
Please replace
the following
pages in the

book.

26	 Microcontroller Theory and Applications with the PIC18F

	 Note	that	the	stack	is	a	LIFO	(last	in,	first	out)	memory.	As	mentioned	earlier,	a	
stack	is	typically	used	during	subroutine	CALLs.	The	CPU	automatically	PUSHes	the	return		
address	onto	a	stack	after	executing	a	subroutine	CALL	instruction	in	the	main	program.	
After	executing	a	RETURN	from	a	subroutine	instruction	(placed	by	the	programmer	as	
the	last		instruction	of	the	subroutine),	the	CPU	automatically	POPs	the	return	address	from	
the		stack	(previously	PUSHed)	and	then		returns	control	to	the	main	program.	Note	that	the	
PIC18F	accesses	the	stack	from	the	top.	This	means	that	the	stack	pointer	in	the	PIC18F	
holds	 the	address	of	 the	bottom	of	 the	stack.	Hence,	 in	 the	PIC18F,	 the	stack	pointer	 is	
incremented	after	a	PUSH,	and	decremented	after	a	POP.	

2.3.2	 Control	Unit
	 The	main	purpose	of	the	control	unit	is	to	read	and	decode	instructions	from	the	
program	memory.	To	execute	an	instruction,	the	control	unit	steps	through	the	appropriate	
blocks	 of	 the	 ALU	 based	 on	 the	 op‑codes	 contained	 in	 the	 instruction	 register.	 The	

Before Push After Push

20CASP
012016-bit Register

20CE
20CC
20CA
20C80706
20C6F601
20C40703
20C2143E

Stack

20C8SP
012016-bit Register

Bottom of
Stack

20CE
20CC
20CA0120
20C80706
20C6F601
20C40703
20C2143E

Stack

FIGURE	2.12	 PUSH	operation	when	accessing	a	stack	from	the	bottom

Before POP After POP

20C8SP
A28616-bit Register

20CC
20CAA286
20C80107
20C6F208
20C40705
20C2143E

Stack

Bottom of
Stack

20CC
20CAA286
20C80107
20C6F208
20C40705
20C2143E

Stack

20CASP
036016-bit Register

FIGURE	2.13	 POP	operation	when	accessing	a	stack	from	the	bottom

34	 Microcontroller Theory and Applications with the PIC18F

Questions	and	Problems

2.1	 What	is	the	difference	between		a	single‑chip	microcomputer	and	a		microcontroller?

2.2	 What	 is	meant	by	an	8‑bit	microcontroller?	 	Name	one	commercially	available	
8‑bit	microcontroller.

2.3	 What	is	the	difference	between	
	 (a)			 a	program	counter		and		a		memory	address	register?
	 (b)			 an	accumulator	and	an	instruction	register?
	 (c)	 a	general‑purpose	register‑based	CPU	and	an		 	 	

	 	 accumulator‑based	CPU?		

2.4	 Assuming	signed	numbers,		find	the	sign,	carry,	zero,	and	overflow	flags	of
	 (a)			 0916	+	1716
	 (b)			 A516	-	A516
	 (c)			 7116	-	A916
	 (d)			 6E16	+	3A16

	 (e)			 7E16	+	7E16

2.5	 What	is	the	difference	between		PUSH	and	POP	operations	in	the	stack?

2.6	 Suppose	that	an		8‑bit		microcontroller	has	a	16‑bit	stack	pointer	and	uses	a	16‑bit	
register	to	access	the	stack	from	the	top.	Assume	that	initially	the	stack	pointer	
and	the	16‑bit	register	contain	20C016	and		020516,	respectively.	After	the	PUSH	
operation
	 (a)	 What	are	the	contents	of	the	stack	pointer?
	 (b)	 What	are	the	contents	of	memory	locations	20BE16	and	20BF16?

2.7	 What	is	the	main	purpose	of	the	hardware	reset	pin	on	the	microcontroller	chip?

2.8	 How	many	bits	are	needed	to	access	a	4	MB	data	memory?	What	is	the	hexadecimal	
value	of	the	last	address	in	this	memory?

2.9	 If	the	last	address	of	an	on‑chip	memory	is	0x7FF,	determine	its	size.

2.10	 What	 is	 the	difference	between	von	Neumann	and	Harvard	CPU	architectures?	
Provide	an	example	of	a	commercially	available	microcontroller	using	each	type	
of	CPU.

	 	
2.11		 What	is	the	basic	difference	between	program	execution	by	a	conventional	CPU	

and	the	PIC18F	CPU?

2.12		 Discuss	the	basic	features	of		RISC	and		CISC.

2.13	 Discuss	briefly	the	purpose	of	the	functional	units	(CCP,	A/D,		serial	communication)	
implemented	in	the	PIC18F.

Introduction to Programming Languages 53	

at	hand.	A	second	advantage	is	that	a	program	written	in	a	particular	high‑level	language	
can	 be	 executed	 by	 two	 different	microcontrollers,	 provided	 that	 they	 both	 understand	
that	 language.	 For	 example,	 a	 program	written	 in	C	 for	 a	 PIC18F	microcontroller	will	
run	 on	 a	 Texas	 Instrument’s	 MSP	 430	 microcontroller	 because	 both	 microcontrollers	
have	a	compiler	to	translate	the	C	language	into	their	particular	machine	language;	minor	
modifications	are	required	for	I/O		programs.
	 Typical	microcontrollers	are	also	provided	with	a	program	called	an	“interpreter.”	
This	is	provided	as	part	of	the	software	development	package.	The	interpreter	reads	each	
high‑level	 statement	 such	 as	F	=	A	+	B	 and	 directs	 the	microcontroller	 to	 perform	 the	
operations	required	to	execute	the	statement.	The	interpreter	converts	each	statement	into	
machine	language	codes	but	does	not	convert	the	entire	program	into	machine	language	
codes	prior	 to	 execution.	Hence,	 it	 does	not	 generate	 an	object	 program.	Therefore,	 an	
interpreter	is	a	program	that	executes	a	set	of	machine	language	instructions	in	response	to	
each	high‑level	statement	in	order	to	carry	out	the	function.	A	compiler,	however,	converts	
each	statement	 into	a	 set	of	machine	 language	 instructions	and	also	produces	an	object	
program	that	is	stored	in	memory.	This	object	program	must	then	be	executed	by	the	CPU	
to	perform	the	required	task	in	the	high‑level	program.
	 In	 summary,	 an	 interpreter	 executes	 each	 statement	 as	 it	 proceeds,	 without	
generating	 an	 object	 code,	 whereas	 a	 compiler	 converts	 a	 high‑level	 program	 into	 an	
object	program	that	is	stored	in	memory.	This	program	is	then	executed.	Compilers		for	
microprocessors	 normally	 provide	 inefficient	 machine	 codes	 because	 of	 the	 general	
guidelines	that	must	be	followed	for	designing	them.	However,	modern	C	compilers	for	
microcontrollers	generate	very	tight	and	efficent	codes.	Also,	C	is	a	high‑level	language	
that	includes	input/output	instructions.	Hence,	C	is	a	very	populer	programming	language	
with	microcontrollers.

3.5	 Choosing	a		Programming	Language

Compilers	used	to	provide	inefficient	machine	codes	because	of	the	general	guidelines	that	
must	be	followed	for	designing	them.	However,	modern	C	compilers	generate	very	tight	
and	efficient	codes.	Hence,	C	is	widely	used	these	days.	Assembly	language	programming,	
on	 the	 other	 hand,	 is	 important	 in	 the	 understanding	 of	 the	 internal	 architecture	 of	
a	 microcontroller,	 and	 may	 sometimes	 be	 useful	 for	 writing	 programs	 for	 real‑time	
applications.

3.6	 Flowcharts

Before	an	assembly	language	program	is	written	for	a	specific	operation,	it	is	convenient	
to	represent	the	program	in	a	schematic	form	called	a	flowchart. A	brief	listing	of	the	basic	
shapes	used	in	a	flowchart	and	their	functions	is	given	in	Table	3.3.

	 Note	 that	 the	flowchart	 symbols	of	Table	3.3	are	used	 for	writing	 some	of	 the	
PIC18F	assembly	language	programming	examples	in	Chapters	6	and	7.

58	 Microcontroller Theory and Applications with the PIC18F

of	8‑bit	units	called	memory words.	An	8‑bit	unit	of	data	is	termed	a	byte.	Therefore,	for	
an	8‑bit	microcontroller,	memory word	and	memory byte	mean	the	same	thing.	For	16‑bit	
microcontrollers,	a	word	contains	two	bytes	(16	bits).	A	memory	word	is	identified	in	the	
memory	by	an	address.	For	example,	the	PIC18F	4321	is	an	8‑bit		microcontroller,	and		can	
directly	address	a	maximum	of		two	megabytes	(221)	of	program	memory	space.	The	data	
memory	address,	on	the	other	hand,	is	12	bits	wide.	Hence,	the	PIC18F	family	members	
can	directly	address		data	memory	of	up	to	4	Kbytes	(212).	This	provides	a	maximum	of	212		
=	4096	bytes	of		data	memory	addresses,	ranging	from	000	to	FFF	in	hexadecimal.
	 An	important	characteristic	of	a	memory	is	whether	it	is	volatile	or	nonvolatile.	
The	contents	of	a	volatile	memory	are	lost	if	the	power	is	turned	off.	On	the	other	hand,	
a	nonvolatile	memory	retains	its	contents	after	power	is	switched	off.	ROM	is	a	typical	
example	of	nonvolatile	memory.	RAM	is	a	volatile	memory	unless	backed	up	by		batteries.
	 Large	areas	of	data	memory	require	an	efficient	addressing	scheme	to	make	rapid	
access	to	any	address	possible.	Ideally,	this	means	that	an	entire	address	does	not	need	to	
be	provided	for	each	read	or	write	operation.	For	PIC18F,	this	is	accomplished	with	a	RAM	
banking	scheme.	This	divides	the	memory	space	into	16	contiguous	banks	(bank	0	through	
15)	of	256	bytes.	Depending	on	the	instruction,	each	location	can	be	addressed	directly	by	
its	full	12‑bit	address,	or	an	8‑bit	low‑order	address	and	a		4‑bit	bank	pointer.

Bank 0
0FF16

00016

Bank 1
1FF16

10016

.

.

.

Bank 15
FFF16

F0016

FIGURE 4.1 PIC18F data memory

FIGURE 4.2 Summary of available semiconductor memories for
 microcontroller systems

Memory

 DYNAMIC
 (DRAM)

STATIC
(SRAM)

RAMROM

MASK
 ROM

EPROM
EAROM /
EEROM /

E 2 PROM
FLASH

Memory

Microcontroller Memory And Input/Output (I/O) 75	

program	as	follows:

	 ORG	 0x000008	 ;		Starting	address	of	the	service	routine
	 MOVLW	 0x02	 ;		Move	1	to	bit	1	of	WREG	(accumulator)	register	

	 MOVWF	 PORTD	 ;		Turn	the	LED	ON
	 RETFIE	 	 ;	 Restore	PC	and	SR,	and	return	from	interrupt

	 In	 this	 service	 routine,	 using	 the	 MOVLW	 and	 MOVWF	 instructions,	 the	
microcontroller	 turns	 the	 LED	 ON.	 The	 return	 instruction	 RETFIE,	 at	 the	 end	 of	 the	
service	routine	loads	the	address	BEGIN	and	the	previous	status	register	contents	from	the	
stack,	and	loads	the	program	counter	and	status	register	with	them.	The	microcontroller	
executes	the	“MOVWF	0x30”	instruction	at	 the	address	BEGIN	and	continues	with	the	
main	program.	The	basic	characteristics	of	interrupt	I/O	have	been	discussed	so	far.	The	
main	features	of	interrupt	I/O	provided	with	a	typical	microcontroller	are	discussed	next.

Interrupt Types	 	 	 	There	 are	 typically	 two	 types	 of	 interrupts:	 external	 interrupts	 and	
internal	 interrupts.	External interrupts	are	initiated	through	a	microcontroller’s	 interrupt	
pins	by	external	devices	such	as	the	comparator	in	the	previous	example.	External	interrupts	
can	 	 be	 divided	 further	 into	 two	 types:	 maskable	 and	 nonmaskable.	 The	 nonmaskable	
interrupt	 cannot	 be	 enabled	 or	 disabled	 by	 instructions,	 whereas	 a	 microcontroller’s	
instruction	set	 typically	contains	 instructions	 to	enable	or	disable	maskable	 interrupt.	A	
nonmaskable	 interrupt	has	 a	higher	priority	 than	a	maskable	 interrupt.	 If	maskable	 and	
nonmaskable	 interrupts	 are	 activated	 at	 the	 same	 time,	 the	 processor	 will	 service	 the	
nonmaskable	interrupt	first.	
	 A	 nonmaskable	 interrupt	 is	 typically	 used	 as	 a	 power	 failure	 interrupt.	
Microcontrollers	normally	use	+5	V	dc,	which	is	transformed	from	110	V	ac.	If	the	power	
falls	below	90	V	ac,	the	DC	voltage	of	+5	V	cannot	be	maintained.	However,	it	will	take	a	
few	milliseconds	before	the	ac	power	drops	below	90	V	ac.	In	these	few	milliseconds,	the	
power‑failure‑sensing	circuitry	can	 interrupt	 the	processor.	The	 interrupt	service	routine	
can	be	written	to	store	critical	data	in	nonvolatile	memory	such	as	battery‑backed	CMOS	
RAM,	and	the	interrupted	program	can	continue	without	any	loss	of	data	when	the	power	
returns.
	 Internal interrupts	are	activated	internally	by		conditions	such	as	completion	of	
analog‑to‑digital	conversion,	timer	interrupt,	or	interrupt	due	to	serial	I/O.	Internal	interrupts	
are	handled	 in	 the	same	way	as	external	 interrupts.	The	user	writes	a	service	routine	 to	
take	 appropriate	 action	 to	handle	 the	 interrupt.	Some	microcontrollers	 include	 software	
interrupt	instructions.	When	one	of	these	instructions	is	executed,	the	microcontroller	is	
interrupted	and	serviced	similarly	to	external	or	internal	interrupts.
	 Some	microcontrollers	such	as	the	Motorola/Freescale		HC11/HC12		provide	both	
external	 (maskable	and	nonmaskable)	and	 internal	 (exceptional	conditions	and	software	
instructions).	The	PIC18F	provides	external	maskable	interrupts	only.	The	PIC18F	does	
not	 have	 any	 external	 nonmaskable	 	 interrupts.	However,	 the	PIC18F	provides	 internal	
interrupts.	 The	 internal	 interrupts	 are	 activated	 internally	 by	 	 conditions	 such	 as	 timer	
interrupts,	completion	of	analog‑to‑digital	conversion,	and	serial	I/O.	

Interrupt Address Vector		 The	 technique	 used	 to	 find	 the	 starting	 address	 of	

88	 Microcontroller Theory and Applications with the PIC18F

0 1 1 0 1 0 0 0
1 1 1 1 1 0 1 0

0 1 1 0 0 0 1 01
C = 1

Cp =1

6816 =

Add 2's complement of 0616
=

f

6216

DC = 0

6816

0616−

In	the	above,	C	(borrow)	=	one’s	complement	of	Cf=	0,	DC	=	0	(no	carry	from	bit	3	to	bit	
4),	Z	=	0	(nonzero	result),	OV	=	Cf Cp	=	1	 1	=	0	(meaning	correct	result),	and	N	=	0	
(most	significant	bit	of	the	result	is	0	indicating	positive	number).	Note	that	while	obtaining		
two’s	complement	 subtraction	using	paper	and	pencil,	 the	correct	borrow	 is	 always	 the	
one’s	complement	of	 the	borrow	obtained	analytically.	Hence,	microcontrollers	perform	
one’s	complement	operation	on	the	borrow	in	order	to	reflect	the	correct	borrow	which	will	
be	useful	in	multiprecision	subtraction.

5.3	 PIC18F	Memory	Organization

Two	types	of	memories	are	normally	utilized	in	the	PIC18F.	They	are	flash	memory	and	
SRAM.	The	 flash	memory	 is	 used	 to	 store	 programs.	 The	 SRAM,	 on	 the	 other	 hand,	
contains	data.	Some	versions	of	the	PIC18F	family	contain	EEPROM	along	with	SRAM	
to	hold	data.	Note	that,	SRAM	is	a	volatile	read/write	memory.	The	EEPROM,	on	the	other	
hand,	is	a	nonvolatile	memory.
	 The	EEPROM	is	separate	from	the	data	SRAM	and	program	flash	memory.	The	
EEPROM	is	used	for	long‑term	storage	of	critical	data.	The	EEPROM	is	normally	used	as	a	
read‑mostly	memory	since	its	read	time	is	faster	than	write	times.	It	is	not	directly	mapped	

Data memory map

Access RAM Low

Access RAM High
(SFRs)

BSR<3:0>

= 0000

= 0001

= 0010

= 1110

= 1111

Bank 0

Bank 1

Bank 2
to

Bank 14

Bank 15

00H

FFH

00H

FFH

EFFH
F00H
F7FH
F80H

000H
07FH
080H
0FFH
100H

1FFH

Access bank

Access RAM
GPR

Unused

Read '00H'
Unused

SFR

00H
7FH
80H
FFH

GPR

FFFH

FIGURE		5.7	 PIC18F4321		data	memory	map

PIC18F Architecture and Addressing Modes 89	

in	either	the	register	file	or	program	memory	space	but	is	indirectly	addressed	through	the	
special	function	registers	(SFRs).	One	of	the	main	advantage	of	including	EEPROM	in	the	
PIC18F	is	that	all	critical	data	stored	in	the	EEPROM	can	be	protected	from	reading	or	
writing	by	other	users.	This	can	be	accomplished	by	programming	appropriate	bits	in	the	
corresponding	SFR.	Note	that	the	PIC18F4321	contains	256	bytes	of	EEPROM.
	 The	data	memory	in	PIC18F	devices	is	implemented	as	static	RAM.	Each	register	
in	the	data	memory	has	a	12‑bit	address,	allowing	up	to	4096	bytes	(212)	of	data	memory.	
The	memory	space	is	divided	into	as	many	as	16	banks	that	contain	256	bytes	each.		

5.3.1	 PIC18F	Program	Memory	Map
	 Figure	 5.6	 shows	 the	 program	 memory	 map	 for	 the	 PIC18F4321.	 Program	
memory	is	implemented	in	flash	memory	in	the	PIC18F.
	 The	PIC18F4321	contains	8	Kbytes	(13‑bit	address)	of	on‑chip	flash	memory,	and	
can	store	up	to	4096	single	16‑bit	word	instructions.	Note	that	most	PIC18F	instructions	
are	16	bits	wide.
	 As	 mentioned	 before,	 the	 program	 counter	 (PC)	 contains	 the	 address	 of	 the	
instruction	to	be	fetched	for	execution.	The	PC	is	21	bits	wide.	The	PC	addresses	bytes	in	
the	program	memory.	To	prevent	the	PC	from	becoming	misaligned	with	16‑	or	32‑bit‑wide		
instructions,	the	least	significant	bit	of	PC	is	fixed	to	a	value	of	‘0’.	This	is	because	the	
address	is	an	even	number	for	16‑bit	or	32‑bit		instructions.	The	PC	increments	by	2	or	4	to	
address	sequential	16‑	or	32‑bit‑wide	instructions	in	the	program	memory.
	 The	stack	operates	as	a	31	RAM	locations,	each	location	being	21‑bit	wide	and	is	
addressed	by	a	5‑bit	stack	pointer,	STKPTR.	The	stack	space	is	not	part	of	either	program	
or	data	space.	The	stack	pointer	is	readable	and	writeable.	The	stack	is	accessed	from	the	
bottom.	Data	can	also	be	pushed	to,	or	popped	from,	the	stack.
	 The	reset	vector	address	is	located	at	000000H,	where	H	stands	for	hex.	There	
are	two	interrupts.	These	are	high‑priority	interrupt	and	low‑priority	interrupt.	The	starting	
address	 for	 the	 high	 priority	 service	 routine	 is	 000008H.	There	 are	 16	 bytes	 available	
to	the	user	for	writing	the	high‑priority	service	routine.	The	starting	address	for	the	low	
priority	service	routine	is	000018H.	There	is	no	specific	size	for	the	low‑priority	service	
routine.	Reset	 and	 interrupts	will	 be	 discussed	 in	more	 detail	 later	 in	 this	 book.	 In	 the	
PIC18F4321,	the	user	program		should	be	written	after	the	low‑priority	service	routine	to	a		
maximum	allowable	address	of	001FFFH.	Addresses	002000H	through	1FFFFFH	are	not	
implemented,	and	are	read	as	zeros.

5.3.2	 PIC18F		Data	Memory	Map
	 Figure	 5.7	 shows	 the	 data	 memory	 organization	 for	 the	 PIC18F4321.	 As	
mentioned	before,	the	PIC18F	data	memory	is	implemented	in	SRAM.	The	PIC18F	can	
have	a	data	memory	of	up	to	4096	(212)	bytes;	12‑bit	address	is	needed	to	address	each	
location.	However,	 the	PIC18F4321	 implements	 two	banks	with	a	 total	of	512	bytes	of		
data	SRAM.
	 The	data	memory	contains	SFRs	and	general	purpose	registers	(GPRs).	The	GPRs	
are	typically	used	for	storing	data	and	as	scratch	pad	registers	during	programming.	The	
SFRs,	on	the	other	hand,	are	dedicated	registers.	These	registers	are	used	for	control	and	
status	of	the	controller	and	peripheral	functions	such	as		registers	associated	with	I/O	ports	
and	interrupts,	timers,	ADC	(analog‑to‑digital	converter),	and	serial	I/O.	An	unimplemented	
location	will	be	read	as	0’s.	The	instruction	set	and	architecture	allow	operations	across	all	
banks.	The	entire	data	memory	may	be	accessed	by	direct	or	indirect	addressing	modes.	

PIC18F	Architecture	and	Addressing	Modes	 95

These SFRs use the contents of FSR0 through FSR2 to achieve the four submodes. The
submodes can be used with various PIC18F instructions. The SFRs are utilized by the
submodes as follows:
‑ Indirect with postincrement mode uses POSTINC0 through POSTINC2 registers.
POSTINC0 is associated with FSR0, POSTINC1 with FSR1 and, POSTINC2 with FSR2.
‑ Indirect with postdecrement mode uses POSTDEC0 through POSTDEC2. POSDEC0 is
associated with FSR0, POSDEC1 with FSR1, and POSDEC2 with FSR2.
‑ Indirect with preincrement mode uses PREINC0 through PREINC2 registers. PREINC0
is associated with FSR0, PREINC1 with FSR1, and PREINC2 with FSR2.
‑ Indirect with 8‑bit indexed mode uses PLUSW0 through PLUSW2. PLUSW0 is associated
with FSR0, PLUSW1 with FSR1, and PLUSW2 with FSR2.

Indirect with postincrement mode reads the contents of the FSR specified in the instruction,
using the low 12‑bit value as the address	for the operation to be performed. The specified
FSR is then incremented by 1 to point to the next address. The special function register
POSTINC is used for this purpose.
 As an example, consider CLRF POSTINC0. Prior to execution of this instruction,
suppose that the 16‑bit contents of FSR0 are 0030H, and the 8‑bit contents of the data
memory location addressed by 12‑bit address 030H are 84H. After execution of the
instruction CLRF POSTINC0, the contents of address 030H will be cleared to 00H, and
the contents of FSR0 will be incremented by 1 to hold 0031H. This may be used as a
pointer to the next data. This is depicted in Figure 5.9. Note that all addresses and data are
chosen arbitrarily.
 The postincrement mode is typically used with memory arrays stored from LOW
to HIGH memory locations. For example, to clear 20 bytes starting at data memory address
030H and above, the instruction sequence in Figure 5.10 can be used. In Figure 5.10,
MOVLW D’20’ moves 20 decimal into WREG while MOVWF 0x10 moves the contents
of WREG (20 decimal) into address 010H. This will initialize the counter register with 20
decimal. The LFSR 0,0x0030 loads FSR0 with 0030H; 030H is the address of the first byte
in the array to be cleared to 0. The CLRF POSTINC0 clears the contents of the data memory
addressed by FSR0 to 0 and increments FS0 by 1 to hold 031H. This is because POSTINC0
is associated with FSR0. Since the 16‑bit contents of FSR0 are 0030H, contents addressed
by the the low 12 bits (030H) of FSR0 are cleared to 0. The DECF 0x10,F decrements the
contents of data register 010H by one and then places the result in the data register 010H.
After the first pass, data register 010H will contain 19 decimal.
 The BNZ REPEAT instruction checks if Z flag in the flag register is 0. Note that Z
= 0 since the contents of counter are nonzero (19) after execution of DECF. The program
branches to label REPEAT, and the loop will be performed 20 times clearing 20 bytes of
the array to 0’s.

FIGURE 5.12 Instruction sequence for illustrating posdecrement mode

MOVLW D’100’ ; Move 100 decimal into WREG
MOVWF 0x20 ; Initialize counter reg (0x20) with 100 decimal
LFSR 0,0x0044 ; Initialize pointer FSR0 with starting address 044H

REPEAT CLRF POSTDEC0 ; Clear a location to 0 and decrement FSR0 by 1
DECF 0x20,F ; Decrement counter by 1
BNZ REPEAT ; Branch to REPEAT if Zero flag = 0; otherwise,

; go to the next instruction

Assembly Language Programming with the PIC18F: Part1 109	

the	WREG	register.	When	compared	with	 the	 literal‑oriented	 	 format	of	Table	6.2,	k	=	
00101010	(0x2A).	Since	the	8‑bit	opcode	for	MOVLW	is	00001110,	the	binary	16‑bit	code	
for		MOVLW	0x2A	is		0000111000101010	(0E2AH).
	 An	example	of	the	control instructions	includes	conditional	branch	instructions	
with	the	following	operand:
•	 a		signed	8‑bit	offset	(specified	by	‘n’)
	 As	an	example,	consider		BZ		0x04	where	04	(hex)	is	the	offset	(n).	This	instruction	
branches	to	an	address	(PC+2+	2	x	4)	if	Z	=	1;	otherwise,	the	next	instruction	is	executed.	
Since	the	8‑bit	opcode	for	BZ	is	111000002	and	n	=		000001002	(0x04),	the	binary	16‑bit	
code	for		BZ		0x04	is		11100000000001002	(E004H).
	 Most		PIC18F	instructions	are	a	single	word;	only		four	instructions	are	double‑word	

TABLE 6.2 General format for instructions
Byte-oriented file register operations

Example instruction15 10

ADDWF f, d, aOPCODE

d = 0 for result destination to be WREG register

d = 1 for result destination to be file register (f)

a = 0 to force access bank, a = 1 for BSR to select bank

f = 8-bit file register address

9 810 9 815 10 9 810 9 8

Bit-oriented file register operatios

OPCODE fb (BIT #) a BSF f, b, a

b = 3-bit position of bit in file register (f)
a = 0 to force access bank

a = 1 for BSR to select bank
f = 8-bit file register address

15 011 9 7

 OPCODE

15 0

k (literal)

k = 8-bit immediate value
Control operations

 Branch operation

MOVLW 0x2A

BZ n

Literal operations

 OPCODE

15 0
n<7:0> (offset)

7

7

8

8

8

d a

07
f = 8-bit File register

address

(Relative mode)

Assembly Language Programming with the PIC18F: Part1 117	

Solution

(a)	The	flowchart	along	with	data	memory	layout	is	provided	below:

	

Source data

.

.

.

FSR 0

0 x 52
0 x 53
0 x 54
0 x 55

Destination data

FSR1 0 x 30
0 x 31
0 x 32
0 x 33

.

.

.
Data length = 10

START

Load counter 0 x 80 with 10

Load source pointer FSR0 WITH 0 x 0055

Load destination pointer FSR1
with 0 x 0030

Move source byte to destination byte

Decrement FSR0 by 1

Increment FSR1 by 1

Decrement counter 0 x 80 by 1

Z = 0
YES

NO

STOP

	
(b)		The	flowchart		can	be	converted	to	PIC18F	assembly	language	program	as	follows:
	
	 INCLUDE						<P18F4321.INC>
COUNTER	 EQU	 0x80	
	 ORG	 	0x100
	 MOVLW	 D’10’	 ;	Move	10	decimal	into	WREG
	 MOVWF	 COUNTER	 ;	Initialize	counter	reg	(0x80)	with	10		 	
	 	 	 ;	decimal
	 LFSR	 0,	0x0055	 ;	Initialize	FSR0	with	source	starting		 	
	 	 	 ;	address
	 LFSR	 1,	0x0030	 ;	Initialize	FSR1	with	destination		 	
	 	 	 ;	starting	address

Assembly Language Programming with the PIC18F: Part1 127	

Solution

	 INCLUDE	<P18F4321.INC>
	 ORG	 0x100
	 MOVLW		D’4’	 ;	Move		WREG	with	4	 	 	 	 	
	 MOVWF	 0x50	 ;	Initialize	0x50	with	loop	count	(4)	
	 LFSR	 0,	0x0072	 ;	Initialize	pointer	FSR0	with	0x0072
	 LFSR	 1,	0x0040	 ;	Initialize	pointer	FSR1	with	0x0040
	 ADDLW	 0x00	 ;	Clear	carry	flag
START	 MOVF	 POSTINC0,	W	 ;	Move	byte	into	WREG	and	update	pointer
	 SUBWFB	POSTINC1,	F	 ;	Subtract	[WREG]	and	carry			from	byte;	store	result		
	 	 	 ;	in	data	register	
	 DECF	 0x50,	F	 ;	Decrement	counter	0x50	by	1
	 BNZ	 START	 ;	Branch	to	START		if		Z	!	0
	 SLEEP	 	 ;	Halt
	 END
Example 6.13 	 	 	 	Write	 a	 PIC18F	 assembly	 language	 program	 at	 address	 0x100	 to	
compute	(X2	+	Y2)	where	X	and	Y	are	two	8‑bit	unsigned	numbers	stored	in	data	registers		
0x40	and	0x41,	respectively.	Store	the	16‑bit	result	in	data	registers	0x61	(high	byte)	and	
0x60	(low	byte).	Assume	X	and	Y	are	already	loaded	into	data	registers	0x40	and	0x41.

Solution

	 INCLUDE			<P18F4321.INC>
	 ORG	 0x100
	 MOVF	 0x40,	W	 ;		Move	X	into	WREG	
	 MULWF	 0x40	 ;		Multiply	X	by	X;	result	in	PRODH:PRODL
	 MOVFF	 PRODL,	0x50	 ;		Save	low	byte	of	result	in	data	reg	0x50	
	 MOVFF	 PRODH,	0x51	 ;		Save	high	byte	of	result	in	data	reg	0x51
	 MOVF	 0x41,	W	 ;	 Move	Y	into	WREG
	 MULWF	 0x41	 ;	 Multiply	Y	by	Y;	result	in	PRODH:PRODL	
	 MOVFF	 PRODL,	0x60	 ;		Save	low	byte	of	result	in	data	reg	0x60	
	 MOVFF	 PRODH,	0x61	 ;		Save	high	byte	of	result	in	data	reg	0x61
	 MOVF	 0x50,	W	 ;		Move	low	byte	of		X	times	X		into	WREG
	 ADDWF	 0x60,	F	 ;		Add	and	store	low	byte	of	result	in	0x60	
	 MOVF	 0x51,	W	 ;		Move	high	byte	of		X	times	X		into	WREG
	 ADDWFC	0x61,	F	 ;		Add	high	bytes	with	carry.	Store	result	in	0x61
	 SLEEP	 	 ;		Halt
	 END

Example 6.14 Write	a	PIC18F	assembly	language	program	at	address	0x100	to	add	
two	packed	BCD	bytes	stored	in	data	registers	0x20	and	0x21.	Store	the	correct	packed	
BCD	result	in	WREG.	Load	packed	BCD	bytes	0x72	and	0x45	into	data	registers	0x20	and	
0x21,	respectively,	using	PIC18F	instructions.	Note	that	data	are	arbitrarily	chosen.	

Assembly	Language	Programming	with	the	PIC18F:	Part1	 137

and then perform the following operations on the contents of data register 0x50:
• Set bits 0 and 3 to one without changing other bits in data register 0x50.

• Clear bit 5 to zero without changing other bits in data register 0x50.

• One’s complement bit 7 without changing other bits in data register 0x50.

	 Use only “logic”, and “rotate” instructions. Do not use any multiplication
instruction. Assume data are already in data register 0x50. Store result in WREG. Assume
that a ‘1’ is not shifted out of the most significant bit each time after rotating to the left.

Solution

 INCLUDE <P18F4321.INC>
	 ORG 0x100
 BCF STATUS, C
 RLCF 0x50, W ; Unsigned multiply [0x50] by 2
 BCF STATUS, C
 RLCF 0x50, W ; Unsigned multiply [0x50] by 4; result in W
 IORLW 0x09 ; Set bits 0 and 3 in WREG to one’s
 ANDLW 0xDF ; Clear bit 5 in WREG to zero
 XORLW 0x80 ; One’s complement bit 7 in WREG
FINISH GOTO FINISH ; Stop
 END

 As mentioned before, FINISH GOTO FINISH (unconditionally jumping to the
same location) and the instruction SLEEP are equivalent to HALT instruction in other
processors. Either can be used in the PIC18F as HALT in the assembly language program.

Example			6.19		 Write a PIC18F assembly language program at address 0x100 to check
whether an 8‑bit signed number (x) is positive or negative. If the number is positive,
then compute 16‑bit value y1 = x2 and store result in PRODH:PRODL. If the number is
negative, then compute the 8‑bit value y2 = 2x. Store result in WREG. Do not use any logic
instructions. Assume that the 8‑bit number x is already loaded in data register 0x60.

Solution

 INCLUDE <P18F4321.INC>
 ORG 0x100
 MOVF 0x60, W ; Move x into WREG
 MOVFF 0x60, 0x70 ; Save x in 0x70
 RLCF 0x60, F ; Rotate sign bit to carry to check whether 0 or 1
 BN NEGATIVE ; Branch if N = 1
 MULWF 0x60 ; Compute y1 and store in PRODH:PRODL
 GOTO FINISH ; Jump to FINISH
NEGATIVE ADDWF 0x70, W ; Compute y2 by adding x to itself
FINISH GOTO FINISH
 END

Assembly Language Programming with the PIC18F: Part1 139	

Example 6.20				Write	a		PIC18F	assembly	language	program	at	address	0x100		that	will			
multiply	an			8‑bit		unsigned		number	in		data	register	0x50	by		4	to	provide	an	8‑bit	product,	
and	then	perform	the	following	operations		on	the	contents	of		data	register	0x50	:
•	 Set	bits	0	and	3		to	one		without		changing		other	bits	in	data	register	0x50.

•	 Clear	bit	5	to		zero		without		changing		other	bits	in	data	register	0x50.

•	 One’s	complement	bit	7	without		changing		other	bits	in	data	register	0x50.

Use	only	“rotate	(RLCF	instruction	only)”	and	“bit	manipulation”	instructions.	Do	not	use	
any	multiplication	instruction.	Assume	data	are	already	in		data	register	0x50.	Store	result	
in	WREG.	Assume	that	a		‘1’	is	not	shifted	out	of	the	most	significant	bit	each	time	after	
rotating	to	the	left.
	 This	example	is	a	repeat		of	Example	6.18,	but	uses	“bit	manipulation	instructions”	
instead	of	“logic	instructions.”

Solution

 INCLUDE	 <P18F4321.INC>
 ORG	 	 0x100
	 	 BCF	 	 STATUS,	C
	 	 RLCF	 	 0x50,	F		;	Unsigned	multiply	[0x50]	by	2
	 	 BCF	 	 STATUS,	C
	 	 RLCF	 	 0x50,	F		;	Unsigned	multiply	[0x50]	by	4;	result	in	F	 	
	 	 BSF	 	 0x50,	0	 ;	Set	bit	0	in	[0x50]	to	one	
	 	 BSF	 	 0x50,	3	 ;	Set	bit	3	in	[0x50]	to	one
	 	 BCF	 	 0x50,	5	 ;	Clear	bit	5		in	[0x50]	to	zero	 	 							
	 	 BTG	 	 0x50,7				;	One’s	complement		bit	7	in	0x50	
	 	 MOVF	 	 0x50,	W	;	Store	result	in	WREG
FINISH	 	 GOTO	 	 FINISH	 ;	Stop
	 	 END

Example 6.21 Write	a	PIC18F		assembly	language	program	at	address	0x100	that	will	
perform		5	×	X	+	6	×	Y	+	[Y/2]	t	[0x71][0x70], where	X	is	an	unsigned	8‑bit	number	
stored	in	data	register	0x40	and	Y	is	a	4‑bit	unsigned	number	stored	in	the	upper	4	bits	of		
data	register	0x50.	Discard	the	remainder	of	Y/2.	Save	the	16‑bit	result	in	0x71	(upper	byte)	
and	in	0x70	(lower	byte).

(a)	Flowchart	the	problem.

(b)	Convert	the	flowchart	to	PIC18F	assembly	language	program	starting	at	address	0x100.

Assembly Language Programming with the PIC18F: Part1 143	

6.8	 Write	PIC18F	instruction	sequence		that	is	equivalent	to	the	following	C		code:
	 		 	 	 if	(p	<=	q)
	 		 	 	 			p	=	p	+	5;
	 		 	 	 else
	 		 	 	 				p	=	10;

6.9	 What	is	the	content	of		WREG		after	execution	of	the	following		PIC18F		 	
	instruction	sequence?

	 	 	 	 MOVLW			0x33
	 	 	 	 ADDLW				0x77
	 	 	 	 DAW

6.10	 Find	two	ways	to	clear	[WREG]	to	0	using
	 (a)			 a	single	PIC18F	instruction
	 (b)		 two	PIC18F	instructions

6.11	 Using	a	single	PIC18F	instruction,	clear	the	carry	flag	without	changing	the		 	
	 contents	of		any		data	registers,	WREG,	or	other	status	flags.

6.12	 Write	the	machine	code	for	the	following	PIC18F	instruction	sequence:
	 	 	 	 	 ORG	 0x200
	 	 	 	 HERE	 BRA	 HERE	 	

6.13	 Write	a	PIC18F	assembly	 language	program	at	address	0x100	to	add	 two	8‑bit	
numbers	(N1	and	N2).	Data	register	0x20	contains	N1.	The	low	four	bits	of		N2	
are	stored	in	the	upper	nibble	of	data	register	0x21	while	the	high	four	bits	of	N2	
are	stored	in	the	lower	nibble	of	data	register	0x21.	Store		result	in	data	register	
0x30.

6.14	 Write	a	PIC18F	assembly	language	program	at	address	0x100	to	add	two	24‑bit	
data	items	in	memory,	as	shown	in	Figure		P6.14.	Store	the	result	pointed	to	by		
0x50.	The	operation	with	sample	data	is	given	by

	 		 	 F1		91		B5
	 		 PLUS	 07		A2		04
				 		 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
	 																													F9		33			B9
	 Assume	that	the	data	pointers	and	the	data	are	already	initialized.

7 0 Increasing
memory
address

 0x04
0xA2

 0x07

0xF1
0x91
0xB5

0x20

0x50

FIGURE P6.14

154 Microcontroller	Theory	and	Applications	with	the	PIC18F

The table read/write instructions will now be explained in the following using numerical
examples with similar data for each instruction:

• Consider TBLRD* instruction.

 Prior to execution of TBLRD*, [TBLPTR] = 0x02318, [TABLAT] = 0x24, and
[0x002318] = 0xF2.

After execution of TBLRD*, [TABLAT] = 0xF2, [TBLPTR] = 0x002318 (unchanged),
and [0x002318] = 0xF2 (unchanged).

• Consider TBLRD*+ instruction.

 Prior to execution of TBLRD* +, [TBLPTR] = 0x002318, [TABLAT] = 0x24,
and [0x002318] = 0xF2.

After execution of TBLRD*+, [TABLAT] = 0xF2, [TBLPTR] = 0x002319, and
[0x002318] = 0xF2 (unchanged).

PROGRAM MEMORY

TBLPTRU TBLPTRH TBLPTRL

Table Pointer (1)

PROGRAM MEMORY
(TBLPTR)

TABLAT

PROGRAM MEMORY

TBLPTRU TBLPTRH TBLPTRL

Table pointer (TBLPTR)

TABLAT

07

07

020

PROGRAM MEMORY

TBLPTRU TBLPTRH TBLPTRL

Table pointer (TBLPTR)

TABLAT

07

07

020

FIGURE 7.1 Table read operation (instruction TBLRD*)

FIGURE 7.2 Table write operation (instruction TBLWT*)

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 157

if needed for storing local variables. The “hardware stack” and “software stack” will be
discussed in the next section in more detail.
• POP instruction reads (pops) the TOS (top of stack) value from the return stack and

discards it; [STKPTR] is decremented by 1. The TOS value becomes the previous
value that was pushed onto the return stack.
As an example, consider the POP instruction with numerical data in the following:

Prior to execution of the POP, [STKPTR] = 0x15, [0x15] = TOS (top of stack) =
0x000502, stack (1 level down), and [0x14] = 0x002418.

After execution of the POP, [STKPTR] = 0x14, TOS, and [0x14] = 0x002418.

Note that previous TOS (0x000502) is discarded, and previous stack (1 level down) is
the current TOS. Figures 7.3 (a) and (b) depict this.

• PUSH writes (pushes) PC+2 onto the top of the return stack; [STKPTR] is incremented

TABLE 7.4 PIC18F subroutine instructions
Instruction Operation

CALL k, s Call the subroutine at address k within the two megabytes of
program memory. First, return address (PC + 4) is pushed onto
the return stack. If ‘s’ = 1, the WREG, STATUS, and BSR
registers are also pushed into their respective shadow registers
(internal to the CPU), WS, STATUSS and BSRS. If ‘s’ = 0,
these registers are unaffected (default). Then, the value ‘k’ is
loaded into PC.

POP Discards top of stack pointed to by SP and decrements PC by 1.
PUSH PUSHes or writes the PC onto the stack, and increments PC by

1.
RCALL n Subroutine CALL with relative mode.

RETFIE Returns from interrupt. Stack is popped and top‑of‑stack (TOS)
is loaded into the PC. Interrupts are enabled by setting either the
high or low priority global interrupt enable bit. This instruction
is normally used at the end of an interrupt service routine.

RETLW k WREG is loaded with the eight‑bit literal ‘k’. The program
counter is loaded from the top of the hardware stack (the return
address).

RETURN s Returns from subroutine. The stack is popped and the top of the
stack (TOS) is loaded into the program counter. If ‘s’= 1, the
contents of the shadow registers, WS, STATUSS, and BSRS, are
loaded into their corresponding registers, WREG, STATUS, and
BSR. If ‘s’ = 0, these registers are not affected (default).

• CALL and RETURN instructions are executed in two cycles.
• POP and PUSH are executed in one cycle.

• The size of each instruction except CALL is one word; the size of the CALL instruction
is two words.

158 Microcontroller	Theory	and	Applications	with	the	PIC18F

0

Stack

 Data
Data
Data

7
STKPTR

0x15

0x15
0x14
0x13
0x12
0x11

020

0x000502
0x002418

BEFORE POP

0

Stack

 Data
Data
Data

7

STKPTR

0x14
0x15
0x14
0x13
0x12
0x11

020

0x000502
0x002418

AFTER POP

FIGURE 7.3 (b) PIC18F hardware stack with arbitrary data after
 execution of POP instruction; address 0x65 is assumed to
 be free

FIGURE 7.3 (a) PIC18F hardware stack with arbitrary data before
 execution of POP instruction

FIGURE 7.4 (a) PIC18F hardware stack with arbitrary data before
 execution of PUSH instruction

0

Stack

Data
Data

7

020

0x14

0x10
0x11

STKPTR

0x12
0x13
0x14
0x15

0x00007C
020 PC

0x0000A4

Data
Data

FREE

FIGURE 7.4 (b) PIC18F hardware stack with arbitrary data after
 execution of PUSH instruction

0

Stack

Data
Data

Data
 Data

7

020
0x10
0x11

STKPTR 0x12
0x13
0x14
0x15

0x00007C
0x0000A4

0x15

020 PC

0x0000A4

Assembly Language Programing With the PIC18F: Part 2 159	

by	1.	The	previous	TOS	value	is	pushed	down	on	the	stack.		

As	an	example,	consider		the	PUSH	instruction	with	numerical	data	in	the	following:
Prior	to	execution	of PUSH, [STKPTR]	=	0x14,	[0x14]	=	TOS	(top	of	stack)	=	0x00007C,	
and	[PC+	2] = 0x0000A4;	that	is,	the	PUSH	instruction	is	stored	at	address	0x0000A2.
After	execution	of		the	PUSH,	[STKPTR]	=	0x15,	[0x15]	=	TOS	=	0x0000A4,	previous	
TOS	(one	level	down),	and	[0x14]	=	0x00007C.
							Figures	7.4	(a)	and	(b)	depict	this.	
•	 The	“CALL	k,	s”		with	s	=	0	(or		CALL	k)	instruction	is	the		simplest	way	of	CALLing	

a	subroutine;	s	=	0	is	the	default	case.	As	an	example,	the	CALL	START	instruction	
automatically	pushes	the	current	contents	of	the	PC	onto	the	stack,	and	loads	PC	with	
the	 label	 called	START.	Note	 that	 address	 START	 contains	 the	 starting	 address	 of	
the	 subroutine.	The	“RETURN	s”	 instruction	with	 s	=	0	 (or	RETURN	since	 s	=	0	
is	default)	pops		the	return	address	(PC	pushed	onto	the	stack	by	the	CALL	START	
instruction)	from	TOS,	and	loads	PC	with	this	address.	Thus,	control	 is	returned	to	
the	main	program,	and		program	execution	continues	with	the	instruction	next	to	the	
CALL		START.

Consider	the	following	PIC18F	program	segment:	

Main Program Subroutine
—	 SUB —	 ;	First	instruction	of	subroutine
—	 —	
—	 —	

															CALL	SUB —	
START			—			 —	

—	 —	
— RETURN ;	Last	instruction	of	the	subroutine

Here,	 the	 CALL	 SUB	 instruction	 in	 the	 main	 program	 calls	 the	 subroutine	 SUB.	 In	
response	to	the	CALL	instruction,	the	PIC18F	pushes	the	current	PC	contents	(START		in	
this	case)	onto	the	stack	and	loads	the	starting	address	SUB	of	the	subroutine	into	PC.	After	
the	subroutine	is	executed,	the	RETURN	instruction	at	the	end	of	the	subroutine	pops	the	
address		START	from	the	stack	into	PC,	and	program	control	is	then	returned	to	the	main	
program.

7.5 PIC18F System Control Instructions

The	system	control	instructions	are	associated	with	the	operation	of	the	PIC18F.	Table	7.5	
lists	these	instructions.

7.6 PIC18F Hardware vs. Software Stack

As	mentioned	in	Chapter	5,	the	PIC18F	stack	is	a	group	of	thirty‑one		21‑bit	registers	to	
hold	memory	addresses.	This	stack	(also	called	the	“hardware	stack”)	is	part	of	neither	data	
memory	nor	program	memory.	Note	that		the	size	of	the	stack	(21‑bit)	is	the	same	as	the	
size	of	the	PC	(21‑bit).	The		SP	(stack	pointer)	is	5	bits	wide	in	order	to	address	31	registers.	

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 161

software stack. Subroutine CALLs and interrupts automatically use the hardware stack
pointer (STKPTR). As mentioned before, subroutine CALLs push the current PC onto the
hardware stack; RETURN pops the PC from the hardware stack.
 The PIC18F accesses the system stack from the top for operations such as
subroutine calls or interrupts. This means that stack operations such as subroutine calls
or interrupts access the hardware stack automatically from HIGH to LOW memory. As
mentioned before, the low five bits of the STKPTR are used as the stack pointer for
the hardware stack. Note that the STKPTR can be initialized using PIC18F MOVE
instructions. For example, in order to load 5 into the STKPTR, the following PIC18F
instruction sequence can be used:
 MOVLW 5 ; Load 5 into WREG
 MOVWF STKPTR ; Load [WREG] into STKPTR
 Also, the STKPTR is incremented by 1 after a push and decremented by one after
a pop. As an example, suppose that a PIC18F CALL instruction such as CALL 0x000200
is executed when [PC] = 0x000500; then, after execution of the subroutine call, the PIC18F
will push the current contents of PC (0x000500) onto the hardware stack, and then load
PC with 0x000200 (starting address of the subroutine specified in the CALL 0x000200
instruction). This is shown in Figures 7.5 (a) and (b). The RETURN instruction at the
end of the subroutine will pop 0x000500 from the hardware stack into the PC and return
control to the main program. All data are arbitrarily chosen.
 In the PIC18F, the software stack can be created using appropriate addressing
modes. Typical PIC18F memory instructions such as the MOVFF instruction can be used
to access the stack. Also, by using one of the three FSRns (FSR0–FSR2) as software stack
pointers, stacks can be filled from either HIGH to LOW memory or vice versa:
Filling a stack from HIGH to LOW memory (top of the stack) is implemented with
postdecrement mode for push and preincrement mode for pop.
Filling a stack from LOW to HIGH (bottom of the stack) memory is implemented with
preincrement for push and postdecrement for pop.
 The programmer can create software stack growing from HIGH to LOW memory
addresses using FSRn as the stack pointer. To push the contents of a data register onto
the software stack, the MOVFF instruction with appropriate addressing modes can be used.
For example, to push contents of a data register 0x30 using FSR0 as the stack pointer, the
following PIC18F instruction sequence can be used:
 LFSR 0, 0x0070 ; Initialize FSR0 with 0x70 to be used as the SP
 MOVFF 0x30, POSTDEC0 ; Push [0x30] to stack, decrement SP (FSR0) by 1
 This is shown in Figures 7.6 (a) and (b). Figure 7.6 (a) shows the software stack
with arbitrary data prior to execution of the above instructions. Figure 7.6 (b) shows the
software stack with arbitrary data after execution of the above instructions. Note that the
stack pointer FSR0 in this case is decremented by 1 after PUSH.
The 8‑bit data 0xF2 can be popped from the stack into another data register 0x20, for
example, using the MOVFF PREINC0, 0x20 instruction. Note that the stack pointer FSR1
in this case is incremented by 1 after POP.
 Next, consider the stack growing from LOW to HIGH memory addresses in which
the programmer also utilizes FSRn as the stack pointer.
 To push the 8‑bit contents of a data register onto the software stack, the MOVFF
instruction with appropriate addressing modes can be used. For example, to push contents
of a data register 0x20 using FSR1 as the stack pointer, the following PIC18F instruction
sequence can be used:

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 163

 LFSR 1, 0x0053 ; Initialize FSR1 to 0x53 to be used as the SP
 MOVFF 0x20, PREINC0 ; Increment SP (FSR1) by 1, and Push [0x20] to stack.
This is shown in Figures 7.7 (a) and (b). Figure 7.7 (a) shows the software stack with
arbitrary data prior to execution of the above instructions. Figure 7.7 (b) shows the software
stack with arbitrary data after execution of the above instructions. Note that the stack
pointer FSR1 in this case is incremented by 1 after PUSH.
The 8‑bit data 0x17 can be popped from the stack into another data register 0x26, for
example, using the MOVFF POSTDEC1, 0x26 instruction. Note that the stack pointer
FSR1 in this case is decremented by 1 after POP.

Example 7.2 Write a PIC18F subroutine at address 0x100 to compute Y =
N

i=1
Xi2.

Assume the Xi’s are 8‑bit unsigned integers, and N = 4. The numbers are stored in
consecutive locations. Assume data register 0x40 points to the first element of the array for
Xi’s. The array elements are stored from LOW to HIGH memory addresses. The subroutine
will store the 16‑bit result (Y) in data memory registers 0x21 (high byte) and 0x20 (low
byte), Also, write the main program at address 0x50 that will load data, initialize STKPTR
to 0x05, FSR0 to 0x0040, call the subroutine, compute (Y/4) by discarding the remainder,
and then stop.
Verify the correct operation of the programs using the MPLAB. Show screen shots as
necessary.

Solution

 INCLUDE <P18F4321.INC>
 ORG 0x50 ; Starting address of the main program
; LOAD FOUR ARBITRARILY CHOSEN DATA INTO DATA MEM ADDR .
 ; 0x40 TO 0x43
 MOVLW 0x7E ; Move 0x7E into WREG
 MOVWF 0x40 ; Move 0x7E into file register 0x40
 MOVLW 0x08 ; Move 0x08 into WREG
 MOVWF 0x41 ; Move 0x08 into file register 0x41
 MOVLW 0x23 ; Move 0x23 into WREG
 MOVWF 0x42 ; Move 0x23 into file register 0x42
 MOVLW 0x30 ; Move 0x30 into WREG
 MOVWF 0x43 ; Move 0x43 into file register 0x40
; INITIALIZE STKPTR, CALL SUBROUTINE, AND DIVIDE BY 4 BY
 ; RIGHT SHIFT TWICE
 MOVLW 0x05 ; Move 0x05 into WREG
 MOVWF STKPTR ; Load 0x05 into STKPTR
 LFSR 0,0x0040 ; Load file select register 0 with register 0x0040
 CALL SQR ; Call the function SQR
 BCF STATUS, C ; Clear the carry flag
 RRCF 0x21,F ; Rotate right, or divide by 2
 RRCF 0x20,F
 BCF STATUS, C ; Clear the carry flag
 RRCF 0x21.F ; Divide by 4
 RRCF 0x20,F

164	 Microcontroller Theory and Applications with the PIC18F

FINISH	 GOTO	 FINISH	 ;	Halt	
	 ORG	 0x100	 ;	Starting	address	of	the	subroutine
SQR	 MOVLW	 0x00	 	
	 MOVWF	 0x21	 ;	Clear	register	0x21
	 MOVWF	0x20	 ;	Clear	register	0x20
	 MOVLW	 0x04	 	
	 MOVWF	0x60	 ;	Move	0x04	into	register	0x60
BACK	 MOVFF	 INDF0,	0x50	 ;	Move	the	value	in	memory	pointed	to	by	FSR0
	 	 	 ;	into	register	0x50.
	 	 	 ;	0x50	is	used	as	a	holding	register	in	data	memory
	 	 	 ;	It	should	not	be	confused	with	the	starting	address		 	
	 	 	 ;	0x50	of	the	main	program	which	is	in	program		 	
	 	 	 ;		memory	of	the	PIC18F
	 MOVF	 POSTINC0,	W	;	Move	value	pointed	to	by	FSR0		into	WREG,	and	
	 	 	 ;	then	increment	FSR0	by	1
	 MULWF		 0x50	 ;	Multiply	WREG	by	0x50,	or	X	squared
	 MOVF	 PRODL,	W	 ;	Move	low	byte	of	answer	to	WREG
	 ADDWF		 0x20,	F	 ;	Sum	with	value	in	0x20
	 MOVF	 PRODH,	W	 ;	Move	high	byte	of	product	to	WREG
	 ADDWFC	0x21,	F	 ;	Sum	with	carry	with	value	in	0x21
	 DECFSZ	 	0x60,	F	 ;	Decrement	register	0x60	by	one,	and	skip	next	
	 	 	 ;	step	if	0	
	 GOTO		 BACK	 ;	Start	over
	 RETURN	 	 ;	Return	to	main	code
	 END

Verification of the programs using MPLAB:

The	following	sample	data	are	used:
	 [0x40]	=	0x7E	=	126	(decimal)	
	 [0x41]	=	0x08	=	8	(decimal)
	 [0x42]	=	0x23	=	35	(decimal)
	 [0x43]	=	0x30	=	48	(decimal)

N

i=1
Xi

2	=	(126)2+	(8)2+	(35)2+	(48)2	=	15876	+	64	+	1225	+	2304	=	19469	(decimal)

Hence,	result	=	(19469)/4	=	4867.25,	which	is	approximately	4867	(decimal)	or	1303	(hex).

	 The	 following	 example	 will	 also	 demonstrate	 how	 the	 hardware	 stack	 on	 the	
PIC18F	changes	with	the	execution	of	the	CALL	and	RETURN	instructions.

The	“PIC18F	disassembly”		function		can	be	displayed	from	the	“Disassembly	Listing”	
option	in	the	“View”	menu	as	follows:

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 167

7.7 Multiplication and Division Algorithms

As mentioned in Chapter 1, an unsigned	 binary	 number has no arithmetic sign, and
therefore, is always positive. Typical examples are your age or a memory address, which
are always positive numbers. An 8‑bit unsigned binary integer represents all numbers from
0016 through FF10 (010 through 25510).
 A signed	binary	number, on the other hand, includes both positive and negative
numbers. It is represented in the microcontroller in two’s complement form. For example,
the decimal number +15 is represented in 8‑bit two’s complement form as 00001111
(binary) or 0F (hexadecimal). The decimal number ‑15 can be represented in 8‑bit two’s
complement form as 11110001 (binary) or F1 (hexadecimal). Also, the most significant bit
(MSB) of a signed number represents the sign of the number. For example, bit 7 of an 8‑bit
number represents the signs of the respective numbers. A “0” at the MSB represents a
positive number; a “1” at the MSB represents a negative number. Note that the 8‑bit binary
number 11111111 is 25510 when represented as an unsigned number. On the other hand,
111111112 is ‑110 when represented as a signed number.
 As mentioned before, the PIC18F includes only unsigned multiplication
instruction. The PIC18F instruction set does not provide any instructions for signed
multiplication, or unsigned and signed division instructions. These algorithms are covered
in detail in Section 3.3.6 of Chapter 3. A summary of the algorithms is provided in this
section for convenience. The PIC18F assembly language programs using these algorithms
are written in this section.

7.7.1 Signed Multiplication Algorithm
 Signed multiplication can be performed using various algorithms. A simple
algorithm follows. Assume that M (multiplicand) and Q	 (multiplier) are in two’s
complement form. Assume that Mn and Qn are the most significant bits (sign bits) of the
multiplicand (M) and the multiplier (Q), respectively. To perform signed multiplication,
proceed as follows:
 1. If Mn = 1, compute the two’s complement of M; else, keep M	 unchanged.
 2. If Qn = 1, compute the two’ s complement of Q; else, keep Q	 unchanged.
 3. Multiply the n - 1 bits of the multiplier and the multiplicand using unsigned
 multiplication.
 4. 	The sign	 of the result Sn = Mn / Qn.

176	 Microcontroller Theory and Applications with the PIC18F

	 	 MOVWF	COUNTER	 ;	 Move	[WREG]	into	COUNTER
	 LOOP	 TBLRD*+	 ;	 Read	data	from	program	memory	into
	 	 	 	 ;	 TABLAT,	increment	TBLPTR	by	1	
	 	 MOVF	 TABLAT,	W	 ;	 Move	[TABLAT]	into	WREG
	 	 MOVWF	POSTINC0	 ;	 Move	W	into	data	memory	pointed	to	
	 	 	 	 ;	 by	FSR0,	and	then	increment	FSR0	by	1
	 	 	 	 ;	 memory	address			0x000200
	 	 DECF	 COUNTER,	F	 ;	 Decrement	COUNTER	BY	1
	 	 BNZ	 LOOP	 ;	 Branch		if		Z	=	0	
;	INITIALIZE	STKPTR,	LOAD	n,	INITIALIZE	DATA	POINTER,	CALL	SUBROUTINE
	 	 MOVLW	 0x15	 ;	 Initialize	STKPTR	to	0x15
	 	 MOVWF	STKPTR
	 	 MOVLW	 4	 ;	 Move	n	into	WREG
	 	 LFSR	 1,	0x40	 ;	 Load	0x40	into	FSR0	to	be	used	as	pointer	 	
	 	 CALL	 FIBNUM
	 FINISH	 BRA	 FINISH
;	READ		THE	FIBONACCI		NUMBER	FOR	n	FROM		DATA	MEMORY	INTO	‘W’	USING												
;	MOVF	WITH		INDEXED		ADDRESSING	MODE

;	SUBROUTINE	 	 	
	 	 ORG	 0x60
	 FIBNUM	 MOVF	 PLUSW1,	W	 ;	 Result	in	WREG
	 	 RETURN		 ;	 Return	to	FINISH	in	main	 	
	 	 ORG	 0x200
	 ADDR	 DB	 1,	1,	2,	3,	5,	8,	13	 ;	 Fibonacci	numbers	
	 	 END

Example 7.8	 Without	using	a	lookup	table	and	the	MOVFF	with	indexed	addressing	
mode	as	in	Example	7.7,	write	a	subroutine	in	PIC18F	assembly	language	at	address	0x50	
to	find	the	nth		number	(0	to	6)	of	the	Fibonacci	sequence.		The	subroutine	will	return	the	
desired		Fibonacci	number	in	WREG	based	on	‘n’	stored	by	the	main	program.	Also,	write	
the	main	program	at	address	0x100	that	will	store	the		nth	number	(0	to	6)	in	WREG,	call	
the	subroutine,	and	stop.	The	Fibonacci	sequence	for	n	=	0	to	6		is	provided	below:
	 n	 	 Fib(n)
	 0	 	 1
	 1	 	 1
	 2	 	 2
	 3	 	 3
	 4	 	 5
	 5	 	 8
	 6	 	 13
Solution

This	program	can	be	written	with	 the	RETLW	instruction	 that	 is	 ideal	 for	 returning	 the	
desired	value	using	an	operation	alternate	to	using	a	table	lookup	with	indexed	addressing	
mode	shown	in	Example	7.7.	Note	that,	the	RETLW	k		loads	the	8‑bit	immediate	data	k	into	
WREG,	and	returns	to	the	main	program	by	loading	the	program	counter	with	the	address	

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 179

; STEP4: ADJUST (BCD CORRECTION) [WREG] TO CONTAIN CORRECT PACKED BCD
 DAW ; #17 ADJUST THE RESULT TO CONTAIN
 ; CORRECT PACKED BCD
FINISH BRA FINISH ; HALT
 END
Note: The above program will be explained in the following. Note that the # sign along
with the line number is placed before each comment in order to explain the program.
ASCII data to be added are assumed to be 3439H and 3231H. The purpose of the program
is to convert the first number, ASCII 3439H to unpacked BCD 0409H, and then to packed
BCD 49H, and similarly, the second number, ASCII 3231H, to unpacked BCD 0201H, and
then to packed BCD 21H. Finally, the two packed BCD numbers will be added in binary
using PIC18F’s ADDWF instruction, and then the result in WREG will be converted to
correct packed BCD using DAW.
 Line #’s 1 through 4 initialize N1 and N2 so that [0x40] = 39H, [0x41] = 34H,
[0x50] = 31H, and [0x51] = 32H. Line #5 initializes COUNTER with loop count of 2 for
converting the numbers from ASCII to unpacked BCD. Line #’s 6 and 7 initialize FSR0
and FSR1 with 0x40 and 0x50, respectively. Line #’s 8 through 11 convert the two bytes
of ASCII codes in 0x41 (high byte) and 0x40 (low byte) into unpacked BCD in 0x41 (high
byte) and 0x40 (low byte). Also, Line #’s 8 through 11 convert the ASCII numbers, N1
and N2 into their corresponding unpacked BCD bytes.
 Line #’s 12 through 15 convert the unpacked BCD numbers (N1 and N2) into
packed BCD bytes. This is done by swapping high unpacked bytes of N1 and N2 , and
then ORing with the corresponding low unpacked bytes. Line #16 performs binary addition
of the two packed BCD bytes (N1 and N2), and stores the binary result in WREG. The
DAW instruction at Line #17 adjusts the contents of WREG to provide the correct packed
BCD result.

7.9 PIC18F Delay Routine

Typical PIC18F software delay routines can be written by loading a “counter” with a value
equivalent to the desired delay time, and then decrementing the “counter” in a loop, using
typically MOVE, DECREMENT, and conditional BRANCH instructions. For example,
the following PIC18F instruction sequence can be used for a delay loop:

 MOVLW COUNT
 MOVWF 0x20
 DELAY DECF 0X20, F
 BNZ DELAY		
 Note that DECF in the above decrements the register 0x20 by one, and if [0x20]
!0, branches to DELAY; if [0x20] = 0, the PIC18F executes the next instruction. The initial
loop counter value of “COUNT” can be calculated using the machine cycles (Appendix D)
required to execute the following PIC18F instructions:

 MOVLW (1 cycle)
 MOVWF (1 cycle)
 DECF (1 cycle)
 BNZ (2/1 cycles)

180 Microcontroller	Theory	and	Applications	with	the	PIC18F

 Note that the BNZ instruction requires two different execution times. BNZ
requires two cycles when the PIC18F branches if Z = 0. However, the PIC18F goes to
the next instruction and does not branch when Z = 1. This means that the DELAY loop
will require two cycles for “COUNT” times, and the last iteration will take one cycle. The
desired delay time can be obtained by loading register 0x20 with the appropriate COUNT
value.
 Assuming 1 MHz default crystal frequency, the PIC18F’s clock period will be
1 lsec. Note that the PIC18F divides the crystal frequency by 4. This is equivalent to
multiplying the clock period by 4. Hence, each instruction cycle will be 4 microseconds.
For a 100‑microsecond delay, total cycles = 100 micro sec

 4 micro sec = 25. The BNZ in the loop will
require two cycles for (COUNT ‑ 1) times when Z = 0 and the last iteration will take 1 cycle
when no branch is taken (Z = 1). Thus, total cycles including the MOVLW = 1 + 1 + 3 ×
(COUNT ‑ 1) + 1 = 25. Hence, COUNT = 8.3. Therefore, register 0x20 should be loaded
with an integer value of 9 for an approximate delay of 100 microseconds.
 Now, in order to obtain delay of one millisecond, the above DELAY loop of 100
miicroseconds can be used with an external counter. Counter value = 1 milli sec

 100 micro sec

= 10.
The following instruction sequence will provide an approximate delay of one millisecond:

 MOVLW D’10’
 MOVWF 0x30 ; Initialize counter 0x30 for one‑millisecond delay
BACK MOVLW D’9’
 MOVWF 0x20 ; Initialize counter 0x20 for 100‑microsecond delay
DELAY DECF 0X20, F ; 100‑microsec delay
 BNZ DELAY
 DECF 0X30, F
 BNZ BACK
 Next, the delay time provided by the above instruction sequence can be calculated.
 As before, assuming 1 MHz crystal, each instruction cycle is 4 microseconds.
Total delay in seconds from the above instruction sequence
 = Execution time for MOVLW + Execution time for MOVWF +
 10 x (100‑microsecond delay) + (10 ‑ 1) x (Execution time for DECF +
 Execution time for BNZ (Z = 0)) + Execution time for BNZ (Z = 1)
= 1 x (4 microsec) + 1 x (4 microsec) + (1000 microseconds)
 + 9 x (3 x 4 microsec) + 1 x (4 microsec)
= 1.112 milliseconds.
This is approximately equivalent to the desired 1‑millisecond delay. In other words, the
delay is 1.112 milliseconds rather than 1 millisecond. This is because the execution times
of MOVLW D’10’, and MOVWF 0x30, are discarded.

Example 7.10 Assume 1 MHz PIC18F. Consider the following subroutine:
 DELAY MOVLW D’100’
 MOVWF 0x20
 DLOOP DECFSZ 0x20, F
 BRA DLOOP
 RETURN
(a) Calculate the time delay provided by the above subroutine.

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 183

stack pointer FSR0 to 0x60.

7.9. Write a PIC18F assembly program at address 0x100 to divide a 9‑bit unsigned
number in the high 9 bits (bits 8‑1 in bits 7‑0 of register 0x30 and bit 0 in bit 7
of register 0x31) by 810. Do not use any division instruction. Store the result in
register 0x50. Discard the remainder.

7.10 Write a PIC18F assembly language program at address 0x200 that will check
whether the 16‑bit signed number in registers [0x31][0x30] is positive or negative.
If the number is positive, the program will multiply the 16‑bit unsigned number
(bits 12 through 15 as 0’s) in [0x21][0x20] by 16, and provide a 16‑bit result;
otherwise, the program will set the byte in register 0x40 to all ones. Use only data
movement, shift, bit manipulation, and program control instructions. Assume the
16‑bit signed and unsigned numbers are already loaded into the data registers.

7.11 Assume that several 8‑bit packed BCD numbers are stored in data memory
locations from 0x10 through 0x2D. Write a PIC18F assembly language program
at address 0x100 to find how many of these numbers are divisible by 5, and save
the result in data memory location 0x40.

7.12 Write a program at address 0x100 in PIC18F assembly language to add two 32‑bit

packed BCD numbers. BCD number 1 is stored in data registers starting from
0x20 through 0x23, with the least significant digit at register 0x23 and the most
significant digit at 0x20. BCD number 2 is stored in data registers starting from
0x30 through 0x33, with the least significant digit at 0x33 and the most significant
digit at 0x30. Store the result as packed BCD digits in 0x20 through 0x23.

7.13 Write a subroutine at address 0x100 in PIC18F assembly language program to
find the square of a BCD digit (0 to 9) using a lookup table. The subroutine will
store the desired result in WREG based on the BCD digit stored by the main
program. The lookup table will store the square of the BCD numbers starting at
program memory address 0x300. Also, write the main program at address 0x200
that will initialize STKPTR to 0x10, store the BCD digit (0 to 9) in WREG, call
the subroutine, and stop. Use indexed addressing mode.

7.14 Write a subroutine in PIC18F assembly language program at address 0x100 to find
the square of a BCD digit (0 to 9) and store it in WREG. The subroutine will return
the desired result based on the BCD digit stored by the main program. Also, write
the main program at address 0x200 that will initialize STKPTR to 0x12, store the
BCD digit (0 to 9) in WREG, call the subroutine, and stop. Do not use indexed
addressing mode.

7.15 Write a subroutine at address 0x150 in PIC18F assembly language to convert a
3‑digit unpacked BCD number to binary using unsigned multiplication by 10,
and additions. The most significant digit is stored in a memory location starting
at register 0x30, the next digit is stored at 0x31, and so on. Store the 8‑bit binary
result (N) in register 0x50. Note that arithmetic operations for obtaining N		will
provide binary result. Use the value of the 3‑digit BCD number,

184 Microcontroller	Theory	and	Applications	with	the	PIC18F

 N = N2 x 102 + N1 x 101 + N0
 = ((10xN2)+N1)x10+N0

7.16 Write a subroutine in PIC18F assembly language at 0x100 to compute

 Z
8

i1
 Xi

 Assume the Xi’s are unsigned 8‑bit and stored in consecutive locations starting
at 0x30 and Z is 8‑bit. Also, assume that FSR1 points to the Xi’s. Write the main
program in PIC18F assembly language at 0x150 to perform all initializations
(FSR1 to 0x30, STKPTR to 20 decimal), call the subroutine, and then compute
Z/8. Discard remainder of Z/8. Assume data are already loaded in data registers.

7.17 Write a PIC18F assembly language program to estimate the square root of an 8‑bit
integer number P using the algorithm provided in the following:

 The sum of odd integers is always a perfect square. For example, 1 = 12, 1+3 = 22,

1+3+5 = 32, and so on. Specifically,
k

i=1
(2i ‑1) = k2. This property is useful in

approximating the square root of an 8‑bit unsigned number P. For example, if P
= 17, the square root of P can be estimate as follows:

 Subtract 1 from P so that P becomes 16; since the subtraction went through, add 1
to a counter. Hence, counter value is 1.

 Subtract 3 from P so that P becomes 13; since the subtraction went through, add 1
to a counter. Hence, counter value is 2.

 Subtract 5 from P so that P becomes 8; since the subtraction went through, add 1
to a counter. Hence, counter value is 3.

 Subtract 7 from P so that P becomes 1; since the subtraction went through, add
1 to a counter. Hence, counter value is 4. Now, when 9 is subtracted from the
existing value of P (P = 1), the result becomes negative (‑8) meaning that the
subtraction did not go through. The process terminates, and the integer square root
approximation for 17 is 4.

7.18 Consider the following PIC18F DELAY subroutine:
 DELAY MOVLW Q

 MOVWF Q
 LOOP1 MOVLW 100
 MOVWF P
 LOOP2 DECF P, F
 BNZ LOOP2
 DECF Q, F
 BNZ LOOP1
 RETURN
 Assuming 1 MHz PIC18F, determine the value of Q such that when this subroutine

is called, a delay of 145.940 msec will be generated.

PIC18F Hardware and Interfacing: Part1 189	

TABLE 8.1 PIC18F4321 Pinout description (continued)
Pin number Pin name Pin type Description

10 RE2 Input/Output Digital	I/O;	Port	E	bit	2
CS Input Chip	Select	control	for	parallel	slave	

port	(see	related	RD	and	WR).
AN7 Input Analog	input	7

11 VDD Power Positive	supply	for	logic	and	I/O	pins.
12 VSS Ground Ground	reference	for	logic	and	I/O	

pins.
13 OSC1 Input Oscillator	crystal	input	or	external	

clock	source	input.
CLKI Input External	clock	source	input.	Always	

associated	with	pin	function	OSC1.
(See	related	OSC1/CLKI,	OSC2/
CLKO	pins.)

RA7 Input/Output Digital	I/O;	Port	A	bit	7
14 OSC2 Output Oscillator	crystal	output.	Connects	to	

crystal	or	resonator	in	crystal	oscillator	
mode.	In	RC,	EC,	and	INTIO	modes,	
OSC2	pin	outputs.

CLKO Output CLKO	which	has	one-fourth	the	
frequency	of	OSC1	and	denotes	the	
instruction	cycle	rate.

RA6 Input/Output Digital	I/O;	Port	A	bit	6
15 RC0 Input/Output Digital	I/O;	Port	C	bit	0

T1OSO Output Timer1	oscillator	analog	output
T13CKI Input Timer1/Timer3	external	clock	input

16 RC1 Input/Output Digital	I/O;	Port	C	bit	1
T1OSI Input Timer1	oscillator	analog	input
CCP2 Input/Output Capture	2	input/Compare	2	output/

PWM	2	output;	default	assignment	
for	CCP2	when	Configuration	bit,	
CCP2MX,	is	set.

17 RC2 Input/Output Digital	I/O;	Port	C	bit	2
CCP1 Input/Output Capture	1	input/Compare	1	output/

PWM	1	output
P1A Output Enhanced	CCP1	output

18 RC3 Input/Output Digital	I/O;	Port	C	bit	3
SCK Input/Output Synchronous	serial	clock	input/output	

for		SPI	mode.
SCL Input/Output Synchronous	serial	clock	input/output	

for	I2C™	mode.
19 RD0 Input/Output Digital	I/O;	Port	D	bit	0

PSP0 Input/Output Parallel	Slave	Port	data
20 RD1 Input/Output Digital	I/O;	Port	D		bit	1

PSP1 Input/Output Parallel	slave	port	data
21 RD2 Input/Output Digital	I/O;	Port	D	bit2

PSP2 Input/Output Parallel	slave	port	data
22 RD3 Input/Output Digital	I/O;	Port	D	bit	3

PSP3 Input/Output Parallel	slave	port	data

190	 Microcontroller Theory and Applications with the PIC18F

Pin number Pin name Pin type Description
23 RC4 Input/Output Digital	I/O

SDI Input SPI	data	in
SDA Input/Output I2C	data	I/O

24 RC5 Input/Output Digital	I/O;	Port	C	bit	5
SDO Output SPI	data	out

25 RC6 Input/Output Digital	I/O;	Port	C	bit	6
TX Output EUSART	asynchronous	transmit
CK Input/Output EUSART	synchronous	clock	(see	

related	RX/DT).
26 RC7 Input/Output Digital	I/O;	Port	C	bit	7

RX Input EUSART	asynchronous	receive
DT Input/Output EUSART	synchronous	data	(see	related	

TX/CK)
27 RD4 Input/Output Digital	I/O;	Port	D	bit	4

PSP4 Input/Output Parallel	slave	port	data
28 RD5 Input/Output Digital	I/O;	port		D		bit	5

PSP5 Input/Output Parallel	slave	port	data
P1B Output Enhanced	CCP1	output

29 RD6 Input/Output Digital	I/O;	port	D	bit	6
PSP6 Input/Output Parallel	slave	port	data
P1C Output Enhanced	CCP1	output

30 RD7 Input/Output Digital	I/O;	Port	D	bit	7
PSP7 Input/Output Parallel	slave	port	data
P1D Output Enhanced	CCP1	output

31 VSS Ground Ground	reference	for	logic	and	I/O	pins
32 VDD Power Positive	supply	for	logic	and	I/O	pins
33 RB0 Input/Output Digital	I/O;	Port	B	bit	0

INT0 Input External	interrupt	0
FLT0 Input PWM	fault	input	for	enhanced	CCP1
AN12 Input Analog	input	12

34 RB1 Input/Output Digital	I/O;	Port	B	bit	1
INT1 Input External	interrupt	1
AN10 Input Analog	input	10

35 RB2 Input/Output Digital	I/O;	Port	B	bit	2
INT2 Input External	interrupt	2
AN8 Input Analog	input	8

36 RB3 Input/Output Digital	I/O;	Port	B	bit	3
AN9 Input Analog	input	9
CCP2 Input/Output Capture	2	input/compare	2	output/

PWM	2	output;	alternate	assignment	
for	CCP2	when	configuration	bit	
CCP2MX,	is	cleared.

37 RB4 Input/Output Digital	I/O;	Port	B	bit	7
KBI0 Input Interrupt-on-change	pin
AN11 Input Analog	input	11

38 RB5 Input/Output Digital	I/O;	Port	B	bit	5
KBI1 Input Interrupt-on-change	pin

TABLE 8.1 PIC18F4321 Pinout description (continued)

PIC18F Hardware and Interfacing: Part1 191	

The	PIC18F	pins	associated	with	clock,	reset,	and	I/O	will	be	discussed	in	the	following.

8.1.1 Clock
	 Upon	reset,	 the	PIC18F4321	operates	at	an	internal	clock	frequency	of	1	MHz	
(default).	After	reset,	the	internal	frequency	can	be	changed	from	31	KHz		to	8	MHz	by	
writing	 appropriate	 data	 into	 the	 OSCCON	 register	 (page	 31	 of	 the	 PIC18F4321	 data	
sheet).	
	 The	PIC18F4321		can	also	be	operated	in	ten	different	oscillator	modes.	The	user	
can	program	the	Configuration	bits,	FOSC3:FOSC0,	 in	Configuration	Register	 to	select	
one	of	these	ten	modes.	Note	that	this	configuration	register	is	mapped	as	address	300001H	
in	program	memory,	and	can	be	accessed	using	TBLRD	and	TBLWT	instructions.	These	
modes	can	be	classified	into	following	groups:

1.	 By	connecting	a	crystal	or	ceramic	resonator	at	OSC1	and	OSC2	pins.
2.	 By	connecting	an	external	clock	source	at	the	OSC1	pin.	The	oscillator	frequency	

divided	by	4	is	output	at	the	OSC2	pin.
3.	 By	connecting	an	RC	oscillator	circuit	at	the	OSC1	pin.	The	oscillator	frequency	

divided	by	4	is	output	at	the	OSC2	pin.
4.	 Using	a	frequency	multiplier	for	a	crystal	oscillator	to	produce	an	internal	clock	

frequency	of	up	to	40MHz.	The	“frequency	multiplier	mode”		is	only	available	to	
the	crystal	oscillator	when	the	FOSC3:FOSC0	configuration	bits	are	programmed	
for		this	mode.	This	will	be	useful	for	applications	requiring	higher	clock	speed.

5.	 Using	 	an	 internal	oscillator	block	which	generates	 two	different	clock	signals;	
either	can	be	used	as	the	microcontroller’s	clock	source.	This	may	eliminate	the	
need	for	external	oscillator	circuits	on	the	OSC1	and/or	OSC2	pins.

6.	 By	 switching	 the	 PIC18F4321	 clock	 source	 	 from	 the	 main	 oscillator	 to	 an	
alternate	 clock	 source.	When	 an	 alternate	 clock	 source	 is	 enabled,	 the	 various	
power‑managed	operating	modes	are	available.

	 In	the	following,	typical	oscillator	circuits	using	a	crystal	and	an	RC	circuit	will	
be	provided.	Figure	8.2	shows	a	typical	quartz		crystal	oscillator	circuit	for	the	PIC18F.	The	
crystal	frequency	can	vary	from		4MHz	to	25	MHz.
	 Figure	 8.3	 shows	 how	 the	 	 PIC18F	 clock	 is	 generated	 	 at	 the	 OSC2	 pin	 by	
connecting		an		RC	oscillator	circuit	at	the	OSC1	pin.	The	oscillator	frequency	at	the	OSC1	
pin	is	divided	by	4	by	the	PIC18F	and	then	generated		on	the	OSC2	output	pin.	The	OSC2	
clock	may	be	used	for	test	purposes	to	synchronize	other	logic.

Pin number Pin name Pin type Description
PGM Input/Output Low‑voltage	programming	enable	pin

	39 RB6 Input/Output Digital	I/O;	Port	B	bit	6
KBI2 Input Interrupt‑on‑change	pin
PGC Input/Output In‑circuit	debugger	and		programming	

clock	pin
40 RB7 Input/Output Digital	I/O;	Port	B	bit	7

KBI3 Input Interrupt‑on‑change	pin
PGD Input/Output In‑circuit	debugger	and	ICSP	

programming		data	pin.

TABLE 8.1 PIC18F4321 Pinout description (continued)

192	 Microcontroller Theory and Applications with the PIC18F

8.1.2 PIC18F Reset
 Upon	reset,	the		PIC18F	loads	‘0’	into	program	counter.	Thus	the	PIC18F		reads	
the	first	instruction	from	the	contents	of	address	0	in	the	program	memory.	Most	registers	
are	unaffected	by	a	Reset.	Howerver,	WREG	and	STKPTR	are	cleared	to	zero.	All	TRISX	
(Data	Direction	Registers)	are	loaded	with	FFH.	The	PIC18F4321		can	be	reset	in		several	
different	 ways.	 For	 simplicity,	 the	 two	 most	 commonly	 used	 RESET	 techniques	 are	
Power‑on	 and	 	Manual	 resets.	These	 two	 resets	 	will	 be	 discussed	 in	 this	 following.	A	
summary	of	some	of	the	other	resets	will	then	be	provided.

Power‑On Reset (POR) A	power‑on	reset	pulse	is	generated	on‑chip	upon	power‑up	
whenever	VDD	 rises	 above	 a	 certain	 threshold.	 This	 allows	 the	 device	 to	 start	 in	 the	
initialized	 state	 when	 VDD	 is	 adequate	 for	 operation.	 The	 reset	 circuit	 in	 Figure 8.4		
provides	a	 	simple	power‑on	reset	circuit	with	a	pushbutton	(manual)	switch.	When	the	
power	is	turned	ON,	the	resistors	in		Figure	8.4	with	the	switch	open	will	provide	power‑on	
reset.	When	the	PIC18F	exits	the	reset	condition,	and	starts	normal	operation,	a	program	
can	be	executed	by	pressing	the	pushbutton,	and	program	execution	can	be	restarted	upon	
activation	of	the	pushbutton.
	 Power‑on	reset	events	are	captured	by	the	POR		bit	(bit	1	of	RCON,	Figure	8.5).	
The	state	of	the	bit	is	set	to	‘0’	whenever	a	POR	occurs;	POR		bit	=	1	indicates	that	a	POR	
has	not	occurred.

OSC1

OSC2
xtal

PIC18F

22 pF

22 pF

FIGURE 8.2 Typical crystal oscillator circuit

FIGURE 8.3 RC oscillator

OSC1

OSC2

PIC18F

VDD

VSS

REXT

CEXT
FOSC/4

Recommended Values:

3 Kohm < REXT< 100 Kohm
20 pF < CEXT < 300 pF

PIC18F	Hardware	and	Interfacing:	Part1	 197

inputting from or outputting to ports. As an example, consider the PIC18F instruction,
MOVF PORTD, W will input the contents of PORTD into WREG.
 The MOVWF PORTC instruction, on the other hand, will output the contents of
WREG into PORTC. Data can also be output from one port to another. For example, the
MOVFF PORTC, PORTD instruction will output the contents of PORTC to PORTD.
 The PIC18F bit‑oriented instructions such as BSF and BCF can be used to output
a ‘1’ or ‘0’ to a specific bit of an I/O port. For example, the instruction BSF PORTD, 6
will set bit 6 of Port D; in other words, the PIC18F will output a ‘1’ to bit 6 of Port D. The
instruction BCF PORTC, 3 , on the other hand, will clear bit 3 of Port A to zero; in other
words, the PIC18F4321 will output a ‘0’ to bit 3 of PORTC.

8.2.2 Configuring PIC18F4321 I/O Ports
 As mentioned before, writing a ‘1’ at a particular bit position in the TRISx register
will make the corresponding bit in the associated port as an input. On the other hand,
writing a ‘0’ at a particular bit position in the TRISx register will make the corresponding
bit in the associated port as an output. Upon reset all TRIS registers are automatically
loaded with 1’s, and hence, all ports will be configured as inputs.
 Next, in order to illustrate how PIC18F4321 ports are configured using the
associated TRISx registers, consider the following PIC18F instruction sequence:

 MOVLW 0x34 ; Move 0x34 into WREG
 MOVWF TRISD ; Configure PORT D
 In the above instruction sequence, MOVLW loads WREG with 34 (hex), and then
moves these data into TRISD (8‑bit data direction register for PORTD) which then contains
34(Hex); the corresponding port is defined as shown in Figure 8.8. In this example, because
34H (0011 0100) is written into TRISD, bits 0, 1, 3, 6, and 7 of the port are set up as
outputs, and bits 2, 4, and 5 of the port are defined as inputs. The microcontroller can then
send output to external devices, such as LEDs, connected to bits 0, 1, 3, 6, and 7 through a
proper interface. Similarly, the PIC18F4321 can input the status of external devices, such
as switches, through bits 2, 4, and 5. To input data from the input switches, the PIC18F4321
inputs the complete byte, including the bits to which output devices such as LEDs are
connected. While receiving input data from an I/O port, however, the PIC18F4321 places a
value, probably 0, at the bits configured as outputs and the program must interpret them as
“don’t cares.” At the same time, the PIC18F4321’s outputs to bits configured as inputs are
disabled.
 The PIC18F instructions such as SETF and CLRF can be used to configure I/O

TABLE 8.2 PIC18F4321 I/O PORTS, TRISx REGISTERS, ALONG WITH
 ADDRESSES
 (Upon RESET, all ports are configured as inputs)

Port Name Size Mapped SFR address Comment
Port A 8‑bit 0xF80 Port A
TRISA 8‑bit 0xF92 Data Direction Register for Port A
Port B 8‑bit 0xF81 Port B
TRISB 8‑bit 0xF93 Data Direction Register for Port B
Port C 8‑bit 0xF82 Port C
TRISC 8‑bit 0xF94 Data Direction Register for Port C
Port D 8‑bit 0xF83 Port D
TRISD 8‑bit 0xF95 Data Direction Register for Port D
Port E 4‑bit 0xF84 Port E
TRISE 4‑bit 0xF96 Data Direction Register for Port E

198	 Microcontroller Theory and Applications with the PIC18F

ports.	For	example,	to	configure		all	bits	in		Port	C		as	inputs,	and	Port	D	as		outputs,	SETF	
or	CLRF	instructions	can	be	used	as	follows:
	 	 SETF	 	 TRISC	 ;	Set	all	bits	in	TRISC	to	1’s	and	configure		
	 	 	 	 	 ;	configure	Port	C	as	an	input	port.
	 	 CLRF	 	 TRISD	 ;	Clear	all	bits	in	TRISD	to	0’s	and	configure		
	 	 	 	 	 ;	configure	Port	D	as	an	output	port

	 Also,	a	specific	bit	in	a	port	can		be	configured	as	an	input	or	as	an	output	using		
PIC18F	bit‑oriented	instructions	such	as	BSF	and	BCF.	For	example,	the	instruction	BSF	
TRISD,	7	will		make		bit	7	of	Port	D	as	an	input	bit.	On	the	other	hand,	BCF		TRISC,	1	will	
make	bit	1	of	Port	C	as		an	output.
	 Note	that	configuring	Port	A,	Port	B	and	Port	E	is	different	than	configuring	Port	
C	and	Port	D.		This	is	because,	certain	bits	of	Port	A,	Port	B,	and	Port	E	are	multiplexed	
with	analog	inputs	(Figure	8.1).	Upon	power‑on	reset	(default),	all	bits	of	ports	A,	B,	and	
E	multiplexed	with	AN0‑AN12	are	configured	as	analog	inputs.	However,	writing	0x0F	to	
bits	0‑3	of	the	ADCON1	register	(Figure	8.9)	will	configure	these	multiplexed	port	bits	as	
digital	I/O.	As	mentioned	before,	upon	power‑on	reset,	all	TRISx	registers	are	loaded	with	
0xFF	and	the	associated	port	bits	are	configured	as	inputs.	Hence,	upon	loading	0x0F	into	
ADCON1	register	will	make	ports	A,	B	and	E	as	inputs	in	default	mode.	
	 However,	 for	configuring	 these	ports	 as	outputs,	 the	corresponding	TRISx	bits	
must	be	loaded	with	0’s;	the	ADCON1	register	is	not	required	for	configuring	these	port	
bits	as	outputs.	The	following	examples	will	illustrate	this.
	 For	example,		the	following	instruction	sequence	will	configure	all	13	port	bits	
multiplexed	with	AN0	‑	AN12	as	inputs:
	 	 MOVLW	 0x0F	 	 ;	Move		0xF	into	WREG
	 	 MOVWF	 ADCON1	 ;	Move	WREG	into	ADCON1
	 	 	 	 	 	 	 	

FIGURE	8.8	 PORT	D	along	with	TRISD

7 2346 05 1

PORTD

TRISD0 0 1 1 0 1 0 0

7 2346 05 1
ADCON1PCFG0PCFG1PCFG2

Port Configuration Control bits (PCFG0 - PCFG3) = 1111 for digital I/O

PCFG3

FIGURE	8.9	 ADCON1	register	for	digital	I/O

PIC18F Hardware and Interfacing: Part1 199	

	 Next,	in	order	to	configure	bit	1	of	Port	A,	and	bits	2	and	4	of		Port	B	as	outputs,	
the	following	instruction	sequence	can	be	used:
	 	 BCF	 	 TRISA,	1								;	Configure	bit	1	of	Port	A	as	output
	 	 BCF	 	 TRISB,	2								;	Configure	bit	2	of	Port	B	as	output
	 	 BCF	 	 TRISB,	4								;	Configure	bit	4	of	Port	B	as	output	
	 	 	 	
	 It	 should	 be	 mentioned	 that	 if	 a	 bit	 of	 an	 I/O	 port	 in	 the	 PIC18F	 family	 of	
microcontrollers	such	as	the	PIC18F4321	and	PIC18F4520		is	multiplexed	with	an	analog	
input,	the	bit	must	be	configured	as	an	input	using	the	ADCON1	register;	the	same	bit	can	
be	configured	as	an	output	using	the	corresponding	bit	in	the	associated	TRISx	register.	
However,	if	a	port	bit	is	not	multiplexed	with	an	analog	input,	it	can	be	configured	as	an	
input	or	an	output	using	the	associated	TRISx	register.	
	 	For	simplicity,	Port	C,	Port	D,	and	multiplexed		bits	of	Port	A,	Port	B,	and	Port	
E	with	analog		inputs	will	be	used	to	illustrate	the		concept	of		programmed	I/O	associated	
with	the	PIC18F4321	in	this	book.

8.2.3	 Interfacing		LEDs		(Light		Emitting	Diodes)	and	Seven‑segment	Displays
	 The	 PIC18F	 sources	 and	 sinks	 adequate	 currents	 so	 that	 	 LEDs	 and	
seven‑segment	displays	can	be	interfaced	to	the	PIC18F	without	buffers	(current	
amplifiers)	such	as	74HC244.	An	LED	can	be	connected	in	two	ways.	Figure	8.10	
(a)	and	(b)	shows	these	configurations.
	 In	 Figure	 8.10	 (a),	 the	 PIC18F	will	 output	 a	HIGH	 to	 turn	 the	 LED	ON;	 the	
PIC18F		will	output	a	‘LOW’	will	turn	it	OFF.	In	Figure	8.10	(b),	the	PIC18F	will	output	a	
LOW	to	turn	the	LED	ON;	the	PIC18F		will	output	a	‘HIGH’	will	turn	it	OFF.	Also,	when	
an	LED	is	turned	on,	a	typical	current	of	10	mA	flows	through	the	LED	with	a	voltage	drop	
of	1.7	V.	Hence,

R 5 − 1.7
10 mA 330

	 As	discussed	in	Chapter	3,	a	seven‑segment	display	can	be	used	to	display,	for	
example,	decimal	numbers	from	0	to	9.		The	name	“seven	segment”	is	based	on	the	fact	that	
there	are	seven	LEDs	—	one	in	each	segment	of	the	display.		Figure	8.11	shows	a	typical	
seven‑segment	display.
	 Figure	8.12	shows	two	different	seven‑segment	display	configurations,	namely,	
common	cathode	and	common	anode.	Note	that	Figures	8.11	and	8.12	are	redrawn	from	
Chapter	3	for	convenience.	In	Figure	8.12,	each	segment	contains	an	LED.		All	decimal	

FIGURE		8.10			 Interfacing	LED	to		PIC18F

R = 330 Ohms

LED

Connected
to a bit of
an I/O port

(a) Connecting an LED
 to an I/O port bit

+ 5V

 grounded)

Connected to
a bit of an I/O
port LED

R = 330 Ohms

(b) Connecting an LED (anode
tied to 5V) to an I/O port bit

(cathode

PIC18F	Hardware	and	Interfacing:	Part1	 209

(b) Repeat part (a) using INT0 external interrupt. Use Port D for the LED and bit
1 of Port B for the switch as above. Write the main program at address 0x100 in PIC18F
assembly language. Connect INT0 to the output of the comparator. The main program
will initialize hardware stack pointer (STKPTR) to 0x12, configure Port B and Port D and
enable GIE and INT0IE. Write the service routine in PIC18F assembly language which
will clear the INT0 flag, input the switch, output to LED, and then return to the main
program.

Solution

 Example 8.4(a) uses programmed (polled or conditional) I/O while Example
8.4(b) uses interrupt I/O.

(a) In this example, an LM339 comparator is connected to the PIC18F4321 in order
to control when the LED will be turned ON or OFF, based on the switch. In Figure 8.19,
when Vx > Vy, then the comparator will output a one, and the PIC18F4321 will turn the
LED ON or OFF depending on the switch status. If Vx < Vy, then the comparator will
output a zero and the LED will be turned OFF. In the program, the ADCON1 register is
used to configure RB0 and RB1 as inputs. The TRISD is used to make RD1 of Port D as
output.

 The PIC18F assembly language program for programmed I/O is provided below:

 INCLUDE <P18F4321.INC>
 ORG 0 ; RESET VECTOR
 GOTO MAIN ; JUMP TO MAIN
 ORG 0x100
MAIN BCF TRISD, 1 ; CONFIGURE BIT 1 OF PORTD AS OUTPUT
 MOVLW 0x0F ; CONFIGURE BITS 0 AND 1 OF PORTB
 MOVWF ADCON1 ; AS DIGITAL INPUTS
BEGIN BCF PORTD, 1 ; TURN LED OFF
CHECK BTFSS PORTB, 0 ; CHECK IF COMPARATOR IS ONE
 BRA BEGIN ; WAIT IN LOOP UNTIL ONE
 BTFSS PORTB, 1 ; CHECK IF SWITCH IS OPEN
 BRA BEGIN
 BSF PORTD, 1 ; IF SWITCH OPEN, TURN LED ON

FIGURE 8.19 Figure for Example 8.4 (a) using programmed I/O

+

-

Vx

Vy

PIC18F4321

 PORTB

PORTD

0

1

+5V

1

1K

1K

+5V

LED

LM339
Output =1
If Vx > Vy

RB0
RB1

330 Ohm

210 Microcontroller	Theory	and	Applications	with	the	PIC18F

 BRA CHECK
 END

 In the above program, upon reset, the PIC18F starts executing the program at
address 0x000000 in program memory. After execution of the instruction GOTO MAIN,
the program will jump to address 0x100.
 Next, Port B and Port D are configured. The instruction BCF PORTD, 0 turns the
LED OFF. In order to check whether the comparator is outputting a one, the instruction
BTFSS PORTB, 0 is used in the program. After execution of this instruction, if bit 0 of
PORTB (comparator output) is 0, the next instruction, BRA BEGIN, continues looping
until the comparator outputs a one. However, if the comparator output is 1, the BTFSS
PORTB, 0 will skip the next instruction (BRA BEGIN), and will execute BTFSS PORTB,
1 to see whether the switch is ON or OFF. If it is OFF, the program will branch to BEGIN
where it will turn the LED OFF. If the switch is OPEN (bit 1 of PORTB is 1), the program
will skip the next instruction (BRA BEGIN), output a 1 to bit 1 of PORTD, and then turn
the LED ON. The program will then branch to CHECK to make the loop is continuous.

(b) Figure 8.20 shows the relevant connections of the comparator to the PIC18F4321
using interrupt I/O. Note that the comparator output is connected to bit 0 of Port B to be
used as an INT0 pin. In this example, using ADCON1 register, bit 0 of Port B can be
configured as digital input to accept interrupt via INT0. The INT0IE bit of the INTCON
register must be set to one in order to enable the external interrupt along with GIE to enable
global interrupts.
 The PIC18F assembly language program using external interrupt INT0 is
provided in the following:

 INCLUDE <P18F4321.INC>
 ORG 0 ; RESET
 GOTO MAIN_PROG
; MAIN PROGRAM
 ORG 0x00100 ; MAIN PROGRAM
MAIN_PROG MOVLW 0x12 ; Initialize STKPTR to 0x12
 MOVWF STKPTR
 BCF TRISD,1 ; Configure bit 1 OF PORTD as output
 MOVLW 0x0F ; Configure bit 0 of PORTB as INT0
 MOVWF ADCON1 ; and bit 1 as input

FIGURE 8.20 Figure for Example 8.3(b) using interrupt I/O

+

-

Vx

Vy

PIC18F4321

PORTB

PORTD

0

1

+5V

1

1K

1K

+5V

330

LED

LM339
Output =1
If Vx > Vy

INT0
Bit 1 of Port B

PIC18F Hardware and Interfacing: Part1 211	

	 BSF	 INTCON,	INT0IE	 ;	 Enable	the	external	interrupt
	 BCF	 INTCON,	INT0IF	 ;		Clear	interrupt	flag
	 BSF	 INTCON,	GIE	 ;	 Enable	global	interrupts
OVER	 BRA	 OVER	 ;		Wait	for	interrupt
	 GOTO	 MAIN_PROG	 ;		Repeat
;	INTERRUPT		SERVICE	ROUTINE
	 ORG	 0x000008	 ;	 Interrupt	Address	Vector	 	
INT_SERV	 MOVFF	 PORTB,	PORTD	 ;	 Output	switch	status	to	turn	LED	ON/OF	 	
	 BCF	 INTCON,	INT0IF	 ;	 Clear	flag	to	avoid	double	interrupt
	 RETFIE	 	 ;		Enable	interrupt	and	return
	 END

	 In	 the	 above,	 upon	 recognition	 of	 the	 interrupt,	 the	 PIC18F4321	 pushes	 the		
program	counter	onto	the	stack,	and	automatically	jumps	to	address	0x000008	(interrupt	
address	 vector,	 0x000008	 for	 INT0).	The	 interrupt	 service	 routine	 is	written	 at	 address	
0x000008.	The	interrupt	flag	bit		does	not	need	to	be	checked	to	determine	the	source	of	
interrupt	for	the	single	interrupt	in	this	example.	It		will	be		shown	in	the	next	section		that		
for	multiple	interrupts,	the	interrupt	flag	bit	for	each	individual	interrupt	must	be	checked	
in	the	routine	at	the	interrupt	address	vector	to	find	the	source	of	interrupt.	

8.3.4	 Interrupt	Registers	and	Priorities	
	 The	 PIC18F4321	 contains	 	 ten	 registers	 which	 are	 used	 to	 control	 interrupt	
operation.	These	registers	are
•	 RCON	(Figure	8.5)

•	 INTCON	(Figure	8.17)

•	 INTCON2	(Figure	8.21)

•	 INTCON3	(Figure	8.17)

•	 PIR1,	PIR2	(to	be	discussed	in	Chapter	9)

•	 PIE1,	PIE2	(to	be	discussed	in	Chapter	9)

•	 IPR1,	IPR2	(discussed	in	Microchip’s	PIC18F4321	manual)

	 Registers	 RCON,	 INTCON,	 INTCON2,	 and	 INTCON3	 are	 associated	 with	
external	and	port	change	interrupts.	Hence,	they	will	be	covered	in	this	section.	Registers	

FIGURE		8.21	INTCON2	register

bit 7 RBPU: PORTB Pull-up Enable bit
1 = All PORTB pull-ups are disabled
0 = PORTB pull-ups are enabled by individual port latch values
bit 6 INTEDG0: External Interrupt 0 Edge Select bit, 1 = Interrupt on rising edge, 0 = Interrupt on falling edge
bit 5 INTEDG1: External Interrupt 1 Edge Select bit, 1 = Interrupt on rising edge, 0 = Interrupt on falling edge
bit 4 INTEDG2: External Interrupt 2 Edge Select bit, 1 = Interrupt on rising edge, 0 = Interrupt on falling edge
bit 3 Unimplemented: Read as ‘0’
bit 2 TMR0IP: TMR0 Overflow Interrupt Priority bit, 1 = High priority, 0 = Low priority
bit 1 Unimplemented: Read as ‘0’
bit 0 RBIP: RB Port Change Interrupt Priority bit, 1 = High priority, 0 = Low priority

7 46 05
INTCON2INTEDG0 INTEDG1 INTEDG2 RBIPRBPU

1

3 2
TMR0IP-------

214	 Microcontroller Theory and Applications with the PIC18F

in	the	main	program.	The	“RETFIE	1”	instruction,	on	the	other	hand,	pops	the	contents	
of	 	WREG,	 BSR,	 and	 STATUS	 registers	 (previously	 PUSHed)	 from	 shadow	 registers	
WS,	STATUSS,	and	BSRS	before	going	to	the	main	program,	enables	the	global	interrupt	
enable	bit,	and	returns	control	to	the	appropriate	place	in	the	main	program.

8.3.7	 PORTB	Interrupt‑on‑Change
	 The	PIC18F4321	provides	four	interrupt‑on‑change	pins	(KB10	through	KB13).	
These	pins	are	multiplexed	among	others	with	bits	4	through	7	of	Port	B.			 	
	 An	 input	 change	 (HIGH	 to	LOW	or	LOW	to	HIGH)	on	one	or	more	of	 these	
interrupts	sets	the	flag	bit	RBIF	(bit	0	of	INTCON	register).	Note	that	a	single	flag	bit	is	
assigned	to	all	four	interrupts.	
	 The	 interrupt	 can	 be	 enabled/disabled	 by	 setting/clearing	 a	 single	 enable	 bit,	
RBIE	 (bit	 3	 of	 INTCON	 register).	 Interrupt	 priority	 for	 PORTB	 interrupt‑on‑change	 is	
determined	by	the	value	contained	in		the	interrupt	priority	bit	RBIP	(bit	0	of	INTCON2	
register).	As	before,	BSF	and	BCF	instructions	can	be	used	to	set	or		clear	a	bit	in	a	register.	
The	PORTB	interrupt‑on‑charge	is	typically	used	for	interfacing	devices	such	as	keyboard.

8.3.8	 Context	Saving	During	Interrupts
	 During	 interrupts,	 the	 return	PC	address	 is	 saved	onto	 the	hardware	stack.	For		
high‑priority	 interrupts,	 the	 PIC18F	 also	 saves	 WREG,	 STATUS,	 and	 BSR	 registers	
automatically	 in	 the	 	 associated	 shadow	 registers	 (internal	 to	 the	 PIC18F)	 called	WS,	
STATUSS,	and	BSRS.		Note	that	these	three	registers	are	saved	internally	upon	recognition	
of	a	high‑priority	interrupt,	and	before	going	to	the	ISR.	The	contents	of	WREG,	STATUS,	
and	BSR	are	normally	changed	by	the	instructions	in	the	ISR.	Hence,	it	is	desirable	for	the	
user	to	restore	the	contents	of	these	registers	before	returning	to	the	main	program.	This	
can	be	accomplished	by	placing	the	“RETFIE	1”	at	the	end	of	the	ISR	which	will	restore	
these	registers,	enable	global	interrupt,	and	return	control	to	the	appropriate	place	in	the	
main	program.
	 For	low	priority	interrupts,	only	the	return	PC	address	is	saved	onto	the	hardware	
stack.		Additionally,	the	user	may	need	to	save	WREG,	STATUS	and	BSR	registers	in	data	
memory	on	entry	to	the	ISR.	Depending	on	the	user’s	application,	other	registers	may	also	
need	to	be	saved.	For	low‑priority	interrupts,	the	user	may	save	the	desired	registers	such	
as	WREG,	STATUS,	and	BSR		in	data	registers,	and	retrieve	them	before	returning	to	the	
main	program.	The	following	PIC18F	instruction	sequence	illustrates	this:

;	MAIN	PROGRAM
W_TEMP	 	 EQU	 0x20
STATUS_TEMP	 EQU	 0x30
BSR_TEMP		 EQU	 0x40
	 	 ‑‑‑
	 	 ‑‑‑
;	INTERRUPT	SERVICE	ROUTINE
;	SAVING	STATUS,	WREG	AND	BSR	REGISTERS	IN		DATA	MEMORY
	 MOVWF	 W_TEMP	 ;		Save	WREG	in	0x20
	 MOVFF	 STATUS,	STATUS_TEMP	 ;		Save	STATUS		in	0x30
	 MOVFF	 BSR,	BSR_TEMP	 ;		Save	BSR	in	0x40
	 ‑‑‑
	 ‑‑‑

PIC18F Hardware and Interfacing: Part1 215	

	 MOVFF	 BSR_TEMP,	BSR	 ;		Restore	BSR
	 MOVF	 W_TEMP,	W	 ;		Restore	WREG
	 MOVFF	 STATUS_TEMP,	STATUS	 ;		Restore	STATUS
	 RETFIE	 	 ;		POP		PC		from	hardware	stack,
	 	 	 ;		Enable	global	interrupt,	and	
	 	 	 ;		return	to	the	main	program

Example			8.5	 In	Figure	8.22,	if	Vx	>	Vy,	the	PIC18F4321	is	interrupted	via	INT0.	On	
the	other	hand,		opening	the	switch	will	interrupt	the	microcontroller	via	INT1.	Note	that	in	
the	PIC18F4321,	INT0	has	higher	priority	than	INT1.	Write	the	main	program	in	PIC18F	
assembly	language		at	address	0x100	that	will	perform	the	following:
	 -	Initialize	STKPTR	to	0x10.
	 -	Configure	PORTB	as	interrupt	inputs.
	 -	Clear	interrupt	flag	bits	of	INT0	and	INT1.
	 -	Set	INT1	as	low-priority	interrupt.
	 -	Enable	global	HIGH	and	LOW	interrupts.
	 -	Turn	both	LEDs	at	PORTD	OFF	(comparator	LED	at	bit	0	of	PORTD	and		 	
	 			switch	LED	at	bit	1	of	PORTD)	
	 -	Wait	in	an	infinite	loop	for	one	or	both	interrupts	to	occur.
Also,	write	a	 service	 routine	 for	 the	high-priority	 interrupt	 (INT0)	 in	PIC18F	assembly	
language	at	address	0x200	that	will	perform	the	following:
	 -	Clear	interrupt	flag	for	INT0.
	 -	Turn	LED	on	at	bit	0	of	PORTD.
Finally,	write	a	service	routine	for	the	low-priority	interrupt	(INT1)	in	PIC18F	assembly	
language	at	address	0x300	that	will	perform	the	following:
	 -	Clear	interrupt	flag	for	INT1.
	 -	Turn	LED	on	at	bit	1	of	PORTD.

Solution

	 This	example	will	demonstrate	the	interrupt	priority	scheme	of	the	PIC18F4321	
microcontroller.	With	 interrupt	 priority,	 the	 user	 has	 the	 option	 to	 have	 the	 	 interrupts	
declared	as	either	low	or	high	interrupts.	If,	at	anytime,	the	low-	and	high-priority	interrupts	
occur	at	the	same	time,		the	microcontroller	will	always	service	the	high-priority	interrupt.

FIGURE		8.22	 Figure	for	Example	8.5

+

-

Vx

Vy

PIC18F4321

PORTB

PORTD

0
1

1

LM339
Output =1
If Vx > Vy

330

LED

PORTD 0

1K

+5V

INT0
INT1

330

LED1K

216	 Microcontroller Theory and Applications with the PIC18F

	In	the	above	example,	the	comparator	is	set	as	the	high-priority	and	the	switch	is	set	as	
the	 low-priority,	 so	 if	 both	 interrupts	 are	 triggered	 simultaneously,	 	 then	only	 the	LED	
associated	with	the	comparator	will	be		turned	ON.
	 Note	that	the	external	interrupt	INT0	can	only	be	a	high-priority	interrupt.	When	
implementing	a	single	interrupt,	the	interrupt	service	routine	is	written	at	address	0x08.	On	
the	other	hand,	when	priority	interrupts	are	enabled,	the	service	routine	for	the	high-priority	
interrupt	is	written	at		address	0x08	while	the	service	routine	for	the	low-priority	interrupt	
is	written	at	address	0x018.
	 In	order	to	enable	the	second	external	interrupt	INT1,	the	register	INTCON3	is	
configured.		Also,	INT1IE	must	be	enabled,	and	INT1IF	must	be	cleared	to	0.	Furthermore,	
the	 INT1IP	 bit	 in	 INTCON3	 register	 	 that	 sets	 the	 priority	 of	 INT1	 in	 the	 	 INTCON3	
register	must	be	cleared		to	0	for	low	priority.	Next,	the	IPEN	bit	in	the	RCON	register	that	
enables	the	interrupt	priority	functionality	of	the	PIC18F4321	must	be	set	to	one.	Finally,	
the		GIEH	and	GIEL	bits	in	the	INTCON	register	must	be	set	to	one	in	order	to	enable	
global	high	and	low	interrupts.	The	following	code	implements	priority	interrupts	on	the	
PIC18F4321	using	assembly	language:

INCLUDE	<P18F4321.INC>
;	RESET
	 ORG	0	 	 ;		Reset	vector
	 GOTO	 MAIN	 ;	 Jump	to	main	program
;	HIGH	PRIORITY	INTERRUPT	ADDRESS	VECTOR
	 ORG	 0x0008	 ;	 High-priority	interrupt
	 BRA	 HIGH_INT_ISR	 ;		Jump	to	service	routine	for	the	comparator
;	LOW	PRIORITY	INTERRUPT	ADDRESS	VECTOR
	 ORG	 0x0018	 ;	 Low-priority	interrupt
	 BRA	 LOW_INT_ISR	 ;		Jump	to	service	routine	for	the	switch
	 	 	 ;		Main	Program
	 ORG	 0x0100
MAIN	 MOVLW	 0x10	 ;		Initialize	STKPTR	to	0x10
	 MOVWF	 STKPTR
	 CLRF	 TRISD	 ;	 PORTD	is	output
	 MOVLW	 0x0F	 ;		Configure	ADCON1	to	set	up		
	 MOVWF	 ADCON1	 ;	 INT0	and	INT1	as	digital	inputs
	 BSF	 INTCON,	INT0IE	 ;	 Enable	the	external	interrupt	INT0
	 BSF	 INTCON3,INT1IE	 ;	 Enable	the	external	interrupt	INT1
	 BCF	 INTCON,INT0IF	 ;	 Clear	the	INT0	flag
	 BCF	 INTCON3,INT1IF	 ;	 Clear	the	INT1	flag
	 BCF	 INTCON3,	INT1IP	 ;	 Set	INT1	as	low	priority
	 BSF	 RCON,	IPEN	 ;	 Enable	interrupt	priority
	 BSF	 INTCON,	GIEH	 ;	 Enable	global	high	interrupts
	 BSF	 INTCON,	GIEL	 ;	 Enable	global	low	interrupts
	 CLRF	 PORTD	 ;	 Turn	both	LEDs		off
OVER	 BRA	 OVER	 ;		Wait	for	interrupt
	 BRA	 MAIN	 ;	 Halt

;	SERVICE	ROUTINE	FOR	HIGH	PRIORITY
	 ORG	 0x200
HIGH_INT_ISR	 BCF	 INTCON,INT0IF	 ;	 Clear	the	interrupt	flag																			

PIC18F Hardware and Interfacing: Part1 217	

	 MOVLW	 0x01	 ;	 Turn	on	LED	at	bit	0	of	PORTD
	 MOVWF	 PORTD
	 RETFIE	
;	SERVICE	ROUTINE	FOR	LOW	PRIORITY
	 ORG	 0x300
LOW_INT_ISR	 BCF	 INTCON3,	INT1IF	 ;	 Clear	the	interrupt	flag
	 MOVLW	 0x02	 ;	 Turn	on	LED	at	bit	1	of	PORTD
	 MOVWF	 PORTD
	 RETFIE	
	 END

8.4	 PIC18F	Interface	to	an	LCD	(Liquid	Crystal	Display)

Seven-segment	LEDs	are	easy	to	use,	and	can	display	only	numbers	and	limited	characters.	
LCDs	are	very	useful	 for	displaying	numbers,	and	several	ASCII	characters	along	with	
graphics.	 Furthermore,	 LCDs	 consume	 low	 power.	 Because	 of	 	 inexpensive	 price	 of	
LCDs	these	days,	they	have	been	becoming		popular.	LCDs	are	widely	used	in	notebook	
computers.
	 	Figure	8.23	shows	the	PIC18F4321’s		interface	to	a	typical		LCD	display	such	
as	 the	Optrex	DMC16249	LCD	with	a	2-line	x	16-character	display	screen.	 In	order	 to	
illustrate	the	basic	concepts	associated	with	LCDs,		the	phrase	“Switch	Value:”	along	with	
the	numeric	BCD	value	(0	through	9)	of	the	four	switch	inputs	will	be	displayed.	
	 The		Optrex	DMC16249	LCD			shown	in	Figure	8.23	contains	14	pins.	The	VCC	
pin	 is	connected	 to	+5	V	and	 the	VSS	pin	 is	connected	 to	ground.	The	VEE	pin	 is	 the	
contrast	control	for	brightness	of		the	display.	VEE	is	connected	to	a	potentiometer		with	
a	value	between	 	10k	and	20k.	The	eight	data	pins	 (D0-D7)	are	used	 to	 input	data	and	
commands	to	display	the	desired		message	on	the	screen.
	 The		three	control	pins	EN,	R/W,	and	RS		allow	the	user	to	let	the	display	know	
what	kind	of	data	is	sent.	The	EN	pin		latches	the	data	from	the	D0-D7	pins	into	the	LCD

FIGURE	8.23		PIC18F4321	interface	to	Optrex	DMC	16249	LCD

PORTB

0

1

2

3

4

5

6

1K

+5V

1K

+5V

1K

+5V

1K

+5V

PORTC

PORTC

PORTC

PORTC

0

1

2

3

7

0

1

2

D0

D1

D2

D3

D4

D5

D6

D7

RS

RW

EN

VCC

VSS

VEE

+5V

10k-20k

PIC18F4321
Optrex DMC 16249 LCD

PORTD

1K

1K

1K

1K

PIC18F	Hardware	and	Interfacing:	Part1	 219

 The PIC18F assembly language program is shown in Figure 8.24. Note that time
delay rather than the busy bit is used before outputting the next character to the LCD. Three
subroutines are used: one for outputting command code, one for delay, and one for LCD
data. Since subroutines are used, the hardware STKPTR is initialized in the main program
with an arbitrarily chosen value of 5. PORTB and PORTD are configured as output ports,
and PORTC is set up as an input port. Also, assume 1‑MHz default crystal frequency for
the PIC18F4321.
 As an example, let us consider the code for outputting a command code such as
the command “move cursor to the beginning of the first line” to the LCD. From Table 8.4,
the command code for this is 0x80. From Figure 8.24, the code MOVLW 0x80 moves
0x80 into WREG. The CALL CMD calls the subroutine CMD. The CMD subroutine first
outputs the command code 0x80 to PORTD using MOVWF PORTD. Since PORTD is
connected to LCD’s D0‑D7 pins, these data will be available to be latched by the LCD.
The following few lines of the code of the CMD subroutine are for outputting 0’s to RS
and R/W pins, and a trailing edge (1 to 0) pulse to EN pin along with a delay of 20 msec.
Hence, the LCD will latch 0x80, and the cursor will move to the start of the first line.
Note that an external counter of 10 loaded into a register 0x21 with a 2 msec inner loop
for LOOP2 is used for the 20 msec delay. Typical delays should be 10 to 30 milliseconds.
Also, 1 MHz default crystal frequency for the PIC18F4321 is assumed. The program then
returns to the main program.
 The first few lines of the main program at address MAIN perform initializations.
Next, in order to display ‘S’, the MOVLW D‘10’ moves 10 (decimal) into WREG, and
CALL DELAY provides 20 msec delay using this value in the routine. After executing
the DELAY routine, MOVLW A‘S’ moves the 8‑bit ASCII code for S into WREG. The
instruction CALL LCDDATA calls the subroutine LCDDATA. The MOVWF PORTD
instruction in this subroutine outputs the ASCII code for S into the D0‑D7 pins of the LCD
via PORTD. The next few instructions in the LCDDATA subroutine outputs 1 to the RS pin
(for selecting LCD data register to display data), 0 to the R/W pin, and a trailing edge (1 to
0) pulse to EN pin along with delay so that the LCD will latch ASCII code for S, and will
display S on the screen.
 Similarly, the program logic in Figure 8.24 for outputting other ASCII characters
and switch input data can be explained.
 The PIC18F assembly language program is provided in Figure 8.24 as follows.
 For 1 MHz default crystal frequency, the PIC18F clock period will be 1 lsec.
Hence, each instruction cycle will be 4 microseconds. For 2 msec delay, total cycles = (2
msec)/(4 lsec)= 500. The DECFSZ in the loop will require 2 cycles for (COUNT ‑ 1) times
when Z = 0 and the last iteration will take 1 cycle when skip is taken (Z = 1). Thus, total
cycles including the MOVLW = 1 + 1 + 1 + 2 × (COUNT ‑ 1) + 2 = 500. Hence, COUNT
will be approximately 255 (decimal), discarding execution times of certain instructions..
Therefore, register 0x21 should be loaded with an integer value of 255 for an approximate
delay of 2 msec.

8.5 Interfacing PIC18F4321 to a Hexadecimal Keyboard and a Seven‑segment
 Display

In this section we describe the basics of interfacing the PIC18F4321 microcontroller to a
hexadecimal keyboard and a seven‑segment display.

220	 Microcontroller Theory and Applications with the PIC18F

FIGURE 8.24 Assembly language program for the PIC18F4321-LCD interface

	 INCLUDE	 <P18F4321.INC>
	 ORG	 0x100	 ;	Start	of	the	MAIN	program	
MAIN	 MOVLW	 5	 ;	Initialize	STKPTR	with	arbitrary	value	of	5
	 MOVWF	 STKPTR
	 CLRF	 TRISD	 ;	 PORTD	is	output
	 CLRF	 TRISB	 ;	 PORTB	is	output
	 SETF		 TRISC	 ;	 PORTC	is	input
	 CLRF		 PORTB	 ;	 rs=0	rw=0	en=0
	 MOVLW		 D’10’	 ;	 20	msec	delay
	 CALL	 DELAY
	 MOVLW		 0x0C	 ;	 Display	on,	Cursor	off
	 CALL	 CMD
	 MOVLW		 D’10’	 ;	 20	msec	delay
	 CALL	 DELAY
	 MOVLW		 0x01
	 CALL	 CMD	 ;	 Clear	Display
	 MOVLW		 D’10’	 ;	 20	msec	delay
	 CALL	 DELAY
	 MOVLW		 0x06	 ;	 Shift	Cursor	to	the	right
	 CALL		 CMD
	 MOVLW		 D’10’	 ;	 20	msec	delay	
	 CALL	 DELAY
	 MOVLW		 0x80	 ;	Move	cursor	to	the	start	of	the	first	line
	 CALL		 CMD
	 MOVLW		 D’10’	 ;	 20	msec	delay
	 CALL		 DELAY
	 MOVLW		 A’S’	 ;	 Send	ASCII	S
	 CALL		 LCDDATA
	 MOVLW		 A’w’	 ;	 Send	ASCII	w
	 CALL		 LCDDATA
	 MOVLW		 A’i’	 ;	 Send	ASCII	i
	 CALL		 LCDDATA
	 MOVLW	 	A’t’	 ;	 Send	ASCII	t
	 CALL	 LCDDATA
	 MOVLW		 A’c’	 ;	 Send	ASCII	c
	 CALL	 LCDDATA
	 MOVLW		 A’h’	 ;	 Send	ASCII	h
	 CALL		 LCDDATA
	 MOVLW		 A’	‘	 ;	 Send	ASCII	space
	 CALL		 LCDDATA
	 MOVLW		 A’V’	 ;	 Send	ASCII	V
	 CALL	 LCDDATA
	 MOVLW		 A’a’	 ;	 Send	ASCII	a
	 CALL		 LCDDATA
	 MOVLW		 A’l’	 ;	 Send	ASCII	l
	 CALL		 LCDDATA
	 MOVLW		 A’u’	 ;	 Send	ASCII	u

PIC18F	Hardware	and	Interfacing:	Part1	 221

8.5.1 Basics of Keyboard and Display Interface to a Microcontroller
 A common method of entering programs into a microcontroller is via a keyboard.
An inexpensive way of displaying microcontroller results is by using seven‑segment
displays. The main functions to be performed for interfacing a keyboard are
• Sense a key actuation.

• Debounce the key.

• Decode the key.

 Let us now elaborate on keyboard interfacing concepts. A keyboard is arranged

FIGURE 8.24 Assembly language program for the PIC18F4321‑LCD interface
 (continued)

 CALL LCDDATA
 MOVLW A’e’ ; Send ASCII e
 CALL LCDDATA
 MOVLW A’:’ ; Send ASCII :
 CALL LCDDATA
AGAIN MOVF PORTC, W ; Move switch value to WREG
 ANDLW 0x0F ; Mask lower 4 bits
 IORLW 0x30 ; Convert to ASCII data by Oring with 0x30
 CALL LCDDATA ; Display switch value on screen
 MOVLW 0x10
 CALL CMD
 BRA AGAIN
CMD MOVWF PORTD ; Command is sent to PORTD
 MOVLW 0x04
 MOVWF PORTB ; rs=0 rw=0 en=1
 MOVLW D’10’ ; 20 msec delay
 CALL DELAY
 CLRF PORTB ; rs=0 rw=0 en=0
 RETURN
LCDDATA MOVWF PORTD ; Data sent to PORTD
 MOVLW 0x05 ; rs=1 rw=0 en=1
 MOVWF PORTB
 MOVLW D’10’ ; 20 msec delay
 CALL DELAY
 MOVLW 0x01
 MOVWF PORTB ; rs=1 rw=0 en=0
 RETURN
DELAY MOVWF 0x20
LOOP1 MOVLW D’255’ ; LOOP2 provides 2 msec delay with a count of 255
 MOVWF 0x21
LOOP2 DECFSZ 0X21
 GOTO LOOP2
 DECFSZ 0x20
 GOTO LOOP1
 RETURN
 END

PIC18F	Hardware	and	Interfacing:	Part1	 231

8.10 The PIC18F4321 microcontroller is required to add two 3‑bit numbers stored
in the lowest 3 bits of data registers 0x20 and 0x21 and output the sum (not to
exceed 9) to a common‑cathode seven‑segment display connected to Port C as
shown in Figure P8.10. Write a PIC18F assembly language program at address
0x200 to accomplish this by using a look‑up table.

8.11 The PIC18F4321 microcontroller is required to input a number from 0 to 9 from
an ASCII keyboard interfaced to it and output to an EBCDIC printer. Assume
that the keyboard is connected to Port C and the printer is connected to Port D.
Store the EBCDIC codes for 0 to 9 starting at an address 0x30, and use this
lookup table to write a PIC18F assembly language program at address 0x100 to
accomplish this.

8.12 In Figure P8.12, the PIC18F4321 is required to turn on an LED connected to bit

1 of Port C if the comparator voltage Vx > Vy; otherwise, the LED will be turned
off. Write a PIC18F assembly language program at address 0x200 to accomplish
this using conditional or polled I/O.

8.13 Repeat Problem 8.12 using Interrupt I/O by connecting the comparator output to
INT1. Note that RB1 is also multiplexed with INT1. Write main program at 0x80
and interrupt service routine at 0x150 in PIC18F assembly language. The main
program will configure the I/O ports, enable interrupt INT1, initialize STKPTR to
0x05, turn the LED OFF, and then wait for interrupt. The interrupt service routine
will turn the LED ON and return to the main program at the appropriate location
so that the LED is turned ON continuously until the next interrupt.

Cμ

330 Ω 330 Ω

+ 5 V + 5 V

LED LED

Bit 0 of portD

Bit 1 of portD

Bit 2 of portD

Bit 3 of portD

Bit 4 of portD

PIC18F4321

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5

Bit 6

R

R

R

R

R

R

R

a
b
c
d
e
f
g

f

a

b

c

d

e

g

GND

Port
C

R=330 Ω

FIGURE P 8.9 (Assume that both LEDs are OFF initially.)

FIGURE P8.10

232 Microcontroller	Theory	and	Applications	with	the	PIC18F

8.14 In Figure P8.14, if Vx > Vw, turn an LED ON connected at bit 3 of Port C. If Vy >
Vz, turn the LED OFF. Assume that Vx > Vw and Vy > Vz will not occur at the same
time. Using ports, registers, and memory locations as needed and INT0 interrupt:

(a) Draw a neat block diagram showing the PIC18F4321 microcontroller
and the connections to ports in the diagram in Figure P8.14.

(b) Write the main program at 0x150 and the service routine at 0x200 in
PIC18F assembly language. The main program will initialize STKPTR
to 0x10, initialize the ports and wait for an interrupt. The service routine
will accomplish the task and stop.

8.15 What is the interrupt address vector upon power‑on reset?

8.16 Identify the PIC18F4321 external interrupts as maskable or nonmaskable.

8.17 What are the interrupt address vectors for high‑priority and low‑priority interrupts?

8.18 What are the priority levels for INT0 through INT2 external interrupts of the
PIC18F4321 upon power‑on reset?

8.19 What is the difference between PIC18F “RETFIE” and “RETFIE 1” instructions?

8.20 Write PIC18F instruction sequence tin PIC18F assembly language to set interrupt
priority of INT1 as the high level, and interrupt priority for INT2 level as low
level.

FIGURE P8.14

+
-

+
-Vw

To 1

X

Y

INT0
OF

PIC18F4321

Vx

Vz
Vy

FIGURE P8.12

+

-

Vx

Vy

1

LED

LM339 Output =1
If Vx > Vy

RB1

PIC18F4321

Bit 1 of PORT C

1
0 RB0

PORT B

330 Ohm

	 235

9
PIC18F HARDWARE

AND
INTERFACING: PART 2

In this chapter we describe the second part of hardware aspects of the PIC18F4321. Topics
include PIC18F4321’s on‑chip timers, analog interfaces (ADC and DAC), serial I/O, and
CCP (Capture/Compare/Pulse Width Modulation).

9.1 PIC18F Timers

The PIC18F microcontroller family contains four to five on‑chip hardware timers. The
PIC18F4321 microcontroller includes four timers, namely, Timer0, Timer1, Timer2, and
Timer3. These timers can be used to generate time delays using on‑chip hardware. Note
that the basic hardware inside each of these timers is a register that can be incremented
or decremented at the rising or falling edge of a clock. The register can be loaded with a
count for a specific time delay. Time delay is computed by subtracting the initial starting
count from the final count in the register, and then multiplying the subtraction result by the
clock frequency.
 These timers can also be used as event counters. Note that an event counter is
basically a register with the clock replaced by an event such as a switch. The counter is
incremented or decremented whenever the switch is activated. Thus the number of times
the switch is activated (occurrence of the event) can be determined.
 Finally, the PIC18F CCP module utilizes these timers to perform capture, compare,
or PWM (pulse width modulation) functions. These topics will be discussed later in this
chapter.
 All PIC18F4321 timers have prescaler option. This means that the input
clock frequency is divided by factors such as 2,4,8,16. The PIC18F4321 Timer2
also includes postscaler option. That is, Timer2 output clock frquency is divided
by factors such a 2,4,8,16. Prescaler and Postscaler options can be used to obtain
higher time delays Also, all timers can use either their respective timer flags or
interrupts. The interrupt address vector is 0008H upon hardware reset.

PIC18F	Hardware	and	Interfacing:	Part2	 239

 Figure 9.4 (redrawn from Figure 8.17) shows the INTCON register with the
TMR0IE and TMR0IF bits. The TMR0 interrupt is generated (if enabled by setting
TMR0IE to one using BSF INTCON, TMR0IE) when the TMR0 register overflows from
0xFF to 0x00 in 8‑bit mode, or from 0xFFFF to 0x0000 in 16‑bit mode. This overflow sets
the TMR0IF flag bit shown in Figure 9.4 (bit 2 of INTCON). The interrupt can be masked
by clearing the TMR0IE bit. Before reenabling the interrupt, the TMR0IF bit must be
cleared in software by the Interrupt Service Routine. Note that interrupt address vector is
0x0008 upon hardware reset.
 In the 8‑bit mode, the TMR0IF bit is set to one when the timer value in 8‑bit
register TMR0L is incremented from 0xFF to 0x00 (overflow). In the 16‑bit mode, the
TMR0IF bit is set to one when the timer value in 16‑bit register TMR0H:TMR0L is
incremented from 0xFFFF to 0x0000 (overflow). An extra clock is required when Timer0
rolls over from 0xFF to 0x00 in 8‑bit mode or from 0xFFFF to 0x0000.

Example 9.1 Assuming a 4 MHz crystal oscillator, calculate the time delay for the
following PIC18F instruction sequence:

 MOVLW 0xD4
 MOVWF T0CON ; Initialize T0CON with 0xD4
 MOVLW 0x80 ; Load 8‑bit timer with count 0x80
 MOVWF TMR0L

Solution

 The above PIC18F instruction sequence loads 0xD4 into the T0CON register.
Note that 0xD4 = 110101002. Hence, from Figure 9.1, the T0CON register can be drawn
with the binary data, as shown in Figure 9. 5. Comparing data of Figure 9. 5 with data of
Figure 9.1, the following results are obtained:
TMR0ON = 1 meaning TIMER0 is ON, T08BIT = 1 meaning 8‑bit timer, T0CS = 0 meaning
internal instruction clock, PSA = 0 meaning prescaler enabled, and TOPS2 TOPS1 TOPS0
= 100 meaning 1:32 prescale value.
 Clock period = 1/(4 MHz) = 0.25 l sec, Instruction cycle clock period = 4 x 0.25
l sec = 1 l sec. Since the prescaler multiplies the Instruction cycle clock period by the
prescaler value,
Time Delay = (Instruction cycle clock perod) x (Prescaler value) x (Counter value)
 = (1 l sec) x (32) x (128) = 4096 l sec = 4.096 msec
 Note that, in the above, Counter value = 0x80 = 128 in decimal. This value
determines the desired time delay. Also, the last two instructions, MOVLW and MOVWF,
account for the two instruction cycles, during which the increment operation is inhibited
before writing to the TMR0L register.

FIGURE 9.5 T0CON register with binary data 110101002

7 6 5 0
 TMR0ON T08BIT T0CS T0SE PSA TOPS2 TOPS1 TOPS0

1234

1 1 0 1 0 1 0 0

240 Microcontroller	Theory	and	Applications	with	the	PIC18F

Example 9.2 Using Timer0 in 16‑bit mode, write a PIC18F assembly language
program to obtain a time delay of 1 ms. Assume 8 MHz crystal, and a prescale value of
1:128.

Solution

 Since the timer works with divide by 4, crystal frequency = (8MHz)/4 = 2 MHz.
Instruction cycle clock period = (1/2 MHz) = 0.5 l sec.
 The bits in register T0CON of Figure 9.1 are as follows:
TMR0ON(bit 7) = 0, T08BIT (bit 6) = 0, T0CS (bit 5) = 0, PSA (bit 3) = 0, and
TOPS2 TOPS1 TOPS0 = 110 for a prescale value of 1:128. Hence, the T0CON register
will be initialized with 0x06.
 Time delay = Instruction cycle x Prescale value x Count
Hence, Count = (1 ms) / (0. 5 l sec x 128) = 15.625 which can be approximated to an
integer value of 16 (0x0010). The timer counts up from an initialized value to 0xFFFF,
and then rolls over (increments) to 0000H. The number of counts for rollover is (0xFFFF
‑ 0x0010) = 0xFFEF.
 Note that an extra cycle is needed for the rollover from 0xFFFF to 0x0000, and
the TMR0IF flag is then set to 1. Because of this extra cycle, the total number of counts
for rollover = 0xFFEF + 1 = 0xFFF0.
 The following PIC18F assembly language program will provide a time delay of 1
ms:

 INCLUDE <P18F4321.INC>
 MOVLW 0x06 ; Initialize T0CON
 MOVWF T0CON
 MOVLW 0xFF ; Initialize TMR0H first with 0xFF
 MOVWF TMR0H
 MOVLW 0xF0 ; Initialize TMR0L next
 MOVWF TMR0L
 BCF INTCON, TMR0IF ; Clear Timer0 flag bit
 BSF T0CON, TMR0ON ; Start Timer0
BACK BTFSS INTCON, TMR0IF ; Check Timer0 flag bit for 1
 GOTO BACK ; Wait in loop
 BCF T0CON, TMR0ON ; Stop Timer0
FINISH BRA FINISH ; Halt
 END

9.1.2 Timer1
	 The Timer1 can be used as a 16‑bit timer or a counter. It consists of two 8‑bit
registers, namely, TMR1H and TMR1L. The TMR1IF flag in PIR1 register goes to HIGH
when the Timer1 overflows from 0xFFFF to 0x0000. An extra cycle is required when the
Timer1 rolls over from 0xFFFF to 0x0000.
 Timer1 is controlled through the T1CON Control register (Figure 9.6). It also
contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled
by setting or clearing the TMR1ON (bit 0 of T1CON) control bit.

242 Microcontroller	Theory	and	Applications	with	the	PIC18F

Timer1 Interrupt Enable bit, TMR1IE (bit 0 of PIE1), shown in Figure 9.8. The other bits
in the PIR1 and PIE1 registers contain the individual flag and enable bits for the peripheral
interrupts. The interrupt address vector is 0x0008 upon hardware reset.

Example 9.3 Write a PIC18F assembly language program to provide a delay of 1
msec using Timer1 with an internal clock of 4 MHz. Use 16‑bit mode of Timer1 and the
prescaler value of 1:4.

Solution

For 4 MHz clock, each instruction cycle = 4 x (1/4 MHz) = 1 l sec
Total instruction cycles for 1 msec delay = (1 x 10‑3/10‑6) = 1000

FIGURE 9.7 PIR1 (Peripheral Interrupt Request) Register1

bit 7 PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit
1 = A read or a write operation has taken place (must be cleared in software)
0 = No read or write has occurred

bit 6 ADIF: A/D Converter Interrupt Flag bit
1 = An A/D conversion completed (must be cleared in software),
0 = The A/D conversion is not complete

bit 5 RCIF: EUSART Receive Interrupt Flag bit
1 = The EUSART receive buffer, RCREG, is full (cleared when RCREG is read)
0 = The EUSART receive buffer is empty

bit 4 TXIF: EUSART Transmit Interrupt Flag bit
1 = The EUSART transmit buffer, TXREG, is empty (cleared when TXREG is written)
0 = The EUSART transmit buffer is full

bit 3 SSPIF: Master Synchronous Serial Port Interrupt Flag bit
1 = The transmission/reception is complete (must be cleared in software)
0 = Waiting to transmit/receive

bit 2 CCP1IF: CCP1 Interrupt Flag bit
Capture mode:
1 = A TMR1 (or TMR3) register capture occurred (must be cleared in software),
0 = No TMR1 (or TMR3) register capture occurred
Compare mode:
1 = A TMR1 (or TMR3) register compare match occurred (must be cleared in software)
0 = No TMR1 (or TMR3) register compare match occurred
PWM mode:
Unused in this mode.

bit 1 TMR2IF: TMR2-to-PR2 Match Interrupt Flag bit
1 = TMR2-to-PR2 match occurred (must be cleared in software), 0 = No TMR2-to-PR2 match occurred

bit 0 TMR1IF: TMR1 Overflow Interrupt Flag bit,
1 = TMR1 register overflowed (must be cleared in software)
0 = TMR1 register did not overflow

7 6 5 01234
PSPI F ADIF RCIF TXIF SSPI F CCP1I F TMR2IF TMR1IF PIR1

PIC18F	Hardware	and	Interfacing:	Part2	 243

With the prescaler value of 1:4, instruction cycles = 1000 / 4 = 250
Number of counts for rollover = 6553510 ‑ 25010 = 6528510 = 0xFF05
An extra cycle is required for rollover from 0xFFFF to 0x0000 which sets the TMR1IF to
1.
Hence, total number of counts = 0xFF05 + 1 = 0xFF06
Therefore, TMR1H must be loaded with 0xFF, and TMR1L with 0x06.
The PIC18F assembly language program for one msec delay is provided below:
 INCLUDE <P18F4321.INC>
 MOVLW 0xC0 ; 16‑bit mode, 1:4 prescaler, Timer1 OFF
 MOVWF T1CON ; Load into T1CON register
 MOVLW 0xFF ; Initialize TMR1H with 0xFF
 MOVWF TMR1H

FIGURE 9.8 PIE1 (Peripheral Interrupt Enable) Register 1

bit 7 PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit
1 = Enables the PSP read/write interrupt
0 = Disables the PSP read/write interrupt

bit 6 ADIE: A/D Converter Interrupt Enable bit
1 = Enables the A/D interrupt
0 = Disables the A/D interrupt

bit 5 RCIE: EUSART Receive Interrupt Enable bit
1 = Enables the EUSART receive interrupt
0 = Disables the EUSART receive interrupt

bit 4 TXIE: EUSART Transmit Interrupt Enable bit
1 = Enables the EUSART transmit interrupt
0 = Disables the EUSART transmit interrupt

bit 3 SSPIE: Master Synchronous Serial Port Interrupt Enable bit
1 = Enables the MSSP interrupt
0 = Disables the MSSP interrupt

bit 2 CCP1IE: CCP1 Interrupt Enable bit
1 = Enables the CCP1 interrupt
0 = Disables the CCP1 interrupt

bit 1 TMR2IE: TMR2-to-PR2 Match Interrupt Enable bit
1 = Enables the TMR2-to-PR2 match interrupt
0 = Disables the TMR2-to-PR2 match interrupt

bit 0 TMR1IE: TMR1 Overflow Interrupt Enable bit
1 = Enables the TMR1 overflow interrupt
0 = Disables the TMR1 overflow interrupt

7 6 5 01234
PSPI E ADIE RCIE TXIE SSPI E CCP1I E TMR2IE TMR1IE PIE1

244	 Microcontroller Theory and Applications with the PIC18F

	 	 MOVLW	 0x06	 ;	Initialize	TMR1L	with	0x06
	 	 MOVWF	 TMR1L
	 	 BCF	 PIR1,	TMR1IF	 ;	Clear	Timer1	overflow	flag	in	PIR1
	 	 BSF	 T1CON,	TMR10N	 ;	Start	timer
	 	 BSF	 T1CON,	TMR1ON
BACK	 	 BTFSS	 PIR1,	TMR1IF	 ;	If	TMR1IF=1,	skip	next	instruction	to	halt
	 	 BCF	 T1CON,	TMR10N	 ;	Stop	timer
	 	 GOTO	 BACK
HERE	 	 BRA	 HERE	 ;	Halt
	 	 END

	 Note	that	external	loop	can	be	used	with	the	above	1	msec	delay	routine	as	the	
inner	loop	to	obtain	higher	time	delays.

9.1.3	 Timer2
	 Timer2		contains	an	8‑bit	timer	register	and	8‑bit	period	register	(TMR2	and	PR2).	
The	Timer2	can	only	be	programmed	as	a	timer	(not	as	a	counter)	with		prescale	values	of		
1:1,	1:4,	and	1:16,	and	postscale	values	of		1:1	through	1:16.
	 The	module	is	controlled	through	the	T2CON	register	shown	in	Figure	9.9.	The	
T2CON	register	enables	or	disables	the	timer	and	configures	the	prescaler	and	postscaler.	
Timer2	can	be	shut	off	by	clearing	control	bit,	TMR2ON	(bit	2	of	T2CON),	to	minimize	
power	consumption.

Timer2	Operation	 In	normal	operation,	the	PR2	register	is	initialized	to	a	specific	
value,	 and	 the	 8‑bit	 timer	 register	 (TMR2)	 is	 incremented	 from	 0x00	 on	 each	 internal	
clock	(FOSC/4).	A	4‑bit	counter/prescaler	on	the	clock	input	gives	direct	input,	divide‑by‑4	
and	 divide‑by‑16	 prescale	 options.	 These	 are	 selected	 by	 the	 prescaler	 control	 bits,	
T2CKPS1:T2CKPS0	(bits	1,	0	of	T2CON).		The	value	of	TMR2	is	compared	to	that	of	the	

FIGURE		9.9	 T2CON		(Timer2	Control)	Register

bit 7 Unimplemented: Read as ‘0’

bit 6-3 T2OUTPS3:T2OUTPS0: Timer2 Output Postscale Select bits
0000 = 1:1 postscale
0001 = 1:2 postscale
•
•
•
1111 = 1:16 postscale

bit 2 TMR2ON: Timer2 On bit
1 = Timer2 is on
0 = Timer2 is off

bit 1-0 T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits
00 = Prescaler is 1
01 = Prescaler is 4
1x = Prescaler is 16

7 6 5 01234
T2CON--------------- T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0

PIC18F Hardware and Interfacing: Part2 245	

8‑bit	period	register,	PR2,	on	each	clock	cycle.	When	the	two	values	match,	the	Timer2	
outputs	a	HIGH	on	 the	TMR2IF	flag	 in	 the	PIR1	register,	and	also	 	 resets	 the	value	of	
TMR2	to	0x00	on	the	next	cycle.The			output	frequency	is	divided	by	a	counter/postscale	
value	(1:1	to	1:16)	as	specified	in	the	T2CON	register.		Note	that		the	interrupt	is		generated	
and	the	TMR2IF	flag	bit	in	the	PIR1	register	(Figure	9.7)	is	set	to	1,	indicating	the	match	
between	TMR2	and	PR2	registers.	The	TMR2IF	bit	must	be	cleared		to	0	using	software.

Timer2 Interrupt Timer2	 can	 also	 generate	 an	 optional	 device	 interrupt.	 The	
Timer2	 output	 signal	 (TMR2‑to‑PR2	 match)	 provides	 the	 input	 for	 the	 4‑bit	 output	
counter/postscaler.	This	counter	generates	the	TMR2	match	interrupt	flag	which	is	latched	
in	TMR2IF	 (bit	 1	 of	 PIR1,	 Figure	 9.7).	The	 interrupt	 is	 enabled	 by	 setting	 the	TMR2	
Match	Interrupt	Enable	bit,	TMR2IE	(bit	1	of	PIE1,	Figure	9.8).	A	range	of	16	postscale	
options	(from	1:1	through	1:16	inclusive)	can	be	selected	with	the	postscaler	control	bits,	
T2OUTPS3:T2OUTPS0	(bits	6‑3	of	T2CON,	Figure	9.9).

Example 9.4 Write	a	PIC18F	assembly	language	program	using	Timer2	to	turn	on	an	
LED	connected	at		bit	0	of	Port	D		after		10	sec.	Assume		an	internal	clock	of		4	MHz,	a	
prescaler	value	of	1:16,	and	a	postscaler	value	of	1:16.

Solution

For	4	MHz	clock,	each	instruction	cycle	=	4	x		1/(4MHz)	=	1	l sec.	TMR2	is	incremented	
every	1	l sec.	When	the	TMR2	value	matches	with	the	value	in	PR2,	the	value	in	TMR2	is	
cleared	to	0	in	one	instruction	cycle.	Since	the	PR2	is	8‑bit	wide,	we	can	have	a	maximum	
PR2	value		of	255.	Let	us	calculate	the	delay	with	this	PR2	value.
Delay	=	(Instruction	cycle)	x	(Prescale	value)	x	(Postscale	value)	x	(PR2	value	+	1)	
										=	(1	l sec)	x	(16)	x	(16)	(255	+	1)	
										=	65.536	msec
	 Note	that,	in	the	above,	one	is	added	to	the	PR2	value		since	an	additional	clock		
is	needed	when	it	rolls	over	from		0xFF	to	0x00,	and	sets	the	TMR2IF	to	1.	
External	counter	value	for	10	sec	delay	using		65.536	msec	as	the	inner	loop	=	(10	sec)/
(65.536	msec),		which	is	approximately	153	in	decimal.

The	PIC18F	assembly	language	is	provided	below:

	 INCLUDE	 <P18F4321.INC>
EXT_CNT	 EQU		 0x50
	 BCF	 TRISD,	0	 ;	Configure	bit	0	of	PORT	D	as	an	output
	 BCF	 PORTD,	0	 ;	Turn	LED	OFF
	 MOVLW	 0x7A	 ;	1:16	prescaler,	1:16	postscaler	Timer1	off		
	 MOVWF	 T2CON	 ;	Load	into	T2CON	register
	 MOVLW	 0x00	 ;	Initialize	TMR2	with	0x00
	 MOVWF	 TMR2
	 MOVLW	 D’153’	 ;	Initialize	EXT_CNT	with	153
	 MOVWF	 EXT_CNT
LOOP	 MOVLW	 D’255’	 ;	Load	PR2	with	255
	 MOVWF	 PR2
	 BCF	 PIR1,	TMR2IF	 ;	Clear	Timer2	interrupt	flag	in	PIR1

250 Microcontroller	Theory	and	Applications	with	the	PIC18F

energy (electrical current, in this case) to another form (air pressure, in this example).

9.2.1 On‑chip A/D Converter
 The PIC 18F4321 contains an on‑chip A/D converter (or sometimes called ADC)
module with 13 channels (AN0‑AN12). An analog input can be selected as an input on
one of these 13 channels, and can be converted to a corresponding 10‑bit digital number.
Three control registers, namely, ADCON0 through ADCON2, are used to perform the
conversion.
 The ADCON0 register, shown in Figure 9.14, controls the operation of the A/D
module. The ADCON0 register can be programmed to select one of 13 channels using bits
CHS3 through CHS0 (bits 5 through 2). The conversion can be started by setting the GO/
DONE (bit 1) to 1. Once the conversion is completed, this bit is automatically cleared to 0
by the PIC18F4321.
 The ADCON1 register, shown in Figure 9.15, configures the functions of the
port pins as Analog (A) input or Digital (D) I/O. The table shown in Figure 9.15 shows
how the port bits are defined as analog or digital signals by programming the PCFG3
through PCFG0 bits (bits 3 through 0) of the ADCON1 register. This register can also be

FIGURE 9.14 ADCON0 (A/D Control Register0)

bit 7-6 Unimplemented: Read as ‘0’
bit 5-2 CHS3:CHS0: Analog Channel Select bits
0000 = Channel 0 (AN0)
0001 = Channel 1 (AN1)
0010 = Channel 2 (AN2)
0011 = Channel 3 (AN3)
0100 = Channel 4 (AN4)
0101 = Channel 5 (AN5)
0110 = Channel 6 (AN6)
0111 = Channel 7 (AN7)
1000 = Channel 8 (AN8)
1001 = Channel 9 (AN9)
1010 = Channel 10 (AN10)
1011 = Channel 11 (AN11)
1100 = Channel 12 (AN12)
1101 = Unimplemented
1110 = Unimplemented
1111 = Unimplemented

bit 1 GO/ : A/D Conversion Status bitDONE

When GO/DONE = 1:
1 = A/D conversion in progress
0 = A/D idle

bit 0 ADON: A/D On bit
1 = A/D converter module is enabled
0 = A/D converter module is disabled

7 6 5 01234
ADCON0--------------- CHS3 CHS2 CHS1 ADON------------ GO/DONECHS0

252 Microcontroller	Theory	and	Applications	with	the	PIC18F

 The following steps should be followed to perform an A/D conversion:

1. Configure the A/D module:
• Configure analog pins, voltage reference, and digital I/O (ADCON1)

• Select A/D input channel (ADCON0)

• Select A/D acquisition time (ADCON2)

• Select A/D conversion clock (ADCON2)

• Turn on A/D module (ADCON0)

2. Configure A/D interrupt (if desired):
• Clear ADIF bit (bit 6 of PIR1, Figure 9.7)

• Set ADIE bit (bit 6 of PIE1, Figure 9.8)

• Set GIE bit (bit 7) and PEIE (bit 6) of INTCON register, Figure 8.17(a)

• All interrupts including A/D Converter interrupt, branch to address 0x000008 (default)
upon power‑on reset. However, the A/D Converter interrupt can be configured as low
priority by setting the ADIP bit (bit 6) of the IPRI register (See Microchip manual) to
branch to address 0x000018. The instruction, BSF IPR1, ADIP can be used for this
purpose.

3. Wait for the required acquisition time (if required).
4. Start conversion:

FIGURE 9.16 ADCON2 (A/D Control Register 2)

bit 7 ADFM: A/D Result Format Select bit
1 = Right justified; 10-bits in lower 2 bits of ADRESH with upper 6 bits as 0’s and in 8 bits of ADRESL
0 = Left justified; 8-bit result in ADRESH and the contents of ADRESL are ignored. Used for 8-bit conversion.
bit 6 Unimplemented: Read as ‘0’
bit 5-3 ACQT2:ACQT0: A/D Acquisition Time Select bits
111 = 20 TAD
110 = 16 TAD
101 = 12 TAD
100 = 8 TAD
011 = 6 TAD
010 = 4 TAD
001 = 2 TAD
000 = 0 TAD(1)
bit 2-0 ADCS2:ADCS0: A/D Conversion Clock Select bits
111 = FRC (clock derived from A/D RC oscillator)(1)
110 = FOSC/64
101 = FOSC/16
100 = FOSC/4
011 = FRC (clock derived from A/D RC oscillator)(1)
010 = FOSC/32
001 = FOSC/8
000 = FOSC/2
Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is
added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

7 6 5 01234

ADCON2-------------ADFM ACQT2 ACQT1 ACQT0 ADCS2 ADCS1 ADCS0

254 Microcontroller	Theory	and	Applications	with	the	PIC18F

Example 9.5 A PIC18F4321 microcontroller shown in Figure 9.18 is used to
implement a voltmeter to measure voltage in the range 0 to 5 V and display the result in two
decimal digits: one integer part and one fractional part. Using polled I/O, write a PIC18F
assemble language program to accomplish this.

Solution

 In order to design the voltmeter, the PIC18F4321 on‑chip A/D converter will be
used. Three registers, ADCON0‑ADCON2, need to be configured. In ADCON0, bit 0 of
PORT A (RA0/AN0) is designated as the analog signal to be converted. Hence, CHS3‑
CHS0 bits (bits 5‑2) are programmed as 0000 to select channel 0 (AN0). The ADCON0
register is also used to enable the A/D, start the A/D, and then check the “end of conversion”
bit. In the PIC18F assembly language program provided below, the ADCON0 is loaded
with 0x01 which will select AN0, and enable A/D.
 The reference voltages are chosen by programming the ADCON1 register.
In this example, VDD (by clearing bit 4 of of ADCON1 to 0), and VSS (by clearing bit
5 of ADCON1 to 0) will be used. Note that VDD and VSS are already connected to the
PIC18F4321. The ADCON1 register is also used to configure AN0 (bit 0 of Port A) as an
analog input by writing 1101 (13 decimal in Figure 9.15) at PCFG3‑PCFG0 (bits 3‑0 of
ADCON1). Note that there are several choices to configure AN0 as an analog input. In the
program, the ADCON1 is loaded with 0x0D which will select VSS and VDD as reference
voltage sources, and AN0 as analog input.
 In the program, the ADCON2 is loaded with 0x29 which will provide the 8‑bit
result left justified (when 8 bits are obtained from 10 bits, the Lower two bits in ADRESL
are discarded), select 12 TAD (requires at least 11 TAD for 10‑bit conversion), and select
Fosc/8.
 The ADCON2 is used to set up the acquisition time, conversion clock, and, also,
if the result is to be left or right justified. In this example, 8‑bit result is assumed. The A/D
result is configured as left justified, and, therefore, the 8‑bit register ADRESH will contain
the result. The contents of ADRESL are ignored.
 Note that the maximum decimal value that can be accommodated in 8 bits of

1
Port C

0

2
3

Port D

RA0 AN0

Analog signal
(0-5V)

PIC18F4321

0
1

2
3

a-g7

a-g

7

7447

7447

D
C

B
A

D
C
B
A

Common anode
7-segment displays

FIGURE 9.18 Figure for Example 9.5

PIC18F	Hardware	and	Interfacing:	Part2	 255

ADRESH is 25510 (FF16). Hence, the maximum voltage of 5 V will be equivalent to 25510.
This means that 1 volt = 51 (decimal). The display (D) in decimal is given by

D = 5 × (input/255)

= input/51

=
Integer part
quotient+ remainder

 This gives the integer part. The fractional part in decimal is

F = (remainder/51)×10

 (remainder)/5
 For example, suppose that the decimal equivalent of the 8‑bit output of A/D is
200.

D = 200/51 quotient = 3, remainder = 47

integer part = 3

fractional part,F = 47/5 = 9

 Therefore, the display will show 3.9 V.
 From these equations, the final result will be in BCD. Both integer and fractional
parts of the result will be output to two 7447s (BCD to seven‑segment decoder) in order to
display them on two seven‑segment displays arranged in a row, as shown in Figure 9.18.
The PIC18F assembly language program for the voltmeter is provided below:

 INCLUDE <P18F4321.INC>
D0 EQU 0x30 ;Contains data for right (fractional) 7‑seg
D1 EQU 0x31 ;Contains data for left (integer) 7‑seg
ADCONRESULT EQU 0x34 ;Contains 8‑bit A/D result
 ORG 0x100 ;Starting address of the program
 MOVLW 0x12 ;Initialize STKPTR to 0x12 (arbitrary value)
 MOVWF STKPTR ;Since subroutines are used
 CLRF TRISC ;Configure PortC as output
 CLRF TRISD ;Configure PortD as output
 MOVLW 0x01
 MOVWF ADCON0 ;Select AN0 for input and enable ADC
 MOVLW 0x0D
 MOVWF ADCON1 ;Select VDD and VSS as reference
 ;voltages and AN0 as analog input.
 MOVLW 0x29
 MOVWF ADCON2 ;Select left justified, 12TAD and Fosc/8
START BSF ADCON0, GO ;Start A/D conversion
INCONV BTFSC ADCON0, DONE ;Wait until A/D conversion is done
 BRA INCONV

256 Microcontroller	Theory	and	Applications	with	the	PIC18F

 MOVFF ADRESH,ADCONRESULT ;Move ADRESH of result into
 ;ADCONRESULT register
 CALL DIVIDE ;Call the divide subroutine
 CALL DISPLAY ;Call display subroutine
 BRA START
DIVIDE CLRF D0 ;Clears D0
 CLRF D1 ;Clears D1
 MOVLW D’51’ ;#1 Load 51 into WREG
EVEN CPFSEQ ADCONRESULT ;#2
 BRA QUOTIENT ;#3
 INCF D1, F ;#4
 SUBWF ADCONRESULT, F ;#5
QUOTIENT CPFSGT ADCONRESULT ;#6 Checks if ADCONRESULT
 ;still greater than 51
 BRA DECIMAL ;#7
 INCF D1, F ;#8 Increment D1 for each time
 ;ADCONRESULT is greater
 ;than 51
 SUBWF ADCONRESULT, F ;#9 Subtract 51 from
 ;ADCONRESULT
 BRA EVEN ;#10
DECIMAL MOVLW 0x05 ;#11
REMAINDER CPFSGT ADCONRESULT ;#12 Checks if ADCONRESULT
 ;greater than 5
 BRA DIVDONE ;#13
 INCF D0, F ;#14 Increment D0
 SUBWF ADCONRESULT, F ;#15 Subtract 5
 ;from ADCONRESULT
 BRA REMAINDER
DIVDONE RETURN ;#16
DISPLAY MOVFF D1, PORTC ;#17 Output D1 on integer 7‑seg
 MOVFF D0, PORTD ;#18 Output D0 on fractional 7‑seg
 RETURN
 END

 In the above, since the PIC18F does not have any unsigned division
instruction, a subroutine called DIVIDE is written to perform unsigned division using
repeated subtraction. In the DIVIDE subroutine, the output of the A/D contained in the
ADCONRESULT register is subtracted by 51. Each time the subtraction result is greater
than 51, the contents of register D1 (address 0x31) is incremented by one, this will yield
the integer part of the answer. Once the contents of the ADCONRESULT reaches a value
below 51, the remainder part of the answer is determined. This is done by subtracting the
number in ADCONRESULT subtracted by 5. Each time the subtraction result is greater
than 5, register D0 (address 0x30) is incremented by one. Finally, the integer value is
placed in D1 and the remainder part is placed in D0. Now the only task left is to display the
result on the seven‑segment display.
 The # symbol along with a number in the comment field is used in some of the lines
in the above program in order to explain the program logic. Line#1 moves 51 (decimal)

PIC18F	Hardware	and	Interfacing:	Part2	 265

 Write a PIC18F assembly language at 0x70 for the master PIC18F4321 that
will configure PORTB and PORTC, initialize STKPTR to 0x10, initialize SSPSTAT and
SSPCON1, input switches, and call a subroutine called SERIAL_WRITE to place this data
into its SSPBUF register.
 Also, write a PIC18F assembly language program at 0x100 for the slave
PIC18F4321 that will configure PORTC and PORTD, initialize SSPSTAT and SSPCON1
registers, input data from its SDI pin, places the data in the slave’s SSPBUF, and then
output to the LEDs.

Solution

 The PIC18F assembly language programs for the master PIC18F4321 and the
slave PIC18F4321 in Figure 9.24 are written using the following steps as the guidelines:

Master PIC18F4321

1. Configure PORTB as input and SD0 and SCK as outputs.
2. Select CKE (SPI clock select bit) using the master’s SSPSTAT register.
3. Enable serial functions, select master mode with clock such as fosc/4 using the

SSPCON1 register.
4. Input switches into WREG, and then CALL a subroutine called SERIAL_WRITE

to move switch data into the master’s Serial Buffer register (SSPBUF).
5. Wait in a loop, and check whether BF bit in the master’s SSPSTAT register is 1,

indicating completion of transmission.
6. As soon as BF = 1, the program returns from the subroutine, and branches to Step

4.

Slave PIC18F4321

1. Initialize SDI and SCK pins as inputs, and PORTD as output. Note that the SCK
is controlled by the master, and, therefore, it is configured as an input by the slave.

2. Select CKE same as the master CKE (high to low clock in this example) using the
slave’s SSPSTAT register.

3. Enable serial functions, disable the SS pin, and select slave mode using the slave’s
SSPCON1 register. Note that the SS pin is used by multiple slaves.

4. Wait in a loop, and check whether BF = 1 in the slave’s SSPSTAT register.
5. If BF = 0; wait. However, if BF = 1, output the contents of the slave’s Serial Buffer

register (SSPBUF) to slave’s PORTD.
6. Go to Step 5.

 Figure 9.24 provides the PIC18F assembly language programs for the master and
the slave microcontrollers.
 Let us now explain the program of Figure 9.24. First, consider the master
PIC18F4321. The CKE bit (bit 6) in the SSPSTAT is set to one so that data transmission
will occur from an active to an idle (HIGH to LOW) clock. Next, the register SSPCON1
is configured in order to set up the parameters for serial transmission. The bit SSPEN (bit 5)
in the SSPCON1 is set to HIGH in order to enable the three pins, namely, SCK, SDO, and
SDI. Writing 0000 to bits 3‑0 of the SSPCON1 register define the master mode operation
with a clock of Fosc/4.

266 Microcontroller	Theory	and	Applications	with	the	PIC18F

 The following PIC18F instructions accomplish this:

 MOVLW 0x20
 MOVWF SSPCON1 ;Enable serial functions and set to master and Fosc/4

;Program for the master PIC18F4321
 INCLUDE <P18F4321.INC>
 ORG 0x00 ;Reset
 GOTO MAIN
 ORG 0x70
MAIN BCF TRISC, RC5 ;Configure RC5/SD0 as output
 BCF TRISC, RC3 ;Configure RC3/SCK as output
 MOVLW 0x0F
 MOVWF ADCON1 ;Make PORTB digital input
 MOVLW 0x10 ;Initialize STKPTR to 0x10 since subroutine
 MOVWF STKPTR ;called SERIAL_WRITE is used in the
 ;program
 MOVLW 0x40
 MOVWF SSPSTAT ;Set data transmission on high to low clock
 MOVLW 0x20
 MOVWF SSPCON1 ;Enable serial functions and set to
 ; master device, and Fosc/4
GET_DATA MOVF PORTB,W ;Move switch value to WREG
 CALL SERIAL_WRITE ;Call SERIAL_WRITE function
 BRA GET_DATA
SERIAL_WRITE MOVWF SSPBUF ;Move switch value to serial buffer
WAIT BTFSS SSPSTAT, BF ;Wait until transmission is complete
 BRA WAIT
 RETURN
 END
; Program for the slave PIC18F4321
 INCLUDE <P18F4321.INC>
 ORG 0x00 ;Reset
 GOTO MAIN
 ORG 0x100
MAIN BSF TRISC, RC4 ;Configure RC4/SDI as input
 BSF TRISC, RC3 ;Configure RC3/SCK as input
 CLRF TRISD ;Configure PORTD as output
 MOVLW 0x40
 MOVWF SSPSTAT ;Set data transmission on high to low clock
 MOVLW 0x25
 MOVWF SSPCON1 ;Enable serial functions and set to the slave
WAIT BTFSS SSPSTAT, BF ;Wait until transmission is complete (BF=1)
 BRA WAIT ;If BF=0, wait
 MOVFF SSPBUF, PORTD ;Output serial buffer data to PORTD LEDs
 BRA WAIT
 END

FIGURE 9.24 PIC18F assembly language program for Example 9.7

PIC18F	Hardware	and	Interfacing:	Part2	 269

is determined by the Timer to CCP enable bits in the T3CON register (Figure 9.10). Both
modules may be active at any given time and may share the same timer resource if they are
configured to operate in the same mode (Capture, Compare, or PWM) at the same time.
The assignment of the timers is summarized in Table 9.1.

9.4.3 PIC18F4321 Capture Mode
 In Capture mode, the CCPRxH:CCPRxL register pair captures the 16‑bit value
of the TMR1 or TMR3 registers when an event (such as every rising or falling edge)
occurs on the corresponding CCPx pin. The event is selected by the mode select bits,
CCPxM3:CCPxM0 (bits 3‑0 of CCPxCON, Figure 9.25). When a capture is made, the
interrupt request flag bit, CCPxIF (PIR1 register in Figure 9.7), is set; it must be cleared
in software. If another capture occurs before the value in register CCPRx is read, the old
captured value is overwritten by the new captured value.
 In Capture mode, the appropriate CCPx pin (RC2/CCP1/P1A, pin 17 or RC1/
T1OSI/CCP2, pin 16) of the PIC18F4321 should be configured as an input by setting the
corresponding TRIS direction bit. Also, the timers that are to be used with the capture
feature (Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter
mode. In Asynchronous Counter mode, the capture operation will not work. The timer to
be used with each CCP module is selected in the T3CON register (Figure 9.10).
 When the Capture mode is changed, a false capture interrupt may be generated.
The user should keep the CCPxIE interrupt enable bit clear to avoid false interrupts. The
interrupt flag bit, CCPxIF, should also be cleared following any such change in operating
mode.
 In summary, the following steps can be used to program the PIC18F4321 in
capture mode to determine the period of a waveform (assume CCP1; similar procedure for
CCP2):

1. Load the CCP1CON register (Figure 9.25) with appropriate data for capture mode.
2. Configure RC2/CCP1/P1A as an input pin using the TRISC register.
3. Select Timer1 and/or Timer3 by loading appropriate data respectively into T1CON

register (Figure 9.6) and/or T3CON register (Figure 9.10).
4. Clear the interrupt request flag, CCP1IF for CCP1 (Register PIR1 of Figure 9.7)

or CCP2IF for CCP2 (Register PIR2 of Figure 9.11), after a capture so that the
next capture can be made.

5. Clear the interrupt enable bit, CCP1IE for CCP1 (Register PIE1 of Figure 9.8) or
CCP2IE for CCP2 (Register PIE2 of Figure 9.12), to avoid false interrupts.

6. Clear CCPR1H and CCPR1L to 0.
7. Check CCP1IF flag in PIR1 and wait in a loop until CCP1IF is 1 for the first rising

edge. As soon as the first rising edge is detected, start Timer1 (or Timer3).
8. Save CCPR1H and CCPR1L in data memory such as REGX and REGY.
9. Clear CCP1IF to 0.
10. Check CCP1IF flag in PIR1 and wait in a loop until CCP1IF is 1 for the second

rising edge. As soon as the second rising edge is detected, stop Timer1 (or Timer3).

TABLE 9.1 Assignment of timers for the PIC18F4321 CCP mode

Timer2PWM mode
Timer1 or Timer3Compare mode
Timer1 or Timer3Capture mode

Timer CCP mode selected

270 Microcontroller	Theory	and	Applications	with	the	PIC18F

11. Disable capture by clearing CCP1CON register.
12. Perform 16‑bit subtraction: [CCPR1H:CCPR1L] ‑ [REGX:REGY].
13. 16‑bit result in register pair [REGX:REGY] will contain the period of the incoming

waveform in terms of the number of clock cycles.
 Typical applications of the capture mode include:
‑ measurement of the pulse width of an unknown periodic signal by capturing the
subsequent leading (rising) and trailing (falling) edges of a pulse.
‑ measurement of the period of a signal by capturing two subsequent leading or trailing
edges.
‑ measurement of duty cycle . Note that the duty cycle is defined as (t1/T) x 100 where t1
is the fraction of the time the signal is HIGH in a period T.

Example 9.8 Assume PIC18F4321. Write a PIC18F assembly language program at
address 0x200 to measure the period (in terms of the number of clock cycles) of an
incoming periodic waveform connected at RC2/CCP1/P1A pin. Store result in registers
0x21 (high byte) and 0x20 (low byte). Use Timer3, and capture mode of CCP1.

Solution

 The PIC18F assembly language program is provided below:
 INCLUDE <P18F4321.INC>
 ORG 0x200
 MOVLW B’00000101’ ;Select capture mode rising edge
 MOVWF CCP1CON
 BSF TRISC, CCP1 ;Configure RC2/CCP1/P1A pin as input
 MOVLW B’01000000’ ;Select TIMER3 as clock source for capture
 MOVWF T3CON ;Select TIMER3 internal clock, 1:1 prescale
 ;TIMER3 OFF
 BCF PIE1, CCP1IE ;Disable CCP1IE to avoid false interrupt
 MOVLW 0X00
 MOVWF CCPR1H ;Clear CCPR1H to 0
 MOVWF CCPR1L ;Clear CCPR1L to 0
 BCF PIR1, CCP1IF ;Clear CCP1IF
WAIT BTFSS PIR1, CCP1IF ;Wait for the first rising edge
 GOTO WAIT
 BSF T3CON, TMR3ON ;Turn Timer3 ON
 MOVFF CCPR1L, 0x20 ;Save CCPR1L in 0x20 at 1st rising edge
 MOVFF CCPR1H, 0x21 ;Save CCPR1H in 0x21 at 1st rising edge
 BCF PIR1, CCP1IF ;Clear CCP1IF
WAIT1 BTFSS PIR1, CCP1IF ;Wait for next rising edge
 GOTO WAIT1
 BCF T3CON, TMR3ON ;Turn OFF Timer3
 CLRF CCP1CON ;Disable capture
 MOVF 0x20, W ;Move 1st low byte to WREG
 SUBWF CCPR1L, F ;Subtract WREG from 2nd low byte
 ;Result in 0x20
 MOVF 0x21, W ;Move 1st High byte to WREG
 SUBWFB CCPR1H, F ;Subtract WREG with borrow

272 Microcontroller	Theory	and	Applications	with	the	PIC18F

9. As soon as match occurs (CCP1IF or CCP2IF HIGH), stop Timer1 (or Timer3).

Example 9. 9 Assume PIC18F4321 with an internal crystal clock of 20 MHz. Write a
PIC18F assembly language program at address 0x100 that will toggle the RC2/CCP1/P1A
pin after a time delay of 10 msec. Use Timer3, and compare mode of CCP1.

Solution

 With 20 MHz internal crystal, Fosc = 20 MHz. Since Timer3 uses Fosc/4,
Timer clock frequency = Fosc/4 = 5 MHz. Hence, clock period of Timer3 = 0.2 l sec.
Counter value = (10 msec)/(0.2 l sec) = 50010 = 01F416. Hence, CCPR1H :CCPR1L should
be loaded with 0x01F4 for the PIC18F4321 compare mode.
 The PIC18F assembly language program is provided below:

 INCLUDE <P18F4321.INC>
 ORG 0x100
 MOVLW 0x02 ;Select compare mode, toggle CCP1 pin
 MOVWF CCP1CON ;on match
 BCF TRISC, CCP1 ;Configure CCP1 pin as output
 MOVLW 0x40 ;Select TIMER3 as clock source for
 ;compare
 MOVWF T3CON ;Select TIMER3 internal clock, 1:1 prescale
 ;TIMER3 OFF
 MOVLW 0x01 ;Load CCPR1H with 0x01
 MOVWF CCPR1H
 MOVLW 0xF4 ;Load CCPR1L with 0xF4
 MOVWF CCPR1L
 CLRF TMR3H ;Initialize TMR3H to 0
 CLRF TMR3L ;Initialize TMR3L to 0
 BCF PIR1, CCP1IF ;Clear CCP1IF
 BSF T3CON, TMR3ON ;Start Timer3
WAIT BTFSS PIR1, CCP1IF ;Wait in a loop until CCP1IF is 1. CCP1 pin
 BRA WAIT ;toggles when match occurs
 BCF T3CON, TMR3ON ;Stop Timer3
HERE BRA HERE ; Halt
 END

9.4.5 PIC18F4321 PWM (Pulse Width Modulation) Mode
	 In PWM mode, the CCPx pin can be configured as an output to generate a periodic
waveform with a specified frequency, and a 10‑bit duty cycle. Timer2 is used for the PWM
mode. The PWM period is specified by writing to the 8‑bit PR2 register in the CCP module.
Note that PWM waveform can be generated using timers. However, it is easier to produce
PWM waveform using the CCPx module.

 The PWM period is specified by writing to the PR2 register. From the data sheet,
the PWM period can be calculated using the following formula:
PWM Period = [(PR2) + 1] x 4 x Tosc x (TMR2 Prescale Value)
where Tosc = (1/Fosc), Fosc is the crystal frequency, and TMR2 Prescale Value can be

PIC18F	Hardware	and	Interfacing:	Part2	 273

initialized as 1, 4, or 16 using the T2CON register.
Hence, PR2 = [(Fosc)/(4 x Fpwm x TMR2 Prescale Value)] ‑ 1
Note that PWM frequency (Fpwm) is defined as 1/[PWM period].
 The PWM duty cycle is specified by writing to the CCPRxL register and to the
CCPxCON<5:4> bits. Up to 10‑bit resolution is available. The CCPRxL contains the eight
most significant bits, and the CCPxCON (bits 5 and 4) contains the two least significant
bits. This 10‑bit value is represented by CCPRxL:CCPxCON (bits 5 and 4). The following
equation is used to calculate the PWM duty cycle in time:
 PWM Duty Cycle = (CCPRXL:CCPXCON<5:4>) x Tosc x (TMR2 Prescale
Value).
 As mentioned before, the duty cycle is defined as the percentage of the time the
pulse is high in a clock period. Note that the upper eight bits in the CCPRxL are the decimal
part of the duty cycle while bits 5 and 4 of the CCPxCON register contain the fractional
part of the duty cycle. For example, consider 25% duty cycle. Since duty cycle is a fraction
of the PR2 register value, decimal value for the duty cycle with a PR2 value of 30 is 7.5
(0.25 x 30). Hence, the 8‑bit binary number 000001112 must be loaded into CCPRxL, and
102(0.510) must be loaded for DCxB1 and DCxB0 bits in the CCPxCON register (Figure
9.25).
 The CCP1 PWM output waveform with the specified duty cycle in
CCPR1L:CCPICON register is generated as follows: CCPR1L is copied to CCPR1H. Two
bits of CCP1CON <5:4> are latched internally to provide 10‑bit duty cycle. Also, 8‑bit
TMR2 value is concatenated with 2‑bit internal latch to create 10‑bit duty cycle. After
TMR2 is started from 0, the CCP1 pin goes to HIGH to indicate the start of a cycle. The
CCPR1H and 2‑bit latch values are compared with TMR2 and 2‑bit latch values for a match.
As soon as the match occurs, the CCP1 pin goes to LOW. At this point, the waveform
will be HIGH for the duration specified by the duty cycle. TMR2 keeps incrementing. As
soon as the contents of TMR2 and PR2 match, CCP1 pin is driven to HIGH, and TMR2
is cleared to 0. This competes a cycle, and another cycle is then started. The same proess
continues for subsequent cycles.
 The following procedure should be followed when configuring the CCP module
for PWM operation:

1. The PR2 register should be initialized with the PWM period.
2. Load the PWM duty cycle by writing to the CCPRxL register for higher eight bits,

and bits 5, 4 of CCPxCON (Figure 9.25) for lower two bits.
3. Make the CCPx pin an output by clearing the appropriate TRIS bit.
4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
5. Initialize TMR2 register to 0.
6. Set up the CCPx module for PWM operation, and turn Timer2 ON.

Example 9.10 Write a PIC18F assembly language program at 0x100 to generate a 4
KHz PWM with a 50% duty cycle on the RC2/CCP1/P1A pin of the PIC18F4321. Assume
4 MHz crystal.

274 Microcontroller	Theory	and	Applications	with	the	PIC18F

Solution

PR2 = [(Fosc)/(4 x Fpwm x TMR2 Prescale Value)] ‑ 1
PR2 = [(4 MHz)/(4 x 4 KHz x 1)] ‑ 1 assuming Prescale value of 1
PR2 = 249. With 50% duty cycle, duration for HIGH PWM waveform in a cycle = 0.5 x
249 = 124.5. Hence, the CCPR1L register will be loaded with 124, and bits DC1B1:DC0B0
(CCP1CON register) with 10 (binary).

The PIC18F assembly language program is provided below:
 	 	 	
	 INCLUDE <P18F4321.INC>
 ORG 0x100
 MOVLW D’249’ ;Initialize PR2 register
 MOVWF PR2
 MOVLW D’124’ ;Initialize CCPR1L
 MOVWF CCPR1L
 MOVLW 0x20 ;CCP1 OFF,
 MOVWF CCP1CON ;DC1B1:DC0B0=10
 BCF TRISC, CCP1 ;Configure CCP1 pin as output
 CLRF T2CON ;1:1 prescale, Timer2 OFF
 MOVLW 0x2C ;PWM mode
 MOVWF CCP1CON
 CLRF TMR2 ;Clear Timer2 to 0
BACK BCF PIR1, TMR2IF ;Clear TMR2IF to 0
 BSF T2CON, TMR2ON ;Turn Timer2 ON
WAIT BTFSS PIR1, TMR2IF ;Wait until TMR2IF is HIGH
 GOTO WAIT
 BRA BACK
 END

9.5 DC Motor Control

Typical applications of the PWM mode include DC motor control. The speed of a DC
motor is directly proportional to the driving voltage. The speed of a motor increases as
the voltage is increased. In earlier days, voltage regulator circuits were used to control the
speed of a DC motor. But voltage regulators dissipate lots of power. Hence, the PIC18F
in the PWM mode is used to control the speed of a DC motor. In this scheme, power
dissipation is significantly reduced by turning the driving voltage to the motor ON and
OFF. The speed of the motor is a direct function of the ON time divided by the OFF time.
 Sometimes, it is desirable to change direction of rotation of the DC motor. This
can be accomplished by reversing the direction of the motor via software by interfacing a
device called an H‑Bridge to an I/O port of the PIC18F. Note that the speed of the motor, on
the other hand, can be controlled using the PWM mode, and by connecting the DC motor
to a PWM pin such as the PIC18F CCP1. The basic concepts associated with the DC motor
control using the PIC18F4321’s PWM mode will be illustrated in Example 9.11.
 Microcontrollers such as the PIC18F4321 are not capable of outputting the
required large current and voltage to control a typical DC motor. Hence, a driver such as
the CNY17F Optocoupler is needed to amplify the current and voltage provided by the

PIC18F	Hardware	and	Interfacing:	Part2	 275

PIC18F’s output, and provide appropriate levels for the DC motor. One of the many useful
applications for employing a PWM signal is its ability to control a mechanical device, such
as a motor.
 Note that the motor will run faster or slower based on the duty cycle of the PWM
signal. The motor runs faster as the duty cycle of the PWM signal at the CCPx pin is
increased. To illustrate this concept, two different duty cycles will be used in the following
example (Example 9.11).

Example 9.11 Figure 9.26 shows a simplified diagram interfacing the PIC18F4321 to
a DC motor via the CNY17F Optocoupler. The purpose of this example is to control the
speed of a DC motor by inputting two switches connected at bit 0 and bit 1 of PORTD. The
motor will run faster or slower based on the switch values (00 or 11), but will not provide
any measure of the exact RPM of the motor.
 When both switches are closed (00), a PWM signal at the CCP1 pin of the
PIC18F4321 with 50% duty cycle will be generated. When both switches are open (11), a
PWM signal at the CCP1 pin of the PIC18F4321 with 75% duty cycle will be generated.
Otherwise, the motor will stop, and the program will wait in a loop.
 If switches are closed (00), the motor will run using the 4 KHz PWM pulse of
Example 9.10 with 50% duty cycle. If both switches are open (11), the motor will run
using the same PWM pulse at a faster speed with a duty cycle of 75%. The program will
first perform initializations, and wait in a loop until the switches are 00 or 11.
Write a PIC18F assembly language program to accomplish this.

Solution

 The schematic of Figure 9.26 uses a CNY17F Optocoupler which serves two
purposes. The first purpose is to protect the PIC18F4321 microcontroller by isolating the
motor from the microcontroller. The second purpose the optocoupler serves is allowing the
user to take a 0‑5 V PWM signal and boost it to a 0‑12 V source, where any voltage could
be used that is safe for the optocoupler.
 From Example 9.10, PR2 = 249. With 50% duty cycle, duration during which
PWM is HIGH in a cycle = 0.5 x 249 = 124.5. Hence, the CCPR1L register will be loaded
with 124, and bits DC1B1:DC0B0 (CCP1CON register) with 102.
 With 75% duty cycle, duration during which PWM is HIGH in a cycle = 0.75 x 249
= 186.75. Hence, the CCPR1L register will be loaded with 186, and bits DC1B1:DC0B0
(CCP1CON register) with 112.

The PIC18F assembly language program is provided below:
 INCLUDE <P18F4321.INC>
 ORG 0x100
 MOVLW D’249’ ;Initialize PR2 register
 MOVWF PR2
 BCF TRISC, CCP1 ;Configure CCP1 pin as output
 BSF TRISD, RD0 ;Configure RD0 as an input bit
 BSF TRISD, RD1 ;Configure RD1 as an input bit
 CLRF T2CON ;1:1 prescale, Timer2 OFF
 MOVLW 0x3C ;PWM mode,DC1B1:DC0B0=11
 MOVWF CCP1CON

276	 Microcontroller Theory and Applications with the PIC18F

SWITCH	 BTFSC	 PORTD,	RD0	 ;If	switch0	is		LOW,	check	switch1
	 	 	 ;for	LOW
	 BRA	 SWITCH1	 ;If	switch0	is	HIGH,		branch	to		 	 	
	 	 	 ;check	switch1	for	HIGH	
	 BTFSC	 PORTD,	RD1	 ;If	both	switches	are	LOW,	branch	
	 	 	 ;to	DUTY50	and	generate
	 	 	 ;PWM	with	50%		duty	cycle;
	 BRA	 SWITCH	 ;else,	go	back	and	wait
	 	 	 ;Both	switches	are	HIGH,	go	to
	 	 	 ;75%	duty	cycle
	 BRA	 DUTY50	 ;Both	switches	LOW,	go	to	50%
	 	 	 ;duty	cycle
SWITCH1	 BTFSS	 PORTD,	RD1	 ;If	both	switches	are	HIGH,	branch		 	 	
	 	 	 ;to	DUTY75,	and	generate	PWM		 	 	
	 	 	 ;with	75%	duty	cycle;	 	 	 	
	 BRA	 SWITCH	 ;else,	go	back	and	wait
DUTY75	 MOVLW	 D’186’	 ;For	75%	duty	cycle	
	 MOVWF	 CCPR1L
	 MOVLW	 0x3C	 ;PWM	mode,DC1B1:DC0B0=11
	 MOVWF	 CCP1CON
	 BRA	 TIMER	
DUTY50	 MOVLW	 D’124’	 ;For	50%	duty	cycle
	 MOVWF	 CCPR1L
	 MOVLW	 0x2C	 ;PWM	mode,DC1B1:DC0B0=10
	 MOVWF	 CCP1CON	 ;Initialize	CCP1CON	 	 	
TIMER	 CLRF	 TMR2	 ;Clear	Timer2	to	0
BACK	 BCF	 PIR1,	TMR2IF	 ;Clear	TMR2IF	to	0
	 BSF	 T2CON,	TMR2ON	 ;Turn	Timer2	ON
WAIT	 BTFSS	 PIR1,	TMR2IF	 ;Wait	until	TMR2IF	is	HIGH	
	 BRA	 WAIT	 ;(end	of	period)
	 BRA	 SWITCH	 ;Repeat	to	initialize	and	read	switch			 	
	 	 	 ;inputs
	 END

PIC18F4321

PORTC

PORTD0-5V PWM

+5V

+12V

0.01uF

0-12V PWM

MOTOR

CNY17F
Optocoupler

+ 5V

CCP1
(pin 17)

 0

1K

1K

1k

1PORTD

+5V

FIGURE 9.26 Figure for Example 9.11

PIC18F	Hardware	and	Interfacing:	Part2	 277

Questions and Problems

9.1 Find the contents of T0CON register to program Timer0 in 8‑bit mode with 1:16
prescaler using the external clock, and incrementing on negative edge.

9.2 Write a PIC18F assembly language instruction sequence to initialize Timer0 as an
8‑bit timer to provide a time delay with a count of 100. Assume 4 MHz internal
clock with a prescaler value of 1:16.

9.3 Write a PIC18F assembly language program to generate a square wave with a
period of 4 ms on bit 0 of PORTC using a 4 MHz crystal. Use Timer0.

9.4 Write a PIC18F assembly language program to generate a square wave with a
period of 4 ms on bit 7 of PORTD using a 4 MHz crystal. Use Timer1.

9.5 Write a PIC18F assembly language program to turn an LED ON connected at
bit 0 of PORTC with a PR2 value of 200. Assume a 4 MHz crystal. Use TMR2
prescaler and postscaler values of 1:1.

9.6 Write a PIC18F assembly language program to generate a square wave on pin 3 of
PORTC with a 4 ms period using Timer3 in 16‑bit mode with a prescaler value of
1:8. Use a 4 MHz crystal.

9.7 Repeat Example 9.5 using A/D converter’s interrupt bit indicating completion of
conversion. Use addresses, and other parameters of your choice.

9.8 Design and develop hardware and software for a PIC18F4321‑based system
(Figure P9.8) that would measure, compute, and display the Root‑Mean‑Square
(RMS) value of a sinusoidal voltage. The system is required to:

1. Sample a 5 V (zero‑to‑peak voltage), 60 Hz sinusoidal voltage 128 times.

2. Digitize the sampled value using the on‑chip ADC of the PIC18F4321
along with its interrupt upon completion of conversion signal.

3, Compute the RMS value of the waveform using the formula,

 RMS Value = SQRT [
n1

N

(Xn
2) /N], where Xn’s are the samples, and N

FIGURE P9.8

PIC18F4321

ADC
Absolute
value
circuit

0-5V
(Peak)

278 Microcontroller	Theory	and	Applications	with	the	PIC18F

is the total number of samples. Display the RMS value on seven‑segment
displays.

 (a) Flowchart the problem.

 (b) Convert the flowchart to a PIC18F assembly language program.

9.9 Capacitance	meter. Consider the RC circuit of Figure P9.9. The voltage across the
capacitor is Vc (t) = k e −t/RC. In one‑time constant RC, this voltage is discharged to
the value k/e. For a specific value of R, value of the capacitor C = T/R, where T is
the time constant that can be counted by the PIC18F4321. Design the hardware and
software for the PIC18F4321 to charge a capacitor by using a pulse to a voltage of
your choice. The PIC18F4321 will then stop charging the capacitor, measure the
discharge time for one time constant, and compute the capacitor value.

 (a) Draw a hardware schematic.

 (b) Write a PIC18F assembly language program to
 accomplish the above.

9.10 Design a PIC18F4321‑based digital clock. The clock will display time in hours,
minutes, and seconds. Write a PIC18F assembly language program to accomplish
this.

9.11 Design a PIC18F4321‑based system to measure the power absorbed by a 2K
resistor (Figure P9.11). The system will input the voltage (V) across the 2K resistor,
convert it to an 8‑bit input using the PIC18F4321’s on‑chip A/D converter, and
then compute the power using V2/R. Write a PIC18F assembly language program
to accomplish this.

9.12 Design a PIC18F4321‑based system (Figure P9.12) as follows: The system will
drive two seven‑segment digits, and monitor two key switches. The system will
start displaying 00. If the increment key is pressed, it will increment the display by
one. Similarly, if the decrement key is pressed, the display will be decremented by

FIGURE P9.9

+

-
V

R

C Vc(t)
t

Vc(t)
k

k /e

T

+
-

5V

500 ohm

2K
+
V

FIGURE P9.11

280 Microcontroller	Theory	and	Applications	with	the	PIC18F

9.15 Assume PIC18F4321. Write a PIC18F assembly language program at address
0x200 that will measure the period of a periodic pulse train on the CCP1 pin using
the capture mode. The 16‑bit result will be performed in terms of the number
of internal (Fosc/4) clock cycles, and will be available in the TMR1H:TMR1L
register pair. Use 1:1 prescale value for Timer1.

9.16 Assume PIC18F4321. Write a PIC18F assembly language program at address
0x200 that will generate a square wave on the CCP1 pin using the Compare mode.
The square wave will have a period of 20 ms with a 50% duty cycle. Use Timer1
internal clock (Fosc/4 from XTAL) with 1:2 prescale value. Assume 4‑MHz
crystal.

9.17 Write a PIC18F assembly language program at 0x100 to generate a 16 KHz PWM
with a 75% duty cycle on the RC2/CCP1/P1A pin of the PIC18F4321. Assume 10
MHz crystal.

9.18 It is desired to change the speed of a DC motor by dynamically changing its pulse
width using a potentiometer connected at bit 0 of PORTB (Figure P9.18). Note that
the PWM duty cycle is controlled by the potentiometer. Write a PIC18F assembly
language program that will input the potentiometer voltage via the PIC18F4321’s
on‑chip A/D converter using interrupts, generate an 800‑Hz PWM waveform
on the CCP1 pin, and then change the speed of the motor as the potentiometer
voltage is varied.

 Assume 4MHz crystal and a TMR2 prescaler value of 16. Ignore fractional part of
the duty cycle.

PIC18F Hardware and Interfacing: Part2 281	

PIC18F4321

B0

C2 PORTC

AN12

+5V

(CCP1)

0-5V PWM

+5V

+12V

0-12V PWM

MOTOR 0.1uF

CNY17F
Optocoupler

FIGURE P9.18

284 Microcontroller	Theory	and	Applications	with	the	PIC18F

language. For example, a program written in C for a PIC18F microcontroller will run on
the HC12 microcontroller because both microcontrollers have a compiler to translate the C
language into their particular machine language; minor modifications are required for I/O
programs. C is a high‑level language that includes I/O instructions.
 Compilers for microprocessors normally provide inefficient machine codes
because of the general guidelines that must be followed for designing them. However,
modern C compilers for microcontrollers generate very tight and efficient codes. C is widely
used these days for writing programs for both real‑time and non‑real‑time applications
with microcontrollers. Real	time indicates that the task required by the application must be
completed before any other input to the program can occur that would change its operation.
 The C Programming language was developed by Dennis Ritchie of Bell Labs in
1972. C has become a very popular language for many engineers and scientists, primarily
because it is portable except for I/O and, however, can be used to write programs requiring
I/O operations with minor modifications. This means that a program written in C for the
PIC18F4321 will run on the Texas Instruments MSP430 with some modifications related
to I/O as long as C compilers for both microcontrollers are available.
 C is a general‑purpose programming language and is found in numerous
applications as follows:
• Systems Programming. Many operating systems (such as UNIX and its variant

LINUX), compilers, and assemblers are written in C. Note that an operating system
typically is included with the personal computer when it is purchased. The operating
system provides an interface between the user and the hardware by including a set of
commands to select and execute the software on the system.

• Computer‑Aided Design (CAD) Applications. CAD programs are written in C.
Typical tasks to be accomplished by a CAD program are logic synthesis and simulation.

• Numerical Computation. Software written in C is used to solve mathematical
problems such as solving linear system of equations and matrix inversion. Industry
standard MATLAB software is written in C.

• Other Applications. These include programs for printers and floppy disk controllers,
and digital control algorithms such as PI (Proportional Integral) and PID (Proportional
Integral Derivative) algorithms using microcontrollers.

 A C program may be viewed as a collection of functions. Execution of a C
program will always begin by a call to the function called “main.” This means that all C
programs should have its main program named as main. However, one can give any name
to other functions.
 A simple C program that prints “I wrote a C‑program” is
 /* First C‑program */
 # include <stdio.h>
 void main ()
 {
 printf (“I wrote a C‑program”) ;
 }

Basics of Programing the PIC18F Using C 289	

	 p	/	(p	/	q)	=	q	
	 Also,	the		above	statements	can	be	represented	in	compact	form	as:
	 	
	 y	^	=	x;
	 x	^	=	y;	
	 y	^	=	x;

Example 10.1 	Write	a		C	program	to	convert	a	16‑bit	number,	each	byte	containing	an	
ASCII	digit	into	a	packed		BCD	byte.	
Solution

#	include	 <p18f4321.h>
void	 main			()
					{
	 unsigned	char		a,	b,	c;
	 unsigned	char		addr1	=	0x32;
	 unsigned	char		addr2	=	0x31;
	 unsigned	char		addr3;
	 addr1	=	addr1	&		0x0f;	 	 //	Mask		off	upper	four	bits	of		the	low	byte
	 addr2	=		addr2	&	0x0f;	 	 //	Mask		off	upper	four	bits	of	the	high	byte
	 addr2	=		addr2	<<	4;	 	 //	Shift	high	byte		4	times	to	left
	 addr3	=	addr2	|	addr1;	 	 //	Packed	BCD	byte	in	addr3
				}	 	

10.4 Control Structures

Control	structures	allow	programmers	to	modify	control	flow	which	is	a	sequential	flow	by	
default.	Structures	allow	one	to	make	decisions	and	create	loops	which	make	the	hardware	
to	 replicate	 execution	 of	 statements.	 Typical	 structured	 control	 structures	 in	 C	 include		
if‑else, switch, while, for	and,	do‑while.	

10.4.1 The if‑else Construct
 The	syntax	for	the	if‑else		construct	is		as	follows:

	 if		(cond)
	 					statement1;	
	 else	
	 					statement2;

Figure	10.1	shows	the	flowchart	for	the	if‑else	construct.
	 This	is	a	one‑entry‑one‑exit	structure	in	that	if	the	condition	is	true,	the	statement1	
is	executed;	else	(if	 the	condition	 is	 false),	statement1	 is	skipped,	and	 the	statement2	 is	
executed.		An	example	of		the		if‑else	structure	(flowchart	in	Figure	10.2)	is	provided	
in	the	following:

300	 Microcontroller Theory and Applications with the PIC18F

B	are	multiplexed	with	analog	inputs	AN8	through	AN12,	and		bits	0	through	2	of	Port	
E	are	multiplexed	with	analog	inputs	AN5	through	AN7	(Figure	8.1).	When	a	port	bit	is	
multiplexed	with	an	analog	input,	then	bits	0-3	of	a	special	function	register	(SFR)	called	
ADCON1	(A/D	Control	Register	1	with	mapped	data	memory	address		0xFC1)	must	be	
used	to	configure	the	port	bit	as	input.	The	other	bits	in	ADCON1	are	associated	with	the	
A/D	converter.	Figure	8.9	shows	the	ADCON1	register	along	with	the	associated	bits	for	
digital	 I/O.	When	bits	0	 through	3	of	 	 the	ADCON1	 register	 are	 loaded	with	1111,	 the	
analog	inputs	(AN0-	AN12)	multiplexed	with	the	associated	bits	of	Port	A,	Port	B,	and	Port	
E	are		configured	as	digital	I/O.		This	will	also	make	these	port	bits	as	inputs	automatically;	
the	corresponding	TRISx	registers	are		not	required	to	configure	the	ports.	However,	for	
configuring	 these	 ports	 as	 outputs,	 the	 corresponding	TRISx	 bits	must	 be	 loaded	with	
0’s;	the	ADCON1	register	is	not	required	for	configuring	these	port	bits	as	outputs.	The	
following	examples	will	illustrate	this.
	 For	example,		the	following	C	statement	will	configure	all	13	port	bits	multiplexed	
with	AN0	-	AN12	as	inputs:

	 ADCON1	=	0x0F	;	//	Configure	13	bits	of		Ports	A,	B,	and	E	as	inputs	

	 Note	that	the	TRISx	registers	associated	with	Ports	A,	B,	and	E	can	be	used	to	
configure	these	ports	as	outputs.	 	 	
	 	 	 	 	 	 	 	
	 Next,	 in	 order	 to	 configure	 bit	 1	 of	 	 PORTA	 as	 output	 in	 PIC18F	 	 assembly	
language,	the	following	instruction	can	be	used:

	 BCF	 	 TRISA,	1								;	Configure	bit	1	of	PORTA	as	output

	 The	MPLAB	C18	compiler		provides	built-in	unions	for	configuring	a	port	bit.	
This	allows	the	programmer	to	address	a	single	bit	in	a	port	without	changing	the	other	bits	
in	the	port.	For	example,	bit	2	of	Port	C	can	be	configured	as	an	output	by	writing	a	‘0’	at	
bit	2	of		TRISC	as	follows:

	 #	define	portbit		PORTCbits.RC2	 //	Declare	a	bit	(bit	2)	of		Port	C
	 TRISCbits.TRISC2	=	0	;	 	 //	Configure	bit	2	of	Port	C	as	an	output

	 Now,	a	‘1’	can	be	output	to	bit	2	of		Port	C	using	the	following	statement:

	 portbit	=	1;

	 Similarly,	the	statement,	 portbit = 0;	will	output	a	‘0’	to	bit	2	of	Port	C.
	
	 Next,	bit	3	of	Port	D	can	be	configured	as	an	input	by	writing	a	‘1’	at	bit	3	of	
TRISD	as	follows:

	 #	define	portbit		PORTDbits.RD3	 //	Declare	a	bit	(bit	3)	of		Port	D
	 TRISDbits.	TRISD3	=	1	;			 //	Configure	bit	3	of	Port	D	as	an	input

Example	10.	2	 Assume	PIC18F4321.	Suppose	that	three	switches	are	connected	to	bits	
0-2	of		Port	C	and	an	LED	to	bit	6	of	Port	D.	If	the	number	of	HIGH	switches	is	even,	turn	

Basics	of	Programing	the	PIC18F	Using	C	 301

the LED on; otherwise, turn the LED off. Write a C language program to accomplish this.

Solution

The C language program is shown below:
#include <p18f4321.h>
#define portc0 PORTCbits.RC0
#define portc1 PORTCbits.RC1
#define portc2 PORTCbits.RC2
void main (void)
{
 unsigned char mask = 0x07; // Data for masking off upper 5 bits
 // of Port C
 unsigned char masked_in;
 unsigned char xor_bit;
 TRISC = 0xFF; // Configure Port C as an input port
 TRISD = 0; // Configure Port D as an output port
 while(1)
 {
 masked_in = PORTC & mask; // Mask input bits
 if (masked_in == 0)
 PORTD = 0x40; // For all low switches (even), turn led on
 else
 xor_bit = portc0 ^ portc1 ^ portc2; // Xor input bits
 if (xor_bit == 0) // For even # of high switches,
 PORTD = 0x40; // turn led on

 else
 PORTD = 0; // For odd # of high switches, turn led off
 }
}

Example 10.3 Assume PIC18F4321. Suppose that it is desired to input a switch connected
to bit 4 of Port C, and then output it to an LED connected to bit 2 of Port D. Write a C
language program to accomplish this.

Solution

 The following C code will accomplish this:
 # include <P18F4321.h>
 # define portc_bitin PORTCbits.RC4 // Declare a bit (bit 4) of Port C
 # define portd_bitout PORTDbits.RD2 // Declare a bit (bit 2) of Port D
 void main (void)
 {
 TRISCbits.TRISC4 = 1; // Configure bit 4 of Port C as an input bit
 TRISDbits.TRISD2 = 0; // Configure bit 2 of Port D as an output bit
 while (1) // Halt
 {

302 Microcontroller	Theory	and	Applications	with	the	PIC18F

 portd_bitout = portc_bitin; // Output switch to LED
 }
 }

Example 10. 4 The PIC18F4321 microcontroller shown in Figure 10.9 is required to
output a BCD digit (0 to 9) to a common‑anode seven‑segment display connected to bits 0
through 6 of Port D. The PIC18F4321 inputs the BCD number via four switches connected
to bits 0 through 3 of Port C. Write a C language program that will display a BCD digit
(0 to 9) on the seven‑segment display based on the switch inputs.

Solution

	 The C code is provided below:

#include <p18f4321.h>
void main ()
unsigned char input;
unsigened char code[10] = {0x40, 0x79, 0x24, 0x30, 0x19, 0x12, 0x03, 0x78, 0x00, 0x18};
unsigned char oput;
TRISD = 0; //Configure PortD as Output
TRISC = 0xFF; //Configure PortC as Input
while (1) {
 input = PORTC & 0x0F;
 oput = code [input];
 PORTD = oput;
 }
 In the above, the last two lines can be combined as PORTD = Code [input];
 In the above program, first the PORTB is set as an output port and PORTC is set as
an input port. A variable ‘input’ is then declared. The program moves to an infinite ‘while’
loop where it will first take the input from the four switches via PORTC, and mask the

FIGURE 10.9 Figure for Example 10.4

PIC18F4221

Common Anode
7-Segment Display

PORTD

0

1

2

3

4

5

6

1K

+5V

1K

+5V

1K

+5V

1K

+5V

PORTC

PORTC

PORTC

PORTC

0

1

2

3

+5V

330

a

b

c
d

e

f

g

a

b

c

d

e

f

g1K

1K

1K

1K

304 Microcontroller	Theory	and	Applications	with	the	PIC18F

 In the above code, the register ADCON1 is used to configure Port B. Within the
infinite while loop, the code checks to see when the comparator output is one indicating
Vx > Vy. The LED is then turned ON or OFF based on the state of the switch.

10.9 Programming PIC18F4321 Interrupts	Using C

The PIC18F4321 interrupts are covered in detail in Section 8.3 of chapter 8. The
PIC18F4321 interrupts can be classified into two groups: high‑priority interrupt levels
and low‑priority interrupt levels. The high‑priority interrupt vector is at address 0x000008
and the low‑priority interrupt vector is at address 0x000018 in the program memory.
High‑priority interrupt events will interrupt any low‑priority interrupts that may be in
progress.
 As mentioned before, upon power‑on reset, the interrupt address vector is
0x000008 (default), and no interrupt priorities are available. The IPEN bit (bit 7 of the
RCON register) of the RCON register in Figure 8.5 can be programmed to assign interrupt
priorities. Upon power‑on reset, IPEN is automatically cleared to 0, and the PIC18F
operates as a high‑priority interrupt (single interrupt) system. Hence, the interrupt vector
address is 0x000008. During normal operation, the IPEN bit can be set to one by executing
the RCONbits.IPEN=1; to assign priorities in the system.
 When interrupt priority is enabled (IPEN = 1), there are two bits which enable
interrupts globally. Setting the GIEH bit (bit 7 of INTCON register of Figure 8.17) enables
all interrupts that have the priority bit set (high priority). Setting the GIEL bit (bit 6 of
INTCON register of Figure 8.17) enables all interrupts that have the low priority. When
the interrupt flag, enable bit, and appropriate global interrupt enable bit are set, the interrupt
will vector immediately to address 0x000008 or 0x000018, depending on the priority bit
setting. Individual interrupts can be disabled through their corresponding enable bits.
 Note that the C18 compiler does not allow the program to automatically jump to
the interrupt service routine from the interrupt address vector. Hence, the PIC18F assembly
language instructions GOTO or BRA must be used to jump to the interrupt service routine.
 If interrupt priority levels are used, high‑priority interrupt sources can interrupt
a low priority interrupt. Low‑priority interrupts are not processed while high‑priority
interrupts are in progress. The return address is pushed onto the stack and the PC is loaded
with the interrupt vector address (0x000008 or 0x000018). Once in the Interrupt Service
Routine, the source(s) of the interrupt must be determined for the priority interrupt system
by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before
re‑enabling interrupts to avoid recursive interrupts. In order to jump to the interrupt service
routine from the interrupt address vector such as 0x000008 or 0x000018, the programmer
should first check the interrupt flag bits to find the source of interrupt in a priority interrupt
system, and then use the GOTO or BRA instruction of the assembly language to jump to
the interrupt service routine.
 Based upon discussion on interrupts in Section 8.3 of Chapter 8, INT0 can be
initialized to recognize interrupts using the following C code:

ADCON1=0x0F; //Configure PORTB to be digital input
 //since PORTB contains interrupt pins
INTCONbits.INT0IE=1; //Enable external interrupt
INTCONbits.INT0IF=0; //Clear the external interrupt flag
INTCONbits.GIE=1; //Enable global interrupts

Basics of Programing the PIC18F Using C 305	

Based	upon	detailed	coverage	of	interrupts	in	Section	8.3	of	Chapter	8,	INT0	(High	Priority)	
and	INT1	(Low	Priority)	can	be	initialized	to	recognize	interrupts	using	the	following	C	
code:

ADCON1=0x0F;			 	 //Configure	PORTB	to	be	digital	input
	 	 	 	 //Since	PORTB	contains	interrupt	pins
INTCONbits.INT0IE=1;			 	 //Enable	external	interrupt	INT0
INTCON3bits.INT1IE=1;	 	 //Enable	external	interrupt	INT1
INTCONbits.INT0IF=0;		 	 //Clear	INT0	external	interrupt	flag
INTCON3bits.INT1IF=0;	 	 //Clear	INT1	external	interrupt	flag
INTCON3bits.INT1IP=0;	 	 //Set	INT1	to	low	priority	interrupt
RCONbits.IPEN=1;	 	 //Enable	priority	interrupts
INTCONbits.GIEH=1;			 	 //Enable	global	high	priority	interrupts
INTCONbits.GIEL=1;	 	 //Enable	global	low	priority	interrupts

10.9.1	 	Specifying		Interrupt	Address	Vector	using	the	C18	Compiler
	 As	mentioned	before,	using	the	MPLAB	assembler,	the	programmer	uses	the	ORG	
directive	to		specify	the	starting	address	of	a	program	or	data.	Using	the	C18	C	compiler,	
the	programmer	can	use		the	directive	#pragma code begin		to	specify	an	address	to		
a	program	or	to	data	at	address		begin.	For	example,	the	C	statement		#pragma code
int_vect = 0x000008		will	assign	the	address		0x000008	to	label	int_vect.	Note	
that	pragma and code	are	keywords	of	the	C18	compiler.	

10.9.2	 	Assigning		Interrupt	Priorities	Using	the	C18	Compiler
	 The	C18	compiler	uses	 the	keywords	interrupt	 and	 	interruptlow	 	 to	
specify	 	 high‑	 and	 low‑priority	 interrupt	 levels.	Note	 that	 the	PIC18F	 interrupt	 address	
vectors	for	the	high‑	and	low‑priority	levels	are	0x000008	and	0x000018	respectively.	The	
programmers		can	use		these	keywords	which		allow	a	program		to	branch	automatically	
from	the	respective	 interrupt	address	vector	 to	a	different	program	to	find	the	source	of	
the	 interrupt	(for	multiple	 interrupts	with	priorities),	and	 then	to	 the	appropriate	service	
routine.			

10.9.3		A	Typical	Structure	for		Interrupt	Programs		Using	C
	 The	default	interrupt	INT0	with	vector	address	0x000008	is	used	in	the	following	
to	illustrate		the	interrupt	programs	using	C.		Typical	structures	for	the		main	program	and	
the	service	routine	are	provided	below:

#include		<P18F4321.h>
void		 	ISR	(void);
#pragma	code	Int=0x08		//At	interrupt	code	jumps	here
void		Int(void)
{
_asm		//Using	assembly	language
GOTO	ISR
_endasm
}
#pragma	code	//		End	of	code
void	main()

308	 Microcontroller Theory and Applications with the PIC18F

	 INTCONbits.INT0IF=0;		//Clear	external	interrupt	flag
	 	 while(PORTBbits.RB0==1){			 //Check	if	comparator	is	high
	 	 	 PORTD	=	PORTB;			 //Move	PORTB	into	PORTD
	 }
}

Example 10.7 In	Figure	10.12,	if	Vx	>	Vy,	the	PIC18F4321	is	interrupted	via	INT0.	
On	the	other	hand,	opening	the	switch	will	interrupt	the	microcontroller	via	INT1.	Note	
that	in	the	PIC18F4321,	INT0	has	the	higher	priority	than	INT1.	Write	the	main	program	
in	C	that	will	perform	the	following:
	 -	Configure	PORTB	as	interrupt	inputs.
	 -	Clear	interrupt	flag	bits	of	INT0	and	INT1.
	 -	Set	INT1	as	low	priority	interrupt.
	 -	Enable	IPEN	in	RCON	register.
	 -	Enable	global	HIGH	and	LOW	interrupts.
	 -	Turn	both	LEDs	at	PORTD	OFF.
	 -	Wait	in an	infinite	loop	for	one	or	both	interrupts	to	occur.
	 Also,	write	a	service	routine	for	the	high	priority	interrupt	(INT0)	in	C	that	will	
perform	the	following:
	 -	Turn	LED	on	at	bit	0	of	PORTD.
Finally,	write	a	service	routine	for	the	low	priority	interrupt	(INT1)	in	C	that	will	perform	
the	following:
	 -	Turn	LED	on	at	bit	1	of	PORTD.

Solution

	 This	 example	 will	 demonstrate	 the	 interrupt	 priority	 system	 of	 the	 PIC18F		
microcontroller.	Using	interrupt	priority,	the	user	has	the	option	to	have	various	interrupts	
assigned	as	either	low-priority	or	high-priority	interrupts.	If		a	low-priority	interrupt	and	
a	high-priority	interrupt	occur		at	the	same	time,	the	PIC18F	will	always	service	the	high	
priority	interrupt	first.	
	 In	the	above	example,	the	high	priority	is	assigned	to	the	comparator	while	the	
switch	is	assigned	with	the	low	priority.	Hence,	if	both	interrupts	were	triggered	at	the	

+

-

Vx

Vy

PIC18F4321

PORTB

PORTD

0
1

1

LM339
Output =1
If Vx > Vy

SWITCH LED

Comparator
LED

PORTD 0

1K

+5V

INT0
INT11K

330

330

FIGURE 10.12 Figure for Example 10.7

310	 Microcontroller Theory and Applications with the PIC18F

	 PORTD=0;			 	 //LED	is	off
}

}
#pragma		interrupt		HP_COMP_ISR
void	HP_COMP_ISR(void){		 	 //High-priority	interrupt	service
	 INTCONbits.INT0IF=0;			 	 //Clear	external	interrupt	flag
{
	 	 PORTD=0x01;			 	 //Turn	on	LED
	 }
}	

#pragma			interrupt	low		LP_SWITCH_ISR
void	LP_SWITCH_ISR(void){		 	 //Low-priority	interrupt	service
	 INTCON3bits.INT1IF=0;			 //Clear	external	interrupt	flag
	 PORTD=0x02;			 	 	 //Turn	on	LED

}	

10.10 Programming the PIC18F4321 Interface to LCD Using C

The	PIC18F4321	is	interfaced	to	the	Optrex		DMC	16249	LCD	in	Section	8.4	of	Chapter	
8,	 and	 the	 programs	 are	written	 	 using	PIC18F	 assembly	 language. In	 this	 section,	 the	
same	program	will	be	written	using	C.	For	convenience,	some	of	the	concepts	described	in	
Chapter	8	will	be	repeated	in	this	section.
	 Note	that	the	PIC18F4321	is	also	interfaced	to		the	seven-segment	LED	display		
in	Chapter	8.	The	seven-segment	LEDs	are	easy	to	use,	and	can	display	only	numbers	and	
limited	characters.	An	LCD	is	very	useful	for	displaying	numbers	and	several	ASCII

FIGURE 10.13 PIC18F4321 interface to LCD and switches

PORTB

0

1

2

3

4

5

6

1K

+5V

1K

+5V

1K

+5V

1K

+5V

PORTC

PORTC

PORTC

PORTC

0

1

2

3

7

0

1

2

D0

D1

D2

D3

D4

D5

D6

D7

RS

RW

EN

VDD

VSS

VEE

+5V

~10k-20k

PIC18F4321 LCD Screen

PORTD

1K

1K

1K

1K

312	 Microcontroller Theory and Applications with the PIC18F

PORTB	of	PIC18F4321.	
	 The	 complete	LCD	 	 program	 in	C	 is	 shown	 in	 the	 following.	Note	 that	 	 time	
delay	rather	than	the	busy	bit	is	used	before	outputting	the	next	character	to	the	LCD.	Two		
functions	are	used:	one	for	outputting	command	code,	and	the	other	for	the	delay.	PORTB	
and	PORTD	are	configured	as	 input	ports,	and	PORTC	is	set	up	as	an	 input	port.	Also,	
assume	1‑MHz	default		crystal	frequency	for	the	PIC18F4321.
	 As	an	example,	let	us	consider	the	code	for	outputting	a	command	code	such	as	
the	command	“move	cursor	to	the	beginning	of	the	first	line”	(Start		at	line	1	position	0)	
to	the	LCD.	From	Table	9.1,	the	command	code	for	this	is	0x80.	From	the	LCD	program	
shown	below,	the	statement	cmd(0x80);	will	execute		the	following	C	code:

void	cmd(unsigned	char	value)
{
	 PORTD=value;	 	 //Command	is	sent	to	PORTD
	 PORTB=0x04;	 	 //rs=0	rw=0	en=1
	 delay(10);	 	 //20msec	delay
	 PORTB=0x00;	 	 //rs=0	rw=0	en=0
}

	 The	above	CMD		function	first	outputs	the	value=0x80	to	PORTD.	Since	PORTD	
is	connected	to	LCD’s	D0‑D7	pins,	these	data	will	be	available	to	be	latched	by	the	LCD.	
The	following	few	lines	of	the	above	code	of	the	CMD	function	are	for	outputting	0’s	to	RS	
and	R/W		pins,	and	a	trailing	edge	(1	to	0)	pulse	to	EN	pin		along	with	a	delay	of	20	msec.	
Hence,	the	LCD	will	latch	0x80,	and	the	cursor	will	move	to	the	start	of	the	first	line.	
	 The	following	C	loop	will	provide	2	msec	delay:

void	delay(unsigned	int	itime)	 //2	msec	delay
{
	 unsigned	int	i,j;
	 for(i=0;	i<itime;	i++)
	 	 for(j=0;	j<255;j++);
}

	 The	above	C	code	along	with	the	statement	delay(10);	will	provide	20	msec	
delay.
	 Similarly,	the	program	logic	(shown	below)	for	outputting	other	ASCII	characters	
and	switch	input	data	can	be	explained.
	 The	complete		LCD		program	using	C	is	provided	below:

#include	<P18F4321.h>
void	cmd(unsigned	char);
void	data(unsigned	char);
void	delay(unsigned	int);
void	main(void)
{
unsigned	char	input,output,i;
unsigned	char	tstr	[13]={‘S’,	‘w’,	‘i’,	‘t’,	‘c’,	‘h’,	‘	’,	‘V’,	‘a’,	‘l’,	‘u’,	‘e’,	‘:’}

Basics	of	Programing	the	PIC18F	Using	C	 313

 TRISD=0; //PORTD is output
 TRISB=0; //PORTB is output
 TRISC=0xFF; //PORTC is input
 PORTB=0x00; //rs=0 rw=0 en=0
 delay(10); //20msec delay
 cmd(0x0C); //Display On, Cursor Off
 delay(10); //20msec delay
 cmd(0x01); //Clear Display
 delay(10); //20msec delay
 cmd(0x06); //Shift cursor to the right
 delay(10); //20msec delay
 cmd(0x80); //Start at line 1 position 0
 delay(10); //20msec delay
for (i = 0; i<13; i++)
 data (tstr [i]);
while(1)
{
 input= PORTC&0x0F; //Mask switch value
 output=0x30 | input; //Logically OR switch inputs with 0x30 to obtain
 //the ASCII code
 data(output); //Display switch value on screen
 delay(10); //20msec delay
 cmd(0x10); //Shift cursor left one
}
}
void cmd(unsigned char value)
{
 PORTD=value; //Command is sent to PORTD
 PORTB=0x04; //rs=0 rw=0 en=1
 delay(10); //20msec delay
 PORTB=0x00; //rs=0 rw=0 en=0
}

void data(unsigned char value)
{
 PORTD=value; //Data sent to PORTD
 PORTB=0x05; //rs=1 rw=0 en=1
 delay(10); //20msec delay
 PORTB=0x01; //rs=1 rw=0 en=0
 }
void delay(unsigned int itime) //2 msec delay
{
 unsigned int i,j;
 for(i=0; i<itime; i++)
 for(j=0; j<255;j++);
}

Basics of Programing the PIC18F Using C 315	

	 	 	 T0CON=0x06;	 //	Initialize	T0CON
	 	 	 TMR0H=0xFF;	 //	Initialize	TMR0H	first	with	0xFF
	 	 	 TMR0L=0xF0;	 //	Initialize	TMR0L	next
	 	 	 INTCONbits.TMR0IF=0;	 //	Clear	Timer0	flag	bit
	 	 	 T0CONbits.TMR0ON=1;	 //	Start	Timer0
	 	 	 while(INTCONbits.TMR0IF==0);	 //	Wait	for	Timer0	flag	bit	to	be	1
	 	 	 T0CONbits.TMR0ON=0;	 //	Stop	Timer0
	 	 	 while(1);	 //	Halt
	 	 }

Example 10.9 Write	a	C	language	program		to	provide	a	delay	of		1	msec	using	Timer1	
with	an	internal	clock	of		4	MHz.	Use	16‑bit	mode	of	Timer1	and	the	prescale	value	of	1:4.

Solution

For	4	MHz	clock,	each	instruction	cycle	=	4	x	(1/4	MHz)	=	1	lsec
Total	instruction	cycles	for	1	msec	delay	=	(1	x	10‑3	/10‑6)	=	1000
With	the	prescale	value	of		1:4,	instruction	cycles	=	1000	/	4	=	250
Counter	value	=	6553610	‑	25010		=	6528610	=	0xFF06
Hence,	TMR1H	must	be	loaded	with	0xFF,	and	TMR1L	with	0x06

The	C	language	program	for	one	msec	delay	is	provided	below:

	 #include<p18f4321.h>
	 void	main(void)
	 {
	 	 T1CON=0xC0;	 	 //16‑bit	mode,	1:4	prescaler,	Timer1	OFF
	 	 TMR1H=0xFF;	 	 //Initialize	TMR1H	with	0xFF
	 	 TMR1L=0x06;	 	 //Initialize	TMR1L	with	0x06
	 	 PIR1bits.TMR1IF=0;	 	 //Clear	Timer1	overflow	flag	in	PIR1
	 	 T1CONbits.TMR1ON=1;	 //Start	Timer1
	 	 while(PIR1bits.TMR1IF==0);	 //Wait	for	Timer1	interrupt	to	be	1
	 	 T1CONbits.TMR1ON=0;	 //Stop	Timer1
	 	 while(1);	 	 //Halt	 	
	 }

Example 10.10 Write	a	C	language	program	using	Timer2	to	turn	an	LED	connected	
at		bit	0	of	PORT	D		after		10	sec.	Assume		an	internal	clock	of		4	MHz.	a	prescale	value	of	
1:16,	and	a	postscale	value	of	1:16.

Solution

For	4	MHz	clock,	each	instruction	cycle	=	4	x		1/(4MHz)	=	1	l	sec.	TMR2	is	incremented	
every	1	l sec.	When	the	TMR2	value	matches	with	the	value	in	PR2,	the	value	in	TMR2	is	
cleared	to	0	in	one	instruction	cycle.	Since,	the	PR2	is	8‑bit	wide,	we	can	have	a	maximum	
PR2	value		of	255.	Let	us	calculate	the	delay	with	this	PR2	value.

316	 Microcontroller Theory and Applications with the PIC18F

Delay	=	(Instruction	cycle)	x	(Prescale	value)	x	(Postscale	value)	x	(PR2	value	+	1)	
										=	(1	l	sec)	x	(16)	x	(16)	(255	+	1)	
										=	65.536	msec
	 Note	that,	in	the	above,	one	is	added	to	the	PR2	value		since	an	additional	clock		
is	needed	when	it	rolls	over	from		0xFF	to	0x00,	and	sets	the	TMR2IF	to	1.	
External	counter	value	for	10	sec	delay	using		65.536	msec	as	the	inner	loop	=	(10	sec)/
(65.536	msec),	which	is	approximately	153	in	decimal.

The	C	language	is	provided	below:	
	 #include<p18f4321.h>
	 void	main(void)
	 {
	 	 unsigned	char	i;	 	 	 	
	 	 TRISDbits.TRISD0=0;	 //	Configure	bit	0	of	Port	D	as	an	output	
	 	 PORTDbits.RD0=0;	 //	Turn	LED	OFF
	 	 T2CON=0x7A;	 //	1:16	prescaler,	1:16	postscaler	Timer1	off
	 	 TMR2=0x00;	 //	Initialize	TMR2	with	0x00
	 	 for(i=0;i<153;i++)
	 	 {
	 	 PR2=255;	 //	Load	PR2	with	255
	 	 PIR1bits.TMR2IF=0;	 //	Clear	Timer2	interrupt	flag	in	PIR1
	 	 T2CONbits.TMR2ON=1;	 //	Set	TMR2ON	bit	in	T2CON	to	start	timer
	 	 while(PIR1bits.TMR2IF==0);	 //	Wait	for	Timer2	interrupt	to	be	1
	 	 }
	 	 PORTDbits.RD0=1;	 //	Turn	LED	ON
	 	 T2CONbits.TMR2ON=0;	 //	Turn	off	Timer2
	 	 while(1);	 //	Halt	
	 }

10.12 Programming the PIC18F4321 on‑chip A/D Converter Using C

The	PIC18F4321	on‑chip	A/D	converter	is	covered	in	detail	in	Section	9.2.1	of		Chapter	9.	
Also,	the	concepts	associated	with	the	PIC18F	A/D	converter	interface	were	illustrated	in	
Chapter	9	using	examples	in	PIC18F	assembly	language.	
	 In	summary,	the	PIC18F4321	contains	an		on‑chip	A/D	converter	(or	sometimes	
called	ADC)	module	with	13	channels	(AN0‑AN12).	An	analog	input	can	be	selected	as	an	
input	on	one	of		these	13	channels,	and	can	be	converted	to	a	corresponding	10‑bit	digital	
number.	Three	control	registers,	namely,	ADCON0	through	ADCON2,	are	used	to	perform	
the	 conversion.	 Example	 10.11	 illustrates	 these	 concepts	 by	 designing	 a	 voltmeter	 and	
writing	the	programs		in	C.	

Example 10.11 A	 	 PIC18F4321	microcontroller	 shown	 in	 Figure	 10.14	 is	 used	 to	
implement	a	voltmeter	to	measure	voltage	in	the	range	0	to	5	V	and	display	the	result	in	
two	decimal	digits:	one	integer	part	and	one	fractional	part.		Using	polled	I/O,	write	a		C	
language	program	to	accomplish	this.	
	

		

Basics	of	Programing	the	PIC18F	Using	C	 317

Solution

 In order to design the voltmeter, the PIC18F4321 on‑chip A/D converter available
will be used. Three registers, ADCON0‑ADCON2, need to be configured. In ADCON0,
bit 0 of Port A (RA0/AN0) is designated as the analog signal to be converted. Hence,
CHS3‑CHS0 bits (bits 5‑2) are programmed as 0000 to select channel 0 (AN0). The
ADCON0 register is also used to enable the A/D, start the A/D, and then check the “End of
conversion” bit.
 The reference voltages are chosen by programming the ADCON1 register. In this
example, VDD (by clearing bit 4 of of ADCON1 to 0) and VSS (by clearing bit 5 of ADCON1
to 0) will be used. Note that VDD and VSS are already connected to the PIC18F4321. The
ADCON1 register is also used to configure AN0 (bit 0 of Port A) as an analog input by
writing 1101 at PCFG3‑PCFG0 bits (bits 3‑0 of ADCON1). Note that there are several
choices to configure AN0 as an analog input.
 The ADCON2 is used to set up the acquisition time, conversion clock, and, also,
if the result is to be left or right justified. In this example, 8‑bit result is assumed. The A/D
result is configured as left justified, and, therefore, the 8‑bit register ADRESH will contain
the result. The contents of ADRESL are ignored. When 8 bits are obtained from 10 bits
using left justified, lower two bits in ADRESL are discarded.
 As mentioned in Chapter 9, because the maximum decimal value that can be
accommodated in 8 bits of ADRESH is 25510 (FF16), the maximum voltage of 5 V will be
equivalent to 25510. This means the display in decimal is given by

D = 5 × (input/255)

= input/51

=

Integer part

quotient +remainder

FIGURE 10.14 Figure for Example 10.11

1
PORT C

0

2
3

PORT D

0 PORT A / AN0

Analog signal
(0-5V)

PIC18F4321

0
1

2
3

a-g7

a-g

7

7447

7447

D
C

B
A

D
C
B
A

Common anode
7-segment displays

318	 Microcontroller Theory and Applications with the PIC18F

	 This	gives	the	integer	part.		The	fractional	part	in	decimal	is

F remainder/51 ×10

 remainder /5

	 For	example,	suppose	that	 the	decimal	equivalent	of	 the	8‑bit	output	of	A/D	is	
200.

D = 200/51 quotient = 3, remainder = 47

integer part = 3

fractional part, F = 47/5 = 9

	 Therefore,	the	display	will	show	3.9	V.
	 From	these	equations,	the	final	result	will	be	in	BCD,	which	can	then	be	sent	to	
the	7447	decoders.		
	 The	 integer	 value	 is	 placed	 in	 D1	 and	 the	 remainder	 part	 is	 placed	 in	 D0.		
Finally,	the	result	is	displayed	on	the	seven‑segment	displays.
	
The	C	language	program	for	the	voltmeter		is	provided	below:

#include	<P18F4321.h>
unsigned	int	FINAL,ADCONRESULT;	//Initialize	variables
unsigned	char	D1,D0;
void	CONVERT(void);

void	main	()
{
TRISD	=	0;	 	 //	Port	D	is	Output
TRISC	=	0;	 	 //	Port	C	is	Output
ADCON0	=	0x01;		 //	Configure	the	ADC	registers
ADCON1	=	0x0D;
ADCON2	=	0x29;
D0=0;	 	 	 //	Data	to	display	‘0’	on	integer	7‑seg	display
D1=0;
while(1)		 	 //	Data	to	display	‘0’	on	fractional		7‑seg	display
{
ADCON0bits.GO	=	1;			 //	Start	the	ADC

while(ADCON0bits.GO	==	1);	//Delay	until	conversion	complete

Basics	of	Programing	the	PIC18F	Using	C	 319

 PORTC = D1; // Output D1 to integer 7‑segment display
 PORTD = D0; // Output D0 to fractional 7‑segment

ADCONRESULT = ADRESH; // Move the ADC result into ADCONRESULT
FINAL = (ADCONRESULT*10)/51; // Conversion factor
CONVERT();
}

}

void CONVERT()
{
D1 = FINAL/10;
D0 = FINAL% 10; // D0 is remainder of FINAL divided by 10
}

10.13 Interfacing an External D/A (Digital‑to‑Analog) Converter Using C

As discussed in Chapter 9, most microcontrollers such as the PIC18F4321 do not have any
on‑chip D/A converter (or sometimes called DAC). Hence, an external D/A converter chip
is interfaced to the PIC18F4321 to accomplish this function. Some microcontrollers such
as the Intel/Analog Devices 8051 include an on‑chip D/A converter. In order to illustrate
the basic concepts associated with interfacing a typical D/A converter such as the Maxim
MAX5102 was interfaced to the PIC18F4321 as discussed in Section 9.2.2 of Chapter 9.

Example 10.12 Assume the block diagram of Figure 10.15 . Write a C language program
that will input eight switches via PORTD of the PIC18F4321, and output the byte to D0‑D7
input pins of the MAX5102 D/A converter. The microcontroller will send appropriate
signals to the WR and A0 pins so that the D/A converter will convert the input byte to an
analog voltage between 0 and 5 V, and output the converted voltage on its OUTA pin.

FIGURE 10.15 Figure for Example 10.12

OUTPUT

-5V

PORTD

0

1

2

3

4

5

6

7PIC18F4321

+5V

PORTC

MAXIM MAX5102

WR

A0

VDD
VSS

C

C = 0. 1 microfarad

8D0 - D7

Bit 0 of PORTB

Bit 1 of PORTB

OUTA

0-5V

1K 1K

1K 1K

1K 1K

1K 1K

1K 1K

1K 1K

1K 1K

1K 1K

322 Microcontroller	Theory	and	Applications	with	the	PIC18F

 while (SSPSTATbits.BF == 0); // Wait for transmission to finish
}
 The following code is used on the slave PIC18F4321 device:

#include <p18f4321.h>

void main (void)
{
TRISCbits.TRISC4 = 1; // RC4 is input
TRISCbits.TRISC3 =1; // RC3 is input
TRISD=0x00; // PORTD is output
SSPSTAT= 0x40; // Transmission occurs on high to low clock
SSPCON1 = 0x25; // Enable serial functions and disable the slave device
 while(1){
 while (SSPSTATbits.BF == 0); // Wait for transmission to finish
 PORTD=SSPBUF; // Move serial buffer to PORTD
 }
}
 Note that the above program is explained thoroughly in Example 9.7 of Chapter
9.

10.15 Programming the PIC18F4321 CCP Modules Using C

As mentioned in Chapter 9, the CCP module is implemented in the PIC18F4321 as an
on‑chip feature to provide measurement and control of time‑based pulse signals. The
basic concepts associated with the PIC18F CCP are explained in Chapter 9. Some of them
will be repeated here for convenience.
 Capture mode causes the contents of an internal 16‑bit timer to be written in
special function registers upon detecting an nth rising or falling edge of a pulse. Compare
mode generates an interrupt or change on output pin when Timer1 matches a preset
comparison value. PWM mode creates a re‑configurable square wave duty cycle output
at a user set frequency. The application software can change the duty cycle or period by
modifying the value written to specific special function registers.
 The PIC18F4321 contains two CCP modules, namely, CCP1 and CCP2. The
CCP1 module of the PIC18F4321 is implemented as a standard CCP with enhanced PWM
capabilities for better DC motor control. Hence, the CCP1 module in the PIC18F4321 is
also called ECCP (Enhanced CCP). Note that the CCP2 module is provided with standard
capture, compare, and PWM features.
 The CCP module is describe in detail in Section 9.4 of Chapter 9. In this section,
PIC18F assembly language programs (Examples 9.8 through 9.10 of Chapter 9) will be
converted to C programs to illustrate how to program the PIC18F4321 CCP module using
C.

Example 10.14 Assume PIC18F4321. Write a C language program to measure the
period (in terms of the number of clock cycles) of an incoming periodic waveform
connected at RC2/CCP1/P1A pin. Use Timer3, and capture mode of CCP1.

324 Microcontroller	Theory	and	Applications	with	the	PIC18F

 TRISCbits.TRISC2=0; // Configure CCP1 pin as output
 T3CON=0x40; // Select TIMER3 as clock for compare, 1:1 prescale
 CCPR1H=0x01; // Load CCPR1H with 0x01
 CCPR1L=0xF4; // Load CCPR1L with 0xF4
 TMR3H=0; // Initialize TMR3H to 0
 TMR3L=0; // Initialize TMR3L to 0
 PIR1bits.CCP1IF=0; // Clear CCP1IF
 T3CONbits.TMR3ON=1; // Start Timer3

 while(PIR1bits.CCP1IF==0); // Wait in a loop until CCP1IF is 1

 T3CONbits.TMR3ON=0; // Stop Timer3

 while(1); // Halt
 }

Example 10.16 Write a C language program to generate a 4 KHz PWM with a 50% duty
cycle on the RC2/CCP1/P1A pin of the PIC18F4321. Assume 4 MHz crystal.

Solution

PR2 = [(Fosc)/(4 x Fpwm x TMR2 Prescale Value)] ‑ 1
PR2 = [(4 MHz)/(4 x 4 KHz x 1)] ‑ 1 assuming Prescale value of 1
PR2 = 249. With 50% duty cycle, decimal value of the duty cycle = 0.5 x 249 = 124.5.Hence,
the CCPR1L register will be loaded with 124, and bits DC1B1:DC0B0 (CCP1CON
register) with 10 (binary).

The C language program is provided below:
#include<p18f4321.h>

 void main(void)
 {
 PR2=249; // Initialize PR2 register
 CCPR1L=124; // Initialize CCPR1L
 CCP1CON=0x20; // CCP1 OFF, DC1B1:DC0B0=10
 TRISCbits.TRISC2=0; // Configure CCP1 pin as output
 CCP1CON=0x2C; // PWM mode
 TMR2=0; // Clear Timer2 to 0

 while(1)
 {
 PIR1bits.TMR2IF=0; // Clear TMR2IF to 0
 T2CONbits.TMR2ON=1; // Turn Timer2 ON
 while(PIR1bits.TMR2IF==0); // Wait until TMR2IF is HIGH
 }
 }

Basics of Programing the PIC18F Using C 325	

10.16	 DC		Motor	Control		Using		PWM	Mode	and	C

As	mentioned	 in	Chapter	 9,	 typical	 applications	 of	 the	 PWM	mode	 include	DC	motor	
control.	The	speed	of	a	DC	motor	is	directly	proportional	to	the	driving	voltage.	The	speed	
of	a	motor	increases	as	the	voltage	is	increased.	In	earlier	days,	voltage	regulator	circuits	
were	used	to	control	the	speed	of	 	a	 	DC	motor.	But	voltage	regulators	dissipate	lots	of	
power.	Hence,	the	PIC18F	in	the	PWM	mode	is	used	to	control	the	speed	of		a	DC	motor.	
In	this	scheme,	power	dissipation	is	significantly	reduced	by	turning	the	driving	voltage	to	
the	motor	ON	and	OFF.	The	speed	of	the	motor	is	a	direct	function	of	the	ON	time	divided	
by	the	OFF	time.
	 Microcontrollers	 such	 as	 the	 PIC18F4321	 	 are	 not	 capable	 of	 outputting	 	 the	
required	large	current	and	voltage	to	control	a	typical	DC	motor.	Hence,	a		driver	such	as	
the	CNY17F	Optocoupler	 is	needed	to	amplify	 the	current	and	voltage	provided	by	 the	
PIC18F’s	output,	and		provide	appropriate	levels	for	the	DC	motor.	One	of	the	many	useful	
applications	for	using	a	PWM	signal	is	its	ability	to	control	a	mechanical	device,	such	as	a	
motor.
	 Note	 that	 the	motor	will	 	 run	 faster	 or	 slower	 based	 on	 the	 duty	 cycle	 of	 the	
PWM	signal.	The	motor	runs	faster	as	the	duty	cycle	of	the	PWM	signal	at	the	CCPx	pin	
is	increased.	To	illustrate	this	concept,	two	different	duty	cycles	will	be	used	in		Example	
10.17	converts	the		PIC18F	assembly	language	program	of	Chapter	9	(Example	9.11)	into		
C.

Example	10.17	 	 Figure	 10.17	 shows	 a	 simplified	 diagram	 interfacing	 the	
PIC18F4321	to	a	DC	motor	via	the	CNY17F	Optocoupler.	The	purpose	of	this	example	is	
to	control	the	speed	of	a	DC	motor	by	inputting	two	switches	connected	at	bit	0	and	bit	1	
of	PORTD.	The	motor	will	run	faster	or	slower	based	on	the	switch	values	(00	or	11),	but	
will	not	provide	any	measure	of	the	exact	RPM	of	the	motor.	
	 When	 both	 switches	 are	 closed	 (00),	 a	 PWM	 signal	 at	 the	 CCP1	 pin	 of	 the	
PIC18F4321	with	50%	duty	cycle	will	be	generated.	When	both	switches	are	open	(11),	a		
PWM	signal	at	the	CCP1	pin	of	the	PIC18F4321	with	75%	duty	cycle	will	be	generated.	
Otherwise,	the	motor	will	stop,	and	the	program	will	wait	in	a	loop.

FIGURE	10.17	 			Figure	for	Example		10.17

PIC18F4321

PORTC

PORTD0-5V PWM

+5V

+12V

0-12V PWM

MOTOR

CNY17F
Optocoupler

+ 5V

CCP1
(pin 17)

 0

1K

1K

1k

1PORTD

+5V

1K

0.01uF

328 Microcontroller	Theory	and	Applications	with	the	PIC18F

Questions and Problems

10.1 Write a C language statement to configure

 (a all bits of Port C as inputs

 (b) all bits of Port D as outputs

 (c) bits 0 through 4 of Port B as inputs

 (d) all bits of Port A as outputs

10.2 The PIC18F4321 microcontroller is required to drive the LEDs connected to bit
0 of Ports C and D based on the input conditions set by switches connected to bit
1 of Ports C and D. The I/O conditions are as follows:

• If the input at bit 1 of Port C is HIGH and the input at bit 1 of Port D is
LOW, the LED at Port C will be ON and the LED at Port D will be OFF.

• If the input at bit 1 of Port C is LOW and the input at bit 1 of Port D is
HIGH, the LED at Port C will be OFF and the LED at Port D will be ON.

• If the inputs of both Ports C and D are the same (either both HIGH or
both LOW), both LEDs of Ports C and D will be ON.

 Write a C language program to accomplish this.

10.3 The PIC18F4321 microcontroller is required to test a NAND gate. Figure P10.3
shows the I/O hardware needed to test the NAND gate. The microcomputer is
to be programmed to generate the various logic conditions for the NAND inputs,
input the NAND output, and turn the LED ON connected to bit 3 of Port D if the
NAND gate chip is found to be faulty. Otherwise, turn the LED ON connected to
bit 4 of Port D. Write a C language program to accomplish this.

Cμ

330 Ω 330 Ω

+ 5 V + 5 V

LED LED

Bit 0 of portD

Bit 1 of port

Bit 2 of portD

Bit 3 of portD

Bit 4 of portD

PIC18F4321

FIGURE P10.3

Basics	of	Programing	the	PIC18F	Using	C	 329

10.4 The PIC18F4321 microcontroller (Figure P10.4) is required to add two 3‑bit
numbers entered via DIP switches connected at bits 0‑2 and bits 3‑5 of Port D
and output the sum (not to exceed 9) to a common‑cathode seven‑segment display
connected to Port C as shown in Figure P10.4. Write a C language program to
accomplish this by using a lookup table.

10.5 The PIC18F4321 microcontroller is required to input a number from 0 to 9 from
an ASCII keyboard interfaced to it and output to an EBCDIC printer. Assume
that the keyboard is connected to Port C and the printer is connected to Port D.
Write a C language program using a lookup table for EBCDIC codes from 0 to
9 to accomplish this. Note that decimal numbers 0 through 9 are represented by
F0H through F9H in EBCDIC code, and by 30H through 39H in ASCII code as
mentioned in Chapter 1.

10.6 In Figure P10.6, the PIC18F4321 is required to turn on an LED connected to bit
1 of Port D if the comparator voltage Vx > Vy; otherwise, the LED will be turned
off. Write a C language program to accomplish this using conditional or polled
I/O.

10.7 Repeat Problem 10.6 using Interrupt I/O by connecting the comparator output to
INT1. Note that RB1 is also multiplexed with INT1. Write main program and
interrupt service routine in C language. The main program will configure the I/O
ports, enable interrupt INT1, turn the LED OFF, and then wait for interrupt. The
interrupt service routine will turn the LED ON and return to the main program at
the appropriate location so that the LED is turned ON continuously until the next
interrupt.

FIGURE P10.4

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5

Bit 6

R

R

R

R

R

R

R

a
b
c
d
e
f
g

f

a

b

c

d

e

g

GN D

Port
C

R=330 Ω

FIGURE P10.6

+

-

Vx

Vy

PIC18F4321

PORTC

PORTD

0

1

330

LED

LM339
Output =1
If Vx > Vy

Bit 0 of Port C

330 Microcontroller	Theory	and	Applications	with	the	PIC18F

10.8 In Figure P10.8, if VM > 12 V, turn an LED ON connected to bit 3 of port A. If VM
< 11 V, turn the LED OFF. Using ports, registers, and memory locations as needed
and INT0 interrupt:

(a) Draw a neat block diagram showing the PIC18F4321 microcontroller
and the connections to ports in the diagram in Figure P10.8.

(b) Write the main program and the service routine in C language. The main
program will initialize the ports and wait for an interrupt. The service
routine will accomplish the task and stop.

10. 9 Write C language program to set interrupt priority of INT1 as the high level, and
interrupt priority for INT2 level as low level.

10.10 Assume the PIC18F4321‑ DMC 16249 interface of Figure 10.10. Write a C
program to display the phrase “PIC18F” on the LCD as soon as the four input
switches connected to Port C are all HIGH.

10.11 Write a C program to initialize Timer0 as an 8‑bit timer to provide a time delay
with a count of 100. Assume 4 MHz internal clock with a prescaler value of 1:16.

10.12 Write a C language program to generate a square wave with a period of 4 ms on
bit 0 of PORTC using a 4 MHz crystal. Use Timer0.

10.13 Write a C language program to generate a square wave with a period of 4 ms on
bit 7 of PORTD using a 4 MHz crystal. Use Timer1.

10.14 Write a C language program to turn an LED ON connected at bit 0 of PORTC with
a PR2 value of 200. Assume a 4 MHz crystal and TMR2 prescaler and postscaler
values of 1:1.

10.15 Write a C language program to generate a square wave on pin 3 of PORTC with
a 4 ms period using Timer3 in 16‑bit mode with a prescaler value of 1:8. Use a 4
MHz crystal.

FIGURE P10. 8

+
-

+
-12V

VM

11V

Voltage
measurement To 1

X

Y

INT0
OF

PIC18F4321

332 Microcontroller	Theory	and	Applications	with	the	PIC18F

1. Sample a 5 V (zero‑to‑peak voltage), 60 Hz sinusoidal voltage 128 times.
2. Digitize the sampled value using the on‑chip ADC of the PIC18F4321

along with its interrupt upon completion of conversion signal.
3. Compute the RMS value of the waveform using the formula,
 RMS Value = SQRT [(

n1

N

(Xn
2) /N], where Xn’s are the samples and N is

the total number of samples. Display the RMS value on two seven‑segment
displays (one for integer part, and the other for fractional part).

(a) Draw a hardware block diagram.

(b) Write C language program to accomplish the above.

10.19 Capacitance	meter. Consider the RC circuit of Figure P10. 19. The voltage across
the capacitor is Vc (t) = k e‑t/RC. In one‑time constant RC, this voltage is discharged
to the value k/e. For a specific value of R, value of the capacitor C = T/R, where T
is the time constant that can be counted by the PIC18F4321. Design the hardware
and software for the PIC18F4321 to charge a capacitor by using a pulse to a
voltage of your choice via an amplifier. The PIC18F4321 will then stop charging
the capacitor, measure the discharge time for one time constant, and compute the
capacitor value.

(a) Draw a hardware schematic.

(b) Write a C program to accomplish the above.

10.20 Design a PIC18F4321‑based digital clock. The clock will display time in hours,
minutes, and seconds. Write a C program to accomplish this.

10.21 Design a PIC18F4321‑based system to measure the power absorbed by a
2K resistor (Figure P10.21). The system will input the voltage (V) across the
2K resistor, convert it to an 8‑bit input using the PIC18F4321’s on‑chip A/D
converter, and then compute the power using V2/R. Write a C language program
to accomplish the above.

FIGURE P10.19

+

-
V

R

C Vc(t)
t

Vc(t)
k

k /e

T

FIGURE P10.21

+
-5V

500 ohm

2K
+
V

Basics	of	Programing	the	PIC18F	Using	C	 333

10.22 Design a PIC18F4321‑based system (Figure P10.22) as follows: The system will
drive two seven‑segment digits, and monitor two key switches. The system will
start displaying 00. If the increment key is pressed, it will increment the display by
one. Similarly, if the decrement key is pressed, the display will be decremented by
one. The display will go from 00 to 09, and vice versa.

 Write a C language program to accomplish the above. Use ports of your choice.
Draw a block diagram of your implementation.

10.23 It is desired to implement a PIC18F4321‑based system as shown in Figure P10.23.
The system will scan a hex keyboard with 16 keys, and drive three seven‑segment
displays. The PIC18F4321 will input each key pressed, scroll them in from the
right side of the displays, and keep scrolling as each key is pressed. The leftmost
digit is just discarded. The system continues indefinitely. Write a C language
program to accomplish the above. Use ports of your choice.

10.24 Assume that two PIC18F4321s are interfaced in the SPI mode. A switch is
connected to bit 0 of PORTD of the master PIC18F4321 and an LED is connected
to bit 5 of PORTB of the slave PIC18F4321. Write C language programs to input
the switch via the master, and output it to the LED of the slave PIC18F4321. If the

FIGURE P10.23

FIGURE P10.22

Increment
key

Decrement
key

PIC18F4321

keyboardHex Seven-segment displays

334	 Microcontroller Theory and Applications with the PIC18F

switch	is	open,	the	LED	will	be	turned	ON	while	the	LED	will	be	turned	OFF	if	
the	switch	is	closed.

10.25	 Assume	PIC18F4321.	Write	a		C	language	program		that	will	measure	the	period	
of	a	periodic	pulse	train	on	the	CCP1	pin	using	the	capture	mode.	The	16‑bit	result	
will	be	performed	in	terms	of	the	number	of		internal	(Fosc/4)	clock	cycles,	and	
will	be	available	in	the	TMR1H:TMR1L		register	pair.	Use	1:1	prescale	value	for	
Timer1.	Store	the	16‑bit	result	in	CCPR1H:CCPR1L.

10.26	 Assume	PIC18F4321.	Write	a	 	C	language	program	that	will	generate	a	square	
wave	on	the	CCP1	pin	using	the	Compare	mode.	The	square	wave		will	have	a		
period	of		20	ms	with	a	50%	duty	cycle.	Use	Timer1	internal	clock	(Fosc/4	from	
XTAL)	with	1:2	prescale	value.

10.27	 Write	a		C	language	program		to	generate	a	16	KHz	PWM	with	a	75%	duty	cycle	
on	the	RC2/CCP1/P1A	pin	of	the	PIC18F4321.	Assume	10	MHz	crystal.

10.28	 It	is	desired	to	change	the	speed	of	a	DC	motor	by	dynamically	changing	its	pulse	
width	using	a	potentiometer	connected	at	bit	0	of	PORTB	(Figure	P10.28).	Note	
that	the	PWM	duty	cycle	is	controlled	by	the	potentiometer.	Write	a		C	language	
program	that	will	input	the	potentiometer	voltage	via	the	PIC18F4321’s	on‑chip	
A/D	converter		using	interrupts,	generate	an	800‑Hz	PWM	waveform	on	the	CCP1	
pin,	and	then	change	the	speed	of	the	motor	as	the		potentiometer	voltage	is	varied.

	 Assume	4	MHz	crystal	and	a	TMR2	prescaler	value	of	16.	Ignore	fractional	part	
of	the	duty	cycle.

10.29			 It	 is	 desired	 to	 implement	 a	 traffic	 light	 controller	 using	 the	 PIC18F4321	 as	
follows:

Step	1:		Make	North‑South	light	Green	and	East‑West	light	Red	for	10	seconds.	
Check	to	see	if	any	waiting	car		is	trying	to	go	from	east	to	west	and	vice	
versa.	If		there	is	a	waiting	car,	go	to	step	2;	otherwise,	repeat	this	step.

FIGURE P10.28

PIC18F4321

B0

C2 PORTC

AN12

+5V

(CCP1)

0-5V PWM

+5V

+12V

0-12V PWM

MOTOR 0.1uF

CNY17F
Optocoupler

Appendix	A:	 341

 MOVF PORTC, F ; Input PORTC
 MOVLW 0x07
 ANDWF PORTC, F ; Retain low three bits
 MOVLW 0x00 ; Check for no high switches, 0 is an even number
 SUBWF PORTC, W
 BZ LED ; If no high switches, turn LED ON
 MOVLW 0x03 ; Check for two high switches
 SUBWF PORTC, W
 BZ LED ; If two high switches, turn LED ON
 MOVLW 0x05 ; Check for two high switches
 SUBWF PORTC, W
 BZ LED ; If two high switches, turn LED ON
 MOVLW 0x06 ; Check for two high switches
 SUBWF PORTC, W
 BZ LED ; If two high switches, turn LED ON
FINISH SLEEP ; Halt
LED BSF PORTD, 6 ; Turn LED ON
 BRA FINISH
 END

8.12
 INCLUDE <P18F4321.INC>
 ORG 0x200
START MOVLW 0x0F ;Configure PORTB as input
 MOVWF ADCON1
 BCF TRISC, 1 ; Configure bit 1 of PORTC as an output
 BCF PORTC, RC1 ;Turn LED OFF
BACK MOVF PORTB, 0x20 ; Input PORTB into 0x20
 RRCF 0x20, W ; Rotate right once to align output data
 BNC BACK ;Wait for the COMP.output to be HIGH
 BSF PORTC, RC1 ;Turn LED ON
 BRA START
 END

Chapter	9

9.1
 Bit 7: Set to 0 so that TMR0 is off
 Bit 6: Set to 1 in order to enable the 8‑bit mode of TMR0
 Bit 5: Set to 1 so that an external crystal oscillator can be used
 Bit 4: Set to 1 so the timer will increment when the clock is going from high to low

(negative edge).
 Bit 3: Set to 0 in order to enable the prescaler function
 Bit 2‑0: Set to 011 to enable a 1:16 prescaler
 Hence, T0CON=0x73

	 437

APPENDIX G: TUTORIAL FOR
COMPILING AND DEBUGGING

 A C PROGRAM
USING THE MPLAB

Compiling a C- language program using MPLAB

First download the latest versions of the MPLAB assembler and C18 compiler from the
Microchip website www.microchip.com. After installing and downloading the program,
you will see the following icon on your desktop:

Double click (right) on the MPLAB icon and wait until you see the following screen:

Next, click on ‘Project’ and then ‘Project Wizard’, the following screen will appear:

438 Microcontroller	Theory	and	Applications	with	the	PIC18F

Click Next, the following screen shot will be displayed:

Appendix	G:	 439

Select the device PIC18F4321, hit Next, and wait, the following will be displayed:

440 Microcontroller	Theory	and	Applications	with	the	PIC18F

In the ‘Active Toolsuite’, select ‘Microchip C18 Toolsuite’, and click Next, the following
will be displayed:

Appendix	G:	 441

Select a location where all project contents will be placed. For this example, the folder
will be placed on the desktop (arbitrarily chosen). Go to the desktop directory, make a new
folder, and name the folder. In order to do this, Click on ‘Browse’, select desktop:

442 Microcontroller	Theory	and	Applications	with	the	PIC18F

Next, create a new folder by clicking on the icon (second yellow icon from right on top
row) or by right clicking on the mouse on the above window, and then go to New to see
the following screen:

Click on Folder to see the following:

Appendix	G:	 443

Click on folder, name it ‘plus’ (arbitrarily chosen name) and see the following :

 File name ‘addition’ is arbitrarily chosen . Type in the File name to see the
following:

Next, click on Save, the following screen will appear:

444 Microcontroller	Theory	and	Applications	with	the	PIC18F

Click on Next, and see the following:

Appendix	G:	 445

Click Next to see the following:

446 Microcontroller	Theory	and	Applications	with	the	PIC18F

Click on Finish, and see the following:

Appendix	G:	 447

Click on File, and then New to see the following:

448 Microcontroller	Theory	and	Applications	with	the	PIC18F

Type in the program you want to compile. The following addition program is entered:

#include <p18f4321.h>
void main (void)
{int a=5;
int b=1;
int c;
c=a+b;
while(1);
}

After entering the program, see the following:

Next, click on File, and then Save as to see the following screen shot:

Appendix	G:	 449

Make sure you scroll up to desktop, and then click on plus (the folder which was created
before), and see the following:

450 Microcontroller	Theory	and	Applications	with	the	PIC18F

Next ,double click (left) on plus to see the following:

Delete Untitled, enter the same file name ‘addition’ with .c extension as File name. Click on
save, and see the following screen shot (notice the display changes color) :

Appendix	G:	 451

Next highlight by clicking on the top (blue) section of addition.mcw, and see the following:

452 Microcontroller	Theory	and	Applications	with	the	PIC18F

Right click on Source Files to see the following:

Click (left) on Add files to see the following:

Appendix	G:	 453

Click once (left) on addition.c on the window to see the following:

454 Microcontroller	Theory	and	Applications	with	the	PIC18F

Click Open to see the following:

Appendix	G:	 455

Next, do the following:
- Click on project, Click on Build options and then project
- Scroll down on output directory to Linker.Script Search Path, Select new
- Click on … (three dots on the extreme right)
- Select C:\MCC18, bin, and then LKR, Click OK
- Click on project, Click on Build options and then project
- Scroll down on output directory to Library Search Path, Select new
- Click on … (three dots on the extreme right)
- Select C:\MCC18, and then lib, Click OK
- Click on project, Click on Build options and then project
- Scroll down on output directory to Include Search Path, Select new
- Click on … (three dots on the extreme right)
- Select C:\MCC18, and then h, Click OK

Note that addition.c is listed under Source Files. Next, click on Project and then build all
(or only the ‘Build All’ icon , third icon on top right of the Debug toolbar), and see the
following:

This means that the compiling the C program is successful. Next the result will be verified
using the debugger.
Click on Debugger, Select Tool, and then MPLAB SIM to see the following display:

456 Microcontroller	Theory	and	Applications	with	the	PIC18F

Click on MPLAB SIM to see the following:

Appendix	G:	 457

Click on View, toolbars, and Debug to see the following display with Debug toolbar:

In the above, locate the Debug Toolbar. If, for some reason, Debug toolbar is missing, go
to view, select Toolbars, click on Debug.
 Next, click on View, and then watch to see the following:

458 Microcontroller	Theory	and	Applications	with	the	PIC18F

On the Watch list, you can now include locations a, b, c to monitor their contents. For
example, to add ‘a’, simply select ‘a’ by scroll down using the arrow on the Add Symbol
window , and then click on Add Symbol to see the following display:

Appendix	G:	 459

See that ‘a’ is displayed on the watch window. Similarly, display ‘b’ and ‘c’, and see the
following screen shot:

460 Microcontroller	Theory	and	Applications	with	the	PIC18F

Next, insert breakpoints. Three breakpoints will be inserted for this program. One for int
a = 5, one for int b = 2, and one for c = a+b. To insert a breakpoint, amove the cursor to
the left of the line where breakpoint is to be inserted. For example, to insert a breakpoint
at int a =5, move cursor to the left of the line, click (right) and see the following display:

Next, click on Set Breakpoint to see the following:

Appendix	G:	 461

B in red on the left side of the line would indicate that the breakpoint is inserted. Similarly,
insert the breakpoints for’ ‘b and ‘c’, and obtain the following display:

462 Microcontroller	Theory	and	Applications	with	the	PIC18F

Next go to the Debug menu and Watch menu to see the contents of a, b, and c as each line
is executed.
First go to Debug menu, and left click on reset (first symbol on right), and then click on
the single arrow called the ‘Run’ arrow (left most arrow on the Debug menu), the code int
a = 5; will be executed next. Click on single arrow again, the code is executed, and the
following will be displayed:

Appendix	G:	 463

Note that ‘a’ contains 5. Next, left click on the single arrow, the following will be displayed:

464 Microcontroller	Theory	and	Applications	with	the	PIC18F

Note that ‘b’ contains 1 after execution of int b = 1;

Next, left click on the single arrow, and then left click on Halt (icon with two vertical lines
, second from left on the Debug menu) to see the final result after execution of the line
c = a +b ;
as follows:

In the above, see that ‘c’ contains 6 (final answer).

The debugging is now complete.

468	 Microcontroller Theory and Applications with the PIC18F

H.3	 PROGRAMMING		THE			PIC18F4321	FROM		PERSONAL	COMPUTER			
	 USING	THE	PICkit3

	 In	 order	 to	 configure	 PICkit3	 from	 the	 personal	 computer	 or	 laptop,	The	 user	
needs	to	click	on	the	‘Programmer’,	and	then	select		PICkit3	as	follows:

FIGURE	H.	5		 Connecting	the		PICkit™	3		to	the	breadboard

FIGURE	H.	4	 Pictorial		view		of		connecting		the	PICkit™	3	to	the	USB	port

470	 Microcontroller Theory and Applications with the PIC18F

Several	options	will	appear	at	the	top	menu	to	program	the	PIC18F4321.	The	screen	shot	
is	provided	below:

After	successfully	assembling		or		compiling	a	program,	click	the	“program”	option	and	
MPLAB	will	download	the	program	into		the	microcontroller.
The		following	message	will	apear	indicating	that	the	code	was	successfully	programmed	
and	verified	onto	the	PIC18F:

This	will	complete	downloading	the		programs	from	the	computer	into	the	PIC18F4321	
microcontroller.
Note	 that	 for	 PIC18F	 assembley	 language	 programs	with	 I/O,	 the	 following	 four	 lines	
should	be	inserted	after	INCLUDE	<P18F4321.INC>:
	 config	OSC	=	INTIO2	 ;	Select	internal	clock
	 config	WDT	=	OFF	 ;	Watch	dog	time	OFF
	 config	LVP	=	OFF	 ;	Low	voltage	programming	OFF
	 config	BOR	=	OFF	 ;	Brown-out	reset	OFF
For	 C	 programs	 with	 I/O,	 the	 following	 four	 lines	 should	 be	 inserted	 after	 #	 include	
<P18F4321.h>
	 #	pragma	config	OSC	=	INTIO2	 //	Select	internal	clock
	 #	pragma	config	WDT	=	OFF	 //	WDT	OFF
	 #	pragma	config	LVP	=	OFF	 //	LVP	OFF
	 #	pragma	config	BOR	=	OFF	 //	BOR	OFF

	MicroprocessorTheory PIC18F Chapter 2 Changes
	MicroprocessorTheory PIC18F Chapter 3 Changes
	Microcontroller Theory PIC18F Chapter 4 Changes
	MicroprocessorTheory PIC18F Chapter 5 Changes
	Microcontroller Theory PIC18F Chapter 6 Changes
	Microcontroller Theory PIC18F Chapter 7 changes
	Microcontroller Theory PIC18F Chapter 8 Changes
	Microcontroller Theory PIC18F Chapter 9 Changes
	Microcontroller Theory PIC18F Chapter 10 Changes
	Microprocessor Theory PIC18F Appendix H Changes
	Microprocessor Theory PIC18F Backend Changes

