

PLX8394

BRAF-MAPK Paradox Breaker

CRUK Combinations Alliance Plexxikon Inc. March 23, 2016

Plexxikon's Development Pipeline

Compound	Target	Indication	Stage of Development			
			Pre- IND	Ph1	Ph2	Ph3
PLX4032 (vemurafenib)	BRAF	Adjuvant Melanoma				
PLX3397 (pexidartinib)	FMS	PVNS (TGCT)				
PLX3397 + RT + TMZ	FMS, KIT	Adjuvant GBM				
PLX3397 + paclitaxel	FMS, KIT	Advanced Ovarian Cancer				
PLX3397 + pembro	FMS	Melanoma, Solid Tumors				
PLX3397	KIT	KIT-mutant Melanoma				
PLX3397	FMS	Alzheimer's/Imaging				
PLX7486	TRK, FMS	Pain, Oncology				
PLX9486	KIT-mutant	GIST, KIT-mutant tumors				
PLX8394	BRAF	BRAF-mutant tumors				
PLX51107 (2016)	BRD4	Leukemia				
PLX73086 (AC708) (2016)	FMS	TGCT, non-oncology				6

Clinically Actionable BRAF Mutations in Melanoma

FDA approval 8.17.2011

Ar annual a annual annual annu

Plexxikon

PLX8394 – Rationale for Collaboration with Combinations Alliance

- Due to its paradox-breaking properties, PLX8394 may be the most combinable BRAFi inhibitor in clinical development
- Plexxikon is developing PLX8394 as a single agent in niche indications, based on vemurafenib efficacy but desiring improved tolerability
- Proposed combinations for the Combinations Alliance
 - MEK inhibitors
 - Immunotherapies
 - Anti-PD1
 - Anti-PDL1
 - Anti-CTLA4
 - Other immune checkpoint inhibitors
 - EGFR inhibitors
 - Epigenetic modulators (HDACi, BRDi)

BRAF-mutant Glioblastoma Responding to Vemurafenib

Reactivation of MAPK pathway through acquired MEK1^{C121S} mutation

6 Confidential

Wagle, Garraway, et al. J Clin Oncol. 2011

Correlation between Clinical Response and Mode of Inhibition

Sorafenib binds preferably the "DFG-out" state of Raf

Vemurafenib binds preferably the "DFG-in" state of Raf

Paradoxical Activation of MAPK Pathway by BRAF Inhibitors in RAS-activated Cells

Confidential

Studies on the RAF Inhibitor Paradox

5 different RAF <u>inhibitors</u> all <u>activate</u> the MEK/ERK Pathway

Cell 2010 Nature 2010 Nature 2010 PCMR 2010 Oncogene 2010 Neoplasia 2010 PNAS 2010

Poulikakos et al. Nature 2010

Paired Biopsy Data – Resistant Tumors Usually Re-Activate the MAP Kinase Pathway

10 Confidential

Trunzer et al. J Clin Oncol. 2013

BRAF Inhibitor Resistance Mechanisms

- Aberrant splicing of BRAF
- Elevated expression of CRAF, COT1, mutant BRAF
- Activating mutations in NRAS, MEK1/2, AKT1 or BRAF
- Lost of PTEN (activation of PI3K), Lost of NF1 (activation of RAS)
- Activation of RTKs (PDGFRβ, IGF-1R, EGFR)
- Microenvironment (e.g. stromal derived HGF)

Confidential

11

Rizos et al., Clin Cancer Res 2014

to PLX8394

Progression of RAS-Mutant Leukemia during RAF Inhibitor Treatment

Serum CEA during treatment resection of cerebellar metastasis <mg/day CEA <micromol/L> **BRAF** inhibitor dose BRAF-i dose resection of CEA recurrent cerebellar MEK-inhibitor 2mg/d metastasis Time from commencement on BRAFi/MEKi trial <weeks>

Paradoxical activation can be seen in other premalignant lesions even with RAFi-MEKi combined treatment.

Confidential

Andrews, et al., Cebon et al, JCO 2013

- Median time to first incidence 8 weeks (range 2–36)
- Each dot represents one patient:

weeks to development of first cuSCC/KA lesion

• 21/35 (60%) of samples have RAS mutations

14 Confidential

Su et al. NEJM 2012

PLX8394: Next Generation BRAF Inhibitor Paradox Breaker (PB)

- Opportunity:
 - Avoiding paradoxical MAPK pathway activation
- Hypothesis:
 - PLX8394 as a 'paradox breaker' might
 - Improve response of some V600 tumors
 - Delay resistance (1st gen compounds enable pathway re-ignition)
 - Reduce toxicities such as skin lesions
 - Combine better with Immunotherapy
- Status:

Currently in clinical development

RAF inhibitors that evade paradoxical MAPK pathway activation

Chao Zhang¹, Wayne Spevak¹, Ying Zhang¹, Elizabeth A. Burton¹, Yan Ma¹, Gaston Habets¹, Jiazhong Zhang¹, Jack Lin¹, Todd Ewing¹, Bernice Matusow¹, Garson Tsang¹, Adhirai Marimuthu¹, Hanna Cho¹, Guoxian Wu¹, Weiru Wang¹, Daniel Fong¹, Hoa Nguyen¹, Songyuan Shi¹, Patrick Womack¹, Marika Nespi¹, Rafe Shellooe¹, Heidi Carias¹, Ben Powell¹, Emily Light¹, Laura Sanftner¹, Jason Walters¹, James Tsai¹, Brian L. West¹, Gary Visor¹, Hamid Rezaei¹, Paul S. Lin¹, Keith Nolop¹, Prabha N. Ibrahim¹, Peter Hirth¹ & Gideon Bollag¹

Oncogenic activation of BRAF fuels cancer growth by constitutively promoting RAS-independent mitogen-activated protein kinase (MAPK) pathway signalling¹. Accordingly, RAF inhibitors have brought substantially improved personalized treatment of metastatic melanoma²⁻⁵. However, these targeted agents have also revealed an unexpected consequence: stimulated growth of certain cancers⁶⁻⁹. Structurally diverse ATP-competitive RAF inhibitors can either inhibit or paradoxically activate the MAPK pathway, depending

the MAPK pathway in cells bearing oncogenic RAS or elevated upstream receptor signalling^{10–12}. This paradox can promote cellular proliferation and manifest clinically with progression of cutaneous squamous cell carcinomas (cuSCC) and keratoacanthomas, sometimes within weeks of therapy initiation^{6,15}. These paradox-induced skin tumours have an uncharacteristically high incidence of RAS mutations^{6,16}, raising the concern that the same mechanism might accelerate progression of other RAS-driven cancers. Recent case reports of increased incidence of prim-

Zhang et al., Nature 526, 523-586 (22 October 2015).

16

From Hit to Development Candidate Discovery of selective RAF kinase inhibitors

Next-Gen BRAF Inhibitors Overcome Paradoxical MAPK Pathway Activation

18

1st - generation BRAFi induce BRAF-CRAF Heterodimers, PLX8394 does not

Dimerization In B9 Cells

19 Confidential

Zhang et al. Nature 2015

Vemurafenib

'Paradox Breaking' property can be transferred to another chemical series

20

xxikon

PLX8394 Is Active Against Vemurafenib-Resistant Cells

From Poulikakos, Rosen, Solit, Nature 2011

Resistance to BRAF^{V600E} melanoma

In vitro and in human patients

Mediated by alternatively spliced BRAF^{V600E}

Constitutive dimers are resistant to Vemurafenib

Plexxikon

Confidential Basile, Le, Hartsough & Aplin. *Pigment Cell Melanoma Research 2014*

22

PLX8394 inhibits ERK activation in BRAF^{mut}/NRAS^{mut} co-expressing melanoma cells

Re-activation of the ERK signaling pathway and development of acquired resistance are sometimes mediated by acquired mutations in NRAS (or selection of a small population of cells co-expressing mutant BRAF and NRAS)

Confidential Le, Blomain, Rodeck & Aplin. *Pigment Cell Melanoma Research 2013*

Effective against BRAF Kinase Fusions in vivo

>60% of pediatric astrocytoma caused by BRAFfusion; paradoxical activation & BRAFi resistance

Adam Resnick et al., CHOP

NIH 3T3 cells: Fusion-1 NIH 3T3 cells: Fusion-3 6000-4000 No PLX4720 Volume (mm³) Volume (mm³) 3000-4000-PLX4720 Started Day 0 PLX8394 Started Day 0 2000-2000-1000-01 0 5 10 15 20 25 5 10 15 20 25 Days since injection of 3T3 fusion cell line Days since injection of 3T3 fusion cell line

Frequency of BRAF mutations

Multiple Potential Indications

- Hairy Cell Leukemia, Papillary Craniopharyngiomas
 - Melanoma
 - Papillary and Anaplastic Thyroid Cancer
 - Langerhans Cell Histiocytosis, Erdheim-Chester Disease
 - Serous Ovarian Cancer
 - Astrocytoma/Glioblastoma
 - Cholangiocarcinoma
 - Colorectal Cancer
 - Non Small Cell Lung Cancer
 - Bladder Cancer
 - Prostate Cancer
 - Multiple Myeloma
 - Breast Cancer
 - GIST, Gastric Cancer, Barrett's Esophageal Cancer
 - Head and Neck Cancers

Confidential

24

~100%

30-80%

8-30%

< 8%

- Part 1: "3+3" Dose escalation phase (n=up to 42)
 - Patients with advanced solid tumors refractory to standard therapy or no standard therapy exists or considered appropriate by the investigators
- Part 2: Extension cohort phase (n=65) at RP2D
 - Metastatic Melanoma
 - Papillary thyroid carcinoma (PTC)
 - Anaplastic thyroid carcinoma (ATC)
 - NSCLC, colorectal carcinoma (CRC) and other BRAF mutated malignancies

Confidential