PLUMBING MATHEMATICS

A review of basic fundamentals of mathematics is essential to successful applications of plumbing principals. An acceptable reference that may be used during your examination is Mathematics for Plumbers and Pipefitters. The first six units contained in this reference will summarize these basic principals. If, after review of these six units, you still have difficulty in understanding the terms, formulas and principals used, further study must be considered.

In solving all mathematical problems you should follow the pattern of steps listed below:
STEP 1: Write the applicable formula.
STEP 2: Substitute the numerical value for each symbol in the formula.
STEP 3: Change values to like units, for example: all to feet or all to inches, with the exception of grade and drop formulas.

STEP 4: Solve the problem and label your answers, that is: feet, inches, gallons, etc.
A practical example using the preceding pattern of steps is as follows:
EXAMPLE: What is the area of a roof 120 inches wide and 20 feet 6 inches long?
(A) 200 square feet
(C) 210 square feet
(B) 205 square feet
(D) 215 square feet

STEP 1: Rectangle formula: Area $=$ Length \times Width $(A=L \times W)$

STEP 2: Area $=2^{\prime} 6^{\prime \prime} \times\left[120^{\prime \prime} / 12^{\prime \prime}\right]$ or 10^{\prime}
STEP 3: Area $=20.5^{\prime} \times 10^{\prime}$
Note: \quad Since you will be using a calculator, your answer will often be in the form of a decimal. The answers on the examination may be given as a decimal or a fraction so you must change your decimal to a fraction in some cases.

STEP 4: $20.5^{\prime} \times 10^{\prime}=205$ square feet. Area $=205$ square feet. Answer (B) 205 square feet.

When solving problems that involve decimals (fractional parts of a whole) carry the answer to three (3) decimal places to the right of the decimal point. Some problems may have an infinite number of decimal places, therefore rounding off is necessary. When you round off a number the rule is:
(A) Numbers Less than five (5) are dropped.
(B) Numbers More than five (5) are carried over to the preceding number, in other words, the preceding number is increased by 1.

EXAMPLE: Round off the following numbers to three (3) decimal places:
4.87231 becomes 4.872 (3 is less than 5)
16.10782 becomes 16.108 (8 is more than 5)
7.0032 becomes $7.003 \quad-\quad 62.6666$ becomes 62.667

Note: Do not round off numbers until you have finished the problem.
Since you will be using a calculator, your answer will often be in the form of a decimal. The answers on the examination may be given as a decimal or a fraction. In some cases you will have to convert your decimal to its fractional equivalent. In order to convert a decimal part of a whole foot or a whole inch to a fraction or a whole foot or a whole inch to a fraction, you will multiply the decimal times (x) the whole unit represented by the decimal point.

EXAMPLE: 0.75 inches is equal to $\frac{0.75}{1} \times \frac{64}{64}=\frac{48}{64}=\frac{24}{32}=\frac{3^{\prime \prime}}{4}$

$$
0.5 \text { feet is equal to } \frac{0.5}{1} \times \frac{12}{12} \times \frac{6.0}{12} \times \frac{1}{2}=6^{\prime \prime}
$$

Note: A whole inch may be represented as $\frac{64}{64}$ so 64 is the whole.
A whole foot may be represented as $\frac{12}{12}$ so 12 is the whole.
In some cases you may get a whole number and a decimal part of a whole number as your final answer.

EXAMPLE: 2.64 feet is equal to what ruler measurement?
STEP 1: 2 whole feet.
STEP 2: $\frac{0.64}{1} \times \frac{12}{12}=\frac{7.68^{\prime \prime}}{12}$ or 7 and $\frac{68}{100}$ of an inch.
STEP 3: $\frac{0.68}{1} \times \frac{64}{64}=\frac{43.52^{\prime \prime}}{64}$
STEP 4: $\frac{43.52^{\prime \prime}}{64}$ rounds off to $\frac{44}{64}=\frac{11}{16}$
ANSWER: 2.64 ' equals $21-7-11 / 16^{\prime \prime}$
NOTE: Conversion tables have been added elsewhere in this manual. These tables are self-explanatory.

FORMULAS

NOTE: Tab this section for quick review. These formulas and constants should be memorized.

1. Area of squares and rectangles: area $=$ length \times width
2. Area of circles: area $=\pi \times$ radius 2
3. Circumference of a circle: circumference $=\pi x$ diameter
4. Volume of a rectangle and square tanks: volume $=$ length x width x height
5. Volume of a cylinder: volume $=\pi \times$ radius $^{2} \times$ height
6. Gallons from cubic inches: gallons $=\frac{\text { cubic inches }}{231}$ 231
7. Gallons from cubic feet: gallons $=$ cubic feet $\times 7.5$
8. Pounds per square inch (P.S.I.): P.S.I. $=0.434 \times$ height
9. Height when pressure is known: height $=2.304 \times$ pressure
10. Drop of a pipe: drop $=$ pitch \times run
11. Pitch of a pipe: pitch $=\frac{\text { drop }}{\text { run }}$
12. Run of a pipe: run $=\frac{\text { drop }}{\text { pitch }}$
13. Drop from \%of fall: drop $=\%$ of fall x run
14. Length of a diagonal for 45° angles and offsets: diagonal $=1.414 \times$ offset
15. Length of all other diagonals: diagonal $=\sqrt{a^{2}+b^{2}}$
16. Actual length from scale: actual length $=$ plan measurement scale
17. Ratio of larger to smaller pipe: ratio $=\frac{(\text { large diameter })^{2}}{(\text { small diameter })^{2}}$
18. Man hours per ioint: man hours $=$ (number of hours x number of men) number of joints
19. Lead needed for given number of joints:

$$
\text { lead need }=\text { pipe diameter } x \text { lead weight } x \text { number of joints }
$$

20. Total lead need plus waste allowance: total need = $\frac{\text { lead need }}{(100 \%-\% \text { of waste })}$
21. Degree of offset of a pipe fitting: degree of angle $=$ fitting $\times 360^{\circ}$

CONSTANTS

NOTE: Tab This Section On Formulas And Constants

22. 1 cubic foot of water	$=$	7.5 gallons
23. 1 gallon of water	$=$	8.34 pounds
24. 1 foot of head	$=$	0.434 P.S.I.
25. 1 P.S.I.	$=$	2.304 feet of head
26. 1 gallon of water	$=$	231 cubic inches
27.1 cubic foot	$=$	1728 cubic inches
$28 . \pi$	$=$	3.14

APPLICATION OF FORMULAS

The following are applications of the proceeding formulas identified with corresponding numbers:
Formula Number 1: Area of squares and rectangles:
What is the area of a rectangle measuring $51 / 2$ feet by 14 feet?
Step 1: \quad Area $=$ length x width
Step 2: \quad Area $=14^{\prime} \times 51 / 2^{\prime}$
Step 3: \quad Area $=14^{\prime} \times 5.5^{\prime}$
Step 4: \quad Area $=77$ square feet.
Formula Number 2: Area of circles:
What is the area of a circle 6 inches in diameter?
Step 1: \quad Area $=\pi \times$ radius 2
Step 2: \quad Area $=3.14 \times\left(3^{\prime \prime} \times 3^{\prime \prime}\right)$
Step 3: \quad Area $=3.14 \times 9^{n}$
Step 4: \quad Area $=28.26$ square inches.
Formula Number 3: Circumference of circles:
What is the circumference of a circle with a 6 -inch diameter?
Step 1: \quad Circumference $=\pi \times$ diameter
Step 2: \quad Circumference $=3.14 \times 6 "$
Step 3: \quad Circumference $=18.84$ inches
Formula Number 4: Volume of rectangular and square tanks:
What is the volume of a tank 4 feet wide, 36 inches high and $81 / 2$ feet long?
Step 1: \quad Volume $=$ length x width x height
Step 2: \quad Volume $=81 / 2^{\prime} \times 4^{\prime} \times 36^{\prime \prime}$
Step 3: \quad Volume $=8.5^{\prime} \times 4^{\prime} \times 3^{\prime}$
Step 4: \quad Volume $=102$ cubic feet

Formula Number 5: Volume of a cylinder:

What is the volume of a cylinder 8 inches in diameter and 12 inches high?
Step 1: \quad Volume $=w \times$ radius $^{2} \mathrm{x}$ height
Step 2: \quad Volume $=3.14 \times\left[4^{\prime \prime} \times 4^{\prime \prime}\right] \times 12^{\prime \prime}$
Step 3: \quad Volume $=3.14 \times 16^{\prime \prime} \times 12^{\prime \prime}$
Step 4: \quad Volume $=602.88$ cubic inches
Formula Number 6: Gallons from cubic Inches:
How many gallons will a tank hold if the tank contains 8,850 cubic inches?
Step 1: \quad Gallons = Cubic Inches
231
Step 2: \quad Gallons $=\frac{8,850}{231}$
Step 3: \quad Gallons $=38.312$

Formula Number 7: Gallons from cubic feet:

A tank contains 5,650 cubic feet of water. How many gallons are there?
Step 1: \quad Gallons $=$ cubic feet $\times 7.5$
Step 2: Gallons $=5,650 \times 7.5$
Step 3: \quad Gallons $=42,375$
Formula Number 8: Pounds per square inch (P.S.I.):
What P.S.I. would be produced at the base of a stack with 50 feet head pressure (height)?
Step 1: P.S.I. $=0.434 \mathrm{x}$ height
Step 2: P.S.I. $=0.434 \times 50$
Step 3: P.S. $1=21.7$
Formula Number 9: Height (or head) when pressure is known: What head may be obtained if there is 33 P.S.I. applied?

Step 1: \quad Height $=2.304 \times$ P.S.I.
Step 2: \quad Height $=2.304 \times 33$
Step 3: \quad Height $=76.032$ Feet

Formula Number 10: Drop of a pipe:
What is the amount of fall (or drop) if you have $1 / 8^{\prime \prime}$ fall per foot and a 92-foot run?
Step 1: \quad Drop $=$ pitch \times run
Step 2: \quad Drop $=1 / 8^{\prime \prime} \times 92^{\prime}$
Step 3: \quad Drop $=0.125^{\prime \prime} \times 92^{\prime}$
Step 4: \quad Drop $=11.5^{\prime \prime}$ or $11-1 / 2^{\prime \prime}$
Note: Drop must be in inches - Run remains in feet.
Formula Number 11: Pitch of pipe:
What is the pitch of a pipe with a run of 96 feet and a 1-foot drop?
Step 1: \quad Pitch $=\frac{\text { drop }}{\text { run }}$
Step 2: \quad Pitch $=\underline{1 \text { foot }}$

Step 3: \quad Pitch $=\frac{12 \text { inches }}{96 \text { feet }}$

Step 4: \quad Pitch $=0.125$ inches or $1 / 8^{\prime \prime}$
Formula Number 12: Run of a pipe:
From the building wall to the sewer tap there is 1 foot of drop on a sewer line with $1 / 4$ inch pitch. How long is the Run?

Step 1: \quad Run $=\frac{\text { drop }}{\text { pitch }}$
Step 2: \quad Run $=\frac{1 \text { foot }}{1 / 4 \text { inch }}$
Step 3: \quad Run $=\frac{12}{.25}$
Step 4: \quad Run $=48$ feet

Formula Number 13: Drop from percent of fall:
A sewer installed with a 2% fall per foot has a run of 100 feet. How much drop will there be?
Step 1: \quad Drop $=\%$ of fall \times run
Step 2: \quad Drop $=2 \% \times 100$ feet
Step 3: \quad Drop $=0.02 \times 100$
Step 4: Drop $=2$ feet
Formula Number 14: Length of a diagonal for 45° angles and offsets:
A sewer line has an offset of 8 feet. What is the length of the diagonal, (including fitting allowances)? Note: $1 / 8$ bends are used to make the offset.

Step 1: \quad Diagonal $=1.414 \times$ offset
Step 2: \quad Diagonal $=1.414 \times 8$ feet
Step 3: Diagonal = 11.312 feet
Formula Number 15: Length of all other diagonals:
What is the diagonal of a triangle with a height of 8 inches and a base of 10 inches?
Step 1: \quad Diagonal $=\sqrt{A^{2}+B^{2}}$
Step 2: \quad Diagonal $=\sqrt{8^{2}+10^{2}}$
Step 3: \quad Diagonal $=\sqrt{64+100}$
Step 4: Diagonal = 12.81 Inches
Formula Number 16: Actual length from scale:
If your ruler shows a length of a wall on a blueprint to measure 6-1/2 inches and the scale indicates $1 / 4$ inch per foot, what is the actual length of the wall?

Step 1: \quad Actual Length $=\frac{\text { plan measurement }}{\text { scale }}$

Step 2: \quad Actual Length $=\frac{6-1 / 2 \text { inches }}{1 / 4 \text { inch }}$
Step 3: \quad Actual Length $=\frac{6.5}{.25}$
Step 4: \quad Actual Length $=26$ feet

Formula Number 17: Ratio of larger to smaller pipe:
(Diameter not length and not allowing for friction)
How many 2 -inch pipes will it take to replace one 4 inch pipe?
Step 1: \quad Ratio $=\frac{(\text { Large Diameter })^{2}}{(\text { Small Diameter })^{2}}$
Step 2: \quad Ratio $=\frac{(4)^{2}}{(2)^{2}}$
Step 3: \quad Ratio $=\frac{16}{4}$
Step 4: \quad Ratio $=4$ Pipes Of 2 Inch Diameter.
Formula Number 18: Man hours per joint:
A Journeyman and an apprentice complete 200 five-inch joints in eight hours. What is the unit cost, in man-hours, per joint?

Step 1: \quad Man Hours = (hours x number of men) number of joints

Step 2: \quad Man Hours $=\frac{(8 \times 2)}{200}$
Step 3: \quad Man Hours $=16$

Step 4: \quad Man Hours $=0.08$ hours per joint
Formula Number 19: Lead needed for given number of joints:
What is the amount of lead needed to calk 140 three-inch joints if each joint requires $3 / 4$ pounds of lead for each inch of diameter?

Step 1: \quad Lead Need $=$ diameter x weight x number of joints
Step 2: \quad Lead Need $=3$ " $\times 3 / 4$ Ibs. $\times 140$
Step 3: \quad Lead Need $=311 \times 0.75$ Lb. $\times 140$
Step 4: Lead Need = 315 Pounds (Lbs.)

Formula Number 20: Total lead need plus waste allowance:
A rough-in requires 300 pounds of lead. How much lead will be needed if there is a 7% waste?
Step 1: \quad Total Need $=\frac{\text { Lead Need }}{(100 \%-\% \text { of waste })}$
Step 2: \quad Total Need $=\frac{300}{(100 \%-7 \%)}$
Step 3: \quad Total Need $=\frac{300}{.93}$
Step 4: \quad Total Need $=322.58$ Pounds (Lbs.)
Formula Number 21: Degree of offset of a pipe:
What angle is made when you offset a sewer with a $1 / 5$ bend?
Step 1: \quad Degree of angle $=$ Fitting $\times 360^{\circ}$
Step 2: \quad Degree of angle $=1 / 5 \times 360^{\circ}$
Step 3: \quad Degree of angle $=0.20 \times 360^{\circ}$
Step 4: \quad Degree of angle $=72^{\circ}$ (Degrees)

Note: You must change the fraction (1/5) to a decimal dividing the bottom number into the top number does this:
$1 / 5=1.00 / 5=0.20$

FIGURING PROFITS

There are two ways of showing a profit:

1. Profit on COST method.
2. Profit on SALES method.

Selling a job with your profit based on the profit on SALES method will make a greater net dollar. Both examples are shown below:

1. PROFIT ON COST:

EXAMPLE: What is the selling price of a job that costs $\$ 550.00$ if you want a 10% profit on cost?
Selling Price (SP) $=($ Cost $\times 10 \%)+$ Cost

$$
\begin{aligned}
& \mathrm{SP}=(\$ 550 . x .10)+\$ 550.00 \\
& \mathrm{SP}=\$ 55.00+\$ 550.00 \\
& \mathrm{SP}=\$ 605.00
\end{aligned}
$$

2. PROFIT ON SALES:

EXAMPLE: What is the selling price of a job that costs $\$ 550.00$ if you want a 10% profit on sales?
Selling Price $(S P)=\frac{\text { Cost }}{(100 \%-\% \text { of Profit })}$

$$
\begin{aligned}
& S P=\frac{550.00}{(100 \%-10 \%)} \\
& S P=\frac{\$ 550.00}{90 \%} \text { or } \frac{\$ 550.00}{.90}
\end{aligned}
$$

$$
S P=\$ 611.11
$$

FIGURING DISCOUNTS

There are three types of discount problems likely to be asked on the examination. Practical examples of these methods is as follows:

1. SIMPLE DISCOUNT:

EXAMPLE: Your materials cost $\$ 300.00$ subject to a 15% cash discount. What is your actual supply bill (ASB)?

STEP 1: \quad ASB $=100 \%$ - Discount x Cost
STEP 2: \quad ASB $=(100 \%-15 \%) \times \$ 300.00$
STEP 3: \quad ASB $=85 \% \times \$ 300.00$ or 0.85×300.00
STEP 4: \quad ASB $=\$ 255.00$

MULTIPLE DISCOUNTS

Multiple discounts are indicated by a series of simple discounts such as: $-15 \%,-10 \%$, and -5%. To find the actual discount you must compute the series of simple discounts, which is equal to the multiple discounts.

EXAMPLE: The list price of type "L" copper pipe is $\$ 552.00$ per 100 feet. Your discount is given $-15 \%,-10 \%$ and -5% from list. What is your cost for this material?

STEP 1: \quad Subtract each discount from 100\%:

100%	100%	100%
$\frac{-15 \%}{85 \%}$	$\frac{-10 \%}{90 \%}$	$\frac{-5 \%}{95 \%}$

STEP 2: Change each percentage to a decimal: .85 . 90 . 95

STEP 3: Multiply each decimal times (x) each other: $.85 \times \quad .90 \times \quad .95=.727$ Simple Discount

STEP 4: Multiply your simple discount by the list price to find your actual cost of materials: $.727 \times \$ 552 .=\$ 401.30$ per 100' (actual cost after discount)

EARLY PAYMENT DISCOUNT

Early payment discounts are indicated by a simple discount in the space provided for TERMS on material invoices. This discount primarily applies to accounts on a monthly billing.

EXAMPLE: Your invoice for materials indicates your total cost is $\$ 600.00$. Your terms are $2 / 10$ net 30. If the bill is paid within 10 days what is the early payment discounted amount (EPD)?

Note: The number to the left of the slash (1) mark indicates the percentage discount if paid within the number of days indicated to the right of the slash mark.

STEP 1: \quad EPD $=100 \%$ - Discount x Cost
STEP 2: \quad EPD $=(100 \%-2 \%) \times \$ 600.00$
STEP 3: $\quad E P D=98 \% \times \$ 600.00$ or $.98 \times 600.00$
STEP 4: EPD $=\$ 588.00$

CONVERSION TABLE

MULTIPLY

ACRES

ACRE - FEET
ACRE - FEET
ATMOSPHERES
ATMOSPHERES
ATMOSPHERES
ATMOSPHERES
BTU /MINUTE
BTU/ MINUTE
CENTIMETERS
CENTIMETERS OF MERCURY
CENTIMETERS OF MERCURY
CENTIMETERS OF MERCURY
CENTIMETERS OF MERCURY
CUBIC FEET
1728
0.03704
7.48052
29.92
472.0
0.1247
62.43
0.646317
448.831

27
CUBIC YARDS
FEET OF WATER
FEET OF WATER
FEET OF WATER
FEET OF WATER

FEET/ MINUTE
FEET/ MINUTE
BY
43,560
43,560
325,851
76.0
29.92
33.90
14.70
12.96
0.02356
0.3937
0.01316
0.4461
27.85
0.1934

CUBIC FEET
CUBIC FEET
CUBIC FEET
CUBIC FEET/ MINUTE
CUBIC FEET/MINUTE
CUBIC FEET/ MINUTE
CUBIC FEET /SECOND
CUBIC FEET/ SECOND
CUBIC YARDS
202.0
0.02950
0.8826
62.43
0.4335
0.01667
0.01136

TO OBTAIN

SQUARE FEET CUBIC FEET GALLONS

CMS. OF MERCURY INCHES OF MERCURY FEET OF WATER LBS./SQ. INCH

FEET-LBS./SECOND

 HORSE-POWERINCHES
ATMOSPHERES
FEET OF WATER
LBS./SQ. FOOT
LBS./SQ. INCH
CUBIC INCHES
CUBIC YARDS
GALLONS
QUARTS (LIQUID)
CUBIC CENTIMETERS /SECOND
GALLONS/ SECOND
POUNDS OF WATER/ MINUTE

MILLION GALLONS/ DAY GALLONS/ MINUTE

CUBIC FEET

GALLONS
ATMOSPHERES
INCHES OF MERCURY
LBS./ SQ. FOOT
LBS./ SQ. INCH
FEET/ SECOND
MILES/ HOUR

CONVERSION TABLE

MULTIPLY	BY	to obtain
FEET /SECOND	0.6818	MILES /HOUR
FEET/ SECOND	0.01136	MILES/ MINUTE
GALLONS	3785	CUBIC CENTIMETERS
GALLONS	0.1337	CUBIC FEET
GALLONS	231	CUBIC INCHES
GALLONS	4	QUARTS (LIQUID)
GALLONS WATER	8.3453	POUNDS OF WATER
GALLONS /MINUTE	0.002228	CUBIC FEET / SECOND
GALLONS /MINUTE	8.0208	CUBIC FEET/HOUR
GALLONS WATER/MINUTE	6.0086	TONS WATER/24 HOURS
INCHES	2.540	CENTIMETERS
INCHES OF MERCURY	0.03342	ATMOSPHERES
INCHES OF MERCURY	1.133	FEET OF WATER
INCHES OF MERCURY	0.4912	LBS./ SQ. FOOT
INCHES OF WATER	0.002458	ATMOSPHERES
INCHES OF WATER	0.07355	INCHES OF MERCURY
INCHES OF WATER	5.202	LBS. /SQ. FOOT
INCHES OF WATER	0.03613	LBS./ SQ. INCH
LITERS	1000	CUBIC CENTIMETERS
LITERS	61.02	CUBIC INCHES
LITERS	0.2642	GALLONS
MILES	5280	FEET
MILES/ HOUR	88	FEET/MINUTE
MILES/ HOUR	1.467	FEET /SECOND
MILLIMETERS	0.1	CENTIMETERS
MILLIMETERS	0.03937	INCHES
MILLION GALLONS/ DAY	1.54723	CUBIC FEET /SECOND

CONVERSION TABLE

MULTIPLY
POUNDS OF WATER POUNDS OF WATER POUNDS OF WATER

POUNDS /CUBIC INCH
POUNDS/ SQUARE FOOT
POUNDS /SQUARE INCH
POUNDS /SQUARE INCH
POUNDS /SQUARE INCH

QUART (DRY)
QUART (LIQUID)
SQUARE FEET
SQUARE MILES 640
SQUARE YARDS
TEMPERATURE $\left(C^{\circ}\right)+273$
TEMPERATURE $\left(\mathrm{C}^{\circ}\right)+17.78$
TEMPERATURE $\left({ }^{\circ} \mathrm{F}\right)+460$
TEMPERATURE (${ }^{\circ}$ F) - 32
TONS (SHORT)
TONS OF WATER/ 24 HOURS
TONS OF WATER/ 24 HOURS
TONS OF WATER/ 24 HOURS

144
BY
0.01602
27.68
0.1198

1728
0.01602
0.06804
2.307
2.036
67.20
57.75

9

1
1.8

1
5/9
2000
83,333
0.16643
1.3349

TO OBTAIN

CUBIC FEET

 CUBIC INCHES GALLONSPOUNDS /CUBIC FOOT
FEET OF WATER
ATMOSPHERES FEET OF WATER INCHES OF MERCURY

CUBIC INCHES

CUBIC INCHES
SQUARE INCHES
ACRES
SQUARE FEET
ABSOLUTE TEMP. (${ }^{\circ}$) TEMPERATURE (${ }^{\circ}$ F)

ABSOLUTE TEMP. (${ }^{\circ} \mathrm{F}$) TEMPERATURE (${ }^{\circ}$)

POUNDS
POUNDS WATER /HOUR
GALLONS /MINUTE
CUBIC FEET /HOUR

DECIMAL EQUIVALENTS OF A FOOT

INCHES	$\begin{gathered} \text { DECIMAL OF } \\ \text { A FOOT } \end{gathered}$	INCHES	$\begin{gathered} \text { DECIMAL OF } \\ \text { A FOOT } \end{gathered}$	INCHES	$\begin{gathered} \text { DECIMAL OF } \\ \text { A FOOT } \end{gathered}$
1/16	0.0052	4-1/16	0.3385	8-1/16	0.6719
1/8	0.0104	4-1/8	0.3438	8-1/8	0.6771
3/16	0.0156	4-3/16	0.3490	8-3/16	0.6823
1/4	0.0208	4-1/4	0.3542	8-1/4	0.6875
5/16	0.0260	4-5/16	0.3594	8-5/16	0.6927
3/8	0.0313	4-3/8	0.3646	8-3/8	0.6979
7/16	0.0365	4-7/16	0.3698	8-7/16	0.7031
1/2	0.0417	4-1/2	0.3750	8-1/2	0.7083
9/16	0.0469	4-9/16	0.3802	8-9/16	0.7135
5/8	0.0521	4-5/8	0.3854	8-5/8	0.7188
11/16	0.0573	4-11/16	0.3906	8-11/16	0.7240
3/4	0.0625	4-3/4	0.3958	8-3/4	0.7292
13/16	0.0677	4-13/16	0.4010	8-13/16	0.7344
718	0.0729	4-7/8	0.4063	8-7/8	0.7396
15/16	0.0781	4-15/16	0.4115	8-15/16	0.7448
1	0.0833	5	0.4167	9	0.7500
1-1/16	0.0885	5-1/16	0.4219	9-1/16	0.7552
1-1/8	0.0938	5-1/8	0.4271	9-1/8	0.7604
1-3/16	0.0990	5-3/16	0.4323	9-3/16	0.7656
1-1/4	0.1042	5-1/4	0.4375	9-1/4	0.7708
1-5/16	0.1094	5-5/16	0.4427	9-5/16	0.7760
1-3/8	0.1146	5-3/8	0.4479	9-3/8	0.7813
1-7/16	0.1198	5-7/16	0.4531	9-7/16	0.7865
1-1/2	0.1250	5-1/2	0.4583	9-1/2	0.7917
1-9/16	0.1302	5-9/16	0.4635	9-9/16	0.7969
1-5/8	0.1354	5-5/8	0.4688	9-5/8	0.8021
1-11/16	0.1406	5-11/16	0.4740	9-11/16	0.8073
1-3/4	0.1458	5-3/4	0.4792	9-3/4	0.8125
1-13/16	0.1510	5-13/16	0.4844	9-13/16	0.8177
1-7/8	0.1563	5-7/8	0.4896	9-7/8	0.8229
1-15/16	0.1615	5-15/16	0.4948	9-15/16	0.8281
2	0.1667	6	0.5000	10	0.8333
2-1/16	0.1719	6-1/16	0.5052	10-1/16	0.8385
2-1/8	0.1771	6-1/8	0.5104	10-1/8	0.8438
2-3/16	0.1823	6-3/16	0.5156	10-3/16	0.8490
2-1/4	0.1875	6-1/4	0.5208	10-1/4	0.8542

DECIMAL EQUIVALENTS OF A FOOT

INCHES	DECIMAL OF A FOOT	INCHES	$\begin{aligned} & \text { DECIMAL OF } \\ & \text { A FOOT } \\ & \hline \end{aligned}$	INCHES	$\begin{gathered} \text { DECIMAL OF } \\ \text { A FOOT } \\ \hline \end{gathered}$
2-5/16	0.1927	6-5/16	0.5260	10-5/16	0.8594
2-3/8	0.1979	6-3/8	0.5313	10-3/8	0.8646
2-7/16	0.2031	6-7/16	0.5365	10-7/16	0.8698
2-1/2	0.2383	6-1/2	0.5417	10-1/2	0.8750
2-9/16	0.2135	6-9/16	0.5469	10-9/16	0.8802
2-5/8	0.2188	6-5/8	0.5521	10-5/8	0.8854
2-11/16	0.2240	6-11/16	0.5573	10-11/16	0.8906
2-3/4	0.2292	6-3/4	0.5625	10-3/4	0.8958
2-13/16	0.2344	6-13/16	0.5677	10-13/16	0.9010
2-7/8	0.2396	6-7/8	0.5729	10-7/8	0.9063
2-15/16	0.2448	6-15/16	0.5781	10-15/16	0.9115
3	0.2500	7	0.5833	11	0.9167
3-1/16	0.2552	7-1/16	0.5885	11-1/16	0.9219
3-1/8	0.2604	7-1/8	0.5938	11-1/8	0.9271
3-3/16	0.2656	7-3/16	0.5990	11-3/16	0.9323
3-1/4	0.2708	7-1/4	0.6042	11-1/4	0.9375
3-5/16	0.2760	7-5/16	0.6094	11-5/16	0.9427
3-3/8	0.2813	7-3/8	0.6146	11-3/8	0.9479
3-7/16	0.2865	7-7/16	0.6198	11-7/16	0.9531
3-1/2	0.2917	7-1/2	0.6250	11-1/2	0.9583
3-9/16	0.2969	7-9/16	0.6302	11-9/16	0.9635
3-5/8	0.3021	7-5/8	0.6354	11-5/8	0.9688
3-11/16	0.3073	7-11/16	0.6406	11-11/16	0.9740
3-3/4	0.3125	7-3/4	0.6458	11-3/4	0.9792
3-13/16	0.3177	7-13/16	0.6510	11-13/16	0.9844
3-7/8	0.3229	7-7/8	0.6563	11-7/8	0.9896
3-15/16	0.3281	7-15/16	0.6615	11-15/16	0.9948
4	0.3333	8	0.6667	12	1.0000

INCHESAREAS- CIRCUMFERENCE OF CIRCLES

DECIMAL	FRACTION	LIMITS
0.000	0	$0.000-0.031$
0.062	$1 / 16$	$0.032-0.093$
0.125	$1 / 8$	$0.094-0.156$
0.187	$3 / 16$	$0.157-0.218$
0.25	$1 / 4$	$0.219-0.281$
0.312	$5 / 16$	$0.282-0.343$
0.375	$3 / 8$	$0.344-0.406$
0.437	$7 / 16$	$0.407-0.468$
0.05	$1 / 2$	$0.469-0.531$
0.562	$9 / 16$	$0.532-0.593$
0.625	$5 / 8$	$0.594-0.656$
0.687	$11 / 16$	$0.657-0.718$
0.75	$3 / 4$	$0.719-0.781$
0.812	$13 / 16$	$0.782-0.843$
0.875	$7 / 8$	$0.844-0.906$
0.937	$15 / 16$	$0.907-0.968$
1.000	$16 / 16$	$0.969-1.031$

DIAMETER	CIRCUMFERENCE	AREA
$1 / 8$	0.39270	0.01227
$1 / 4$	0.78540	0.04909
$3 / 8$	1.1781	0.11045
$1 / 2$	1.5708	0.19635
$3 / 4$	2.3562	0.44179
1	3.1416	0.7854
$1-1 / 4$	3.9270	1.2272
$1-1 / 2$	4.7124	1.7671
2	6.2832	3.1416
$2-1 / 2$	7.8540	4.9087
3	9.4248	7.0686
4	12.566	12.566
5	15.708	19.635
6	18.850	28.274
7	21.991	38.485
8	25.133	50.265
9	28.274	63.617
10	31.416	78.540

INCHES TO DECIMAL FEET

	0	1	2	3	4	5	6	7	8	9	10	.11
INCHES		.0833	.1667	.2500	.3333	.4167	.5000	.5833	.6667	.7500	.8333	.9167
$1 / 16$.0052	.0885	.1719	.2552	.3385	.4219	.5052	.5885	.6719	.7552	.8385	.9219
$1 / 8$.0104	.0937	.1771	.2604	.3437	.4271	.5104	.5937	.6771	.7604	.8437	.9271
$3 / 16$.0156	.0989	.1823	.2656	.3489	.4323	.5156	.5989	.6823	.7656	.8489	.9323
$1 / 4$.0208	.1042	.1875	.2708	.3542	.4375	.5208	.6042	.6875	.7708	.8542	.9375
$5 / 16$.0260	.1094	.1927	.2760	.3594	.4427	.5260	.6094	.6927	.7760	.8594	.9427
$3 / 8$.0312	.1146	.1979	.2812	.3646	.4479	.5312	.6146	.6979	.7812	.8646	.9479
$7 / 16$.0365	.1198	.2031	.2865	.3698	.4531	.5365	.6198	.7031	.7865	.8698	.9531
$1 / 2$.0417	.1250	.2083	.2917	.3750	.4583	.5417	.6250	.7083	.7917	.8750	.9583
$9 / 16$.0469	.1302	.2135	.2969	.3802	.4635	.5469	.6302	.7135	.7969	.8802	.9635
$5 / 8$.0521	.1354	.2188	.3021	.3854	.4688	.5521	.6354	.7188	.8021	.8854	.9688
$11 / 16$.0573	.1406	.2240	.3073	.3906	.4740	.5573	.6406	.7240	.8073	.8906	.9740
$3 / 4$.0625	.1458	.2292	.3125	.3958	.4792	.5625	.6458	.7292	.8125	.8958	.9792
$13 / 16$.0677	.1510	.2344	.3177	.4010	.4844	.5677	.6510	.7344	.8127	.9010	.9844
$7 / 8$.0729	.1562	.2396	.3229	.4062	.4896	.5729	.6562	.7396	.8229	.9062	.9896
$15 / 16$.0781	.1615	.2448	.3281	.4115	.4948	.5781	.6615	.7448	.8281	.9115	.9948

