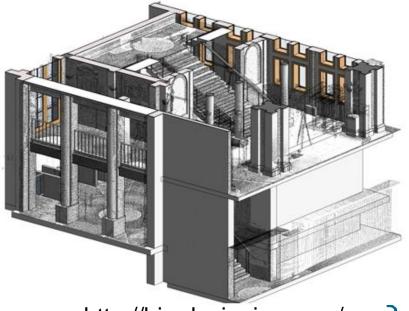


Point cloud quality metrics for Building Information Modelling

Prof. dr. Danijel Rebolj

Faculty of Civil Eng., Transportation Eng. and Architecture Chair of Construction and Transportation Informatics

Ā


Introduction

- Building Information Models & Modelling a mature and standardised (ISO 19650) te
- BIM is the fundament for digitalisation in Civil Architecture, Engineering and Construction (AEC)
- Point clouds are becoming increasingly useful
 - Construction progress Monitoring (Scan – vs – BIM)
 - Digitalisation of existing Buildings (Scan – to – BIM)

Purpose of our research

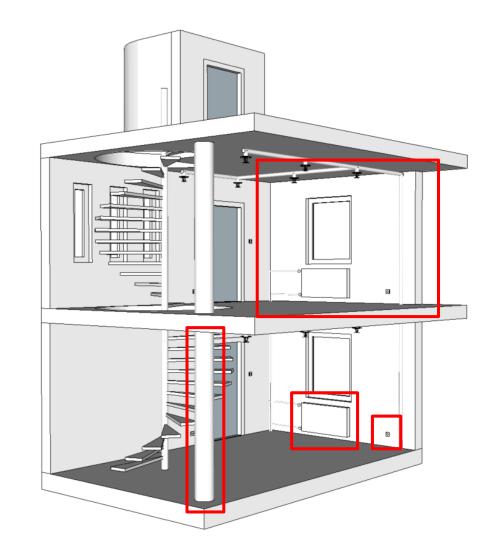
- To support Scan vs BIM processes by providing appropriate point cloud quality metrics
- which can help setup efficient scanning equipment and procedures (scanning plan)
- Existing point cloud quality definitions on parameters (Level od Details, Level of Acc
- that don't represent a useful input to determination of Scan vs BIM

Methodology

- Classification of building elements according to their size, (which also correspond to construction phases)
 - Large elements (L): Size \geq 5 m2,
 - Medium elements (M): $1 \text{ m} 2 \leq \text{Size} < 5 \text{ m} 2$,
 - Small elements (S): $0.25 \text{ m}2 \leq \text{Size} < 1 \text{ m}2$
 - Very small elements (XS): Size < 0.25 m2</p>

Methodology

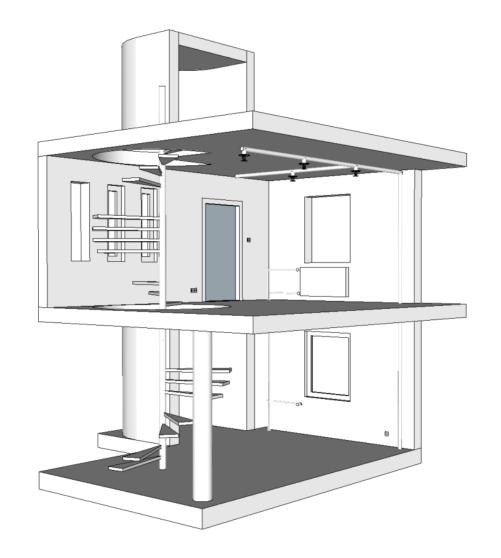
- 1. Classification of building elements according to their size
- 2. Definition of point cloud quality parameters that can be derived from the point cloud and related to the scanning methodology
 - Minimum local density [points / m2]
 - Minimum local accuracy [m]
 - Level of scatter [%]



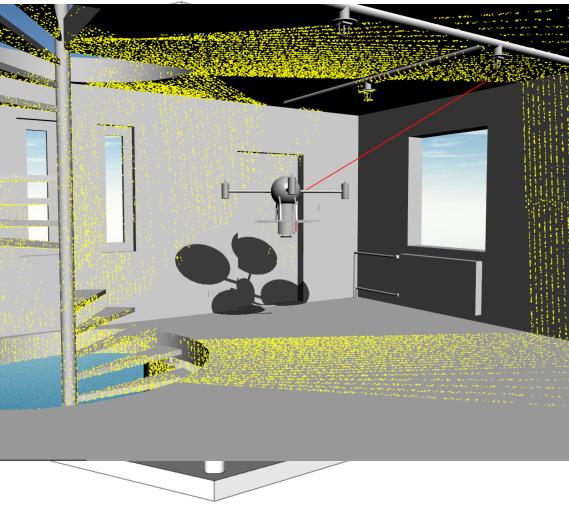
Methodology

- 1. Classification of building elements according to their size
- 2. Definition of point cloud quality parameters
- Experimental correlation of building element classes and quality parameters during a series of Scan – vs – BIM processes using point cloud simulation
- Calculation of pont cloud quality criteria (treshold values of quality parameters) for successful element identification in a Scan – vs – BIM process

Experiment – Representative BIM model


- A BIM model was designed that includes all classes of elements (As-Designed model)
 - L (walls, slabs, shafts),
 - M (columns, doors, windows),
 - S (stairs, radiators) and
 - XL (pipes and valves, sprinkler system, outlets and switches)

Experiment – Point cloud simulation


To determine treshold values of quality parameters an As-Built model was designed, missing some elements of each class

Experiment – Point cloud simulation

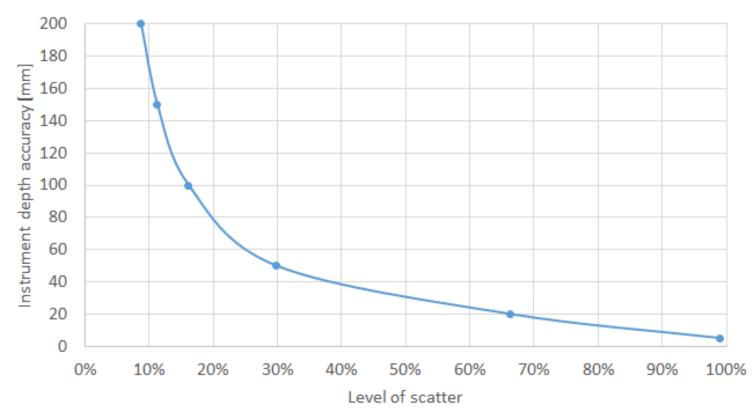
- 108 different As-Built point clouds were simulated by combining scanner parameters (depth accuracy, beam divergence, and frequency)
- Simulation was performed using a multi-purpose laser scanning simulation framework HeliOS

Experiment – Criteria calculation

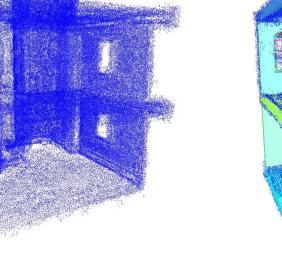
- Scan vs BIM was performed using each point cloud
- treshold parameters were determined for limits of correct identification

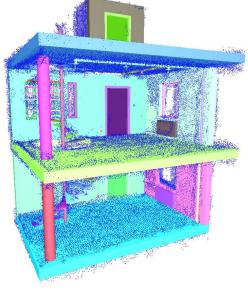
					Α	[mm]	5	20	50	100	150	200	5	20	50	100	150	200
Form			Calc		BD	[deg]	1	1	1	1	1	1	5	5	5	5	5	5
			_		F	[KHz]	30	30	30	30	30	30	30	30	30	30	30	30
				min↓	max↓	$LOS \rightarrow$	99,0%	66, <mark>2</mark> %	29,7%	16,1%	11,2%	8,8%	99,0%	<mark>66,2</mark> %	29,7%	16,1%	11,2%	8,7%
Sprinkler_pi	0,455	S	28	0	1		1	1	1	1	1	1	1	1	1	1	1	1
EX	D			8,2254	10109	180,96	1505,4	951,7	635,41	442,11	306,4	261,16	1429,2	1022	596,34	472,96	326,96	234,42
	C			0,0323	0,9987	0,5004	0,7334	0,7404	0,8016	0,7575	0,6529	0,6011	0,7231	0,7523	0,7661	0,7498	0,6774	0,5689
	Α			5	200	50	5	20	50	100	150	200	5	20	50	100	150	200
Pipe_12_2	0,381	S	29	0	1		1	1	1	0	0	0	1	1	1	0	0	0
EX	D			2,6281	6168,2	386,33	835,74	691,2	386,33	244,42	183,97	136,66	917,21	691,2	465,18	260,18	215,51	157,69
	С			0,0088	0,8228	0,5341	0,6658	0,6648	0,5341	0,4439	0,3701	0,3096	0,6561	0,6481	0,5825	0,4228	0,4149	0,3263
	Α			5	200	50	5	20	50	100	150	200	5	20	50	100	150	200
Pipe_12_1	0,337	S	30	0	1		1	1	1	0	0	0	1	1	1	0	0	0
EX	D			0	6243,7	317,98	876,67	630,01	395,25	237,74	211	166,42	814,26	695,39	404,16	211	234,77	172,36
	С			0	0,8556	0,5519	0,7084	0,6981	0,5982	0,4917	0,4623	0,347	0,6817	0,6931	0,5928	0,4228	0,4808	0,3459
	Α			5	200	5	5	20	50	100	150	200	5	20	50	100	150	200

Experiment – Criteria calculation


Criteria values of point cloud quality parameters for correct Scan-vs-BIM element identification were calculated

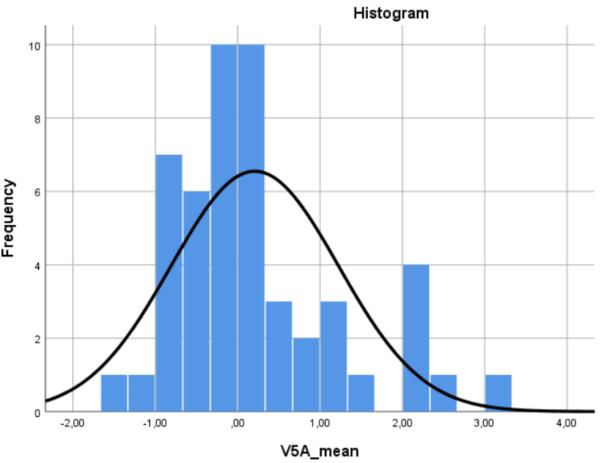
Class	Size (surface area)	D _c	A _c	C _c	
L	≥ 5 m ²	≥ 14		> 0.5 for	
М	$1 \text{ m}^2 \le \text{Size} < 5 \text{ m}^2$	≥ 70		existing elements ≤ 0.5 for	
S	$0.25 \text{ m}^2 \le \text{Size} < 1 \text{ m}^2$	≥ 530	<min(side)<sub>E/2</min(side)<sub>		
XS	Size < 0.25 m ²	≥ 4500		missing elements	


Experiment – Criteria calculation


Correlation between the Level of scatter (LOS) and the simulated scanner depth accuracy (A) was calculated

Validation of quality parameters

- 3 validation experiments, including:
 - Videogrammetry and
 - Scanning with Kinect
- confirmed the developed metrics
- The defined criteria represent useful guidelines for scan planning



Further development of PC quality metrics

- We are curently developing a method to explicitly define the quality of a point cloud with independent parameters with independent parameters
- using an algorhitm that is able to assign each point to the corresponding element and calculate the Local Level of Scatter.

1111