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ABSTRACT: 

A mobile mapping system is effective for capturing dense point-clouds of roads and roadside objects．Point-clouds of urban areas, 
residential areas, and arterial roads are useful for maintenance of infrastructure, map creation, and automatic driving. However, the 
data size of point-clouds measured in large areas is enormously large. A large storage capacity is required to store such point-clouds, 
and heavy loads will be taken on network if point-clouds are transferred through the network. Therefore, it is desirable to reduce data 
sizes of point-clouds without deterioration of quality. In this research, we propose a novel point-cloud compression method for 
vehicle-based mobile mapping systems. In our compression method, point-clouds are mapped onto 2D pixels using GPS time and the 
parameters of the laser scanner. Then, the images are encoded in the Portable Networking Graphics (PNG) format and compressed 
using the PNG algorithm. In our experiments, our method could efficiently compress point-clouds without deteriorating the quality. 

1. INTRODUCTION

The vehicle-based mobile mapping system (MMS) is effective 
for capturing 3D shapes of roads, buildings, and roadside 
objects. Figure 1 shows an MMS, on which laser scanners, 
cameras, GPSs and IMU are mounted. The MMS captures 
point-clouds using laser scanners while running. Point-clouds of 
urban areas, residential areas, and arterial roads are useful for 
maintenance of infrastructure, map creation, automatic driving, 
computer graphics, and so on.  

When high-performance laser scanners are installed on the 
MMS, the data size of point-clouds becomes very enormous. In 
recent years, the performance of laser scanners has been greatly 
improved. For example, the maximum data acquisition rate of 
the Z+F Profiler 9012 is 1.016 million measurements per 
second, and the one of the RIEGL VQ 450 is 0.55 million 
measurements per second. When the MMS with a high-
performance laser scanner runs over a long distance, billions of 
points are captured in one day. While dense point-clouds 
maintain rich 3D information, the data volume often becomes 
extraordinary large. Many hard disks are required to store large-
scale data, and it takes a long time to load the data from hard 
disks on RAM.  

In order to reduce the storage capacity and shorten loading time 
for big data, data compression techniques are very important. 
Data compression reduces data sizes by encoding measured data 
in fewer bits.  

In laser scanning, effective digits of 3D coordinates can be 
reduced according to the measurement accuracy of the MMS. In 
most cases, it is sufficient to record 3D coordinates up to 1 mm. 
However, even if the number of significant digits is reduced, the 
data size is still very large. Therefore, it is necessary to further 
reduce the data size of point-clouds using coherency among 
coordinates. 1 
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Several point-cloud compression methods have been proposed 
so far. There are three typical types of compression methods for 
point-clouds.  

The first type of method is based on coherency between 
consecutive points. LASZIP proposed by (Isenburg, 2013) has 
been widely used to compress LiDAR data. This method 
compressed organized points based on the observation that 
coordinates of consecutive points are similar. However, it does 
not use adjacency relationships on 2D space in cases of MMS 
data. (He, et al. 2012) also compressed MMS data by encoding 
consecutive points as second order differences. 

The second type of method is space partition for unorganized 
points. Most space partition methods for point-clouds are based 
on the octree or the k-d tree. The both methods recursively 
subdivide three-dimensional space and creates hierarchical 
structure of points.  In octree-based methods, (Peng et al., 2003) 
and (Huang et al., 2006) proposed progressive lossless mesh 
encoders. (Kammerl et al., 2012) compressed unordered point-
cloud streams by encoding differences between voxels. 
(Elseberg et al., 2013) proposed octree-based data structure to 

Figure 1. Mobile mapping system 
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handle large points captured by terrestrial laser scanners. 
(Hornung et al., 2013) proposed an octree map compression 
method using probabilistic occupancy estimation. In kd-tree 
based methods, (Gandoin et al., 2002) proposed a progressive 
connectivity-coding algorithm using the kd-tree geometric coder 
proposed by (Devillers et al., 2000). (Hubo et al., 2006) 
proposed the Quantized kd-tree, in which points were encoded 
using quantized split-plane positions.  
 
The third type of method is based on 2D images for organized 
points. If 3D points can be mapped on a 2D lattice image, point-
clouds would be more efficiently encoded. In terrestrial laser 
scanning, it is well-known that a point-cloud can be mapped on 
a 2D panoramic image if the scanner position is fixed. Even in 
mobile mapping, some researchers converted points into images 
for specific laser scanners. (Houshiar, 2015) mapped point-
clouds captured at the fixed positions onto panoramic depth 
images, and encoded depth images using an image compression 
method. For MMS data, (Kaess et al., 2003) proposed a 
compression method for laser scanners that emit laser beams 
line by line, such as the SICK LMS series. They aligned scan 
lines in a lattice manner, and compressed them using an image 
compression method. (Masuda et al., 2015) also proposed a 
scan-line based compression method, in which a sequence of 
points was encoded using the second-order differences. (Tu et 
al., 2016) compressed raw point data of the Velodyne HDL-
64S2, which emits 64 laser beams simultaneously. They 
converted a set of 64 scan lines into a panoramic image and 
applied compression methods for images and videos. However, 
these methods for mobile mapping data were developed only for 
specific types of laser scanners. A majority of laser scanners for 
MMSs, such as RIEGL VX and Z+F Profiler series, 
continuously emit laser beams in a spiral manner, as shown in 
Figure 2. In conventional methods, it is difficult to efficiently 
compress MMS data captured by these popular laser scanners.  
 
In this paper, we propose a novel image-based compression 
method for point-clouds captured by MMSs. Our main 
contribution is a novel compression framework for spiral-type 
laser scanners, and a novel image-based compression method 
for MMS data. In our method, point-clouds are projected onto a 
2D lattice using GPS times and laser scanner parameters. Then, 
we segment point-clouds on the 2D lattice into groups of 
neighbor points, and compress each group of points using the 
Portable Network Graphics (PNG). Our method can compress 
point-clouds captured by MMSs without deteriorating the 
quality.  
 

2. MAPPING POINT-CLOUDS ONTO 2D IMAGES 

2.1 Mapping 3D Points on 2D Lattice 

Point-clouds captured by MMSs do not maintain explicit 2D 
lattice structure, while point-clouds captured by TLSs can be 
easily converted to panoramic images. Therefore, we first 
consider a method for mapping point-clouds onto 2D images by 
assigning the pulse number and the rotation number to each 
point. 
 
In spiral-type laser scanners, laser beams are continuously 
emitted, as shown in Figure 2. Points are measured at the equal 
time interval. We suppose that point-clouds include (𝑥, 𝑦, 𝑧) 
coordinates, intensity values, and GPS times. A GPS time 
indicates when the point was captured. RGB colors are often 
added to points in post processing, but we do not discuss RGB 
colour attributes in this paper, because compression of RGB 

colours is trivial. Since point-clouds are converted into images 
in our method, RGB colours can be simply compressed using 
any image compression method. 
 
In this paper, let {𝑝!}  be the sequence of points, 𝑡𝑖  be the 
elapsed time from the start of laser scanning until point 𝑝𝑖 is 
measured. We also denote the rotation frequency of the laser 
scanner as 𝑓, and the pulse repetition frequency of the laser 
scanner as 𝜔. The rotation frequency is the number of rotations 

 
Figure 2. Trajectory of the laser beams 

 
 

 
Figure 3. Neighbour points on scan-lines 

 
 

 
Figure 4. The rotation number 

 
 

 
Figure 5. The phase number 
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of laser beams per second, and the pulse repetition frequency is 
the number of measurements per 1/𝑓 second.  
 
Since the laser beam rotates once in 1/𝑓 second, we subdivide a 
point-cloud every 1/𝑓 second. We call each segment as a scan-
line. As shown in Figure 3, neighbour points on the next scan-
line are captured 1/𝑓 second later.  
 
In order to map a point-cloud on a 2D image, we assign the 
phase number and the rotation number to each point. The 
rotation number is the sequential number of scan-lines, as 
shown in Figure 4. Points on the same scan-line have the same 
rotation number. The rotation number of point pi can be 
calculated as: 
 

𝐽! = INT(𝑓 ∙ 𝑡!) (1) 
 
INT(𝑥) is the function that returns the integer part of 𝑥.  
 
The phase number 𝐼𝑖 indicates the sequential order of point p! 
on the scan-line. Figure 5 shows the phase numbers. Points with 
the same phase number are ordered on the same column. The 
phase number can be calculated as:  
 

𝐼! = INT(𝜔 ∙ FMOD 𝑡! , 1/𝑓 ) (2) 
 
FMOD(𝑥, 𝑦)  is the function that returns the floating-point 
remainder of 𝑥/𝑦.  
 
Each point pi is mapped to (𝐼! , 𝐽!) on the 2D lattice. If any point 
is not mapped on a pixel, the pixel is marked as empty. Figure 6 
shows an example of mapped points. In this figure, the vertical 
axis is the phase number, and the horizontal axis is the rotation 
number. The brightness of a pixel is the intensity value of each 
point. Empty pixels are shown in blue colour.  
 
2.2 Quantization of Coordinates 

Coordinates measured by MMS include numerical errors caused 
by laser scanners, GPS, calibration, and so on. Since the 
accuracy of coordinate values is not very high, very high 
resolution, such as sub millimeter, is not necessary.  
 
To reduce the number of coordinate digits, we quantize point 
coordinates according to the accuracy of the MMSs. In this 
research, we set the quantization step as 1mm. This resolution is 
sufficiently high considering the accuracy of MMS data.  
 
2.3 Segmentation of 2D Lattice 

Although we reduce the number of digits by quantizing the 
coordinates, the number of digits is still very large. Therefore, 
we represent coordinates as differences between neighbors to 
make the data more compressible. In this paper, we consider 
dividing the image so that the differences of 𝑥, 𝑦, and 𝑧 can be 
encoded with 8 bits.  
 
We segment the image into connected regions using the region 
growing method. The point with the earliest GPS time is 
selected as a seed point. Initially, the region contains only the 
seed region. Then, neighbour points are added to the same 
region only when the difference for each of 𝑥, 𝑦, 𝑧 is less than 
256 mm. This process is repeated until neighbour points cannot 
be added anymore. When there are unsegmented points, a new 
seed point is selected from the remaining points, and the region 
growing method is applied again.  

 
Figure 7 shows the segmented image, in which connected 
regions are shown in different colours. Figure 8 shows images 
of connected regions. In our method, each region is converted 
into the Portable Network Graphics (PNG) format.  
 

3. POINT-CLOUD COMPRESSION USING  
PORTABLE NETWORK GRAPHICS 

3.1 Portable Network Graphics 

PNG (W3C, 2003) is a patent free file format designed for 
images. PNG supports lossless data compression, which can 
completely reconstruct the original image from the compressed 
data. The PNG algorithm consists of filtering and compression 
stages. In the filtering stage, images are passed through delta 

 
Figure 6. 2D lattice projected point-clouds 

 
 

 
Figure 7. Connected regions 

 
 

 
Figure 8. Images of connected regions 
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filtering to make the image compressible. In the compression 
stage, Deflate algorithm (Deutsch, 1996) is applied to the 
filtered byte sequences. In this compression algorithm, LZ77 
cording (Ziv et al., 1977) and Huffman cording are combined.  
 
The PNG format supports several types of images. We use the 
PNG format for RGB images with alpha channels to encode 
point-clouds. 
 
3.2 Differences of Coordinates  

When connected regions are detected using the region growing 
method, each pixel is added one by one. Figure 9 shows the 
process of growing region. In this figure, when pixel 𝑃!  is 
added to the connected region as the neighbor of pixel 𝑃!, a 
directed edge is defined from pixel 𝑃! to pixel 𝑃!. Since the all 
nodes in the connected region are traversed during the region 
growing, this graph becomes a directed spanning tree. When the 
seed point is given, the spanning tree is uniquely reconstructed 
according to the rule of region growing. 
 
Once the directed spanning tree is generated, coordinate 
differences can be calculated between the adjacent nodes in the 
directed graph. As shown in Figure 10, the coordinate 
difference ∆𝑝! is calculated between the seed and the neighbor 
point on the spanning tree. Similarly, differences 
∆𝑝!,∆𝑝!,⋯ ,∆𝑝! are calculated along the spanning tree. The 
difference value is stored at each pixel. Difference values are 
guaranteed to be 255 mm or less based on the rule of region 
growing.  
 
Coordinate 𝑝! can be reconstructed using the seed coordinate 
𝑝!""#  and difference values. Let Λ!  be the index set of the 
shortest path on the spanning tree from the seed to pixel 𝑖. Then 
𝑝! can be calculated as: 

𝑝! = 𝑝!""# + ∆
!∈!!

𝑝! (3) 

Therefore, in our method, the coordinate of the seed point and 
the differences of other pixels are required to reconstruct all 
original coordinates. 
 
3.3 Encoding Point-Cloud 

In our method, difference Δ𝑥! ,Δ𝑦! ,Δ𝑧!  is stored at pixel 𝑖. We 
encode them in the PNG format, which has RGB channels and 
an alpha channel. In this format, 8 bits are allocated to each 
channel of R, G, B, and alpha. 
 
Figure 11 shows our encoding scheme. We assign three bits to 
plus or minus signs of (𝑥, 𝑦, 𝑧), and store them in the alpha 
channel as 0 or 1. The absolute values of (𝑥, 𝑦, 𝑧) are written in  
 
RGB channels using 8 bits. The remaining 5 bits in the alpha 
channel can be used optionally. In this paper, we use the 5 bits 
for storing an intensity value, which is quantized to 25 = 32 
levels.  
 
The coordinate data in the PNG format is compressed and 
stored in the file with .png extension. Figure 12 shows an 
intensity image of a connected region and its PNG image. In 
Figure 12(b), pixel colors are determined from coordinate 
differences. We can reconstruct point coordinates and intensity 
values from the encoded image. Figure 13 shows a point-cloud 
reconstructed from a PNG image. Figure 13(a) encodes a point-
cloud equivalent to Figure 13(b).  
 

The GPS time of each point can be also reconstructed, although 
GPS times are not explicitly encoded in the file. In 
measurement by a MMS, points are measured at the equal time 
interval, and they are sequentially ordered on the image. 
Therefore, the GPS time of each point can be determined using 
the position on the image if the earliest GPS time of the seed 
points is given. The GPS time 𝑇!  at pixel (𝐼! , 𝐽!)  can be 
calculated using the GPS time 𝑇!""# of the seed point as: 
 

𝑇! = 𝑇!""# +
𝐼! + 𝜔𝐽!
𝜔𝑓

 (4) 

 

 
Figure 9. Spanning tree based on region growing 

 

 
Figure 10. Difference values 

 

 
Figure 11. Encoding coordinate difference 

 

  
(a) Intensity image (b) PNG image 

Figure 12. Encoded image of a point-cloud 
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 In our method, the coordinate and GPS time of the seed are 
required to reconstruct the original coordinates and GPS times. 
In our implementation, these values are stored as the file name 
of compressed data. 
 
3.4 Encoding Fragmented Regions 

In our method, each connected region is compressed as a PNG 
file. When an image is segmented into connected regions, large 
regions are generated from buildings, roads, and roadside 
objects. On the other hand, small fragmented regions are also 
generated from tree leaves, cables, and noises. In Figure 14, 
while a large connected region is generated from a building, 
many fragmented regions are generated from an electric cable.  
 
In our method, while the compression efficiency for large 
regions is very high, the efficiency is poor for fragmented 
regions with few points. Therefore, we compress only large 
regions by the PNG algorithm. In this paper, we regard regions 
with 5 or less points as fragmented regions.  
 
In Figure 15, fragmented regions are shown in red colour. In 
residential areas, fragmented regions are mainly generated from 
cables and trees. 
 
Table 1 shows ratios of points in fragmented regions for point-
clouds A and B in Figure 16.  Since many trees are included in 
the point-cloud B, more fragmented regions are generated from 
tree leaves. In both cases, the numbers of points in fragmented 
regions are very small, because areas of tree leaves and cables 
are much smaller than ones of roads and building walls,  
 
In our method, points in fragmented regions are separately 
encoded without using the PNG algorithm. In this paper, we 
simply encode points in fragmented regions in a binary format 
without compression, because the number of points in 
fragmented regions is relatively very small. 
 

4. EXPERIMANTAL RESULTS 

We evaluated our compression method using two datasets A 
and B, which were measured in a residential district in Japan 
using Mitsubishi Electric MMS Type X. The mounted laser 
scanner was Z+F Profiler 9012. As shown in Figure 16, point-
clouds A and B include houses, roads, utility poles, and so on. 
Point-cloud B also includes many trees, and therefore a lot of 
fragmented regions are generated from dataset B. The numbers 
of points are 9.79 million in point-cloud A, and 6.54 million in 
point-cloud B. For data compression, we used a PC with 3.1 
GHz Intel core i5 CPU and 16 GB RAM.  
 
We compared our method with the scan-line based compression 

 

 ASCII Binary Scan-Line 
Based 

Our 
Method 

Size 552.4 MB 319.5 MB 30.1 MB 23.0 MB 

Ratio 100 % 57.8 % 5.4 % 4.2 % 
Table 2. Compression results of point-cloud A 

 

 ASCII Binary Scan-Line 
Based 

Our 
Method 

Size 367.6 MB 213.2 MB 24.1 MB 18.4 MB 

Ratio 100 % 58.0 % 6.6 % 5.0 % 
Table 3. Compression results of point-cloud B 

 

 
(a) PNG image 

 
(b) Points 

Figure 13. Image and points representing the same object 
 
 

 

 

(a) Large region (b) Fragmented region 

Figure 14. Sizes of connected regions 

 
 

 
                    (a) Electric cable                     (b) Tree leaves 

Figure 15. Fragmented regions 
 

 

 
Number of Points 

Large Regions Fragmented Region 
Data A 9,762,923 (99.7%) 30,365 (0.3%) 

Data B 6,448,844 (98.7%) 86,445 (1.3%) 
Table 1. Number of points in large and fragmented regions 
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method (Masuda et al., 2015). This method was designed for 
MMS data, and compresses scan-lines using the second-order 
differences. In our evaluation, coordinates, GPS times, and 
intensity values were encoded in a file. The resolution of 𝑥, 𝑦, 
and 𝑧 was 1 mm, and the intensity values were stored in 5 bits.  
The results are shown in Table 2 and Table 3. In ASCII and 
binary formats, data were stored without compression. In the 
both datasets, our method has improved compression ratios by 
more than 20% compared to the scan-line based compression 
method.  
 
Our method showed excellent compression ratios even when 
many fragmented regions were generated. In our method, while 
large regions are encoded using the PNG algorithm, fragmented 
regions are stored without compression. In Table 4, data sizes 
for both regions are described. In these datasets, the 
fragmentation problem did not have significant effect on data 
compression. 
 
Figure 17 shows point-clouds that were reconstructed from 
compressed data. Fragmented points are shown in red colour. 
Figure 18-20 show details of reconstructed point-clouds. In all 
cases, the original point-clouds could be faithfully reconstructed, 
because our compression method is lossless after coordinates 
are quantized to 1 mm resolution.  
 
After compressed data are loaded from a hard disk, it has to be 
decoded for use. Table 5 shows timing for loading and decoding 
of compressed data. We compared with loading time of original 
point-clouds represented in the ASCII format. The time for 
loading and decoding compressed data was shorter than the 
loading time of the original point-cloud. 
 
Table 6 shows timing for compression process. We measured 
calculation time for 2D mapping, segmentation, encoding to the 
PNG format, and saving as a PNG file. In this evaluation, most  
 
 

 

 
(a) Point-cloud A 

 
(b) Point-cloud B 

Figure 16. Original point-clouds 
 
 

 
(a) Reconstructed point-cloud A 

 
(b) Reconstructed point-cloud B 

Figure 17. Reconstructed point-clouds 
 

 
Dataset PNG image Fragmented points 

A 22.4 MB (97 %) 0.6 MB (3 %) 
B 16.5 MB (89 %) 1.9 MB (11 %) 

Table 4. Data sizes of PNG images and fragmented points 

 

Dataset Compressed Data Original Data 
Load Decode Total Load 

A 1.0 s 4.0 s 5.0 s 13.9 s 
B 0.9 s 2.6 s 3.5 s 9.1 s 

Table 5. Timing for loading and decoding 

 

Dataset 2D 
Mapping 

Segmenta
tion Encoding  Writing 

PNG 
A 2.4 s 4.0 s 12.8 s 1.0 s 
B 1.6 s 2.9 s 7.7 s 2.0 s 

Table 6. Timing for compression process 

 
Dataset  ΔX ΔY ΔZ 

A 0.53 0.50 0.47 
B 0.54 0.49 0.47 

Table 7. Average coordinate errors (mm) 
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computation time was used for segmentation and encoding 
processes. The total computation time is 20.2 sec for point-
cloud A, and 14.2 sec for point-cloud B.  
 
In our method, coordinates are quantized to 1 mm resolution. 
Table 7 shows the average distance errors between the original 
points without quantization and the reconstructed points. In the 
both datasets, the average distance errors were about 0.5 mm. 
Considering the measurement accuracy of MMSs, the resolution 
of reconstructed point-clouds are sufficient. 
 
 

5. CONCLUSION  

We proposed a novel compression method for point-clouds 
captured by a vehicle-based mobile mapping system. In our 
method, point-clouds were projected onto pixels of an image 
using the rotation number and the phase number, and the image 
was segmented into connected regions. Then points in each 
connected region were encoded to the PNG format, and 
compressed using the PNG algorithm. In our experiments, our 
method could achieve better compression ratios compared to the 
scan-based compression method.  
 
In future work, we would like to improve compression rates. 
Since there are other lossless compression methods, such as 
JPEG 2000, we would like to investigate other compression 
schemes. In our method, it takes time to encode point-clouds. 
We would like to improve our algorithm to shorten encoding 
time.  Currently, we evaluated our method only in residential 
areas. We would like to evaluate our method using point-clouds 
of highways and suburbs. 
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Figure 18. Points of roads and a car 
 

 
(a) Original points 

  

 
(b) Reconstructed points 

Figure 19. Points of a traffic sign 
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(b) Reconstructed points 

Figure 20. Points of electric cables 
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