

PMU DEPLOYMENT FOR ENHANCED PROTECTION AND CONTROL

CAPER Workshop, August 7 & 8, 2017

Dino Lelic

Bridging the Gap with Synchrophasors

Technology Deployment Status

 Due to the American Recovery and Reinvestment Act of 2009, large number of Synchrophasor Technology projects funded (\$620M) – mostly to address transmission needs – USA well covered with PMUs

Source: DOE Report: "Advancement if Synchrophasor Technology in Projects Funded by the American Recovery and Reinvestment Act of 2009", March 2016

Maturity Level of Synchrophasor System

Recovery Act Smart Grid Investment in Synchrophasor Capability

CAPABILITIES	ATC ¹	CCET	Duke Energy	Entergy	FPL	Idaho Power	ISO-NE	Lafayette	Midwest Energy	MISO	NYISO	PIM	WECC / Peak Reliabilit
REAL-TIME CAPABILITIES													
Phase angle monitoring													
Oscillation detection and monitoring				{				1					
Voltage stability monitoring													
Event detection, management, restoration													
slanding detection, management, restoration			110				10						
Equipment problem detection					1				-				
Wide area situational awareness			.	· · · · · · · · · · · · · · · · · · ·									17 <u> </u>
STUDY MODE CAPABILITIES													
Model validation and calibration			1	[] []	L		<u> </u>	-					
Post-event analysis													
Renewable resource integration			1										
Operator training					1								
KEY to status of capabilities dev	velopment	e I	Piar	med	1	Developo	ient & Test	tine	Fully Im	demented	Itealaime	or study o	todel

Source: DOE Report: "Advancement if Synchrophasor Technology in Projects Funded by the American Recovery and Reinvestment Act of 2009", March 2016

DOE Projects Benchmark

Nine large SGIG Projects varied in focus

X US Synchrophasor Projects

Technology Status

Transmission more mature, Distribution picking up

- Large number of utilities and ISOs implemented Synchrophasor projects, mainly with focus on Wide Area Monitoring Systems
- Decent number of applications implemented, even more envisioned
- After the wave of Smart Grid Investment Grant projects ended (2015), new project subdued
- Some utilities/ISOs preparing implementation roadmaps to assess next steps

	1	Infrastructure	Applications	Processes		interaction	Applicatione	Pressente.		1	Infrastructure	Applications	Processe
-	-	Fail Production-Grade System: QAVStaging and Training Text Environments Findundust (SO-TO Communication Network Entranced OMMS GPP Compliant Measures Displays Sharing w/th TOs	Flat and Accurate Post Event Analysis Generative and Law Dyname Model Valaction PhasePoint Operations Use FDRE Expensional Use	-Processes, Proceedings and Training to Horse to 0	du	Inter Contrarger with All Integration Int CAUCI Integration Int CAUCI Integration International Contract Integration Volumentation Delegations Volumentation Delegations Volumentation Interface Integrations Volumentation	Adaption of Hammanny Manufacture mathem. Mundatation mathem. Manufacture Manu	- Constant of Constant of Constant	and a	HILE I	Showed Talgebox with all Neighbox Standard Controller Evolution and Controller Evolution and Control Evolution Transfer Evolution Transfer Evolution and Control Instance Protocolors and Control Evolution The Control and Control Evolution The Control and Control Evolution	POULS search Within Area Special Hingany Perdication Systems the Seberation Systems Supervised Systems Structures Four Law Desiching	Press, Press, and Press,
and the second se	unper	India Data Escharge with Norm Neightoon Solaria EUIS Integration TO Expert PMU Concepts In Lown Votage Levels and Convention Statione Solaria India ISO-Vice Access TO DIFFIGURE Data	HILU Only ST. (2013-017) Facadatily Destruction Order Collination and Status Manifolding of PARA		und and	+ 10 ND Data Escharge + 10 ND Data Escharge + 10 Pal Desengen tr 15 W - data Strate UDates heighter - Separat and Provide Data Separat and Provide Data - Separat	Internation - Environment chiefe die weie Polise United - Internet Polisieuriere Verstammen - Solite United Technologiese - Operational Constructions - Operational Constructions - Operational Constructions - Operational Constructions - Operational Constructions - These Inspired Constructions	Trans Construction of Constru- tion of Construction of Constru	ALMAN .	Chellard.	- Full Agrees to other Data Sources - Coperate Marian with other 112 Dynami	Wate Areas Controls With Areas Controls With Charges (Control (West) Congestion Millipation Double) Congestion Millipation Charges (Control (Contro) (Control (Control (Control (Control (Control (Control (Contro)	internet of the second second
	row.	• India Imagenium with other INO-FE Typicana (org., Onit, CARI)			[m	- Henry (Marc Laws Assess 1945, Wagdwell - Henry Assess Hannes (H.g., 1940)				8		Detro Ros Des Dysats: Patry of Tenerman Corrects Tenerman Corrects	- Transit Providence of Territy In Section 1
figure	4.1	An overview of the nexe-term activit	lin.		Figure	the contract of the stations activity	M A A A T A A A A A A A		Rgars	4 1	An overview of the long-term acity	les.	

International Synchrophasor Deployment

Source: US DOE 2016 Advancement of Synchrophasor Technology Report

- In the US, over 1,000 substations with ~1,700 installed PMUs and the number continues to grow
- China has installed PMUs in over 1,700 750/500/330/230 kV substations by 2013 and the number is fast growing
- India installing 1,732 PMUs
- Latin America
 - Colombia Deployed applications for improved grid observability and reliability
 - Ecuador Deployed System Integrity Protection Scheme using PMUs
 - Brazil ONS is procuring the PMU system
- Many European countries have installed PMUs

Variety of applications benefit from using the same infrastructure

Example: PMU in the control room NYISO

- Displays / dashboards organized by New York's electrical load zones, as well as by external neighboring electrical regions
- PMUs grouped by zones to reflect expected coherent generation response
- Visualization is part of NYISO control room video wall

Example: Oscillation Monitoring at BPA

Implemented in Control Room in October 2013; Operating Procedures developed in 2016

- Monitoring 140 measurement points from 66 PMUs
- ODM Map display on video wall of Dispatch floor
- Full ODM application on all Dispatcher consoles
- Dispatcher training session performed
- Audible alarms SCADA; Operational Staff must respond to alarm
- Single PMU alarm: Sys Ops call field staff at alarmed measurement point; Multiple PMU alarm: Sys Ops take more proactive approach

Benchmark: Use Cases of Techn. Readiness

Ecuador – CENACE (ISO for Ecuadorean Power System)

- Implemented PMU-based SIPS
- Have ELPROS WAM WAProtector with real-time functions: Voltage stab monitoring, LF oscill detection, Phase angle diff monit, Thermal monitoring, Over/Under value detection, Islanding detection. Oscill. Source detection

Colombia – XM

- Have WAMS info in the control center
- Executing Roadmap (prepared by Quanta T.)
- INDIA POSOCO, PowerGridIndia
 - PMU based SPS
 - Challenges with interoperability, data quality, comms, processing speed

CHINA

- Power oscillation detection, location detection
- Post event analysis
- Wide area protection
- Damping control system

BRASIL

EUROPE (Norway, Iceland,...)

 Norway, Moving from R&S to model validation, disturbance and fault analysis (by rid analysis team)

Table 1. Benefits of synchrophasor technology, by application ¹⁰							
	Increased system reliability	Increased Asset Utilization and Power System Efficiency	Increased Organizational Efficiency				
Real Time							
Wide area visualization	1		×				
Frequency stability monitoring and trending	×						
Voltage monitoring and trending	~						
Oscillation detection	×.						
Phase angle monitoring and trending	~	~					
Resource integration		1					
Adaptive islanding and black-start capability	~						
Event detection	*		1				
Adaptive relaying	~						
Power system stabilizer/oscillation damper	×						
Automated protection	~						
Off-Line							
Post-event analysis	~		*				
Model validation	×	×	×				
State estimation	×						

Source: P. Overholt, K. Uhlen, B. Marchionini, "Synchrophasor Applications for Wide Area Monitoring and Control, ISGAN Discussion Paper, 2016,

Ecuador: A Successful Deployment Experience

The need:

 Rapid generation expansion & demand growth lead to stressed grid operations - Double contingencies can cause a system collapse

The solution:

 PMU-based System Integrity Protection System - A fully redundant system involves 2 control centers, 12 monitoring and 11 mitigation substations, and a training system

The process (completed < 3 years):

- System studies to identify problem areas and develop mitigation solutions
- Proceeded to system design and requirements specifications
- Deployed the SIPS through rigorous procurement, installation, testing and commissioning processes

The results:

- In operation since January 2015
- Correctly operated on May 6, 2015 Realized USD \$1.1M economic savings

Example: UK VISOR Project

- Pilot with GB SO and three TOs
- Trying to address challenges caused by fast changing power system infrastructure

WAMS of Continental Europe

 Swissgrid is hosting a WAMS application where the power system frequencies and angle differences of grid operators from Austria (APG), Denmark (Energinet.dk), Portugal (REN), Slovenia (ELES), Croatia (HEP), Italy (TERNA) and Greece (IPTO) are monitored

Source: https://www.swissgrid.ch/swissgrid/en/home/reliability/wam.html

XM Colombia: Applications Location Assignment

filial de isa

Example: State Estimator - Quanta

- Integrated with EPG RTDMS system and NYPA EMS (Siemens)
- Using the IEEE C36.118 standard for PMU data and CIM/ICCP for SCADA EMS data
- Enhanced C37.118 to be able to accept large number of phasor measurements
- Runs up to 10 times/second
- Unknown if any other HSEs have been implemented in production environment
- 185 PMU measurements, 4419 SCADA measurements

Why DNSE?

- combines both SCADA and PMU data to obtain the complete state of system; can provide synchrophasor output not available through PMUs
- mechanism to provide functionality to identify "bad" PMU data
- non-iterative;
- fast (executed at nearly phasor data rate); Challenge: huge systems of equations to be solved

DNSE Application – Test Results

Test: Add more PMUs in NY area and evaluate performance

	Base	>= 345 kV	>= 230 kV	>= 115 kV	
Voltage phasors	15	94	129	565	0.6 DNSE Error (st.dev %)
Current phasors	47	397	520	2015	0.4 0.3 Total execution time [s]
Observable buses	148	276	309	752	0.2
Error Mean at 1% noise	0.0048	0.0025	0.0012	0.0006	0 0 100 200 300 400 500 600
Error st.dev. at 1% noise	0.0052	0.0035	0.0018	0.0007	NO. OF Phasors
Preproc. time: observ.	0.1100	0.1000	0.1000	0.0800	
analysis					
DAdditional P	NOS2220	0.0400bs	9 <mark>0/0420</mark> y, an	@.07000ve	error rejection.
(incremental) ^{er}	,ability a	analysis tir	ne decreas	s with mo	re PMUs; DNSE solution
Post.preed pos time	t \$0028 :	ssing20me	0.0050ses.	0.0500	

Example: Voltage Instability Indicator RVII

Fundamentally, local voltage instability detector

- Just like a relay, real time computation that uses only local information (no network model needed)
- Unlike a relay, able to <u>avoid</u> point #1 (see figure a & b), and includes point #2

100

System X Load X

150

Under-voltage Relay Example

Double Contingency to Load Pocket

- Drastic action may be taken on voltages of 0.95 p.u to prevent instability.
- RVII would show, however, that system is far from collapse (verified by PSS/E time domain simulations).

Stability Detection at Brink of UVLS Trigger

- RVII successfully identifies separation between system and load impedances, indicating a stable system condition.
- Absent RVII, drastic under-voltage action might be taken at voltages of 0.95 pu to prevent instability.

Applications in Distribution Systems

- Monitoring distributed Generation
- Distributed and closed-loop control
- Active/adaptive protection
- Common data format for reporting
- Synchronized measurement over entire system

Distribution Automation & Microgrids

Renewable Integration

> Fire Hazard Prevention

Smart Distribution Challenges

Source: E.M. Stewart, S. Kiliccote, C. M. Shand, A. W. McMorran, R. Arghndeh, A. von Meier, "Addressing the challenges for Integrating Micro-Synchrophasor Data with Operational System Applications", Lawrence Berkeley National Laboratory Report, LBNL 6780E, July 2014

Requirements for Distribution PMUs

No	Category	Requirement	Comment
1	TVE 1%	Less than 0.1%	The shorter the feeder length, the higher the errors on the power flow regarding 1% TVE (this is especially disadvantageous for calculation of active and reactive power)
2	Freq. Dev.	$\begin{tabular}{ c c c c c c c } \hline Reference condition & P-class & M-class \\ \hline (nominal frequency) & f_{\#} & Range (Hz) & TVE (\%) & Range (Hz) & TVE (\%) \\ \hline f_{\#} & \pm 2 & 1 & \pm 5 & 1 \\ \hline \end{tabular}$	This requirement is more stringent than USA allowed frequency thresholds of ±4Hz
3	Harmonic content	Very low TVE metric, adaptive in frequency, accurate estimation of harmonic components	This 'harmonic PMU' requirement does not exist in transmission grids
4	Measurement points	PMUs must be located in key points to improve system observability	This is performance vs. cost criterion
5	Cost-benefit ratio	To improve this criterion, it is important to develop a low-cost PMUs & PMU/IEDs that are interoperable and easy to install and maintain	µPMUs and FNET DFRs are good example of such devices

Source: M. Lelic, "Synchrophasor Applications for Transmission and Distribution Systems", Client Technical Report, Sep 2016

Application: Falling Conductor Protection: SDG&E

Detect broken conductor and trip circuit before line hits the ground – Is it possible??

Detection Method

- dV/dt (change detection)
- V0 and V2 magnitude
- V0 and V2 angle

Source: W. O'Brien, E. A. Udren, "System for Detecting a Falling Electric Power Conductor and Related Methods", US Patent 9,413,156, 2016

Slide 23

Thank You!

Quanta Technology, LLC 4020 Westchase Blvd., Suite 300 Raleigh, NC 27607 USA (919) 344-3000 www.quanta-technology.com

