
Esencia

Technologies Inc.
www.esenciatech.com

PLP v2 and SmGen
Rising the level of abstraction in Verilog design

6/11/2010

© Esencia Technologies Inc. 2

Agenda

• Motivation

• PLP v2 (PerL Preprocessor)

• A language agnostic pre-processor that uses

Perl to generate output code

• SmGen (State Machine generator)

• Behavioral style Verilog conversion to

synthesizable FSM

• A combined example

• Licensing

• Support

© Esencia Technologies Inc. 3

Motivation

• Verilog design is still low level compared to
languages like C++

• Synthesis tools constraint coding to a set of
synthesizable templates

• Some of them addressed by SystemVerilog but still
can be improved

• People is not willing to embrace improvements
because of the risk of back-end tools choking with
the flow later on in the project

© Esencia Technologies Inc. 4

Examples of limitations

• Events need to appear at the beginning of always blocks:

E.g.

always @(posedge clk or negedge rst_n) begin

 // event free sequential block

end

always @(a or b or c) begin

 // event free combinational block

end

© Esencia Technologies Inc. 5

Examples of limitations

 • Many times a more natural alternative to a FSM is to
write code sequentially as in the original algorithm

mul1 <= 'habc;

mul2 <= 1234;

do_mul <= 1;

@(posedge clk);

div1 < mul_res;

div2 <= 5678;

@(posedge clk);

res <= div_res;

But this is still cumbersome...

© Esencia Technologies Inc. 6

Examples of limitations

 • Ideally one would write code as in the original
algorithm and insert clock events as needed to
distribute the load across clock cycles

Mul('habc, 1234, mul_res);

Div(mul_res, 5678, div_res);

• But “time consuming tasks” are not synthesizable

by standard tools. Currently this needs to be

implemented as a Finite State Machine (FSM)

© Esencia Technologies Inc. 7

Examples of limitations

 • Other Verilog limitations are easily addressed by a
preprocessor:

• Generating multiple instantiations of a block based on a parameter

• Extra constant / compile time functions

• log2(x) for number of bits required to hold x

• Stringify a parameter to make it readable on a waveform viewer

• sin(x)/cos(x)/sqrt(x)... over constant values for table generation

• min/max(x,y[,..])

• Macro expansion:

 WiggleWire(a,1,0,1)

© Esencia Technologies Inc. 8

PLP – a simple perl based preprocessor

• Why Perl ?

• Powerful / ubiquitous in ASIC design environments

• Excellent text processing capabilities

• Most designers familiar with it

© Esencia Technologies Inc. 9

PLP – The basic idea

• Phase 1: The input file is converted into a Intermediate

Perl Script (or IPS in what follows)

• By default if a line contains:

 aaa bb cc

• The generated code just prints it as is:

 print “aaa bb cc\n”;

• Perl special characters are automatically quoted:

 input: $display($time, “ reset on\n”);

IPS: print “\$display(\$time, \” reset on\\n\”);

© Esencia Technologies Inc. 10

PLP – inserting Perl code

• Lines starring with % (PLP's Perl scape character –
re-definable with -ps option) are emitted to IPS as
is:

 input: %for $i (1..3) {

 hi

 %}

 IPS: for $i (1..3) {

 print “hi\n”;

 }

Redefining Perl escape character may be interesting for

other applications (e.g. // Pragma to expand pragmas

given in comments). Defined by a regular expression.

© Esencia Technologies Inc. 11

PLP – output generation

• Phase 2: IPS is executed by the Perl interpreter
and its output generates the output file

 perl IPS > output

 output: hi

 hi

 hi

• If IPS contains errors, it can be easily debugged as
it is visible by the user:

 By inspection for simple syntax errors

 With Perl debugger (perl -d IPS) or with ddd

© Esencia Technologies Inc. 12

PLP – value interpolation

• Perl variable values can be inserted in regular text
by using ${varname} syntax. E.g.

 input: %for $i (1..3) {

 hi $i is ${i}

 %}

 IPS: for $i (1..3) {

 print “hi \$i is ${i}\n”;

 }

 output: hi $i is 1

 hi $i is 2

 hi $i is 3

© Esencia Technologies Inc. 13

PLP – expression interpolation

• A Perl function call or expression can also be called
directly in regular text. Use $((expr)) syntax; the
return value of the expression is interpolated in the
output text. Ex.

 input: %$max=256;

 %for $i (1..3) {

 input [$((log2($max)-1)) : 0] x${i};

 %}

 output: input [7 : 0] x0;

 input [7 : 0] x1;

 input [7 : 0] x2;

© Esencia Technologies Inc. 14

PLP – including raw Perl code

• A set of Perl subroutines can be included for later use
as follows

 input: %include(“util.pl”);

• Note that include() is just a built-in Perl sub contained
in PLP itself that evals the code in util.pl

© Esencia Technologies Inc. 15

PLP – invocation

• If the extension of the filename is .plp, by default
the output filename is constructed from the input
one by dropping the .plp extension

 > plp fifo.v.plp (generates fifo.v)

• You can also explicitly define output filename with

 -o option

 > plp pre_fifo.v -o fifo.v

© Esencia Technologies Inc. 16

PLP – invocation (2)

• To pass a parameter for generation from the shell,
invoke plp with -p param=val as many times as
required

 > plp -p width=32 -p depth=4 pre_fifo.v -o fifo_w32_d4.v

 Prepends: $width=32;

 $depth=4;

To IPS to be used in the pre_fifo.v code so that the

code can be generated according to those parameters

© Esencia Technologies Inc. 17

PLP – invocation (3)

• Sometimes a parametric file may want to generate
the output filename programmatically within the
body of the input file. E.g. parameters are width and
depth and filename must have width and total_bits
as part of the filename.

• Use embedded PLP_FILENAME directive

 > plp -p width=32 -p depth=4 pre_fifo.v

 % $bits = $width * $depth

 // PLP_FILENAME=”fifo_w${width}_bits${bits}.v”

Would generate fifo_w32_bits128.v

© Esencia Technologies Inc. 18

PLP – 2 passes

• Pass 1 the pure Perl generation we have
mentioned so far (with 2 phases)

• Pass 2 is Verilog specific so it is disabled by default
(-2 to enable it). It runs the code through emacs in
batch mode for /*AUTO...*/ directive expansion by
using emacs Verilog mode. See

 http://www.veripool.org/wiki/verilog-mode

 For details on Verilog mode AUTO directives

© Esencia Technologies Inc. 19

PLP – command line options

Perl Based Preprocessor

 USAGE: plp [options] filename.ext ...

 -h : Display this message

 -q : Quiet mode

 -n : No comment. Remove initial comment on

 generated file

 -ips f : Use f as filename for Intermediate

 Perl Script (def plp_tmp*.pl)

 -c : Compile only (don't execute fileTmp)

 -[no]1 : Perl preprocessor step (def yes)

 -[no]2 : auto/emacs pass (def no)

© Esencia Technologies Inc. 20

PLP – command line options (2)

-pp str : Perl parameters. Will add "parameters" to 1st line

 of macrop_tmp*.pl (e.g -w for #!/usr/bin/perl -w)

-o f : Output filename (requires only one input file name

 given) when multiple files are given the filename

 is expected to have .plp extension which is removed

 to generate the output filename

-d dir : Destination directory for resulting file (def .)

-cs str : Specify comment start sequence (def '//')

-ce str : Specify comment end sequence (def '')

-ps str : Specify escape character for perl (def '%')

-ms str : Specify start escape char for phase 1 calls (def '@')

-ts str : Specify escape character for phase 2 calls (def '')

-es str : Specify start escape char for Perl eval (def '$((')

-ee str : Specify end escape char for Perl eval (def '))')

© Esencia Technologies Inc. 21

PLP – command line options (3)

-p var=value : pass a parameter to file to process

 (e.g. -p WIDTH=32) multiple can be given with

 several -p parameters

 An Intermediate Perl Script (fileTmp) will be created.

 The execution of that file generates the post-processed file on stdout.

 It can be used to debug the code embedded in the pre-preprocessed file

 if the string PLP_FILENAME="filename" is found in the generated output

 after a comment (as per -cs option) then the output filename is overridden

 by this value (this allows to compute the filename within the body of the

 file based on command line parameters)

© Esencia Technologies Inc. 22

PLP – includes

• Sometimes is convenient to 'execute' a Perl
function while PLP parses your input file in phase 1,
instead of just emitting its code to IPS. For example
to include a plp file to be processed

 @plp_include(my_plp_lib_file)

Will process &plp_include(“my_plp_lib_file”) function

during the IPS generation (phase 1). plp_include is a

built-in function but the same would happen with user

defined Perl sub's

NOTE that this includes plp code (not Perl code)

© Esencia Technologies Inc. 23

PLP – start-up

• You may want to preload a set of PLP files for a
given file type.

• PLP automatically evals (and makes available to
phase 1) the following Perl files in this order

 plp_path/plp_begin.pl

 plp_path/{file_type}/plp_begin.pl

Where file_type is derived as follows:
 If (plp_path/file_extension exists) { file_type = file_extension }

 else if (file_type in c/h } {file_type = c }

 else if (file_type in c/cc/cxx/cpp/hpp/C/H } {file_type = cpp }

 else if (file_type in v/vh } {file_type = v }

 else { file_type = file_extension }

© Esencia Technologies Inc. 24

PLP – start-up (2)

• You may want to preload a set of PLP files for a
given file type and make the available to phase 2

• PLP automatically includes (copies verbatim to IPS)
the following Perl files in this order

 plp_path/plp_lib.pl

 plp_path/{file_type}/plp_lib.pl

 For instance functions like log2/sign_extend etc. are
interesting under v/plp_lib.pl so that they become
code generators for all Verilog files

© Esencia Technologies Inc. 25

PLP – finishing-up

• PLP automatically evals the following Perl files in
this order

 plp_path/{file_type}/plp_end.pl

 plp_path/plp_end.pl

• This allows you to emit code you may have
captured in variables and purposely delayed
towards the end of the processing

© Esencia Technologies Inc. 26

PLP – advanced features

• Inserting @func(param1, param2) causes PLP to
invoke &func(“param1”, “param2”) during IPS
generation (phase 1) and emits to IPS whatever
&func returns. This can be used to emit complex
Perl sequences to IPS on the fly (like generating
a subroutine declaration with a specific template)

• &func must have been defined in Perl elsewhere

 (for instance in one of the plp_begin.pl
automatically included)

© Esencia Technologies Inc. 27

PLP – advanced features (2)
• For example see MacroDef / MacroEnd

implementation in plp_begin.pl (auto-loaded on start-
up for Perl code) :

sub MacroDef {

 my ($name, @pars) = @_;

 local $"=",\$";

 my $res = "sub $name {\n";

 if ($#pars >= 0) {

 $res .= "my (\$@pars) = \@_;\n";

 }

 return $res;

}

sub MacroEnd {

 return "}\n";

}

© Esencia Technologies Inc. 28

PLP – advanced features (3)

• ... make the following two definitions equivalent:
%sub macro_min1 {

% my ($x1, $x2, $res) = @_;

 if (${x1} < ${x2})

 ${res} = ${x1};

 else

 ${res} = ${x2};

%}

@MacroDef(macro_min1, x1, x2, res);

 if (${x1} < ${x2})

 ${res} = ${x1};

 else

 ${res} = ${x2};

@MacroEnd;

© Esencia Technologies Inc. 29

PLP – advanced features (4)

• In order to clean-up the syntax, PLP allows
function calls of the type

 % &func(“par1”, “par2”, ..., “parn”);

• To be entered as

 [\s*] [ts] func(par1, par2, ..., parn) [;]

 Where ts is an optional start symbol (empty by

 default, see –ts option)
 E.g. ProcCall(t1, a1, a2);

© Esencia Technologies Inc. 30

• For example:
 %sub outReg {

 % my ($name, $w) = @_;

 % if (defined($w) && $w != 0) {

 output [${w} – 1: 0] ${name} ;

 reg [${w} – 1: 0] ${name} ;

 % }else {

 output ${name} ;

 reg ${name} ;

 % }

 %}

• Allows you to do anywhere in the code:

 input go;

 outReg(done); // generates output and reg decl

 outReg sum, 10 // parenthesis / ; are optional

© Esencia Technologies Inc. 31

PLP – summary

• Brings all the text processing capabilities of Perl
to your design cycle

• Encourages reuse and brevity in the code. Per
language libraries being developed

 plp/c/*

 plp/v/*

• Targets clean syntax so code can look close to
the original language

• The intent is to allow you to easily augment your
original language in a simple way

• Check-out examples included in the distribution
of further use

 plp/examples/*

© Esencia Technologies Inc. 32

SmGen – State Machine Generation

• Translates sequential code into FSM's

• Complex FSMs are still required when full pipelining
is an overkill in many designs

• Typical Flow:

• Write behavioral code within Smg.. blocks

• Pre-process with PLP if needed (assumed here)

• Generate output through smgen choosing

• Behavioral output (basically same as input but
with thin wrapper code)

• FSM 1-block style (synthesizable)

• FMS 2-block style (synthesizable)

• Process with PLP one last time as smgen may
generate directives that need PLP (auto expansion)

© Esencia Technologies Inc. 33

SmGen – input structure

 SmgBegin

 flop_declaration (flop_declaration)*

 [SmgCombo

 combo_declaration (combo_declaration)*]

 SmgForever

 ...

 SmgEnd

 flop_declaration := [local] [reg] [width_declaration] var_name [<= reset_value] ;

 combo_declaration := [local] [reg] [width_declaration] var_name [= init_value] ;

 width_declaration := <empty> | [integer_expr : integer_expr]

© Esencia Technologies Inc. 34

SmGen – example

SmgBegin

 reg [31:0] x <= 1’b1;

 reg [7:0] cnt <= 4'b0;

SmgForever

 while (cnt != 4'b1111) begin // wait a number of clocks

 cnt <= cnt + 1'b1;

 `tick;

 end

 `tick;

 while (~ack) `tick; // wait for ack to arrive

 x <= 0; // drive a signal

 while (cnt != 4'b0000) begin // wait some more clocks

 cnt <= cnt + -1'b1;

 `tick;

 end

 `tick;

 while (~ack) `tick; // wait for another ack

 x <= 1;

SmgEnd

© Esencia Technologies Inc. 35

SmGen – example notes

• Flop declaration section defines reset value and
which entities have its output registered

• Clock name/polarity, reset name/polarity are
command line options to SmGen

• `tick represents a clock event but allows
abstracting clock name/polarity at this level. It also
implies “go back to the reset condition if reset is
asserted”

• SmgForever block can use sequential code. This
statement inserts an infinite loop around your code:

while(1) begin

 `tick

 .. code between SmgForever/SmgEnd here...

end

© Esencia Technologies Inc. 36

SmGen – invocation

• Behavioral output

 > smgen sample.vb -beh > sample.v

• 1-block FSM style (use this one by default)

 > smgen sample.vb > sample.v

• 2-block FSM style (more flexible control)

 > smgen sample.vb -sep > sample.v

• We'll use .vb in the examples for code containing
this type of Behavioral Verilog

© Esencia Technologies Inc. 37

SmGen – invocation
State Machine generator

Usage: smgen [options] input_file > output_file

 Where options is any combination of the following:

 -[no]sync Specifies sync reset vs. asynchronous (default async)

 -[no]high Specifies active high reset (default low)

 -[no]fall Specifies falling edge clk as active (def rising)

 -beh Output is behavioral (default is RTL 1-block FSM)

 -sep if !beh, Output is RTL 2-block FSM style

 -help Display this message

© Esencia Technologies Inc. 38

SmGen – command line options (2)

 Following options require an extra parameter

 (s=string, n=integer number)

 -prefix s Prefix for state names (def ST)

 -clk s Clock name (def clk)

 -rst s Reset name (def rst_n)

 -name s Used to derive generated block name etc. (def behav)

 -state s Name of state variable generated (def state)

 -dbg n Set debug level (def 0)

© Esencia Technologies Inc. 39

SmGen – Example of invocation

• 1-block FSM output, synchronous reset active high

 > smgen sample.vb –high –sync > sample.v

• 2-block FSM with explicit reset/clock names

 > smgen sample.vb -sep –clk clock –reset resetN >
sample.v

© Esencia Technologies Inc. 40

SmGen – Example - Arbiter

See http://www.asic-world.com/tidbits/verilog_fsm.html

for full blown FSM verilog code and more thorough
description. This is the SmGen version:

 1: //==

 2: // This is FSM generation demo using SmGen

 3: // File Name : arb.vb.plp

 4: //===

 5: module fsm_using_smgen (/*AUTOARG*/);

 6:

 7: //=============Input Ports=============================

 8: input clock,reset,req_0,req_1;

 9: //=============Output Ports===========================

 10: output gnt_0,gnt_1;

 11:

 12: @MacroDef(expect, expr);

 13: `tick; while (! (${expr})) `tick;

 14: @MacroEnd;

http://www.asic-world.com/tidbits/verilog_fsm.html

© Esencia Technologies Inc. 41

SmGen – Example - Arbiter

 15: SmgBegin
 16: reg gnt_0 <= 0;

 17: reg gnt_1 <= 0;

 18: SmgForever

 19: if (req_0 == 1'b1) begin

 20: gnt_0 <= 1;

 21: expect(req_0 == 1'b0);

 22: gnt_0 <= 0;

 23: end else if (req_1 == 1'b1) begin

 24: gnt_1 <= 1;

 25: expect(req_1 == 1'b0);

 26: gnt_1 <= 0;

 27: end

 28: SmgEnd

 29:

 30: endmodule // End of Module arbiter

© Esencia Technologies Inc. 42

SmGen – Example2 – Motor controller

• See
http://www.cse.nd.edu/courses/cse20221/www/handouts/L17_FS

M%20Design%20Example%20with%20Verilog.pdf

for a detailed description of the problem and full blown

FSM Verilog code solution

 NAME TYPE FUNCTION
activate input starts the door to go up/down or stops the motion

up_limit input indicates maximum upward travel

dn_limit input indicates maximum downward travel

motor_up output Causes motor to run in direction to raise the door

motor_dn output Causes motor to run in direction to lower door

reset input Force the controller to enter into the initial state

http://www.cse.nd.edu/courses/cse20221/www/handouts/L17_FS

© Esencia Technologies Inc. 43

SmGen – Example2 – Motor controller
SmGen version:

 1: module DoorOpener(/*AUTOARG*/);

 2: input clk, activate, up_limint, dn_limit, reset;

 3: output motor_up, motor_dn;

 4:

 5: @MacroDef(expect, expr);

 6: `tick; while (!(${expr})) `tick;

 7: @MacroEnd;

 8:

 9: SmgBegin

 10: reg motor_up <= 0;

 11: reg motor_dn <= 0;

 12: SmgForever

 13: if (up_limit) begin

 14: expect(activate);

 15: motor_dn <= 1;

 16: expect(dn_limit);

 17: motor_dn <= 0;

 18: end

 19: else begin

 20: expect(acivate);

 21: motor_up <= 1;

 22: expect(up_limit);

 23: motor_up <= 0;

 24: end

 25: SmgEnd

 26: endmodule

© Esencia Technologies Inc. 44

SmGen – Example2 – Motor controller

• Note expect() PLP macro is so usual that
deserves a place in v/plp_lib.pl to be automatically
available

• Code is much more concise (26 vs. 73 lines)

• Complex FSM's become a piece of cake!

© Esencia Technologies Inc. 45

SmGen – Summary

• FSMs are too low level and error prone

• More code means more chances for bugs

• SmGen code is much more concise (2.5-3x)

• More readable and natural once you get used to
this type of representation.

• Closer to the original algorithm and less error prone

• Check-out more eamples under:

 smgen/examples/*

© Esencia Technologies Inc. 46

Licensing and support

 LGPL licensing

 Your HW is yours

 Your SW is yours

 Your extension libraries are yours, but we
encourage you to share

 If you change the tools themselves, changes
should be made available to others

 estool@esenciatech.com for questions/bugs

