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Preface

[Insert preface material here.]



Part I

Review of Prerequisites



1 Mappings

We are all familiar with the concept of a mapping: a (non-empty) set, call it X, of objects,
which are called points, are changed to some points in another set Y .

Definition 1.0.1 Mappings

Given two sets X and Y , a mapping, or function, from X to Y is a recipe that
assigns to each element of X exactly one element of Y . We write α : X → Y
to indicate that α is a map from X to Y . We write y = α (x) for the element
of Y assigned to the element x of X, which is called the image of x under the
mapping α. If X ′ is a subset of X, then we write α (A′) = {α (x) |x ∈ X ′}, which
is also called the image of X ′ under α.

A mapping must be well-defined, which means that if α is specified by a rule assigning to each
element of X and element of Y , then the rule must unambiguously assign to each element of X
one and only on element of Y .

If X is a finite set of n points, then we can enumerate the points in X as, say, p1, . . . , pn. X
could also be an infinite set, for example, the set of positive integers, 1, 2, 3, etc, or a continuum,
like all the points in the xy plane.

For a finite set of points, the description of a mapping can be done by enumeration. For
example, for a set of three points, X = {a, b, c}, we can describe a mapping by saying: the
mapping α : X → X takes the point a into its image b, the point b into a, and the point c into
c; symbolically,

α =

(
a b c
b a c

)
. (1.1)

Another possible mapping β : X → X might be

β =

(
a b c
a a a

)
, (1.2)

where in both cases we have used the notation

α =

(
p1 p2 · · · pn

α(pn) α(p2) · · · α(pn)

)
. (1.3)

For an infinite set of points, enumeration is not possible. Instead, we give a functional law (or
recipe) for the mapping α. For example, we may consider the set of points on the x axis, and a
mapping α such that x′ = α (x) = x + 2, i.e., each point is to be shifted two units to the right
to arrive at its image.
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Definition 1.0.2 Injective (One-to-One Mapping)

A mapping α : X → Y is an injective mapping, or is one-to-one if x1 6= x2 in X
always implies α (x1) 6= α (x2) in Y . Equivalently, α is injective if α (x1) = α (x2)
in Y always implies x1 = x2 in X.

Definition 1.0.3 Surjective (Onto Mapping)

A mapping α : X → Y is an surjective mapping, or is onto if for every y ∈ Y
there is an x ∈ X such that α (x) = y. In this case, α (X) = Y .

We will be working only with mappings that are one-to-one (injective) and onto (surjective),
mappings which are also called transformations or bijections. These are mappings in which no
two points of the set have the same image, and every point p′ of the set is the image of one, and
only one, point p. The mapping α in (1.1) was a bijection, while (1.2) was not (it was neither
one-to-one nor onto).

1.1 Properties of Mappings

Definition 1.1.1 Identical Mappings

Two mappings α and β of a set of points X are identical if α (p) = β (p) for all
p ∈ X. Conversely, α = β means that α (p) = β (p).

Definition 1.1.2 Composition of Mappings

If x′ = α (x) and x′′ = β (x′) for α, β : X → X, and x, x′, x′′ ∈ X, then we denote
the composition, or succession, of the mappings α and β (i.e., β then α) by
α ◦ β, so that

p′′ = (α ◦ β) (x) = α (β (x)) = β
(
x′
)
.

In other words, there is a single mapping, denoted β ◦α, which produce the same
effect as the successive application of β then α.

Remark (Powers of Mappings): The result of applying a mapping α r times in succession is represented
by αr. Since composition of mappings are associative, we have that, for some µ, ν ∈ Z,

αµαν = αµ+ν = αναµ. (1.4)

Now, since there are only a finite number of operations that can be performed on a bijection over a finite set,
the series of compositions α, α2, α3, . . . cannot all be distinct. Suppose that αm+1 is the first of the series that
is the same as α, so that

αm+1 = α.

Then,
αmαα−1 = αα−1,

or
αm = I.

3
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There is no power µ < m for which this relation holds, for if αµ = I, then αµ+1 = αI = α, contrary to the
assumption that αm+1 is the first of the series that is the same as α.

Moreover, the m− 1 substitutions α, α2, . . . , αm−1 must be all distinct. For if αµ = αν , ν < µ < m, then

αµ−ν (αν)−1 = αν (αν)−1 ⇒ αµ−ν = I,

which has just been shown to be impossible.

The number m is called the order of the mapping α. Note that if αn = I, then n is a multiple of m; also, if
αa = αb, then a− b = 0 (mod. m).

If now the equation αµ+ν is assumed to hold, when either or both of the integers ν and µ is a negative integer, a
definite meaning is obtained for α−r, the negative power of a mapping; and a definite meaning is also obtained
for α0, for

αµα−ν = αµ−ν = αµ−ναν (αν)−1 = αµ (αν)−1 ,

so that
α−ν = (αν)−1 ,

as one might expect. Similarly, it can be shown that α0 = I, also as one would expect.

Theorem 1.1.1

Let α : X → Y , β : U → V , and γ : W → Z be three mappings. Then,

1. If we successively apply the mappings α, β, γ, then

α ◦ (β ◦ γ) = (α ◦ β) ◦ γ,

i.e., mappings are associative.

2. If α and β are both one-to-one, then so is β ◦ α.

3. If α and β are both onto, then so is β ◦ α.

Proof: We prove each in turn.

1. For any x ∈ X, we have γ ◦ (β ◦ α) (x) = γ ((β ◦ α) (x)) = γ (β (α (x))) = (γ ◦ β) (α (x)) =
(γ ◦ β) ◦ α (x).

2. Suppose that α and β are both one-to-one and consider any x, y ∈ X for which we have
(β ◦ α) (x) = (β ◦ γ) (y). Then, β (α (x)) = β (α (y)), and since β is one-to-one, we must
have α (x) = α (y). But then, since α is one-to-one, we must have x = y. Hence, β ◦ α is
one-to-one.

3. Suppose that α and β are both onto and consider any z ∈ Z. Since β is onto, there must
be some y ∈ Y such that β (y) = z. And since α is onto, there must be some x ∈ X such
that α (x) = y. But then β (α (x)) = β (y) = z, and since (β ◦ α) (x) = β (α (x)), we have
found an element x ∈ X with (β ◦ α) (x) = z, so β ◦ α is onto. �

Using our example mappings α and β from (1.1) and (1.2), we have

β ◦ α =

(
a b c
a a a

)(
a b c
b a c

)
=

(
a b c
a a a

)
.

4
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However,

α ◦ β =

(
a b c
b a c

)(
a b c
a a a

)
=

(
a b c
b b b

)
,

indicating that α ◦ β 6= β ◦ α, so that mappings are generally not commutative.

Definition 1.1.3 The Identity Mapping

The Identity mapping, denoted I : X → X, maps all points p ∈ X to them-
selves, i.e., for all x ∈ X, I (x) = x.

Theorem 1.1.2

Let X be any set and I : X → X be the identity mapping. Then,

1. I is one-to-one and onto.

2. For any set Y and any mapping α : X → Y , we have α ◦ I.

3. For any set Y and any map α : Y → X, we have I ◦ α = α.

Definition 1.1.4 Inverse Mapping

The inverse of a mapping α : X → Y , denoted α−1 : Y → X is a mapping such
that αα−1 = α−1α = I, the identity mapping. In other words, if α (x) = y, then
α−1 (y) = x. α is said to be invertible is such a mapping α−1 exists.

For example, the inverse of

α =

(
a b c
b a c

)
is

α−1 =

(
a b c
b a c

)
.

Hence, α is its own inverse. The inverse of a composition of mappings α and β is

(α ◦ β)−1 = β−1α−1, (1.5)

i.e., the inverse of the composition is obtained by carrying out the inverse tranformations in
reverse order.

Theorem 1.1.3

Let α : X → Y be invertible. Then,

1. There is a unique inverse α−1 for α.

2.
(
α−1

)−1
= α, that is, α is the inverse of α−1.

Proof: We prove each statement in turn.

5
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1. Suppose there are two inverse mappings β : Y → X and γ : Y → X with β ◦ α = γ ◦ α =
IX , the identity map on X, and α ◦ β = α ◦ γ = IY , the identity map on Y . Then,
β = β ◦ IY = β ◦ (α ◦ γ) = (β ◦ α) ◦ γ = IX ◦ γ = γ. So the inverse mapping is unique.

2. This follows immediately from the definition of the inverse mapping. �

Theorem 1.1.4

Let α : X → Y and β : Y → Z be two maps. Then,

1. α is invertble if and only if α is one-to-one and onto.

2. If α and β are invertible, then β ◦α is invertible, and (β ◦ α)−1 = α−1 ◦β−1.
(Note that α ◦ β is also invertible, and that (α ◦ β)−1 = β−1 ◦ α−1.)

Proof: We again prove each statement in turn.

1. (⇒): Suppose α−1 : Y → X exists. Then, for any x and y in X, α (x) = α (y) implies x =
α−1 (α (x)) = α−1 (α (y)) = y. So α is one-to-one. And, given any u ∈ Y , α

(
α−1 (u)

)
= u,

so letting x = α−1 (u), we have found an element x ∈ X with α (x) = u, so α is onto. (⇐):
Suppose α is one-to-one and onto. Define τ : Y → X as follows. For any u ∈ Y , let τ (u)
by the x ∈ X such that α (x) = u. Since α is onto, there will be some such x. And since
α is one-to-one, there will be only one, since if α (x) = α (y) = u, then x = y = u. So
the specification just gives a well-defined function τ . Furthermore, α (τ (u)) = u for any
u ∈ Y by definition of τ , and also τ (α (x)) = x. Hence, τ = α−1, so α is invertible (since
we found an inverse).

2. Assume that both α and β are invertible. Then, by 1., they are both one-to-one and onto.
So β ◦α is one-to-one and onto by an above theorem, and so β ◦α is invertible by 1. Also,
we have(

α−1 ◦ β−1
)
◦ (β ◦ α) = α−1 ◦

(
β−1 ◦ β

)
◦ α = α−1 ◦ IY ◦ α = α−1 ◦ α = IX ,

and therefore (β ◦ α)−1 = α−1 ◦ β−1. �

Definition 1.1.5

Two sets X and Y have the same cardinality, and we write |X| = |Y |, if there
exists a one-to-one and onto mapping α : X → Y .

1.2 Cyclic Notation

We can also improve the notation shown above for a mapping α : X → X. Let X =
{p1, p2, . . . , pn} be a set of n distinct points and p′1, p

′
2, . . . , p

′
n the images of the points p1, p2, . . . , pn

under α. The mapping α replaces each point in X by another point in X, which could be the
same point or a different one, under the condition that no two points are replaced by one and

6
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the same letter. The mapping is thus taking the points p1, p2, . . . , pn and simply rearranging
them to the new set of points p′1, p

′
2, . . . , p

′
n (note that all of these image points are still in X,

even though they have been labelled differently). The notation shown above,(
p1 p2 · · · pn
p′1 p′2 · · · p′n

)
, (1.6)

thus indicates that each point in the upper line is to be replaced by the point standing under it
in the lower line.

Definition 1.2.1

If x ∈ X, then α fixes x if α (x) = x and α moves x if α (x) 6= x.

Definition 1.2.2

Let p1, p2, . . . , pr ∈ X be r distinct points from a set X of n points. If α : X → X
fixes the remaining n− r points, and if

α (p1) = p2, α (p2) = p3, . . . , α (pr−1) = pr, α (pr) = p1, (1.7)

then α is an r-cycle, or α is a cycle of length r. We then write α =
(p1, p2, . . . , pr).

Remark: Every 1-cycle (i.e., cycles with only one point) fixes every element of X, and so all 1-cycles are
equal to the identity I.

A 2-cycle, which merely interchanges a pair of elements, is called a transposition.

Below are three examples: (
1 2 3 4
2 3 4 1

)
= (1 2 3 4)(

1 2 3 4 5
5 1 4 2 3

)
= (1 5 3 4 2)(

1 2 3 4 5
2 3 1 4 5

)
= (1 2 3) (4) (5) = (1 2 3) .

(1.8)

Composition of functions is easy with one uses the cycle notation. For example, let us compute
γ = α ◦ β, where α = (1 2) and β = (1 3 4 2 5). We have

γ (1) = α ◦ β (1) = α (β (1)) = α (3) = 3

γ (3) = α (4) = 4

γ (4) = α (2) = 1.

Having returned to 1, we now seed γ (2), because 2 is the smallest integer for which γ has not
yet been evaluated. We have γ (2) = α (5) = 5, so that

γ = α ◦ β = (1 2) (1 3 4 2 5) = (1 3 4) (2 5) . (1.9)

7
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Remark: The cyclic notation for a mapping is not unique. The mapping (q r · · · s p) represents the same
mapping as (p q r · · · s) as long as the letters that occur between r and s in the two mappings are the same
and occur in the same order so that, as regards the letters inside the braket, any one may be chosen to stand
first so long as the cyclic order is preserved.

Moreover, the order in which the brakets are arranged, for example, in (1.9), is immaterial, since the operation
denoted by any one braket has no effect on the letters contained in the other brakets. This latter property is
characteristic of the particular expression that has been obtained for a mapping–it depends on the fact that
the expression contains each of the points only once.

Definition 1.2.3 Disjoint Mappings

Two mappings α, β : X → X are disjoint if every x moved by one is fixed by
the other, i.e., if α (x) 6= x, then β (x) = x, and if β (y) 6= y, then α (y) = y.
Note that it is possible that there is a z ∈ X with α (z) = z = β (z).

The cycles on the right-hand side of (1.9) are thus disjoint.

Theorem 1.2.1 Facts about Disjoint Bijections

For α and β both disjoint bijections:

1. If α = (p1 p2 · · · pr) and β = (j1 j2 · · · js), then α and β are disjoint bijec-
tions if and only if {p1, p2, · · · , pr} ∩ {j1, j2, · · · , js}.

2. α ◦ β = β ◦ α, i.e., α and β commute.

3. If α ◦ β = I, then α = I = β.

4. (α ◦ β)k = αk ◦ βk for all k ≥ 0. Is this true if α and β are not disjoint?

5.

Proof: complete this!! �

Theorem 1.2.2

We have:

1. Let α = β ◦ γ, where β and γ are disjoint. If β moves i, then αk (i) = βk (i)
for all k ≥ 0.

2. Let α and β be cycles. If there is an p1 moved by both α and β, and if
αk (p1) = βk (p1) for all positive integers k, then α = β.

Proof: complete this!! �

Remark (Circular Mappings): If the cycles of a bijection

α = (p q r · · · s)
(
p′ q′ · · · s′

) (
p′′ q′′ · · · s′′

)
· · ·

contain m, m′, m′′, . . . points respectively, and if αµ = I, then µ must be a common multiple of
m, m′, m′′, . . . . This is why: figure it out!!. Hence, the order of α is the least common multiple of

8
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m, m′, m′′, . . . . In particular, when a bijection consists of a single cycle, its order is equal to the number
of letters that is interchanges. Such a bijection is called a circular bijection.

A bijection, all of whose cycles contain the same number of points, is called regular. The order of a regular
bijection is equal to the number of points in one of its cycles.

Remark (Similar Bijections): Two bijections that contain the same number of cycles and the same
number of points on corresponding cycles are called similar. If α and β are similar bijections, then so are αr

and βr, and the orders of α and β are the same. Let now

α = (apaq · · · as) (ap′aq′ · · · as′) · · ·

and

β =

(
a1 a2 · · · an
b1 b2 · · · bn

)
be any two bijections. Then,

β−1αβ =

(
b1 b2 · · · bn
a1 a2 · · · an

)
(apaq · · · as) (ap′aq′ · · · as′) · · ·

(
a1 a2 · · · an
b1 b2 · · · bn

)
= (bpbq · · · bs) (bp′bq′ · · · bs′) · · · .

Hence, α and β−1αβ are similar bijections.

1.3 Examples of Bijections

We now go through some special bijections.

1.3.1 Permutations

Definition 1.3.1 Permutations

If X is a non-empty set, a permutation of X is a bijection α : X → X. We
denote the set of all permutations of X by SX . In the important special case of
X = {1, 2, . . . , n}, we write Sn instead of SX . Note that |Sn| = n!, as you may
recall from basic combinatorics.

In Lagrange’s day, a permutations of X = {1, 2, . . . , n} was viewed as a rearrangement of the
numbers in X, i.e., as a list i1, i2, . . . , in with no repetitions of the elements of X. Now, given
a rearrangement i1, i2, . . . , in, defined a mapping α : X → X by α (j) = ij for all j ∈ X. This
function α is an injection because the list as no repetitions; it is a surjection because all of
the elements of X appear on the list. Thus, every rearrangement gives a bijection, i.e., each
permutation of the list is a bijection. This is why |Sn| = n!, since this is simply a statement
of the fact that there are n! ways of arranging a sequence of n distinct objects, as you should
recall from basic combinatorics. So the two viewpoints of permutations, as rearrangements and
bijections, are equivalent.

Properties of Permutations

9
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• The product, i.e., the composition, of two permutations is again a permutation. For

example, if α =

(
1 2 3
3 2 1

)
= (1 3) (2) and β =

(
1 2 3
2 3 1

)
= (1 2 3), both of which

are permutations of X = {1, 2, 3}, then α ◦ β = (1 2) (3), which is another permutation of
{1, 2, 3}.

• Permutations are generally not commutative, i.e., α ◦ β 6= β ◦ α. Using the example from
the previous point, we have β ◦ α = (1) (2 3) 6= α ◦ β.

• The identity IX on a set X is a permutation such that α ◦ IX = α = IX ◦ α for every
permutation α ∈ SX . In other words, IX leaves the permutation unchanged.

• Permutations are associative, i.e., if α, β, γ ∈ SX , then α ◦ (β ◦ γ) = (α ◦ β) ◦ γ.

• For each α ∈ SX , there is a β ∈ SX such that α ◦ β = IX = β ◦ α, i.e., there exists an
inverse β = α−1. Note that for α as above, α−1 = (1 3) (2) = α, since α ◦ α−1 = α2 =(

1 2 3
1 2 3

)
= I, i.e., α is its own inverse.

1.3.2 Symmetry Transformations in Rn

Definition 1.3.2 Symmetry Transformation

Given an object in Rn, a symmetry transformation of the object is a bijection
from the object to itself.

Example 1.3.1 How many symmetry transformations are there for an equilaterial triangle
in R2?

Solution: Here is our triangle:

We can label the vertices of the triangle as shown. Note that a symmetry transformation is
a bijection from the object to itself. What this implies here is that, after the transformation,
the triangle should have the same orientation, since a triangle that is tilted slightly to the
right, for example, is not the same as the triangle shown above. With this in mind, we see
that 120-degree counter-clockwise rotations will return the triangle to the same orientation.
As well, reflections about the three bisectors will return the triangle to the original orien-
tation. These are the only types of symmetry transformations possible in R2. Using the

10
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vertices to indicate the transformation, we can write:

α 2π
3

=

(
1 3 2
3 2 1

)
= (1 3 2)

α 4π
3

=

(
1 3 2
2 1 3

)
= (1 2 3)

α 6π
3

=

(
1 3 2
1 3 2

)
= (1) (3) (2) = I

as the three rotations. Not suprisingly, since 6π
3 = 2π, α 6π

3
merely returns the triangle to

its original state, which is exacly what the identity transformation does. So in this case,
the identity transformation corresponds to a rotation by 360 degrees. The remaining three
transformations, the reflections about the bisectors, are

α3 =

(
1 3 2
2 3 1

)
= (1 2) (3)

α1 =

(
1 3 2
1 2 3

)
= (1) (3 2)

α2 =

(
1 3 2
3 1 2

)
= (1 3) (2) .

So there are six symmetry transformations of the equilateral triangle in R2.

Remark: Observe that the symmetry transformations of the equilaterial triangle in R2 are the same as the
permutations of the set {1, 2, 3}. Try to recall a term that you may have encountered in Linear Algebra for
this type of correspondence.

Example 1.3.2 How many symmetry transformations are there of the hexagonal pyramid
in R3?

Solution: Like the equilateral triangle in R2, note that the orientation of the pyramid
must be preserved in order to have a symmetry transformation. So, for example, we cannot
flip the pyramid upside down, or rotate it in any way about a horizontal axis. All we can do
is rotate it about a straight vertical axis going through the top of the pyramid, specifically,
by multiples of 60 degrees. We again label the vertices of the hexagon from 1 to 6 to get

απ
3

=

(
1 2 3 4 5 6
2 3 4 5 6 1

)
= (1 2 3 4 5 6)

α 2π
3

=

(
1 2 3 4 5 6
3 4 5 6 1 2

)
= (1 3 5) (2 4 6)

απ =

(
1 2 3 4 5 6
4 5 6 1 2 3

)
= (1 4) (2 5) (3 6)

α 4π
3

=

(
1 2 3 4 5 6
5 6 1 2 3 4

)
= (1 5 3) (2 6 4)

α 5π
3

=

(
1 2 3 4 5 6
6 1 2 3 4 5

)
= (1 6 5 4 3 2)

α2π =

(
1 2 3 4 5 6
1 2 3 4 5 6

)
= I.

11
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Again, we have six symmetry transformations, and again notice that the identity transfor-
mation corresponds to a rotation by 360 degrees.

Properties of the Symmetry Transformation

• Composing two symmetry transformations gives another symmetry transformation. For
instance, using the transformations of Example 1.3.2, we have

α 2π
3
◦ απ

3
= (1 3 5) (2 4 6) (1 2 3 4 5 6) = (1 4) (2 5) (3 6) = απ,

i.e., a rotation by 180 degrees is the same as rotating first by 60 degees then by 120 degrees,
as one would expect. In fact, for general symmetric rotation transformations by angles θ1
and θ2,

αθ1 ◦ αθ2 = αθ1+θ2 = αθ2 ◦ αθ1 .

• Symmetry transformations are generally not commutative. Notice in Example 1.3.2 for
the hexagonal pyramid that for all symmetry transformations γ, δ, γ ◦δ = δ◦γ, i.e., all the
symmetry transformations of the hexagonal pyramid are mutually commutative. However,
for the equilateral triangle in Example 1.3.2, this is not the case. For instance,

α 4π
3
◦ α3 = (1 2 3) (1 2) = (1 3) ,

but
α3 ◦ α 4π

3
= (1 2) (1 2 3) = (2 3) 6= α 4π

3
◦ α3.

However,
α 2π

3
◦ α 4π

3
= (1 3 2) (1 2 3) = α2π = α 4π

3
◦ α 2π

3
.

In fact, all of the rotation transformations are mutually commutative, though this does
not apply to any of the reflection transformations. So, although all the symmetry trans-
formations of the equilateral triangle do not mutually commute, some of them do.

• There is an identity symmetry transformation I such that for all symmetry transformations
α, α ◦ I = I ◦ α = α. We have already seen that the identity symmetry transformation
in both of the above examples corresponds to a rotation by 360 degrees, or equivalently, a
rotation by 0 degrees.

• Symmetry transformations are associative, i.e., if α, β, γ are symmetry transformations,
then α ◦ (β ◦ γ) = (α ◦ β) ◦ γ.

• Given a symmetry transformation α, there exists a symmetry transformation β such that
α ◦ β = I = β ◦ α. As we know already, β = α−1, the inverse transformation. In the
two examples above, the inverse transformation simply undoes either the rotation or the
reflection, and hence has the same effect as a rotation by 360 degrees. Using Example 1.3.2,
notice that we can write α 5π

3
as α−π

3
. It is then clear that α−π

3
◦ απ

3
= α0 = α2π = I, so

that α 5π
3

is the inverse of απ
3
.

12
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1.4 Factoring into Disjoint Cycles

Let us “factor” the bijection

α =

(
1 2 3 4 5 6 7 8 9
6 4 1 2 5 3 8 9 7

)
into a product (i.e., composition) of disjoint cycles. Now, α (1) = 6, and so α begins as (1 6;
α (6) = 3, so α continues as (1 6 3; α (3) = 1, and so the first cycle closes and α is so far
(1 6 3). The smallest integer not having appeared is 2, so we write α = (1 6 3) (2, and then, since
α (2) = 4, we get α = (1 6 3) (2 4; α (4) = 2, so this cycle closes, and we get so far α = (1 6 3) (2 4).
Since α (5) = 5, and observing the cycle on the right-most points 7, 8 and 9, we get

α = (1 6 3) (2 4) (5) (7 8 9) .

One often suppresses all 1-cycles, such as (5) in the above factorisation, since all 1-cycles are
equal to the identity I. Though sometimes it is convenient to display all the cycles.

Definition 1.4.1 Complete Factorisation

A complete factorisation of a bijection α is a factorisation of α as a compo-
sition of disjoint cycles that contains one 1-cycle (i) for every i fixed by α. In a
complete factorisation, every point in α occurs in exactly one of the cycles.

Theorem 1.4.1

Let α = β1◦β2◦· · ·◦βt be a complete factorisation of the bijection α into disjoint
cycles β1, . . . , βt. This factorisation is unique except for the order in which the
factors occur.

Proof: Disjoint cycles commute by Theorem 1.2.1, so that the order of the factors in a com-
plete factorisation is not uniquely determined. However, we shall see that the factors themselves
are uniquely determined. Since there is exactly one 1-cycle (i) for every i fixed by α, it suffices
to prove uniqueness of the cycles of length at least 2. Suppose α = γ1 ◦ γ2 ◦ · · · ◦ γs is a second
complete factorisation into disjoint cycles. If βt moves i1, then βkt (i1) = αk (i1) for all k by
Theorem 1.2.2-1. Now, some γj must move i1; since disjoint cycles commute, we may assume
that γj = γs. But γks (i1) = αk (i1) for all k, and so Theorem 1.2.2-2 gives βt = γs. We thus have
β1 ◦ β2 ◦ · · · ◦ βt−1 = γ1 ◦ γ2 ◦ · · · ◦ γs−1, and the pf is complete by induction on max {s, t}. �
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2 Basic Algebra (MATH 135)

We now review some of the most important concepts learnt in MATH 135.

Definition 2.0.2 Divisibility

An integer m divides an integer n, and we write m |n, if there exists an integer
k such that n = km. m is called the divisor.

Theorem 2.0.2 Divisibility Theorems

Here is a summary of facts about divisibilty.

1. (Transitivity) Let a, b, and c be integers. If a | b and b | c, then a | c.
2. (Divisibility of Integer Combinations) If a, b, and c are integers such that
a | b and a | c, and x and y are any integers, then a | (bx+ cy).

3. (Bounds by Divisibility) Let a and b be integers. If a | b and b 6= 0, then
|a| ≤ |b|.

Theorem 2.0.3 Division Algorithm

If a and b are integers, and b > 0, then there exist unique integers q and r such
that

a = qb+ r, 0 ≤ r < b.

q is called the quotient and r is called the remainder.

Remark: Note that the integer r is always strictly less than b. As well, the integer r is always positive or
zero. Finally, observe that b | a if and only if r = 0.

Definition 2.0.3 Prime and Composite Number

An integer p > 1 is called a prime number if its only positive divisors (i.e.,
divisors strictly greater than zero) are 1 and p. If this is not the case, the p is
called a composite number.
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Definition 2.0.4 Greatest Common Divisor (gcd)

Let a and b be integers not both zero. An integer d > 0 is the greatest common
divisor (gcd) of a and b, written gcd (a, b) if and only if

1. d | a and d | b (this captures the common part of the definition), and

2. if c | a and c | b, then c ≤ d (this captures the greatest part of the definition).

An equivalent definition is as follows: the greatest common divisor of two integer
a and b is smallest positive integer d that can be written in the form d = ap+ bq
where p and q are integers. Any other such integers must be multiples of d.

Example 2.0.1 Here are some examples of gcds:

• gcd (24, 30) = 6

• gcd (17, 25) = 1

• gcd (−12, 0) = 12

• gcd (−12,−12) = 12

• gcd (0, 0) = 0 (by convention)

Theorem 2.0.4

Here are some important properties of the greatest common divisor.

1. gcd (a, 0) = |a|
2. If m is a non-negative integer, then gcd (ma,mb) = mgcd (a, b).

3. If m is any integer, then gcd (a+mb, b) = gcd (a, b).

4. If m is a non-zero common divisor of a and b, then gcd
(
a
m ,

b
m

)
= gcd(a,b)

m .

5. gcd (a, b) = gcd (b, a), i.e., the gcd is commutative.

6. gcd (a, gcd (b, c)) = gcd (gcd (a, b) , c), i.e., the gcd is associative.

7. The greates common divisor of three numbers can be computed as
gcd (a, b, c) = gcd (gcd (a, b) , c), or in some different way by applying com-
mutativity and associativity. This can be extended to the gcd of any number
of numbers.

Theorem 2.0.5 GCD with Remainders

If a and b are integers not both zero, and q and r are integers such that a = qb+r,
then gcd (a, b) = gcd (b, r).

15
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Theorem 2.0.6 GCD Characterisation Theorem

If d is a positive common divisor of the integers a and b, i.e., d | a and d | b, and
there exists integers x and y such that ax+ by = d, then d = gcd (a, b).

Theorem 2.0.7 Extended Euclidean Algorithm

If a > b > 0 are positive integers, then d = gcd (a, b) can be computed, and there
exist integers x and y such that ax+ by = d.

Definition 2.0.5 Coprime Numbers

Two integers a and b are coprime if gcd (a, b) = 1.

Theorem 2.0.8 Coprimeness and Divisibility

If a, b, and c are integers and c | ab and gcd (a, c) = 1, i.e., a and c are coprime,
then c | b.

Theorem 2.0.9 Coprimeness and Divisibility 2

If a1 and a2 are coprime, then gcd (a1a2, b) = gcd (a1, b) gcd (a2, b).

Theorem 2.0.10 Primeness and Divisbility

If p is a prime number and p | ab, then p | a or p | b.

Theorem 2.0.11

Let a and b be integers. Then gcd (a, b) = 1 if and only if there are integers x
and y such that ax+ by = 1.

Theorem 2.0.12 Division by the GCD

Let a and b be integers. If gcd (a, b) = d 6= 0, then gcd
(
a
d ,

b
d

)
= 1.

Theorem 2.0.13

Let g = gcd (a, b) for two integers a and b. Then g | a and g | b.

Proof: Suppose g = gcd (a, b). This means that there exist integers s and t such that g =
as+ bt is the smallest linear combination of a and b. Assume for a contradiction that g - a. This
means that a = gu+ r for some integers u and r, 0 ≤ r < g, or r = a− ug = a− u (as+ bt) =

16
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a (1− us) − utb. Since r < g, we have found a smaller integer that is a linear combination of
a and b, a contradiction, since we assumed g = gcd (a, b), which implies that g is the smallest
such integer. Hence g | a. A similar argument for b proves g | b. �

Theorem 2.0.14

Let n, k ∈ Z. Then

gcd

(
n

gcd (n, k)
,

k

gcd (n, k)

)
= 1

Proof: By definition of the gcd, there exist integers p and q such that d is the smallest integer
satisfying

d =
n

gcd (k, n)
p+

k

gcd (k, n)
q =

1

gcd (k, n)
(np+ kq) .

But g = gcd (k, n) is the smallest integer satisfying g = nu + kv for integers u and v. Now,
since we are looking for the smallest d, we must have that np+ kq is in fact gcd (k, n), i.e., that
u, v = p, q, so that

gcd

(
n

gcd (n, k)
,

k

gcd (n, k)

)
=

1

gcd (k, n)
gcd (k, n) = 1,

as required. �
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3 Modular Arithmetic (MATH 135)

We now take some time to review modular arithmetic, which was studied in MATH 135.

Modular arithmetic is the arithmetic of congruences, specifically, the arithmetic of congruent
integers. Modular arithmetic is also informally known as “clock arithmetic”. In modular arith-
metic, numbers wrap around upon reaching a given fixed quantity, called the modulus, which
would be 12 in the case of hours on a clock, or 60 in the case of minutes or seconds on a clock.

3.1 Integer Congruence

Definition 3.1.1 Congruent Integers

Let m be a fixed positive integer, the modulus. If a, b ∈ Z, we say that a is
congruent to b modulo m and write

a ≡ b mod m (3.1)

if m | (a− b), i.e., if m divides (a− b) If m does not divide (a− b), then we write
a 6= bmod m.

Example 3.1.1 Let’s now go through some examples of these congruences:

• 38 ≡ 14 mod 12 because 38− 14 = 24, which is a multiple of 12, i.e., 12 | 24.

• We can also write congruences for negative integers; for example, −8 ≡ 7 mod 5.

• 2 ≡ −3 mod 5.

• 5 6= 3 mod 7.

Remark: Observe that congruence relations for integers are not unique. For instance, in the above example,
instead of 38 ≡ 14 mod 12, we could have written 38 ≡ 24 mod 12. This second representation may seem more
intuitive to you, because it more closely resembles the way we keep track of time on a 12-hour clock. For
instance, we know that instead of saying that the time is 13 o’clock we say that it is 1 o’clock in the afternoon.
We can say this because 13 ≡ 1 mod 12, i.e., 1 is the number of hours by which we must increase 12 to get
the current time. Similarly, we have 14 ≡ 2 mod 12, which is why 14 o’clock is equivalent to 2 o’clock in the
afternoon, etc.

Back to 38 ≡ 24 mod 12, a “better” representation would be 38 ≡ 2 mod 12. We will see why this third
representation is better shortly.
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3.2: Motivating Modular Arithmetic

Theorem 3.1.1 Conguence is an Equivalence Relation

Let a, b, c ∈ Z. Then,

1. a ≡ amod m. (Reflexivity)

2. If a ≡ bmod m, then b ≡ amod m. (Symmetry)

3. If a ≡ bmod m and b ≡ cmod m, then a ≡ cmod m. (Transitivity)

In other words, the congruence relation satisfies the three properties of an equiv-
alence relation.

Theorem 3.1.2

a ≡ bmod m if and only if a and b have the same remainder when divided by m.

Theorem 3.1.3 Congruences and Division

If ac ≡ bcmod m, and gcd (c,m) = 1, then a ≡ bmod m.

3.2 Motivating Modular Arithmetic

Now, we all know that the set of integers can be broken up into the following two classes:

• The even numbers {. . . ,−6,−4,−2, 0, 2, 4, 6, . . . }.

• The odd numbers {. . . ,−5,−3,−1, 1, 3, 5, . . . }.

There are certain generalisations we can make about the arithmetic of numbers based on which
of these two classes they come from. For example, we know that the sum of two even numbers
is even; the sum of an even number and an odd number is odd; the sum of two odd numbers is
even; the product of two even numbers is even; and the product of two odd numbers is odd.

Modular arithmetic lets us state these results quite precisely, and it also provides a convenient
language for similar but slightly more complex statements. Now, notice that −4 ≡ 0 mod 2,
2 ≡ 0 mod 2, 1 ≡ 1 mod 2, etc., i.e., all of the even numbers are conguent to each other modulo 2
and all the odd numbers are congruent to each other modulo 2. So we can think of the modulus
as the number of classes into which we have broken the integers. Note that it is also the difference
between any two “consecutive” numbers in a given class. Even better, we have that all of the
even numbers are congruent to 0 modulo 2, and all of the odd numbers are congruent ot 1 modulo
2.

Let us thus represent each of our two classes by a single symbol. Let [0] mean “the class of all
even numbers” and the symbol [1] mean “the class of all odd numbers”. In the same way that
congruence relations of integers are not unique, there is no great reason for choosing [0] and
[1] for our symbols–we could have chosen [2] and [1], or [-32] or [177], but [0] and [1] are the
conventional choices.
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3.2: Motivating Modular Arithmetic

The statement “the sum of two even numbers is even” can then be expressed by

[0] + [0] ≡ [0],

since we just said that all even numbers are congruent to 0 modulo 2. Similarly, the statement
“the sum of an even number and an odd number is odd” is represented by

[0] + [1] ≡ [1],

since we just said that all odd numbers are congruent to 1 modulo 2. We can also write “the
sum of two odd numbers is even” as

[1] + [1] ≡ [1].

We have analogous statements for multipliction of even and odd numbers:

[0]× [0] ≡ [0]

[1]× [1] ≡ [0]

[1]× [1] ≡ [1].

In a sense, we have created a number system with addition and multiplication in which the only
“numbers” that exist are [0] and [1]. This number system is called the system of integers modulo
2, and because of the previous six properties shown above, any arithmetic done in the integers
translates to arithmetic done in the integers modulo 2.

Now, suppose we want to know which integers might solve the diophantine equation

3a− 3 = 12.

Since, for any integer a, 3a will be an odd number, we can reduce this equation modulo 2 to
write

[1]a+ [1] = [0]⇒ a = [0]− [1] = [−1] ≡ [1],

so any integer a satisfying the equation 3a− 3 = 12 must be odd.

Remark: We have not quite justified or fully explained yet what it means to add or subtract these classes
of even and odd numbers labelled [0] and [1], though hopefully at this point it seems plausible that they work
similarly to regular integers, which is why they are being used as such.

Since any integer solution of an equation reduces to a solution modulo 2, it follows that if there
is not solution modulo 2, then there is no solution in integers. For example, assume that a is an
integer solution to

2a− 3 = 12,

which reduces to
[0]a+ [1] = [0]⇒ [1] = [0],

which is a contradiction, since [0] and [1] are different numbers modulo 2 (no even number is
an odd number, and vice versa). So a cannot be an integer. Let’s now consider the system of
equations

6a− 5b = 4

2a+ 3b = 3.
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3.3: The Integers Modulo m

Modulo 2, these equations reduce to

[0]a− [1]b = [0]

[0]a+ [1]b = [1].

This says that b is both even and odd, which is a contradiction. Therefore, we know that the
original system of equations has no integer solution, and to prove this we didn’t even need to
know anything about a.

3.3 The Integers Modulo m

We now formalise and generalise everything about modular arithmetic that we have just seen.

Definition 3.3.1 Congruence Class

The congruence class modulo m of the integer a is the set of integers [a] =
{x ∈ Z |x ≡ amod m}.

Example 3.3.1 We have that when m = 2,

[0] = {x ∈ Z |x ≡ 0 mod 2} = {. . . ,−8,−4,−6,−2, 0, 2, 4, 6, 8, . . . } ,

which are indeed all the even integers, as we knew from before. And

[1] = {x ∈ Z |x ≡ 1 mod 2} = {. . . ,−7,−5,−3,−1, 1, 3, 5, 7, 9, . . . } ,

which are indeed all the odd numbers, as we knew from before. Recall that we mentioned
that the classes [0] and [1] are not unique representations of the even and odd numbers. We
can see this quite clearly now. Notice that

[2] = {x ∈ Z |x ≡ 2 mod 2} = {. . . ,−4,−6,−2, 0, 2, 4, 6, 8, 10, . . . } ,

which is just the set of even integers, and

[3] = {x ∈ Z |x ≡ 3 mod 2} = {. . . ,−5,−3,−1, 1, 3, 5, 7, 9, 11, . . . } ,

which is just the set of odd numbers. So [0] = [2] and [1] = [3].

Remark: In fact, · · · = [−4] = [−2] = [0] = [2] = [4] = · · · and · · · = [−5] = [−3] = [−1] = [1] = [3] = [5] =
· · · , so that each congruence class has an infinite number of representations.

Example 3.3.2 When m = 4, we have

[0] = {x ∈ Z |x ≡ 0 mod 4} = {. . . ,−8,−4, 0, 4, 8, . . . } = {4k | k ∈ Z}
[1] = {x ∈ Z |x ≡ 1 mod 4} = {. . . ,−7,−3, 1, 5, 9, . . . } = {4k + 1 | k ∈ Z}
[2] = {x ∈ Z |x ≡ 2 mod 4} = {. . . ,−6,−2, 2, 6, 10, . . . } = {4k + 2 | k ∈ Z}
[3] = {x ∈ Z |x ≡ 3 mod 4} = {. . . ,−5,−1, 3, 7, 11, . . . } = {4k + 3 | k ∈ Z} .

21



Chapter 3: Modular Arithmetic (MATH
135)

3.3: The Integers Modulo m

And again, we have · · · = [−8] = [−4] = [0] = [4] = [8] = · · · , · · · = [−7] = [−3] = [1] =
[5] = [9] = · · · , · · · = [−6] = [−2] = [2] = [6] = [10] = · · · , and · · · = [−5] = [−1] = [3] =
[7] = [11] = · · · .

Definition 3.3.2 The Integers Modulo m

We define Zm, the integers modulo m to be the set of m congruence classes,

Zm = {[0], [1], [2], . . . , [m− 1]} , (3.2)

and we define two operations on Zm for [a], [b] ∈ Zm,

[a] + [b] = [a+ b] (Addition modulo m)

[a] · [b] = [a · b] (Multiplication modulo m),
(3.3)

which are the definitions of addition and multiplication in Zm.

Remark: Notice that Zm only include the equivalence classes up to [m − 1]. As we have already seen, the
reason for this is that [m] = [0], [m+ 1] = [1], etc.

Remark: Though the definition of addition and mulplication may seem obvious, especially since we have
already used them, there is a fair amount going on here:

1. Sets are being treated as individual “numbers”. Modular addition and multiplication are being per-
formed on congruence classes, which, remember, are sets.

2. The addition and multiplication symbols and the left-hand side of the equal sign in Equation (3.3) are
in Zm and those on the right-hand side are operations in Z.

3. We are assuming that the operations are well-defined. That is, we are assuming that these operations
make sense even when there are multiple representations of a congruence class.

Remark: Since [a] = {x ∈ Z |x ≡ amod m}, we have that

[a] = [b]⇒ a ≡ bmod m (3.4)

for any [a], [b] ∈ Zm.
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Theorem 3.3.1

For any [a], [b], [c] ∈ Zm, we have

• The Commutative Laws:

[a] + [b] = [b] + [a] [a] · [b] = [b] · [a]

• The Associative Laws:

[a] + ([b] + [c]) = ([a] + [b]) + [c] [a] · ([b] · [c]) = ([a] · [b]) · [c]

• The Distributive Law:

[a] · ([b] + [c]) = [a] · [b] + [a] · [c]

Proof: These can be easily proven using the definition of addition and multiplication modulo
m and the properties of Z. �

Theorem 3.3.2 Addition Identity in Zm

The identity under addition in Zm is [0], just like 0 is the identity under addition
in Z.

Proof: This follows immediately from the definition:

∀[a] ∈ Zm, [a] + [0] = [a+ 0] = [a]

∀[a] ∈ Zm, [a] · [0] = [a · 0] = [0].
(3.5)

In other words, [0] behaves just like 0. �

Theorem 3.3.3 Additive Inverse in Zm

For any [a] ∈ Zm, its additive inverse is [a]−1 = [−a].

Proof: We have
[a] + [−a] = [a− a] = [0],

by the definition of addition in Zm. Since [0] is the additive identity in Zm by the above theorem,
by the definition of the inverse, [a]−1 = [−a] is the additive inverse of [a]. �

Theorem 3.3.4 Multiplication Identity in Zm

The identity under multiplication in Zm is [1], just like 1 is the identity under
multiplication in Z.
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Proof: Again, this follows immediately from the definition:

∀[a] ∈ Zm, [a] · [1] = [a · 1] = [a]. (3.6)

In other words, [1] behaves just like 1. �

Unlike the additive inverse, there does not exist a specific form for the multiplicative inverse of
a number [a] ∈ Zm. By definition, the multiplicative inverse of any [a] ∈ Zm is a number [a]−1

such that [a] · [a]−1 = [1], since [1] is the multiplicative identity in Zm. Unlike addition in Zm,
in which every element has an additive inverse, it is not always the case that a non-zero element
in Zm has a multiplicative inverse.

Definition 3.3.3 Coprime

To integers a and b are coprime, or relatively prime or mutually prime, if
the only positive integer that divides both of them is one. This is equivalent to
stating that the greatest common divisor of a and b is one, denoted gcd (a, b) = 1.

Theorem 3.3.5 Multiplicative Inverse in Zm

The multiplicative inverse of [a] ∈ Zm exists if and only if a and m are coprime,
i.e., if and only if gcd (a,m) = 1.

With these theorems, we can now define subtraction and division in Zm. These definitions are
just like those in Z: subtraction is addition of the inverse, and division is multiplication by the
inverse (if the inverse exists!).

Definition 3.3.4 Subtraction in Zm

Subtraction of any two elements [a], [b] ∈ Zm is defined as the addition of [a]
with the (additive) inverse [b]−1 = [−b] of [b], i.e.,

[a]− [b] = [a] + [−b] = [a− b]. (3.7)

Definition 3.3.5 Division in Zm

Division of any two elements [a], [b] ∈ Zm is defined as multiplication by the
(multiplicative) inverse [a]−1 of [a], assuming that this inverse exists.

Example 3.3.3 The modulus m = 12 comes up quite frequently in everyday life,
and its application illustrates a good way to think about modular arithmetic. With
m = 12, we there are only twelve numbers we every need to think about: Z12 =
{[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]} by definition of Zm, although for this example
we may also equivalently take Z12 = {[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]} since we
know that [0]=[12]. These numbers represent the twelve equivalence classes modulo 12. So
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every integer is congruent to exactly one of the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
just as the hour on the clock always reads exactly one of 1, 2, . . . , 12.

Now, if its 7 o’clock currently, what time will it be in 25 hours?

Solution: Since 25 ≡ 1 mod 12, we have, using (3.4),

[7] + [25] = [7] + [1] = [7 + 1] = [8],

so the clock will read 8 o’clock. Note that this gives no indication of the time of day we are
in (day or night).

Remark: It is customary to drop the square brakets from the modular numbers when the context is clear,
so that we could have written 7 + 25 = 7 + 1 = 8. Or, we may write

7 + 25 ≡ 7 + 1 ≡ 8 (mod 12)

Remark: The minutes and seconds on a clock are also modular. In these cases the modulus is m = 60. If
we think of the days of the week as labelled by the numbers [0], [1], [2], [3], [4], [5], [6], [7], then the modulus is
m = 7. The point is that we measure many things, both in mathematics and in daily life, that are periodic in
some sense, and this can usually be thought of as an application of modular arithmetic.
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4 Groups

We now start learning about the concept of a group. Several sources contributed to the emer-
gence of the abstract group concent. First, understanding the different deep properties of the
intergers was one of the most ancient preoccupations of mathematicians. Further, finding solu-
tions to polynomial equations was for many centuries another important source of mathematical
problems. Finally, the study of transformations of geometric objects gave rise to new ideas in the
development of mathematics in modern times. These three mathematical disciplines–number
theory, the theory of algebraic equations, and the theory of geometric transformations–all con-
tributed to the development of what in present-day mathematics is called the concept of an
abstract group, or simply of a group.

4.1 Basic Concepts

Definition 4.1.1

A binary operation on a nonempty set S is a function µ : S × S → S, denoted
∗, such that for all α, β ∈ S, α ∗ β ∈ S.

Remark: The composition operation between mappings, ◦, seen in Chapter 1, was an example of a binary
operation.

The operation ∗ assigns to each ordered pair (a, b) of elements of S a third element of S,
µ (a, b) = a ∗ b. We regard this operations as a “multiplication” of the elements of G.

As we have already seen with permutations, it is quite possible that a ∗ b and b ∗ a are distnct
elements of S.

Definition 4.1.2 Commutatitvity of ∗

Let ∗ be a binary operation on a set S. ∗ is said to be commutative if α∗β = β∗α
for all α, β ∈ S.

How can we multiply three elements of S? Given (not necessarily distinct) elements a1, a2, a3 ∈
S, the expression a1 ∗ a2 ∗ a3 is ambiguous: since we can ∗ only two element of S at a time,
we have the option of doing first a1 ∗ a2 then multiplying the result of this with a3, to get
(a1 ∗ a2) ∗a3, or first doing a2 ∗a3 then multiplying a1 by its result, so that we get a1 ∗ (a2 ∗ a3).
In general, a1∗(a2 ∗ a3) and (a1 ∗ a2)∗a3 may be different. If S is the set of all integers (positive,
negative, and zero), and we let ∗ be subtraction −, then any choice of integers a, b, c with c 6= 0
results in (a− b)− c 6= a− (b− c).
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Definition 4.1.3 Associativity of ∗

An operation ∗ on a set S is associative if

(a ∗ b) ∗ c = a ∗ (b ∗ c)

for every a, b, c ∈ S.

Remark: We have seen that the composition operation on both permutations and symmetry transformations
is associative.

Theorem 4.1.1 Generalised Associativity

If ∗ is an associative operation on a set S, then every expression a1 ∗ a2 ∗ · · · ∗ an
needs to parenthesis, i.e., no matter what choices of multipliation of adjacent
factors are made, the resulting elements of S are all equal.

4.2 The Definition of a Group and Examples

Definition 4.2.1 Group

A group G = (S, ∗) is a set S along with a binary operation ∗, which satisfies
the group axioms:

• For all α, β ∈ S, α ∗ β ∈ S. (Closure under ∗)
• For all α, β, γ ∈ S, α ∗ (β ∗ γ) = (α ∗ β) ∗ γ. (Associativity)

• There exists an element IS ∈ S such that for all α ∈ S α ∗ IS = IS ∗α = α.
(Identity)

• For all α ∈ S there exists a β ∈ S such that α ∗ β = IS . β is the inverse of
α, and is denoted β = α−1. (Inverse)

Definition 4.2.2 Abelian Group

Let G = (S, ∗) be a group. If for every α, β ∈ S α ∗ β = β ∗ α, i.e., ∗ is
commutative, then G is said to be an Abelian group or simply Abelian.

Definition 4.2.3 Powers of Group Elements

If G = (S, ∗) is a group and a ∈ S, then the nth power of a is an = a∗a∗ · · · ∗a.
a−n is the inverse of an. We also let a0 = a−1 ∗ a = IS , the identity element of
S, and a1 = a.
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Theorem 4.2.1 Powers of Group Elements

Let G = (S, ∗) be a group and let a ∈ S be an element of G. Then,

1. a−n =
(
a−1
)n

= a−1 ∗ a−1 · · · a−1.
2. am ∗ an = am+n = an ∗ am.

3. (am)n = amn = (an)m.

Proof: We prove each statement in turn.

1. We have an∗
(
a−1
)k

= a∗a∗· · ·∗a∗a−1∗a−1∗· · ·∗a−1 = a∗a∗· · ·∗a∗IS∗a−1∗a−1∗· · ·∗a−1 =
· · · = IS by the associativity of ∗.

2.

3. �

Definition 4.2.4 Group Order

Let G = (S, ∗) be a group with operation ∗. The order of G is the cardinality
of the set S, denoted o (G) or |G|. If |G| is finite, then G is said to be a finite
group; otherwise, G is an infinite group.

Definition 4.2.5 Order of a Group Element

The element a of the group G is of order m, denoted o (a) = m if m is the
smallest positive integer such that am = IS . If no such m exists, then a is said
to have infinite order. In other words, all of the powers of a are distinct.

Remark: If a is of order m, then all the elements

a0, a, a2, . . . , am−1

are distinct. Thus, every other power of a will be equal to one of these elements. Since any integer k can be
written as k = sm+ t, for 0 ≤ t < m, we have

ak = asm+t = asmat = (am)s at = Isat = at.

From this, we see that if ak = I, then k is a multiple of m.

Remark: Note that for any element a ∈ G, an = I ; o (a) but an = I ⇒ o (a) ≤ n. However o (a) = n ⇒
an = I.

Remark: The group G = (S, ∗) of order one contains one element, the identity IS (remember that all groups,
by definition, have to contain the identity).

If G is of order two, then S contains two distinct elements, one of which, by definition, must be the identity.
Call the second element a. Then a ∗ a = a2 cannot be a since a2 = a ⇒ a = IS , which would mean that S
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contains only one element, a contradiction. So we must have a2 = IS , which implies that a = a−1, i.e., a is
its own inverse.

If G is of order three, then S contains three distinct element, one of which, by definition, is the identity. Call
the other two elements a and b. Then a ∗ b cannot equal a or b since this would imply b = IS or a = IS , which
is a contradiction. So a ∗ b must equal IS . Similarly, we have a2 = b, so that a3 = IS , i.e., a is of order three.
So a group of order three consists of the elements a, a2, a3 = IS . This is an example of a cyclic group, one
which consists of the powers of a single element.

Remark: It can be shown that if G is a finite group, then there exists a positive integer m such that am = 1
for all a ∈ G.

Example 4.2.1 Below are several examples of groups.

• (Z,+), the set of all integers under the operation of addition, is a group since addition
of integers give other integers, 0 ∈ Z is the identity element, and for every element
a ∈ Z, a−1 = −a is the inverse of a. Addition is also clearly associative. |(Z,+)| =∞.
In addition, every non-zero element of this group has infinite order.

• (2Z,+), the set of all even integers under addition, is also a group because the sum of
two even integers is again even. More generally, (nZ,+) is a group for any n. (Notice
that the set all odd integers under addition is not a group since the sum of two odd
numbers is even (e.g., 1 + 3 = 4)). |(2Z,+)| =∞. Again, every element of the group
has infinite order.

• (Q,+), (R,+), (C,+), the rational, real, and complex numbers under addition, are all
groups. |(Q,+)| = |(R,+)| = |(C,+)| = ∞, with each element of each group having
infinite order.

• Zn = {[0], [1], . . . , [n− 1]} under addition modulo n is a group. [0] is the identity
element, and for each [a] ∈ Zn, its inverse element in [a]−1 = [−a], as we saw in Chapter
2. |(Zn,+)| = n. For every element [a] in the group, its order is o ([a]) = n

gcd(a,n) . For

example, for n = 20, o ([5]) = 4, o ([2]) = 10, and o ([30]) = 2.

• Let M (2,R) be the set of all 2× 2 matrices with real entries. Then (M (2,R) ,+) is a
group under addition of matrices. |(M (2,R) ,+)| =∞.

Note that all of these groups are Abelian, as can be verified by using the commutativity of
addition in R, C, and Q.

Example 4.2.2 Below are some examples of non groups.

• (Z,×), the set of integers under multiplication, is not a group because there is no
inverse element, i.e., for any a, b 6= ±1 there is no integer such that a× b = 1. Indeed,
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the multiplicative inverse of an integer a is 1
a , which is not an integer except for when

a = ±1.

• (Q,×), the set of rational numbers under multiplication, is not a group. For though
the rational numbers are closed under multiplication, multiplication is associative,
there is a multiplivative identity, 1, and every non-zero rational number a has the
multiplicative inverse 1

a , the rational number 0 has no multiplicative inverse. The
same goes for (R,×) and (C,×).

• (Zn,×), the set of integers modulo n under multiplication modulo n, is not a group.
The reason for this is that elements in Zn generally do not have an inverse (see Chapter
2).

Remark: The example above shows that a set may form a group under one operation and not another, which
is why we consider a group as a pair, the set and the operation. Often, however, when it is understood what
operation we have in mind, we speak simply of the group G.

Example 4.2.3 If we consider the set

Q∗ = Q− {0}

of all nonzero rational numbers, then Q∗ is closed under multiplication. Similarly, the sets

R∗ = R− {0} and C∗ = C− {0}

are closed under multiplication. Therefore, (Q∗,×), (R∗,×), and (C∗,×) are all groups, in
particular, Abelian groups. |(Q∗,×)| = |(R∗,×)| = |(C,×)| =∞.

Example 4.2.4 Recall Theorem 3.3.5, which says that two elements [a], [b] ∈ Zn have a
multiplicative inverse if and only if a and b are coprime. Now, consider the set

Z∗n = {[a] | gcd (a, b) = 1} .

For example,

Z∗6 = {[1], [5]}
Z∗7 = {[1], [2], [3], [4], [5], [6]}
Z∗8 = {[1], [3], [5], [7]}

Now, let U (n) = (Z∗n,×), where × represents multiplication modulo n. Now, notice that
for any elements [a], [b] ∈ Z∗7 [a] × [b] ∈ Z∗7. For example, [1] × [2] = [1 × 2] = [2] ∈ Z∗7,
and [3] × [4] = [3 × 4] = [12] = [5] ∈ Z∗7. Also, since 1 is coprime with all integers,
[1] ∈ Z∗n is the identity element. Also, every element in Z∗n has an inverse in Z∗n. For
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example, consider Z∗7 again. Observe that [2] × [4] = [8] = [1], so that [2]−1 = [4] ∈ Z∗7
and [3] × [5] = [15] = [1], so that [3]−1 = [5] ∈ Z∗7. Finally, since multiplication modulo n
is associative and commutative, we have that U (n) = (Z∗n,×) is an Abelian group under
multiplication modulo n. |U (n)| = φ (n), where φ is the Euler phi function.

Definition 4.2.6 The Euler Phi Function

Euler’s Phi Function, or Euler’s Totient Function, is an arithmetic function
that counts the number of positive integers less than or equal to n that are
coprime to n. For a prime number p, φ (p) = p−1. For example, φ (7) = 7−1 = 6.

Example 4.2.5 Consider the group U (16) = (Z∗16,×) where × represents multiplication
modulo 16. We have

Z∗16 = {[1], [3], [5], [7], [9], [11], [13], [15]} ,

so that |U (16)| = 8. Let us construct the multiplication table for Z∗16:

× [1] [3] [5] [7] [9] [11] [13] [15]

[1] [1] [3] [5] [7] [9] [11] [13] [15]

[3] [3] [9] [15] [5] [11] [1] [7] [13]

[5] [5] [15] [9] [3] [13] [7] [1] [11]

[7] [7] [5] [3] [1] [15] [13] [11] [15]

[9] [9] [11] [13] [15] [1] [3] [5] [7]

[11] [11] [1] [7] [13] [3] [9] [15] [5]

[13] [13] [7] [1] [11] [5] [15] [9] [3]

[15] [15] [13] [11] [9] [7] [5] [3] [1]

We can see that o ([1]) = 1 and o ([7]) = o ([9]) = o ([15]) = 2. And since [3]2 = [5]2 = [11]2 =
[13]2 = [9], we get that o ([3]) = o ([5]) = ([11]) = o ([13]) = 4. So there is one element of

order one, three elements of order two, and four elements of order four. b

Example 4.2.6 The 3rd and 4th Roots of Unity Let us find the roots
of the polynomial f (x) = x3 − 1 in C. Note that f (x) can be factored as f (x) =
(x− 1)

(
x2 + x+ 1

)
. Then, if we use the quadratic formula, we find that ω = 1

2

(
−1 + i

√
3
)

and ω2 = 1
2

(
−1− i

√
3
)

are the two complex roots of x2 + x + 1 (note that they are com-
plex conjugates of one another. Hence, the roots of f (x), the third roots of unity, are
3
√

1 =
{

1, ω, ω2
}

. If we use the usual multiplication of complex numbers, we obtain the
following multiplication table.
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3
√

1 1 ω ω2

1 1 ω ω2

ω ω ω2 1

ω2 ω2 1 ω

Let us also find the roots of f (x) = x4 − 1 in C. Note that f (x) can be factored as(
x2 − 1

) (
x2 + 1

)
= (x− 1) (x+ 1) (x− i) (x+ i). So the four roots of f (x), the fourth

roots of unity, are 4
√

1 = {1,−1, i,−i} (again, note that the two complex roots are complex
conjugates of one another). Again, using the usual multiplication of complex numbers, we
obtain the following multiplication table for the roots.

4
√

1 1 i −1 −i
1 1 i −1 −i
i i −1 −i 1

−1 −1 −i 1 i

−i −i 1 i −1

In both cases, notice that the product of any two roots gives another root. Additionally,
multiplication by the root 1 does not change the root, and that multiplication of a root by
its complex conjugate gives 1. And multiplication, as we know, is an associative operation.
Hence, the identity element in the sets 3

√
1 and 4

√
1 is 1 and the inverse of a root a in 3

√
1 and

4
√

1 is a, the complex conjugate of a. So under ×, multiplication in C,
(

3
√

1,×
)

and
(

4
√

1,×
)

are Abelian groups. b

Remark: In fact,
(
n
√

1,×
)
, the group consisting of the set of the nth roots of unity, is also an Abelian group,

where n
√

1 =
{

1, ω, ω2, . . . , ωn−1
}

and ω = ei
2π
n = cos

(
2π
n

)
+ i sin

(
2π
n

)
.

Theorem 4.2.2 Basic Group Properties

For any group G = (S, ∗):

1. The identity element IS is unique.

2. For every a ∈ S, the inverse a−1 is unique.

3. For every a ∈ S,
(
a−1
)−1

= a.

4. For every a, b ∈ S, (a ∗ b)−1 = b−1 ∗ a−1.
5. For every a, b ∈ S, the equations a∗x = b and y∗a = b have unique solutions.

These are the right and left cancellation laws. In general, the right and
left cancellation laws are a ∗ b = c ∗ b ⇒ a = c and b ∗ a = b ∗ c ⇒ a = c,
respectively.

33



Chapter 4: Groups 4.2: The Definition of a Group and Examples

Proof: We prove each in turn.

1. Let IS and I ′S be identity elements in S. Then IS ∗ I ′S = I ′S because IS is an identity,
but also IS ∗ I ′S = IS because I ′S is an identity. Hence, IS = I ′S .

2. Let a′ and a′′ be two inverses in S. Then, using the associativity of ∗, a′ = a′ ∗ IS =
a′ ∗ (a ∗ a′′) = (a′ ∗ a) ∗ a′′ = IS ∗ a′′ = a′′. So the inverse is unique.

3. Since a−1 ∗a = a∗a−1 = IS , and since by 2. the inverse of an element in unique, it follows
that a is the inverse of a−1, or

(
a−1
)−1

= a.

4. Since
(
b−1 ∗ a−1

)
∗ (a ∗ b) = b−1 ∗

(
a−1 ∗ a

)
∗ b = b−1 ∗ IS ∗ b = b−1 ∗ b = IS and similarly

(a ∗ b) ∗
(
b−1 ∗ a−1

)
= IS , and since the inverse of an element is unique, it follows that

b−1 ∗ a−1 is the inverse of a ∗ b, or (a ∗ b)−1 = b−1 ∗ a−1.

5. For a, b ∈ S, the equation a ∗ x = b implies a−1 ∗ (a ∗ x) = a−1 ∗ b after multiplying both
sides on the left by a−1. Since a−1 ∗ (a ∗ x) =

(
a−1 ∗ a

)
∗ x = IS ∗ x = x, the equation

implies x = a−1 ∗ b. Therefore, x is unique, since a−1 is unique. Similarly, the equation
a ∗ y = b implies y = b ∗ a−1, and y is unique. �

Remark: With regards to 5., note that b ∗ a = c ∗ b ; a = c. In other words, the cancellation has to, in
general, be on the same side, since groups are generally not Abelian, i.e., b ∗ a 6= a ∗ b.

Remark (Notation): To ease notation, for a group G = (S, ∗), is is conventional to write a ∗ b for
a, b ∈ S as simply ab or a · b. Additionally, we usually use e or 1 for identity element IS of S.

As well, if the group being dealt with is Abelian, then we generally write the inverse of an element a of the
group as −a instead of a−1 and na instead of an.

We now present three very important theorems that will be useful later in the course.

Theorem 4.2.3

Let G be a group and a ∈ G. Suppose o (a) = n < ∞. Then the elements
a0 = 1, a1, a2, . . . , an−1 are distinct. (We asserted this in a remark above.)

Proof: Let o (a) = n. Assume for a contradiction that ai = aj , for 0 ≤ i < j < n. Then
aj−i = aja−i = aia−i = 1, which implies that o (a) ≤ j − i < n, contrary to the assumption
that n is the smallest integer such that an = 1, i.e., contrary to the assumption that o (a) = n.
Hence ai 6= aj , and all the elements 1, a1, a2, . . . , an−1 are distinct. �
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Theorem 4.2.4

Let G be a group and a ∈ G. Then, for all i, j ∈ Z, we have:

1. If a has infinite order, i.e., o (a) =∞, then ai = aj if and only if i = j.

2. If a has finite order, i.e., o (a) = n <∞, then ai = aj if and only if n divides
i− j.

Proof: We prove each in turn.

1. Suppose a has infinite order. (⇐) If i = j, then clearly ai = aj . (⇒) if ai = aj , then
ai−j = aia−j = aja−j = 1. But since a has infinite order, an = 1 if and only if n = 0, so
we have i− j = 0⇒ i = j.

2. Suppose a has finite order o (a) = n. (⇐) if n divides i−j, so that i−j = nk ⇒ i = nk+j
for some k ∈ Z, then we have ai = ank+j = ankaj = (an)k aj = 1kaj = eaj = aj . (⇒)
Suppose ai = aj , or, equivalently, ai−j = 1. By the division algorithm, we can write i−j =
qn + r, where 0 ≤ r < n. Then, 1 = ai−j = anq+r = anqar = (an)q ar = 1qar = 1ar = ar.
Since 0 ≤ r < n and n is, by definition of order, the least positive integer such that an = 1,
we must have r = 0, so i− j = qn and i− j is divisible by n. �

Theorem 4.2.5

Let G be an arbitrary group and a, b ∈ G and o (a) , o (b) <∞ (so we are dealing
with finite groups). For any m,n ∈ Z, if an = 1 and am = 1, then ad = 1, where
d = gcd (m,n). In particular, if ak = 1 for some k ∈ Z, then o (a) | k.

Proof: By the Euclidean Algorithm, there exist integers r and s such that d = mr + ns,
where d is the gcd of n and m. Thus,

ad = amr+ns = (am)r (an)s = 1r1s = 1.

This proves the first assertion.

We have actually already seen the second assertion in one of the remarks above (and is in a sense
simply a corollary to the previous theorem). Let us now show it more formally. By the Division
Algorithm, there exists q, r ∈ Z, with 0 ≤ r < o (a), such that k = q · o (a) + r. Therefore,

1 = ak = aq·o(a)+r =
(
ao(a)

)q
ar = 1qar = ar.

Now 1 = ar ⇒ r = 0, so that there exists and integer q such that k = q · o (a), i.e., o (a) | k by
definition of divisibility. �

4.3 Special Groups

We now look at some special groups. It turns out that many of the special groups (i.e., groups
that are used explicitly in applications) are non-Abelian.
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The first example is the group of permutations of n distinct objects, which we have already
seen in Chapter 1. The second example is is the dihedral group, which uses the symmetry
transformations seen in Chapter 1.

4.3.1 Permutation Groups

We have already discussed these in detail. Recall that we let Sn be the set of permutations of
the set On = {1, 2, 3, . . . , n}. We know that permutations are bijections from On to On, and so
if we let the binary operation ∗ be the composition of the bijections ◦, then (Sn, ◦) is a group
since, as we have already seen, the composition of mappings is associative. The identity element
in Sn is

ISn =

(
1 2 3 · · · n
1 2 3 · · · n

)
.

Now, let α ∈ Sn be a permutation. As we have seen, we can write in general

α =

(
1 2 3 · · · n

α (1) α (2) α (3) · · · α (n)

)
,

so that the inverse α−1 is

α−1 =

(
α (1) α (2) α (3) · · · α (n)

1 2 3 · · · n

)
.

For example,

α =

(
1 2 3 4 5
3 1 4 2 5

)
⇒ α−1 =

(
3 1 4 2 5
1 2 3 4 5

)
.

We have also seen that the composition of permutations is not commutative, so that (Sn, ◦) is
non-Abelian.

Now, what is |(Sn, ◦)| = |Sn|? In other words, how many permutations are there of n distinct
objects? We have already seen that |Sn| = n!, so that |(Sn, ◦)| = n!. Also, observe that

α2 = α ◦ α ◦ α ◦ α =

(
1 2 3 4 5
3 1 4 2 5

)(
1 2 3 4 5
3 1 4 2 5

)(
1 2 3 4 5
3 1 4 2 5

)(
1 2 3 4 5
3 1 4 2 5

)
=

(
1 2 3 4 5
1 2 3 4 5

)
= IS5 ,

so that α is of order 4, or o (α) = 4. However, if we let

β =

(
1 2 3 4 5
2 1 3 5 4

)
,

then

β2 = β ◦ β =

(
1 2 3 4 5
2 1 3 5 4

)(
1 2 3 4 5
2 1 3 5 4

)
=

(
1 2 3 4 5
1 2 3 4 5

)
= IS5 ,
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so that o (β) = 2. If δ =

(
1 2 3 4 5
2 3 1 4 5

)
, then

γ3 = γ ◦ γ ◦ γ =

(
1 2 3 4 5
2 3 1 4 5

)(
1 2 3 4 5
2 3 1 4 5

)(
1 2 3 4 5
2 3 1 4 5

)
=

(
1 2 3 4 5
1 2 3 4 5

)
= IS5 ,

so that o (γ) = 3. Now let δ =

(
1 2 3 4 5
2 1 3 4 5

)
, then we get

δ2 = δ ◦ δ =

(
1 2 3 4 5
2 1 3 4 5

)(
1 2 3 4 5
2 1 3 4 5

)
=

(
1 2 3 4 5
1 2 3 4 5

)
= IS5 ,

so that o (δ) = 2. Now, let ε =

(
1 2 3 4 5
3 5 4 2 1

)
, so that

ε5 =

(
1 2 3 4 5
3 5 4 2 1

)(
1 2 3 4 5
3 5 4 2 1

)(
1 2 3 4 5
3 5 4 2 1

)(
1 2 3 4 5
3 5 4 2 1

)(
1 2 3 4 5
3 5 4 2 1

)
=

(
1 2 3 4 5
1 2 3 4 5

)
= IS5 ,

so that o (ε) = 5. Finally, let ζ =

(
1 2 3 4 5
2 3 1 5 4

)
. Then,

ζ6 =

(
1 2 3 4 5
2 3 1 5 4

)6

= IS5 ,

so that o (ζ) = 6. To see what is going on here, it is useful to write all of these permutations in
cyclic notation:

α = (1 3 4 2) (5)⇒ o (α) = 4

β = (1 2) (3) (4 5)⇒ o (β) = 2

γ = (1 2 3) (4) (5)⇒ o (γ) = 3

δ = (1 2) (3) (4) (5)⇒ o (δ) = 2

ε = (1 3 4 2 5)⇒ o (ε) = 5

ζ = (1 2 3) (4 5)⇒ o (ζ) = 6.

What we have done is split all of the possible permutations into, including the identity permu-
tation, seven different cycle types. With the exception of the cycle type represented by ζ, we see
that the order of the permutation is equal to the number of points moved by the permutation.
This allows us to compute the number of elements of each order in S5, then Sn, in general.

Calculating the Number of Elements of a Cycle Type

First, observe that, in the cyclic notation for n=5 shown above, we have partitioned the five
elements into cycles. For example, β has two 2-cycles and one 1-cycle. Observe that 2×2+1×1 =
5 = n. Let us write this cycle type as

(a1 a2) (a3) (a4 a5) .
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We can arrange these numbers 1 to 5 in any of 5! ways and then just set them down into the
cycles to get a permutation of this cycle type–but then we’ve overcounted. For instance, since
the cycle (a1 a2) is the same as (a2 a1), we’ve overcounted by a factor of two. In general, each
k-cycle will be overcounted by a factor of k. The two 2-cycles cause us to overcount by 4 (each
2-cycle contributes a factor of two).

Since disjoint cycles commute (see Chapter 1), we can switch the 2-cycles above and get the
same permutation: (a1 a2) (a4 a5) is the same as (a4 a5) (a1 a2). There are 2! ways to arrange
these cycles, therefore, and so we have overcounted by 2! in this case. So we have

5!

2× 2× 2!× 1
= 15

permutations of this cycle type. In general, let’s say the cycle type has c1 1-cycles, c2 2-cycles,
up to ck k-cycles, where 1c1 + 2c2 + · · ·+ kck = n. The above case had c1 = 1 and c2 = 2, with
k = 2. There are n! ways of filling arranging the numbers and placing them in the cycles. We
then correct for our overcounting as we did above:

• Each of the cj j-cycles can be rotated around j ways and be the same cycle, so we divide
by jcj for j = 1, 2, . . . , k.

• There are cj j-cycles that can be permuted in cj ! ways, so we divide by cj ! for j = 1, 2, . . . , k.
(We don’t change the position of the cycles.)

Therefore, the number of permutations per cycle type is

n!∏k
i=1 i

ci
∏k
i=1 ci!

. (4.1)

The sum of the number of permutations of each cycle type should be n!. Let us check to see if
this is true for S5:

Identity:
5!

(1)5 5!
= 1

Type α :
5!

[411!] [111!]
= 30

Type β :
5!

[222!] [111!]
= 15

Type γ :
5!

[311!] [122!]
= 20

Type δ :
5!

[211!] [133!]
= 10

Type ε :
5!

511!
= 24

Type ζ :
5!

[311!] [211!]
= 20

So, indeed, 1 + 30 + 15 + 20 + 10 + 24 + 20 = 120 = 5!.
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Let us now examine a more abstract way of looking at permutation groups, which will help
us later on when studying more advanced groups. Consider S3, the permuation group of three
distinct objects {1, 2, 3}. We know that |S3| = 6–specifically,

S3 = {(1 2) , (2 3) , (1 3) , (1 2 3) , (3 2 1) , e} .

Now, let a = (1 2) and b = (1 2 3). Then a2 = e, so that o (a) = 2. We also have b2 =
(1 2 3) (1 2 3) = (1 3 2) (3 2 1) and b3 = (3 2 1) (1 2 3) = e. As well, ab = (1 2) (1 2 3) = (2 3) and
ab2 = (1 2) (3 2 1) = (1 3). So we can write

S3 =
{
a, b, b2, ab, ab2 | a2 = 1, b3 = 1

}
.

However, we can do better. Observe that ba = (1 2 3) (1 2) = (1 3) = ab2, so that

S3 =
{
a2 = 1, b3 = 1, ba = ab2

}
. (4.2)

ba = ab2 gives us the rule for “multiplying” elements of S3 without knowing anything about the
elements of the set which are being permuted. This makes it easy to write up the multiplication
table for this group (which would contain 36 cells). For instance,

b (ab) = (ba) b =
(
ab2
)
b = a

(
b2b
)

= ab3 = a1 = a,

and we perfomed this multiplication without knowing anything about the elements 1, 2, and 3,
i.e., without having to write out the cycles.

Writing S3 in the form (4.2) is known as writing a group as a generator relation, with the
elements a and b being the generators. All we need are the three facts expressed in (4.2) to
know all the elements of the group, and whatever follows from that.

4.3.2 Dihedral Groups

Let Dn be the set of symmetry transformations of a regular n-gon in R2. Place the n-gon in the
xy plane with its centre at the origin. We have already seen that there are only two types of
symmetry transformations possible when we looked at the equilateral triangle (whose symmetry
transformations belong in D3):

• Rotations by θ = 2π
n ,

4π
n , . . . ,

2πk
n , . . . . Denote these transformations by γk, 0 ≤ k ≤ n−1.

• Reflections along the axis through the ray θ = πl
n , 1 ≤ l ≤ n. Denote these transformations

by fl. (Note that for n odd, these lines simply become the lines through each of the
vertices.)

So
Dn = {γk, fl | 0 ≤ k ≤ n− 1, 1 ≤ l ≤ n} .

If we let the operations on these transformations (the elements of Dn) be the composition
of mappings ◦, then we have that (Dn, ◦) is a group. (Again, composition of mappings is
associative.)
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Now, let us label the vertices 1 through n. The identity transformation is the one that leaves
the n-gon in its original position, so that

IDn =

(
1 2 · · · n
1 2 · · · n

)
.

The inverse transformation reverses the transformation previously performed, so that if α ∈ Dn

is defined as

α =

(
1 2 · · · n

α (1) α (2) · · · α (n)

)
,

then

α−1 =

(
α (1) α (2) · · · α (n)

1 2 · · · n

)
.

As with the symmetry transformations of the equilaterial triangle in R2 and the permutations
of {1, 2, 3}, the specification of the transformations is exactly the same. In fact, every symmetry
transformation is just a permutation of the labels assigned to the vertices. Try to recall a term
from Linear Algebra used for this type of correspondence.

What is |(Dn, ◦)|? We know that there are n rotations possible. There are also n reflections
possible. Hence, there are n+ n = 2n elements in Dn, and so |(Dn, ◦)| = 2n, which agrees with
the number we got for the equilateral triangle, 2× 3 = 6. And as with the equilateral triangle,
since in general the symmetry transformations do not commute, we have that the dihedral
groups are non-Abelian.

Example 4.3.1 Let us reexamine the equilateral triangle example, the D3 dihedral group.
Recall that we have six symmetry transformations, three rotations and three reflections, as
shown below.

Let the 120-degree counter-clockwise rotation be

γ1 =

(
1 2 3
3 1 2

)
,
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recalling that we defined γk to be rotation by 2πk
n . Recall that the composition of two

rotations, each of angles θ1 and θ2, was equivalent to the rotation by θ1 + θ2, regardless of
the order (i.e., the rotations were commutative). Hence, we can write

γ2 = γ21 , γ0 = γ31 = I.

Since γ31 = I, we have that γ1 is of order three, i.e., o (γ1) = 3. The same goes for γ2.
This can be easily explained geometrically: since the triangle has three sides, rotating it
three times by 120 degrees each will necessarily return the triangle to its original state, no
matter what the original state is. And since returning to the original state corresponds to
the identity transformation I, the order of each rotation must be 3.

Now, the three reflections are:

f1 =

(
1 2 3
1 3 2

)
f2 =

(
1 2 3
3 2 1

)
f3 =

(
1 2 3
2 1 3

)
What should the order of a reflection be? It should be clear that applying the same reflection
twice will return the triangle to its original state, so that o (f1) = o (f2) = o (f3) = 2. Now,
observe that

γ1 ◦ f1 =

(
1 2 3
3 1 2

)(
1 2 3
1 3 2

)
=

(
1 2 3
3 2 1

)
= f2

γ2 ◦ f1 = γ21 ◦ f1 =

(
1 2 3
2 3 1

)(
1 2 3
1 3 2

)
=

(
1 2 3
2 1 3

)
= f3,

so that all the reflections can be written as the product of a rotation and a reflection about
one axis. So let’s let γ1 ≡ γ and f1 ≡ f . Then,

D3 =
{
γ, γ2, γ3 = I, f, γf, γ2f

}
is our group. b

Example 4.3.2 Let’s now look at the symmetry transformations of the square, which are
part of the dihedral group D4. We know that there must be 2× 4 = 8 transformations, and
that four of these will be rotations and the remaining four will be reflections. Notice this
time, however, that the reflections won’t just be about the axes through vertices, as shown
below.
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Let γ =

(
1 2 3 4
4 1 2 3

)
be the counter-clockwise rotation by 90 degrees and let f =(

1 2 3 4
2 1 4 3

)
be the reflection about the horizontal axis shown in the top-right-hand panel

in the above figure. We then have

γ2 = γ2, γ3 = γ3, γ4 = γ4 = γ0 = I,

so that, again, all the rotations can be described as the powers of just one rotation, and
o (γ) = 4 since rotating the square by 90 degrees four times sequentially will return it to its
original position. And just like for the equilateral triangle, we can write all the reflections
as a composition of the reflection f and the rotation γ (verify these explicitly):

f = flip around horizontal axis

γf = flip around diagonal 2− 4

γ2f = flip around vertical axis

γ3f = flip around diagonal 1− 3

Again, all of the reflections must be of order two (verify this explicitly). So we have

D4 =
{
γ, γ2, γ3, γ4 = I, f, γf, γ2f, γ3f

}
,

which indeed has eight elements. b
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We now summarise generalise the results of dihedral groups from these two examples in the
following theorem.

Theorem 4.3.1

Let (Dn, ◦) , n ≥ 3 be a group with the set Dn and the composition operation ◦
on Dn. Dn is the set of symmetry transformations of the regular n-gon centred
at the origin of the xy plane. Then:

1. Dn =
{
γk, γkf | 0 ≤ k ≤ n− 1

}
, where γ is the rotation by 2π

n and f is the
reflection about the axis coinciding with the ray π

n .

2. |Dn| = 2n.

3. If n is odd, then the n rotations are of order n and the n reflections are of
order 2.

4. If n is even, then the rotation by π is given by γn/2 and is of order 2. The
remaining n − 1 rotations, which are of the form γa, a 6= n

2 and a 6= 0, are
of order o (γa) = n

gcd(a,n) . The n reflections are of order 2.

5. γf = fγ−1 ⇒ f−1γf = γ−1.

Using 1., 3., 4. and 5., we can write Dn as a generator relation:

Dn =
{
γn = 1, f2 = 1, γf = fγ−1

}
(4.3)

This allows us to easily see why the order of every reflection is two. For instance,

(γf)2 = γfγf

= fγ−1γf (4.4)

= f1f

= f (1f) (associativity)

= ff = f2

= 1 (4.4)

Example 4.3.3 For each dihedral group listed below, state the number of elements in each
group of each possible order (i.e., how many elements of order one, how many elements of
order two, etc.).

1. D10

2. D11

3. D14

Solution: We solve each in turn.
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1. This is the dihedral group of order 20, and so has 10 rotations and 10 reflections. By
the previous theorem, all of the 10 reflections are of order two. In addition since 10 is
even, we have that the rotation by π will be of order two (the rotation by π is given
by γ5, where γ is the rotation by 2π

10 = π
5 ). So there are 11 elements of order two.

In addition there are four elements of order five (γ2, γ4, γ6, γ8), and four elements of
order ten (γ, γ3, γ7, γ9). So,

n 1 2 5 10

# of elements of order n 1 11 4 4

2.

3. This is the dihedral group of order 28, and so has 14 rotations and 14 reflections.
Again, all of the 14 reflections are of order two, and the rotation by π, which is γ7

where γ is rotation by 2π
14 = π

7 , is also of order two. So there are 15 elements of order
two. There are six elements of order seven (γ2, γ4, γ6, γ8, γ10, γ12) and six elements of
order fourteen (γ, γ3, γ5, γ9, γ11, γ13). So,

n 1 2 7 14

# of elements of order n 1 15 6 6

4.3.3 The General Linear Group

Definition 4.3.1 Field

A field is a set F together with two binary operations + and · on F such that
(F,+) is an Abelian group (call its identity 0) and (F− {0} , ·) is also an Abelian
group.

For example, Q, R, and Zn are fields. If p is a prime number, then we write Zp, which is a finite
field.

Now, for each n ∈ Z+, let GLn (F) be the set of all n × n matrices whose entries come from F
and whose determinant is non-zero, i.e.,

GLn (F) = {A |A is an n× n matrix with entries from F and det (A) 6= 0} , (4.4)

where the determinant of any matrix A with entries from F can be computed by the same
formulas used when F = R. For arbitrary n×n matrices A and B, let AB denote their product
as computed by the same rules as when F = R. We note the following facts about this product.

• This product is associative.
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• Since det (AB) = det (A) det (B), it follows that if det (A) 6= 0 and det (B) 6= 0, i.e., if
A,B ∈ GLn (F), then det (AB) 6= 0, so that AB ∈ GLn (F), i.e., GLn (F) is closed under
matrix multiplication.

• det (A) 6= 0 if and only if A has a matrix inverse (this inverse can be computed using the
same formulas as when F = R), so every A ∈ GLn (F) has an inverse A−1 ∈ GLn (F) such
that AA−1 = A−1A = 1, where 1 is the n× n identity matrix.

• Since det (1) 6= 0 (in fact, det (1) = 1 for any n), we have that there exists an identity
element in GLn (F).

Since all four group axioms have been satisfied, we have that GLn (F) is a group under matrix
multiplication. It is called the general linear group. For example, if n = 2, then we have

1 =

[
1 0
0 1

]
,

[
a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
.

Also, since matrix multiplication is not in general commutative, the general linear group is an
example of a non-Abelian group.

Theorem 4.3.2

We have the following important results:

1. If F is a field and |F| <∞, then |F| = pm for some prime p and integer m.

2. If |F| = q <∞, then |GLn (F)| = (qn − 1) (qn − q)
(
qn − q2

)
· · ·
(
qn − qn−1

)
.

4.3.4 The Special Linear Group

The special linear group is a special case of the general linear group in which the matrices
have determinant one:

SLn (F) = {A |A is an n× n matrix with entries from F and det (A) = 1} (4.5)

This group is also non-Abelian.

4.3.5 The Klein 4-Group

Example 4.3.4 [

Symmetry Transformations of a Non-Square Rectangle] Let us examine the symme-
try transformations of a non-square rectangle.
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From this diagram, we can see that there are four possible symmetry transformations: the
identity, rotation by 180 degrees, and two reflections about the axes h and v. Observe that
each of these transformations is of order two, i.e., each transformation is its own inverse,
and that these transformations constitute the dihedral group D2 of order four:

D2 =
{
γ2 = f2 = 1, γf = fγ−1

}
,

if we let γ be the rotation by π and f the rotation about the h axis. So the four elements are
1, γ, f, γf . We also get these same elements if we consider the symmetry transformations of
the rhombus that is not a square.

The multiplication table for D2 is:

D2 1 γ f γf

1 1 γ f γf

γ γ 1 γf f

f f γf 1 γ

γf γf f γ 1

Now, observe that if we let

1 =

[
1 0
0 1

]
, γ =

[
−1 0
0 1

]
, f =

[
1 0
0 −1

]
, γf =

[
−1 0
0 −1

]
,

then these matrices will exbihit the same multiplication table as the one above. In fact, because
each of the matries is of determinant one, we have that the elements of D2 are elements of
SL2 (R). This group is called the Klein four-group. It is non-Abelian.
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Remark: Another construction of the Klein four-group is Z∗8 = {[1], [3], [5], [7]} under multiplication modulo
8. You can verify that γ = [3], f = [5], and γf = [3]× [5] = [15] = [7].

4.3.6 The Quaternion Group

The quaternion group is a non-Abelian group of order eight under multiplication in C. It is
often denoted Q8,

Q8 =
{
−1, i, j, k | (−1)2 = 1, i2 = j2 = k2 = ijk = −1

}
= {1,−1, i,−i, j,−j, k,−k} . (4.6)

Observe, however, that each element is of order four, and that any two of the elements in the
group will generate the entire group, so we can write

Q8 =
{
x, y |x4 = y4 = 1, x2 = y2, y−1xy = x−1

}
. (4.7)

Using either of these forms, we can write down the multiplication table for Q8:

Q8 1 −1 i −i j −j k −k
1 1 −1 i −i j −j k −k
−1 −1 1 −i i −j j −k k

i i −i −1 1 k −k −j j

−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i
−j −j j k −k 1 −1 −i i

k k −k j −j −i i −1 1

−k −k k −j j i −i 1 −1

Now, observe that if we let

1 =

[
1 0
0 1

]
, i =

[
i 0
0 −i

]
, j =

[
0 1
−1 0

]
, k =

[
0 i
i 0

]
,

then these matrices will have the same multiplication table as the one above. In fact, since each
of these matrices has determinant one, we have that Q8 is a subset of SL2 (C). And since ij = k
but ji = −k, this confirms that Q8 is non-Abelian.

Remark: Notice that the multiplication of pairs of elements from the subset {±i,±j,±k},

ij = k, ji = −k,
jk = i, kj = −i,
ki = j, ik = −j,

works like the cross product of the unit vectors in three-dimensional Cartesian coordinates of Euclidean space
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4.4 Subgroups and Cyclic Groups

One basic method for unravelling the structure of any mathematical object that is defined by a
set of axioms is to study subsets of that objects that also satisfy the same axioms.

Definition 4.4.1 Subgroup

A non-empty subset H of a group G is a subgroup of G is H is a group (i.e.,
satisfies all the group axioms) under the same operation as G. We use the
notation H ⊆ G to mean that H is a subset of G, and H ≤ G to means that H
is a subgroup of G .

Remark: In general, it is possible that the subset H has the structure of a group with respect to some
operation other than the operation on G that makes G a group. This is why we emphasise that H must be a
group under the same operation as G.

Remark: If H ⊆ G and H 6= G, then, as we know, we can write H ⊂ G to emphasise that H is a proper
subset of G. In the same way, for groups, if H ≤ G and H 6= G, then we can write H < G and say that H is
a proper subgroup of G.

Definition 4.4.2 Trivial and Non-Trivial Subgroups

For any group G under operation ∗ with identity element e, ({e} , ∗) is a subgroup
of G and is called the trivial subgroup of G. G is itself a subgroup of G, called
the improper subgroup. Any group of G other than these two is called a
non-trivial proper subgroup of G.

We now state the subgroup test, which is almost exacly like the subspace test from Linear
Algebra (in fact, the concept of the subgroup itself may have reminded you of subspaces from
Linear Algebra). Like the name suggests, we use to test whether a subset of a group is indeed
a subgroup.

Theorem 4.4.1 The Subgroup Test

Let G be a group and H ⊂ G a subset. Then H is a subgroup of G, i.e., H ≤ G
if and only if

1. H 6= ∅, i.e., H is non-empty.

2. For all a, b ∈ H, ab ∈ H.

3. For all a, b ∈ H, a−1 ∈ H.

Proof: We prove each direction in turn.

• (⇒): If H is a subgroup of G, then certainly all of 1., 2., and 3. hold because H contains
the identity of G and the inverse of each its elements, and because H is closed under
multiplication by definition of a group.
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• (⇐): Now we show that if 1., 2., and 3. are satisfied, then H ≤ G, i.e., H is a subgroup
of G. By 2., we have that H is closed under multiplication. Also, since H ⊂ G, and G
is associative, being a group, then H must also be associative. Now, by 1., since H is
not empty, consider an arbitrary element a ∈ H. By 3., a−1 ∈ H, so by 2., aa−1 = 1 ∈
H, so the H contains the identity element. Finally, by 3., every element of H has an
inverse. Therefore, since H satisfies all of the group axioms, it is a group, by definition, a
subgroup. �

Example 4.4.1 Below are several examples of subgroups.

• The set of even integers 2Z is a subste of the set of integers Z and, as we have seen,
are both groups under addition. So (2Z,+) < (Z,+).

• The set of fourth roots of unity {1,−1, i,−i} is a subset of the set of nonzero complex
numbers C∗ = C − {0}, and since both are groups under multiplication, the fourth
roots of unity are a subgroup of the non-zero complex numbers.

• Consider Z8 = {[0], [1], [2], [3], [4], [5], [6], [7]} and the subset H = {[0], [2], [4], [6]}.
Then H is a subgroup of G under addition modulo 8 with the following addition
table:

Z8 [0] [2] [4] [6]

[0] [0] [2] [4] [6]

[2] [2] [4] [6] [0]

[4] [4] [6] [0] [2]

[6] [6] [0] [2] [4]

• (Z,+) ≤ (Q,+) ≤ (R,+) ≤ (C,+).

• (Q∗,×) ≤ (R∗,×) ≤ (C∗,×).

• {1,−1} ≤ {1,−1, i,−i} under multiplication of complex numbers.

•
{
b, b2, b3 = 1

}
≤ S3 under composition of mappings (recall (4.2)).

•
{
γ, γ2, . . . , γn = 1

}
≤ Dn, i.e., the subset of rotations in the dihedral group of order 2n

is a subgroup under composition of mappings since, as we have seen, the composition
of two rotations is another rotation and the inverse of a rotation is another rotation.

• SL (2,F) is a subgroup of GL (2,F). For if A ∈ SL (2,F), then detA = 1, so
det
(
A−1

)
= 1

detA = 1, and A−1 ∈ SL (2,F). Further, if A,B ∈ SL (2,F), then
detA = detB = 1, so textdet (AB) = detAdetB = 1 and AB ∈ SL (2,F).
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Example 4.4.2 Below are some examples of non subgroups.

• (N,+) � (Z,+) because (N,+) fails criterion 3 of the subgroup test since the additive
inverse of a natural number is negative, and negative numbers are not part of N.

• Q−{0} under multiplication is not a subgroup of R under addition even though both
are groups and Q−{0} is a subset of R because both subsets have to be groups under
the same operation.

• (Z+,+) � (Z,+): although Z+, the positive integers, is closed under +, it does not
contain the identity element 0 ∈ Z. In addition, the additive inverse of any non-zero
integer is negative, which by definition is not in Z+. In fact (Z+,+) is not even a
group.

• D3 is not a subgroup of D4 such the former is not even a subset of the latter.

4.4.1 Cyclic Subgroups and Cyclic Groups

We now examine the important class of groups called cyclic groups, which we first introduced
in a remark at the beginning of this chapter. In it, we saw that all groups of order three are
cyclic. In this section, we will formally define a cyclic group.

Definition 4.4.3

Let G be a group and a ∈ G. Define a subset 〈a〉 as

〈a〉 = {an |n ∈ Z} , (4.8)

called the subset generated by a (it could be finite or infinite).

Theorem 4.4.2

Let G be a group under binary operation ∗ and a ∈ G. Then (〈a〉 , ∗) is a group
under the same binary operation as G.

Proof: We check that (〈a〉 , ∗) satisfies the group axioms.

• For all n,m ∈ Z, anam = an+m = am+n ∈ 〈a〉 since n+m ∈ Z.

• Since G is associative, and 〈a〉 ⊂ G, 〈a〉 must also be associative.

• 1 = a0 ∈ 〈a〉, so the identity element is in 〈a〉.

• For all n ∈ Z (an)−1 = a−n ∈ 〈a〉 since −n ∈ Z. So all elements in 〈a〉 contain their
inverse.
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Since (〈a〉 , ∗) satisfie the group axioms, it is a group. �

Theorem 4.4.3 Cyclic Subgroup

Let G be a group and a ∈ G. Then 〈a〉 is a subgroup of G, called the cyclic
subgroup generated by a (it could be of finite or infinite order). In other
words, every element of a group generates a cyclic subgroup.

Proof: We must check that 〈a〉 under the same operation as G passes the subgroup test.
Clearly, 〈a〉 is not empty. Let x, y ∈ 〈a〉, i.e., x = am and y = an for some m,n ∈ Z. Then,
xy = (am) (an) = am+n ∈ 〈a〉 since m + n ∈ Z. Furthermore, x−1 = (am)−1 = a−m ∈ 〈a〉 since
−m ∈ Z. Since all three criteria have been satisfied, 〈a〉 under the same operation as G passes
the subspace test, and so is a subgroup of G, i.e., 〈a〉 ≤ G. �

Example 4.4.3 Below are some examples of cyclic subgroups.

• In (Z,+), the cyclic subgroup generated by 3 is 〈3〉 = 3Z =
{. . . ,−9,−6,−3, 0, 3, 6, 9, . . . } =

{
. . . , 3−3, 3−2, 3−1, 30, 31, 32, 33, . . .

}
.

• In (C∗,×), the cyclic subgroup generated by i is 〈i〉 = {i,−1,−i, 1} =
{
i, i2, i3, i4

}
.

• In S3, the cyclic subgroup generated by b is 〈b〉 =
{
b0 = b3 = 1, b1, b2

}
.

• For the dihedral group of order n, which is defined, remember, by Dn ={
γ, f | γn = f2 = 1, γf = fγ−1

}
, we have that the rotations 〈γ〉 =

{
1, γ, γ2, . . . , γn−1

}
form a cyclic subgroup generated by γ. Note that |〈γ〉| = o (γ) = n.

• All of the subgroups of (Z6,+) are:

– {[0]}, the trivial subgroup.

– {[0], [1], [2], [3], [4], [5]} = Z6, the improper subgroup.

– 〈2〉 = 〈4〉 = {[0], [2], [4]}, two cyclic subgroups.

– 〈3〉 = {[0], [3]}, a cyclic subgroup.

Note that if H is a subgroup and [5] ∈ H, then [−5] = [1] ∈ H, and that if [2], [3] ∈ H,
then [3] − [2] = [1] ∈ H, and in either case H = Z6, so the subgroups listed are all
there are.

Definition 4.4.4 Cyclic Group

Let G be a group. If there exists an a ∈ G such that G = 〈a〉, then we say that
G is a cyclic group and a is called a generator of G.

51



Chapter 4: Groups 4.4: Subgroups and Cyclic Groups

Remark: Note that we said a is a generator of G, not the generator. Indeed, a cyclic group may have more
than one generator, as we’ll see in the examples below.

Example 4.4.4 Here are some examples of cyclic groups.

• (Z5,+) = {[0], [1], [2], [3], [4]} is cyclic and is generated by all of [1], [2], [3], and [4],
i.e., Z5 = 〈[1]〉 = 〈[2]〉 = 〈[3]〉 = 〈[4]〉. So see why, note that

〈[1]〉 =
{
. . . , [1]−3, [1]−2, [1]−1, [1]0, [1]1, [1]2, [1]3, . . .

}
= {. . . , [−3], [−2], [−1], [0], [1], [2], [3], . . . } .

But, modulo 5, −3 ≡ 2⇒ [−3] = [2], −2 ≡ 3⇒ [−2] = [3], and −1 ≡ 4⇒ [−1] = [4],
so that

〈[1]〉 = {[0], [1], [2], [3], [4]} = Z5.

Similar arguments can be applied for 〈[2]〉, 〈[3]〉, and 〈[4]〉.

• Likewise, Z10 = 〈1〉 = 〈3〉 = 〈7〉 = 〈9〉.

• In fact, for any n > 1, Zn = 〈1〉 = 〈n− 1〉. So Zn is a cyclic group of order n.

• (Z,+) = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } is cyclic and is generated by both 1
and −1, i.e., Z = 〈−1〉 = 〈1〉. But, for example, Z 6= 〈2〉, since 〈2〉 ={
. . . , 2−3, 2−2, 2−1, 20, 21, 22, 23, . . .

}
= {−6,−4,−2, 0, 2, 4, 6, . . . } 6= Z. However, note

that (〈2〉 ,+) is a subgroup of (Z,+).

• U (10) = {[1], [3], [7], [9]} =
{

30, 31, 32, 33
}

= 〈3〉.

• We have 2Z = 〈2〉 and, in general, for any n ≥ 1, nZ = 〈n〉. These are all infinite
cyclic groups.

Example 4.4.5 Here are some examples of non-cyclic groups.

• In S3, 〈b〉 =
〈
b2
〉

=
{

1, b, b2
}

, while 〈µi〉 = {1, µi} for i = 1, 2, 3. Hence, none of the
elements of S3 generates the whole group, and so S3 is not cyclic.

• Z10 6= {[0], [2], [4]}.

Theorem 4.4.4

Let G be a cyclic (sub)group generated by a ∈ G. Then G is Abelian.

Proof: Let x, y ∈ G be arbitrary. Since G is cyclic, we have that there exists two integers m
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and n such that x = am and y = an. So

xy = aman = am+n = an+m = anam = yx,

Since x, y are arbitrary, we have that xy = yx for all x, y ∈ G, i.e., G is Abelian by definition. �

Theorem 4.4.5

Let G be a group and a ∈ G, an element of finite order, i.e., o (a) = n < ∞.
Then 〈a〉 =

{
a0 = 1, a, a2, . . . , an−1

}
.

Proof: Prove this!!! (We already know that if o (a) = n, then the elements a0 = 1, a1, . . . , an−1

are distinct) �

Theorem 4.4.6

Let G be a group and a ∈ G. Then o (a) = |〈a〉|.

Proof: We examine three cases to complete the pf.

Case 1
Suppose o (a) = ∞. Assume for a contradiction that |〈a〉| < ∞, i.e., that 〈a〉 is finite.
Then the set

{
a0, a1, a2, . . . , a|〈a〉|

}
must have duplicate elements, i.e., there must exist

two element ai, aj , i 6= j, 0 ≤ i < j ≤ |〈a〉| such that ai = aj , which implies ai−j = 1,
which implies o (a) ≤ i − j < ∞, a contradiction to the assumption that o (a) = ∞. So
o (a) = |〈a〉|.

Case 2
Suppose o (a) = 1. Then 〈a〉 =

{
ak | k ∈ Z

}
= {1}, the identity element. Thus, o (a) =

1 = |〈a〉|.

Case 3
Let o (a) = n < ∞, n 6= 1 and |〈a〉| = m 6= ∞. We will prove that m ≤ n and m ≥ n,
from which we will establish that m = n, and hence, the result.

• Let ak ∈ 〈a〉. By the division algorithm, there exists integers p and q such that
k = qn+ r, 0 ≤ r < n− 1. Then,

ak = aqn+r = (an)q ar = 1qqr = qr,

which implies that 〈a〉 =
{
ak | k ∈ Z

}
= {ar | 0 ≤ r < n− 1}, which implies that

|〈a〉| = m ≤ o (a) = n, i.e., m ≤ n.

• Consider the elements a0, a1, . . . , am. Since |〈a〉| = m, there exists 0 ≤ i < j ≤ m
such that ai = aj ⇒ ai−j = 1, which implies that o (a) = n ≤ i− j ≤ m− 0 = m, i.e.,
n ≤ m.

So we have shown that n ≤ m and m ≤ n, which means that m = n ⇒ o (a) = |〈a〉|, as
required. �
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Corollary 4.4.1

Theorem 4.4.7

Let G be an arbitrary group and a, b ∈ G and o (a) , o (b) <∞ (so we are dealing
with finite groups).

1. If o (a) =∞, then o
(
ak
)

=∞ for a ∈ Z− {0}.
2. If o (a) = n <∞, then o

(
ak
)

= n
gcd(k,n) .

3. In particular, if k ≥ 1 and k |n, then o
(
ak
)

= n
k .

Proof: We prove each in turn.

1. Assume for a contradiction that o (a) =∞ by o
(
ak
)

= m <∞. By definition of order,

1 =
(
ak
)m

= akm.

Also,

a−km =
(
akm

)−1
= 1−1 = 1.

Now, one of km or −km is positive, since neither k nor m is zero, so some positive power
of a is the identity, which contradicts the assumption that o (a) =∞. So the assumption
o
(
ak
)
<∞ must be false, i.e., o

(
ak
)

=∞.

2. Let
y = ak, (k, n) = d, and write n = db, k = dc,

for suitable b, c ∈ Z with b > 0 (why can we do this?). Since d is the greatest com-
mon divisor of k and n, the integers b and c must be coprime (by which theorem?), i.e.,
gcd (b, c) = 1. We must now show that o (y) = b. First, note that

yb = akb = adcb =
(
adb
)c

= (an)c = 1c = 1,

so, applying Theorem 4.2.5, we see that o (y) divides b. Let m = o (y). Then

akm = ym = 1,

so applying Theorem 4.2.5 again, we get n | km, i.e., db | dcm. Thus, b | cm. Since b and c
have no factors in common (being coprime), b must divide m. Since b and m are positive
integers that divide each other, b = m = o (y). So the pf is complete.

Alternate pf: To prove the result, we will show that o
(
ak
)
| n
gcd(k,n) and n

gcd(k,n) | o
(
ak
)
.

We first show the former. We have(
ak
) n

gcd(k,n)
= (an)

k
gcd(k,n) .
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Now, by Theorem 2.0.13, we have that k
gcd(k,n) is an integer, so that

(an)
k

gcd(k,n) = 1
k

gcd(k,n) = 1.

So, by 1., o
(
ak
)
| n
gcd(k,n) . Let us now show that n

gcd(k,n) | o
(
ak
)
. We have

1 =
(
ak
)o (

ak
)

= ak·o(a
k),

so by 1., n | ko
(
ak
)
. Dividing both sides by gcd (k, n), we get

n

gcd (k, n)
| k

gcd (k, n)
o
(
ak
)
.

Now, by Theorem 2.0.14, we have that

gcd

(
n

gcd (n, k)
,

k

gcd (k, n)

)
= 1,

so that by Theorem 2.0.8 we get

n

gcd (k, n)
| o
(
ak
)
.

Therefore, o
(
ak
)

= n
gcd(k,n) .

3. This is just a special case of 2: since k |n, there exists x ∈ Z such that n = xk. Therefore,
gcd (k, n) = gcd (k, xk) = kgcd (1, x) = k (1) = k.

Alternate pf: Suppose d |n, i.e., d divides n, i.e., there exists an m ∈ Z such that
m = n

d ⇒ n = md. Then,
(
gd
)m

= gdm = gmd = gn = 1, so o
(
gd
)
≤ m = n

d . We must

now prove that there is no k < m such that
(
gd
)k

= 1. Suppose o
(
gd
)

= k < m. Then(
gd
)k

= 1, so gkd = 1. Moreover, since d ≥ 1, we have 1 ≤ kd < md = n, which is a
contradiction since n, by hypothesis, is the smallest positive integer satisfying gn = 1. So
we must have gkd 6= 1. Thus, it cannot be that o

(
gd
)
< m, and hence o

(
gd
)

= m.

4. This can be proved directly or it can be deduced from 2. as follows: Let G = (Zn,+) and
g = 1, so o (g) = n. For any a ∈ Zn, observe that, thinking of a as an integer and letting
d = gcd (a, n), the notations ga and gd denote for this group

1 + 1 + · · ·+ 1 (a times) and 1 + 1 + · · ·+ 1 (d times),

respectively, i.e., the elements a, d ∈ Zn. Because d |n, 1. gives o (d) = n
d . We also get

o (a) = n
d = n

gcd(a,n) , as required. �

Example 4.4.6 Prove that if a ∈ Z and d = gcd (a, n), then o (ga) = o
(
gd
)
. Hint: show

that for any k ∈ Z, we have (ga)k = 1 if and only if
(
gd
)k

= 1.
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Solution: Let t = a
d ⇒ a = td. Let us follow the hint. Suppose k ∈ Z. Certainly,

if
(
gd
)k

= 1, i.e., gdk = 1, then (ga)k =
(
gtd
)k

=
(
gdk
)t

= 1t = 1. Conversely, suppose

(ga)k = 1. Since d = gcd (a, n), we can pick u, v ∈ Z such that au+ nv = d. Then,(
ad
)k

=
(
gau+nv

)k
= (gau)k (gnv)k =

(
gak
)u

(gn)vk = 1u1vk = 1.

This proves the hint. It follows that ga and gd have the same order since the same powers
give the identity.

Theorem 4.4.8

Let G be a group and a, b ∈ G, with o (a) , o (b) <∞. Then, if gcd (o (a) , o (b)) =
1 (i.e., o (a) and o (b) are coprime), and ab = ba (i.e., G is Abelian), then o (ab) =
o (a) o (b).

Proof: We have

(ab)o(a)o(b) = ao(a)o(b)bo(a)o(b) because ab = ba

= (ao (a))o (b) (bo (b))o (a)

= 1o (b) 1o (a) = 1.

So by Theorem 4.4.7 Part 1. o (ab) | o (a) o (b).

Now

1 = 1o (a) = ((ab)o (ab))o (a) = ao(ab)o(a)bo(ab)o(a)

= 1o (ab) bo(ab)o(a)

= bo(ab)o(a).

Therefore, by Theorem 4.4.7 Part 1. again, we have o (b) | o (ab) o (a). But since gcd (o (a) , o (b)) =
1, by Theorem 2.0.8, we have o (b) | o (ab). Similarly, o (a) | o (ab). However, since gcd (o (a) , o (b)) =
1, o (a) o (b) | o (ab). Hence, o (ab) = o (a) o (b). �

Example 4.4.7 Let G be a cyclic group of order six, G =
{

1, a, a2, a3, a4, a5
}

. Find o
(
a4
)
.

Solution: We have
(
a4
)2

= a8 = a6+2 = a6a2 = 1a2 = a2 6= 1, while
(
a4
)3

= a12 =

a6+6 = a6·2 =
(
a6
)2

= 12 = 1. Hence, o
(
a4
)

= 4. However, we can solve this much more
easily by using Theorem 4.4.7 Part 2. Since o (a) = |〈a〉|, we have that o (a) = 6. Hence,
o
(
a4
)

= 6
gcd(4,6) = 6

2 = 3.
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Example 4.4.8 Here are some examples of finding the orders of powers of elements in
cyclic groups.

• In a cyclic group G = 〈a〉 of order 210, the order of a80 is o
(
a80
)

= 210
gcd(210,80) = 210

10 =
21.

• In Z105, the order of 84 is o (84) = 105
gcd(105,84) = 105

21 = 5.

Example 4.4.9 Consider Z12 and let us find all of its generators, which is to say all
elements s ∈ Z12 such that o (s) = 12. By Theorem 4.4.7 Part 2., we have o (s) = 12

gcd(12,s) ,

so o (s) = 12 if and only if gcd (12, s) = 1. Thus, the generators of Z12 are the elements
s ∈ Z12 such that gcd (12, s) = 1, namely, the elements s = 1, 5, 7, 11.

Corollary 4.4.2

Let G = 〈a〉 be a cyclic group with generator a, of order |G| = o (a) = n. Then,

1. If n =∞, then G =
〈
ak
〉

if and only if k = ±1.

2. For any element as ∈ G, as is a generator of G, i.e., G = 〈as〉, if and only if
gcd (n, s) = 1.

Proof: We have, by definition, as is a generator of G⇔ G = 〈as〉 ⇔ o (as) = n. But o (as) =
|〈as〉|, and o (as) = n

gcd(n,s) . So as is a generator of G if and only if n
gcd(n,s) = n ⇒ gcd (n, s) =

1. �

Corollary 4.4.3

Let G be a cyclic group of order n. Then the number of generators of G is the
Euler Phi Function φ (n).

Proof: This is immediate from the previous corollary, since by definition φ (n) is the number
of integers s, with 1 ≤ s < n, such that gcd (n, s) = 1. �

The next example illustrates a property of cyclic groups that makes them especially easy to
understand.

Example 4.4.10 Determine all of the subgroups of
Z15 = {[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]}.
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Solution: To begin with, we have the trivial subgroup 〈[0]〉. We also have the non-
trivial subgroup 〈[1]〉. Now, let H be any non-trivial subgroup other than 〈[1]〉. If H
contains any of the elements 2, 4, 7, 8, 11, 13, 14 (i.e., the numbers coprime with 15),
then H will be the improper subgroup 〈[2]〉, 〈[4]〉, 〈[7]〉, 〈[8]〉, 〈[11]〉, 〈[13]〉, 〈[14]〉, i.e.,
Z15 = 〈[2]〉 = 〈[4]〉 = 〈[7]〉 = 〈[8]〉 = 〈[11]〉 = 〈[13]〉 = 〈[14]〉 (recall the difference between
improper and proper subgroups!). Now, let H be a non-trivial proper subgroup. First,
suppose [3] ∈ H. Then, for any y ∈ H, using the division algorithm, we can write y = q[3]+r
for some r with 0 ≤ r < [3]. Since [3], y ∈ H, we have r = y − q[3] ∈ H. But since H is
proper, [1], [2] ∈ H. So we must have r = 0, and so y is a multiple of [3]. Thus, H = 〈[3]〉 =
{0, 3, 6, 9, 12} = 3Z15. Now, since [6] + [6] + [6] = [9] + [9] = [12] + [12] + [12] + [12] = [3], any
non-trivial proper subgroup containing any of [6], [9], or [12] will also contain [3] and be equal
to 3Z15 = 〈[3]〉 = 〈[6]〉 = 〈[9]〉 = 〈[12]〉. Now, suppose H is a non-trivial proper subgroup and
[5] ∈ H. A similar argument to the previous shows that H = 〈[5]〉 = {0, 5, 10} = 5Z15, and
that any proper subgroup containing [10] will also be equal to 5Z15 = 〈[5]〉 = 〈[10]〉. Since
we have accounted for all possible elements in Z15, we have found all possible subgroups.

You may have noticed that this cyclic group Z15 had the property that all of its subgroups,
proper and improper, were all themselves cyclic. This is no coincidence.

Theorem 4.4.9

Let G = 〈a〉 be a cyclic group. Then, every subgroup H of G is cyclic–either
H = {1} or H =

〈
ak
〉
, where k is the smallest positive integer such that ak ∈ H.

Proof: Let G = 〈a〉 be a cyclic group and H a subgroup of G. If H is the trivial subgroup
{1}, then H = 〈1〉 and is cyclic. Now, assume that H is non-trivial, so there exists an element
b ∈ H with b 6= 1. Since b ∈ G = 〈a〉, we have b = as for some integer s, and since b 6= 1,
we have s 6= 0. Also, since b ∈ H, we have a−s = (as)−1 = b−1 ∈ H. Since one or the other
of s or −s is positive, H contains some positive power of a. Now, let m be the least positive
integer such that am ∈ H. Consider any other element y ∈ H. Then, y = an for some integer
n. Applying the division algorithm to m and n, we can write n = qm + r for some integers q
and r with 0 ≤ r < m. Then, y = an = aqm+r = aqmar = (am)q ar, and ar = y (am)−q. Since
y, am ∈ H, it follows that ar ∈ H. But since 0 ≤ r < m and m is the least positive integer with
am ∈ H, we must have r = 0, and so y = (am)q. Thus, every element of H is a power of am and
H = 〈am〉 is cyclic. Alternate pf: Let H ≤ G. If G = {1}, the theorem is true for this subgroup,
so we assume H 6= {1}. Thus, there exists some x 6= 0 such that ax ∈ H. If x < 0, then since
H is a group, we must have a−x = (ax)−1 ∈ H. Hence, H always contains some positive power
of a. Now, let

P =
{
b | b ∈ Z+ and ab ∈ H

}
.

By the above P is a non-empty set of positive integers. By the Well-Ordering Principle, P has
a minimum element–call it d. Since H is a subgroup and ad ∈ H,

〈
ad
〉
≤ H. Since H is a

subgroup of G, any element of H is of the form ax for some integer x. By the division algorithm,
write

x = qd+ r, 0 ≤ r < d.
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Then, ax = ax−qd = ax
(
ad
)−q

is an element of H since both ax and ad are elements of H. By

the minimality of d, it follows that r = 0, i.e., x = qd and so ax =
(
ad
)q ∈ 〈ad〉. This gives

K ≤
〈
ad
〉
, which completes the pf. �

Example 4.4.11 Consider the group (Z,+). Find all the subgroups H of (Z,+).

Solution: To determine all the subgroups of Z under addition, consider the set

n = min {k ∈ H | k ≥ 1} .

We now consider three cases.

Case 1
n does not exist, i.e., there is no element in H that is positive. Now, for all k ∈ H,
we must have −k ∈ H, since −k is the inverse of k and H is a subgroup. But k is not
positive since n is empty, so we must have k = 0⇒ H = {0}, i.e., the trivial subgroup.

Case 2
n does exist, and H ′ = nZ = {nk | k ∈ Z}. We now show that H ′ = H, i.e., that H ′

is a subgroup (and, in fact, all the non-trivial subgroups). To show this, we show that
H ′ ⊆ H and H ⊆ H ′. First, by definition, n ∈ H. Then, n + n + · · · + n = nk ∈ H
and so we have shown that H ′ ⊆ H. Now, for all i ∈ H, by the division algorithm
there exists integers q and r, 0 ≤ r < n such that i = qn + r ⇒ i − qn = r ∈ H. So,
by the minimality of n, we must have r = 0⇒ i = qn ∈ H. Therefore H ⊆ H ′, and so
H ′ = H. Therefore, all the subgroups of (Z,+) are nZ = 〈n〉 for all n ≥ 0, i.e., all the
subgroups of Z under addition are cyclic.

Alternate Solution: The fact that the subgroups of Z under addition are cyclic should not be
surprising after understanding that (Z,+) is cyclic and using the previous theorem. To see
that Z under addition is cyclic, notice that Z = 〈1〉. So, by the previous theorem, all of the
subgroups of Z are cclic and of the form H = 〈m〉 for some integer m. Since 〈−m〉 = 〈m〉,
and either m ≥ 0 or −m ≥ 0, H = 〈n〉 = nZ for some n ≥ 0.

Example 4.4.12 Since Z12 is cyclic, all the subgroups of Z12 are cyclic, and if H = 〈s〉 is
a subgroup, then |H| = o (s) = 12

gcd(12,s) and is a divisor of 12. Let us consider a divisor of

12, say 4, and find all the subgroups H with order four. We know that o ([3]) = 12
gcd(12,3) =

12
3 = 4, and hence H = 〈[3]〉 = {[0], [3], [6], [9]} is one subgroup of order four. It is in fact

the only subgroup of order four since the only other element of order four in Z12 is [9], and
〈[9]〉 = 〈[3]〉.
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Theorem 4.4.10

Let G = 〈a〉 be a cyclic group of order n. Then,

1. If n =∞, then for any distinct non-negative integers x and y, 〈ax〉 6= 〈ay〉.
Furthermore, for every integer m, 〈am〉 =

〈
a|m|

〉
, where |m| denotes the

absolute value of m, so that the non-trivial subgroups of G correspond
bijectively with the integers 1, 2, 3, ....

2. (If n <∞) The order |H| of any subgroup H of G is a divisor of n = |G|.
3. (If n <∞) For each positive integer d that divides n, there exists a unique

subgroup of order d, the subgroup H =
〈
an/d

〉
(is this all the subgroups

of G?). Furthermore, for every integer m, 〈am〉 =
〈
agcd(n,m)

〉
, so that

the subgroups of G correspond bijectively with (i.e., there is a one-to-one
correspondence between the subgroups of G and) the positive divisors of n.

Proof: We prove each in turn.

1. Pending...

2. Let H be a subgroup of G = 〈a〉. Since all the subgroups of a cyclic group are cyclic, we
have that H = 〈am〉 for some integer m ≥ 0, and so |H| = o (am) = n

gcd(n,m) , which is a
divisor of n.

3. Since 1 ∈ H for any subgroup H of G, the only subgroup of G of order one is the trivial
subgroup {1} = 〈1〉. Let d be a divisor of n, with d > 1. Then, o

(
an/d

)
= n

gcd(n,n/d) = d.

Hence,
〈
an/d

〉
is a subgroup of G of order d. What remains to be shown is that this is the

only subgroup of G of order d. So let G be a subgroup of G of order |H| = d. Let H = 〈as〉,
where s is the smallest positive integer such that as ∈ H. We know that there are integers
u, v such that gcd (n, s) = un+vs. Therefore, agcd(n,s)aun+vs = (an)u (as)v ∈ H. Since 1 ≤
gcd (n, s) ≤ s and s was the least positive integer with as ∈ H, we must have gcd (n, s) = s.
Then, d = |H| = o (as) = n

gcd(n,s) = n
s , so that s = n

d and H = 〈as〉 =
〈
an/d

〉
, as desired.

To prove the final assertion of 3., we note that 〈am〉 is a subgroup of
〈
agcd(n,m)

〉
, and it

follows that they have the same order. Since gcd (n,m) is a divisor of n, we have that
every subgroup of G arises from a divisor of n. �

Example 4.4.13 G = (Z10,+) is a cyclic group generated by [1], i.e., Z10 = 〈[1]〉, and
o (1) = 10. By Part 3 of the above theorem, there are four subgroups of G,

〈
[1]10/1

〉
=

〈[10]〉 = 〈[0]〉,
〈
[1]10/2

〉
=
〈
[1]5
〉

= 〈[5]〉,
〈
[1]10/5

〉
=
〈
[1]2
〉

= 〈[2]〉, and
〈
[1]10/10

〉
= 〈[1]〉. In

summary, these are the subgroups of (Z10,+):

〈[0]〉 = 〈[10]〉 (trivial)

〈[1]〉 = Z10 (improper)

〈[2]〉 = {[2], [4], [6], [8], [10]}
〈[5]〉 = {[5], [10]}
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Observe that Part 2 of the previous theorem is also verified: |Z10| = 10, and |〈[1]〉| = 10,
|〈[2]〉| = 5, |〈[5]〉| = 2 and |〈[10]〉| = 1, which are all divisors of 10.

4.4.2 Centralisers and Normalisers, Stabilisers and Kernels

We now introduce some important families of subgroups of an arbitrary group G that in partic-
ular provide many examples of subgroups.

Definition 4.4.5 Group Center

Let G be any group. Then the center of G, denoted Z (G), consists of the
elements of G that commute with every element of G. In other words,

Z (G) = {x ∈ G |xy = yx for all y ∈ G} . (4.9)

Note that 1y = y = y1 for all y ∈ G, so i ∈ Z (G), and so the center is a
non-empty subset of G.

So the center of a group is all those elements of the group that commute with each other. Note
that the center of the group does not necessarily contain all the elements of G, unless the group
is Abelian.

Theorem 4.4.11

The center Z (G) of a group G is a subgroup of G.

Proof: We use the subgroup test. We have already noted that Z (G) is not empty because it
contains the identity element. Now, let a, b ∈ Z (G). By definition, then, ay = ya and by = yb for
any y ∈ G. It follows that (ab) y = a (by) = a (yb) = (ay) b = (ya) b = y (ab) using associativity,
for any y ∈ G, which means that ab ∈ Z (G). Now, let a ∈ Z (G). By definition, then, ay = ya for

all y ∈ G. It follows that a−1y = a−1
(
y−1
)−1

=
(
y−1a

)−1
=
(
ay−1

)−1
=
(
y−1
)−1

a−1 = ya−1,
which means that a−1 ∈ Z (G). So by the subgroup test, Z (G) ≤ G. �

Example 4.4.14 Let us find the center of the non-Abelian group D4 ={
1, γ, γ2, γ3, f, γf, γ2f, γ3f

}
. We have fγ = γ3f , so f /∈ Z (D4) and γ /∈ Z (D4) and

γ3 /∈ Z (D4). On the other hand, we have fγ2 = (fγ) γ =
(
γ3f

)
γ = γ3 (fγ) = γ3

(
γ3f

)
=(

γ3γ3
)
f = γ6f = γ2f , and it is then easy to see that γ2 commutes with all other elements

of D4, so that γ2 ∈ Z (D4). Finally,

(γf) γ = γ
(
γ3f

)
= f 6= γ2f = γ (γf)(

γ2f
)
γ = γ2

(
γ3f

)
= γf =6= γ3f = γ

(
γ2f

)(
γ3f

)
γ = γ3

(
γ3f

)
= γ2f 6= f = γ

(
γ3f

)
.
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Hence, Z (D4) =
{

1, γ2
}

.

Definition 4.4.6 Centraliser

Let G be a group and a ∈ G. Then, the centraliser of a in G, denoted CG (a),
is

CG (a) = {y ∈ G | ay = ya} , (4.10)

i.e., the set of all elements of G that commute with a.

Remark: Note that for any a ∈ G, we have Z (G) ⊆ CG (a). In other words, the center is contained in the
centraliser of any element. Also, when it is understood what group G is involved, we usually just write C (a)
instead of CG (a).

There is an alternative definition of centraliser. If A ⊆ G is non-empty, then the centraliser of
A in G is CG (A) = {y ∈ G | ay = ya, for all a ∈ A}.

Example 4.4.15 Let us find the centraliser of γ in the group S3. Obviously, since rotations
mutually commute, 1, γ, γ2 ∈ C (γ). We know that γf 6= fγ. We can calculate that γf = ...
(complete this!!). Hence, C (γ) =

{
1, γ, γ2

}
.

It can be shown that both CG (a) and CG (A) are subgroups of G. (show this!!!)

Definition 4.4.7 Normaliser

Let A be a non-empty subset of a group G and let y ∈ G. Define
yAy−1 =

{
yay−1 | y ∈ A

}
. The normaliser of A in G is the set NG (A) ={

y ∈ G | yAy−1 = A
}

.

Notice that if y ∈ CG (A), then yay−1 = a ∈ A for all a ∈ A, which implies that ay = ya, i.e.,
CG (A) ≤ NG (A). We can also show that NG (A) ≤ G. (show this!!!)
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5 Cosets and Lagrange’s Theorem

We have seen in Theorem 4.4.10 that if G is a finite cyclic group and H ≤ G, then the order of
H divides the order of G. We will now prove a more general fact, called Lagrange’s Theorem,
which says that if G is any finite group and H ≤ G, then |H| divides |G|.

5.1 Equivalence Relations on a Group

Recall the definition of congruent integers. We write a ≡ b (mod m) if m | (a− b) ⇒ a − b =
km, k ∈ Z. We also proved that ≡ was an equivalence relation on the integers modulo m. We
will now generalise this notion of congruence to groups and subgroups.

Definition 5.1.1 Congruence Group Elements

Let G be a group and H ≤ G. For any a, b ∈ G, define a ≡ b (mod H), or
a ≡H b, if ab−1 ∈ H.

Remark: Observe that this definition truly is a generalisation of the definition of congruent integers. For if
we let G = (Z,+) and H = mZ = {km | k ∈ Z}, then we get, for a, b ∈ Z, a ≡mZ b ⇔ a − b = km, k ∈ Z ⇔
a− b ∈ H, since “multiplication” in this groups is addition and hence b−1 = −b.

Remark: We can define this relation ≡H slighly differently by saying that a ≡H b if a−1b ∈ H.

We call ≡H the equivalence relation on the group G. We now prove that ≡H is an equiva-
lence relation.

Theorem 5.1.1

Let G be a group and H ≤ G. Then ≡H , as defined above, is an equivalence
relation.

Proof: We prove that the relation ≡H is reflexive, symmetric, and transitive.

1. Reflexive: For all a ∈ G, aa−1 = 1 ∈ H, since H is a (sub)group. So by definition a ≡H a.

2. Symmetric: For all a, b ∈ G, let a ≡H b. Then, by definition ab−1 ∈ H. Also, since H is

a (sub)group, we must have
(
ab−1

)−1 ∈ H. But
(
ab−1

)−1
=
(
b−1
)−1

a−1 = ba−1. So, by
definition, b ≡H a.

3. Transitive: For all a, b, c ∈ G, suppose a ≡H b and b ≡H c. Then, by definition, ab−1 ∈ H
and bc−1 ∈ H. Now,

(
ab−1

) (
bc−1

)
= a

(
bb−1

)
c−1 = a1c−1 = ac−1 ∈ H, since the product
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of two elements in H must also be in H since H is a (sub)group. Hence, by definition,
a ≡H c.

So we have shown that ≡H satisfies all the properties of an equivalence relation, and so ≡H is
an equivalence relation. �

Recall that for the integers modulo m, we also defined something called a congruence class of an
integer, which was the set of all integers that were congruent to that integer. The congruence
class is a specific name for what is generally called an equivalence class. Given a set X and in
equivalence relation on X, an equivalence class of an element n ∈ X is the subset of all elements
in X that are equivalent to n. This makes sense in the context of congruent integers. We now
formally define the equivalence class of an element a in a group G.

Definition 5.1.2 Equivalence Class of a Group Element

Let G be a group and H ≤ G. For any a ∈ G, the equivalence class [a] of a is
the set

[a] = {x ∈ G | a ≡H x} ⊆ G, (5.1)

i.e., [a] is the set of all elements of G that are equivalent to a under ≡H . We thus
also call [a] an equivalence class under ≡H , for there could certainly be other
elements of G that that are equivalent to a subset of other elements in G under
≡H .

5.2 Cosets

Having defined an equivalence relation on a group G with a subgroup H, let us now go further.
For example, when we looked at the integers modulo 2, we found that the equivalence classes of
0 and 1, [0] and [1], collectively contained all of the integers, i.e., Z = [0]∪ [1], with [0]∩ [1] = ∅.
So the equivalence relation “mod 2” gave rise to two equivalence classes, which allowed us to
partition the integers into two disjoint sets. If we look at the integers modulo 3, [0], [1], and [2],
then

[0] = {x ∈ Z |x ≡ 0 (mod 3)} = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . . }
[1] = {x ∈ Z |x ≡ 1 (mod 3)} = {. . . ,−8,−5,−2, 1, 4, 7, 10, . . . }
[2] = {x ∈ Z |x ≡ 2 (mod 3)} = {. . . ,−7,−4,−1, 2, 5, 8, 11, . . . }

So we see that the equivalence relation “mod 3” partitions the integers into three sets, Z =
[0] ∪ [1] ∪ [2], with each of [0], [1], and [2] being mutually disjoint.

In general: defining an equivalence relation on a set allows us to partition the set into disjoint
equivalence classes under the equivalence relation.

In the context of a group G with a subgroup H, this means that we can write the set G as a
disjoint union of the equivalence classes of ≡H ,

G =
⊔
i

Hi,
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where
⊔

means that Hi ∩Hj = ∅, i 6= j, and for all a, b ∈ Hi, if a ≡H b and c ∈ G with c ≡H a,
then c ∈ Hi. (The Hi are the equivalence classes.) If G is finite, then

|G| =
∑
i

|Hi| ,

where |Hi| is the cardinality of the set Hi.

Let us know determine the actual form of these equivalence classes. Let us fix an equivalence
class Hi and let a ∈ Hi. By definition, then

b ∈ Hi ⇔ a ≡H b⇔ ab−1 = h ∈ H ⇔ b = h−1a⇒ b = h̃a, h̃ ∈ H.

Now, let
Ha = {ha |h ∈ H} .

Since by definition all elements of Hi are congruent under ≡H to a, and since, from above,
a ≡H b⇔ b = h̃a for some arbitrary element h̃ ∈ H, we have that Hi = Ha.

Remark: If we instead use the alternate definition of ≡H given in a previous remark, and if we define
aH = {ah |h ∈ H}, then we have that Hi = aH.

Definition 5.2.1 Left and Right Cosets

Let G be a group and H ≤ G. For any a ∈ G, the set

aH = {ah |h ∈ H} (5.2)

is a subset called a left coset of H in G, and the set

Ha = {ha |h ∈ H} (5.3)

is a subset called a right coset of H in G. We call a a representative of Ha
and aH.

Definition 5.2.2 Representative Set

The representative set of right (left) cosets of H in G is a subset R of H (i.e.,
the elements of R are some elements of H) such that for every coset C of G
|C ∩R| = 1.

Remark: The set of representatives of right (left) cosets is not unique, as we’ll see later in examples.

We thus see that every equivalence class under ≡H is a right coset.
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Remark: If we instead use the alternate definition of ≡H , then every equivalence class under ≡H is a left
coset.

Theorem 5.2.1

All equivalence classes under ≡H are of the same size, and therefore, from above,
|G| = n |H| ⇒ |H| | |G|.

Proof: We will see the pf of this as a direct consequence of an upcoming theorem. �

Theorem 5.2.2

Let G be a group and H ≤ G. Given any b ∈ G and c ∈ Hb, Hb = Hc.

Proof: Let c = hb for some h ∈ H. To show that Hb = Hc, we have to show that Hb ⊆ Hc
and Hc ⊆ Hb. Now, for any g ∈ Hb, there exists a h̃ ∈ H such that g = h̃b. Now, let
h′ = h̃h−1 ∈ H. Then, h′c = h̃h−1c = h̃h−1hb = h̃1b = h̃b = g. Thus, g ∈ Hc, so we have
shown that Hb ⊆ Hc. Now, for any g ∈ Hc, there exists an h̃ ∈ H such that g = h̃c. Then,
g = h̃c = h̃hb = h′b, where h′ = h̃h ∈ H, because H is closed under multiplication, being a
(sub)group. Thus, g ∈ Hb, and we have shown that Hc ⊆ Hb. Therefore, Hb = Hc. �

Theorem 5.2.3

Let G be a group and H ≤ G. Then Ha = Hb if and only if ab−1 ∈ H. (or
aH = bH if and only if b−1a ∈ S).

Proof: If Ha = Hb, then a = 1a ∈ Ha = Hb, and so there is an h ∈ H with a = hb; hence,
ab−1 = h ∈ H. Conversely, assume that ab−1 = σ ∈ H; hence, a = σb. To prove that Ha = Hb,
we prove two inclusions. If x ∈ Ha, then x = ha for some h ∈ H, and so x = hσb ∈ Hb; similarly,
if y ∈ Hb, then y = h̃b for some h̃ ∈ H and y = h̃σ−1a ∈ Ha. Therefore, Ha = Hb. �

The following corollary proves that distinct equivalence classes under ≡H are indeed disjoint, as
we have been asserting all along.

Corollary 5.2.1

Let G be a group and H ≤ G. Then any two right (or any two left) cosets of H
in G are either identical or disjoint.

Proof: We show that if there exists an element x ∈ Ha ∩Hb, then Ha = Hb. Such an x has
the form x = ha = ah̃ for some h, h̃ ∈ H. Hence, ab−1 = h̃h ∈ H, and so the theorem above
gives Ha = Hb. �
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We now show and prove, in the next theorem, that the right cosets (and left cosets) of a subgroup
H of G comprise a partition of G; in particular, G is a disjoint union of the right cosets of H in
G.

Theorem 5.2.4

Let G be a group and H ≤ G. Then,

1. We can pick a set R of represenatives in each (right or left) coset of H.
If there are n right cosets of H in G, then there exist representatives
a1, . . . , an ∈ G such that a1H, . . . , anH is the family of all left cosets and
Ha1, . . . ,Han is the family of all right cosets (and |R| = n). In fact,

G =
⊔
a∈R

Ha =
⊔
a∈R

aH.

2. For all a, b ∈ G, there is a bijection between the two cosets Ha and Hb
given by f : Ha→ Hb, with f (g) = ga−1b for some g ∈ Ha.

3. For all a, b ∈ G, there is a bijection between a right coset Ha and a left
coset bH.

Proof: We prove only the second and third statements.

2. We must first check that the bijection f is well-defined, that is, we must check that
f (g) ∈ Hb, i.e., we need to check that g−1ab ∈ Hb. Let g = ha for some h ∈ H (we
write this because we have that g ∈ Ha by definition of the bijection). Then, f (g) b−1 =(
ga−1b

)
b−1 = haa−1bb−1 = h ∈ H, so by definition of ≡H , we have f (g) ≡H b, which

means that f (g) ∈ Hb by definition of equivalence class.

Next, we prove that f is indeed a bijection, i.e., that it is one-to-one and onto.

One-to-One: Let g1, g2 ∈ G and f (g1) = f (g2). By definition of f , this gives g1a
−1b =

g2a
−1b⇒ g1 = g2 by the cancellation law. So f is one-to-one.

Onto: Let g̃ = hb ∈ Hb for some h ∈ H. Let g = ha ∈ Ha. Then, f (g) = ga−1b =
haa−1b = hb = g̃. So we have shown that for every element g̃ in the codomain Hb there
exists an element g in the domain Ha such that f (g) = g̃, and so f is onto.

So f is a bijection.

3. Let Ha be a right coset and bH a left coset. Then define f : Ha → bH such that
f (g) = bga−1. We can easily prove that this is a bijection (do it!). �

Corollary 5.2.2

Let G be a group and H ≤ G. Then the size of each right coset of H in G is the
same.

Proof: This follows immediately from the second statement of the previous theorem since
there exists a bijection between two right cosets. �
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Corollary 5.2.3

Let G be a group and H ≤ G. Then the number of right cosets of H in G is
equal to the number of left cosets of H in G.

Proof: This follows immediately from the third statement of the previous theorem since there
exists a bijection from a right coset to a left coset. �

Theorem 5.2.5

Let G be a group and H ≤ G. Then Ha = aH for all a ∈ G if and only if G is
Abelian.

Proof: This follows immediately from the definition of Abelian and the definitions of the left
and right cosets,

Ha = {ha |h ∈ H} = {ah |h ∈ H} = aH,

for all a ∈ G. �

5.3 Lagrange’s Theorem

The purpose of this section is to present and prove Lagrange’s theorem as simply a result of the
theory of cosets we have just developed.

Definition 5.3.1 Index of a Subgroup

Let G be a group and H ≤ G. The index of H in G, denoted [G : H] is the
number of right cosets of H in G.

Remark: Intuitively, the index of a subgroup H of G is the “relative size” of H in G; equivalently, it is
the number of “copies” (cosets) of H that fill up G. For example, if H has index 2 in G, then “half” of the
elements of G lie in H.

Lemma 5.3.1 Let G be a group and H ≤ G. Then for any a ∈ G, |H| = |aH| = |Ha|.

Proof: To show that the two sets H and aH have the same number of elements, we need to
construct a map from H to aH that is one-to-one and onto. Let f : H → aH be the map defined
by f (h) = ah. Then, f is one-to-one because if f (h1) = f (h2), then ah1 = ah2 ⇒ h1 = h2 by
the cancellation law. As well, f is onto because for any y ∈ aH, we have y = ah for some h ∈ H,
hence y = f (h). We can similarly show that any right coset Ha of H has the same number of
elements as H. �
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Theorem 5.3.1 Lagrange

If G is a finite group and H ≤ G, then |H| divides |G| and [G : H] = |G|
|H| .

Proof: By Theorem 5.2.4 Part 1,

G =
⊔
a∈R

Ha = Ha1 ∪Ha2 ∪ · · · ∪Han,

and so |G| =
∑n

i=1 |Hai|. But each right coset of H in G is the same size, so |G| = |R| |H|
(how does |Ha| = |H|?). But |R| is simply the number of right cosets, i.e., |R| = n, and so
|G| = n |H|, i.e., |H| divides |G|. Furtherfore, since n is the number of right cosets, by definition,

[G : H] = n, hence n = [G : H] = |G|
|H| . �

Remark: If G is an infinite group, the quotient |G||H| does not make sense. Infinite groups may have subgroups
of finite or infinite index.

Corollary 5.3.1

If G is a finite group and a ∈ G, then the order of a divides the order of G. In
particular, a|G| = 1 for all a ∈ G.

Proof: We have that o (a) = |〈a〉|, and so the result follows from Lagrange’s Theorem. The
second statement is then clear since |G| is a multiple of the order of a. �

Example 5.3.1 Let G be a group of order seven. Then, by Lagrange’s theorem, G has
no non-trivial proper subgroups, since no number other than 7 and 1 divides 7 (i.e., 7 is a
prime number). If we let a ∈ G with a 6= 1, then |a| 6= 1. Hence, |a| = 7 = |〈a〉|, which
means that 〈a〉 is the whole group, i.e., G = 〈a〉, so G is cyclic.

Corollary 5.3.2

If p is a prime number and |G| = p, then G is a cyclic group.

Proof: Take a ∈ G with a 6= 1. Then the cyclic subgroup 〈a〉 has more than one element
(since it contains a and 1), and its order |〈a〉| > 1 is a divisor of p by Lagrange’s theorem. Since
p is a prime number, |〈a〉| = p = |G|, and so 〈a〉 = G. �

5.4 Examples

We now go through some examples of cosets and illustrate Lagrange’s theorem.
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Example 5.4.1 In Z, consider the subgroups 3Z ⊆ 6Z. The cosets of 6Z are:

6Z
1 + 6Z = 6Z+ 1

2 + 6Z = 6Z+ 2

3 + 6Z = 6Z+ 3

4 + 6Z = 6Z+ 4

5 + 6Z = 6Z+ 5

The coset of 6Z that is in 3Z is 3 + 6Z.

Example 5.4.2 Recall that permutation group of three distinct objects S3, which was also
the dihedral group D3 of order six,

S3 =
{
a, b | a2 = b3 = 1, ba = ab2

}
=
{

1, b, b2, a, ab, ab2
}
.

Consider the subgroups

H = 〈a〉 = {1, a} ⇒ |H| = 2

C = 〈b〉 =
{

1, b, b2
}
⇒ |C| = 3.

Now, |S3| = 6, and we see that 2 | 6 and 3 | 6, so that Lagrange’s theorem is verified.

Now, let us look at the right cosets of H:

H1 = {1 · 1, a1} = {1, a} = H

Ha = {1a, a · a} = {a, 1} = H

Hb = {1b, ab} = {b, ab}
Hab = {1ab, a · ab} =

{
ab, a2b

}
= {ab, b} = Hb

Hb2 =
{

1b2, ab2
}

=
{
b2, ab2

}
Hab2 =

{
1ab2, a · ab2

}
=
{
ab2, b2

}
= Hb2.

Notice that since we have duplication in the right cosets of H, there are only three cosets
of H,

{
H1, Hb,Hb2

}
, i.e., [S3 : H] = 3. The representative set of this coset can be taken as

R =
{

1, b, b2
}

. Observe that |R| = 3, as it should be by Lagrange’s theorem. However, we
could also take as the cosets of H

{
Ha,Hab,Hb2

}
and the corresponding representative set

R =
{
a, ab, b2

}
.

Now let’s look at the left cosets of H:

1H = {1 · 1, 1a} = H

aH = {a1, a · a} = H

bH = {b1, ba} =
{
b, ab2

}
abH = {ab1, aba} =

{
ab, a · ab2

}
=
{
ab, b2

}
b2H =

{
b21, b2a

}
=
{
b2, bba

}
=
{
b2, bab2

}
=
{
b2, ab2b2

}
=
{
b2, ab

}
ab2H =

{
ab21, ab2a

}
=
{
ab2, aab

}
=
{
ab2, b

}
.
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So we also have three left cosets of H. Observe that for all c ∈ G, cH 6= Hc, i.e., the left
and right cosets are not equal. This is to be expected since, unlike Z, S3 is a non-Abelian
group. We can also find the left and right cosets of C (do it!).

Example 5.4.3 Let us look back at our integers modulo m. Specifically, let G = (Z,+)
and H = 2Z = {2n |n ∈ Z}, the set of even integers. Now, for any a, b ∈ Z, a ≡H b means,
by definition, that ab−1 ∈ H, i.e., that a− b ∈ 2Z. Note carefully what a− b ∈ 2Z means—it
does not mean that a and b are necessarily even. It just means that a and b have the same
parity, i.e., that a and b are either odd or even. With this in mind, let us look at some right
cosets Ha, where a ∈ Z:

H0 = 2Z+ 0 = {. . . ,−6,−4,−2, 0, 2, 4, 6, . . . }
H1 = 2Z+ 1 = {. . . ,−7,−5,−3,−1, 1, 3, 5, 7, . . . }
H2 = 2Z+ 2 = {. . . ,−4,−2, 0, 2, 4, 6, 8, . . . }
H3 = 2Z+ 3 = {. . . ,−5,−3,−1, 1, 3, 5, 7, 9, . . . }

...

First of all, notice that these cosets do constitute equivalence classes, since, for example,
all elements in H0 are congruent to one another under ≡H , or ≡2Z. Secondly, notice that
H0 = H2 = H4 = . . . and H1 = H3 = H5 = . . . . We see that there are only two right
cosets of 2Z in G, and that these constitute, as expected, the even and odd integers. We
could take as these two cosets any of H0, H2, H4, . . . or H1, H3, H5, . . . for the even and
odd integers, respectively. The representative set of these right cosets contains only two
elements, since there are only two right cosets. We could take as these two representatives
either {0, 1}, {4, 9}, or any pair of even and odd integers. This is why the representative set
is not unique. Let us take R = {0, 1}. By Theorem 5.2.4, therefore, we get

G = Z =
⊔

a∈{0,1}

Ha =
⊔

a∈{0,1}

(2Z+ a) = (2Z+ 0) ∪ (2Z+ 1) ,

as expected: the odd and even integers together consitute all the integers. Or, if we let
R = {42, 7}, we get

Z =
⊔

a∈{42,7}

= (2Z+ 42) ∪ (2Z+ 7) .

Finally, since (Z,+) is an Abelian group, we have by Theorem 5.2.5 that the right cosets
are equal to the left cosets. For instance,

0H = 0 + 2Z = {. . . ,−6,−4,−2, 0, 2, 4, 6, . . . } = H0

1H = 1 + 2Z = {. . . ,−7,−5,−3,−1, 1, 3, 5, 7, . . . } = H1.

So we can also write

G = Z =
⊔

a∈{0,1}

aH =
⊔

a∈{0,1}

(a+ 2Z) = (0 + 2Z) ∪ (1 + 2Z) .
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Though this example has not showed us anything we didn’t already know (indeed, we didn’t
need the theory of cosets to determine what we have just shown), the theory of cosets allows
us to make analogous statements about any group and its subgroups.

Example 5.4.4 Still using the group G = (Z,+), let us now take the subgroup H = 3Z =
〈3〉 = {3n |n ∈ Z}. Based on the previous example, we have that the left and right cosets,
which coincide, are

H0 = 0H = 3Z = {. . . ,−6,−3, 0, 3, 6, . . . }
H1 = 1H = 1 + 3Z = {. . . ,−5,−2, 1, 4, 7, . . . }
H2 = 2H = 2 + 3Z = {. . . ,−4,−1, 2, 5, 8, }

The representative set is then R = {0, 1, 2}, and hence

Z =
⊔

a∈{0,1,2}

Ha =
⊔

a∈{0,1,2}

aH

=
⊔

a∈{0,1,2}

(a+ 3Z) =
⊔

a∈{0,1,2}

(3Z+ a)

= (0 + 3Z) ∪ (1 + 3Z) ∪ (2 + 3Z)

= (3Z+ 0) ∪ (3Z+ 1) ∪ (3Z+ 2) ,

is the partitioning of Z under 3Z.

From the two above integer group examples, we see the following result: if G is the the set of
integers under addition, and H the subgroup nZ, then the number of cosets of H in G is n.
More concisely,

If G = (Z,+) and H = nZ, then [Z : nZ] = n . (5.4)

Also observe one other thing in both of the examples above. When we looked at the subgroup
H = 2Z of the integers Z under addition, the cosets were nothing but the integer congruence
class modulo 2, i.e., H0 = 0H = [0] and H1 = 1H = [1]. In particular the set of cosets of 2Z
in Z is {H0, H1} = {[0], [1]} = Z2! The same applies for the subgroup 3Z: the set of cosets is
simply Z3 the integers modulo 3. And as we know, the integers modulo n, Zn, form a group
under addition modulo n. So it appears that the set of cosets of a subgroup H in a group G is
itself a group. We will come back to this important point later.

Example 5.4.5 Let us now consider the group G = (Z15,+) and the subgroup H = 〈[3]〉 =
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{[0], [3], [6], [9], [12]}. Then H partitions Z15 as follows:

[0]H = [0] + 〈[3]〉 = {[0], [3], [6], [9], [12]} = H = H[0]

[1]H = [1] + 〈[3]〉 = {[1], [4], [7], [10], [13]} = H[1]

[2]H = [2] + 〈[3]〉 = {[2], [5], [8], [11], [14]} = H[2]

[3]H = [3] + 〈[3]〉 = {[3], [6], [9], [12], [15] = [0]} = H[3] = [0]H = H[0]

...

So we see that there are only three left and right cosets of H in G, and so the representative
set can be taken as R = {[0], [1], [2]}. Therefore,

Z =
⊔

a∈{[0],[1],[2]}

(a+ 〈[3]〉) = ([0] + 〈[3]〉) ∪ ([1] + 〈[3]〉) ∪ ([2] + 〈[3]〉)

is the partitioning of Z15 under 〈[3]〉.

Example 5.4.6 Let H be a subgroup of a group G, where |G| = 10. Then, by Lagrange’s
theorem, |H| = 1, 2, 5, 10, since these are the divisors of 10. For example, if G = D5 ={

1, γ, γ2, γ3, γ4, f, fγ, fγ2, fγ3, fγ4
}

. Then, |〈1〉| = 1,
∣∣〈γi〉∣∣ = 5, |〈f〉| =

∣∣〈fγi〉∣∣ = 2, for
1 ≤ i ≤ 4, and, of course, |D5| = 10.
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6 Isomorphisms and Quotient Groups

In this section we make precise the notion of when two groups “look the same”, that is, have
exactly the same group-theoretic structure. This is the notion of an isomorphism between two
groups. We first define the notion of a homomorphism.

First, some notation: we will use Cn to denote a general cyclic group of order n, or write
〈g, o (g) = n〉. And we’ll denote a general infinite cyclic group by C∞.

6.1 Homomorphisms

Definition 6.1.1 Group Homomorphism

Let G be a group under ∗ and K a group under ♦. A mapping f : G → K is a
group homomorphism if for any a, b ∈ G f (a ∗ b) = f (a)♦f (b).

Observe the emphasis placed on the operation under which G and K are groups. Specifically,
note that the right-hand side of the above equation is multiplication by ♦, i.e., multiplication
of elements in K, and the left-hand side is multiplication by ∗, i.e., muliplication of elements
in G. From now on, we will simply write f (ab) = f (a) f (b). Intuitively, a mapping f is a
homomorphism if it respects the group structures of its domain and codomain.

Example 6.1.1 Below are some examples of homomorphisms.

1. The mapping f : Z→ Z given by f (x) = 5x is a homomorphism (with group (Z,+))
since f (x+ y) = 5 (x+ y) = 5x+ 5y = f (x) = f (y).

2. The mapping f : R∗ → Z2 given by

f (x) =

{
0 if x > 0
1 if x < 0

is a homomorphism. To check this, note that if x and y are both positive, then xy is
positive and f (xy) = 0 = 0 + 0 = f (x) + f (y). Also, if x and y are both negative,
then xy is positive and f (xy) = 0 = 1 + 1 = f (x) + f (y). Also, if x is positive and y
is negative, then xy is negative and f (xy) = 1 = 0 + 1 = f (x) + f (y) and similarly in
the opposite case in which x is negative and y is positive.

3. Let f : Z→ Z5 be defined by

f (n) = the remainder of n mod 5.
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So, for instance, we have f (7) = [2], f (8) = [3], f (7 + 8) = f (15) = [0], and
f (7) + f (8) = [2] + [3] = [0] in Z5. For any n,m ∈ Z, we can apply the di-
vision algorithm to write n = q[5] + f (n) and n = p[5] + f (m). We then have
n + m = (q + p) [5] + (f (n) + f (m)), and f (n+m) is the sum of f (n) and f (m) in
Z5, so f is a homomorphism.

Definition 6.1.2 Kernel

Let f : G→ K be a homomorphism from G to K and let 1K denote the identity
element in K. Then the kernel of f is the set {x ∈ G | f (x) = 1K}, denoted
Kern (f).

Definition 6.1.3 Image

Let f : G → K be a homomorphism from G to K. The image of G under f ,
denoted Im (f), is the set Im (f) = {f (x) |x ∈ G}.

Definition 6.1.4 Identity Homomorphism

For any group G, the identity mapping f : G → G such that f (x) = x
is always a homomorphism since f (xy) = xy = f (x) f (y). (Obviously, the
identity mapping is not in general the only homomorphism from G to itself.)

Definition 6.1.5 Trivial Homomorphism

For any groups G and K, the mapping f : G → K, given by f (x) = 1K , where
1K denotes the identity element of K, is a homomorphism. It is called the trivial
homomorphism between G and K. Indeed, f (xy) = 1K = 1K1K = f (x) f (y)
for any x, y ∈ G. In this case Im (f) = {1K} and Kern (f) = G.

Definition 6.1.6 Exponential Homomorphism

For any group G and any a ∈ G, the mapping f : Z→ 〈a〉 is called the exponential
mapping and is given by f (n) = an. f is a homomorphism between Z and 〈a〉
since f (n+m) = an+m = anam = f (n) f (m) for any n,m ∈ Z.

Theorem 6.1.1

For any groups G, H, and K, suppose f : G → H and g : H → K are both
homomorphisms. Then the composite mapping g ◦ f (x) = g (f (x)) is a homo-
morphism from G to K.
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Proof: Consider any x, y ∈ G. We have g◦f (xy) = g (f (xy)) = g (f (x) f (y)) = g (f (x)) g (f (y)) =
g ◦ f (x) g ◦ f (y). �

Example 6.1.2 The kernels of the examples shown in Example 6.1.1 are, in order (also
do the images!):

1. Figure it out!

2. The kernel of f : R∗ → Z2 is Kern (f) = {x ∈ R∗ |x is positive}.

3. The kernel of f : Z→ Z5 is Kern (f) = 5Z.

Example 6.1.3 The kernel of f : Z→ 〈a〉 is Kern (f) = {n | o (a) divides n}.

Theorem 6.1.2 Basic Group Homomorphism Properties

Let f : G→ K be a homomorphism from G to K. Then,

1. f (1G) = 1K , where 1G and 1K are the identity elements in G and K,
respectively.

2. f
(
a−1
)

= (f (a))−1 for any a ∈ G.

3. f (an) = f (a)n for any n ∈ Z and a ∈ G.

4. If o (a) is finite, then |f (a)| divides o (a).

5. If H is a subgroup of G, then f (H) = {f (x) |x ∈ H} is a subgroup of K.

6. If J is a subgroup of K, then f−1 (J) = {x ∈ G | f (x) ∈ J} is a subgroup
of G.

Proof: We prove each in turn.

1. Since f (1G) f (1G) = f (1G1G) = f (1G) = 1Kf (1G), we have f (1G) = 1K by the cancel-
lation law.

2. Since f (a) f
(
a−1
)

= f
(
aa−1

)
= f (1G) = 1K = f (a) (f (a))−1, we have f

(
a−1
)

=

(f (a))−1 by the cancellation law.

3. We prove this by induction on n. Let A be the set of all n > 0 (i.e., natural numbers) for
which f (an) = f (a)n.

(a) Clearly, for n = 1, f
(
a1
)

= f (a)1, so that 1 is in A.

(b) Assume n is inA, i.e., assume f (an) = f (a)n. Then f
(
an+1

)
= f (ana) = f (an) f (a) =

f (a)n f (a) = f (a)n+1, so n+ 1 is in A.
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So by induction, the result holds for n > 0. For n = 0, the result follows from 1., and for
n < 0, the result follows from induction on −n.

4. Let o (a) = n <∞. Then, by 3., we have f (a)n = f (an) = f (1G) = 1K . So f (a)n = 1K ,
which implies that |f (a)| divides n by Theorem 4.2.5.

5. We use the subgroup test. Let u, v ∈ f (H) = {u ∈ K |u = f (x) for some x ∈ H}, and
let x, y ∈ H be such that u = f (x) and v = f (y). Then, xy−1 ∈ H since H is a subgroup
and uv−1 = f (x) f (y)−1 = f

(
xy−1

)
∈ f (H). Hence, by the subgroup test, f (H) is a

subgroup of G.

6. We again use the subgroup test. Let x, y ∈ f−1 (J). We have f
(
xy−1

)
= f (x) f (y)−1 ∈ J .

Hence, xy−1 ∈ f−1 (J) and f−1 (J) is a subgroup of G. �

Theorem 6.1.3

Let f : G→ K be a homomorphism from G to K. Then,

1. Kern (f) is a subgroup of G.

2. Im (f) is a subgroup of K.

Proof: We prove each in turn.

1. Since 1G ∈ Kern (f), the kernel of f is not empty. Let x, y ∈ Kern (f), that is f (x) =
f (y) = 1K . Then,

f
(
xy−1

)
= f (x) f

(
y−1
)

= f (x) f (y)−1 = 1H1−1H = 1H ,

i.e., xy−1 ∈ Kern (f). So by the subgroup test, Kern (f) ≤ G.

2. Since f (1G) = 1K , the identity of K lies in the image if f , so Im (f) is non-empty. If x
and y are in Im (f), say x = f (a) and y = f (b), then y−1 = f (b)−1 = f

(
b−1
)
, so that

xy−1 = f (a) f
(
b−1
)

= f
(
ab−1

)
since f is a homorphism. Hence also xy−1 is an image of

f , so Im (f) is a subgroup of K by the subgroup test. �

Theorem 6.1.4

Let f : G → K be a homomorphism from G to K. Then f is one-to-one if and
only if the kernel of f is trivial, i.e., Kern (f) = {1G}.

Proof: (⇒): Suppose f is one-to-one and suppose x ∈ Kern (f). Then, f (x) = 1K =
f (1G)⇒ x = 1G since f is one-to-one, and so Kern (f) = {1G}. (⇐): Suppose Kern (f) = {1G}
and suppose for some x, y ∈ G that we have f (x) = f (y). Then, f

(
xy−1

)
= f (x) f

(
y−1
)

=

f (x) f (y)−1 = f (y) f (y)−1 = 1K . It follows that xy−1 ∈ Kern (f) = {1G}, i.e., we must have
xy−1 = 1G ⇒ x = y, so f is one-to-one. �
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Theorem 6.1.5

Let f : G → K be a mapping from the group G to the group K. If G can be
presented as a generator relation, to show that f is a homomorphism it is enough
to show that f is a mapping satisfying the generator relation of G.

We use the above theorem in the next example.

Example 6.1.4 Find all the homomorphisms from the group S3 to Z6, and state their
kernels and images.

Solution: Recall that we may write S3 as a generator relation: S3 =
〈
a, b | a2 = b3 = 1, ba = ab2

〉
.

Specifically, S3 =
{

1, b, b2, a, ab, ab2
}

. Now, since f must map the identity of S3 to the identity
of Z6, we must have f (1) = [0]6. Now, observe that all elements of S3 are of the form aibj for
0 ≤ i ≤ 1 and 0 ≤ j ≤ 2. Then, f

(
aibj

)
= f

(
ai
)
f
(
bj
)

= (f (a))i (f (b))j .

Now,

[0]6 = f (1) = f
(
a2
)

= (f (a))2 ⇒ o (f (a)) | 2⇒ o (f (a)) = 1 or 2

[0]6 = f (1) = f
(
b3
)

= (f (b))3 ⇒ o (f (b)) | 3⇒ o (f (b)) = 1, 2 or 3.

f must also satsify the relation ba = ab2, so that

f (ba) = f (b) f (a) = f
(
ab2
)

= f (a) (f (b))2 ,

but since Z6 is Abelian, we may write

f (a) f (b) = f (a) (f (b))2 ⇒ f (b) = (f (b))2 ⇒ f (b) = [0]6.

So we have fixed f (b). Therefore, we have two cases:

Case 1 o (f (a)) = 2
Since [3]6 is the only element of Z6 of order 2, we must have f (a) = [3]6. Therefore, the
homomorphism is

f =

(
1 b b2 a ab ab2

[0]6 [0]6 [0]6 [3]6 [3]6 [3]6

)
Hence,

Kern (f) =
{

1, b, b2
}

= 〈b〉
Im (f) = {[0]6, [3]6} = 〈[3]6〉 ≤ Z6

Case 2 o (f (a)) = 1
The only element of order 1 is the identity (always!), i.e., f (a) = [0]6. So the homomor-
phism is the trivial homomorphism,

f =

(
1 b b2 a ab ab2

[0]6 [0]6 [0]6 [0]6 [0]6 [0]6

)
.
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Therefore,

Kern (f) = S3

Im (f) = {[0]6} = 〈[0]6〉 ≤ Z6

are the kernel and image.

So there are two homomorphisms between S3 and Z6. (is there always a trivial homomorphism
between any two groups?)

6.2 Isomorphisms

Definition 6.2.1 Isomorphism

A bijective homomorphism f : G → K from G to K (i.e., a homomorphism
that is one-to-one and onto) is called an isomorphism. The groups G and K
are called isomorphic, and we write G ∼= K, if there exists an isomorphism
f : G→ K.

We also have some additional terminology for two groups G and K:

• An injective (one-to-one) homomorphism f : G→ K is called a monomorphism from G
to K.

• A surjective (onto) homomorphism f : G→ K is called an epimorphism from G to K.

• An isomorphism from G to itself is called an automorphism.

To show that two groups G and K are isomorphic, we need to four things:

1. Define a mapping f : G→ K, and show that it is well defined.

2. Show that f is a homomorphism.

3. Show that f is one-to-one.

4. Show that f is onto.

Example 6.2.1 Let us show that Z and 3Z are isomorphic groups (under addition). We
carry out the four steps outlined above:

1. Define f : Z→ 3Z by f (x) = 3x. Show that this is well defined!

2. We have f (x+ y) = 3 (x+ y) = 3x+ 3y = f (x) + f (y), so f is a homomorphism.

3. f (x) = 0 if and only if 3x = 0, hence if and only if x = 0, which, rememeber, is the
identity element. So Kern (f) = {0}, and so by the theorem above f is one-to-one.
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4. Given some u ∈ 3Z, u = 3x for some x ∈ Z, i.e., u = f (x), so f is onto.

So we have shown all four steps, and so Z and 3Z are indeed isomorphic.

Example 6.2.2 R, the real numbers under addition, is isomorphic to R+, the positive real
numbers under multiplication. To show this, we again carry out our four steps.

1. Let f : R→ R+ be the exponential function f (x) = ex. Show that this is well defined!

2. f (x+ y) = ex+y = exey = f (x) f (y), so f is a homomorphism.

3. The identity element in R+ is 1. Hence, if x ∈ Kern (f), then f (x) = 1, which is to say
ex = 1, which implies that x = 0. So Kern (f) = {0}, where 0 is the identity element
of R under addition, so that f is one-to-one.

4. For u ∈ R+, let x = ln (u), the natural logarithm of u. Then f (x) = ex = eln(u) = u,
and so f is onto.

Example 6.2.3 From the two examples above, we can show that the inverse mappings are
both isomorphisms. First, the mapping f−1 : 3Z→ Z, with f−1 (u) = u

3 , is an isomorphism
from 3Z to Z. As well, the mapping f−1 : R+ → R, with f−1 (u) = ln (u), is an isomorphism
from R+ and R.

Theorem 6.2.1

Let f : G→ H and g : H → K be isomorphisms. Then

1. The composition f ◦ g : G→ K is an isomorphism.

2. The identity mapping f : G→ G is an isomorphism.

3. The inverse f−1 : H → G is an isomorphism.

Proof: We prove each in turn.

1. f ◦g is a homomorphism by a previous theorem. Additionally, we know that a composition
of one-to-one maps is one-to-one, and a composition of onto maps is onto (see Chapter 1).

2. Do this!!

3. Do this!! �
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Remark: Note carefully what we have just shown. Let us restate the theorem using the notation G ∼= H
and H ∼= K since G and H and H and K are isomorphic. Then, the statements of the theorem are

1. If G ∼= H and H ∼= K, then G ∼= K.

2. G ∼= G.

3. If G ∼= H, then H ∼= G.

Indeed, the three statements of this theorem are nothing other than the statements of transitivity, reflexivity,
and symmetry, respectively, for the binary relation “∼=”. So “∼=” defines an equivalence relation on groups.

Lemma 6.2.1 Let f be an isomorphism from a group G to a group K and let a ∈ G. Then
o (a) = o (f (a)).

Proof: Suppose a ∈ G and let o (a) = n and let m be the order of f (a) in K. We know
from Theorem 6.1.2 Part 4 that m divides n. But since f (am) = f (a)m = 1K , and since f is
one-to-one, we must have am = 1G, and so n divides m. m divides n and n divides m can only
be simulatneously possible if n = m. This proves the result. �

Theorem 6.2.2

Let groups G and K be isomorphic, i.e., G ∼= K. Then,

1. |G| = |K|.
2. G is Abelian if and only if K is Abelian.

3. G is cyclic if and only if K is cyclic.

4. G has k elements of order n if and only if K has k elements of order n.

Proof: Let f : G→ K be an isomorphism.

1. Since f is one-to-one and onto by definition, we must have |G| = |K|.

2. Suppose G is Abelian and let u, v ∈ K. Since f is onto, there are x, y ∈ G with f (x) = u
and f (y) = v. Then,

uv = f (x) f (y) = f (xy) = f (yx) = f (y) f (x) = vu,

since G is Abelian. So uv = vu and K is Abelian. If K is Abelian, then f (xy) =
f (x) f (y) = f (y) f (x) = f (xy) = f (yx), and since f is one-to-one, we have xy = yx,
i.e., G is Abelian.

3. If G = 〈a〉 is cyclic with generator a, then by the lemma above |f (a)| = o (a) = |G| = |K|,
so that K = 〈f (a)〉 is cyclic. Conversely, if K = 〈b〉 is cyclic with generator b, then since
f is onto there is an a ∈ G with f (a) = b. But then o (a) = |f (a)| = o (b) = |K| = |G|,
and so G = 〈a〉 is cyclic.

4. Suppose a1, a2, . . . , ak are k distinct element of order n in G. Then since f is one-to-one,
f (a1) , f (a2) , . . . , f (ak) are all distinct, and by the lemma above, are all of order n. If
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a1, a2, . . . , ak are all the elements of G of order n, then f (a1) , f (a2) , . . . , f (ak) will be
all the elements of K of order n. For consider any other element u of K. Since f is onto,
u = f (x) for some x ∈ G, and u is distinct from all the f (ai), x is distinct from all the ai.
Since the ai were all the elements of G of order n, we have o (u) = |f (x)| = o (x) 6= n. �

Lemma 6.2.2 Let G and H be cyclic groups of the same finite order n, and let a be any
generator of G and b any generator of H. Then there is an isomorphism f : G → H with
f (a) = b. (Note that the last sentence says “an isomorphism”—there could be others!)

Proof: We have G = 〈a〉, where |G| = n. We know that we can then write

G =
{

1G, a, a
2, . . . , an−1

}
,

where these elements are all distinct. Define a mapping f : G→ H by f
(
ai
)

= bi for 0 ≤ i < n.
We then show that f is an isomorphism. As usual, we go through the four steps.

1. We have just defined the mapping. Is it well defined?

2. Consider two elements ai and aj in G, 0 ≤ i, j < n. Then,

f
(
aiaj

)
= f

(
ai+j

)
= bi+j = bibj = f

(
ai
)
f
(
aj
)
,

so that f is a homomorphism.

3. Denote the identity element of H as 1H , and let ai be an element in G. Then f
(
ai
)

= bi =
1H ⇒ i = 0. So we have ai = a0 = 1G, so that Kern (f) = {1G}, and so f is one-to-one.

4. Finally, we show that f is onto. However, notice that since |G| = |H| = n, and f is
one-to-one, f must necessarily be onto.

So we have shown that an isomorphism f exists, and so the pf is exists. �

Theorem 6.2.3

Let G = 〈a〉 be a cyclic group. Then,

1. If |G| =∞, then G ∼= Z.

2. If |G| = n <∞, then G ∼= Zn.

Remark: Take note of what this theorem is saying: all cyclic groups of infinite order are isomorphic to the
integers under addition, while all finite cyclic groups are isomorphic to the integers modulo n under addition
modulo n. So there is really only one finite cyclic group, and only one infinite cyclic group!

Proof: We prove each in turn.

1. If G = 〈a〉, where o (a) = ∞, let f : Z → G be the exponential homomorphism defined
by f (k) = ak. Since o (a) = ∞, ak = 1 if and only if k = 0 (we have seen this before!).
Hence, Kern (f) = {0}, and so f is one-to-one. Since G is cyclic, every u ∈ G is of the
form u = ak for some k ∈ Z. Hence u = f (k) and f is onto. So f is an isomorphism from
Z to G, but also f−1 is an isomorphism from G to Z.
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2. This is immediate from the previous lemma, but we also prove this directly. Let G = 〈a〉.
Define a mapping f : G → Zn by f

(
ak
)

= [k]n. We then prove that f is a bijective
homomorphism:

(a) For all k1, k2 ∈ Z, f
(
ak1gk2

)
= f

(
ak1+k2

)
= [k1+k2]n = [k1]n+[k2]n = f

(
ak1
)
f
(
ak2
)
.

So f is a homomorphism.

(b) Let k1, k2 ∈ Z such that f
(
ak1
)

= f
(
ak2
)
. Then, [k1]n = [k2]n, which implies that

k1 ≡ k2 (mod n) ⇔ n | k1 − k2, which implies that there exists an m ∈ Z such that
k1 − k2 = mn⇒ k1 = k2 +mn. But ak1 = ak2+mn = ak2amn = ak2 (an)m = ak21m =
ak2 . So f is one-to-one.

(c) Since |G| = n = |Zn| and f is one-to-one, we must have that f is onto.

So we have f is an isomorphism, and that every cyclic group of order n is isomorphic to
Zn. �

Remark: To reiterate, this theorem above shows that all cyclic groups of order n are unique up to isomor-
phism. Now, recall Corollary 8.2.1, which stated that if |G| = p, a prime number, then G must be a cyclic
group. But we now have that all cyclic groups are isomorphic to Zn—so if the size of a group is p, then we
can immediately conclude that it is isomorphic to Zp (since the group is cyclic).

Remark: When we study different structures (such as fields, rings, vectors spaces, etc.), we shall formulate
corresponding notions of isomorphisms between respective structures. One of the central problems in mathe-
matics is to determine what properties of a structure specify its isomorphism type (i.e., to prove that if G is
an object with some structure, such as a group, and G has property P, then any other similarly-structured
object, or group, X with property P is isomorphic to G). Theorems of this type are referred to as classification
theorems.

For example, we have that any non-Abelian group of order 6 is isomorphic to S3. Using this, we immediately
get D3

∼= S3 and GL2 (F2) ∼= S3 without having to find explicit mappings between the groups. Note that it is
not true hat any group of order six is isomorphic to S3. In fact, as we have seen the previous example above,
up to isomorphism (i.e., which isomorphism we choose), there are only two groups of order six, S3 and Z6. In
other words, any group of order six is isomorphic to one of these two groups, with S3 not isomorphic to Z6.

We end this section with a couple of more examples.

Example 6.2.4 D4 and Z8 are not isomorphic because D4 is non-Abelian and Z8 is
Abelian. Remember that if G ∼= K, then G is Abelian if and only if K is Abelian.

Example 6.2.5 U (10) = Z∗10 = {[1], [3], [7], [9]} and U (12) = Z∗12 = {[1], [5], [7], [11]} are
not isomorphic because U (10) is cyclic while U (12) is not (verify this!).

Example 6.2.6 (Q,+) is not isomorphic to (Q∗,×) under multiplication. For suppose
there is an isomorphism f : Q → Q∗. Since f is onto, there exists some a ∈ Q such that

83



Chapter 6: Isomorphisms and Quotient
Groups

6.3: The Direct Product

f (a) = 2. Consider the rational number r = f
(
a
2

)
. We have r2 = f

(
a
2

)
f
(
a
2

)
= f

(
a
2 + a

2

)
=

f (a) = 2, which is impossible since no rational number solves r2 = 2.

Example 6.2.7 Recall that Dn =
{
r, s | rn = s2 = 1, sr = r−1s

}
. Suppose K is a group

containing elements a and b with an = 1, b2 = 1 and ba = a−1b. Then there is a homomor-
phism from Dn to K mapping r to a and s to b. For instance, let k be an integer dividing
n with k ≥ 3 and let Dk =

{
r1, s1 | rk1 = s21 = 1, s1r1 = r−11 s1

}
. Define

f : Dn → Dk by f (r) = r1 and f (s) = s1.

If we write n = km (since k divides n), then since rk1 = 1 rn1 =
(
rk1
)m

= 1m = 1. Thus,
the three relations satisfied by r, s in Dn are satisfied by r1, s1 in Dk. Thus, f extends
(uniquely) to a homomorphism from Dn to Dk. Since r1, s1 generates Dk, f is onto. This
homomorphism is not an isomorphism if k < n.

Example 6.2.8 Following up on the previous example, let G = D3 as presented above.
Check that in K = S3, the elements a = (1 2 3) and b = (1 2) satisfy the relations a3 = 1,
b2 = 1 and ba = ab−1. Thus, there is a homomorphism from D3 to S3 that sends r to a and
s to b. One may further check that S3 is generated by a and b, so this homomorphism is
onto. Since D3 and S3 both have order six, we have that the homomorphism is one-to-one,
so that the homomorphism is an isomorphism, i.e., D3

∼= S3.

Remark: Note that the element a in the two examples above need not have order n, i.e., n need not be the
smallest power of a giving the identity in K, and similarly b need to have order two (for example, b could well
be the identity if a = a−1). This allows us to more easily construct homomorphisms and is in keeping with the
idea that the generators and relations for a group G constitute a complete set of data for the group structure
of G.

Any group of order four is isomorphic to either Z4 or to the Klein 4-Group.

Any group of order six is isomorphic to either Z6 or to the group S3.

6.3 The Direct Product

In this section we introuce the notion of a product of two groups G and K.
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Definition 6.3.1 Direct Product of Groups

We distinguish between the direct product of a finite number of a groups and an
infinite number of groups.

• The direct product of n groups (G1, ∗1) , (G2, ∗2) , . . . , (Gn, ∗n), denoted
G1 × G2 × . . . × Gn, is the set of n-tuples (g1, g2, . . . , gn) where gi ∈ Gi
with the operation ∗ on two elements of the product, (g1, g2, . . . , gn) and
(h1, h2, . . . , hn), defined component-wise:

(g1, g2, . . . , gn) ∗ (h1, h2, . . . , hn) = (g1 ∗1 h1, g2 ∗2 h2, . . . , gn ∗n hn) .

• The direct product of an infinite number of groups (G1, ∗1) , (G2, ∗2) , . . . ,
denoted G1 × G2 × . . . is the set of sequences (g1, g2, . . . ) where gi ∈ Gi
with the operation ∗ between two elements of the proudct, (g1, g2, . . . ) and
(h1, h2, . . . ), defined component-wise:

(g1, g2, . . . ) ∗ (h1, h2 . . . ) = (g1 ∗1 h1, g2 ∗2 h2, . . . ) .

Although the operations may be different in each of the factors of a direct product, like with
homomorphisms, we shall omit the operation symbol, so that we have simply

(g1, g2, . . . , gn) (h1, h2, . . . , gn) = (g1h1, g2h2, . . . , gnhn) .

Theorem 6.3.1

If G1, G2, . . . , Gn are groups, their direct proudct G1 ×G2 × . . .×Gn is a group
of order |G1 ×G2 × . . .×Gn| = |G1| |G2| · · · |Gn|. If any Gi is infinite, then so is
the direct product.

Proof: Let G denote the direct product. We must show that G satisfies the group axioms.
This is straightforward since each axiom is a consequence of the fact that the same axiom holds
in each factor Gi and the operation on G is defined component-wise. For example, the associative
law is verfied as follows. Let (a1, a2, . . . , an) , (b1, b2, . . . , bn) , (c1, c2, . . . , cn) ∈ G. Then,

(a1, a2, . . . , an) [(b1, b2, . . . , bn) (c1, c2, . . . , cn)]

= (a1, a2, . . . , an) (b1c1, b2c2, . . . , bncn)

= (a1 (b1c1) , a2 (b2c2) , . . . , an (bncn))

= ((a1b1) c1, (a2b2) c2, . . . , (anbn) cn)

= [(a1, a2, . . . , an) (b1, b2, . . . , bn)] (c1, c2, . . . , cn) ,

where in the third step we have used the associative law in each component. The remaining
axioms are easy to check:

• The identity element in G is the n-tuple (1G1 , 1G2 , . . . , 1Gn).

• The inverse element of an element (g1, g2, . . . , gn) ∈ G is
(
g−11 , g−12 , . . . , g−1n

)
, where each

g−1i is the inverse of gi in Gi. �
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Remark: If the factors of the direct product are rearranged, then the resulting direct product is isomorphic
to the original one.

We will deal mostly with the direct product of two groups.

Theorem 6.3.2

Let G and K be finite groups. Then there exists a monomorphisms f1 : G →
G × K and f2 : K → G × K given by f (g) = (g, 1K) and f (k) = (1G, k),
respectively.

Proof: For all g1, g2 ∈ G, f (g1g2) = (g1g2, 1K) and f (g1) f (g2) = (g1, 1k) (g2, 1K) = (g1g2, 1K)
by the definition of the product of elements of the direct product. So f (g1) f (g2) = f (g1g2),
and so f1 is a homomorphism. The pf for f2 is almost exacly the same. �

Example 6.3.1 Here are some examples of direct product groups.

• Consider the set Z2 × Z3 = {(a, b) | a ∈ Z2, b ∈ Z3}. So the elements of Z2 × Z3 are
{([0]2, [0]3) , ([0]2, [1]3) , ([0]2, [2]3) , ([1]2, [0]3) , ([1]2, [1]3) , ([1]2, [2]3)}. For any two ele-
ments ([a]2, [b]3) , ([c]2, [d]3) ∈ Z2×Z3, we define the product by ([a]2, [b]3) ([c]2, [d]3) =
([a]2 + [c]2, [b]3 + [d]3) = ([a+ c]2, [b+ d]3). Also, ([0]2, [0]3) is the identity element,
and the inverse element of ([a]2, [b]3) is ([−a]2, [−b]3).

• Consider the direct product Z2 = Z × Z = {(a, b) | a, b ∈ Z}. In this case, the direct
product is infinite, and for any (a, b) , (c, d) ∈ Z2, we let (a, b) + (c, d) = (a+ c, b+ d).
The identity element is (0, 0) and the inverse of (a, b) ∈ Z2 is (−a,−b). In the same
way can define the group R2 = R× R under addition.

• Consider the set Z2×S3 = {(a, σ) | a ∈ Z2, σ ∈ S3}. For any (a, σ) and (b, τ) in Z2×S3,
let (a, σ) (b, τ) = ([a+ b]2, σ ◦ τ), where σ ◦ τ is the composition of permutations. The
identity element is ([0]2, 1) and the inverse element of (a, σ) =

(
−a, σ−1

)
.

Theorem 6.3.3

Let G1 and G2 be groups. Then G1 ×G2
∼= G2 ×G1.

Proof: To prove this, we simply go through the four steps of showing two groups are isomor-
phic.

1. Let f : G1 ×G2 → G2 ×G1 be defined by f ((a, b)) = (b, a). Is it well defined?

2. f is a homomorphism since for any (a, b) , (c, d) ∈ G1 × G2, we have f ((a, b) (c, d)) =
f ((ac, bd)) = (bd, ac) = (b, a) (d, c) = f ((a, b)) f ((c, d)).
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3. f is one-to-one since (a, b) ∈ Kern (f) if and only if (b, a) = (1G2 , 1G1), hence Kern (f) =
{(1G1 , 1G2)}.

4. Since the size of G1 ×G2 and G2 ×G1 are the same and f is one-to-one, f is necessarily
onto. �

Remark: The above theorem tells us that the order in which we take the direct product does not matter.
This is also true when we construct the direct product of more than two groups, as was mentioned in a remark
above.

Theorem 6.3.4

Let G1 and G2 be groups. Then G1 ×G2 is Abelian if and only if both G1 and
G2 are Abelian.

Proof: Given (a, b) , (c, d) ∈ G1 ×G2, (a, b) (c, d) = (ac, bd) and (c, d) (a, b) = (ca, db). Thus,
(a, b) (c, d) = (c, d) (a, b) for all pairs of elements in G1×G2 if and only if ac = ca for all pairs of
elements in G1 and bd = db for pairs of elements in G2 since both G1 and G2 are Abelian. �

The next example requires the use of the Chinese Remainder Theorem, so we state it here
without pf.

Theorem 6.3.5 Chinese Remainder Theorem

If m1,m2, . . . ,mk ∈ Z and gcd (mi,mj) = 1 whenever i 6= j, then for any choice
of integers a1, a2, . . . , ak, there exists a solution to the simultaneous congruences

n ≡ a1 (mod m1)

n ≡ a2 (mod m2)

...

n ≡ ak (mod mk).

All solutions n of this system are congruent modulo m1m2 · · ·mk. More-
over, if n = n0 is one integer solution, then the complete solution is n ≡
n0 (mod m1m2 · · ·mk).

Example 6.3.2 Show that Z20 is isomorphic to Z4 × Z5.

Solution: Let us define a mapping f : Z20 → Z4 × Z5 by

f ([a]20) = ([a]4, [a]5) .

Let us now go through our usual process.
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1. We have just defined the mapping. We now show that it is well defined, i.e., we need
to show that for all a, b ∈ Z such that [a]20 = [b]20, f ([a]20) = f ([b]20). Now,

[a]20 = [b]20 ⇔ ∃k ∈ Za = b+ 20k ⇔ 20k = a− b
⇒ 4 | (a− b) and 5 | (a− b)⇔ [a]4 = [b]4 and [a]5 = [b]5

⇒ f ([a]20) = ([a]4, [a]5) = ([b]4, [b]5) = f ([b]20) .

The third step above (second line) follows because 4 and 5 are both divisors of 20 (i.e.,
we used the fact that if (ab) | c then a | c and b | c). So the mapping is well defined.

2. We now show that f is a homomorphism. For all a, b ∈ Z,

f ([a]20 + [b]20) = f ([a+ b]20) = ([a+ b]4, [a+ b]5) = ([a]4 + [b]4, [a]5 + [b]5)

= ([a]4, [a]5) + ([b]4, [b]5) = f ([a]20) + f ([b]20) .

So f is a homomorphism. We then show that f is a bijection. Note that since |Z20| =
|Z4 × Z5|, we need only show one of one-to-one and onto.

3. Let us show that the homomorphism f is one-to-one. We have that for all a, b ∈ Z,

f ([a]20) = f ([b]20)⇔ ([a]4, [a]5) = ([b]4, [b]5)

⇔ a ≡ b (mod 4) and a ≡ b (mod 5)

⇔ a ≡ b (mod 20) (Chinese Remainder Theorem, since gcd (4, 5) = 1)

⇔ [a]20 = [b]20.

4. As mentioned, f is necessarily onto since f maps sets of the same size and is one-to-one.

So f is an isomorphism, and hence Z20
∼= Z4 × Z5.

In general,

if n = m1m2 · · ·mk and gcd (mi,mj) = 1, i 6= j, then Zn ∼= Zm1 × Zm2 × · · · × Zmk . (6.1)

6.4 Normal Subgroups

Definition 6.4.1 Conjugate Group Element

Let G be a group and H ≤ G, with a ∈ G and h ∈ H. The element aha−1 of G
is called the conjugate of h by a. The set aHa−1 =

{
aha−1 |h ∈ H

}
is called

the conjugate of H by a.
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Remark: We will show later that conjugatiion is an equivalence relation, so that we may partition a group
into disjoint sets of elements that are conjugates of one another. The equivalence classes will be called conjugacy
classes.

Theorem 6.4.1

Let H be a subgroup of a group G. Then for any a ∈ G:

1. aHa−1 is a subgroup of G.

2.
∣∣aHa−1∣∣ = |H|.

Proof: We prove each in turn.

1. Let x, y ∈ aHa−1. Then, x = ah1a
−1 and y = ah2a

−1 for some h1, h2 ∈ H. Therefore,
xy−1 = ah1a

−1 (ah2a−1)−1 = ah1a
−1ah−12 a−1 = ah1h

−1
2 a−1, and since H is a (sub)group,

h = h1h
−1
2 ∈ H, and so xy−1 = aha−1 ∈ aHa−1, and so by the subgroup test aHa−1 is a

subgroup.

2. Do this!! �

Using this definition, we restate the definition of the normaliser.

Definition 6.4.2 Normaliser

Let G be a group and H ≤ G. The normaliser of H in G, denoted NG (H),
is the set of all a ∈ G such that the conjugate of H by a is equal to H, i.e.,
NG (H) =

{
a ∈ G | aHa−1 = H

}
. Such elements a are said to normalise H.

Theorem 6.4.2

Let H be a subgroup of a group G. Then the normaliser NG (H) is a subgroup
of G.

Proof: Do it!! �

So, if an element a ∈ G normalises H, we have aHa−1 = H, but multiplying both sides on the
right by a gives the equivalent condition that a normalises H if Ha = aH, i.e., the left and right
cosets of H in G are equal! A subgroup H ≤ G with the property that for all a ∈ G the left and
right cosets of H are equal is called a normal subgroup.
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Definition 6.4.3 Normal Subgroup

Let G be a group and H ≤ G. If all a ∈ G normalises H, i.e., if aHa−1 = H ⇒
aH = Ha (or, for all a ∈ G and h ∈ H aha−1 ∈ H), i.e., if the left and right
cosets of H in G are equal, then H is said to be a normal subgroup of G and
we write H E G or H C G.

So a normal subgroup is a group that is closed under conjugation.

Theorem 6.4.3

Let f : G → J be a homomorphism, and let K = Kern (f). Then K E G, i.e.,
K is a normal subgroup of G.

Proof: Let x ∈ aK, so x = ak1 for some k1 ∈ K. Then, f (x) = f (ak1) = f (a) f (k1) =
f (a) 1J = f (a). It follows that 1J = f (x) f (a)−1 = f

(
xa−1

)
and xa−1 ∈ K. Letting k2 =

xa−1 ∈ K, we have that x = k2a ∈ Ka. Thus, aK ⊆ Ka. The pf that aK ⊆ Ka is similar (do
it!!).

Alternate pf : We have already shown that K is a subgroup of G. We must now show that for
any a ∈ G and k ∈ K a−1ka ∈ K, i.e., that K is closed under conjugation. Now, f

(
a−1ka

)
=

f
(
a−1
)
f (k) f (a) = (f (a))−1 1Jf (a) = 1J . Therefore, a−1ka ∈ K, and hence K E G. �

Corollary 6.4.1

A subgroup H of the group G is normal if and only if it is the kernel of some
homomorphism.

Proof: Think about this! �

Theorem 6.4.4

Here are some basic facts about normal subgroups of a group G. These are quite
trivial.

1. The identity subgroup {1G} E G for any group G (finite or infinite).

2. G E G.

So all groups have at least two normal subgroups!

Example 6.4.1 Consider the mapping f : S3 → Z2, where

f (σ) =

{
0 if σ is an even permutation
1 if σ is an odd permutation

.
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Then, Kern (f) = A3 =
{

1, b, b2
}

. The left cosets of A3 are

A3 =
{

1, b, b2
}

and aA3 =
{
a, ab, ab2

}
,

and the right cosets of A3 are

A3 =
{

1, b, b2
}

and A3a =
{
a, ba, b2a

}
=
{
a, ab2, bab2

}
=
{
a, ab2, ab4

}
=
{
a, ab, ab2

}
= aA3,

so the left and right cosets are equal. Therefore, A3 is a normal subgroup of S3, i.e., A3 E S3.

Example 6.4.2 Let Q8 = {±1,±i,±j,±k} be the quaternion group. Let f : Q8 → Z2 be
defined by

f (±1) = f (±i) = 0 and f (±j) = f (±k) = 1.

Then f is a homomorphism with Kern (f) = {±1,±i}. The left cosets of K = Kern (f) are

K = {1,−1, i,−i} and jK = {j,−j, ji = −k, j (−i) = k} ,

and the right cosets of K are

K = {1,−1, i,−i} and Kj = {j,−j, ij = k,−ij = −k} = jK,

so again the left and right cosets are equal. Hence K E Q8, verifying the above theorem.

Example 6.4.3 Consider the group S3 =
{

1, b, b2, a, ab, ab2
}

and the subgroup H = 〈b〉 ={
1, b, b2

}
. Consider the element g = ab2. Then, the left and right cosets of H in S3 are:

gH =
{
ab2, ab2b, ab2b2

}
=
{
ab2, a, ab

}
and

Hg =
{
ab2, bab2, b2ab2

}
=
{
ab2, ab, a

}
= gH

So we have Hg = gH, i.e., g normalises H. We may check all other elements of S3 to see
that they all normalise H, which means that H = 〈b〉 =

{
1, b, b2

}
is a normal subgroup of

S3.

Theorem 6.4.5

If G is an Abelian group, then every subgroup of G is a normal subgroup of G.

Proof: Complete this!! �

Now, because Z under addition is an Abelian group and all subgroups of Z are nZ (which are
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cyclic), we have the following result:

nZ E Z i.e., every subgroup of Z is normal.

Zn under addition modulo n is also an Abelian group. So we also have

Every subgroup of Zn is normal.

Theorem 6.4.6

Let G be a group and H a subgroup of G with index [G : H] = 2. Then H is a
normal subgroup of G.

Proof: Since [G : H] = 2, H has just two left cosets and just two right cosets. Since H =
1H = H1 is itself both a left and right coset, for any g ∈ G with g /∈ H, the two distinct
left cosets are H and gH and the two distinct right cosets are H and Hg. Since the cosets
determine a partition of G, as we have seen, we must have gH = {k ∈ G | k /∈ H} = Hg, and
hence H E G. �

Example 6.4.4 The subgroup H = 〈γ〉 in the dihedral group D4 generated by the rotation
γ has order four and hence has index [D4 : H] = 2, so H E D4.

Example 6.4.5 Let G = GL2 (R) and H = SL2 (R) be the general and special linear
groups of 2 × 2 matrices with entries from R. Then H E G because if A ∈ G and B ∈ H
we have det

(
ABA−1

)
= det (A) det (B) (det (A))−1 = det

(
A−1

)
(det (A))−1 = 1, hence

ABA−1 ∈ H.

Example 6.4.6 Z (G), the center of a group G, is a normal subgroup of G since the
elements of Z (G) commute with every element of G.

Theorem 6.4.7

Let H be a subgroup of a group G. If H is the only subgroup of G of order |H|,
then H E G.

Proof: Follows from the theorem presented at the beginning of this section. �
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Theorem 6.4.8

Let H be a subgroup of a group G. Then:

1. H E NG (H).

2. If K is a subgroup of G and H E K, then K is a subgroup of NG (H).

3. H E G if and only if NG (H) = G.

Proof: Do it!! �

Theorem 6.4.9 Characterisation of Normal Subgroups

Let H be a subgroup of a group G. Then the following are equivalent:

1. For all a ∈ G and h ∈ H, a−1ha ∈ H.

2. Every left coset is a right coset, i.e., for all a ∈ G there exists an a′ ∈ G
such that aH = Ha′.

3. Every right coset is a left coset, i.e., for all a ∈ G there exists an a′ ∈ G
such that Ha′ = aH.

4. For all a ∈ G, the left coset aH is equal to the right coset Ha.

5. For any a, b ∈ G, if ab ∈ H, then ba ∈ H.

Theorem 6.4.10

Let G be a group with subgroups N and H such that N ≤ H ≤ G. If N E G,
then N E H.

Proof: Let N ≤ H ≤ G such that N E G. Since N E G, we have gng−1 ∈ N for all n ∈ N
and all g ∈ G. Now, let h ∈ H. Then, since H ≤ H, we have h ∈ G, and since N E G, we have
hnh−1 ∈ N , so that N E H, as required. �

6.5 The Subset Product and the Internal Direct Products

Definition 6.5.1 Subset Product

Let G be a group and {Hk}nk=1 be a set of subsets of G. Then,

H1H2 · · ·Hn = {h1h2 · · ·hn | h1 ∈ H1, h2 ∈ H2, . . . , hn ∈ Hn} ⊆ G

is called the subset product of G.

It it certainly possible for H and K to be subgroups but for HK or KH to not be subgroups.
It is also possible that H and K are merely subsets but for HK to be a subgroup.
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Example 6.5.1 Find a group G and subgroups H and K such that HK is not a subgroup
of G.

Solution: Let G = S3, H = 〈a〉 = {1, a} ≤ G and K 〈ab〉 = {1, ab} ≤ G. Then,

HK =
{

1, ab, a, a2b
}

and KH =
{

1, ab, a, b2
}
.

Now, since |HK| = |KH| = 4 - 6, we have that neither HK nor KH are subgroups of G.

Theorem 6.5.1

Let H and K be subgroups of a group G, and assume H E G. Then HK ≤ G.

Remark: Technically, it is not necessary for H to be a normal subgroup of G as long as K is a subgroup of
the normaliser of N .

Proof: Let x, y ∈ HK, so x = h1k1 and y = h2k2 for some h1, h2 ∈ H and k1, k2 ∈ K. Then,
xy−1 = h1k1 (h2k2)

−1 = h1k1k
−1
2 h−12 = h1kh

−1
2 , where k = k1k

−1
2 ∈ K since K is a (sub)group.

We have kh2 ∈ kH, and since H E G, kH = Hk, and so kh−12 ∈ Hk. So kh−12 = h3k for some
h3 ∈ H, and xy−1 = h1kh

−1
2 = h1h3k = hk, where h = h1h3 ∈ H. Thus, xy−1 ∈ HK, and so

HK is a subgroup by the subgroup test. �

Theorem 6.5.2

Let G be an Abelian group and H,K ≤ G. Then HK ≤ G.

Theorem 6.5.3

Let G be a finite group and H,K ≤ G. Then HK ≤ G if and only if HK = KH.

Proof: (⇒): Assume that HK is a subgroup of G and let x ∈ HK be arbitrary. We must
show that HK ⊆ KH and KH ⊆ HK. Now, x−1 ∈ HK, where we may write x−1 = hk for
some h ∈ H and k ∈ K. But then x =

(
x−1

)−1
= (hk)−1 = k−1h−1 ∈ KH, so HK ⊆ KH

since x is arbitrary. Similarly, we may show that if y ∈ KH, then y ∈ HK, establishing that
KH ⊆ HK. Therefore, HK = KH.

(⇐): Assume that HK = KH. We want to show that HK is a subgroup of G.

1. Since H and K are subgroups, we have 1G ∈ H and 1G ∈ K, so 1G ∈ HK.

2. Let x, y ∈ HK, so that x = h1k1 and y = h2k2 for some h1, h2 ∈ H and k1, k2,∈ K.
Hence, since HK = KH, we have k1h2 = h′2k

′
1 for some k′1 ∈ K and h′2 ∈ H. Therefore,

xy = h1k1h2k2 = h1h
′
2k
′
1k2. But then h1h

′
2 = h3 ∈ H and k′1k2 = k3 ∈ K. So xy = h3k3,

i.e., xy ∈ HK.
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3. For all x ∈ HK, we have x = hk for some h ∈ H and k ∈ K. Then x−1 = k−1h−1;
but again, since HK = KH, we have k−1h−1 = h′k′ for some other h′ ∈ H and k′ ∈ K.
Therefore, x−1 = h′k′, i.e., x−1 ∈ HK.

So, by the subgroup test, we have established that HK ≤ G, and so the pf is complete. �

Theorem 6.5.4

If H and K are (normal) subgroups of G, then so is H ∩K.

Proof: Assume H,K ≤ G.

1. Then 1G ∈ H and 1G ∈ K, so 1G ∈ H ∩K, so H ∩K is not empty.

2. Let g1, g2 ∈ H ∩ K, i.e., g1, g2 ∈ H and g1, g2 ∈ K. Since H and K are subgroups, we
have g1g2 ∈ H and g1g2 ∈ K. Therefore, g1g2 ∈ H ∩K.

3. Finally, for all g ∈ H ∩K, since H and K are subgroups, we have g−1 ∈ H and g−1 ∈ K,
so g−1 ∈ H ∩K.

So by the subgroup test, we have H ∩K ≤ G.

Now, assume that H,K E G, and let g ∈ H ∩K. For all f ∈ G, we have fgf−1 ∈ H since H is
normal, and fgf−1 ∈ K since K is normal. So fgf−1 ∈ H ∩K for all f ∈ G and all g ∈ H ∩K.
So H ∩K E G. �

Theorem 6.5.5

Suppose G is a finite group and H,K ≤ G. Then

|HK| = |H| |K|
|H ∩K|

.

Proof: Observe first that in HK, it is possible to have h1k1 = h2k2 where h1, h2 ∈ H and
k1, k2 ∈ K. Also, recall that

H ×K = {(h, k) | h ∈ H, k ∈ K} .

Now, define an equivalence relation on H×K by (h1, k1) ∼ (h2, k2)⇔ h1k1 = h2k2 (it is easy to
show that this is in fact an equivalence relation). So “∼” partitions H×K into disjoint subsets,
which are the equivalence classes. Since every element in HK is of the form hk for h ∈ H and
k ∈ K, we have that the number of equivalence classes of the equivalence relation “∼” is |HK|.

Now, let C be one of these equivalence classes. So we have that for all (h1, k1) , (h2, k2) ∈ C
(h1, k1) ∼ (h2, k2) ⇒ h1k1 = h2k2 ⇒ h−12 h1 = k2k

−1
1 = l, where l ∈ H and l ∈ K (since l has

been written as both a product of elements in H and as a product of elements in K). In other
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words, l ∈ H ∩K. Now, given any l ∈ H ∩K, for any (h1, k2) ∈ C, we have
(
h1l
−1, lk1

)
∈ C.

Thus, there is a one-to-one correspondence between every element in C and every element in
H ∩K.

Using this, let us define the mappings

f : H ∩K → C by f (l) =
(
h1l
−1, lk1

)
g : C → H ∩K by g (h2, k2) = h−12 h1 = k2k

−1
1

Using this, we see that f is an invertible function (and so is g), which means that f (and g)
must be bijections, so that |C| = |H ∩K|, i.e., the size of each equivalence class is |H ∩K|.

Finally, then, since there are |HK| equivalence classes, each of size |H ∩K|, and since the
equivalence relation partitions the subset H ×K, we have

|H ×K| = |HK| |H ∩K| ⇒ |HK| = |H ×K|
|H ∩K|

=
|H| |K|
|H ∩K|

,

as required. �

Lemma 6.5.1 Let H and K be finite subgroups of a group G. Then |HK| = |H| s, where
s = [K : H ∩K].

Proof: Consider Hk1, . . . ,Hks. They are distinct cosets of H because if Hki = Hkj , then
kik
−1
j ∈ H ∩ K, contrary to the choice of k1, . . . , ks. Also, every element of HK belongs to

one of them, since given any hk ∈ HK, we know that k ∈ (H ∩K) ki for some 1 ≤ i ≤ s,
and it follows that hk ∈ Hki. Thus, the Hki partition HK, and each has |H| elements, ans so
|HK| = |H| s. �

Theorem 6.5.6

If H and K are finite subgroups of a group G, then |HK| = |H||K|
|H∩K| .

Proof: Let s be the index [K : H ∩K], and let (H ∩K) k1, . . . , (H ∩K) ks be the s distinct
cosets of H ∩K in K. These cosets form a partition of K and every element of K belongs to
exactly one of them. Since s = [K : H ∩K] = |K|

|H∩K| by Lagrange’s Theorem, and since by the

lemma |HK| = |H| s, we have

|HK| = |H| s = |H| |K|
|H ∩K|

,

as required. �

We can generalise the above theorem to any number of subgroups. We state the result without
pf.
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Theorem 6.5.7

Let G be a finite group with {Hk}ni=1 a sequence of subgroups of G. Then

|H1H2 · · ·Hn| =?

Definition 6.5.2 Internal and External Direct Product

The direct product that was introduced in section 3.3 is sometimes called the
external direct product in order to distinguish it from the internal direct prod-
uct. An internal direct product is a direct product of two normal subgroups
H and K of some group G such that HK ≤ G and H ∩K = {1G}.

Theorem 6.5.8 Characterisation of the Internal Direct Product

Let G, be a group and H,K ≤ G. Then G ∼= H ×K if and only if there exist
normal subgroups H∗ and K∗ of G such that

1. H ∼= H∗ and K ∼= K∗;

2. H∗ ∩K∗ = {1G};
3. H∗K∗ = G.

Proof: (⇐): Assume that the three conditions above are satisfied. Without loss of generality,
we may take H and K as normal subgroups of G, i.e., H∗ = H and K∗ = K. Define a mapping

f : H ×K → G by f (h, k) = hk.

Then, for all (h1, k1) , (h2, k2) ∈ H ×K, we have

f ((h1, k1) (h2, k2)) = f (h1h2, k1k2) = h1h2k1k2.

But by the lemma above, hk = kh, so we get

f ((h1, k1) (h2, k2)) = h1h2k1k2 = h1k1h2k2 = f (h1, k1) f (h2, k2) ,

so f is a homomorphism. Additionally, since Im (f) = HK = G, we have that f is onto. Finally,

Kern (f) = {(h, k) ∈ H ×K | f (h, k) = 1G}
= {(h, k) ∈ H ×K | hk = 1G}
=
{

(h, k) ∈ H ×K | h = k−1 = l
}

= {(h, k) ∈ H ×K | l ∈ H, l ∈ K}
= {(h, k) ∈ H ×K | l ∈ H ∩K = {1G}}
= {(h, k) ∈ H ×K | l = 1G ⇒ h = k = 1G}
= {(1G, 1G)}
= 1H×K .

So f is one-to-one, and therefore f is an isomorphism.

97



Chapter 6: Isomorphisms and Quotient
Groups

6.5: The Subset Product and the Internal Direct Products

(⇒): Assume that G ∼= H ×K, where H and K are some groups. Let

H∗ = H × {1K} and K∗ = {1H} ×K.

Now, consider the mapping defined in the first part of the pf above. By the first lemma above,
we have that every element of H commutes with every element of K (note that this follows only
because f is a homomorphism and does not assume that H and K are normal subgroups as
the second lemma above does). Additionally, since we proved that f is onto, we may write any
element in a ∈ G in the form a = hk, where h ∈ H and k ∈ K. Therefore, for all a ∈ G and all
h̃ ∈ H

ah̃a−1 = (hk) h̃ (hk)−1

= hkh̃k−1h−1

= hh̃kk−1h−1 since k commutes with h̃

= hh̃h−1 ∈ H.

So H E G. Similarly, for all a ∈ G and all k̃ ∈ K,

ak̃a−1 = (hk) k̃ (hk)−1

= hkk̃k−1h−1

= hk′h−1 since k′ = kk̃k−1 ∈ K
= k′hh−1 since k′ commutes with h

= k′ ∈ K.

Therefore, K E G as well.

Then, since {1H} E H and {1K} E K, and all identity elements of any group are isomorphic to
each other, we get that H∗ E G and K∗ E G.

Now, it is clear that H∗ ∼= H and K∗ ∼= K, so that the first requirement is satisfied. As well,

H∗ ∩K∗ = {(1H , 1K)} = {1G}

since G ∼= H ×K. So the second requirement is satisfied. Finally,

H∗K∗ = {(h, 1K) (1H , k) | h ∈ H, k ∈ K}
= {(h, k) | h ∈ H, k ∈ K}
= H ×K = G,

again, since G ∼= H × K. So the third requirement is satisfied as well, and so the pf is com-
plete. �

Remark: Observe that under the conditions of this theorem, we get |H∗K∗| = |G|.

The theorem above can be generalised to any number of subgroups. We state this generalisation
without pf.
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Theorem 6.5.9 Characterisation of the Internal Direct Product–General
Case

Let G be a group and {Hk}nk=1 a set of subgroups of G. Then G ∼= H1 ×H2 ×
· · · ×Hn if and only if there exist normal subgroups {H∗k}

n
k=1 such that

1. H∗k
∼= Hk for all 1 ≤ k ≤ n;

2. for all k ∈ {2, . . . , n} (H1H2 · · ·Hk−1) ∩Hk = {1G};
3. H1H2 · · ·Hn = G.

Remark: Observe that under the conditions of this theorem, we immediately get |H1H2 · · ·Hn| = |G|.

6.6 Quotient Groups and the First Isomorphism Theorem

Recall that all the subroups of Z are nZ for n ∈ Z, and that all of these subgroups are cyclic.
Also recall that the cosets of H in G were nothing but the integers modulo n, which, as we
know, forms a group under addition modulo n. We now ask: does the set of (left or right) cosets
of any subgroup H ≤ G always form a group? The answer to this question will lead to the
important notion of a quotient group.

Now, in the preceding section we showed that if K is the kernel Kern (f) = {a ∈ G | f (a) = 1}
of a homomorphism f : G → K, then aK = Ka for all a ∈ G, i.e., K was a normal subgroup.
In this section, we will also study the images of homomorphisms. We will see that if K is a
normal subgroup of a group G, then K is the kernel of some homomorphism f from G to H.
We actually show how to construct the group H and the homomorphism f starting from G and
K. This construction, which will be called the quotient group construction, is very important in
understanding the structure of groups.

Definition 6.6.1 Quotient Group

Let H be a normal subgroup of a group G. Then the set of right cosets of H in
G,

{Ha}a∈R = {Hg | g ∈ G} ,

where R is the set of representatives, is a group under the operation (Ha) (Hb) =
Hab and is called the quotient group, or factor group, of G by H, denoted
G/H and read “G modulo H” or “G mod H”.

Remark: Note that we could also define the quotient group in terms of the set of the left cosets {aH}a∈R
of H in G, in which case the operation becomes (aH) (bH) = abH.

We have not yet actually proved that G/H is indeed a group, nor that the group operation is
well defined. We do that now.

Lemma 6.6.1 Let H be a subgroup of a group G. Then H E H if and only if (Ha) (Hb) =
Hab is a well-defined operation on the right cosets of H.
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Proof: (⇒) Assume H E G. To show that the product (Ha) (Hb) = Hab is well defined,
we need to show that if Ha1 and Ha2 are the same coset and if Hb1 and Hb2 are the same
coset, then Ha1b1 and Ha2b2 are the same coset, i.e., that (a2b2) (a1b1)

−1 ∈ H. In other words,
we need to know that the result of the operation does not depend on which element a1 or a2
we choose to represent the first coset, or on which element b1 or b2 we choose to represent the
second coset.

Now, then, assume

Ha1 = Ha2 ⇒ a1 ≡H a2 ⇒ a2a
−1
1 = h ∈ H

Hb1 = Hb2 ⇒ b1 ≡H b2 ⇒ b2b
−1
1 = h′ ∈ H

}
for some h, h′ ∈ H.

Then, a2 = ha1 and b2 = h′b1. Therefore,

(a2b2) (a1b1)
−1 = a2b2b

−1
1 a−11 = (ha1)

(
h′b1

)
b−11 a−11 = ha1h

′a−11 .

But a1h
′a−11 ∈ H since H is a normal subgroup of G. And since h ∈ H, we have that ha1h

′a−11 ∈
H since H is closed under multiplication (being a (sub)group). So the product is well defined.

(⇐). Now assume that the operation is well defined and let a ∈ G and h ∈ H. Since Ha = Hah
and the operation is well defined, we must have H

(
aha−1

)
= H (ah)Ha−1 = HaHa−1 =

H
(
aa−1

)
= H1 = H. Therefore, aha−1 ∈ H for all a ∈ G and h ∈ H, and so by definition H is

a normal subgroup. �

Theorem 6.6.1

Let H be a normal subgroup of G. Then the set of right (or left) cosets of H in
G, G/H, forms a group under the operation (Ha) (Hb) = Hab.

Proof: We have just shown that the operation is well defined. We then proceed to show that
the four group axioms are satisfied.

1. For all a, b ∈ G, (Ha) (Hb) = Hab ∈ G/H since Hab is a coset of H in G. So we have
closure.

2. For all a, b ∈ G, Ha ∗ (Hb ∗Hc) = Ha ∗Hbc = Ha (bc) = H (ab) c = (Ha ∗Hb) ∗Hc. So
the operation is associative.

3. For all a ∈ G, Ha ∗H = Ha ∗H1 = Ha = H1 ∗Ha. So the identity element in G/H is H.
(Remember that H is itself a left and right coset of H.)

4. For all a ∈ G, Ha ∗Ha−1 = Haa−1 = H1 = H = Ha−1 ∗Ha. So the inverse element of
an element Ha ∈ G/H is (Ha)−1 = Ha−1.

Having shown that all the group axioms are satisfied, we have that G/H is indeed a group. �
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Example 6.6.1 We can now write that Z/2Z ∼= Z2. In fact the groups are exactly the same,
we we might want to write Z/2Z = Z2. As well, Z/3Z ∼= Z3.

In general we have

Z/nZ ∼= Zn . (6.2)

To prove this formally, let us make use of Lemma 6.2.2, but first we must show that Z/nZ is
a cyclic group. Now, the right cosets of nZ, which are the elements of Z/nZ, can be written
generally as

nZ+ 0 = nZ
nZ+ 1

nZ+ 2

...

nZ+ (n− 1)

nZ+ n = {. . . ,−2n+ n,−n+ n, 0 + n, n+ n, 2n+ n, 3n+ n, . . . } = nZ

So we see that there are n unique right cosets. Now, observe that

(nZ+ 1)0 = 1Z/nZ = nZ

(nZ+ 1)1 = nZ+ 1

(nZ+ 1)2 = (nZ+ 1) (nZ+ 1) = nZ+ (1 + 1) = nZ+ 2

...

(nZ+ 1)n−1 = nZ+ (n− 1)

(nZ+ 1)n = nZ+ n = nZ,

so that Z/nZ is indeed a cyclic group with generator nZ+ 1, i.e.,

Z/nZ = 〈nZ+ 1〉 .

And, as we already know Zn = 〈[1]n〉. Then, according to Lemma 6.2.2, the mapping f : Z/nZ→
Zn defined by

f (nZ+ 1) = [1]n

is an isomorphism. So Z/nZ and Zn are indeed isomorphic.

Example 6.6.2 In Z6, consider the subgroup 〈[3]〉 = {[0], [3]}. How many right cosets are

there? Remember that this is equal to the index of 〈[3]〉 in Z6, [Z6 : 〈[3]〉] = |Z6|
|〈[3]〉| = 6

2 = 3.
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Let us confirm this by writing all the cosets and seeing that there are only three unique ones:

〈[3]〉 [0] = 〈[3]〉+ [0] = {[0], [3]}
〈[3]〉 [1] = 〈[3]〉+ [1] = {[1], [4]}
〈[3]〉 [2] = 〈[3]〉+ [2] = {[2], [5]}
〈[3]〉 [3] = 〈[3]〉+ [3] = {[3], [6]} = {[3], [0]} = 〈[3]〉 [0]

〈[3]〉 [4] = 〈[3]〉+ [4] = {[4], [7]} = {[4], [1]} = 〈[3]〉 [1]

〈[3]〉 [5] = 〈[3]〉+ [5] = {[5], [8]} = {[5], [2]} = 〈[3]〉 [5]

Indeed, there are three cosets. Now, then, the set

Z6/〈[3]〉 = {〈[3]〉 [0], 〈[3]〉 [1], 〈[3]〉 [2]}

is a group of order three (the identity element is 〈[3]〉). Observe that

(〈[3]〉 [1])0 = 〈[3]〉
(〈[3]〉 [1])1 = 〈[3]〉 [1]

(〈[3]〉 [1])2 = (〈[3]〉 [1]) (〈[3]〉 [1])

= 〈[3]〉 [1][1] = 〈[3]〉 [2]

(〈[3]〉 [1])3 = 〈[3]〉 [3] = 〈[3]〉 [0] = 〈[3]〉
(〈[3]〉 [1])4 = 〈[3]〉 [4] = 〈[3]〉 [1],

so that we may write
Z6/〈[3]〉 = 〈〈[3]〉 [1]〉 ,

i.e., the quotient group Z6/〈[3]〉 is a cyclic group of order three generated by 〈[3]〉 [1]. And
since, as we know, all finite cyclic groups of order n are isomorphic to Zn, we have that
Z6/〈[3]〉 ∼= Z3. Find an isomorphism!

Example 6.6.3 In Z12, consider the subgroup 〈[8]〉 = {[0], [4], [8]}. The order of the
quotient group Z12/〈[8]〉 is the number of right cosets of 〈[8]〉, or the index of 〈[8]〉 in Z12,

which is [Z12 : 〈[8]〉] = |Z12|
|〈[8]〉| = 12

3 = 4. Now, every group of order four is isomorphic to either
Z4 or to the Klein 4-group. And since every finite cyclic group of order n is isomorphic to
Zn, if Z12/〈[8]〉 is cyclic then it is isomorphic to Z4. Indeed,

(〈[8]〉 [1])0 = 〈[8]〉 (the identity)

(〈[8]〉 [1])1 = 〈[8]〉 [1]

(〈[8]〉 [1])2 = 〈[8]〉 [2]

(〈[8]〉 [1])3 = 〈[8]〉 [3]

(〈[8]〉 [1])4 = 〈[8]〉 [4] = 〈[8]〉
(〈[8]〉 [1])5 = 〈[8]〉 [5] = 〈[8]〉 [1],
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so Z12/〈[8]〉 is a cyclic group of order four, so that Z12/〈[8]〉 ∼= Z4.

Example 6.6.4 In the dihedral group D4, consder the subgroup
〈
b2
〉

=
{

1, b2
}

. Since
b2 ∈ Z (D4), the center of D4,

〈
b2
〉

is a normal subgroup. The index is
[
D4 :

〈
b2
〉]

= 8
2 =

4, so the quotient group D4/〈b2〉 has order 4. Let us see to which of the two groups of
order four, Z4 or the Klein 4-group, this quotient group is isomorphic. We have D4/〈b2〉 ={〈
b2
〉
, b
〈
b2
〉
, a
〈
b2
〉
, ab
〈
b2
〉}

, and all the non-identity elements have order two. So the group
is not cyclic; hence, D4/〈b2〉 ∼= D2.

Theorem 6.6.2

Let H be a normal subgroup of a group G. Then

1. The order of an element Ha in the quotient group G/H is the least positive
integer k such that ak ∈ H.

2. If G is finite, then |G/H| = |G|
|H| , i.e., the size of the quotient group is the

quotient of the sizes of the group and the subgroup.

3. If G is an Abelian group, the G/H is an Abelian group.

4. If G is a cyclic group, then G/H is a cyclic group.

Proof:

1. Let Ha ∈ G/H. Since H is the identity element in G/H, o (Ha) is the least positive integer
k such that (Ha)k = H. But (Ha)k = Hak, so the order is the least positive integer such
that Hak = H. And Hak = H if and only if ak (1)−1 ∈ H, i.e., if and only if ak ∈ H. So
the pf is complete.

2. Complete this!

3. Complete this!

4. Complete this! �

Note that the converses of Parts 3 and 4 of the above theorem are not in general true.

Theorem 6.6.3

Let f : G → H be a homomorphism with Kern (f) = K. Then, for any g ∈ G,
we have f−1 (f (g)) = gK.

Proof: Since for any y ∈ H we have f−1 (y) = {x ∈ G | f (x) = y} by definition, it follows
that x ∈ f−1 (f (g)) if and only if f (x) = f (g). This condition is equivalent to the condition
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that (f (g))−1 f (x) = 1H , the identity of H. Since (f (g))−1 f (x) − f
(
g−1x

)
, it follows that

x ∈ f−1 (f (g)) if and only if f
(
g−1x

)
= 1H or, in other words, if and only if g−1x ∈ Kern (f).

This condition is equivalent to the condition that x ∈ gK. �

Corollary 6.6.1

Let f : G→ H by a homomorphism. Then f−1 (f (1G)) = Kern (f).

Proof: This is immediate from the preceding theorem since 1K = K1 = K = Kern (f). �

Theorem 6.6.4

Let f : G→ K be a homomorphism. The image Im (f) = {f (x) |x ∈ G}, as we
know, is always a subset (indeed, a subgroup) of K. It will be equal to K if and
only if f is onto.

Proof: (Show this explicitly! It makes sense because if the homomorphism is onto, then all
points in K get mapped to by a point in G, so the set of all f (x) must be equal to K, i.e., the
image and K are the same.) �

Definition 6.6.2 Homomorphic Image

Let f : G → K be a surjective (onto) homomorphism. Then K is said to be a
homomorphic image of G.

Remark: For any isomorphism f : G→ K between two groups, since f is onto by definition, K is always a
homomorphic image of G.

The next theorem (a very important one!) shows that there is a correspondence between normal
subgroups and homomorphic images of a group.

Theorem 6.6.5 First Isomorphism Theorem

For any two groups G and K, let f : G→ K be a homomorphism. Then,

G/Kern (f) ∼= Im (f) .

Remark: Using this theorem, we may restate the definition of homomorphic image as follows: a group
K is called a homomorphic image of a group G if there exists an onto homomorphism f : G → K, i.e., if
K ∼= G/Kern (f).

Proof: We follow our four basic steps for proving two groups are isomorphic, constructing
a map (and showing that it is well defined), showing that the mapping is a homomorphism, is
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one-to-one, and is onto. First, recall that the quotient group G/Kern (f) is

G/Kern (f) = {(Kern (f)) g | g ∈ G} = {g (Kern (f))} .

1. Let us define a mapping f̃ : G/Kern (f)→ Im (f) by

f̃ ((Kern (f)) g) = f (g) ,

where f is the homomorphism f : G→ K. We must show that this definition of f̃ is well
defined, i.e., we must show that if (Kern (f)) g1 = (Kern (f)) g2 for some g1, g2 ∈ G, then
f̃ ((Kern (f)) g1) = f̃ ((Kern (f)) g2). Now, by definition of equal cosets,

(Kern (f)) g1 = (Kern (f)) g2 ⇔ g1g
−1
2 = k ∈ Kern (f)⇒ g1 = kg2.

Now, since k ∈ Kern (f), we must have f (k) = 1K . Therefore,

f̃ ((Kern (f)) g1) = f (g1) = f (kg2)

= f (k) f (g2)

= 1Kf (g2)

= f (g2)

= f̃ ((Kern (f)) g2) .

So f̃ is well defined.

2. We now show that f̃ is a homomorphism. For all g1, g2 ∈ G, we have

f̃ ((Kern (f)) g1 (Kern (f)) g2) = f̃ ((Kern (f)) g1g2)

= f (g1g2)

= f (g1) f (g2)

= f̃ ((Kern (f)) g1) f̃ ((Kern (f)) g2) .

So f̃ is a homomorphism.

3. We now show that f̃ is onto. Let k ∈ Im (f), i.e., there exists a g ∈ G such that k = f (g).
We must find an element in G/Kern (f) that maps to k. We have

f̃ ((Kern (f)) g) = f (g) = k,

which means that f̃ is onto.

4. Finally, we show that f̃ is one-to-one. Recall that to show a homomorphism it suffices to

show that its kernel is trivial, i.e., we must show that Kern
(
f̃
)

=
{

1G/Kern (f)

}
. Now,

Kern
(
f̃
)

=
{

(Kern (f)) g | f̃ ((Kern (f)) g) = 1Im(f)

}
= {(Kern (f)) g | f (g) = 1K} (since 1K = 1Im(f))

= {(Kern (f)) g | g ∈ Kern (f)}
= {Kern (f)}
=
{

1G/Kern (f)

}
,

(The last step follows from the fact that if H is a subgroup and a ∈ H, then Ha = H.)
so that the kernel of f̃ is indeed the identity of G/Kern (f). So f̃ is one-to-one.
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Therefore, f̃ is an isomorphism, and the pf is complete. �

Example 6.6.5 In Z consider the subgroup 5Z and the set whose elements are the cosets
of 5Z in Z, namely, Z/5Z. Since m+ 5Z = n+ 5Z if and only if m ≡ nmod 5, we have

Z/5Z = {5Z+ 0 = 5Z, 5Z+ 1, 5Z+ 2, 5Z+ 3, 5Z+ 4} .

By using addition modulo 5 on this set, we have that Z/5Z is a group that is isomorphic
to Z5. We can define the isomorphism f : Z/5Z → Z5 by f (5Z+ 1) = [1]5 using Lemma
6.2.2, which is enough to define the isomorphism on all other elements in each group. Let
us explicitly write the isomorphism anyway:

f =

(
5Z+ 0 5Z1 5Z+ 2 5Z+ 3 5Z+ 4

[0]5 [1]5 [2]5 [3]5 [4]5

)

Now, let f : Z→ Z5 be the homomorphism with

f (m) = (nZ)m = nZ+m.

What is the kernel of this homomorphism? First, note that that the identity element in
Z5 is [0]5. Therefore, what we are looking for is the set of all integers K = Kern (f) such
that f (K) = [0]5. Since any multiple of five is congruent to zero modulo five, we have that
Kern (f) = 5Z.

Also, what is the image Im (f) of f? In this case, it is clear that Im (f) = Z5. So, using
the terms of the first isomorphism theorem, we can let G = Z and K = Z5. Then, since
Kern (f) = 5Z, we get

G/Kern (f) = Z/5Z ∼= Im (f) = Z5, i.e., Z/5Z ∼= Z5,

confirming what we had already discovered.

Example 6.6.6 The General and Special Linear Groups

Recall the general linear group, GLn (F), the set of n × n matrices with entries from
F and with non-zero determinant. Also recall the special linear group, SLn (F), the set of
n × n matrices with entries from F and with determinant equal to unity. The field F will
be one of R,Q,Z,Zn, and the operation on both groups is matrix multiplication. We first
prove that

SLn (F) E GLn (F) .

To prove this, we must show that for all A ∈ GLn (F) and all B ∈ SLn (F) ABA−1 ∈ SLn (F),
or A−1BA ∈ SLn (F) (both are equivalent). We have

det
(
A−1BA

)
= det

(
A−1

)
det (B) det (A) =

1

det (A)
· 1 · det (A) = 1,
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so, indeed A−1BA ∈ SLn (F), and similarly, we have ABA−1 ∈ SLn (F). So the special
linear group is indeed a normal subgroup in the general linear group. Now, because SLn (F)
is a normal subgroup, we may consider the quotient group GLn (F)/SLn (F). What does this
group look like? To answer this question, we’ll use the first isomorphism theorem. Consider
the mapping

det : GLn (F)→ F∗,

where F∗ = F − {0}, analogous to R∗ and C∗ that we saw at the beginning of the course.
We use this mapping as our homomorphism f from the statement of the theorem. Indeed, it
is a homomorphism since for any two matrices A,B ∈ GLn (F), det (AB) = det (A) det (B),
as you should have seen from Linear Algebra (and since neither det (A) nor det (B) equals
zero, we have that det (AB)). What is the kernel of this homomorphism? In any of the four
choices of F, the (multiplicative) identity is 1, so

Kern (det) = {A ∈ GLn (F) | det (A) = 1} ,

which is nothing other than SLn (F)! So by the first isomorphism theorem,

GLn (F)/SLn (F) ∼= Im (det) ,

but what is Im (det)? Let us posit that Im (det) = F∗. To show this, it suffices to show, by
Theorem 6.6.4, that det is onto. We must show that every number λ ∈ F∗ gets mapped to
by some point (i.e., matrix) in GLn (F). Now, consider the matrix

Aλ =


λ . . . 0 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


Because Aλ is diagonal, det (Aλ) = λ 6= 0, and so there exists an element in GLn (F) such
that its determinant is non-zero. Therefore, det is onto, and Im (det) = F∗. In conclusion,
then,

GLn (F)/SLn (F) ∼= F∗ .

Theorem 6.6.6

Let G and K be finite groups, and let f : G → K be a homomorphism. Then
|Im (f)| divides both |G| and |K|.

Proof: We already know that Im (f) is a subgroup of K, hence |Im (f)| divides |K| by La-
grange’s Theorem. But |Im (f)| = |G/Kern (f)| by the first isomorphism theorem, i.e.,

|Im (f)| = |G|
|Kern (f)|

⇒ |Kern (f)| = |G|
|Im (f)|

,

i.e., |Im (f)| divides |G| as well. �
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Theorem 6.6.7

Given a group K and a normal subgroup K, there exists an onto homomorphism
f : G→ G/K with Kern (f) = K.

Proof: We define f by letting f (g) = Kg for any g ∈ G. Since K E G, then we know that the
set of cosets G/K is a group under the operation (Kg1) (Kg2) = Kg1g2 for all g1, g2 ∈ G. Then f
is a homomorphism because f (g1g2) = Kg1g2 = (Kg1) (Kg2) = f (g1) f (g2). In the group G/K,
the identity element is K, as we know. So we have x ∈ Kern (f) if and only if f (x) = K, and
since f (x) = Kx, we have x ∈ Kern (f) if and only if Kx = K, which is equivalent to x ∈ K.
Thus, Kern (f) = K. Finally, f is onto since every element of G/K is of the form Kg for some
g ∈ G. �

6.7 The Second and Third Isomorphism Theorems

In this section, we present the second and third isomorphism theorems. Before that, we present
the correspondence theorem.

Theorem 6.7.1 Correspondence Theorem

Let G be a group and N E G be a normal subgroup of G. Then:

1. If K is a subgroup of the quotient group G/N, then K is of the form H/N,
where H is a subgroup of G such that N ≤ H ≤ G, and N ⊆ H. Conversely,
if N ≤ H ≤ G and N ⊆ H, then H/N ≤ G/N for some H ≤ G.

2. The correspondence between subgroups of G/N and subgroups of G contain-
ing N is a bijection. This bijection maps normal subgroups of G/N on to
normal subgroups of G that contain N .

Remark: Let us try to deconstruct the elements of the first part of the above theorem. Remember that
the quotient group G/N = {Ng | g ∈ G}, where N E G. Now, suppose for the sake of argument that G/N =
{Ng1, Ng2, . . . , Ngn}. As we have seen in examples, g1, g2, . . . , gn is not necessarily all of the elements of G
since generally not all the cosets are unique. In fact {g1, g2, . . . , gn} = R, the set of representatives for the
cosets such that R ⊆ G.

Now, let K ≤ G/N. Then K contains some, but perhaps not all, of the elements of G/N. So we may write
K = {Nk | k ∈ R = {g1, g2, . . . , gn}}. Lets say that K = {Ng1, Ng2, Ng10, Ng7}. Now, let us define a the set
H = {g ∈ G |Ng ∈ K}. Observe that in general H ⊆ R, i.e., H is the set of those representatives that are used
in the cosets that make up K. So, using our example, we have H = {g1, g3, g10, g7}. Now, K is a subgroup, so
we must have that, for example, (Ng1) (Ng3) = Ng1g3 ∈ K. For Ng1g3 to be in K, we must have g1g3 ∈ H.
This is the idea that will be used in the pf that H is a subgroup.

Proof:

1. (⇒) Suppose K ≤ G/N, i.e., K is a subgroup of the quotient group G/N. Remember
that the quotient group G/N is the set of all cosets of N in G, i.e., G/N = {Ng | g ∈ G}.
Therefore, since K is a subgroup of G/N, the elements of K will be a set of the right cosets
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of N in G. Now, define
H = {g ∈ G |Ng ∈ K} .

We first prove that H is a subgroup of G.

(a) Since K is a subgroup of G/N, it must contain the identity of G/N, namely, N . But
N = N1, so by definition 1 ∈ H, i.e., H is not empty.

(b) For all h1, h2 ∈ H Nh1Nh2 = Nh1h2, and since K is a (sub)group, we must have
Nh1h2 ∈ K, which is possible if and only if h1h2 ∈ H. So H is closed under
multiplication.

(c) For all h ∈ H, (Nh)−1 = Nh−1. Now, since K is a (sub)group, every element must
have an inverse, i.e., Nh−1 ∈ K, which is possible if and only if h−1 ∈ H. So every
element of H has an inverse in H.

So by the subgroup test H ≤ G. In particular, then N ≤ H. Now, define a mapping
f : H → K by f (h) = Nh. Now, by definition of H, for any Nh ∈ K, there exists a
h ∈ H, so f is onto, and hence K = Im (f). Now, Kern (f) = {h ∈ H |Nh = N}. But
Nh = N implies that h ≡N 1, which implies that h1−1 ∈ N ⇒ h ∈ N . So Kern (f) =
{h ∈ H |h ∈ N} = H ∩ N . But since N ≤ H, we must have N ∩ H = N , so that
Kern (f) = {h ∈ H |h ∈ N} = N . So the first isomorphism theorem gives

H/Kern (f) = H/N ∼= Im (f) = K,

i.e., K is the of the form H/N, as required.

(⇐) SupposeN ≤ H ≤ G andN ⊆ H and consider the quotient group H/N = {Nh |h ∈ H}
(we can consider this subgroup since N ≤ H—in fact, N E H). We must show that H/N
is a group.

(a) Since H is a (sub)group, it must contain the identity element 1H = 1G. Hence,
N1H = N ∈ H/N, so H/N is not empty.

(b) If Nh1, Nh2 ∈ H/N, then Nh1Nh2 = Nh1h2 ∈ H/N since H is a (sub)group and so is
closed under multiplication.

(c) If Nh ∈ H/N, then (Nh)−1 = Nh−1. Since H is a (sub)group, any element h ∈ H
must contain an inverse h−1, so that Nh−1 ∈ H/N.

So by the subgroup test H/N is a subgroup of G/N since H/N ⊆ G/N.

2. Not covered in lectures. �

Before we go to the Second Isomorphism Theorem, it is useful to recall Theorems ?? and 6.5.6.
In particular, in Theorem ??, we showed that if K is a subgroup of a group G and H is a normal
subgroup of G, then the group HK is a subgroup of G. We now prove another result here,
which ties into Theorem 6.5.6 and the second isomorphism theorem.

Theorem 6.7.2

Let G be a group and H and N subgroups such that N E G. Then H ∩N is a
normal subgroup of H.
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Proof: Because N E G, we have that for all n ∈ N and all g ∈ G gng−1 ∈ N .

1. Because H and N are both (sub)groups of G, they both contain the identity element of
G, namely 1G. Therefore, 1G ∈ H ∩N , and so H ∩N is not empty.

2. For all elements x ∈ H ∩N and h ∈ H, we must have hxh−1 ∈ H ∩N . Indeed, since H
is closed under multiplication and x ∈ H (since x is in the intersection of H and N , it
is necessarily in both H and N), we have hxh−1 ∈ H for all h ∈ H. Additionally, since
x ∈ N and N E G, certainly gxg−1 ∈ N for all g ∈ G, which means this is true for all
h ∈ H. Hence hxh−1 ∈ H ∩N for all h ∈ H, and the pf is complete. �

Theorem 6.7.3

Let G be a group and H and N subgroups such that N E G. Then N E NH =
HN ≤ G.

Proof: Get this!! �

Theorem 6.7.4 Second Isomorphism Theorem

Let G be a group and H and N subgroups such that N E G. Then,

H/H ∩N ∼= HN/N .

Remark: What does the quotient group HN/N even look like? First of all, can we even construct such a
quotient group? Yes, since the previous theorem says that if H and N are subgroups and N E G, then N is a
normal subgroup in NH, which itself is a subgroup of G. Now, then, we have HN = {hn |h ∈ H, n ∈ N}. We
then take this subgroup of G (remember that HN is indeed a subgroup!) and partition it using the equivalence
classes mod N , so that

HN/N = {aN | a ∈ HN} .
Additionally, as we know, H/N = {hN |h ∈ H}, but this is only if N is a normal subgroup of H!. The

statement of the theorem only says that N is a normal subgroup of G, which does not necessarily imply that
N is a normal subgroup of H. Certainly if N was a subset of H, then N would also be a normal subgroup of
H—but this is not true in general. So, to which quotient group does the coset Nh, where h ∈ H, belong, to
H/N or HN/N? Let n = 1G. Then h = h1G and so h1GN is of the form hnN , hence hN ∈ HN/N. If N was a
subset of N , then hN would belong to both HN/N and H/N.

Proof: Let us define a mapping f : H → HN/N by f (h) = hN (it has to be left coset!). From
the above remark, hN is an element of NH/H. Then f is a homomorphism since

f (xy) = xyN = (xN) (yN) = f (x) f (y) ,

for all x, y ∈ H. Also,

Kern (f) =
{
h ∈ H | f (h) = 1HN/N

}
= {h ∈ H |hN = N}
= {h ∈ H |h ∈ N}
= H ∩N.
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It is also clear that f is onto, since for any element hnN ∈ HN/N, where h ∈ H and n ∈ N , we
have hnN = hN , so that f (h) = hN . Therefore, Im (f) = HN/N, so by the first isomorphism
theorem, we get

H/Kern (f) = H/H ∩N ∼= Im (f) = HN/N ⇒ H/H ∩N ∼= HN/N,

as required. �

Theorem 6.7.5 Third Isomorphism Theorem

Let G be a group and H and N subgroups such that N ≤ H and N E G. Then

1. From the correspondence theorem, if K is a normal subgroup of G/N, then it
is of the form H/N, where H ≤ G. If H E G, then H/N E G/N. Conversely,
if H/N E G/N, then H E G.

2. If H/N E G/N, then

G/N/H/N ∼= G/H .

Proof:

1. Suppose H and N are normal subgroups of G such that N ≤ H. In particular, then
N E H (as we have shown). We must show that H/N E G/N. Recall what these two
quotient groups look like:

H/N = {Nh |h ∈ H}
G/N = {Ng | g ∈ G}

We must show that for all elements a ∈ H/N and b ∈ G/N b−1ab ∈ H/N (i.e., the conjugate
of all elements in H/N by all elements in H/N is still in H/N). So,

(Ng)−1 (Nh) (Ng) =
(
Ng−1

)
(Nh) (Ng) = Ng−1hg,

for all g ∈ G and h ∈ H. But since H / G, we have that g−1hg ∈ H for all g ∈ G and
h ∈ H. So since g−1hg ∈ H, as required, we have that H/N is normal in G/N.

Conversely, suppose H/N E G/N, i.e., for all elements a ∈ H/N and b ∈ G/N b−1ab ∈ H/N.
But then (Ng)−1 (Nh) (Ng) = Ng−1hg, which implies that g−1hg ∈ H for all g ∈ G and
h ∈ H. So H E G.

2. Suppose H/N E G/N. Define a mapping

f : G→ G/N/H/N by f (g) = (H/N) g,

i.e., the right coset of the quotient group H/N, which is

(H/N) g = {ag | a ∈ H/N} ,

which we can also write as

(H/N) g = {Nh |h ∈ H} g = {Nhg |h ∈ H} .
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Now, let us first show that this coset (H/N) g is indeed an element of the quotient group
G/N/H/N. But what does G/N/H/N even look like!? It is the set of cosets of H/N in G/N, so
each element in the group is of the form (H/N) b, where b ∈ G/N, i.e.,

G/N/H/N = {(H/N) b | b ∈ G/N} .

But since b is an element of G/N, we have b = Ng for some g ∈ G, i.e.,

(H/N) b = {Nhb |h ∈ H} = {NhNg |h ∈ H} = {Nhg |h ∈ H} = (H/N) g,

so (H/N) g is indeed an element of G/N/H/N. Now, let us go through our four steps of proving
an isomorphism.

(a) We have just defined the mapping. Show that it is well defined!

(b) We now show that f is a homomorphism. For any two g1, g2 ∈ G, we have

f (g1g2) = (H/N) g1g2 = {Nhg1g2 |h ∈ H} = {Nhg1 |h ∈ H} {Nhg2 |h ∈ H}
= (H/N) g1 (H/N) g2 = f (g1) f (g2) ,

so f is a homomorphism.

(c) We just showed above that any element (H/N) b ∈ G/N/H/N can be written as {Nhg |h ∈ H}
and that f (g) = {H/N) g = {Nhg |h ∈ H}, so that f is onto, which means that

Im (f) = G/N/H/N.

(d) Finally, let us consider the kernel of f—it consists of all elements g ∈ G such
that f (g) = 1G/N/H/N = H/N = {Nh |h ∈ H}. In general, f (g) = (H/N) g =
{Nhg |h ∈ H}. Now, for all elements h′ ∈ G that are also in H

f
(
h′
)

=
{
Nhh′ |h ∈ H

}
=
{
Nh̃ | h̃ ∈ H

}
= H/N,

since hh′ = h̃ ∈ H. But since H ≤ G, all those elements of g that are in H are all
the elements of H; therefore,

Kern (f) = H,

i.e., since Kern (f) 6= 1G, we have that f is not one-to-one, so that f is not a
homomorphism.

It’s OK that f is not an isomorphism—we only need f to be a homomorphism since the
first isomorphism theorem immediately gives

G/Kern (f) = G/H ∼= Im (f) = G/N/H/N,

as required. This completes the pf. �

Theorem 6.7.6

Let G and K be two groups and let N E G and H E K. Then:

1. N ×H E G×K.

2. G×K/N ×H ∼= (G/N)× (K/H).
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Proof:

1. First of all, as a reminder, we have

N ×H = {(n, h) |n ∈ N, h ∈ H}
G×K = {(g, k) | g ∈ G, k ∈ K} .

We must show that any element (n, h) ∈ N×H is closed under conjugation, i.e., (n, h)−1 (g, k) (n, h) ∈
N ×H. We have

(g, k)−1 (n, h) (g, k) =
(
g−1, k−1

)
(n, h) (g, k) =

(
g−1ng, k−1hk

)
.

Now, N E G and H E K, so g−1ng ∈ N and k−1hk ∈ H, so that
(
g−1ng, k−1hk

)
∈ N×H.

So N ×H E G×K.

2. To show this, we simply construct a mapping and show that it is a homomorphism and
use the first isomorphism theorem.

(a) Let us define a mapping

f : G×K → (G/N)× (K/H) by f (g, k) = (Ng,Hk) .

Show that it is well defined!

(b) We now show that f is a homomorphism. For any two elements (g1, k1) , (g2, k2) ∈
G×K, we have

f ((g1, k1) (g2, k2)) = f (g1g2, k1k2) = (Ng1g2, Hk1k2) = (Ng1Ng2, Hk1Hk2)

= (Ng1, Hk1) (Ng2, Hk2) = f (g1, k1) f (g2, k2) ,

so that f is a homomorphism.

(c) It is quite clear from the definition of the mapping that f is onto, so that

Im (f) = (G/N)× (K/H) .

(d) Finally, let us consider Kern (f). We want those elements of G×K that get mapped
to the identity element of (G/N)× (K/H), namely (N,H). We know that (Nn,Hh) =
(N,H) whenever n ∈ N and h ∈ H. And since N ≤ G and H ≤ K (in fact N E G
and H E K as per the statement of the theorem), all elements of H are in G and all
elements of H are in K, so that the kernel consists of all those pairs (n, h) ∈ G×K
that are also in N ×H. In other words,

Kern (f) = N ×H.

So by the first isomorphism theorem

G×K/Kern (f) = G×K/N ×H ∼= Im (f) = (G/N)× (K/H) ,

as required. �
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Theorem 6.7.7

Let G1 and G2 be two groups. Then:

1. G1 × {1G2} E G1 ×G2 and {1G1} ×G2 E G1 ×G2.

2. G1 ×G2/G1 ×
{
1G2

} ∼= G2 and G1 ×G2/
{
1G1

}
×G2

∼= G1.

Proof:

1. Let H = G1 × {1G2} and let (a, 1G2) , (b, 1G2) ∈ H. Then

(a, 1G2) (b, 1G2)−1 = (a, 1G2)
(
b−1, 1G2

)
=
(
ab−1, 1G2

)
∈ H,

so that H is a subgroup of G1 ×G2. Now, let (a1, a2) ∈ G1 ×G2 and (b, 1G2) ∈ H. Then,

(a1, a2) (b, 1G2) (a1, a2)
−1 = (a1, a2) (b, 1G2)

(
a−11 , a−12

)
=
(
a1ba

−1
1 , 1G2

)
∈ H,

so that H is a normal subgroup of G1 ×G2. The second part is similar (do it!!).

2. Consider the mapping f : G1 × G2 → G2 defined by f (a1, a2) = a2. Then f is a homo-
morphism since we have

f ((a1, a2) (b1, b2)) = f (a1b1, a2b2) = a2b2 = f (a1, a2) f (b1, b2) .

Also, f is onto since, given any y ∈ G2, we have y = f (x, y) for any x ∈ G1. Finally,
(a1, a2) ∈ Kern (f) if and only if a2 = 1G2 , hence if and only if (a1, a2) ∈ G1×{1G2} = H.
Therefore, by the first isomorphism theore, we have the required isomorphism. The second
part of the statement is similar (do it!!). �

Example 6.7.1 Show that the Klein 4-Group, which we saw can be represented as D2, is
isomorphic to Z2 × Z2.

Solution:

Example 6.7.2 Consider the group S3 =
{

1, b, b2, a, ab, ab2
}

.

1. Determine all normal subgroups of S3 and write down their corresponding quotient
group.

2. Then consider the group S3 × S3 (which has 36 elements). Determine all the normal
subgroups of S3 × S3 and write down their corresponding quotient group.

Solution:
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1. Let us first determine all the subgroups before going to normal subgroups. Recall
Lagrange’s Theore, which says that if H is a subgroup of a group G, then |H| divides
|G|. Now, |S3| = 6, and the integers that divide 6 are 1,2,3,6, so there are four
subgroups of S3. These are

〈1〉 = {1} |〈1〉| = 1 (trivial subgroup)

〈a〉 = {1, a} |〈a〉| = 2

〈ab〉 = {1, ab} |〈ab〉| = 2〈
ab2
〉

=
{

1, ab2
} ∣∣〈ab2〉∣∣ = 2

〈b〉 =
{

1, b, b2
}

|〈b〉| = 3

S3 =
{

1, b, b2, a, ab, ab2
}

|S3| = 6 (the whole group)

Now, to determine which of these subgroups is normal in S3, it is easiest to simply
see for which subgroups are the corresponding left and right cosets equal. We have
already seen in a previous example that 〈b〉 E S3, so we don’t check that one. Also, it
should be clear that {1}, being the trivial subgroup, has equal left and right cosets, so
that {1} E S3. Also, S3 E S3. So far we have three normal subgroups.

The left and right cosets of 〈a〉 are

1 〈a〉 = {1, a} 〈a〉 1 = {1, a}
a 〈a〉 = {a, 1} 〈a〉 a = {a, 1}

b 〈a〉 =
{
b, ab2

}
〈a〉 b = {b, ab} 6= b 〈a〉 ,

and we don’t need to check the rest since we found an instance in which the left and
right cosets are not equal. So 〈a〉 is not normal in S3.

Similarly, we can see that

b 〈ab〉 = {b, bab} = {b, a} and 〈ab〉 b = {b, abb} =
{
b, ab2

}
6= b 〈ab〉 ,

so 〈ab〉 is not normal in S3. Finally,

b
〈
ab2
〉

=
{
b, bab2

}
= {b, ab} and

〈
ab2
〉
b =

{
1, ab2b

}
= {1, a} 6= b

〈
ab2
〉
,

so
〈
ab2
〉

is also not normal in S3. So there are only three normal subgroups of S3,

{1} , 〈b〉 , and S3.

Let us focus on the normal subgroup 〈b〉. Its corresponding quotient group S3/〈b〉 has
two elements,

S3/〈b〉 =
{{

1, b, b2
}
,
{
a, ab, ab2

}}
= {〈b〉 , 〈b〉 a} .

Remember that the identity element of this group is 〈b〉. Now,

(〈b〉 a)2 = 〈b〉 a 〈b〉 a = 〈b〉 aa = 〈b〉 a2 = 〈b〉 ,

so we have that S3/〈b〉 is a cyclic group of order two. And as we know, all cyclic groups
of order two are isomorphic to Z2, which itself is isomorphic to Z/2Z. Hence,

S3/〈b〉 ∼= Z2
∼= Z/2Z.
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2. We now want to find the normal subgroups of S3 × S3. We have seen that S3 has
three normal subgroups, the trivial one, the improper one, and 〈b〉. Using the theorem
above, then, we immediately get nine normal subgroups:

{1} × 〈b〉 =
{

(1, 1) , (1, b) ,
(
1, b2

)}
〈b〉 × {1} =

{
(1, 1) , (b, 1) ,

(
b2, 1

)}
{1} × S3 =

{
(1, 1) , (1, b) ,

(
1, b2

)
, (1, a) , (1, ab) ,

(
1, ab2

)}
S3 × {1} =

{
(1, 1) , (b, 1) ,

(
b2, 1

)
, (a, 1) , (ab, 1) ,

(
ab2, 1

)}
〈b〉 × S3
S3 × 〈b〉
{1} × {1} = {(1, 1))} (trivial)

〈b〉 × 〈b〉
S3 × S3 (whole group)

Now, we discovered above that S3/〈b〉 ∼= Z2. This implies that

(S3/〈b〉)× (S3/〈b〉) ∼= Z2 × Z2.

(Remember that Z2 ×Z2 is isomorphic to the Klein 4-Group.) But remember that Z2

is an Abelian group, and by Theorem 6.4.5, every subgroup of an Abelian groups is a
normal subgroup. Therefore, using the theorem above, any subgroup of Z2 × Z2 is a
normal subgroup. On the other hand, using the theorem above with G = K = S3 and
N = 〈b〉, we get

S3 × S3/〈b〉 × 〈b〉 ∼= (S3/〈b〉)× (S3/〈b〉) ∼= Z2 × Z2.

This means that any subgroup of S3 × S3/〈b〉 × 〈b〉 is a normal subgroup. Now, from
the third isomorphism theorem part 1 (the converse), any normal subgroup of
S3 × S3/〈b〉 × 〈b〉 is of the form H/〈b〉 × 〈b〉 where H E S3 × S3. And these subgroups
H will be isomorphic to the normal subgroups of Z2 × Z2. The subgroups (which are
all normal) of Z2 × Z2 are

{([0], [0])} (trivial)

Z2 × Z2 (whole group)

〈([0], [1])〉 = {([0], [0]) , ([0], [1])} = [0]× Z2

〈([1], [0])〉 = {([0], [0]) , ([1], [0])} = Z2 × [0]

〈([1], [1])〉 = {([0], [0]) , ([1], [1])} .

6.8 Automorphisms

Recall that automorphisms are isomorphisms from a group to itself. In this section we will
present some results about automorphisms. We will denote the set of all automorphisms of a
group G by Aut (G).
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Theorem 6.8.1

Let G be a group. Then Aut (G) is a group under composition of functions.

Proof: We prove that the four group axioms hold.

1. Let f1, f2 ∈ Aut (G) be two automorphisms, and consider f1 ◦ f2. We already know
from Chapter 1 that a composition of injective functions is injective and a composition
of surjective functions is surjective. So to show that f1 ◦ f2 is also an automorphism, we
must show that f1 ◦ f2 is a homomorphism, but this follows from Theorem 6.1.1.

2. We have already seen in Chapter 1 that composition of functions is associative.

3. Let f0 be the identity mapping on G, i.e., f0 (a) = a for all a ∈ G. Indeed, f0 is an
automorphism and since f ◦ f0 = f and f0 ◦ f = f , we see that f0 is the appropriate
identity element in Aut (G).

4. Let f ∈ Aut (G). Since f is a bijection (being an isomorphism), from Chapter 1 we have
that f is invertible, i.e., f−1 exists and is also a bijection such that f ◦ f−1 = f0 =
f−1 ◦ f . Finally, we show that f−1 is a homomorphism. Indeed, let a, b ∈ G and let
c = f−1 (a), d = f−1 (b). We have f (c) = a, f (d) = b, and since f is a homomorphism,
f (cd) = f (c) f (d) = ab, from which it follows that f−1 (ab) = cd = f−1 (a) f−1 (b), so
that f−1 is a homomorphism. In other words, for every f ∈ Aut (G) there exists an inverse
f−1 ∈ Aut (G).

Having proved the four group axioms, we have that Aut (G) is a group. �

Example 6.8.1 Let us find all possible isomorphisms f : Z6 → Z6, i.e., let us determine
Aut (Z6). We know that Z6 is cyclic and [1] is a generator, i.e., Z6 = 〈[1]〉. From Lemma 6.2.1,
o (f (a)) = o (a) for all a. So if f is an isomorphism, we must have o (f ([1])) = o ([1]) = 6,
so f ([1]) must be a generator of Z6, and therefore f ([1]) = [1] or f ([1]) = [5]. Also,
once f ([1]) is known, f is completely determined, since we must have f ([2]) = [2]f ([1]),
f ([3]) = [3]f ([1]), and so on, and these maps are isomorphisms by Lemma 6.2.2. So there
are exactly two isomorphisms (observe that the one with f ([1]) = [1] is nothing but the
identity, mapping, i.e., the trivial isomorphism). Let f0 be this mapping, and let f1 be the
isomorphism with f ([1]) = [5]. Consider now the operation of composition of functions on
the set {f0, f1}. We have

f0 ◦ f0 = f0

f0 ◦ f1 = f1 ◦ f0 = f1.

What about f1 ◦ f1 = (f1)
2? We have

f1 ◦ f1 ([1]) = f1 (f1 ([1])) = f1 ([5]) = [5][5] = [25] = [1]⇒ f1 ◦ f1 = (f1)
2 = f0.

Therefore, Aut (Z6) = {f0, f1} is thus a cyclic group of order two!
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Example 6.8.2 Let us now determine Aut (Z8). Since Z8 is cyclic with generator [1],
if f is any automorphism, we must have o (f ([1])) = o ([1]) = 8, and f ([1]) must also
be a generator of Z8. That is, we must have either f ([1]) = [1] (trivial automorphism),
f ([1]) = [3], f ([1]) = [5], or f ([1]) = [7]. Again, once f ([1]) is known, f is completely
determined, since in general f ([n]) = [n]f ([1]). All of these maps are indeed isomorphisms.
Therefore, we have four automorphisms.

Remember that all finite cyclic groups of order n are isomorphic to Zn.

Theorem 6.8.2

Let G be a finite cyclic group of order n. Then Aut (G) ∼= U (n).

Proof: We follow our four steps of proving two groups are isomorphic.

1. First we define a mapping T : Aut (G)→ U (n) as follows. Let G = 〈a〉, where o (a) = n.
Consider f ∈ Aut (G). For any g ∈ G, we have g = ai for some integer i, 0 ≤ i <
n, and then f (g) = f

(
ai
)

= f (a)i (since f is a homomorphism), so f is completely
determined once f (a) is fixed. We must have o (f (a)) = f (a) = n, hence f (a) is also
a generator of G, and therefore f (a) = ar for some r with gcd (n, r) = 1, and hence
ar = as, where s is the remainder of r mod n (what does this mean?). Thus, there is
an s ∈ {q | gcd (n, q) = 1, 0 ≤ q < n} = U (n) such that f (a) = as. So we define T by
T (f) = s.

2. We now show that T is a homomorphism. If f, g ∈ Aut (G), with f (a) = as and g (a) = ar,
where r, s ∈ U (n), then g ◦ f (a) = g (f (a)) = g (as) = ast = au, where u ≡ st mod n. It
follows that T (g ◦ f) = u = T (g)T (f) mod n (since the operation in U (n) is multiplica-
tion modulo n).

3. T is one-to-one beause if T (g) = T (f), then f (a) = aT (f) = aT (g) = g (a), and hence
f = g.

4. T is onto because if s ∈ U (n), then as is a generator of G, and the mapping defined by
f
(
ai
)

= asi is an isomorphism by Lemma 6.2.2.

Therefore, we have found an isomorphism T , and hence Aut (G) ∼= U (n). �

Let G be a cyclic group of order n. Then Aut (G) ∼= U (n) .
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7 The Permutation Group Sn

We looked at this in section 4.3.1, and we established that Sn, which is the set of permutations of
n distinct objects, or simply the permutations ofOn = {1, 2, . . . , n}, is a group under composition
of functions. In fact, we saw that permutations are simply bijections from On to itself. We looked
at some examples, and we also looked at the number of elements of Sn that have a particular
type of cycle structure. We also developed the concept of cyclic notation for bijections in section
1.2, and looked at disjoint bijections.

We will now revisit all of these concepts and develop them more formally in the context of
permutations. The permutation group is important because, as we will see later, any finite group
can be viewed as a subgroup of a permutation group. This means that studying finite groups
amounts to studying permutation groups and their subgroups. When we want to construct a
finite group with specific properties, we look for permutations that generate a subgroup with
these properties.

In general, any bijection from a set X to itself can be regarded as permutation, and in this case
the bijection is called a permutation of the set X.

Example 7.0.3 Here are some examples of permutations.

1. The function f : Z→ Z defined by f (n) = n+1 is one-to-one because if f (n1) = f (n2),
then n1+1 = n2+1⇒ n1 = n2. It is also onto, because for any m ∈ Z, f (m− 1) = m.
So f is a bijection, and hence a permutation of the set Z.

2. The function f : {1, 2, 3, 4} → {1, 2, 3, 4}, defined by f (1) = 3, f (2) = 4, f (3) = 1,
and f (4) = 2, is clearly one-to-one and onto, so it is a permutation of the set {1, 2, 3, 4}.

A more common name for Sn is the symmetric group of order n, for reasons we shall see later.

Definition 7.0.1 The Symmetric Group of Order n

The group consisting of the set Sn under the operation of composition of bijec-
tions, is called the symmetric group of order n.

7.1 Disjoint Permutations

The key concept in the factorisation of permutations is disjoint cycles. Indeed, we have already
seen that every permutation can be written as a product of disjoint cycles. We will now prove
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this result formally. First, let us restate some of the definitions from section 1.2.

Definition 7.1.1

Here is a summary of important definitions that we will need.

1. Let α ∈ Sn. If x ∈ On, then α fixes x if α (x) = x and α moves x if
α (x) 6= x.

2. Let p1, p2, . . . , pr ∈ On be r distinct points from On, with r ≤ n. If α :
On → On fixes the remaining n− r points, and if

α (p1) = p2, α (p2) = p3, . . . , α (pr−1) , α (pr) = p1,

then α is an r-cycle, or a cycle of length r. We then write α =
(p1 p2 · · · pr).

3. A 2-cycle, i.e., a cycle of length two, merely interchanges a pair of elements.
It is called a transposition.

Definition 7.1.2 Disjoint Permutations

Let α, β ∈ Sn. We say that α and β are disjoint if for any i ∈ {1, 2, . . . , n}

α (i) 6= i⇒ β (i) = i.

If α and β are disjoint, then so are β and α, i.e.,

β (i) 6= i⇒ α (i) = i,

since this is just the contrapositive of the first statement for α and β being
disjoint.

Remark: Be careful when using this definition. Note that is is perfectly possible that there exists an element
i ∈ On such that α (i) = i = β (i), i.e., it is perfectly possible that α and β both fix some element of On. All
the defintion says is that if one of the permutations moves i, then the other must fix i.

Note that this is exactly the same definition as the one given in Definition 1.2.3.

Theorem 7.1.1 Commutativity of Disjoint Permutations

If α, β ∈ Sn are disjoint, then αβ = βα.

Proof: To prove this, we need to show that αβ (i) = βα (i) for all i ∈ On = {1, 2, . . . , n}. Let
i ∈ On be arbitrary. Then there are two cases

Case 1 α (i) = i, i.e., α fixes i.
Then βα (i) = β (i). Then, we have two cases
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1. β (i) = i: In this case, we have βα (i) = β (i) = i and αβ (i) = α (i) = i = βα (i), as
required.

2. β (i) = j 6= i: Now, we must have β (j) 6= j, i.e., β must move j, otherwise we
would have β (i) = j and β (j) = j, i.e., that β is not one-to-one, contradicting the
fact that β is a permutation, and hence a bijection. So β (j) 6= j, and since α and
β are disjoint, we must have that α (j) = j. Therefore, αβ (i) = α (j) = j and
βα (i) = β (i) = j = αβ (i), as required.

Case 2 α (i) 6= i, i.e., α moves i.
Since α and β are disjoint, we must then have β (i) = i. Again, we consider two subcases.

1. α (i) = i: In this case, we get βα (i) = β (i) = i and αβ (i) = α (i) = i = βα (i), as
required.

2. α (i) = j 6= i: Now, we must have α (j) 6= j, otherwise α (j) = j and α (i) = j,
meaning that α is not one-to-one, contradicting the fact that α is a permutation, and
hence a bijection. So α (j) 6= j, which means that β (j) = j since α and β are disjoint.
Therefore, αβ (i) = α (j) = j and βα (i) = β (j) = j = αβ (i), as required. �

Theorem 7.1.2

Let α, β ∈ Sn be two disjoint permutations. Then, for any k ∈ Z, we have

(αβ)k = αkβk.

Proof: By the previous theorem, since α and β are disjoint, αβ = βα. Using this, we get

(αβ)k = (αβ) (αβ) · · · (αβ)

= (αα . . . α) (ββ · · ·β)

= αkβk,

as required. �

Theorem 7.1.3

Let α, β ∈ Sn be disjoint permutations. Then, for any l ∈ Z, we have that αl

and βl are also disjoint.

Proof: Since α and β are disjoint, we have that if α (i) 6= i, then β (i) = i for some i ∈
{1, 2, . . . , n}. Now, since β fixes i, we must have that βl also fixes i for any l ∈ Z (to see this,
simply write down a general permutation and multiply it l times). Now, suppose αl moves i,
i.e., αl (i) 6= i. Then we must have α (i) 6= i, for if α (i) = i, then we would have αl (i) = i, a
contradiction (note that the converse of this is generally false!). Therefore, we have

αl (i) 6= i⇒ α (i) 6= i⇒ β (i) = i⇒ βl (i) = i,

i.e., αl (i) 6= i⇒ β (i) = i, i.e., αl and βl are disjoint, as required. �
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Theorem 7.1.4

If α and β are disjoint cycles, then

o (αβ) = lcm (o (α) , o (β)) .

Proof: To prove this, we will show that o (αβ) | lcm (o (α) , o (β)) and lcm (o (α) , o (β)) | o (αβ).
Now, let m = lcm (o (α) , o (β)). Then,

(αβ)m = αmβm = 1× 1 = 1,

which, as we know, implies that

o (αβ) |m⇒ o (αβ) | lcm (o (α) , o (β)) .

Next, let l = o (αβ) and suppose (αβ)l = αlβl = 1. In other words αlβl is the identity
permutation and so αlβl (i) = i for all i ∈ {1, 2, . . . , n}. Now, we must have βl (i) = i for all
i, for if βl (i) = j 6= i, then we must have αl (j) = i in order to satisfy the assumption that
αlβl = 1 and hence that αlβl (i) = i for all i ∈ {1, 2, . . . , n}. But, from the theorem above, we
have that αl and βl are disjoint, which means that since βl (i) 6= i αl (i) = i. But then αl (i) = i
and αl (j) = j, so that α is not one-to-one, a contradiction to the fact that α is a permutation,
and hence a bijection. Therefore βl (i) = i for all i ∈ {1, 2, . . . , n}, that is, βl = 1. A similar
argument, using the fact that βlα1 = 1 as well, and so βlαl (i) = i for all i ∈ {1, 2, . . . , n}, leads
to αl = 1.

Therefore, we have αl = 1 and βl = 1, which implies that o (α) | o (αβ) and o (β) | o (αβ), which
implies that

lcm (o (α) , o (β)) | o (αβ) .

Therefore, we have o (αβ) = lcm (o (α) , o (β)), as required. �

7.2 Cycle Structures

In this section, we set out to formally define what cycles are and show that every permutation
can not be factored into cycles, something we have seen quite a bit of, but that this factorisation
is unique up to the order of the cycles.

Consider the set O9 = {1, 2, 3, . . . , 9} and the permutation

α =

(
1 2 3 4 5 6 7 8 9
7 9 18 6 4 3 5 2

)
∈ S9.

Let is look at where repeated application of α takes various elements of the set O9:

1→ α (1) = 7→ α2 (1) = α (7) = 3→ α3 (1) = α (3) = 1

2→ α (2) = 9→ α2 (2) = α (9) = 2

4→ α (4) = 8→ α2 (4) = α (8) = 5→ α3 (4) = α (5) = 6→ α4 (4) = α (6) = 4

122



Chapter 7: The Permutation Group Sn 7.2: Cycle Structures

Notice that we are taking certain elements of O9, applying α and its powers to that element
until we return to it. This may remind us of the cyclic notation for permutations. Indeed, we
may write the first case as the permutation (1 7 3), the second as (2 9), and the third as (4 8 5 6).
The permutation α has, in a sense, given us three new permutations based on its powers. In
particular, what we have just done is factor α, something that we have already looked at, albeit
in a completely different way. So we may write

α = (1 7 3) (2 9) (4 8 5 6) .

We now go a bit further in our interpretation of this factorisation. We can see that factoring α
has partitioned the set O9 into three disjoint subsets.

What have we seen already in relation to partitioning of sets. We have seen, for example, with
cosets, that equivalence relations allow us to partition our set. The equivalence relation we may
state for such a partition is as follows: two elements i, j ∈ O9 are equivalent under α, written
i ∼α j, if αn (i) = j for some n ∈ Z. Thus, 1 ∼α 3 because α2 (1) = 3, and 4 ∼α 6 because
α3 (4) = 6. The equivalence classes are {1, 7, 3}, {2, 9}, and {4, 8, 5, 6}. We see that α moves
elements of O9 only within an equivalence class, but not between them.

Theorem 7.2.1

Every permutation α ∈ Sn determines an equivalence relation on the set On.
This equivalence relation is defined by the condition that, for some i, j ∈ On,
i ∼α j if and only if there exists an l ∈ Z such that αl (i) = j.

Proof: We simply prove that the three properties of an equivalence relation, reflexivity, sym-
metry, and transitivity, hold.

1. (Reflexivity) For all i ∈ O9, α
0 (i) = i, so that i ∼α i.

2. (Symmetry) Suppose i ∼α j for all i, j ∈ On. Then there exists an l ∈ Z such that
αl (i) = j, which implies that i = α−l (j) (α−1 exists because α is a bijection). But
−l ∈ Z, so by definition j ∼α i.

3. (Transitivity) Suppose i ∼α j and j ∼α k for all i, j, k ∈ On. Then there exist integers l1
and l2 such that αl1 (i) = j and αl2 (j) = k. Then,

αl2
(
αl1 (i)

)
= αl2 (j) = k = αl1+l2 (i) ,

so that by definition i ∼α k.

We have shown that ∼α satisfies the properties of an equivalence relation, so the pf is com-
plete. �

The equivalence classes generated by ∼α are the cycles, which we now formally define.
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Definition 7.2.1 Cycle

Each equvalence class generated by ∼α is a permutation called a cycle. A cycle
C = {c1, c2, . . . , cl} is a finite subset of {1, 2, . . . , n}, written as the sequence
(c1 c2 · · · cl), such that for all 1 ≤ i, j ≤ l ci 6= cj . Additionally, for all a ∈
{1, 2, . . . , n}, if a ∈ C, say a = ci, and α = (c1 c2 · · · cl) ∈ Sn, then

α (ci) =

{
ci+1 if i ≤ l
c1 if i = l

.

If a /∈ C, then α (a) = a.

Definition 7.2.2 Cycle Structure

Suppose C1, C2, · · · , Ck are the equivalence classes generated by ∼α for any α ∈
Sn. We may order these so that |C1| ≤ |C2| ≤ · · · ≤ |Ck|. The cycle structure
of α is

[|C1| , |C2| , · · · , |Cn|] ,

such that
k∑
i=1

|Ci| = n.

It is important to note that, as we have seen already, each cycle is itself a permutation. Of
course, we may multiply several permutations to get other permutations.

Definition 7.2.3 Disjoint Cycles

Let α = (a1 a2 · · · ak) ∈ Sn and β = (b1 b2 · · · bl) ∈ Sn be two cycles such
that k, l ≤ n and {a1, a2, . . . , ak} , {b1, b2, . . . , bl} ⊆ {1, 2, . . . , n}. α and β are
disjoint if {a1, a2, . . . , ak} ∩ {b1, b2, . . . , bl} = ∅.

Example 7.2.1 Let α = (1 2 8) and β = (5 6 7) in S8. Then α and β are disjoint because
{1, 2, 8} ∩ {5, 6, 7} = ∅. However, if γ = (1 5), then α and γ are not disjoint because
{1, 2, 8} ∩ {1, 5} = {1} 6= ∅.

Theorem 7.2.2

If α, β ∈ Sn are disjoint cycles, then α and β are disjoint permutations.

Proof: Let C = {c1, c2, . . . , cl} be the set associated to α, i.e., let α = (c1 c2 · · · cl), and
let C ′ = {c1, c2, . . . , ck} be the set associated to β, i.e., let β = (c1 c2 · · · ck). Suppose a ∈
{1, 2, . . . , n} and α (a) 6= a. Since α is a cycle, by definition, we must have a ∈ C since α moves
a. Now, since α and β are disjoint, C ∩ C ′ = ∅. In particular, then, a ∈ C ′. But then, by
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definition of cycle, we must have β (a) = a, i.e., we must have that β fixes a. So we have that if
α moves a, then β fixes a, which is precisely the definition of disjoint permutations, so the pf is
complete. �

Theorem 7.2.3

Let α = α1α2 · · ·αk be a product of the disjoint cycles α1, α2, . . . , αk (we know
that such a disjoint cycle factorisation exists). Then,

o (α) = lcm (o (α1) , o (α2) , . . . , o (αk)) .

Proof: Since α1, α2, . . . , αk are disjoint disjoint cycles, by the theorem above, they are also dis-
joint permutations. Now, recall that we showed that o (αβ) = lcm (o (α) , o (β)) for two disjoint
permutations α and β. We can extend this result, so that o (α1α2 · · ·αk) = lcm (o (α1) , o (α2) , . . . , o (αk)) =
o (α), as required. �

Theorem 7.2.4

Let α = (c1 c2 · · · cl) ∈ Sn be a cycle. Then o (α) = l.

Proof: Let C = {c1, c2, . . . , cl} be the set associated with α and let a ∈ C. Then we must
have αl (a) = a, i.e., we must have αl = 1, the identity permutation. Thus, o (α) l. But, by
definition of a cycle, all elements in C are unique, hence it is not possible that αk (a) = a for
any 1 ≤ k < l. So we must have o (α) = l. �

Example 7.2.2 In S8, let

α =

(
1 2 3 4 5 6 7 8
5 8 2 4 7 1 6 3

)
= (1 5 7 6) (2 8 3) (4) .

Then, o (α) = lcm (4, 3, 1) = 12. The cycle of structure of α is [4, 3, 1]. Now, observe that
we may write α as

α =
(
1 α(1) α2(1) α3(1)

) (
2 α(2) α2(2)

)
,

or equivalently as

α = (5 7 6 1) (8 3 2)⇒ α =
(
5 α(5) α2(5) α3(5)

) (
8 α(8) α2(8)

)
,

an so on for each different way of writing each cycle. (We may also write 1 = α0 (1) and
5 = α0 (5).) This way of writing the cycle looks more like the way we write cyclic (sub)groups,
say, of Dn.

We have formally defined what a cycle is, and we have said that if α = (c1 c2 · · · cl) is a cycle,
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then α (cl) = c1. We now prove that this actually follows from the formalism of the equivalence
relation ∼α. At the same time, we will prove that there exists a factorisation into disjoint cycles
for each element α ∈ Sn.

Theorem 7.2.5 Existence of Disjoint Factorisation

Given an element α ∈ Sn with cycle structure [n1, n2, . . . , nk], then there exists
disjoint cycles α1, α2, . . . , αk such that α = α1α2 · · ·αk with each αi being an
ni-cycle, 1 ≤ i ≤ k.

Proof: Let α ∈ Sn and consider the equivalence class Ci of ∼α for some i ∈ {1, 2, . . . , n}. In
particular, let

Ci =
{
a1i , a

2
i , . . . , a

ni
i

}
.

Remember that each equivalence class is a cycle. Without loss of generality, consider a1i . Then,

α
(
a1i
)

= a2i , α
(
a2i
)

= a3i , . . . , α
(
ali

)
= aki , 1 ≤ k ≤ l, 1 ≤ l ≤ ni.

Observe that this does not violate the fact that each element of Ci is equivalent to each other
under ∼α (remember that since Ci is an equivalence class of ∼α, each one of its elements must
be equivalent to each other under ∼α), since there exists a j ∈ Z, in this case 1, such that
α
(
a11
)

= a2i , and so on.

Now, by definition of the cycle, we must have α (anii ) = a1i . We now prove (by contradiction)
that this must be the case, i.e., we prove that l = ni and k = 1. For if it is not, then let us
define the set

C̃i =
{
a1i , a

2
i , . . . , a

l
i

}
⊂ Ci.

We have α
(
ali
)

= aki . Now, let m ∈ Z be arbitrary. By the Division Algorithm, we may write
m = q (l − k) + r for q, r ∈ Z and 0 ≤ r ≤ l − k. Then,

αm
(
aki

)
= αr+q(l−k)

(
aki

)
= αr

(
αq(l−k)

(
aki

))
= αr

(
aki

)
= ak+ri ,

which implies, by definition of ∼α, that

C̃i
′
=
{
aki , a

k+1
i , ak+2

i , . . . , ali

}
is an equivalence class of ∼α, which contradicts the fact that Ci is an equivalence class of ∼α.
This is a contradiction because C̃i

′ ⊆ C̃i ⊂ Ci and Ci being an equivalence relation means that
all elements in Ci are equivalent to i under ∼α; moreover, Ci contains all such elements. To say
that there exists a subset of Ci that is an equivalence class is to say that ... . Thus, k = 1 and
l = ni, and (

a1i a
2
i · · · a

ni
i

)
=
(
a1i α

(
a1i
)
α2
(
a1i
)
· · · αni−1

(
a1i
))

= αi

is a cycle of order ni. Since all Ci are mutually disjoint, it follows that all αi are disjoint.

We know prove that the product α =
∏k
i=1 αi = α1α2 · · ·αk indeed holds. It suffices to show

that
(α1α2 · · ·αk) (j) = α (j)
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for all j ∈ {1, 2, . . . , n}. Remember that all cycles in the product are mutually disjoint, and the
equivalence class Ci corresponds to the cycle αi. Now, without loss of generality, we may take
the arbitrary element j ∈ C1. Since all cycles are mutually disjoint, we have that αi (j) = j for
all 2 ≤ i ≤ k, i.e., only α1 moves j, which should be clear by definition of disjoint cycles. Then,

(α1α2 · · ·αk) (j) = α1 (j)

since, as mentioned, all cycles other than α1 fix j. But by the above arguments, we have

α1 =
(
a11 α

(
a11
)
· · · αn1−1 (a11)) ,

(where a11 ∈ C1), though due to the cyclic nature of cycle notation, we may just as easily take

α1 =
(
j α (j) · · · αn1−1 (j)

)
,

so that α1 (j) = α (j). Hence,
α = α1α2 · · ·αk,

and so we have shown that each equivalence class Ci corresponds to a cycle as per the definition
state earlier, that these cycles are disjoint, and that the product of these cycles indeed gives us
the desired element in Sn. So the pf is complete. �

Lemma 7.2.1 Suppose α, β, γ ∈ Sn.

1. Let α = βγ, where β and γ are disjoint. If β moves i, then αk (i) = βk (i) for all k ≥ 0.

2. Let α and β be cycles not necessarily of the same length. If there is an i1 moved by both
α and β and if αn (i1) = βn (i1) for all positive integers n, then α = β.

Proof:

1. This follows from Theorem 7.1.3 since if β moves i, then by definition of disjoint cycles γ
must fix i, i.e., γ (i) = i, which means that we must have γk (i) = i for all k ≥ 0.

2. Suppose
α = (a1 a2 · · · ak) and β = (b1 b2 · · · bl) .

which we may also write as

α =
(
a1 α(a1) · · · αk−1(a1)

)
and β =

(
b1 β(b1) · · · βl−1(a1)

)
.

Now, suppose i1 ∈ {a1, a2, . . . , ak} and i1 ∈ {b1, b2, . . . , bl}. Then, we may write

α =
(
i1 α(i1) · · · αk−1(i1)

)
and β =

(
i1 β(i1) · · · βl−1(i1)

)
.

By hypothesis, αn(i1) = βn(i1) for all positive integers n. We now show that we must
have k = l, i.e., α and β must be of the same size. For suppose k 6= l, and without loss of
generality, assume k > l.

�
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Theorem 7.2.6 Uniqueness of Disjoint Factorisation

For every element α ∈ Sn, the disjoint cycle factorisation is unique up to the
order of the cycles.

Proof: Let
α = α1α2 · · ·αk and α = β1β2 · · ·βl

be two factorisations of α into disjoint cycles. To show that the factorisation is unique, it suffices
to show that �

7.3 Conjugacy Classes

We first mentioned conjugate elements of a group G when we talked about normal subgroups. It
was then mentioned in a remark that elements that mutually conjugate can be used to partition
the group G. We now develop this theory. We first restate the definition of conjugate elements.

Definition 7.3.1 Conjugate Group Element

Let G be a group and a, b ∈ G. We say that a is conjugate to b by g if there
exists a g ∈ G such that the conjugate of a by g is equal to b, i.e., if gag−1 = b.
Observe that if a is conjugate to b, then indeed b is conjugate to a since gag−1 = b
implies a = g−1bg, which we can write as a = g−1b

(
g−1
)−1

.

Theorem 7.3.1

Let G be a group and a, b ∈ G. The relation ∼, defined as a ∼ b⇔ ∃g gag−1 = b,
i.e., a ∼ b if and only if a is conjugate to b by some g ∈ G, is an equivalence
relation.

Proof: As usual, we go through the three requirements of an equivalence relation.

1. (Reflexivity) Let g = 1G. Then, since 1Ga1−1G = a for all a ∈ G, so that a ∼ a.

2. (Symmetry) Let a ∼ b, i.e., gag−1 = b for some g ∈ G. Then a = g−1bg = g−1b
(
g−1
)−1

,
so that b ∼ a by definition.

3. (Transitivity) Let a ∼ b and b ∼ c. Then there exists g1, g2 ∈ G such that g1ag
−1
1 = b

and g2bg
−1
2 = c. But then b = g−12 cg2, so that g1ag

−1
1 = g−12 cg2 ⇒ g2g1ag

−1
1 = cg2 ⇒

g2g1ag
−1
1 g−12 = c = g2g1a (g2g1)

−1, and since g2g1 ∈ G, we have by definition a ∼ c.

Having shown that ∼ satisfies the three properties of an equivalence relation, the pf is com-
plete. �
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Definition 7.3.2 Conjugacy Class

The conjugation equivalence relation ∼ can be used to partition the group G
into disjoint subsets, which we are called equivalence classes. In the case of
conjugation, the equivalence classes are called conjugacy classes.

Let us now focus specifically on Sn. Recall that if α ∈ Sn is an l-cycle, then o (α) = l. Also,
if α = α1α2 · · ·αk, where α1, α2, . . . , αk are disjoint cycles such that o (α1) = n1, o (α2) =
n2, . . . , o (αk) = nk, then the cycle structure of α is [n1, n2, . . . , nk] and o (α) = lcm (n1, n2, . . . , nk).
Now consider the following two questions:

1. Given a cycle structure [n1, n2, . . . , nk], how many elements in Sn have this cycle structure?

2. How many conjugacy classes are there in Sn and what is the size of each conjugacy class?

Recall that we actually have already answered the first question in section 4.3.1, with the
formula given in 4.1. We restate it here, with different notation. We have the cycle structure
[n1, n2, . . . , nk], with the requirement that

∑k
i=1 ni = n. Also, for all 1 ≤ m ≤ n, let lm denote

the number of elements in the cycle structure equal to m, where m, remember, is the length of
a cycle (and the maximum possible length of a cycle is of course n). Therefore:

The number of elements in Sn with cycle structure [n1, n2, . . . , nk] is
n!∏n

m=1m
lm lm!

.

Example 7.3.1 In S9 how many elements have the cycle structure [3, 3, 1, 1, 1]?

Solution: One possible permutation with this cycle structure is (1 2 3) (4 5 6) (7) (8) (9),
although we know, of course, that the last three 1-cycles do not need to be written. To
answer the question, we simply use the formula above. We get

9!∏9
m=1m

lm lm!
=

9!

(133!) (200!) (322!) (400!) (500!) (600!) (700!) (800!) (900!)
= 3360.

So there are 3360 elements in S9 with the cycle structure [3, 3, 1, 1, 1].

Let us know answer the second question.

Example 7.3.2 In S5, let α = (1 2 3) and β = (1 2) (4 5). What is the conjugate of α by
β, i.e., what is βαβ−1?

Solution: Let γ = βαβ−1, and let i ∈ {1, 2, 3, 4, 5}. Then,

γ (β (i)) = βαβ−1 (β (i)) = β
(
α
(
β−1β (i)

))
= β (α (i)) .
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Now,

γ (β (1)) = β (α (1)) = β (2)

γ (β (2)) = β (α (2)) = β (3)

γ (β (3)) = β (α (3)) = β (1)

γ (β (4)) = β (α (4)) = β (4)

γ (β (5)) = β (α (5)) = β (5) .

so that
γ = βαβ−1 = (β (1) β (2) β (3)) (β (4)) (β (5)) = (2 1 3) (5) (4) ,

which has the same cycle structure as α!

The example above has illustrated the following theorem.

Theorem 7.3.2

If α = (a1 a2 · · · al) ∈ Sn is an l-cycle, then is conjugate by any β ∈ Sn is

βαβ−1 = (β (a1) β (a2) · · · β (al)) .

In particular, βαβ−1 has the same cycle structure as α, i.e., conjugation preserves
cycle structure.

The theorem says that if any two elements α, β ∈ Sn are conjugates, then they have the same
cycle structure. The converse is true as well.

Theorem 7.3.3

If α, β ∈ Sn have the same cycle structure, then α and β are conjugates.

Proof: Let

α = (a1 a2 · · · al) (b1 b2 · · · bk) · · · ,
β =

(
a′1 a

′
2 · · · a′l

) (
b′1 b

′
2 · · · b′k

)
· · · .

Now, define g ∈ Sn as

g =

(
a1 a2 · · · al b1 b2 · · · bk · · ·
a′1 a′2 · · · a′l b′1 b′2 · · · b′k · · ·

)
.

Then, using the above theorem, the conjugate of α by g is

gαg−1 = (g (a1) g (a2) · · · g (al)) (g (b1) g (b2) · · · g (bk))

=
(
a′1 a

′
2 · · · a′l

) (
b′1 b

′
2 · · · b′k

)
= β,

i.e., we have found a g ∈ Sn such that gαg−1 = β, so α ∼ β, as required. �
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So all elements of a particular cycle structure are conjugate to each other, and if two elements
are known to be conjugate to one another, then we may immediately conclude that they have the
same cycle structure. In other words, there is a one-to-one correspondence betweeen conjugate
elements of Sn and their cycle structures, so that every cycle structure acts as a “label” for a
conjugacy class. This immediately answers the second question:

The number of conjugacy classes in Sn is equal to the number of its cycle structures.
The size of each conjugacy class is equal to the number of elements with the

corresponding cycle structure.

But how can we determine the number of cycle structures, and hence the number of conjugacy
classes, of Sn?

Example 7.3.3 How many cycle structures are possible in S6?

Solution: We simply solve this by listing all of them:

[6] , [5, 1] , [4, 2] , [4, 1, 1] , [3, 3]

[3, 2, 1] , [3, 1, 1, 1] , [2, 2, 2] , [2, 2, 1] , [2, 1, 1, 1, 1] , [1, 1, 1, 1, 1, 1]

So there are eleven possible cycle structures, which means that there are eleven conjugacy
classes in S6.

You may have noticed that the number of cycle structures in the previous example was simply
the number of partitions of the natural number 6. This illustrates the following theorem.

Theorem 7.3.4

The number of conjugacy classes of Sn is equal to the number of paritions of the
natural number n.

Remark: In number theory, the number of partitions of the natural number n is denoted p (n), where p is
called the partition function. No closed form formula exists for p. The table below displays some of its
values.

n 1 2 3 4 5 6 7 8 9 10

p (n) 1 2 3 5 7 11 15 22 30 42

There is also the recursion formula attributed to Euler,

p (n) = p (n− 1) + p (n− 2)− p (n− 5)− p (n− 7) + · · · ,

with the convention that p (m) = 0 for all m ≤ 0.
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7.4 Even and Odd Permutations

We begin with the following observation. Recall that any permutation may be written as a
product of disjoint cycles, where each cycle is itself a permutation. Also, a transposition is a
cycle of length two, i.e., a 2-cycle.

Lemma 7.4.1 Every cycle α ∈ Sn can be written as a product of transpositions.

Proof: Let {a1, a2, . . . , ak} ∈ {1, 2, . . . , n} such that the cycle (a1 a2 · · · ak) ∈ Sn. Then we
have simply

(a1 a2 . . . ak) = (a1 ak) (a1 ak−1) · · · (a1 a3) (a1 a2)

as one possibility of a factorisation into a product of two cycles. So we are done. �

Therefore, if α = (1 2 · · · m), then we may write α as a product of m− 1 transpositions,

α = (1 m) (1 m− 1) · · · (1 2) .

Theorem 7.4.1

Every permutation α ∈ Sn can be written as a product of transpositions.

Proof: We already know that any permutation α ∈ Sn can be written as a product of disjoint
cycles, say α = α1α2 · · ·αk. By the lemma, each cycle can be written as a product of two cycles,
and so the product of all the cycles will result in a product of transpositions. �

Note that, unlike the decomposition of a permutation into disjoint cycles, the decompositions
into transpositions is in general NOT unique, neither in terms of the factors themselves or the
number of factors; for example,

(1 2 3) = (1 3) (1 2) = (2 3) (1 3)

= (1 3) (4 2) (1 2) (1 4)

= (1 3) (4 2) (1 2) (1 4) (2 3) (2 3) .

Definition 7.4.1 Even and Odd Permutations

A permutation α ∈ Sn is called an even permutation if it is a product of an
even number of transpositions; otherwise (i.e., if α is a product of an odd number
of transpositions), α is called an odd permutation.

Theorem 7.4.2

Let α ∈ Sn be an m-cycle.

1. If m is odd, then α is an even permutation.

2. If m is even, then α is an odd permutation.
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Proof: Since the decomposition of α results in m − 1 transpositions, as shown above, it is
clear that if m is odd, then m− 1 is even, and if m is even, then m− 1 is odd. �

Example 7.4.1 Consider the permutation

α =

(
1 2 3 4 5 6 7 8 9
9 5 1 7 8 2 6 4 3

)
∈ S9.

We can write α = (1 9 3) (2 5 8 4 7 6), which is a decomposition into disjoint cycles. The
first cycle is of length three, and so by the previous theorem, it is an even permutation,
i.e., it may be written as a product of an even number of permutations. The second is a
6-cycle, which means that it is an odd permutation, i.e., it may be written as a product of
an odd number of permutations. Since the sum of an odd and an even number is an odd
number, we have that α can be written as an odd number of permutations, and so α is an
odd permutation.

Example 7.4.2 Let α ∈ S16 have the cycle structure [4, 3, 3, 2, 2, 1, 1]. Then since each
m-cycle can be written as a product of m− 1 transpositions, we get that α can be written
as a product of 3 + 2 + 2 + 1 + 1 + 0 + 0 = 9, which is an odd number. So α is an odd
permutation.

Theorem 7.4.3

Let α ∈ Sn have the cycle structure [n1, n2, . . . , nk]. Then α can be written as
a product of n − k transpositions, and hence the parity of α is the same as the
parity of n− k.

Proof: Let α ∈ Sn with cycle structure [n1, n2, . . . , nk]. We know that each m-cycle can be
written as a product of m− 1 transpositions, so we get that α may be written as a product of

(n1 − 1) + (n2 − 1) + · · ·+ (nk − 1) =
n∑
i=1

ni − k = n− k

transpositions. Therefore, the parity of α (i.e., whether α is an even or an odd permutation)
depends on the parity of n− k. �

Since every permutation can be written as a product of disjoint cycles, and since every non-
zero integer is either odd or even, it follows that every integer can be odd or even—but can a
permutation be both odd and even? We now set out answering this question.

Lemma 7.4.2 Let a, b, c, d ∈ {1, 2, . . . , n}, for arbitrary n, be distinct elements. Then,
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1. (a b) (c d) = (c d) (a b);

2. (a b) (b c) = (b c) (a c);

3. (a b) (a c) = (b c) (a b);

4. (a b) (a b) = () = 1, where 1 represents the identity permutation (the identity mapping).

Proof: Verify these. It’s easy! �

Lemma 7.4.3 Suppose α ∈ Sn is a product of k transpositions. Assume that a ∈ {1, 2, . . . , n}
occurs in at least one transposition. Then either α (a) 6= a or α can be written as a product of
k − 2 transpositions.

Proof: Let l > 1 be the number of occurrences of a in α. We use induction of l. Let A be
the set of all l such that the result holds.

1. Let l = 1, i.e., there is only one occurrence of a in α, so α looks something like

α = · · · (a b) · · · ,

with a 6= b (otherwise we don’t have a transposition!). Clearly, then α (a) = b 6= a, so α
moves a, so the result holds. So 1 ∈ A.

2. Assume the result holds for l ≤ m, i.e., l ∈ A for all l ≤ m, and suppose l = m+ 1. Then
α looks something like

α = · · · (a b) · · · (a c) · · · ,

where all a, b, c, d are distinct. Now, observe that in Part 3 of the lemma above, the
left-hand side contains two occurrences of a while the right-hand side contains only one.
We will exploit this fact. Now, using Parts 1 and 2 of the above lemma, we move every
transposition containing a to the right until it meets another transposition containing a.
Once we have done this, there are two options:

(a) If the adjacent transpositions are of the form in Part 3 of the lemma, then the number
of occurrences of a is decreased by 1, i.e., l = m. But since the result holds for m,
we have that m+ 1 ∈ A, so the result holds by induction and the pf is complete.

(b) If the adjacent transpositions are of the form in Part 4 of the lemma, then those two
transpositions disappear completely, so that we are left with only k−2 transpositions.
So m+ 1 ∈ A, and by induction the result holds, completing the pf. �

Theorem 7.4.4

Let α = α1α2 · · ·αk ∈ Sn be a permutation written as a product of k transposi-
tions. The parity of m is unique. In other words, m is only one of odd and even,
i.e., α cannot be both odd and even.
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Remark: Hence, no matter how many ways one decomposes α into a product of transpositions, the parity
of the number of transpositions will always be the same, i.e., if α is even in one representation, then it will be
even in all representations.

Proof: Let

α = α1α2 · · ·αl
= α′1α

′
2 · · ·α′m,

be two decompositions of α into a product of transpositions such that k is odd and m is even.
Then, since all transpositions are self-inverses (verify this for yourself!),

α1α2 · · ·αk = α′1α
′
2 · · ·α′m ⇒ α′1α

′
2 · · ·α′mαkαk−1 · · ·α1 = () ,

where () is the identity permutation. Now, since the sum of an odd and even number is odd,
we have written the identity element as a product of an odd number of transpositions. Call this
number k = l + m, and suppose that k is the smallest such number (i.e., the smallest number
number of odd permutations whose product is the identity element). Since k is odd, there is at
least one transposition in the product. Now, since the identity permutation fixes any element
in {1, 2, . . . , n}, we must have that () (i) = i for any i ∈ {1, 2, . . . , n}, including any i that occur
in the transpositions. By the lemma, then, since i is not moved by the identity, we must have
that the identity can be written as a product of k − 2 transpositions, a contradiction to the
minimality of k. So k must not be odd, hence it must be even, and since k = l+m, either l and
m are both odd or they are both even. So the pf is complete. �

7.5 The Alternating Group An

Theorem 7.5.1

Let α = α1α2 · · ·αk be a decomposition of α into k transpositions. Define a
mapping

sgn : Sn → Z2 by sgn (α) = [k]2.

sgn (read “signum”) is a well-defined function and a surjective (onto) homomor-
phism.

Proof: We first prove that sgn is a well-defined mapping. Let α = α1α2 · · ·αk and α′1α
′
2 · · ·α′m

be two ways of writing α ∈ Sn as a product of transpositions. Then, since the parity of k and
m must be the same, we have

sgn (α1α2 · · ·αk) = [k]2 = [m]2 = sgn
(
α′1α

′
2 · · ·α′m

)
,

so sgn is well defined.

Now, let β = β1β2 · · ·βl ∈ Sn. Then,

sgn (αβ) = sgn (α1α2 · · ·αkβ1β2 · · ·βl) = [k + l]2 = [k]2 + [l]2 = sgn (α) sgn (β) ,

so that sgn is indeed a homomorphism.
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Finally, sgn is quite clearly onto since sgn is simply counting the number of transpositions in the
decomposition of α, and hence must be either even or odd (but not both, as we have seen). �

Let us know determine the kernel of sgn. We have

Kern (sgn) = {α ∈ Sn | sgn (α) = [0]2}
= {α ∈ Sn | α is an even permutation} .

So the kernel of sgn is the set of all even permutations in Sn. We also know that the kernel is
a subgroup of the domain, so that Kern (sgn) E Sn, and hence we may consider the quotient
group Sn/Kern (sgn). In particular, the first isomorphism theorem gives

Sn/Kern (sgn) ∼= Z2 ⇒ |Sn/Kern (sgn)| = |Sn|
|Kern (sgn)|

= |Z2| = 2.

Definition 7.5.1 The Alternating Group An

The kernel of sgn, which consists of all the even permutations of Sn, is called the
alternating group of degree n, and is denoted An.

So we have

An E Sn and [Sn : An] = 2.

Lemma 7.5.1 Let α ∈ Sn be an even permutation. If α commutes with an odd permutation,
then all permutations with the cycle structure as α are conjugate in An.

Proof: We know that all permutations with the same cycle structure as α are conjugates in
Sn. Let β be an odd permutation that commutes with α. For any odd permutation γ, the
product γβ is an even permutation (since the sum of two odd numbers is even), and hence

(γβ)α (γβ)−1 = γβαβ−1γ−1 = γαββ−1γ−1 = γαγ−1,

so any conjugate of α by an odd permutation is also a conjugate of α by an even permutation.
Therefore, the permutations with the same cycle structure as α remain conjugate in An. �

Lemma 7.5.2 Any even permutation can be written as a product of 3-cycles.

Proof: Start by writing an even permutation as a product of transpositions. Consider the
first pair of transpositions (a b) (c d) in this product. If b = c, then (a b) (c d) = (a d b) is a
3-cycle. Otherwise,

(a b) (c d) = (a b) (b c) (b c) (c d) = (a c b) (b d c)

is a product of 3-cycles. Continuing with the remaining pairs, we can express the even permu-
tation as a product of 3-cycles. �
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Now, we have that all 3-cycles are even permutations because they may be written as a product
of two transpositions. Therefore, all the 3-cycles in Sn will be elements of An. We now show
that these 3-cycles are enough to generate An.

Theorem 7.5.2

For n ≥ 3, An is generated by the 3-cycles of Sn. (We assume that n ≥ 3 simply
to ensure that An is non-trivial. When n ≤ 2, An is the trivial group.)

Proof: We have that An is the subgroup of Sn consisting of all the even permutations, which
means that any element in An may be written as a product of an even number of transpositions.
We also have that all 3-cycles are even because they may be written as a product of two
transpositions. From the lemma above, we have that any even permutation, i.e., any product
of 2-cycles, can be written as a product of 3-cycles. Therefore, all the elements of An are
some product of 3-cycles, which means that An is generated by the set of 3-cycles of Sn. This
completes the pf. �

Remark: We can also show that An is generated by the 5-cycles of Sn.

Theorem 7.5.3

If n ≥ 4 and N E An, with N 6= {()}, and if N contains a 3-cycle, then N = An.

Remark: Again, we ignore all n ≤ 2 because the corresponding An is trivial. We don’t include n = 3 for the
following reason: recall that

S3 = {() , (1 2) , (1 3) , (2 3) , (1 2 3) , (3 2 1)} ,

and that A3 = 〈(1 2 3)〉 = {() , (1 2 3) , (3 2 1)}. Now, |A3| = 3, and since all groups of order three are Abelian,
we have that A3 is Abelian, and hence all of its subgroups are normal. In particular, N = {() , (1 2 3)} E A3.
So we have N E A3 with N 6= {()} containing a 3-cycle—yet N 6= A3! So the theorem does not apply for
n = 3.

Proof: Let n ≥ 4 and N E An such that N ≤ {()} and N contains a 3-cycle. We have
just shown that for all n ≥ 3, An is generated by 3-cycles—in particular, that An contains all
3-cycles, since all 3-cycles are even. So to show that N = An, it suffices to show that all 3-cycles
of Sn are contained in N . Without loss of generality, assume α = (1 2 3) ∈ N is the 3-cycle in
N . Since N is a group, we must have α2 = (1 3 2) ∈ N . Also, since N is normal in An, all of the
elements of N must be even permutations, hence writable as an even product of transpositions.
Suppose, then, that

β = · · · (1 i) (2 j) (3 k) · · · ∈ An,

for any i, j, k ∈ {1, 2, . . . , n} with i, j, k 6= 1, 2, 3. Then,

βα2β−1 = (β (1) β (3) β (2)) = (i k j) ∈ N.

(Observe that by our construction of α and β it does not matter what elements are contained in
the other transpositions that make up β since they do not contribute to the evaluation of β at 1,
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2 and 3. In other words, for any element β ∈ An that is expressed a product of transpositions,
only those transpositions in the product that contain the elements of α matter in computing
the conjugate.) So we see that the conjugate of the 3-cycle α ∈ N by any element β ∈ An
gives rise to a 3-cycle completely distinct from α. Therefore, N contains all 3-cycles, and hence
N = An. �

7.6 The Simplicity of An

The purpose of this section is to prove that for all n ≥ 5, the alternating group An is simple,
with the definition of a simple group given below.

Definition 7.6.1 Simple Group

A group G with no non-trivial normal subgroups, i.e., a group with only the
trivial groups {1G} and G as the normal subgroups, is called a simple group.

Theorem 7.6.1

Any cyclic group of prime order, which we know is isomorphic to Zp for p a prime
number, is a simple group.

Proof: Let G be a cyclic group of order p, where p is a prime number. If H is any subgroup
of G, then by Lagrange’s theorem, since |H| must divide |G| = p, we must have either |H| = 1 or
|H|. So the only subgroups, and certainly then the only normal subgroups, of G are the trivial
subgroup {1G} and G itself. So G is a simple group. �

Theorem 7.6.2

An Abelian group is simple if and only it is isomorphic to Zp. In other words,
Zp is the only simple Abelian group.

Proof: Let G be an Abelian group.

(⇒): Assume G is simple. Then its only normal subgroups are {1G} and G.

(⇐): Assume G is cyclic of prime order. Then the above theorem has already shown that G is
simple. �

Example 7.6.1 Note that the group A4 is not a simple group, since the subgroup H =
{() , (1 2) (3 4) , (1 3) (2 4) , (1 4) (2 3)} E A4. A3 is also not a simple group, since we have
already seen that A3 = 〈b〉 E A3. A2 is also not simple since it only has two elements, the
permutation (1 2) and (), the identity, and hence are its only normal subgroups. Finally, A1

is the trivial group, so it has no normal subgroups.
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Theorem 7.6.3

For n ≥ 5, An is a simple group.

Proof: Let H E An, with H 6= {()}. We have already seen in Theorem 7.5.3 , if H contains a
3-cycle, then H = An. And since we are assuming that H 6= {()}, then to show that H = An it
suffices to show that H contains a 3-cycle. Let some α ∈ H have the cycle structure [n1, n2, . . . ].
By convention, we write the cycle structure in decreasing order. We split up the pf into cases
for the number of elements in the longest cycle of α.

Case 1 n1 ≥ 4
Without loss of generality, assume that α = (1 2 3 · · · m) · · · , m ≥ 4. Let β = (1 2 3).
Therefore,

γ = βαβ−1 = (1 2 3) [(1 2 3 · · · m) · · · ] (1 2 3)−1

= (1 2 3) (1 2 3 · · · m) (1 3 2)

= (2 3 1 · · · m) · · · ∈ H,

since H is a normal subgroup. Then, since γ and α are in H, in particular since α−1 ∈ H,
we have γα−1 ∈ H, where

γα−1 = (2 3 1 · · · m) · · · (1 m m− 1 · · · 3 2) · · · = (1 2 4) ∈ H.

So H contains a 3-cycle, hence by Theorem 7.5.3, H = An.

Case 2 n1 = 3
In this case, the cycle structure of α is something like

[3, 3, . . . , 2, 2, 2, . . . , 1, 1, . . . ] .

Since all two cycles are of order two, we may square α to get rid of all the two cycles (the
square of α is of course still in H). So we may assume that α has no 2-cycles, so that
the cycle structure is [3, 3, . . . , 1, 1 . . . ]. We also assume, without loss of generality, that
α contains more than one 3-cycle, otherwise α would itself be a 3-cycle, and we would be
done by Theorem 7.5.3. Suppose without loss of generality that

α = (1 2 3) (4 5 6) · · · .

Let β = (1 2 4). Then

γ = βαβ−1 = (1 2 4) [(1 2 3) (4 5 6) · · · ] (1 4 2) = (2 4 3) (1 5 6) · · · ∈ H.

Then,
γα−1 = [(2 4 3) (1 5 6) · · · ] [(3 2 1) (6 5 4) · · · ] = (1 2 5 3 4) ∈ H,

which is a 5-cycle, a cycle of the type considered in Case 1. Therefore, the result holds.

Case 3 n1 = 2
In this case, the cycle structure of α is something like

[2, 2, . . . , 2, 1, 1, . . . ] .

We consider two subcases here:
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1. Without loss of generality, assume α = (1 2) (3 4). Then, let β = (1 3) (2 5). Then

γ = βαβ−1 = (1 3) (2 5) (1 2) (3 4) (1 3) (2 5) = (3 5) (1 4) ∈ H.

Then γα−1 = (3 5) (1 4) (1 2) (3 4) = (1 2 4 5 3) ∈ H, a 5-cycle, so we are again back
to Case 1, and the result holds.

2. Without loss of generality, assume α = (1 2) (3 4) (5 6) (7 8) . . . . Then, let β =
(1 3) (2 5). Then,

γ = βαβ−1 = (3 5) (1 4) (2 6) (7 8) . . .

and hence

γα−1 = [(3 5) (1 4) (2 6) (7 8) . . . ] [(1 2) (3 4) (5 6) (7 8) . . . ] = (1 6 3) (2 4 5) ,

which is a product of 3-cycles, a permutation of the kind considered in Case 2. So
the result holds here as well. �

Theorem 7.6.4

{()}, An, and Sn are the only normal subgroups of Sn for n ≥ 5.

Proof: The identity {()} and Sn are always normal subgroups of Sn. Now, let N E Sn. Then
N ∩ An E An, and so N ∩ An is either An or {()} because An is simple for n ≥ 5. In the case
N ∩ An = An, we find that An ⊆ N ⊆ Sn and, by considering the indices of the subgroups in
one another, we conclude that N = An or N = Sn, since 2 = [Sn : An] = [Sn : N ] [N : An]. In
the second case, assume for a contradiction that N 6= {()}. Then, because

n! = |Sn| ≥ |AnN | =
|An| |N |
|An ∩N |

,

we get that |N | = 2. Thus, N = {1, α = α1α2 · · ·αr}, where each αi are mutually disjoint.
Since N is of order two, we must have α2 = 1, which means that each αi is a transposition.
Let us write αi = (ai bi). Now, it is easy to see that we can find a different permutation
β = β1β2 · · ·βr 6= α, which is a product of disjoint transpositions βi = (ci di). Now, if we take
γ to be the permutation taking ai to ci, bi to di, and fixing any other element of {1, 2, . . . , n},
then γαγ−1 = β /∈ N . So N cannot be normal, a contradiction. So N = {()}. This completes
the pf. �
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8 Finite Abelian Groups

In this chapter, we show how finite Abelian groups can be completely described in terms of
direct products of some cyclic groups. We will be able to list all Abelian groups of a given finite
order. Since we know how to construct subgroups of cyclic groups and how to calculate the
order of an element in cyclic groups, we will be able to do the same for any finite Abelian group.

Theorem 8.0.5 Cauchy’s Theorem, Abelian Case

Let G be a finite Abelian group and p a prime number such that p divides |G|.
Then there exists an element g ∈ G such that o (g) = p.

Proof: We perform induction on |G|. Note that if |G| = p, then by Lagrange’s theorem, G is
cyclic and necessarily has an element of order p, namely, the generator, and so we are done.

Now, let |G| = n and suppose that the result holds for all Abelian groups of order less than or
equal to n. Let h ∈ G be some non-identity element. Then, by the unique prime factorisation
theorem, q | o (h) for some prime number q. In particular, o (h) = kq for some k ∈ Z. Then,

o
(
hk
)

=
kq

gcd (k, kq)
= q.

If q = p, then the element hk ∈ G has order p, and we are done.

Suppose, then, that p 6= q. Consider the cyclic subgroup
〈
hk
〉
, which is normal since G is

normal, and the quotient group G/〈hk〉. Then,

|G/〈hk〉| = |G|
|〈hk〉|

=
n

q
≤ n.

Since G is Abelian, so is G/〈hk〉, which means that G/〈hk〉 is an Abelian group of order less than
n; hence, by the induction hypothesis, the result holds for G/〈hk〉, and there exists an element
g′ =

〈
hk
〉
g ∈ G/〈hk〉 such that o (g′) = p, i.e.,(

g′
)p

=
(〈
hk
〉
g
)p

=
〈
hk
〉
gp =

〈
hk
〉
⇒ gp ∈

〈
hk
〉
.

Then, as a result of Lagrange’s theorem,

(gp)|〈h
k〉| = (gp)o(h

k) = (gp)q = gpq = 1G ⇒ o (g) | pq ⇒ pq = mo (g) , m ∈ Z.

Now, we must have m 6= p since o (g) = q ⇒
(〈
hk
〉
g
)q

=
〈
hk
〉
gq =

〈
hk
〉
⇒ p | q ⇒ p = q, a

contradiction to the assumption that p 6= q. On the other hand, if m = q, then o (g) = p, and
we are done.
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If m 6= q, consider the element gq ∈ G. Then, from above, (gq)p = 1G ⇒ o (gq) | p, which
implies that o (gq) = 1 or o (gq) = p. Suppose o (gq) = 1 ⇒ gq = 1G ⇒

(〈
hk
〉
g
)q

=
〈
hk
〉
gq =〈

hk
〉
⇒ p | q ⇒ p = q, again, a contradiction. So we have o (gq) = p, and we are done. �

Recall that at the end of section 3.4 we introduced the set HK, where H and K were two subsets
of the group G. Let us restate some of the result from there.

Definition 8.0.2

Let H and K be two subsets of a group G. Define

HK = {hk | h ∈ H, k ∈ K} ⊆ G.

We may similarly define the subset KH.

It it certainly possible for H and K to be subgroups but for HK or KH to not be subgroups.
It is also possible that H and K are merely subsets but for HK to be a subgroup.

Example 8.0.2 Find a group G and subgroups H and K such that HK is not a subgroup
of G.

Solution: Let G = S3, H = 〈a〉 = {1, a} ≤ G and K 〈ab〉 = {1, ab} ≤ G. Then,

HK =
{

1, ab, a, a2b
}

and KH =
{

1, ab, a, b2
}
.

Now, since |HK| = |KH| = 4 - 6, we have that neither HK nor KH are subgroups of G.

Theorem 8.0.6

Let H and K be subgroups of a group G, and assume H E G. Then HK ≤ G.

Proof: See section 3.5. �

Theorem 8.0.7

Let G be an Abelian group and H,K ≤ G. Then HK ≤ G.

Proof: See section 3.5. �

Theorem 8.0.8

Let G be a finite group and H,K ≤ G. Then HK ≤ G if and only if HK = KH.

Proof: (⇒): Assume that HK is a subgroup of G and let x ∈ HK be arbitrary. We must
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show that HK ⊆ KH and KH ⊆ HK. Now, x−1 ∈ HK, where we may write x−1 = hk for
some h ∈ H and k ∈ K. But then x =

(
x−1

)−1
= (hk)−1 = k−1h−1 ∈ KH, so HK ⊆ KH

since x is arbitrary. Similarly, we may show that if y ∈ KH, then y ∈ HK, establishing that
KH ⊆ HK. Therefore, HK = KH.

(⇐): Assume that HK = KH. We want to show that HK is a subgroup of G.

1. Since H and K are subgroups, we have 1G ∈ H and 1G ∈ K, so 1G ∈ HK.

2. Let x, y ∈ HK, so that x = h1k1 and y = h2k2 for some h1, h2 ∈ H and k1, k2,∈ K.
Hence, since HK = KH, we have k1h2 = h′2k

′
1 for some k′1 ∈ K and h′2 ∈ H. Therefore,

xy = h1k1h2k2 = h1h
′
2k
′
1k2. But then h1h

′
2 = h3 ∈ H and k′1k2 = k3 ∈ K. So xy = h3k3,

i.e., xy ∈ HK.

3. For all x ∈ HK, we have x = hk for some h ∈ H and k ∈ K. Then x−1 = k−1h−1;
but again, since HK = KH, we have k−1h−1 = h′k′ for some other h′ ∈ H and k′ ∈ K.
Therefore, x−1 = h′k′, i.e., x−1 ∈ HK.

So, by the subgroup test, we have established that HK ≤ G, and so the pf is complete. �

Theorem 8.0.9

If H and K are (normal) subgroups of G, then so is H ∩K.

Proof: Assume H,K ≤ G.

1. Then 1G ∈ H and 1G ∈ K, so 1G ∈ H ∩K, so H ∩K is not empty.

2. Let g1, g2 ∈ H ∩ K, i.e., g1, g2 ∈ H and g1, g2 ∈ K. Since H and K are subgroups, we
have g1g2 ∈ H and g1g2 ∈ K. Therefore, g1g2 ∈ H ∩K.

3. Finally, for all g ∈ H ∩K, since H and K are subgroups, we have g−1 ∈ H and g−1 ∈ K,
so g−1 ∈ H ∩K.

So by the subgroup test, we have H ∩K ≤ G.

Now, assume that H,K E G, and let g ∈ H ∩K. For all f ∈ G, we have fgf−1 ∈ H since H is
normal, and fgf−1 ∈ K since K is normal. So fgf−1 ∈ H ∩K for all f ∈ G and all g ∈ H ∩K.
So H ∩K E G. �

Theorem 8.0.10

Suppose G is a finite group and H,K ≤ G. Then

|HK| = |H| |K|
|H ∩K|

.
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Proof: Observe first that in HK, it is possible to have h1k1 = h2k2 where h1, h2 ∈ H and
k1, k2 ∈ K. Also, recall that

H ×K = {(h, k) | h ∈ H, k ∈ K} .

Now, define an equivalence relation on H×K by (h1, k1) ∼ (h2, k2)⇔ h1k1 = h2k2 (it is easy to
show that this is in fact an equivalence relation). So “∼” partitions H×K into disjoint subsets,
which are the equivalence classes. Since every element in HK is of the form hk for h ∈ H and
k ∈ K, we have that the number of equivalence classes of the equivalence relation “∼” is |HK|.

Now, let C be one of these equivalence classes. So we have that for all (h1, k1) , (h2, k2) ∈ C
(h1, k1) ∼ (h2, k2) ⇒ h1k1 = h2k2 ⇒ h−12 h1 = k2k

−1
1 = l, where l ∈ H and l ∈ K (since l has

been written as both a product of elements in H and as a product of elements in K). In other
words, l ∈ H ∩K. Now, given any l ∈ H ∩K, for any (h1, k2) ∈ C, we have

(
h1l
−1, lk1

)
∈ C.

Thus, there is a one-to-one correspondence between every element in C and every element in
H ∩K.

Using this, let us define the mappings

f : H ∩K → C by f (l) =
(
h1l
−1, lk1

)
g : C → H ∩K by g (h2, k2) = h−12 h1 = k2k

−1
1

Using this, we see that f is an invertible function (and so is g), which means that f (and g)
must be bijections, so that |C| = |H ∩K|, i.e., the size of each equivalence class is |H ∩K|.

Finally, then, since there are |HK| equivalence classes, each of size |H ∩K|, and since the
equivalence relation partitions the subset H ×K, we have

|H ×K| = |HK| |H ∩K| ⇒ |HK| = |H ×K|
|H ∩K|

=
|H| |K|
|H ∩K|

,

as required. �

We can generalise the above theorem to any number of subgroups. We state the result without
pf.

Theorem 8.0.11

Let G be a finite group with {Hk}ni=1 a sequence of subgroups of G. Then

|H1H2 · · ·Hn| =?

8.1 p-Groups

This section is devoted to understanding p-groups (as will be defined below), with the ultimate
goal of begin able to classify all finite Abelian p-groups by “isomorphism class”.
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Definition 8.1.1 p-Group

Let p be a prime number. If G is a finite group such that |G| = pk for some
k ∈ Z with k ≥ 1, then G is called a p-group. If G is an Abelian p-group, then
it is also sometimes called a p-primary group. We usually denote a p-group by
Hp.

Remark: In case G is infinite, an equivalent defnintion (the equivalence will be established in the following
theorem) is that G is a p-group if every element of G has order a power of p.

Theorem 8.1.1

Let G be a finite group and p a prime number. Then G is a p-group if and only
if all the elements of G have order a power of p.

Proof: (⇒): Let G be a p-group. Then, by definition, |G| = pk for some k ≥ 1 and k ∈ Z.
Then, for any g ∈ G, and since G is finite, Lagrange’s theorem gives that the order of g must
divide |G|, i.e., o (g) | |G| ⇒ o (g) | pk. In other words, for all g ∈ G, we must have o (g) = pj

for j ≤ k.

(⇐): Suppose
G =

{
g ∈ G | o (g) = pj , j ∈ Z,

}
,

i.e., suppose that G is a group such that all of its elements have order a power of p. Assume for
a contradiction that |G| 6= pk, say |G| = mpk for some m ∈ Z. So |G| is not divisible by p, but
it is divisible still (by the unique prime factorisation theorem) by some other prime number q.
Then, by Cauchy’s theorem (which has yet to be proved for the non-Abelian case), there exists
an order of element q in G. Since q - p, we have that there exists an element in G with an order
that is not some power of p, a contradiction. So |G| = pk. �

Theorem 8.1.2

Let G be a finite Abelian group and let p be a prime number such that |G| = pkm,
where m ∈ Z, gcd (p,m) = 1, and k ≥ 1. Then there exists a unique p-subgroup
Hp such that |Hp| = pk.

Proof: We first establish that Hp is a subgroup of G using the subgroup test. By the previous
theorem, let

Hp = {g ∈ G | o (g) = pn, n ∈ Z, n ≥ 0} .

1. By taking n = 0, we see that H contains the identity element, so Hp is not empty.

2. Let a, b ∈ H and let o (a) = ps and o (b) = pt for some s, t ∈ Z and s, t ≥ 0. Then
o (ab) = pmax{s,t}, and so ab ∈ H.
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3. It is clear that an element and its inverse have the same order, so for all elements a ∈ H,
we have a−1 ∈ H.

So by the subgroup test, Hp ≤ G.

We now establish that |H| = pk. Assume for a contradiction that |H| 6= pk. Then G/H has order
divisible by p, and hence there exists an element Hb ∈ G/H of order p by Cauchy’s theorem
(Abelian case). Since o (Hb) = p, we have (Hb)p = 1G = Hbp, which implies that p is the
smallest power of b such that bp ∈ H. In particular, then, b /∈ H. However, bp ∈ H implies that
o (b) = ps for some s ∈ Z, which implies that b ∈ H, a contradiction to the previous sentence.
So we must have |H| = pk.

It remains to be shown that the p-subgroup Hp is unique. It suffices to show that Hp is the only
subgroup of G of order pk. �

Theorem 8.1.3

Let G be a finite Abelian group and p and q prime numbers such that p | |G|
and q | |G|. Then Hp ∩Hq = {1G}, where Hp and Hq are p- and q-subgroups of
G, respectively, i.e., |Hp| = pk and |Hq| = qn for some k, n ∈ Z.

Proof: Let g ∈ Hp ∩ Hq. Now, o (g) = pl for some l ∈ Z and l ≥ 0 since g ∈ Hp. But also
o (g) = qm for some m ∈ Z and m ≥ 0 since g ∈ Hq. So we must have

pl = qm ⇒ l = m = 0⇒ o (g) = 1⇒ g = 1G,

so Hp ∩Hq = {1G}, as required. �

Lemma 8.1.1 Let G be a group and H,K ≤ G. Define f : H ×K → G by f (h, k) = hk
for all (h, k) ∈ H ×K. Then f is a homomorphism if and only if every element of H commutes
with every element of K.

Proof: (⇒): Suppose f is a homomorphism. Then, for all h1, h2 ∈ H and all k1, k2 ∈ K,

h1h2k1k2 = f (h1h2, k1k2) = f ((h1, k1)) f ((h2, k2)) = h1k1h2k2.

Then, multiplying on the left by h−11 and on the right by k−12 , we get k1h2 = h2k1. So every
element of H commutes with every element of K.

(⇐): Now, suppose that every element of H commutes with every element of K. For all
(h1, k1) , (h2, k2) ∈ H ×K

f ((h1, k1) (h2, k2)) = f (h1h2, k1k2)

= h1h2k1k2

= h1k1h2k2 since h2 commutes with k1

= f (h1, k1) f (h2, k2) .

Therefore, f is a homomorphism. �
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Corollary 8.1.1

Let G be a group and define a mapping f : G × G → G such that f (a, b) = ab
for all a, b ∈ G. Then f is a homomorphism if and only if G is Abelian.

We can prove a slighly stronger version of the above lemma, which does not require a homo-
morphism, but does require H and K to be normal subgroups.

Lemma 8.1.2 Let G be a group and H,K E G with H ∩K = {1G}. Then hk = kh for all
h ∈ H and all k ∈ K (i.e., every element of H commutes with every element of K).

Proof: Let H,K E G. Then, for all h ∈ H and k ∈ K, hkh−1 ∈ K and khk−1 ∈ H. But,
since H and K are (sub)groups, we have hkh−1k−1 =

(
hkh−1

)
k−1 ∈ K, but also hkh−1k−1 =

h
(
kh−1k−1

)
∈ H, so that hkh−1k−1 ∈ H ∩K = {1G}, so that hkh−1k−1 = 1G ⇒ hk = kh. �

(This material should be moved to the end of section 3.5.)

Definition 8.1.2 Internal and External Direct Product

The direct product that was introduced in section 3.3 is sometimes called the
external direct product in order to distinguish it from the internal direct prod-
uct. An internal direct product is a direct product of two normal subgroups
H and K of some group G such that HK ≤ G and H ∩K = {1G}.

Theorem 8.1.4 Characterisation of the Internal Direct Product

Let G, be a group and H,K ≤ G. Then G ∼= H ×K if and only if there exist
normal subgroups H∗ and K∗ of G such that

1. H ∼= H∗ and K ∼= K∗;

2. H∗ ∩K∗ = {1G};
3. H∗K∗ = G.

Proof: (⇐): Assume that the three conditions above are satisfied. Without loss of generality,
we may take H and K as normal subgroups of G, i.e., H∗ = H and K∗ = K. Define a mapping

f : H ×K → G by f (h, k) = hk.

Then, for all (h1, k1) , (h2, k2) ∈ H ×K, we have

f ((h1, k1) (h2, k2)) = f (h1h2, k1k2) = h1h2k1k2.

But by the lemma above, hk = kh, so we get

f ((h1, k1) (h2, k2)) = h1h2k1k2 = h1k1h2k2 = f (h1, k1) f (h2, k2) ,
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so f is a homomorphism. Additionally, since Im (f) = HK = G, we have that f is onto. Finally,

Kern (f) = {(h, k) ∈ H ×K | f (h, k) = 1G}
= {(h, k) ∈ H ×K | hk = 1G}
=
{

(h, k) ∈ H ×K | h = k−1 = l
}

= {(h, k) ∈ H ×K | l ∈ H, l ∈ K}
= {(h, k) ∈ H ×K | l ∈ H ∩K = {1G}}
= {(h, k) ∈ H ×K | l = 1G ⇒ h = k = 1G}
= {(1G, 1G)}
= 1H×K .

So f is one-to-one, and therefore f is an isomorphism.

(⇒): Assume that G ∼= H ×K, where H and K are some groups. Let

H∗ = H × {1K} and K∗ = {1H} ×K.

Now, consider the mapping defined in the first part of the pf above. By the first lemma above,
we have that every element of H commutes with every element of K (note that this follows only
because f is a homomorphism and does not assume that H and K are normal subgroups as
the second lemma above does). Additionally, since we proved that f is onto, we may write any
element in a ∈ G in the form a = hk, where h ∈ H and k ∈ K. Therefore, for all a ∈ G and all
h̃ ∈ H

ah̃a−1 = (hk) h̃ (hk)−1

= hkh̃k−1h−1

= hh̃kk−1h−1 since k commutes with h̃

= hh̃h−1 ∈ H.

So H E G. Similarly, for all a ∈ G and all k̃ ∈ K,

ak̃a−1 = (hk) k̃ (hk)−1

= hkk̃k−1h−1

= hk′h−1 since k′ = kk̃k−1 ∈ K
= k′hh−1 since k′ commutes with h

= k′ ∈ K.

Therefore, K E G as well.

Then, since {1H} E H and {1K} E K, and all identity elements of any group are isomorphic to
each other, we get that H∗ E G and K∗ E G.

Now, it is clear that H∗ ∼= H and K∗ ∼= K, so that the first requirement is satisfied. As well,

H∗ ∩K∗ = {(1H , 1K)} = {1G}
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since G ∼= H ×K. So the second requirement is satisfied. Finally,

H∗K∗ = {(h, 1K) (1H , k) | h ∈ H, k ∈ K}
= {(h, k) | h ∈ H, k ∈ K}
= H ×K = G,

again, since G ∼= H × K. So the third requirement is satisfied as well, and so the pf is com-
plete. �

Remark: Observe that under the conditions of this theorem, we get |H∗K∗| = |G|.

The theorem above can be generalised to any number of subgroups. We state this generalisation
without pf.

Theorem 8.1.5 Characterisation of the Internal Direct Product–General
Case

Let G be a group and {Hk}nk=1 a set of subgroups of G. Then G ∼= H1 ×H2 ×
· · · ×Hn if and only if there exist normal subgroups {H∗k}

n
k=1 such that

1. H∗k
∼= Hk for all 1 ≤ k ≤ n;

2. for all k ∈ {2, . . . , n} (H1H2 · · ·Hk−1) ∩Hk = {1G};
3. H1H2 · · ·Hn = G.

Remark: Observe that under the conditions of this theorem, we immediately get |H1H2 · · ·Hn| = |G|.

Lemma 8.1.3 Let G be a finite Abelian p-group with at most p − 1 elements of order p.
Then G is cyclic.

Proof: Let |G| = pk for some k ≥ 1 and k ∈ Z, and let a ∈ G be an element of maximum
order. Since the order of each element divdes the order of G, the maximum possible order of an
element is pk, so let o (a) = |G| = pk. Note that

ap
k−1

, a2p
k−1

, . . . , a(p−1)p
k−1

are all elements of order p, and there are p − 1 of them. In fact, these are all the elements of
order p (why?). Therefore, there are at most p − 1 elements of order p, satisfying the second
hypothesis of the theorem.

Now, we want to show that 〈a〉 = G. Assume for a contradiction that G is not cyclic, i.e., that

G 6= 〈a〉. Therefore, there must exist an element b such that bp
l ∈ 〈a〉 but bp

l−1
/∈ 〈a〉. Without

loss of generality, let us take l = 1, so that bp ∈ 〈a〉 but b /∈ 〈a〉. Since bp ∈ 〈a〉, there must exist
an s ∈ Z such that bp = as. Now,

o (as) =
o (a)

gcd (o (a) , s)
=

pk

gcd (pk, s)
.
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Now, if gcd (p, s) = 1, then gcd
(
pk, s

)
= 1 and so o (as) = o (a), which implies that

o (b) > o (bp) = o (as) = o (a)⇒ o (a) < o (b) ,

which is a contradiction to the maximality of o (a). Since either gcd (p, s) = 1 or gcd (p, s) = p,
we must have then gcd (p, s) = p, i.e., s = mp for some m ∈ Z. Therefore,

bp = amp ⇒ bpa−mp = 1G

⇒
(
ba−m

)p
= 1G

⇒ ba−m = ajp
k−1

, 1 ≤ j ≤ p− 1

⇒ b = ajp
k−1+m ∈ 〈a〉

Since b was arbitrary, we have that 〈a〉 = G, i.e., G is cyclic. �

Lemma 8.1.4 Let G be a finite Abelian p-group and a ∈ G an element with maximum
order (a might not be unique). Then,

1. There exists a surjective homomorphism α : G→ 〈a〉;

2. G ∼= Kern (α)× 〈a〉.

Proof: Let |G| = pn. We will prove the result by (strong) induction on n.

If n = 0, then G is necessarily cyclic (G = {1G}), so the result holds—simply define α : G→ 〈1G〉
by α (1G) = 1G and since Kern (α) = {1G} = G, it is certainly true that G ∼= G× 〈1G〉 ⇒ G ∼=
G× {1G}.

Now, assume that the result holds for all n ≤ k, and consider n = k + 1, i.e., let |G| = pk+1.
Let a ∈ G be an element with maximum order, and suppose that G is not cyclic, so that there
exists an element b ∈ G such that b /∈ 〈a〉 and o (b) = p, say. Note that since o (b) = p, we
must have 〈b〉 ∩ 〈a〉 = {1G}, for if this were not so, we would have that bk = al for some l ∈ Z
and 1 ≤ k ≤ p − 1, which would mean that there exists an m ∈ Z such that mk = qp + 1, and
therefore (

bk
)m

= aml = bqp+1 = (bp)q b = b⇒ b ∈ 〈a〉 ,

a contradiction.

Now, look at the quotient group G/〈b〉 and let a = 〈b〉 a. Assume that o (a) = pr, which is
maximal. We claim that o (a) = pr also. Suppose not, in particular, suppose ap

r−1
= 1 ∈ G/〈b〉.

Then ap
r−1 ∈ 〈b〉. But ap

r−1 ∈ 〈a〉 also, so ap
r−1 ∈ 〈b〉 ∩ 〈a〉 = {1G} ⇒ ap

r−1
= 1G, an

contradiction to the assumption that o (a) = pr. So we must have o (a) = pr, and therefore a
has maximal order in G/〈b〉. Clearly |G/〈b〉| < |G| = pn, and so by the induction hypothesis there
exists a surjective homomorphism

α : G/〈b〉→ 〈a〉 .

Now, define
α : G→ 〈a〉 by α = h ◦ α ◦ f,

where
f : G→ G/〈b〉 and h : 〈a〉 → 〈a〉 .
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In fact, we have that 〈a〉 ∼= 〈a〉, so h is certainly surjective, and we have seen the mapping f
before and know that it is surjective. Therefore, α is a surjective homomorphism.

Now, without loss of generality, we may assume that α (a) = a (why?). By the internal direct
product theorem, to show that G ∼= Kern (α) × 〈a〉, it suffices to show that G = (Kern (α)) 〈a〉
(indeed, since Kern (α) , 〈a〉 E G on account of G being Abelian, and certainly Kern (α)∩ 〈a〉 =
{1G} by definition of α).

Let g ∈ G. Then

α
(
α (g) g−1

)
= α (g)α

(
g−1
)

= α
(
gg−1

)
= α (1G) = 1G ⇒ α (g) g−1 ∈ Kern (α) .

Then, let s = α (g) g−1 ∈ Kern (α). In other words,

g = s−1α (g) ∈ Kern (α) 〈a〉 ,

i.e., every element in G may be expressed as the product of an element in Kern (α) and an
element in 〈a〉, i.e., G = Kern (α) 〈a〉, i.e., G ∼= Kern (α)× 〈a〉, as required. This completes the
pf. �

Theorem 8.1.6 Classification of Finite Abelian p-Groups

Let G be a finite Abelian p-group such that |G| = pn. Let [n1, n2, . . . , nl] be a
partition of n with n1 ≥ n2 ≥ · · · ≥ nl. Then we have

G ∼= Zpn1 × Zpn2 × · · · × Zpnl .

In other words, every finite Abelian p-group may be uniquely (up to the order of
the factors, of course) written as a direct product of cyclic p-groups.

Proof: We first prove that every finite Abelian p-group can be written as a direct product
of of cyclic p-groups. Pick an element g ∈ G with maximal order. By the lemma above,
G ∼= Kern (α) × 〈g〉, where α is the appropriate homomorphism as defined in that lemma. By
(strong) induction on |G|, since Kern (α) ≤ G and |Kern (α)| < |G|, and Kern (α) is itself a
p-group, we have that Kern (α) is a product of cyclic p-groups. Therefore, G is a product of
cyclic p-groups. (Another way of looking at it is this: since Kern (α) is itself a p-group, we
may apply the previous lemma to it to write Kern (α) ∼= Kern (α′)× 〈g′〉. Since G is finite, this
process will eventually end and consequently we will have expressed G as a product of cyclic
p-groups.)

We now show that each finite Abelian p-group of order pn can be uniquely written as the direct
product of cyclic p-groups using the paritions of n. Let

|G| = pn.

Using the first part of the pf of the theorem, we may write

G ∼= Zpn1 × Zpn2 × · · · × Zpnl ,
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which gives

pn = |G|
= |Zpn1 × Zpn2 × · · · × Zpnl |
= |Zpn1 | |Zpn2 | · · · |Zpnl |
= pn1pn2 · · · pnl

= pn1+n2+···+nl ,

i.e., we have n = n1 + n2 + · · ·+ nl. Without loss of generality, we may let n1 ≥ n2 ≥ · · · ≥ nl.
Then, it is clear that each unique decomposition of G into cyclic p-groups will come from each
unique partition of n, i.e., each different way of summing at most l integers to obtain n. This
completes the pf. �

Corollary 8.1.2

Up to isomorphism, there are exactly P (n) Abelian p-groups of order pn, where
P (n) is the partition function.

Proof: This is clear since each partition of n produces a unique decomposition into cyclic
p-groups, and there are P (n) partitions. �

8.2 The Fundamental Theorem of Finite Abelian Groups

In this section we present the funamental theorem of finite Abelian groups, a theorem that will
allow us to classify all finite Abelian groups of arbirary order into “isomorphism classes”.

Lemma 8.2.1 Let G be a finite Abelian group. By the unique prime factorisation theorem,
we may write

G =
l∏

i=1

pmii ,

where each pi is a prime number. let Hp
mi
i

be a p-subgroup such that
∣∣∣Hp

mi
i

∣∣∣ = pmii . Since G is

Abelian, we necessarily have Hp
mi
i
E G. Then,

Hp
m1
1
Hp

m2
2
· · ·Hp

ml
l

= G and
∣∣∣Hp

m1
1
Hp

m2
2
· · ·Hp

ml
l

∣∣∣ = |G| .

Proof: First of all, the p-subgroups Hp
mi
i

, 1 ≤ i ≤ l exist due to Theorem 8.1.2. Then, it is

clear that Hp
m1
1
Hp

m2
2
· · ·Hp

ml
l
⊆ G since each p-group in the product is a subgroup of G. Now,

we show that
∣∣∣Hp

m1
1
Hp

m2
2
· · ·Hp

ml
l

∣∣∣ = |G|, and we do this by induction on l.

When l = 1, then |G| = pm. By Theorem 8.1.2, there exists a unique p-subgroup of order pm,
so the result holds.

Now, assume that the result holds for l = k, so that
∣∣∣Hp

m1
1
Hp

m2
2
· · ·Hp

ml
l

∣∣∣ =
∏k
i=1 p

mi
i . Then,

let g ∈ Hp1Hp2 · · ·Hpk ∩ Hpk+1
. Since g ∈ Hpk+1

, we have o (g) = pk+1 ⇒ gp
k+1

= 1G for
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some k ≥ 0. On the other hand, since g ∈ Hp1Hp2 · · ·Hpk we have g = h1h2 · · ·hk, where

o (hi) = pi ⇒ h
pji
i = 1G for some prime exponents pj , 1 ≤ i ≤ k and j ≥ 0. Let m =

∏k
i=1 p

j .
Then m and pk+1 are coprime (how?), i.e., gcd

(
m, pk+1

)
= 1, so that there are integers r and

s such that rm+ spk+1 = 1. Therefore,

g = g1 = grm+spk+1
= (gm)r

(
gp

k+1
)s

= 1G,

which means that Hp1Hp2 · · ·Hpk ∩Hpk+1
= {1G}, i.e.,

∣∣Hp1Hp2 · · ·Hpk ∩Hpk+1

∣∣ = 1. Therefore,
by the induction hypothesis,

∣∣Hp1Hp2 · · ·HpkHpk+1

∣∣ =
|Hp1Hp2 · · ·Hpk |

∣∣Hpk+1

∣∣∣∣Hp1Hp2 · · ·Hpk ∩Hpk+1

∣∣ =
k∏
i=1

pmii · p
mk+1

k+1 =
k+1∏
i=1

pmii ,

so the result holds for l = k + 1. By induction, therefore, the result holds for all l.

Finally, since Hp
m1
1
Hp

m2
2
· · ·Hp

ml
l
⊆ G and

∣∣∣Hp
m1
1
Hp

m2
2
· · ·Hp

ml
l

∣∣∣ = |G|, we must have G =

Hp
m1
1
Hp

m2
2
· · ·Hp

ml
l

, and thus the pf is complete. �

Corollary 8.2.1

Let G be a finite Abelian group with |G| =
∏l
i=1 p

mi
i . Let Hp

mi
i

be a p-subgroup

such that
∣∣∣Hp

mi
i

∣∣∣ = pmii (such a p-subgroup exists by Theorem 8.1.2). Then

G ∼= Hp
m1
1
×Hp

m2
2
× · · · ×Hp

ml
l
.

In other words, every finite Abelian group is isomorphic to the direct product of
its p-subgroups.

Proof: The result follows from the previous theorem and the generalisation of internal direct
product theorem if we can show that for all k ∈ {2, . . . , l}

Hp
m1
1
Hp

m2
2
· · ·H

p
mk−1
k−1

∩Hp
mk
k

= {1G} .

Now, fix a k ∈ (2, . . . , l} and write the order of G as |G| = pmkk a, where gcd (pk, a) = 1. By the

previous theorem, we get that
∣∣∣Hp

m1
1
Hp

m2
2
· · ·H

p
mk−1
k−1

∣∣∣ = a, with
∣∣∣Hp

mk
k

∣∣∣ = pmkk . Therefore,

gcd
(∣∣∣Hp

m1
1
Hp

m2
2
· · ·H

p
mk−1
k−1

∣∣∣ , ∣∣∣Hp
mk
k

∣∣∣) = 1,

and thus Hp
m1
1
Hp

m2
2
· · ·H

p
mk−1
k−1

∩Hp
mk
k

= {1G} for all k ∈ {2, . . . , l}. Therefore, by the general

internal direct product theorem, we get

G ∼= Hp
m1
1
×Hp

m2
2
× · · · ×Hp

ml
l
,

as required. (Also show pf from class.) �
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So we see that every finite Abelian group can be written as a direct product of p-groups.
However, we have seen that every p-group is isomorphic to a direct product of cyclic p-groups.
This finally leads to the important fundamental theorem of finite Abelian groups, also called
the Classification Theorem for Finite Abelian Groups.

Theorem 8.2.1 Fundamental Theorem of Finite Abelian Groups

Every finite Abelian group is isomorphic to the direct product of a unique col-
lection of cyclic p-groups.

Remark: By “collection” we mean a multiset, i.e., a set in which repetition of elements is allowed but the
ordering, as with regular sets, is not important.

Proof: Let G be a finite Abelian group. We have just seen in the previous corollary that G is
isomorphic to the direct product of p-subgroups such that the product of their orders satisfy the
prime factorisation of |G|. Then, by the classifiction of finite Abelian p-groups, every p-subgroup
in that decomposition is isomorphic (uniquely) to a direct product of cyclic p-groups. Therefore,
G is isomorphic to a direct product of a unique collection of cyclic p-groups. �

Corollary 8.2.2

Let n be a positive integer and let n =
∏l
i=1 p

mi
i be the prime factorisation of n.

Then, up to isomorphism, there are exactly
∏l
i=1 P (mi) distinct (finite) Abelian

groups of order n where P is the partition function.

Proof: We know that every finite Abelian group of order n may be written as the direct
product of l p-subgroups, where l is the number of primes in the prime factorisation of n. Each
of these p-subgroups, of order pmi , is itself a direct product of cyclic p-groups. In fact, we have
seen that there are P (mi) groups of order pmi up to isomorphism. It thus follows that there are∏l
i=1 P (mi) unique ways of writing the group as a direct product of cyclic p-groups. �

8.3 Examples

In this section, we go through several examples of the use of the classification of finite Abelian
p-groups theorem and the fundamental theorem of finite Abelian groups.

Example 8.3.1 Prove that Zn × Zm ∼= Znm if and only if gcd (n,m) = 1. Deduce that
Zn × Zm is cyclic if and only if gcd (n,m) = 1.

Solution:

Example 8.3.2 Determine all Abelian groups, up to isomorphism, of order 16.
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Solution: We begin with the prime factorisation of 16. Notice that 16 = 24, so that any
group of order 16 is a p-group, with p = 2. So, using the classification of finite Abelian
p-groups, the number of Abelian groups of order 16 is equal to the number of partitions of
4. The partitions are, with their corresponding group,

[4] −→ Z24 = Z16,

[3, 1] −→ Z23 × Z21 = Z8 × Z2,

[2, 2] −→ Z22 × Z22 = Z4 × Z4,

[2, 1, 1] −→ Z22 × Z21 × Z21 = Z4 × Z2 × Z2,

[1, 1, 1, 1] −→ Z21 × Z21 × Z21 × Z21 = Z2 × Z2 × Z2 × Z2.

So there are five Abelian groups, up to isomorphism, of order 16, as listed above. So if G is
an Abelian group of order 16, then it must be isomorphic to one of the groups above.

Example 8.3.3 Up to isomorphism, list all the Abelian groups of order 32.

Solution: We begin with the prime factorisation of 32. Notice that 32 = 25, so in fact
any group of order 32 is a p-group, with p = 2. So our answer comes directly from the
classification theorem of finite Abelian p-groups, which means we must look for the partition
of 5. Remember that each partition of 5 corresponds to a unique direct product, and hence
unique Abelian group, of order 32. The partitions of 5 are

[5] −→ Z25 = Z32,

[4, 1] −→ Z24 × Z21 = Z16 × Z2,

[3, 1, 1] −→ Z23 × Z21 × Z21 = Z8 × Z2 × Z2,

[3, 2] −→ Z23 × Z22 = Z8 × Z4,

[2, 2, 1] −→ Z22 × Z22 × Z21 = Z4 × Z4 × Z2,

[2, 1, 1, 1] −→ Z22 × Z21 × Z21 × Z21 = Z4 × Z2 × Z2 × Z2,

[1, 1, 1, 1, 1] −→ Z21 × Z21 × Z21 × Z21 × Z21 = Z2 × Z2 × Z2 × Z2 × Z2.

So we see that there are seven Abelian groups of order 32, as listed above. This tells us that
if G is an Abelian group of order 32, then it must be isomorphic to one of the groups above.

Example 8.3.4 Determine all Abelian groups of order 56.

Solution: The prime factorisation of 56 is 56 = 23 · 71. So, by the funamental theorem
of finite Abelian groups, the Abelian groups of order 56 are given by the combinations of
the direct products of the decompositions of the p-groups of orders 8 and 7. In other words,
every combination (without regard for order, of course) of the partitions of 3 and 1 will give
rise to an Abelian group of order 56. There is only one partition of 1, and that is [1], and
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there are three partitions of 3, namely

[3] , [2, 1] , and [1, 1, 1] .

Therefore, there are three Abelian groups, up to isomorphism, of order 56:

[3] , [1] −→ Z23 × Z71 = Z8 × Z7
∼= Z56, since gcd (7, 8) = 1,

[2, 1] , [1] −→ Z22 × Z21 × Z71 = Z4 × Z2 × Z7
∼= Z4 × Z14

∼= Z2 × Z28, since gcd (2, 7) = gcd (4, 7) = 1,

[1, 1, 1] , [1] −→ Z21 × Z21 × Z21 × Z71 = Z2 × Z2 × Z2 × Z7
∼= Z2 × Z2 × Z14, since gcd (2, 7) = 1.

Again, any Abelian group of order 56 will be isomorphic to one of these groups.

Example 8.3.5 Determine all Abelian groups of order 400.

Solution: The prime factorisation of 400 is 400 = 52 · 24. We have

Partitions of 2 Partitions of 4

[2] [4]

[1, 1] [3, 1]

[2, 2]

[2, 1, 1]

[1, 1, 1, 1] .

Therefore, there are 5× 2 = 10 Abelian groups of order 400. They are

Z52 × Z24 = Z25 × Z16

Z52 × Z23 × Z21 = Z25 × Z8 × Z2

Z52 × Z22 × Z22 = Z25 × Z4 × Z4

Z52 × Z22 × Z21 × Z21 = Z25 × Z4 × Z2 × Z2

Z52 × Z21 × Z21 × Z21 × Z21 = Z25 × Z2 × Z2 × Z2 × Z2

Z51 × Z51 × Z24 = Z5 × Z5 × Z16

Z51 × Z51 × Z23 × Z21 = Z5 × Z5 × Z8 × Z2

Z51 × Z51 × Z22 = Z5 × Z5 × Z4 × Z4

Z51 × Z51 × Z22 × Z21 × Z21 = Z5 × Z5 × Z4 × Z2 × Z2

Z51 × Z51 × Z21 × Z21 × Z21 × Z21 = Z5 × Z5 × Z2 × Z2 × Z2 × Z2.

Recall much earlier that we proved the isomorphism relation “∼=” to be an equivalence relation (in
a remark), and we mentioned that the equivalence classes, or “isomorphism classes”, consisted of
all groups of a particular order that were isomorphic to some representative of those classes. In
the four examples above, we have split all Abelian groups of a particular order into isomorphism
classes, with the representatives of each class being the groups listed. Keep in mind that we
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have only done this for Abelian groups of that order. Determining the non-Abelian isomorphism
classes for groups of a particular order is a much harder problem!

Example 8.3.6 Show that there are only two Abelian groups of order four, and describe
them. To which of these isomorphism classes does U (12) belong?

Solution: We have that 4 = 22, so there are only two Abelian groups of order four. In
fact, we have seen that all groups of order four are Abelian, so we can say that any group
of order four is isomorphic to either one of two groups. We’ve seen already that these two
groups are Z4 and the Klein 4-Group, which may be represented as the dihedral group D2,
or, in terms of the classification of p-groups, as Z2 × Z2.

Now, U (12) = {[1]12, [5]12, [7]12, [11]12}. It can be shown that U (12) is not cyclic; and since
gcd (2, 2) = 2 6= 1, we have that Z2 × Z2 is not cyclic, and clearly Z4 is cyclic, so U (12)
belongs to the isomorphism class containing Z2 × Z2.

Example 8.3.7 To which isomorphism class does U (60) belong?

Solution:

Example 8.3.8 To which isomorphism class does U (63) belong?

Solution:

Example 8.3.9 For each n below, identify the group U (n) by writing it as the direct
product of cyclic p-groups.

(a) n = 27

(b) n = 32

(c) n = 45

(d) n = 72

Solution:

Example 8.3.10 Count how many distinct Abelian groups there are for each n.

(a) n = 1024
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(b) n = 27000

(c) n = 30030

(d) n = 31104

Solution:

Example 8.3.11 Let G = Z3 × Z3 × Z4 × Z9.

(a) How many elements in G are of order 9?

(b) How many elements in G are of order 6?

Solution:
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9 Group Actions

In this chapter, we study the concept of a group acting on a set. Group actions are a powerful
tool that we shall use both for proving theorems for abstract groups and for unravelling the
structure of specific examples. We will eventually see that the theory of group actions generalises
the theory of cycles and cycle structures seen in the chapter on Sn. The concept of an “action”
turns out to be an important tool for studying objects in general abstract algebra.

Recall that any bijection from a set X to itself can be regarded as a permutation, as all it
does is is “rearrange” the elements of X. (Does X have to be a finite set?) The set of these
permutations, SX , is a group.

Definition 9.0.1 Group Action

A group action of a group G on a set X is a function ϕ : G×X → X satisfying
the following properties:

1. ϕ (gh, x) = ϕ (g, ϕ (h, x)) for all g, h ∈ G and all x ∈ X.

2. ϕ (1G, x) = x for all x ∈ X.

Example 9.0.12 Let G = R (under addition) and X = R2. Define a group action

ϕ1 : R× R2 → R2 by ϕ1 (a, (x, y)) = (x+ a, y) ,

and define
ϕ2 : R× R2 → R2 by ϕ2 (b, (x, y))→ (x, y + b) .

(You may verify that ϕ1 and ϕ2 are group actions.) Observe that ϕ1 is merely a horizontal
translation in R2 and ϕ2 a vertical translation.

Example 9.0.13 Let G = {1G, a} and X = C. Then G acts on X by the action

ϕ : G× C→ C, defined by ϕ (1G, x+ yi) = x+ yi and ϕ (a, x+ yi) = x− yi,

for all complex numbers x+ yi ∈ C. Again, verify that this is a group action.

Example 9.0.14 Every subgroup H of a group G (including the group G itself) acts on G
by left multiplication if we define the mapping ϕ : H×G→ G by ϕ (h, g) = hg for all h ∈ H
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and all g ∈ G. Again, verify that ϕ is indeed a group action (the set X here is actually the
group G!). We may similarly define the mapping ϕ : H × G → G by ϕ (h, g) = gh for all
h ∈ H and all g ∈ G, in which case H acts on G by right multiplication.

Example 9.0.15 Every subgroup H of a group G (again, including the group G itself)
acts on G by conjugation if we define the mapping ϕ : H × G → G by ϕ (h, g) = hgh−1

for all h ∈ H and g ∈ G. Again, verify that ϕ is indeed a group action (the set X here is
actually the group G!).

Example 9.0.16 Let X = {1, 2, . . . , n} and let G = Sn, the group of permutations of n
elements. Then Sn acts on X using the mapping ϕ : §n×X → X defined by ϕ (α, i) = α (i)
for all α ∈ Sn and all i ∈ X. In particular, for any α ∈ Sn let us define the action of 〈α〉
(i.e., the cyclic subgroup of Sn generated by α) on X, ϕ : 〈α〉 ×X → X, by

ϕ
(
αl, i

)
= αl (i)

for all l ∈ Z and i ∈ X. Let us show that this mapping is actually a group mapping by
showing that it satisfies the two defining properties.

1. For all k, l ∈ Z and all i ∈ X, we have

ϕ
(
αk+l, i

)
= αk+l (i) = αk

(
αl (i)

)
= ϕ

(
αk, αl (i)

)
= ϕ

(
αk, ϕ

(
αl, i

))
,

so the first condition is satisfied.

2. For all i ∈ X, ϕ
(
α0, i

)
= α0 (i) = i since α0 is the identity mapping. So the second

condition is satisfied as well.

So ϕ is indeed a group action.

Theorem 9.0.1

Let G be a group acting on the set X. Then

1. For every g ∈ G, the mapping ϕg : X → X defined by ϕg (x) = ϕ (g, x) for
all x ∈ X is a permutation of X, i.e., ϕg ∈ SX .

2. The mapping ϕ : G→ SX defined by ϕ (g) = ϕg is a group homomorphism.

Remark: The first part of the theorem shows us that the set consisting of all ϕg for all g ∈ G, i.e., the set
consisting of all permutations of X, which we denote SX , is a group under composition of functions. This
makes the notion of the homomorphism in the second part of the theorem valid.
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Proof:

1. To say that ϕg is a permutation is to say that ϕg is a bijection. To show that ϕg is a
bijection, it suffices to show that it has an inverse. Note that if g = 1G, then by property 2
of group actions, we must have ϕ1 (x) = x for all x ∈ X. In other words, ϕ1 is the identity
mapping on X. Now, consider the mapping ϕg−1 : X → X. We have

ϕg ◦ ϕg−1 (x) = ϕg
(
ϕg−1 (x)

)
= ϕg

(
ϕ
(
g−1, x

))
= ϕ

(
g, ϕ

(
g−1, x

))
= ϕ

(
gg−1, x

)
= ϕ (1G, x)

= x.

Similarly, we can show that ϕg−1 ◦ϕg (x) = x. In other words, both ϕg−1 ◦ϕg and ϕg ◦ϕg−1

do not move x, i.e., they corresponding to ϕ1, the identity mapping. So

ϕg ◦ ϕg−1 = ϕg−1 ◦ ϕg = ϕ1,

i.e., ϕ−1g = ϕg−1 . So we have found an inverse; hence, ϕg is a bijection, hence a permutation
on X.

2. We now show that ϕ : G → SX is a group homomorphism. We have for all g, h ∈ G and
all x ∈ X

ϕ (gh) = ϕgh (x)

= ϕ (gh, x) = ϕ (g, ϕ (h, x))

= ϕ (g, ϕh (x))

= ϕg (ϕh (x))

= ϕg ◦ ϕh (x)

= ϕ (g) ◦ ϕ (h) .

So ϕ is indeed a homomorphism. �

We can easily show that the converse of the preceding proposition is also true.

Theorem 9.0.2

Given a group homomorphism ϕ : G→ SX from a group G to the group SX , the
mapping ϕ : G × X → X defined by ϕ (g, x) = ϕg (x) for all g ∈ G is a group
action of G on X.

Proof: We need to show that the two defining conditions of a group action are satisfied.

1. We have ϕ (g, ϕ (h, x)) = ϕg (ϕh (x)) = ϕg ◦ ϕh (x) = ϕgh (x) = ϕ (gh, x), the second-last
step following because ϕ is a homomorphism.
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2. We have ϕ (1G, x) = ϕ1 (x) = x, where, as established before, ϕ1 is the identity mapping,
i.e., the identity element of SX .

So ϕ is a group action. �

A word on notation: we will sometimes use g to denote ϕg = ϕ (g). Remember that ϕg is a
permutation of X (i.e., ϕg : X → X) and ϕ is a homomorphism that gives, for each g ∈ G, a
permutation ϕg (i.e., ϕ : G→ SX).

Lemma 9.0.1 Let G be any group acting on itself. Define the mapping ϕ : G×G→ G by
ϕ (g, h) = gh for all g, h ∈ G. Then ϕ is a group action.

Proof: We simply show that the defining properties of group actions are satisfied.

1. For all g, h, k ∈ G,

ϕ (gh, k) = ghk = g (hk) = gϕ (h, k) = ϕ (g, ϕ (h, k)) ,

so the first condition is satisfied.

2. For all g ∈ G,
ϕ (1G, g) = 1 · g = g,

so the second property is satisfied.

Therefore, ϕ is a group action. �

Definition 9.0.2 Permutation Representation

The homomorphism ϕ : G → SX associated with an action of a group G on a
set X is called the permutation representation of G.

We now present the important theorem, due to Cayley, that establishes all finite groups as
subgroups of the permutation group Sn.

Theorem 9.0.3 Cayley’s Theorem

Every finite group of order n is isomorphic to a subgroup of Sn.

Proof: Let G be any finite group of order n, and let it act on itself by multiplication as in
the previous lemma, i.e., let

ϕ : G×G→ G such that ϕ (g, h) = gh, ∀g, h ∈ G.

We know from Theorem 9.0.1 that there exists a group homomorphism ϕ : G → SG defined
by ϕ (g) = ϕg (x) for x ∈ G (SG is the set of permutations on G) (remember that ϕg is one
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permutation, i.e., one member of SG!). Now,

Kern (ϕ) = {g ∈ G | ϕ (g) = 1SG = ϕ1}
= {g ∈ G | ϕg = ϕ1}
= {g ∈ G | ϕ (g, x) = gx = ϕ (1G, x) = x for all x ∈ G} since ϕg = ϕ (g, x)

= {g ∈ G | g = 1G} by cancellation law

= {1G} since identity element is unique.

So Kern (ϕ) = {1G}, which means that ϕ is one-to-one. More importantly, however, the first
isomorphism theorem gives

G/Kern (ϕ) ∼= Im (ϕ) ≤ SG.

But Kern (ϕ) = {1G}, and
G/{1G} ∼= G,

which means that
G ∼= Im (ϕ) ≤ SG,

i.e., G is isomorphic to a subgroup of SG, as required. �

Example 9.0.17 We have already given a permutation representation of the dihedral
group D3, which was the symmetry transformations of the equilateral triangle. We have seen
that this group is isomorphic to the group S3, and have used this fact many times already.
So we have unknowingly used Cayley’s theorem many times already. We have also seen the
permutation representation of the group D4, which was the symmetry transformations of
the square..

More generally,

T

he action of the dihedral group Dn on a regular n-gon (i.e., on the set of
points constituting the n-gon) gives a representation of Dn as a subgroup
of the permutation group Sn.

Definition 9.0.3 Faithful Action

The group G is said to act faithfully on the set X if Kern (ϕ) = {1G}, where
ϕ : G → SX , defined as usual by ϕ (g) = ϕg (x) = ϕ (g, x) for all g ∈ G and all
x ∈ X (ϕ is the corresponding group action). In other words, G is faithful to
X if the only element of G that fixes every element of X is the identity (since
all elements of G that fix x, by definition of ϕ, are part of Kern (ϕ)). So G is
faithful to X if and only if ϕ is one-to-one.
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Example 9.0.18 The action of the dihedral group Dn ={
1, b, b2, . . . , bn−1, a, ab, ab2, . . . , abn−1

}
on a regular n-gon is faithful. So is the action

of any subgroup of Dn.

For example, let G =
{

1, b2, b4
}

, a subgroup of the dihedral group D6, and let X =
{1, 2, 3, 4, 5, 6} be the six vertices of a regular hexagon, as shown in the figure above. Let G
act on X by having b rotate the hexagon counterclockwise by 60◦. Then G acts faithfully on
X and can be represented as the subgroup {() , (1 3 5) (2 4 6) , (1 5 3) (2 6 4)} of S6, where
the generator of the subgroup G is b = (1 3 5) (2 4 6).

Example 9.0.19 Let G =
{

1, g, g2
}

be the cyclic group of order three, let X =
{1, 2, 3, 4, 5, 6, 7, 8} be the eight vertices of a cube, as shown below, and let G act on X
by having g rotate the cube around the axis through vertices 2 and 8, so that ϕ (g, 1) = 6,
ϕ (g, 3) = 1, and ϕ (g, 6) = 3, as shown in the figure below.

Then again the action is faithful and G may be represented as the subgroup

{() , (1 6 3) (4 5 7) , (1 3 6) (4 7 5)}

of S8. In this case, the generator g of G is represented by the permutation g = (1 6 3) (4 7 5).
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Example 9.0.20 Since D4, which corresponds to the symmetry transformations of a
square, may be represnted as a subgroup of S4, we know that that action of D4 on {1, 2, 3, 4}
(corresponding to the vertices of the square) is faithful. But we may consider D4 instead
acting on the set {d13, d24} of the two diagonals of the square.

In this case, the action is not faithful, since ϕ
(
b2, d13

)
= d13 and ϕ

(
b2, d24

)
= d24, where b

is the group element representable by (1 2 3 4) ∈ S4. (i.e., we have that elements other than
the identity fix d13 and d24.)

9.1 Stabilisers and Orbits in a Group Action

Definition 9.1.1 Stabiliser

Let G be a group, X a set, and ϕ : G×X → X a group action. Define the set

StabG (x) = {g ∈ G | ϕ (g, x) = ϕg (x) = x} ⊆ G ,

called the stabiliser of x in G. Remember that x is an element of X. So the
stabiliser of an element x ∈ X is the collection of those g ∈ G that fix x under
the action ϕ. Complementarily, we define the set

StabX (g) = {x ∈ X | ϕ (g, x) = x} ⊆ X

as the stabiliser of g in X, i.e., the set of elements in X that are fixed by G.

Theorem 9.1.1

Let G be a group, X a set, and ϕ : G×X → X a group action. For any x ∈ X,
StabG (x) ≤ G.

Proof: We use the subgroup test. For any element x ∈ X:

1. Since by definition ϕ (1G, x) = x for all x ∈ X, we have that 1G ∈ StabG (x), so StabG (x)
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is not empty.

2. Consider two elements g, h ∈ StabG (x), i.e., ϕ (g, x) = x and ϕ (h, x) = x. Then,

ϕ (gh, x) = ϕ (g, ϕ (h, x)) = ϕ (g, x) = x,

so that gh ∈ StabG (x).

3. Consider an element g ∈ StabG (x), so that ϕ (g, x) = x. Since 1G = g−1g ∈ StabG (x), we
have

ϕ
(
g−1, x

)
= ϕ

(
g−1, ϕ (g, x)

)
= ϕ

(
g−1g, x

)
= ϕ (1G, x) = x,

so that g−1 ∈ StabG (x).

So by the subgroup test, StabG (x) ≤ G. �

Example 9.1.1 Consider the dihedral group D4. It acts in a natural way on the set
consisting of the four vertices 1, 2, 3, 4 of the square, together with the sides t12, t23, t34, t41
and the diagonals d13 and d24.

The table below describes the action.

1 2 3 4 t12 t23 t34 t41 d13 d24

id 1 2 3 4 t12 t23 t34 t41 d13 d24
b 2 3 4 1 t23 t34 t41 t12 d24 d13
b2 3 4 1 2 t34 t41 t12 t23 d13 d24
b3 4 1 2 3 t41 t12 t23 t34 d24 d13
a 2 1 4 3 t12 t41 t34 t23 d24 d13
ab 3 2 1 4 t23 t13 t41 t34 d13 d24
ab2 4 3 2 1 t34 t23 t12 t41 d24 d13
ab3 1 4 3 2 t41 t34 t23 t12 d13 d24

From this table, we can see that, for example, ϕ (g, 2) = 2 exactly when g = id or g = ab,
that ϕ (g, d13) = d13 exactly when g = id, b2, ab, ab3, and that ϕ (g, t41) = t41 exactly when
g = id, ab2. Therefore, we have

StabG (2) = {id, ab} , StabG (d13) =
{

id, b2, ab, ab3
}
, StabG (t41) =

{
id, ab2

}
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as some stablisers.

Theorem 9.1.2

Let G be a group, X a set, and ϕ : G×X → X a group action. Define a relation
∼ϕ on X by the following: for all x1, x2 ∈ X, x1 ∼ϕ x2 if and only if there exists
a g ∈ G such that ϕ (g, x1) = x2. The relation ∼ϕ is then an equivalence relation.

Proof: We simply verify the properties of reflexivity, symmetry, and transitivity.

1. (Reflexivity) For all x ∈ X, we have ϕ (1G, x) = x by definition of a group action. So
x ∼ϕ x.

2. (Symmetry) For all x1, x2 ∈ X, suppose x1 ∼ϕ x2, so that ϕ (g, x1) = x2 for some g ∈ G.
We have seen that ϕ−1 (g, x1) = ϕ−1g = ϕg−1 = ϕ

(
g−1, x2

)
= x1, which means that

x2 ∼ϕ x1.

3. (Transitivity) For all x1, x2, x3 ∈ X, suppose x1 ∼ϕ x2 and x2 ∼ϕ x3, i.e., there exist
g, h ∈ H such that ϕ (g, x1) = x2 and ϕ (h, x2) = x3. Then,

ϕ (hg, x1) = ϕ (h, ϕ (g, x1)) = ϕ (h, x2) = x3.

Therefore, x1 ∼ϕ x3. �

Definition 9.1.2 Orbit

Let G be a group, X a set, and ϕ : G×X → X a group action. The equivalence
class under ∼ϕ containing the element x ∈ X, denoted [x] and defined as

[x] = {y ∈ X | x ∼ϕ y} = {g (x) | g ∈ G} ,

is called the orbit of x.

Remark: Notice that we have defined the orbit of an element x ∈ X in two ways. The first is the familar way
of defining equivalence classes in general. The second is [x] = {g (x) | g ∈ G}, which is completely equivalent
to the first. To see why, note that x ∼ϕ y ⇔ ϕ (g, x) = y for some g ∈ G. Hence, as long as g ∈ G any
element of X of the form ϕ (g, x) will be equivalent to x under ∼ϕ, hence an element of [x]. Since, for a fixed
g, ϕ (g, x) = ϕg (x) = ϕ (g) = g (x), the second defnition follows.

Example 9.1.2 Consider the preceding example of the action on D4. From the table, we
can see that there are three orbits, the sets of vertices, of edges, and of diagonals. So, for
instance, [2] = {1, 2, 3, 4} and [d13] = {d13, d24} and [t41] = {t12, t23, t34, t41}. We have seen
that StabG (2) is a group of order two, while [2] has four elements; also, StabG (d13) is a
group of order four, while [d13] has two elements; finally, StabG (t41) is a group of order two,
while [t41] has four elements.
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Theorem 9.1.3 The Orbit-Stabiliser Theorem

Let G be a group, X a set, and ϕ : G×X → X a group action. For any x ∈ X,
we have

|[x]| = [G : StabG (x)] ,

i.e., the size of the orbit of x is equal to the index of its stabiliser. If G is finite,
then

|[x]| = |G|
|StabG (x)|

.

Proof: (Only for finite G) First note that if g, h ∈ G, then

ϕg (x) = ϕh (x)⇔ ϕh−1 (x) ◦ ϕg (x) = ϕh−1 (x) ◦ ϕh (x) = x

⇔ ϕh−1g (x) = x

⇔ h−1g ∈ StabG (x) .

Now, let us write g = ϕg, and define a mapping

ϕ̃ : [x]→ G/Stab (x) by ϕ̃ (g) = gStabG (x) .

We want to show that ϕ̃ is a bijection, from which the result will follow.

1. We first show that ϕ̃ is well-defined. For all g1, g2 ∈ G, suppose g1 = g2. From
above, we get that g−12 g1 ∈ StabG (x), which, by definition of equivalent left cosets, gives
g1StabG (x) = g2StabG (x), which implies that ϕ̃ (g1) = ϕ̃ (g2). So ϕ̃ is well defined.

2. It is clear from the definition of ϕ̃ that it is surjective.

3. We now show that ϕ̃ is injective. For all g1, g2 ∈ G,

g1StabG (x) = g2Stab (x)

⇔ g−12 g1 ∈ StabG (x)

⇔ g1 (x) = g2 (x) .

Therefore, ϕ̃ is injective.

Therefore, ϕ̃ is a bijection, which means that

|[x]| = |G/StabG (x)| = |G|
|StabG (x)|

,

as required. �
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Definition 9.1.3

Let G be a group, X a set, and ϕ : G ×X → X a group action. We have that
StabX (g) = {x ∈ X | ϕ (g, x) = x}, i.e., the set of those elements in x that are
fixed by a particular g ∈ G. Let us now consider those elements x ∈ X that are
fixed by every element in G, i.e., define the set

Fix (X) = {x ∈ X | ϕ (g, x) = x for all g ∈ G} .

Complementarily, we can also define the set

Fix (G) = {g ∈ G | ϕ (g, x) = x for all x ∈ X} ,

which is the set of those elements g ∈ G that fix every element in X.

Theorem 9.1.4

Let G be a group, X a set, and ϕ : G×X → X a group action. Then,

Fix (X) =
⋂
g∈G

StabX (g) and Fix (G) =
⋂
x∈X

StabG (x) .

In addition, Fix (G) = Kern (ϕ), where recall ϕ : G → SG is defined by ϕ (g) =
ϕg.

Theorem 9.1.5

Let G be a group, X a set, and ϕ : G×X → X a group action. Then |[x]| = 1
if and only if x ∈ Fix (X).

Proof: Consider an element a ∈ Fix (X), which, by definition, is fixed by all g ∈ G. Its orbit
is therefore

[a] = {ϕ (g, a) | g ∈ G} = {a} ,

since, as mentioned, all g ∈ G fix a. So any element in Fix (X) has an orbit of size one.
Conversely, suppose |[a]| = 1 for some a ∈ X. Because every element in X is equivalent to itself
under the equivalence relation ∼ϕ, we must then have [a] = {a}, which by definition of orbits
means that ϕ (g, a) = a for all g ∈ G, which by definition of Fix (X) means that a ∈ Fix (X).
So any element of X with an orbit of size one belongs to Fix (X), completing the pf. �

Now, we know that if a and b are in the same orbit, then a, b ∈ [a] (or a, b ∈ [b]), i.e., there exists
an h ∈ G such that ϕ (h, b) = a (or ϕ

(
h−1, a

)
= b); in particular, then, [a] = [b]. Therefore,

|StabG (x)| = |G|
|[a]|

=
|G|
|[b]|

= |StabG (y)| ,
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In fact, we can say more. If a and b are in the same orbit, then

h−1StabG (a)h =
{
h−1xh | x ∈ StabG (a)

}
=
{
h−1xh | ϕ (x, a) = a

}
=
{
h−1xh | ϕ (x, ϕ (h, b)) = ϕ (h, b)

}
(since ϕ (h, b) = a from above)

=
{
h−1xh | ϕ (xh, b) = ϕ (h, b)

}
(by definition of group action)

=
{
h−1xh | ϕxh (b) = ϕh (b)

}
(alternate notation)

=
{
h−1xh | ϕ−1h ◦ ϕxh (b) = b

}
=
{
h−1xh | ϕh−1 ◦ ϕxh (b) = b

}
=
{
h−1xh | ϕ

(
h−1xh, b

)
= b
}

= StabG (b) .

Theorem 9.1.6 The Equivalence Class Equation

Let G be a finite group, X a set, and ϕ : G × X → X a group action. Let N
be the number of orbits in the action, and let a1, a2, . . . , ar be those represen-
tatives of the orbits of X such that none of them are in Fix (X) and none of
[a1] , [a2] , . . . , [ar] are contained in Fix (X) (meaning that no two of the ai are
conjugate to each other, but every element not in Fix (X) is equivalent to one of
them). Then

|X| =
N∑
i=1

|G|
|StabG (ai)|

= |Fix (X)|+
r∑
i=1

|G|
|StabG (ai)|

.

Proof: We know that the action of G on X determines an equivalence relation ∼ϕ with
the orbits [ai] as the equivalence classes. As we know, the equivalence classes partition the
underlying set. Therefore,

|X| =
N∑
i=1

|[ai]| ,

which, by the orbit-stabiliser theorem, gives

|X| =
N∑
i=1

|G|
|StabG (ai)|

.

Now, let |Fix (X)| = s and b1, b2, . . . , bs all of the elements of Fix (X). Then, since each bi
is equivalent under ∼ϕ only to itself (we saw this in the paragraph above the statement of
this theorem, which stated that [bi] = {bi}), the bj and ai are together the complete set of
representaties of all the orbits, i.e., N = r+ s. Now, since bi ∈ Fix (X), it is fixed by all g ∈ G,
which means that

StabG (bi) = {g ∈ G | ϕ (g, bi) = bi} = G,
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i.e., |StabG (bi)| = |G|. Therefore,

|X| =
N∑
i=1

|G|
|StabG (ai)|

=

s∑
i=1

|G|
|StabG (bi)|

+

r∑
i=1

|G|
|StabG (ai)|

=

s∑
i=1

1 +

r∑
i=1

|G|
|StabG (ai)|

= s+

r∑
i=1

|G|
|StabG (ai)|

= |Fix (X)|+
r∑
i=1

|G|
|StabG (ai)|

,

as required. �

Remark: Remember that by the orbit-stabiliser theorem, |G|
|StabG(ai)|

= |[ai]|, so that the size of X is simply
the sum of the sizes of each orbit. The equivalence class equation splits the sum of sizes of each orbit into
orbits of size one and orbits of size greater than one.

9.2 The Number of Orbits and Polya-Burnside Problems

In this section, we apply the orbit-stabiliser theorem above to prove Burnside’s theorem, which
gives a method of counting the number of orbits of a set under the action of a group of symme-
tries. We also illustrate how this theorem can be applied to various counting problems.

Example 9.2.1 You want to construct a string of four beads. You have a bunch of black
and white beads (at least four of each, say) to choose from. How many distinct strings can
you make?

Solution: Before we start counting, let us think about what is meant by distinct strings
of beads. We must keep in mind that flipping the string about its centre may change the
colour scheme as read from left to right, but it will still be the same string. So we will want
to avoid doubly-counting such apparently-different strings. Therefore, distinct means that
our collection of strings should not contain pairs that differ only by a flip.

Now, since there are two possibilities for each bead, there are at most 24 = 16 possible bead
strings, each labelled by a particular colour scheme as read from left to right. Let X be the
set of these colour schemes. We will use “B” to denote a black bead and “W” to denote a
white bead. So we have

X = {WWWW,BWWW,WBWW,WWBW,WWWB,

BBBB,WBBB,BWBB,BBWB,BBBW,

BWBW,WBWB,BWWB,WBBW,BBWW,WWBB}.

If we don’t care about flippling the strings and only care about distinctness as read from
left to right, then are 16 possibilities. If we take the flipping into account, then observe
that there are only four “invariant” strings that remain, i.e., only four strings that stay the
same when flipped about the centre, WWWW,BBBB,BWWB,WBBW . The remaining
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twelve come in pairs that are equivalent to each other under flipping, so that these twelve
strings only give six unique ones. Therefore, there are 4 + 6 = 10 distinct strings that we

can construct. We may also write this result as 1
2

(
24 + 2

4
2

)
.

Theorem 9.2.1 Cauchy-Frobenius-Burnside (CFB Theorem)

Let G be a finite group, X a finite set, and ϕ : G×X → X a group action. Let
N be the number of orbits in X under ϕ. Then

N =
1

|G|
∑
g∈G

F (g) ,

where F (g) = |StabX (g)|.

Remark: Think of F (g) as the number of elements in X that are “invariant” under g in the action.

Proof: In G ×X, consider all pairs (g, x), where ϕ (g, x) = x. Let n be the number of such
pairs. We count them in two different ways. First, for a fixed g ∈ G, the number of such pairs
that are of the form (g, ∗) is exactly F (g). Hence, we get the following expression for n:

n =
∑
g∈G

F (g) .

Secondly, for a fixed x ∈ X, the number of such pairs that are of the form (∗, x) is exactly
StabG (x). Hence, also

n =
∑
x∈X
|StabG (x)| .

Now, by the orbit-stabiliser theorem, we know that |StabG (x)| = |G|
|[x]| . Hence, we get the

following expression for n:

n = |G|
∑
x∈X

1

|[x]|
.

Now, let R = {a1, a2, . . . , aN} be the set of representatives of all the orbits of X. Then, observe
that ∑

x∈X

1

|[a]|
=
∑
a∈R

∑
b∈[a]

1

|[a]|
=
∑
a∈R

1

|[a]|
∑
b∈[a]

1 =
∑
a∈R

1

|[a]|
|[a]| =

∑
a∈R

1 = N.

Therefore, we have

n =
∑
g∈G

F (g) and n = |G|N ⇒ N =
1

|G|
∑
g∈G

F (g) ,

as required. �
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We now illustrate how to apply Burnside’s theorem to specific counting problems. In all these
problems, we are counting the number of orbits in some action. We first need to specify the set
X and the group G acting on it, and then determine F (g) for all g ∈ G.

In particular, placing the previous example in the language of this theorem, we can see that
the group G is the group of symmetry transformations of the string of beads. Since there are
only two such transformations, namely keeping the string in its place and flipping it about the
centre, they can be represented using the group G = Z2, where [0]2 represents keeping the string
in its place and [1]2 represents flipping it about its centre. Then G acts on X, which was the set
of all possible colour schemes, by flipping, and we can see that F ([0]2) represents the number
of colour schemes that are invariant under no flipping, i.e., F ([0]2) = 16, and F ([1]2) is the
number of colour schemes that are invariant under a flip about the centre, i.e., F ([1]2) = 4. The
CFB theorem then gives 1

2 (16 + 4) = 10, as before.

We now generalise this example for any number of beads and any number of possible colours.

Example 9.2.2 Consider a string of n beads (in the sense of the previous example). Each
bead comes in t colours. How many distinct strings of beads of size n can be made?

Solution: Like the previous example, we assume that we have as many beads of each
colour as we need. There are only two symmetry transformations for the string—either we
keep it in its place, or we flip it about its centre. So the group of symmetries is isomorphic
to Z2, where [0]2 represents keeping the object in its place, and [1]2 represents flipping it
about its centre. So let G = Z2. Like before, we also let X be the set of all colour schemes
of the string. Then |X| = tn. By the CFB theorem, the number of strings N is

N =
1

2

∑
g∈Z2

F (g) .

Now,
F ([0]2) = tn

since all possible colour schemes are invariant when we don’t perform a flip on them. Now,
as mentioned, F ([1]2) is the number of colour schemes that are invariant under a flip about
the centre, which means that both sides of the string must look the same. We can thus focus
our attention only on one half of the string. The problem is then equivalent to determining
the number of colour schemes on a half-string when no flipping is taken into account. If n is
even, then there are n

2 beads on each half of the string, and if n is odd, then there are n+1
2

beads on each half, so we get

F ([1]2) =

{
t
n
2 if n is even;

t
n+1
2 if n is odd.

Therefore, by the CFB theorem, we get

N =


1
2

(
tn + t

n
2

)
if n is even;

1
2

(
tn + t

n+1
2

)
if n is odd,
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which is the answer to our problem. You can check that this agrees with our result from the
previous example in which n = 4 and t = 2.

Example 9.2.3 Consider a rigid rectangle with a bead at each corner. Each bead can be
either black or white, and we have as many of each colour as we wish. How many unique
rectangles can we make?

Solution: We have seen before that the symmetry transformations of a rectangle are
described by the Klein 4-group D2, so we use this as our group G. Again, the set X consists
of all colour schemes, and again there are 24 colour schemes. Starting from the top-left
corner and moving counter-clockwise, they are

X = {WWWW,BWWW,WBWW,WWBW,WWWB,

BBBB,WBBB,BWBB,BBWB,BBBW,

BWBW,WBWB,BWWB,WBBW,BBWW,WWBB}.

Also, D2 = {1, b, a, ab}, where 1 represents the rotation by 2π, or zero, b represents rotation
by π, a represents a reflection about the horizontal symmetry axis, and ab represents a
reflection about the vertical symmetry axis. We now determine all the colour schemes that
are invariant under each symmetry transformation (remember that WWWW and BBBB
are invariant under each one!).

F (1) = 16 (all invariant under no rotation)

F (b) = 4 (pattern ABAB)

F (a) = 4 (pattern AABB)

F (ab) = 4 (pattern ABBA

Therefore, by the CFB theorem, N = 1
4 (16 + 4 + 4 + 4) = 28

4 = 7 rectangles are possible.

Example 9.2.4 Consider a rigid regular hexagon with a bead at each vertex. Each bead
comes in t colours, and we have as many of them as we like. How many distinct hexagons
are possible?

Solution: We can think of the hexagon as a necklace or a bracelet. So we want to know
how many necklaces with six beads are possible when there are t choices of bead to choose
from for each spot. The group describing the symmetry transformations of a regular hexagon
is

D6 =
{

1, b, b2, b3, b4, b5, a, ab, ab2, ab3, ab4, ab5
}
,

where b represents counter-clockwise rotation by 2π
6 = π

3 and a represents a reflection about
an axis of symmetry.
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We will label the vertices starting from the top-left corner and moving counter-clockwise.
We’ll take the reflection a along the axis joining vertices 1 and 4. Now, since we have as
many beads of each colour as we like, |X| = t6, where X is the set of all colour schemes.
Then,

F (1) = t6 (all invariant under no rotation)

F
(
b5
)

= F (b) = t (pattern AAAAAA)

F
(
b4
)

= F
(
b2
)

= t2 (only two points free, pattern ABABAB)

F
(
b3
)

= t3 (only three points free, pattern ABCABC)

F (a) = t4 (only four points free, pattern ABCDCB)

F (ab) = t3 (only three points free, pattern ABCCBA)

F
(
ab2
)

= t4 (only four points free, pattern ABCABD)

F
(
ab3
)

= t3 (only three points free, pattern ABBACC)

F
(
ab4
)

= t4 (only four points free, pattern ABACDC)

F
(
ab5
)

= t3 (only three points free, pattern AABCCB)

Therefore, by the CFB theorem,

N =
1

12

(
2t+ 2t2 + 4t3 + 3t4 + t6

)
,

which is our answer. Note that we get the expected answer of 1 when t = 1, since there
is only one way to make a necklace in which all the beads have the same colour (assuming
beads of the same colour are indistinguishable, of course).

Example 9.2.5 Three black and three white beads are strung together to form a neck-
lace, which can be rotated and turned over. Assuming that beads of the same colour are
indistinguishable, how many different kinds of necklaces can be made?

Solution: Again, we will be consdering the symmetry transformations of a regular
hexagon, and hence the group D6. The set X is again the set of all colour schemes, but be-
cause we are limited to three white and three black beads, |X| 6= 26. In fact, |X| = 6!

3!3! = 20,
and

X = {BBBWWW,BBWBWW,BWBBWW,WBBBWW,WBBWBW,

WBWBBW,WWBBBW,WWBBWB,WWBWBB,WWWBBB,

BBWWBW,BWBWBW,BWWWBB,WBWWBB,BWBWWB,

WBBWWB,BBWWWB,BWWBBW,WBWBWB,BWWBWB}
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We already have all the patterns corresponding to each rotation from the previous example,
so to determine invariant colour schemes we will simply match the schemes with the patterns.

F (1) = 20 (all invariant under no rotation)

F
(
b5
)

= F (b) = 0 (pattern AAAAAA)

F
(
b4
)

= F
(
b2
)

= 2 (pattern ABABAB)

F
(
b3
)

= 0 (pattern ABCABC)

F (a) = 4 (pattern ABCDCB)

F (ab) = 0 (pattern ABCCBA)

F
(
ab2
)

= 4 (pattern ABCABD)

F
(
ab3
)

= 0 (pattern ABBACC)

F
(
ab4
)

= 4 (pattern ABACDC)

F
(
ab5
)

= 0 (pattern AABCCB)

Therefore, the CFB theorem gives

N =
1

12
(20 + 2 · 2 + 4 + 4 + 4) = 3,

so there are three necklaces possible.

9.3 The Class Equation

In this section, we study an important group action, which we already saw in an example,
the action of a group G on itself by conjugation, i.e., the action ϕ : G × G → G defined by
ϕ (g, h) = ghg−1 for all g, h ∈ G. We will derive another important counting formula concerning
the orbits in this particular action. This formula will be important in understanding the structure
of finite groups, and we will apply it to the study of groups whose order is a power of a prime
number p.

Definition 9.3.1 Conjugate Group Elements

Let G be a group acting on itself by conjugation, i.e., define the action ϕ :
G × G → G by ϕ (g, a) = gag−1 for all g, a ∈ G. If there exists a g ∈ G such
that ϕ (g, a) = gag−1 = b, then a and b are said to be conjugate in G. In other
words, a and b are conjugate in G if they are in the same orbit under the action
ϕ, i.e., if [a] = [b].

As before, we define the conjugacy class as the equivalence class under conjugation. In terms of
the action ϕ corresponding to conjugation, the conjugacy classes are simply the orbits.
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Theorem 9.3.1

Let G be a group acting on itself by conjugation, i.e., define the action ϕ :
G × G → G by ϕ (g, a) = gag−1 for all g, a ∈ G. Then the centraliser CG (a) is
equal to the stabiliser StabG (a) for all a ∈ G.

Proof: Recall that the centraliser of a group element a ∈ G is the set of all elements in G
that commute with a, i.e.,

CG (a) = {g ∈ G | ga = ag} .

However, ga = ag ⇒ gag−1 = a⇒ ϕ (g, a) = a. In other words,

CG (a) = {g ∈ G | ϕ (g, a) = a} = StabG (a)

by definition of the stabiliser. �

Theorem 9.3.2

Let G be a group acting on itself by conjugation, i.e., define the action ϕ :
G×G→ G by ϕ (g, a) = gag−1 for all g, a ∈ G. Then |[a]| = [G : CG (a)] for all
a ∈ G, i.e., the size of the conjugacy class of any a ∈ G is equal to the index of
CG (a) in G. If G is finite, then |[a]| = |G|

|CG(a)| .

Proof: By the orbit-stabiliser theorem,

|[a]| = [G : StabG (a)] =
|G|

|StabG (a)|

when G is finite. But we have just seen that CG (a) = StabG (a) when G acts on itself by
conjgation. Therefore,

|[a]| = [G : CG (a)] =
|G|

|CG (a)|
when G is finite, as required. �

Remark: Note that [a], for some a ∈ G, on top of being the conjugacy class containing a, can also be thought
of as the set consisting of all the conjugates of a. As such |[a]| can be thought of as the number of conjugates
of a in G.

If a and b are in the same orbit, we have seen in general that h−1StabG (a)h = StabG (b). In this
particular case, a and b in the same orbit means that a and b are in the same conjugacy class,
which means that a and b are conjugates (a = hbh−1 for some h ∈ G), and since StabG (a) ≡
CG (a) for all a ∈ G when the action is conjugation, we have that

if h−1ah = b, then h−1CG (a)h = CG (b) ,

and hence |CG (a)| = |CG (b)|, i.e., conjugate elements have the same number of elements in
their centralisers. (It does not mean that the centralisers are equal!)
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Theorem 9.3.3 The Conjugacy Class Equation

Let G be a finite group acting on itself by conjugation, i.e., define the action
ϕ : G × G → G by ϕ (g, a) = gag−1 for all g, a ∈ G. Let Z (G) the centre of
G, and let a1, a2, . . . , ar be those representatives of the conjugacy classes of G
such that none of a1, a2, . . . , ar are in Z (G) and none of [a1] , [a2] , . . . , [ar] are
contained in Z (G) (meaning that no two of the ai are conjugate to each other,
but every element not in the centre is conjugate to one of them). Then

|G| = |Z (G)|+
r∑
i=1

|G|
|CG (ai)|

,

which is the conjugacy class equation, often just called the class equation.

Proof: Let |Z (G)| = s and b1, b2, . . . , bs all of the elements of Z (G). Then, since each bi is
conjugate only to itself, the bj and ai are together the complete set of representatives of all the
conjugacy classes. Then, using Theorem 9.1.6, we have

|G| =
s∑
i=1

[G : StabG (bi)] +
r∑
i=1

[G : StabG (ai)] =
s∑
i=1

[G : CG (bi)] +
r∑
i=1

[G : CG (ai)]

since, as we have seen, StabG (a) = CG (a) for all a ∈ G when we consider the action of G on
itself by conjugation. Now, since each bi ∈ Z (G) it commutes with every element in G, by
definition. This means that CG (bi) = G, so that [G : CG (bi)] = 1. Therefore,

|G| =
s∑
i=1

1 +
r∑
i=1

|G|
|CG (ai)|

= s+
r∑
i=1

|G|
|CG (ai)|

= |Z (G)|+
r∑
i=1

|G|
|CG (ai)|

,

where we have written the index [G : CG (ai)] as shown because G is finite. This completes the
pf. �

Remark: Observe that in the second term of the class equation (the summation), the summand is the size
of the orbit [ai], and that, based on how the representatives of these orbits were split, |[ai]| > 1. Remember
that the orbits of size one correspond to the elements of the centre of G since the conjugate of any element
bi ∈ Z (G) is itself, i.e., for any g ∈ G, gbig

−1 = gg−1bi = bi, with the second-last step following from the fact
that bi is in the centre, and hence commutes with every element in G. Hence [bi] = {bi}, and so |[bi]| = 1. So
the size of the centre of a group is equal to the number of orbits of size one.

Remark: Notice that the pf above is almost identical to that of the equivalence class equation. In fact, as
you might have noticed, the conjugacy class equation is merely the equivalence class equation for the special
case of X = G and ϕ the action of conjugation. Therefore, Z (G) ≡ Fix (G) and, as we have seen already,
StabG (a) ≡ CG (a). Note that these two equivalences apply only when G acts on itself and the action is
conjugation.

Example 9.3.1 Find the conjugacy classes and verify the class equation for the dihedral
group D4.
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Solution: We have that

D4 =
{

1, b, b2, b3, a, ba, b2a, b3a | ba = ab−1
}
.

Now,

aba−1 = (ab) a =
(
b3a
)
a = b3a2 = b3

bab−1 = b
(
ab3
)

= b (ba) = b2a

b (ba) b−1 = b (ba) b3 = b2
(
ab3
)

= b2 (ba) = b3a.

When we say conjugacy classes, we mean the orbits of each element of D4 when considering
the action of G on itself by conjugation. Now, let g ∈ D4. By definition of orbit, we have
[g] =

{
hgh−1 | h ∈ D4

}
. Therefore,

[1] = {1}[
b2
]

=
{
b2
}

[b] =
{
b, b3

}
[a] =

{
a, b2a

}
[ba] =

{
ba, b3a

}
.

Since there are two orbits of size one, we have that |Z (D4)| = 1. Therefore,

|G| = |Z (G)|+ |[b]|+ |[a]|+ |[ba]| = 2 + 2 + 2 + 2 = 8,

which verifies the class equation.

Lemma 9.3.1 Let G be a finite group. Then [G : Z (G)] = |G/Z (G)| is not a prime number.

Proof: Suppose first that G is Abelian. Then G = Z (G) and [G : Z (G)] = |G|
|Z(G)| = 1, which

is not prime. So the result holds for Abelian groups.

Now suppose that G is not Abelian. Assume for a contradiction that [G : Z (G)] = p, for p
a prime number. Then G/Z (G) is cyclic, so it can be generated by some element, say gZ (G)
of G/Z (G). Then, any two distinct elements of G can be written as gix and gjy for i 6= j,
x, y ∈ Z (G) and g ∈ G− Z (G). But then

gixgjy = gigjxy (since x ∈ Z (G))

= gi+jxy = gj+ixy = gjgixy = gjgiyx (since x ∈ Z (G))

= gjygix (since y ∈ Z (G)),

so that any two elements in G commute, i.e., G is Abelian, a contradiction. So [G : Z (G)]
cannot be a prime number. �
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Theorem 9.3.4

Let G be a p-group. Then Z (G) 6= {1G}.

Proof: The class equation gives us

|G| = |Z (G)|+
r∑
i=1

|G|
|CG (ai)|

,

where the ai are a complete set of representatives of the orbits (conjugacy classes) not contained

in Z (G). Therefore, CG (ai) 6= G, and so |G|
|CG(ai)| 6= 1, so we must have

p | |G|
|CG (ai)|

But since p | |G| (G is a p-group), it follows that |Z (G)| is divisible by p, i.e.,

p | |Z (G)| .

Since |Z (G)| is divisible by a prime, we can’t have |Z (G)| = 1, i.e., we must have |Z (G)| 6=
1 ⇒ Z (G) 6= {1G}. In particular, since Z (G) ≤ G, |Z (G)| | |G| = pn, and so must be pk for
some 1 ≤ k ≤ n. �

Corollary 9.3.1

If |G| = p2, for p a prime number, then G is Abelian. In particular, then G is
isomorphic to Zp2 ∼= Zp × Zp.

Proof: Let Z (G) be the centre of G. Since Z (G) ≤ G, by Lagrange’s theorem, |Z (G)| divides
|G|, and hence |Z (G)| = 1, p, p2 are the only possibilities since p is prime. From the previous
theorem, we already know that |Z (G)| 6= 1. Additionally, from the lemma above, |Z (G)| 6= p

since this would imply that [G : Z (G)] = p2

p = p, which that lemma shows is not possible. Hence

|Z (G)| = p2 = |G| ⇒ Z (G) = G, which means that G is Abelian. �

Theorem 9.3.5

Let G be a finite group and H < G (i.e., H is a proper subgroup). If |G| - [G : H]!,
then G is not simple.

Proof: Let X be the set of all left cosets of H in G, i.e.,

X = {aH | a ∈ G−H} .

Then, |X| = [G : H]. Note that we thus have |SX | = [G : H]!. Now, define the action

ϕ : G×X → X by ϕ (g, aH) = gaH

for all g ∈ G. We first show that ϕ is indeed a group action.
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1. We have ϕ (gh, aH) = ghaH = g (haH) = ϕ (g, ϕ (h, ah)), so that the first property is
satisfied.

2. We have ϕ (1G, aH) = 1GaH = aH = 1X , so that the second property is also satisfied.

So ϕ is a group action, which means that ϕ : G→ SX is a homomorphism.

We now show that Kern (ϕ) 6= G. Assume for a contradiction that Kern (ϕ) = G. Then
ϕg (aH) = gaH = aH for all g, a ∈ G. In particular, if a = 1, then gH = H ⇒ g ∈ H. But then
also g ∈ Kern (ϕ) = G, which implies that H = G, a contradiction to the assumption that H is
a proper subgroup. So Kern (ϕ) 6= G.

Let us also show that Kern (ϕ) 6= {1G}. Again, assume for a contradiction that Kern (ϕ) = {1G}.
The first isomorphism theorem then gives

G/{1G} ∼= G ∼= Im (ϕ) ≤ SX ,

so G is isomorphic to a subgroup of SX , which means that |G| | |SX | = [G : H]! (since the order
of every subgroup of a group divides the order of the group), a contradiction to the assumption
that |G| - [G : H]!. Therefore, Kern (ϕ) 6= {1G}.

Therefore, Kern (ϕ) is a non-trivial proper normal subgroup of G, and hence G is not simple. �

Example 9.3.2 Prove that every group of order 15 is Abelian. Deduce that each such
group is cyclic.

Solution: Let G be a group of order 15. The positive divisors of 15 are 1, 3, 5, and 15.
By the lemma above, [G : Z (G)] cannot be a prime number. This rules out [G : Z (G)] = 3
and [G : Z (G)] = 5. So the index of the centre is either equal to 1 or 15. If [G : Z (G)] = 1,
we get that |Z (G)| = 15⇒ Z (G) = G, and G is Abelian.

Now, suppose [G : Z (G)] = 15 ⇒ |Z (G)| = 1, i.e., that G is not Abelian. Since the centre
is a subgroup, we must have Z (G) = {1G}. Now, the class equation is

|G| = |Z (G)|+
r∑
i=1

|G|
|CG (ai)|

,

where the summation is over all elements of G that represent its conjugacy classes (the
orbits) of size greater than one. Remember that Z (G) contains all those elements of G
whose conjugacy class has size one. Since |Z (G)| = 1, there is only one conjugacy class of
size one. Now, it is not possible to have an orbit of size 15 (why, exactly?), so we must have
|G|

|CG(ai)| either 3 or 5. Since |G| = 15, the summation must give us 14, and the only way of
summing 3s and 5s to give 15 is 3 + 3 + 3 + 5, so that

|G| = 15 = 1 + 3 + 3 + 3 + 5.

So we have three centralisers of order five, and since the centraliser is a subgroup, there are
at least three subgroups of order five. Call these subgroups H1, H2, H3. Now,

|H1H2| =
|H1| |H2|
|H1 ∩H2|

.
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But |H1 ∩H2| = 1 (why?), so that |H1H2| = 25, a contradiction since H1H2 ⊆ G and
|G| = 15 (a subset cannot be larger than its containing set!). So |Z (G)| 6= 1, and so Z is
Abelian. Now, the prime factorisation of 15 is 15 = 3 · 5. By Cauchy’s theorem (Abelian
case), there exists p-subgroups of order 3 and 5, and by Corollary 8.2.1 G is ismorphic to
these p-subgroups. We also know that each of these p-subgroups are themselves isomorphic
to a direct product of cyclic p-groups based on the partitions of, in this case, one (3 = 31

and 5 = 51), so G ∼= Z3 × Z5, and since gcd (3, 5) = 1, we have G ∼= Z15, which means that
G is cyclic.

We now recall the definition of the normaliser of a subgroup H of a group G. (Stricly speaking,
H only needs to be a subset.)

Definition 9.3.2 Normaliser

Let G be a group and H ≤ G. The normaliser of H in G is defined as the set
NG (H) =

{
g ∈ G | gHg−1 = H

}
.

Recall also thatNG (H) is a subgroup ofG that containsH, and thatH E NG (H). In particular,
NG (H) is the largest subgroup of G that has H as a normal subgroup.

Also recall the action of conjugation that we defined between a group G and itself as ϕ (g, h) =
ghg−1, which was the conjugate of the element h ∈ G by another element g ∈ G. The orbit of
h, denoted [h], was then all the conjugates of h.

We now consider the action ϕ : G×X → X of a group G on a set X, where X is the set of all
subgroups of G. We define this action by

ϕ (g,H) = gHg−1 =
{
ghg−1 | h ∈ H

}
.

(Note that H ≤ G.) This action can be considered as the conjugation of a subgroup. The orbit
of H, denoted [H], is then all of the conjugates of H, by definition. Two subgroups H,K ≤ G
are then said to be conjugate in G if [H] = [K], or equivalently, if there exists a g ∈ G such that
K = ϕ (g,H). The stabiliser of this action is then

StabG (H) = {g ∈ G | ϕ (g,H) = H} =
{
g ∈ G | gHg−1 = H

}
= NG (H) ,

i.e., the stabiliser of H ∈ X is simply the normaliser NG (H).

Now, the orbit of some some subgroup H of G is [H] = {ϕ (g,H) | g ∈ G} =
{
ghg−1 | g ∈ G

}
,

i.e., it is the set of all the conjugates of H in G. Hence, by the orbit-stabiliser theorem, the size
of the orbit of H, hence the number of conjugates of H in G, is

[H] =
|G|

|NG (P )|
.
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9.4 Conjugation in the Permutation Group Sn

Let us now consider the action of conjugation on the group G = Sn, i.e., let us define the action
ϕ : Sn × Sn → Sn by ϕ (α, β) = αβα−1. We know already that in this case StabG (α) ≡ CG (α)
for all α ∈ Sn, so that the size of each orbit [α], which is the size of the conjugacy class
containing α (equivalently, the number of conjugates of α, equivalently the number of elements
that commute with α) is

|[α]| = |Sn|
|CG (α)|

=
n!

|CG (α)|
.

But recall that the size of each conjugacy class [α] is equal to the number of elements in Sn that
have the same cycle structure as α since conjugate elements in Sn must have the same cycle
structure. Let the cycle structure of α be [n1, n2, . . . , nk]. Also, for all 1 ≤ m ≤ n, let lm denote
the number of elements in the cycle structure equal to m, where m, remember, is the length of
a cycle in α (and the maximum possible length of a cycle is of course n). Therefore, we have

|[α]| = n!∏n
m=1m

lm lm!
.

Using this and the expression for |[α]| that we get using the orbit-stabiliser theorem, we may
write down the formula for the number of elements in the centraliser of α:

|CG (α)| =
n∏

m=1

mlm lm! .

In fact, we know that if α and β belong to the same conjugacy class, then they are conjugate to
one another, i.e., there exists a γ ∈ Sn such that α = γβγ−1. Also, then, [α] = [β]. Therefore,
as we have seen in general already, γ−1CG (α) γ = CG (β), and |CG (α)| = |CG (β)|.

Example 9.4.1 What is the order of the centraliser of α = (1 2 3) ∈ S4?

Solution: The cycle structure of α is [3, 1], so using the formula above gives

|CG (α)| =
4∏

m=1

mlm lm! =
(
111!

) (
311!

)
= 3.

Additionally, since we know that CG (α) ≤ S4, and since we require α ∈ CG (α) and that
any group of order three must be cyclic, we have that CG (α) = 〈α〉 =

{
() , α, α2

}
.

Example 9.4.2 What is the order of the centraliser of α = (1 2 3) ∈ S5?

Solution: Again, since the cycle structure of α is [3, 1, 1], we get

|CG (α)| =
5∏

m=1

mlm lm! =
(
122!

) (
311!

)
= 2 · 3 = 6
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as the order of the centraliser of α ∈ S5, i.e., there are 6 conjugates of α in S5, i.e., there
are 6 elements in S5 that commute with α.

Example 9.4.3 Determine the number of conjugates of α = (1 2 3 4 5) and β = (1 2) (3 4)
in S5.

Solution: The cycle structure of α is [5] and the cycle structure of β is [2, 2, 1]. Therefore,

|CG (α)| = 511! = 5 and |CG (β)| =
(
111!

) (
222!

)
= 8,

so there are 5 conjugates of α and 8 conjugates of β in S5.

9.5 Cauchy’s Theorem

We now present and prove the general Cauchy theorem. First, recall that one result of Lagrange’s
theorem is that the order of any subgroup of a finite group is a divisor of the order of the group.
Note that the converse to this result is false, i.e., just because one number divides another does
not mean that there is a subgroup of that order. For example, let G = A5, so that |G| = 5!

2 = 60.
Now, 30 divides 60, so let’s suppose H ≤ A5 such that |H| = 30. Then [A5 : H] = 2, which
means that H is a normal subgroup of A5, a contradiction to simplicity of A5. So there does not
exist a subgroup of order 30 in A5. Note, however, that the converse of Lagrange’s theorem does
hold for all finite Abelian groups: if a number divides the order of a group, there is a subgroup
of that order. This follows from the fundamental theorem of finite Abelian groups.

Theorem 9.5.1

Let G be a finite cyclic group. For all non-negative integers n that divide |G|,
i.e., n | |G|, there exists a subgroup of G of order n.

Proof: Let g be a generator of G, so that o (g) = |〈g〉| = |G|. Because n | |G|, we have
|G| = nk for some k ∈ Z. Consider the cyclic subgroup

〈
gk
〉

(since g ∈ G, we have gk ∈ G).
Then, ∣∣∣〈gk〉∣∣∣ = o

(
gk
)

=
o (g)

gcd (k, nk)
=
nk

k
= n,

so that
〈
gk
〉

is a subgroup of G of order n. �

This establishes that Lagrange’s theorem has a converse for all finite cyclic group, which we
know are Abelian. In fact, as mentioned, we now show that the converse for Lagrange’s theorem
is true for all finite Abelian groups.
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Theorem 9.5.2

Let G be a finite Abelian group. For all non-negative integers n that divide |G|
there exists a subgroup of G of order n.

Proof: To prove this, we will use the fundamental theorem of finite Abelian groups. Now,
perform a prime factorisation of |G|, so that

|G| = pm1
1 pm2

2 · · · p
ml
l .

From Corollary 8.2.1, we have that G is isomorphic to a direct product of p-subgroups, i.e.,

G ∼= Hp
m1
1
×Hp

m2
2
× · · · ×Hp

ml
l
,

where
∣∣∣Hp

mi
i

∣∣∣ = pmi for 1 ≤ i ≤ l. But the classification of finite Abelian p-groups says that

each Hp
mi
i

is isomorphic to a direct product of cyclic p-groups, i.e.,

Hp
mi
i

∼= Z
p
k1
i

× Z
p
k2
i

× · · · × Z
pksi
, for all 1 ≤ i ≤ l, where k1 + k2 + · · ·+ ks = mi.

Now, if n divides |G|, then we must have

n = pr11 p
r2
2 · · · p

rl
l

for some r1, r2, . . . , rl with 0 ≤ ri ≤ mi.

We now show that each Hp
mi
i

has a subgroup of order prii . Since 0 ≤ ri ≤ mi, let us write

ri = c1 + c2 + · · · + cs, where 0 ≤ cj ≤ kj for 1 ≤ j ≤ s. Then p
cj
i | p

kj
i for each 1 ≤ j ≤ s, so

that each factor Z
p
kj
i

has a subgroup of order p
cj
i , 1 ≤ j ≤ s since we have just shown that the

converse of Lagrange’s theorem holds for finite cyclic groups. Taking the direct product of each
of these subgroups gives us a new subgroup H ′

p
mi
i

of Hp
mi
i

:

H ′
p
mi
i

∼= Zpc1i × Zpc2i × · · · × Zpcsi .

The order of this subgroup is pc1i · p
c2
i · · · p

cs
i = pc1+c2+···+csi = prii , so that each Hp

mi
i

has a

subgroup of order prii , as claimed.

Therefore, G has the subgroup H, defined as

H ∼= H ′
p
m1
1
×Hp

m2
2
× · · · ×Hp

ml
l
,

whose order is pr11 p
r2
2 · · · p

rl
l = n, which completes the pf. �

Though the converse of Lagrange’s theorem is generally false, there is a partial converse, true
for all groups (i.e., Abelian or non-Abelian), which states that if the divisor of the order of the
group is a prime number, then there is a subgroup of that prime order. This is the essence of
Cauchy’s theorem.
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Theorem 9.5.3 Cauchy’s Theorem, General Case

Let G be a finite group and p | |G|, where p is a prime number. Then there
exists a g ∈ G such that o (g) = p.

Remark: Note that since there exists an element of order p, then certainly there exists a subgroup of order
p since every element generates a cyclic subgroup.

Proof: We have proved the case in which G is Abelian, so we only show that the result holds
for G non-Abelian, and we do this by induction on |G|.

If a proper subgroup H of G has order divisible by p, then by (strong) induction, there is an
element of order p in H, which gives us an element of order p in G. Thus, we assume for a
contradictin that no proper subgroup of G has order divisible by G. For any proper subgroup
H, |G| = |H| [G : H], and since |H| is not divisble by p, we get p | [G : H] for every proper
subgroup H of G.

Now, let a1, a2, . . . , ak represent the conjugacy classes inG with size greater than one. Remember
that the conjugacy classes of size one are the elements in Z (G). The class equation gives

|G| = |Z (G)|+
k∑
i=1

|G|
|CG (ai)|

.

Since the size of each conjugacy class represented by ai has size greater than one, we have
CG (ai) 6= G. Therefore, p | [G : CG (a)]. Now, p | |G| by hypothesis, and, as mentioned in
the previous sentence, each element in the summand in the class equation above is divisible by
p; therefore, |Z (G)| is divisible by p. Now, since |H| is not divisble by p, and H is a proper
subgroup, we must have G = Z (G), i.e., G is Abelian, a contradiction. So the order H divides
p, and H contains an element of order p, which means that G contains and element of order p,
which completes the pf. �

There are many interesting results that may now be proved using Cauchy’s theorem and other
important theorems from this chapter and the previous one involving group orders and prime
numbers.

Lemma 9.5.1 Let G be a group and h, g ∈ G such that o (h) = p and o (g) = q for prime
numbers p and q, which are not necessarily distinct. Then, either 〈h〉 = 〈g〉 or 〈h〉 ∩ 〈g〉 = {1G},
in which case |〈h〉 〈g〉| = pq.

Proof: We split our pf into two cases.

Case 1 p 6= q
In this case, 〈h〉 = 〈g〉 is not possible, so we must only prove that 〈h〉 ∩ 〈g〉 = {1G}. Let
k ∈ 〈h〉 ∩ 〈g〉. Since k ∈ 〈h〉, we have o (k) | p and since k ∈ 〈g〉 we have o (k) | q, which
implies that o (k) | gcd (p, q). But since p 6= q and p and q are primes, we must have
gcd (p, q) = 1. Therefore, o (k) | 1 ⇒ o (k) = 1 ⇒ k = 1G. So the result holds, and it
follows that |〈h〉 〈g〉| = pq.
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Case 2 p = q
Let k ∈ 〈h〉 ∩ 〈g〉 with k 6= 1G. Since p = q, there exists 1 ≤ i, j ≤ p − 1 such that
k = hi = gj . Now, gcd (i, p) = 1, so by the extended Euclidean algorithm, there exists
integers x0, y0 such that ix0 + py0 = 1⇒ ix0 = 1− py0. Therefore,(
hi
)x0

=
(
gj
)x0 ⇒ hix0 = h1−py0 = h (hp)−y0 = h · 1 = h = gjx0 ⇒ h ∈ 〈g〉 ⇒ 〈h〉 ⊆ 〈g〉 .

Similarly, since gcd (j, p) = 1, we may write jx0 + py0 = 1 ⇒ jx0 = 1 − py0 for some
x0, y0 ∈ Z. Then,(
hi
)x0

=
(
gj
)x0 ⇒ gjx0 = g1−py0 = g (gp)−y0 = g · 1 = g = hix0 ⇒ g ∈ 〈h〉 ⇒ 〈g〉 ⊆ 〈h〉 .

Therefore, 〈h〉 = 〈g〉, as required. �

Theorem 9.5.4

Let |G| = np, where n ≤ p and p is a prime number. Then a subgroup of order
p must be a normal subgroup.

Proof: First of all, since |G| divides p, we have from Cauchy’s theorem that a subgroup of
order p exists.

Now, if n = p, then |G| = p2, and we have seen that any group of prime power order is Abelian.
Additionally, all subgroups of Abelian groups are normal, hence the subgroup of order p is
normal, and we are done.

Assume n < p, and let Hp denote the subgroup of order p. We have seen that any group of prime
order must be cyclic, hence Hp is cyclic, and we let Hp = 〈h〉 for some generator h ∈ G such that
o (h) = p. Now, for all g ∈ G, o

(
ghg−1

)
= o (g) (verify this general result if you are unsure),

and hence by the previous lemma above, there are two possibilities: either
〈
ghg−1

〉
∩〈h〉 = {1G}

or
〈
ghg−1

〉
= 〈h〉. Suppose

〈
ghg−1

〉
∩ 〈h〉 = {1G}. Then

∣∣〈ghg−1〉 〈h〉∣∣ =

∣∣〈ghg−1〉∣∣ |〈h〉|
|〈ghg−1〉 ∩ 〈h〉|

=
p2

1
= p2,

a contradiction, since
〈
ghg−1

〉
〈h〉 ⊆ G, and it is impossible for the size of a subgroup to be

greater than the size of the set that contains it. Hence we must have
〈
ghg−1

〉
= 〈h〉, so that〈

ghg−1
〉

= Hp, i.e., ghg−1 ∈ Hp for all g ∈ G. Now, because Hp is cyclic, any element in it is of

the form hk for some k ∈ Z. Now, since
(
ghkg−1

)
=
(
ghg−1

)k
, and since ghg−1 ∈ Hp and Hp is

a subgroup, then certainly ghkg−1 ∈ Hp, for all g ∈ G and all elements hk ∈ Hp. Therefore, Hp

is normal in G. �

Theorem 9.5.5 Euler’s Theorem

Let n ≥ 2 and a be two coprime integers. Then aφ(n) ≡ 1 (mod n), where φ is
the Euler totient function.
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Proof: Recall that the order of the group U (n) is |U (n)| = φ (n). Now, since a and n
are coprime, we have gcd (a, n) = 1, and hence by definition of U (n), we have [a]n ∈ U (n).

Therefore, since the identity element in U (n) is [1]n, we get [a]
φ(n)
n = [1]n, or, in other words,

aφ(n) ≡ 1 (mod n). �

Corollary 9.5.1 Fermat’s Little Theorem

If p is a prime number, then for any integer a, we have ap−1 ≡ 1( mod p).

Proof: We know that if p is a prime number, then φ (p) = p − 1. If gcd (p, a) = 1, then by
Euler’s theorem, we get immediately ap−1 ≡ 1 (mod p), and we are done.

If gcd (p, a) 6= 1, i.e., if [a]n /∈ U (n), then... �

Theorem 9.5.6

Let |G| = pq, where q ≤ p and p and q are prime numbers. If q - (p− 1), then G
is Abelian.

Proof: If p = q, then we have |G| = p2, and we know already that such a group is Abelian,
so we are done.

If q < p, then let Hp be a subgroup of order p and Hq a subgroup of order q, the existence of
which is guaranteed by Cauchy’s theorem. Additionally, since q and p are primes, both Hq and
Hp are cyclic.

Now, let Hp = 〈b〉 such that o (b) = p and 〈a〉 = Hq such that o (a) = q. By the above theorem,
we have that Hp is a normal subgroup. Therefore, we must have aba−1 ∈ Hp, in particular,
aba−1 = bk for some 1 ≤ k ≤ p− 1. Observe that, in general,

abka−1 =
(
aba−1

)k
for all k ∈ N. Since aba−1 = bk, we get

abka−1 =
(
aba−1

)k
=
(
bk
)k

= bk
2
.
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Therefore, for all m ∈ N, we have

amba−m = am−1aba−1a−m+1

= am−1bka−m+1

= am−2abka−1a−m+2

= am−2bk
2
a−m+2

= am−3abk
2
a−m+3

= am−2bk
3
a−m+3

...

= bk
m
.

Now, set m = q. Since o (a) = q, we get

aqba−q = b = bk
q ⇒ bk

q−1 = 1G ⇒ o (b) = p| (kq − 1)

⇒ kq − 1 = mp, m ∈ Z⇒ kq = 1 +mp⇒ kq ≡ 1 (mod p).

Moreover, by Fermat’s Little Theorem, kp−1 ≡ 1 (mod p). Since q - (p− 1), we have gcd (q, p− 1) =
1. Now, by the extended Euclidean algorithm, since gcd (q, p− 1) = 1, there exist integers x0, y0
such that

qx0 + (p− 1) y0 = 1.

Now,

kq ≡ 1 (mod p)⇒ [kq − 1]p = [1]p and

kp−1 ≡ 1 (mod p)⇒
[
kp−1

]
p

= [1]p .

Therefore, [
kp−1

]y0
p
· [kq]x0p =

[
ky0(p−1)

]
p
· [kqx0 ] =

[
kqx0+y0(p−1)

]
p

= [k]p = [1]p ,

which means that k ≡ 1 (mod p), which means that k = 1, since 1 ≤ k ≤ p − 1. Therefore,
aba−1 = bk = b ⇒ ab = ba, so a and b commute. Now, by Lemma 9.5.1, we must have
〈b〉 ∩ 〈a〉 = {1G} since p 6= q, so that

|〈b〉 〈a〉| = pq = |G| ⇒ 〈b〉 〈a〉 = G,

since 〈b〉 〈a〉 ⊆ G. Therefore, all g1, g2 ∈ G may be written as a product of an element in 〈a〉
and an element in 〈b〉, i.e.,

g1 = an1bn
′
1 and g2 = an2bn

′
2 , n1, n

′
1, n2, n

′
2 ∈ Z.

Therefore,

g1g2 =
(
an1bn

′
1

)(
an2bn

′
2

)
= an1an2bn

′
1bn
′
2 (since ab = ba)

= an1+n2bn
′
1+n

′
2 ,

and similarly g2g1 = an2+n1bn
′
2n
′
1 = an1+n2bn

′
1+n

′
2 = g1g2. So any two elements in G commute,

so that G is Abelian. �
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So we have dealt with groups whose order are a product of primes p and q such that q ≤ p
and q - (p− 1). Observe that this makes it much easier to prove that any group of order 15 is
Abelian, since 15 = 3 · 5, 3 and 5 are primes, and 3 - 4.

We now want to consider what happens when |G| = pq, with q ≤ p, but q | (p− 1). Specifically,
we will consider below that case q = 2 and p an odd prime.

Theorem 9.5.7

Let |G| = 2p, for p an odd prime number. Then, either G ∼= Z2 ×Zp ∼= Z2p (and
hence G is cyclic), or G ∼= Dp.

Proof: From Cauchy’s theorem, there exists a subgroup of G of order p, call it Hp, and a
subgroup of order two, call it H2. Additionally, from Theorem 9.5.4, this subgroup is a normal
subgroup. Since both Hp and H2 are of prime order, they are cyclic, so we let H2 = 〈a〉, where
o (s) = 2, and Hp = 〈r〉, where o (r) = p. Now, recall that

Dp =
〈
rp = s2 = 1 | rs = sr−1

〉
.

Now, rs = sr−1 ⇒ srs = r−1 ⇒ srs−1 = r−1s−2 = r−1. Now, since Hp is a normal subgroup,
we have srs−1 ∈ Hp, which means that srs−1 = rk for 1 ≤ k ≤ p1. We now follow exactly the
same reasoning as in the pf of Theorem 9.5.6 to conclude that

smrs−m = rk
m

for all m ∈ N.

Set m = 2, which gives

s2rs−2 = r = rk
2 ⇒ rk

2−1 = 1G ⇒ p |
(
k2 − 1

)
⇒ k2 − 1 = mp, m ∈ Z⇒ k2 = 1 +mp⇒ k2 ≡ 1 (mod p).

Now, the solution to k2 ≡ 1 (mod p) is k = ±1 since 1 ≤ k ≤ p− 1.

If k = 1, then we get srs−1 = r ⇒ sr = rs. Then, following the last part of the pf to Theorem
9.5.6, we get that G is Abelian, and thus by the fundamental theorem of finite Abelian groups,
we get G ∼= H2 × Hp, but by the classification of finite Abelian p-groups, we get H2

∼= Z2

(only one partition of 2) and Hp
∼= Zp (possibly with others). So G ∼= Z2 × Zp ∼= Z2p, since

gcd (2, p) = 1.

If k = −1, then we have srs−1 = r−1, and therefore G satisfies the generator relation for Dp,
hence G ∼= Dp. �

9.6 The Classification of Small Groups

We have looked at the classification of groups of orders involving prime numbers, and this,
along with the fundamental theorem of finite Abelian groups, allows us to classify all groups
of a particular order, at least ones of small order. In this section we will state all (up to
isomorphism, of course—in other words, the isomorphism classes) of groups of order less than
or equal to 25.

Now, in the preceding sections we have looked at
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• Groups with order p2;

• Groups with order pq; and

• Groups with order 2p.

This covers most of the groups of order less than 25. Unfortunately, this does not cover groups
of order 8, 12, 16, 20, and 24. Below we will work out the groups of order 8 and 12, but will
leave the rest, as these involve groups that have not been covered in the course.

9.6.1 Groups of Order 8

Definition 9.6.1 Boolean Group

A group G is called a Boolean group if and only if all non-identity elements
have order two.

Theorem 9.6.1

The Boolean group is Abelian.

Proof: (Omitted for now...) �

We have that any group of order 8 is a p-group since 8 = 23. And since there are three partitions
of 3, namely [3], [2, 1], [1, 1, 1], by the classification theorem for finite Abelian p-groups, there are
three Abelian groups of order 8:

Z8, Z4 × Z2, and Z2 × Z2 × Z2.

More importantly, let us focus on non-Abelian groups of order 8, call it G. You may try to
think right now if there are any groups, other than those above, that we have seen with order
eight. Perhaps D4? What about Q8? Certainly, these are groups of order eight, and we should
include them in our list. But are there any more?

By Lagrange’s theorem, elements in G have elements of order 1, 2, 4, or 8. There can only be
one element of order one, and that is the identity element. If G contains an element of order
eight, then G ∼= Z8, so G is Abelian. If o (x) = 2 for all x ∈ G that are not the identity, i.e., if
G is the Boolean group of order eight, then from the above theorem G is Abelian; in particular
G ∼= Z2 × Z2 × Z2. Hence, G contains at least one element of order four.

There are two possibilities if G contains an element of order four, and we go through these in
turn. Let o (a) = G for a ∈ G.

Case 1 There exists an element b ∈ G− 〈a〉.
In this case, either o (b) = 2 or o (4) = 4 (we implicitly rule out o (b) = 8 because that
would immediately give G = 〈b〉 ∼= Z8). Observe that since [G : 〈a〉] = 2, we must have
〈a〉 E G.
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If o (b) = 2, then 〈b〉 ∩ 〈a〉 = {1G}, and hence

|〈b〉 〈a〉| = |〈b〉| |〈a〉| = 2 · 4 = 8 = |G| .

Since 〈b〉 〈a〉 ⊆ G, we must have 〈b〉 〈a〉 = G, so every element in G may be written as a
product of a power of b and a power of a, so our problem has been reduced to determining
how a and b are related. Now, since 〈a〉 E G, bab−1 = bab = ak for 1 ≤ k ≤ 3. Then,
following the same reasoning as in the pf of Theorem 9.5.6, we have

b
(
bab−1

)
b−1 = bakb−1 ⇒ a = ak

2 ⇒ ak
2−1 = 1⇒ o (a) = 4 | k2 − 1⇒ k = 1 or k = 3.

If k = 1, then we get bab−1 = a ⇒ ba = ab, so that G is Abelian by following the same
reasoning as in the last part of the pf of Theorem 9.5.6. In particular, we must have
G ∼= Z4 × Z2 (since all the other Abelian options have already been accounted for). If
instead k = 3, then we get bab−1 = b3 = b−1, which is nothing but the generator relation
for the dihedral group, i.e., we must have G ∼= D4.

If o (b) = 4, then we must have that all elements in G− 〈a〉 are of order four (why?), and
this is the second case we consider.

Case 2 All elements in G− 〈a〉 are of order four.
Let c ∈ G − 〈a〉, with o (c) = 4. Again, since 〈a〉 E G, we must have cac−1 = ak for
1 ≤ k ≤ 3. Then,

c
(
cac−1

)
c−1 = cakc−1 = ak

2 ⇒ c2ac−2 = ak
2
.

Now, note that

o
(
c2
)

=
o (c)

gcd (o (c) , 2)
=

4

gcd (4, 2)
=

4

2
= 2,

which implies that c2 ∈ 〈a〉 since all elements in G − 〈a〉 are of order four. In fact, since
all the powers of a in 〈a〉 are distinct, and |〈a〉| = 4, there is only one element of order
two in 〈a〉, and that is a2, which means that c2 = a2. Therefore, using this in the above
equation, we get

a2aa−2 = a = ak
2 ⇒ ak

2−1 = 1⇒ 4 | k2 − 1⇒ k = 1 or k = 3.

If k = 1, we get cac−1 = a ⇒ ca = ac, which again leads to G being Abelian since
〈c〉 ∩ 〈a〉 =

{
c2
}

= {1G}, i.e., 〈c〉 〈a〉 = G.

If k = 3, then we get cac−1 = c3 = a−1, which, though it looks the same, is not the same
generator relation as the one for the dihedral group because o (c) = 4, and for the dihedral
group we would have required o (c) = 2. So we have some group that can be described as
G =

〈
a, c | a4 = c4 = 1, c2 = a2, cac−1 = a−1

〉
, which is indeed the generator relation for

the quaternion group Q8.

Since we have exhausted all possible cases, we conclude that D4 and Q8 are the only non-Abelian
groups of order 8, and hence there are only five groups of order eight, and they are

Z8, Z2 × Z4, Z2 × Z2 × Z2, D4, and Q8.
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9.6.2 Groups of Order 12

Definition 9.6.2 Dicyclic Group

The dicyclic group of degree n, denoted Dicn, is a non-Abelian group of order
with generator relation

Dicn =
〈
a, x | a2n = x4 = 1, x2 = an, xax−1 = a−1

〉
.

For n > 1, |Dicn| = 4n.

Observe that for n = 2 we get

Dic2 =
〈
a, x | a4 = x4 = 1, x2 = a2, xax−1 = a−1

〉
= Q8,

so the dicyclic group provides, in a sense, a generalisation to groups that are similar in structure
to the quaternion group.

We are now ready to present our table of all group of order up to 25. The two main characteristics
of a group are whether or not it is Abelian and whether or not it is cyclic. Of course, a group
may be some combination of both. The possible combinations are

• Abelian and not cyclic (for example, the Klein 4-Group);

• Abelian and cyclic (for example, Zn);

• non-Abelian and not cyclic (for example, Sn for n ≥ 3).

Note that it is not possible for a group to be non-Abelian and cyclic, since a non-Abelian group
implies that the group is not cyclic (remember that all cyclic groups are Abelian!).
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Order Groups Properties Notes

1 {1G} Trivial group; Abelian, cyclic

2 {1G, a} Abelian, cyclic

3
{

1G, a, a
2
}

Abelian, cyclic

4
Z4 Abelian, cyclic Theorem 9.5.7

Z2 × Z2
∼= D2 Abelian; not cyclic Klein 4-Group

5 Z5 Prime order, so cyclic, so Abelian

6
Z6 Abelian, cyclic

Theorem 9.5.7
S3 ∼= D3 non-Abelian, not cyclic

7 Z7 Prime order, so cyclic, so Abelian

8

Z8 Abelian, cyclic

Z2 × Z4 Abelian, not cyclic

Z2 × Z2 × Z2 Abelian, not cyclic

D4 not Abelian, not cyclic

Q8 not Abelian, not cyclic Quaternion Group

9
Z9 Abelian, cyclic Theorem 9.5.6

or Corollary 9.3.1Z3 × Z3 Abelian, not cyclic

10
Z10 Abelian, cyclic

Theorem 9.5.7
D5 non-Abelian, not cyclic

11 Z11 Prime order, so cyclic, so Abelian

12

Z12 Abelian, cyclic

A4 non-Abelian, not cyclic

D12 non-Abelian, not cyclic

Z3 × Z2 × Z2
∼= Z6 × Z2 Abelian, not cyclic

Dic4 non-Abelian, not cyclic Dicyclic Group

13 Z13 Prime order, so cyclic, so Abelian

14
Z12 Abelian, cyclic

Theorem 9.5.7
D7 non-Abelian, not cyclic

15 Z3 × Z5
∼= Z15 Abelian, cyclic

17 Z17 Prime order, so cyclic, so Abelian

19 Z19 Prime order, so cyclic, so Abelian
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9.7 The Sylow Theorems

In this section we state and prove the very important Sylow theorems. Recall Theorem 8.1.2,
which stated that for finite Abelian groups whose orders are divisible by pk there exists a unique
p-subgroup of order pk (confirm the unique part!!). In this section we will generalise this assertion
to all groups, which will be Sylow’s First Theorem.

Theorem 9.7.1

Let G be a p-group, i.e., let |G| = pn for some n ∈ Z. Then, for every divisor pk

of pn, where k ∈ Z such that 0 ≤ k ≤ n, there is a subgroup of order pk.

Proof: If G is Abelian, then the result follows from Theorem 9.5.2.

Assume, then, that G is non-Abelian. We will perform induction on n. Assume that for
1 ≤ j ≤ n− 1 the statement is true, i.e., that for all 1 ≤ j ≤ n− 1 such that i 6= j, |G| = pj and
hence there exists a subgroup of G of order pi. Then, for |G| = pn, we know that Z (G) 6= {1G},
so since Z (G) ≤ G, we must have |Z (G)| = pl for some l ≤ 1. Note that since Z (G) is an
Abelian group, the results holds for it. Now, for any 1 ≤ k ≤ n, if k ≤ l, then the result holds
simply by taking a subgroup of Z (G), which will have prime power order that divides pn and
will also necessarily be a subgroup of G.

So assume that k > l, and consider the quotient group G/Z (G). Observe that

|G/Z (G)| = pn−l < pn.

Therefore, by (strong) induction, the result holds for G/Z (G), so that there is a subgroup, call it

H̃k, of G/Z (G) such that
∣∣∣H̃k

∣∣∣ = pk−l. Now, by the correspondence theorem, the subgroup H̃k is

of the form Hk
Z(G) for some Hk ≤ G. Therefore,

|Hk/Z (G)| = |Hk|
|Z (G)|

=
∣∣∣H̃k

∣∣∣ = pk−l ⇒ |Hk| = pk−l |Z (G)| = pk−lpl = pk,

so we have found a subgroup Hk ≤ G with order pk, as required. �

Definition 9.7.1 Sylow p-Subgroup

Let G be a finite group and p a prime number. A Sylow p-Subgroup of G is a
maximal p-subgroup of G. In other words, if H is a Sylow p-subgroup of G, then

1. |H| = pk for some k ∈ Z (this captures the p-subgroup part); and

2. if H ≤ L ≤ G and L is a p-subgroup of G, then H = L (this captures the
maximal part).

Sylow p-subgroups are sometimes called p-Sylow subgroups, or just Sylow subgroups.
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Example 9.7.1 Let G = S3, so that |G| = 3! = 2 · 3. For p = 3, there is the Sylow
3-subgroup A3 〈(1 2 3)〉. Since (1 2 3) and its inverse (1 3 2) are the only elements of order
three, this is the only Sylow 3-subgroup. For p = 2, there are three Sylow 2-subgroups of S3,
namely 〈(1 2)〉, 〈(1 3)〉, and 〈(2 3)〉. Since (1 3) (1 2) (1 3) = (2 3) and (2 3) (1 2) (2 3) =
(1 3), the three sylow 2-subgroups are all conjugate to each other.

Example 9.7.2 Let G = A4, so that |G| = 22 · 3. For p = 2, G has the Sylow 2-subgroup
(of order four) {1G, (1 2) (2 4) , (1 3) (2 4) , (1 4) (2 3)}. Since its three non-identity elements
are all the elements of order two in G, this is the only Sylow 2-subgroup. For p = 3, G also
has at least four Sylow 3-subgroups (of order 3), namely P = 〈(1 2 3)〉, 〈(1 2 4)〉, 〈(1 3 4)〉,
and 〈(2 3 4)〉. Since the four elements displayed and their inverses are all the elements of
order three, these are all the Sylow 3-subgroups. We can verify that

(1 2) (3 4)P (1 2) (3 4) = 〈(1 2 4)〉
(1 3) (2 4)P (1 3) (2 4) = 〈(1 3 4)〉
(1 4) (2 3)P (1 4) (2 3) = 〈(2 3 4)〉 ,

so that all the Sylow 3-subgroups are conjugate to one another.

Example 9.7.3 Let G = D6 =
(
1, b, b2, . . . , a, ba, b2a, . . . , b5a

}
, where as usual b is a

rotation by 2π
6 = π

3 and a is a reflection about some axis of symmetry. Now, |G| = 22 · 3, so
that for p = 3 there is just one Sylow 3-subgroup (of order three),

{
1, b2, b4

}
, since b2 and

b4 are the only elements of order three. For p = 2, G has at least three Sylow 2-subgroups
(of order four), namely Q =

{
1, a, b3, b3a

}
,
{

1, ba, b3, b4a
}

and
{

1, b2a, b3, b5a
}

. The seven
non-identity elements displayed are all the elements of order two, and there are no elements
of order four, so any Sylow 2-subgroup would have to be made up of the identity and three
of these seven elements. It follows that there are no other Sylow 2-subgroups than the three
just shown because any group of order four is Abelian and no two of b3a, b4a, b5a commute
with each other. We can verify that

b2Qb4 =
{

1, b2a, b3, b5a
}

bQb5 =
{

1, ba, b3, b4a
}
,

so that the three Sylow 2-subgroups are conjugate to each other.

Lemma 9.7.1 Let G be a finite group and P a Sylow p-subgroup. If g ∈ G satisfies the
following requirements, then g ∈ P :

1. o (g) = pl for some l (i.e., 〈g〉 is a p-subgroup) (really only need gp
l

= 1G); and

2. gPg−1 = P , i.e., g ∈ NG (P ).
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Proof: Remember that P E NG (P ). We therefore consider the quotient group NG (P )/P ,
and an element gP ∈ NG (P )/P , where g ∈ NG (P ) and o (g) = pl for some l ∈ Z, as per the
requirements. Let g = gP . Since o (g) = pl, we must have o (g) | pl, so let o (g) = pk for some
k ∈ Z. Now, by the correspondence theorem, the subgroup 〈g〉 of NG (P )/P corresponds to a
subgroup P of P , i.e., 〈g〉 is of the form P/P . Therefore,

∣∣P ∣∣ = |P | |〈g〉| = |P | pk. Since P is a
Sylow p-subgroup, we must have that P is also a p-group. However, by the maximality of P ,
we must have P = P , which means that k = 0; therefore, o (g) = 1, which means that g is the
identity in NG (P )/P , i.e., gP = P ⇒ g ∈ P . �

Corollary 9.7.1

Let G be a finite group and P a Sylow p-subgroup. Then p - |NG(P )|
|P | .

Proof: Let G be a finite group and P a Sylow p-subgroup. Assume for a contradiction that p
does divide |NG(P )|

|P | . Then, by Cauchy’s theorem, there exists a g ∈ NG (P ) such that o (gP ) = p

in NG (P )/P , i.e., (gP )p = gpP = P ⇒ gp ∈ P ⇒ (gp)|P | = 1 by Lagrange’s theorem, which implies

that (gp)p
k

= 1 for some k, where |P | = pk. Therefore, gp
k+1

= 1, and since g ∈ NG (P ), we
have by the lemma above that g ∈ P , a contradiction to the fact that o (gP ) = p in NG (P )/P . �

Corollary 9.7.2

If Q is another p-subgroup in NG (P ), where P is a Sylow p-subgroup of G, then
Q ≤ P .

Proof: Since Q ≤ NG (P ) and Q is a p-subgroup, for all g ∈ Q, o (g) = pk for some k ∈ Z
and g ∈ NG (P ). Therefore, by the lemma above g ∈ P , which means that Q ⊆ P , which means
that Q ≤ P . �

Theorem 9.7.2 Sylow’s Theorems

Let G be a finite group with |G| = pkm, where k ≥ 1, gcd (p,m) = 1, and p is a
prime number. Then,

1. Every Sylow p-subgroup of G has order pk (Sylow’s First Theorem);

2. All Sylow p-subgroups of G are conjugate to each other (Sylow’s Second
Theorem); and

3. If np is the number of Sylow p-subgroups of G, then np ≡ 1 (mod p) and
np | m (Sylow’s Third Theorem).

Proof: The pf will establish the results in reverse order, i.e., we will first prove 3 and 2, and
this will lead to 1.

Now, let P be a Sylow p-subgroup and X be the set of conjugates of P in G, i.e., X =
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{
gPg−1 | g ∈ G

}
. Suppose that X = {P, P2, P3, . . . , Pl}. Let H be a p-subgroup of G (the

existence of which is guaranteed by Cauchy’s theorem since p divides |G|), and consider of ac-
tion of H on X by conjugation, i.e., define ϕ : H ×X → X by ϕ (h, Pi) = hPih

−1 for all h ∈ H
and all Pi ∈ X. Note that hPih

−1 ∈ X because H ≤ G. Then, recall that the orbit of an
element of X, in this case [Pi], is defined as

[Pi] = {ϕ (h, Pi) | h ∈ H} .

Based on what we have seen before with group actions and their orbits, the size of the orbit [Pi]
will be equal to one when all h ∈ H fix Pi, i.e., when ϕ (h, Pi) = hPih

−1 = Pi for all h ∈ H. In
other words, |[Pi]| = 1⇔ Pi ∈ Fix (X). But hPih

−1 = Pi also means that h ∈ NG (Pi). In fact,
when hPiH

−1 = Pi for all h ∈ H, we have NH (Pi) = H ⊆ NG (Pi). Therefore, by the second
corollary above, H ≤ Pi. So, under this action, |[Pi]| = 1 when H ≤ Pi. In other words, H is a
subgroup of one of the conjugates of P . We now have two cases to consider. First, we let H be
one of the conjugates Pi of P , and second, we let H = Q, where Q is some Sylow p-subgroup
not in X.

Case 1 H = Pi for some i ∈ {1, 2, . . . , l}
The action thus becomes ϕ : Pi×X → X. By maximality of the Sylow p-subgroups in X,
Pi * Pj for i 6= j. Thus, in this action, there is only one orbit with size one, and that is
[Pi]. Therefore, |Fix (X)| = 1, and the equivalence class equation gives

|X| = l = 1 +
∑ |Pi|

StabPi (a)
,

where the summation is over all representatives of the orbits of size greater than one.
Now, being a Sylow p-subgroup, |Pi| is some power of p. Hence, by Theorem 9.7.1, all
subgroups of Pi, in particlar |StabPi (a)| is some power of p less than that of |Pi| for all
a ∈ X. The sum in the above equivalence class equation is thus a sum of powers of p, say
px1 + px2 + · · · , where every pxi is less than (or equal to) the order of Pi. We may remove
a factor of p from the sum to write p

(
px1−1 + px2−1 + · · ·

)
= pn, where n ∈ Z. Therefore,

the equivalence class equation becomes

l = 1 + np⇒ l ≡ 1 (mod p).

Case 2 H = Q, where Q /∈ X is a Sylow p-subgroup of G.
Assume for a contradiction that Q 6= X. Since H � Pi, we have that |[Pi]| 6= 1 for any
Pi ∈ X, i.e., there are no orbits of size one in this action, i.e., |Fix (X)| = 1. Therefore,
the equivalence class equation gives

|X| = l = 0 +
∑ |Q|
|StabQ (a)|

= pr, r ∈ Z,

where we again rewrite the sum as before. So we have l ≡ 0 (mod p), a contradiction
to the fact that l ≡ 1 (mod p). Therefore, we must have Q ∈ X, which means that all
Sylow p-subgroups are conjugate to one another. This completes the pf of the second
theorem, and establishes that each Sylow p-subgroup should be of the same size, since
|Pi| =

∣∣gPig−1∣∣ for any g ∈ G. The pf of the third theorem is also complete since all the
Sylow p-subgroups in G are contained in X and |X| = l; therefore, l = np ≡ 1 (mod p).

198



Chapter 9: Group Actions 9.7: The Sylow Theorems

All that remains is to show that each Sylow p-subgroup has size pk and that np | m. Consider
the action ϕ : G×X → X. Observe that in this case

[P ] = {ϕ (g, P ) | g ∈ G} =
{
gPg−1 | g ∈ G

}
= X,

and that

StabG (P ) = {g ∈ G | ϕ (g, P ) = P} =
{
g ∈ G | gPg−1 = P

}
= NG (P ) .

Therefore, by the orbit-stabiliser theorem, we get

|[P ]| = |X| = np =
|G|

|StabG (P )|
=

|G|
|NG (P )|

,

which implies that

|G| = [G : NG (P )] [NG (P ) : P ] |P | = np
|NG (P )|
|P |

|P | = pkm.

Now, by the first corollary above, since P is a Sylow p-subgroup, p - |NG(P )|
|P | , which means that

|NG(P )|
|P | must not contain any factors of p; and we have that since np ≡ 1 (mod p) p - np, i.e., np

does not contain any factors of p. Therefore, we must have |P | = pk and m = np
|NG(P )|
|P | ⇒ np |

m, which completes the pf. �

Observe that Sylow’s first theorem immediately implies Cauchy’s theorem in the general case.

Corollary 9.7.3

[Cauchy’s Theorem, General Case] Let G be a finite group. For every prime
divisor p of |G| there is an element g ∈ G with o (g) = p.

Proof: Letting |G| = pm, where gcd (p,m) = 1, we get from Sylow’s first theorem that there
exists a Sylow p-subgroup of G, call it P . Since p divides the order of G, P is non-trivial. Pick a
non-identity element x ∈ P . By Lagrange’s theorem, o (x) divides |P |, and since P is a p-group,
we must have that o (x) is a prime power, say pr where r ≥ 1. Now,

o
(
xp

r−1
)

=
o (x)

gcd (o (x) , pr−1)
=

pr

gcd (pr, pr−1)
=

pr

pr−1
= p,

so that we have found an element of order p in G. �

Corollary 9.7.4

Let G be a finite group and p a prime divisor of |G|. Then np = 1 (i.e., the
Sylow p-subgroup is unique) if and only if the Sylow p-subgroup P is a normal
subgroup of G. Hence, if the number of Sylow p-subgroups of G is one, then G
is not simple.
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Proof: Recall from the pf of Sylow’s theorems that if we let X be the set of conjugates of
P , then G acting on X by conjugation has the orbit [P ] = X, and since X contains all the
Sylow p-subroups of G, we have np = 1 = |[P ]| ⇒ P ∈ Fix (X) ⇒ gPg−1 = P ∀g ∈ G ⇒ gP =
Pg ∀g ∈ G, which means by definition that P is a normal subgroup of G. �

Corollary 9.7.5

Let G be a finite group with |G| = pkm, where k ≥ 1, gcd (p,m) = 1, and p is a
prime number. Then, for every divisor pl of pk, where l ∈ Z and 0 ≤ l ≤ k, there
exists a subgroup of order pl.

Proof: By Sylow’s first theorem, there exists a Sylow p-subgroup of G, call it P , such that
|P | = pk. Then, by Theorem 9.7.1, there exists a subgroup of P of order pl for every divisor pl

of pk, which is certainly also a subgroup of G. �

Example 9.7.4 Consider G = S4, so that |G| = 4! = 24 = 23 · 3. So a Sylow 2-subgroup
of G exists and has order eight by Sylow’s first theorem. Indeed, we know that the dihedral
group D4 has a permutation representation as a subgroup of S4, so that D4 is a Sylow
2-subgroup of S4.

Example 9.7.5 Consider G = A5, so that |G| = 5!
2 = 60 = 22 · 15. So a Sylow 2-subgroup

of G exists and has order four by Sylow’s first theorem. The following are two Sylow 2-
subgroups:

P = {1, (1 2) (3 4) , (1 3) (2 4) , (1 4) (2 3)}
Q = {1, (1 2) (3 5) , (1 3) (2 5) , (1 5) (2 3)} .

According to Sylow’s second theorem, these should be conjugate in A5. Indeed, letting
a = (2 3) (4 5), then a (1 2) (3 4) b−1 = (1 3) (2 5) and a (1 3) (2 4) a−1 = (1 2) (3 5) and
a (1 4) (2 3) a−1 = (1 5) (2 3), so that aPa−1 = Q.

Example 9.7.6 Consider again G = A5. We may write |G| = 22 · 3 · 5, so that by
Sylow’s first theorem there exist Sylow 2-, 3-, and 5-subgroups of order four, three, and
five, respectively. There are no elements of order four in A5 (since these would have to
be 4-cycles, which are odd permutations), and the only elements of order two are products
of disjoint 2-cycles of the form (x y) (u v). Each such permutation belongs to a subgroup
{() , (x y) (u v) , (x u) (y v) , (x v) (u y)} as in the previous example, and each such subgroup
contains three such permutations. The number of such permutations turns out to be 15 (do
this!). Therefore, the number of Sylow 2-subgroups is 15

3 = 5. As for Sylow 3- and 5-
subgroups, these will be generated by 3-cycles and 5-cycles, respectively. It can be shown
that the number of 3-cycles in A5 is 20 and the number of 5-cycles in A5 is 24. Since each
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subgroup of order three contains two 3-cycles and each subgroup of order five contains four
5-cycles, the total numbers of such groups are 20

2 = 10 and 24
4 = 6, respectively. Note that

5 ≡ 1 (mod 2) and 5 | 3 · 5
10 ≡ 1 (mod 3) and 10 | 22 · 5
6 ≡ 1 (mod 5) and 6 | 22 · 3,

which agrees with Sylow’s third theorem.

Example 9.7.7 Let P =
{

() , a = (1 2 3) , a2 = (1 3 2)
}

be a Sylow 3-subgroup of A5. Let
us find the normaliser NG (P ) of P in A5. From the previous example, we know that P

has 10 conjugates, so that by the orbit-stabliser theorem, |A5|
|NG(P )| = 10, and so we should

have |NG (P )| = |A5|
10 = 6. Since P ⊆ NG (P ), we need only find an element x of order two

in NG (P ). We can verify that if x = (2 3) (4 5), then xax−1 = a2 and xa2x−1 = a. So
x ∈ NG (P ), and hence NG (P ) =

{
() , a, a2, x, xa, xa2

}
.

9.8 Applications of Sylow’s Theorems

In this section we go through several examples of how Sylow’s theorems can be used to prove
several results about Abelian and non-Abelian groups.

Example 9.8.1 Show that every group G of order 45 is Abelian.

Solution: We have that 45 = 32 · 5. Let P5 and P3 be a Sylow 5-subgroup and a Sylow
3-subgroup, respectively. These groups are of orders 5 and 9, respectively, by Sylow’s first
theorem, and since 5 is a prime we know that P5 is cyclic, hence Abelian; since 9 = 32,
we know that P3 is Abelian. By Sylow’s third theorem, n3, which is the number of Sylow
3-subgroups in G, is of the form 1+3k for k ∈ Z (since n3 ≡ 1 (mod p)); as well, n3 | 5. The
only number n3 satisfying both requirements is n3 = 1, which means that there is only one
Sylow 3-subgroup in G, which by Corollary 9.7.4 means that P3 is normal in G. Similarly,
n5 is of the form 1 + 5k for k ∈ Z and it divides 9. Again, the only possibility is n5 = 1
so there is only one Sylow 5-subgroup, namely P5, and we know that it is normal in G.
Since P3 contains elements whose orders divide 9 and P5 contains elements whose orders
divide 5 (in fact, since 5 is a prime, all non-identity elements must be of order five), we must
have P3 ∩ P5 = {1G}, which means that |P3P5| = |G| = 45 ⇒ P3P5 = G. Now, recall the
internal direct product theorem. In that theorem, we require two normal subgroups of G
such that their subset product is equal to G and such that their intersection is trivial. P3

and P5 satisfy all three requirements, and so we conclude that G ∼= P3 × P5. Now, since P3

is Abelian; we have from the fundamental theorem of finite Abelian groups that P3
∼= Z9 or

P3
∼= Z3 × Z3. Since P5 is cyclic, we know immediately that P5

∼= Z5. So G ∼= Z9 × Z5 or
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G ∼= Z3 × Z3 × Z5. Since the direct product of Abelian groups is Abelian, we have that G
is Abelian.

Example 9.8.2 Show that every group G of order 99 is Abelian.

Solution: We follow the same reasoning as in the previous example. We have 99 = 32 ·11,
so we let P3 and P11 be a Sylow 3-subgroup and a Sylow 11-subgroup of G, respectively. We
have that P3 is Abelian since its order is a prime power, and since 11 is a prime we have that
P11 is cyclic, hence Abelian. By Sylow’s third theorem, n3 = 1+3k, k ∈ Z and n3 | 11, which
implies that n3 = 1, so P3 is normal in G. Similarly, n11 = 1+11k, k ∈ Z, and n11 | 9, which
means that n11 = 1, i.e., P11 is normal in G as well. Now, since P3 contains elements whose
orders divide 9 and since all non-identity elements of P11 must be of order 11 (since 11 is a
prime), we have that P3 ∩ P11 = {1G}, which means that |P3P11| = |G| = 99⇒ P3P11 = G.
Thus, by the internal direct product theorem, G ∼= P3×P11. Now, we have that P3

∼= Z9 or
P3
∼= Z3 × Z3 and P11

∼= Z11, so either G ∼= Z9 × Z11 or G ∼= Z3 × Z3 × Z11, both of which
are Abelian. So G is Abelian.

Example 9.8.3 Show that every group G of order 175 is Abelian.

Solution: We have 175 = 52 · 7. Therefore, let P5 and P7 be a Sylow 5-subgroup and
a Sylow 7-subgroup of G, respectively. We know that since |P5| = 52 P5 must be Abelian,
and since 7 is a prime we must have that P7 is cyclic, hence Abelian. Now, by Sylow’s third
theorem, we must have n5 = 1 + 5k, k ∈ Z, and n5 | 7, which means that n5 = 1, which
means that P5 is normal in G. Additionally, we must have n7 = 1 + 7k, k ∈ Z and n7 | 25.
Again, the only possibility is n7 = 1, so that P7 is also normal in G. Then, since 7 is a prime,
all non-identity elements of P7 must have order 7, which implies that P5∩P7 = {1G}, which
means that |P5P7| = |G| = 175 ⇒ G = P5P7. Then the internal direct product theorem
gives G ∼= P5 × P7. Now, P5

∼= Z25 or P5
∼= Z5 × Z5 by the fundamental theorem of finite

Abelian groups. As well, P7
∼= Z7 only since P7 is cyclic. Therefore, either G ∼= Z25 × Z7 or

G ∼= Z5 × Z5 × Z7, both of which are Abelian, so that G is Abelian.

These three examples illustrate the following theorem.

Theorem 9.8.1

Let G be a group of order p2q, where p and q are distinct prime numbers such
that p - q − 1 and q - p2 − 1. Then G is Abelian.

The next few examples illustrate how Sylow’s theorem can be used to show that groups of certain
order cannot be simple.
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Example 9.8.4 Prove that no group of order 30 is simple.

Solution: Assume G is a simple group of order 30 = 2 · 3 · 5. Consider the numbers n5
and n3 of Sylow 5-subgroups and Sylow 3-subgroups. We must have n5 > 1 and n3 > 1 or
else the corresponding Sylow p-subgroup would be normal and the group not simple. But
since n5 = 1 + 5k, k ∈ Z, and n5 | 6, we must have n5 = 6. Similarly, since n3 = 1 + 3k,
k ∈ Z, and n3 | 10, we must have n3 = 10. (In both cases, we used the assumption that
G is simple and hence that n5, n3 > 1.) Now, since any Sylow 5-subgroup is of order 5
and since any Sylow 3-subgroup is of order 3, the intersection of any two of these groups
must be trivial, which means that there are 6 · (5− 1) = 24 elements of order five in G and
10 · (3− 1) = 20 elements of order three in G, giving a total of 44 elements of orders five and
three, a contradiction to the fact that |G| = 30. Therefore, n5 = 1 or n3 = 1 and in either
case this means that G is not simple.

Example 9.8.5 Prove that no group G of order 56 is simple.

Solution: We have 56 = 7 · 23, so by Sylow’s first theorem there exist Sylow 2-subgroups
and Sylow 7-subgroups of G. Assuming G is simple, we must then have n2 > 1 and n7 > 1,
where n2 and n7 are the numbers of Sylow 2- and 7-subgroups, respectively. Since n7 = 1+7k,
k ∈ Z, and n7 | 8, we must have n7 = 8; similarly, n2 = 1+2k and n2 | 7 implies that n2 = 7.
Each Sylow 7-subgroup must have 6 elements of order seven, and hence 8 of these groups
will give 48 elements of order seven. Also, even just two Sylow 2-subgroups will give more
than seven elements of even order. Including also the identity, we have too many elements,
and so G cannot be simple.

Example 9.8.6 Prove that no group of order 36 is simple.

Solution:

Example 9.8.7 Show that any group G of order 255 is Abelian and cyclic.

Solution:
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10 Group Solvability and the Semi-Direct Product

In this chapter we give a very brief account of solvable groups, and we will introduce the semi-
direct product, which we will see gives rise to the dicyclic group of order 3, a group of order
12.

10.1 The Commutator and Commutator Subgroup

Definition 10.1.1 Commutator

Let G be a group and a, b ∈ G. The commutator of a and b, denoted [a, b] is
the element [a, b] = aba−1b−1 ∈ G.

Theorem 10.1.1 Properties of the Commutator

Let G be a group, a, b ∈ G, and [a, b] the commutator of a and b. Then,

1. [a, b] = 1G ⇔ ab = ba. Hence G is Abelian ⇔ [a, b] = 1G for all a, b ∈ G.

2. [a, b]−1 =
(
aba−1b−1

)−1
= bab−1a−1 = [b, a].

3. For any g ∈ G,

g [a, b] g−1 = g
(
aba−1b−1

)
g−1 = gag−1gbg−1ga−1g−1gb−1g−1

=
(
gag−1

) (
gbg−1

) (
ga−1g−1

) (
gb−1g−1

)
=
(
gag−1

) (
gbg−1

) (
gag−1

)−1 (
gbg−1

)−1
=
[
gag−1, gbg−1

]
.

“The conjugate of a commutator is the commutator of the conjugates”.

4. The product of commutators is not necessarily another commutator.

5. If α : G → H is a group homomorphism, then for all a, b ∈ G, α ([a, b]) =
[α (a) , α (b)].
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Definition 10.1.2 Commutator Subgroup

Let G be a group. The commutator subgroup of G, denoted G′, is the set of
products of the commutators in G, i.e.,

G′ = {c1c2 · · · cl | l ∈ Z, l ≥ 0} ,

where the ci are the commutators in G.

Remark: Note that, as mentioned, since the product of commutators is not necessarily another commutator,
the commutator subgroup contains more than just the commutators in G.

Remark: We may also easily verify that G′ is indeed a subgroup by performing the subgroup test.

1. We have that [1G, 1G] = 1G, so G′ is not empty and contains the identity.

2. Suppose x, y ∈ G′. Then we may write x and y as a product of commutators, say x = c1c2 · · · cm and
y = d1d2 · · · dn. Then,

xy = c1c2 · · · cmd1d2 · · · dn,
which is in G′ because xy is again just a product of commutators. So G′ is closed.

3. Finally, let x ∈ G′. Write x as a product of commutators, say x = c1c2 · · · cm. Then x−1 =
(c1c2 · · · cm)−1 = c−1

m · · · c−1
2 c−1

1 , and since the inverse of a commutator is again a commutator, we
have that x−1 is a product of commutators, and hence x−1 ∈ G′.

Theorem 10.1.2

Let G be a group and G′ its commutator subgroup. Then,

1. G′ E G;

2. G/G′ is Abelian.

Proof:

1. To prove that G′ is normal, we must show that for all x ∈ G′ and all g ∈ G gxg−1 ∈ G′.
Let x = c1c2 · · · cm, where remember c1, c2, . . . , cm are all commutators in G. Then, for all
g ∈ G,

gxg−1 = gc1c2 · · · cmg−1 =
(
gc1g

−1) (gc2g−1) · · · (gcmg−1) ,
where we have inserted gg−1 = 1G in between each ci and ci+1. We have already seen that
the conjugate of a commutator is also a commutator. So gxg−1 is nothing but a product
of commutators, and hence gxg−1 ∈ G′, so G′ is normal in G.

2. The first property of the commutator stated above, we have that a group is Abelian if and
only if the commutator of all pairs of elements in the group is trivial. Now, let 1G, g1, . . . , gn
be the representatives of the cosets of G′ in G, i.e., let G′, g1G

′, . . . , gnG
′ be the elements

of G/G′. Remember that the identity element in G/G′ is G′. Now, for any two elements
giG

′ and gjG
′ in G/G′, we have[

giG
′, gjG

′] =
(
giG

′) (gjG′) (giG′)−1 (gjG′)−1 =
(
gigjG

′) (g−1i g−1j G′
)

= gigjg
−1
i g−1j G′ = [gi, gj ]G

′.
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But [gi, gj ] is a commutator, hence it belongs in G′; therefore, [giG
′, gjG

′] = G′, which
means that G/G′ is an Abelian group. �

Theorem 10.1.3

Let G be a group and G′ its commutator subgroup. Then G is Abelian if and
only if G′ = {1G}.

Remark: Therfore, in a way, the commutator subgroup can be used as one measure how how far a group is
from being Abelian. The larger the commutator, the “farther” the group is from being Abelian.

Proof: Suppose G is Abelian. Then, from the first property of the commutator, [a, b] = 1G
for all a, b ∈ G. Now, G′ contains every product of commutators in G, but all of these products
will be equal to 1G since every commutator is trivial. Hence G′ = {1G}.

Conversely, suppose G′ = {1G}. Then all the products of commutators in G are equal to the
identity. Now, let x = c1c2 · · · cm ∈ G′. We must have c1c2 · · · cm = 1G, which will happen
if and only if all of c1, c2, . . . , cm = 1G or if and only if n is even and every pair of adjacent
commutators consists of a commutator and its inverse. Since every element of G′ must be equal
to the identity, let us consider an element c1c2 · · · cm such that the product does not contain the
inverse of any of the factors. Then c1c2 · · · cm = 1G ⇔ c1, c2, . . . , cm = 1G. This means that all
the commutators in G must be equal to the identity, which means that G must be Abelian. �

Example 10.1.1 Show that every commutator in Sn is an even permutation.

Solution: Take any elements α, β ∈ Sn. Their commutator is

[α, β] = αβα−1β−1.

Remember that the function sgn is a homomorphism and returns an element in Z2 (which
indicates whether the permutation is even or odd). Since a permutation and its inverse must
have the same number of transpositions, we get

sgn
(
αβα−1β−1

)
= sgn (α) sgn (β) sgn (α) sgn (β)

= (sgn (α))2 (sgn (β))2

= [0]2 + [0]2 = [0]2,

which means that [α, β] is an even permutation. So all commutators in Sn are even permu-
tations.

Theorem 10.1.4

The commutator subgroup S′n of Sn is An for all n.
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Proof: We have seen in Theorem 7.6.4 that for n ≥ 5 the only normal subgroups of Sn are
{()}, An, and Sn itself. Now, for any a, b, d ∈ {1, 2, . . . , n},

[(a b) (b d)] = (a b) (b d) (a b)−1 (b d)−1

= (a b) (b d) (a b) (b d)

= (a d b) ,

which means that we cannot have S′n = {()}. Also, since every commutator is an even permu-
tation (above example) and the product of even permutations is also an even permutation, we
also cannot have S′n = Sn. Therefore, the only possibility must be S′n = An. Indeed, since all
commutators are even, and the product of even permutations is even, we have S′n ⊆ An. Also,
we know that An is generated by the 3-cycles of Sn for n ≥ 3. Therefore, every element in An
is the product of 3-cycles. But each 3-cycle can be written as a commutator using the above
calculation, hence any element in An can be written as a product of commutators (if not as a
single commutator). Therefore, An ⊆ S′n, and so S′n = An. �

10.2 Solvable Group

Definition 10.2.1 Solvable Group

A group G is said to be solvable if it has a series of subgroups

G = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gn = {1G}

in which the quotient groups Gi/Gi+1 are Abelian for all 0 ≤ i ≤ n− 1. n is called
the derived length of G. If no n exists such that Gn = {1G}, then G is said to
be not solvable.

Definition 10.2.2

Given a group G, we construct a series of subgroups inductively as follows: (let
i ∈ Z)

G(0) = G

G(1) = G′ (the commutator subgroup)

G(i) =
(
G(i−1)

)′
, i ≥ 2 (i.e., the commutator subgroup of G(i)).

By Theorem 10.1.2, we have

G(i) E G(i−1) and G(i−1)/G(i) is Abelian,

for all i ≥ 2.
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Theorem 10.2.1

Let G be a group and G(i) the subgroups of G as defined above. Then G is
solvable if and only if G(n) = {1G} for some positive integer n.

Theorem 10.2.2

Let G be a solvable group and H E G. Then:

1. Every subgroup of G is solvable.

2. Every homomorphic image of G is solvable.

3. H and G/H are both solvable. (The converse is also true.)

4. G/Z (G) is solvable. (The converse is also true.)

Also, if G1 and G2 are solvable groups, then so is G1 ×G2.

Theorem 10.2.3

Let G be a group. If G is not Abelian and G is simple, then G is not solvable.

Remark: Note that contrapositive of this statement: if G is solvable, then G is either simple or Abelian (but
not both).

Proof: Since G is not Abelian, we must have G′ 6= {1G} by Theorem 10.1.3. Moreover,
because G is simple, and G′ E G by Theorem 10.1.2, we must have G′ = G. Thus, G(i) =
G(i−1) = G 6= {1G} for all i ≥ 1, and so G is not solvable. �

Theorem 10.2.4 Summary of Facts about Solvable Groups

1. Every Abelian group is solvable (finite or infinite).

2. Every p-group is solvable.

3. Every group of order 2p, where p is an odd prime number, is solvable.

4. Every group of order pq, where p and q are distinct prime numbers, is
solvable.

5. Every group of order p2q is solvable.

6. Sn is not solvable for any n ≥ 5.

7. Dn is solvable for all n ≥ 3.

Proof:

1. We have shown in Theorem 10.1.3 that if a group G is Abelian, then its commutator
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subgroup is G′ = {1G}. But G′ = G(1) = {1G}, so by Theorem 10.2.1 G is solvable. �

Example 10.2.1 Show that every group G of order 42 is solvable.

Solution: We have that 42 = 7 · 6. Hence, by Sylow’s first theorem there exists a Sylow
7-subgroup of G of order seven. By Sylow’s third theorem, the number of Sylow 7-subgroups
n7 must satisfy n7 ≡ 1 (mod 7) and n7 | 6. The only possible value is n7 = 1, which means
that the Sylow 7-subgroup is unique and normal in G—call it P7. Since 7 is prime, P7 is
cyclic, hence Abelian, hence solvable. Also, |G/P7| = 6, so that either G/P7

∼= Z6 or G/P7
∼= S3.

If G/P7
∼= Z6 then since Z6 is Abelian, it is solvable, so by Theorem 10.2.2 part 3 we have

that G is solvable. Now consider G/P7
∼= S3. The commutator subgroup of S3 is A3 by

Theorem 10.1.4, and since |A3| = 6
2 = 3, we must have A3 is cyclic, hence Abelian, so that

the commutator subgroup of A3 is {1G}. So S3 is solvable, and again by Theorem 10.2.2
part 3 we get that G is solvable.

Example 10.2.2 Show that every group G of order 20 is solvable.

Solution: We have 20 = 4 · 5, which means that there exist Sylow 5-subgroups of G of
order 5 such that the number n5 of such subgroups satisfies n5 ≡ (mod 5) and n5 | 4. The
only possibility is n5 = 1, which means that there is only one Sylow 5-subgroup, call it P5,
and it is normal in G. Additionally, since 5 is prime, P5 is cyclic, hence Abelian. Now,
then, |G/P5| = 4, and since every group of order four must be Abelian, we have that G/P5 is
Abelian, hence solvable. So by Theorem 10.2.2 part 3, G must be solvable.

10.3 The Semi-Direct Product

Recall the internal direct product theorem, which stated that G ∼= H ×K if and only if there
existed normal subgroups H∗ and K∗ of G such that H∗ ∼= H, K∗ ∼= K, G = H∗K∗, and
H∗ ∩K∗ = {1G}.

In this section, we study the “semi-direct product” of two groups H and K, which is a general-
isation to this notion of the internal direct product and is obtained by relaxing the requirement
that both H∗ and K∗ be normal in G, i.e., we will require only one of them to be normal. One
reason the semi-direct product is useful is that it allows us to construct non-Abelian groups even
when the groups in the product are Abelian (remember that if H and K are Abelian groups,
then the regular direct product H ×K is also Abelian).
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Definition 10.3.1 Semi-Direct Product

Let H and K be groups and let ϕ be a homomorphism from K to Aut (H). The
semi-direct product of H and K, denoted H oK, is the set of ordered-pairs
(h, k) with a binary operation ∗ on any two elements in H oK defined by

(h1, k1) ∗ (h2, k2) = (h1ϕ (k1, h2) , k1k2)

for all h1, h2 ∈ H and all k1, k2 ∈ K, where ϕ is the action of K on H that
determines ϕ. (The ∗ will be omitted from now on.)

Now, let us assume that H and K are subgroups of G such that H E G and K ≤ G. Remember
that we still have HK ≤ G. Let us define the action ϕ : K×H → H of K on H by conjugation,
i.e., let ϕ (k, h) = khk−1 for all h ∈ H and all k ∈ K (note that since H is normal in G, khk−1 is
indeed still in H). Then, as we have seen when we first introduced group actions, the mapping
ϕk : H → H defined by ϕk (h) = ϕ (k, h) is a permutation of H, and the mapping ϕ : K → SH
defined by ϕ (k) = ϕk is a group homomorphism (SH is the set of permutations on H). Now,
ϕk, being a permutation, is a bijection, and since H is a group it is clear that ϕk is also a
homomorphism (from H to H); therefore, ϕk is an isomorphism from H to H, which we have
seen is also called an automorphism, and hence ϕk ∈ Aut (H). Therefore, SH is nothing but
Aut (H) itself (remember that Aut (H) is itself a group).

Theorem 10.3.1

Let G, H, and K be groups and let ϕ be a homomorphism from K to Aut (H).
Let ϕ denote the action of K on H that determines ϕ. Then:

1. The sets H∗ = {(h, 1G) | h ∈ H} and K∗ = {(1G, k) | k ∈ K} are sub-
groups of G and the maps f : H → H∗ and g : K → K∗ defined by
f (h) = (h, 1G) and g (k) = (1G,K) for all h ∈ H and all k ∈ K are
isomorphisms, i.e., H ∼= H∗ and K ∼= K∗.

2. H∗ E G.

3. H∗ ∩K∗ = {1G}.
4. The action of K on H is defined by conjugation, i.e., ϕ (k, h) = khk−1 for

all k ∈ K and all h ∈ H.

5. G = H oK is a group of order |G| = |H| |K| under the binary operation
(h1, k1)∗(h2, k2) = (h1ϕ (k1, h2) , k1k2) for all h1, h2 ∈ H and all k1, k2 ∈ K.

We now state the theorem analogous to the internal direct product theorem.
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Theorem 10.3.2 Characterisation of the Semi-Direct Product

Let G, H, and K be groups and let ϕ be a homomorphism from K to Aut (H).
Let ϕ denote the action of K on H by conjugation that determines ϕ. Then,
G ∼= H oK if and only if there exists subgroups H∗ and K∗ of G such that

1. H ∼= H∗, K ∼= K∗ and H∗ E G;

2. H∗ ∩K∗ = {1G};
3. H∗K∗ = G.
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