	
SQR	
step control	
STEPOUT	
STEPSET	379
String	
STRING(
Study board	
STYLE	
SYS	238

TADIN	125, 239
Tan	110
TAOFF	
TAON	
ТСР	31
Temperature	325
Text Editor	
text layer size	258
TIME	235, 240
Time Chart Monitoring	353
TIMESET	242
TOFF	
TON	
Touch Pad	424
Turbo Scan Time	367

U

UDELAY	. 244, 331
UDP	31
UP Counter	
UP/DOWN Counter	
Usepin	. 245, 363
USEPIN	156
UTMAX	246

V

VAL	121
VALSNG	121
VAR	80
VBB	54

W

WADD	394
WAITDRAW	423
WAITTX	248
WAND	399

WATCH POINT	354
WDEC	393
WDIV	396
WINC	393
WMOV	389
WMUL	395
WOR	397
WROL	400
WROR	401

WSUB	
WXCHG	
WXOR	

Х

XPORT	-	31
-------	---	----