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Abstract 

The Boynton Inlet (SE Florida, USA) is one of two tidal inlets connecting the Lake Worth Lagoon to the 

Atlantic Ocean. To quantitate the amount of anthropogenic materials reaching the South Florida coastal ocean 

and reef track, nutrient fluxes through the Boynton Inlet were measured during two 48-hour intensive studies 

conducted on June 4-6and September 26-28, 2007. These studies combined analyses of water samples taken at 

regular intervals in the Boynton Inlet with acoustic Doppler current profiler (ADCP) measurements of the flow 

through the inlet. Data collected include concentrations of nutrients (silicate [Si], orthophosphate [PO4], 

ammonium [NH4], nitrate+nitrite [N+N]), isotope ratios of nitrogen, and physical parameters that included pH, 

salinity, total suspended solids (TSS), and turbidity. The study found a significant but highly variable flux of 

nutrients in the eight outgoing (ebb) tidal pulses sampled. Daily fluxes of nitrate+nitrite ranged from 16 to 565 

kg N, silicate from 564 to 5197 kg Si, phosphate from 154 to 309 kg P, and ammonium from 34 to 354 kg N. 

These results are compared with other sources of nutrient inputs into the coastal environment. Inlets are a 

significant source of offshore nutrients. 
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1. Introduction 

The near-shore ecosystems off of SE Florida are vital to the economy of the population of 5.5 million (Bureau of 

Census, 2010), through commercial and sport fishing, boating, diving, and swimming generating $2B in income 

and nearly 30,000 jobs annually (Johns et al., 2003). As elsewhere, these ecosystems are subject to multiple 

stressors including chemical and microbiological pollution discharges, loss of natural habitat, climate change, and 

overfishing (Enochs et al., 2015, Vega-Thurber et al., 2014, Gregg, 2013, Helmle et al., 2011, Rabalais, 2005, 

Holland & Pugh 2010). While management of these ecosystems is of recognized importance (State of Florida and 

NOAA Coral Reef Conservation Program, 2010), addressing land-based pollution into the coastal ocean is not well 

understood. Sources of these materials include surface water drainage, treated-wastewater outfalls, groundwater 

seepage, atmospheric deposition, ocean upwelling processes (Collier et al., 2008). 

Surface waters in southeast Florida are transported to the ocean by rivers and drainage canals, including the 

Atlantic Intracoastal Waterway (Heimlich et al., 2009). These waters may contain chemical fertilizers, pesticides, 

suspended solids and chromophoric organic materials, elevated nutrients, and contaminants from septic tanks 

and landfills (Marella, 1998; SFWMD, 2010; Trnka, undated, Puglise, & Kelty, 2007). In southeast Florida, 

surface water is conducted to the open ocean predominantly through a series of inlets: Norris Cut, Bear Cut, 

Government Cut, Haulover Inlet, Port Everglades Inlet, Hillsboro Inlet, Boca Raton Inlet, Boynton Inlet, and 

Palm Beach (North Lake Worth) Inlet.  

The Boynton Inlet (a.k.a. the South Lake Worth Inlet, Inlet, 26°32’43”N, 80°2’33”W) is one of two inlets draining 

the Lake Worth Lagoon (LWL), Figure 1. The inlet was created in 1927 to improve tidal circulation and provide 



www.ccsenet.org/enrr Environment and Natural Resources Research Vol. 5, No. 2; 2015 

82 

flushing for the south end of LWL (CPE, 1998). Modifications were performed in 1953 and 1967 (ATM undated). 

Features of the inlet are shown in Figure 2. The inlet width varies from 30-38 m. The lagoon side of the inlet 

includes an enclosed channel (total length about 0.5 km) with barriers on both sides. Bird Island is located on the 

north side of the channel, and there is a break in the barrier on the south side of the channel which is an alternate 

path for flow into the inlet. The narrow width of the inlet causes the tidally-driven flow to be quite rapid. The inlet 

is crossed by the A1A highway bridge running nearly north/south above the center of the inlet. Because the flow at 

Boynton Inlet is principally driven by the local semidiurnal tide, there are two outflow/inflow cycles through the 

inlet each day. Between each pulse there is a short time interval (~10 minutes) of nearly zero flow.  

The LWL, a component of the Atlantic Intracoastal Waterway (Crigger et al., 2005), is a barrier island lagoon 

~33 km long, ~0.6 km wide, and 2-3 m deep, oriented approximately north-south, with an area of ~24.5 km2 and 

a tidal range is from 0.85 to 1.34 m (PBCDERM 1998) (Figure 1). The shallow depth is thought to preclude 

stratification of the water column (Rodrigo et al, 2001). Originally a freshwater lagoon, the LWL has been 

significantly altered by dredging, shoreline development, and the addition of canals and inlets. It is now saline 

with freshwater inflow from three canals (Earman River Canal [C-17], Palm Beach Canal [C-51], and Boynton 

Beach Canal [C-16]), which result in large fluctuations in salinity (LWLI 2013). All three feeder canals have 

been denoted as impaired waterways (NPDES 2009). Additional sources of water into the LWL include storm 

water from surrounding cities, two small wastewater plants, and non-point pollution sources such as septic tanks, 

polluted aquifers, and agricultural runoff (LWLI 2013). Based on hydrologic parameters, it has been found 

useful to divide up the LWL into three segments separated at ~26°43.13’ and ~26°37.06’; the north segment is 

associated with the C-17, the mid segment with the C-51, and the south segment with the C-16 (FDEP, 2013; 

LWLI, 2013).  

 

 
Figure 1. View of the southeast Florida coast with arrows showing the location of the Boynton Inlet, Lake Worth 

Inlet, and Lake Worth. Triangle symbols denote location of the three significant feeder canals at their monitoring 

sites (C17, C51 and C16); “+”symbols denote location of three rain measurement sites (S44, S156, and S41). 

Inset shows outline of Florida with black dots denoting location of Lake Worth inlet (LWI) and Boynton Inlet 

(BI), with Lake Worth in between 
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Figure 2. Lower panel: Florida map showing location of the Boynton Inlet (left inset), and details of the inlet (right) 

as follows: the Lake Worth lagoon (A), Bird Island (B) the inlet channel (C), sand trap (D), south jetty (G) and 

north jetty (H). Sampling took place from the south side of the inlet from the State Road A1A Bridge (E) or from 

the south bank near the bridge. The side-looking ADCP was placed on the north side of the inlet (F) 

 

 

Figure 3. Panels from top to bottom: Average rainfall from three FDEP sites near canal sites (S44 [26°49'00.217", 

80°04'54.142"] at C17, S155 [26°38'41.237", 80°03'18.141"] at C51, and S41[26°31'52.251", 80°03'33.142"] at 

C16) (FDEP DBHYDRO, http://www.sfwmd.gov/dbhydroplsql,accessed 12-Oct-2012); annual flow data for 

stated canals (FDEP DBHYDRO, http://www.sfwmd.gov/dbhydroplsql, accessed 9-Oct-2012); annual data for 

inflow nutrients, TSS, N+N, and PO4 fluxes from the three major canals flowing into the Lake Worth Lagoon for 

the years 1990-2008, data are from SFWMD (2009) 
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Water quality measurements in the LWL of the three canals have been made by The Palm Beach County 

Department of Environmental Resources Management (ERM) and the South Florida Water Management District 

(SFWMD) (LWLI, 2013). These data are available through SFWMD's DBYHDRO website 

(www.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu) and are summarized in Figure 3 for 1990-2008. 

Note that the C16 canal is located closest to the Boynton Inlet (LWL southern segment) and would be expected 

to have the most impact on nutrient fluxes through the inlet (LWLI, 2013). Nutrient concentrations during the 

year of this study (2007) were among the lowest in Figure 3. These data have been recently reviewed (LWLI, 

2013); overall concentration trends for sites in the southern segment of the LWL during 2007-2012 were 

unchanging or decreasing for salinity, chlorophyll-a, TN, TP, and clarity (Secchi disk depth), and decreasing for 

TSS (ideally, Secchi disk depth should be high, nutrient concentrations low). 

Rainfall data (from DBHYDRO) from the same time period are also shown in Figure 3; these data are from 

inland sites near the canal flow measurement sites (Figure 1). The year of this study (2007) was an average 

rainfall year; the average of the three rainfall rates for 2007 (0.40 cm) was close to the average for all years in 

Figure 1 (0.43 cm). The total canal flow is not well correlated with total rainfall (r2=0.13); however, canal flow is 

well correlated with the canal concentrations of N+N (r2=0.78), TSS (r2=0.62), and PO4 (r
2=0.87). 

In 2006, NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML) entered into an agreement 

with the Utility Council of the Florida Water Environment Association as part of the Florida Area Coastal 

Environment (FACE) program. A part of the agreement was to quantitate the chemical and microbiological 

materials entering the coastal waters of southeast Florida at selected locations; inlets such as Boynton have been 

considered likely sources of materials to the coastal ocean (Collier et al., 2008). Our approach was 1) obtain a 

long-term measurement of the flow characteristics through the inlet via side-looking acoustic Doppler current 

profiler instrumentation, and 2) conduct two 48-hour chemical and biological intensive studies of the water 

flowing through the inlet. Each intensive would include four incoming (flood) and four outgoing (ebb) tidal 

pulses. The first 48-hour intensive was conducted on June 4-6, 2007, while the second sampling intensive was 

conducted on September 26-28, 2007. 

2. Methods and Materials 

2.1 Water Sampling 

For the June 2007 intensive, sampling began at the center of the State Road A1A Bridge over the Boynton Inlet 

(Figure 2). Due to sampling instrument failure, however, the later samples were collected from the walkway 

south of the overpass. AOML collected a total of 50 water samples, FAU collected 62. Samples were obtained 

following a predetermined sampling schedule designed to sample four outgoing (ebb) and four incoming (flood) 

tides. Samples for nutrient analysis were taken every half hour from midnight (EDT) 3-June through midnight 

4-June, plus five blanks (102 samples). These samples were analyzed at AOML according to the 

above-described procedures and at Florida Atlantic University (FAU) according to the procedures described in 

Bloetscher and Meeroff (2006).  

For the September 2007 intensive, a sample was collected from the center of the bridge every hour on the 

incoming tide and every half hour on the outgoing tide. A sample was also collected at three locations along the 

bridge during the outgoing tide to measure variability in the nutrient concentrations across the channel. AOML 

collected a total of 84 samples; FAU collected 60. For this intensive, the sampling schedule was modified; 

samples were obtained every half hour on the outgoing tide and every hour on the incoming tide. Again, four 

outgoing and four incoming tidal flows were sampled. While the June 2007 intensive began on an ebb tide, the 

September 2007 intensive began on a flood tide.  

Water sampling employed acid-cleaned, 15-L buckets to collect water samples from the bridge. A single bucket 

was lowered by rope from the center of the bridge and rinsed three times with sample water before the final 

sample was collected. The bucket of sample water was transferred into sample bottles and bags for subsequent 

analysis of nutrients (orthophosphate [PO4], silicate [Si], nitrite [NO2], nitrate [NO3], ammonium [NH4], total 

nitrogen [TN], total organic nitrogen [TON], total organic carbon [TOC]), TSS, and selected microbiological 

assays (not included in this report). After the first hour of the outgoing tide, three samples were collected at the 

three locations on the bridge (A, B, and C north to south) to assess nutrient variability across the channel; no 

significant differences (p>0.05) were found. A set of duplicate samples and a blank sample were also collected 

on the outgoing tide. Because of contamination issues, PO4 measurements from the June 2007 intensive were not 

included in our analyses. Water samples were analyzed for nutrients according to established procedures 

described elsewhere (Carsey et al., 2011a, Bloetscher and Meeroff 2006). 
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In the field, water quality data (pH, conductivity, salinity, water temperature, and dissolved oxygen) were 

collected using a YSI 556 multi-parameter probe (YSI Inc., Yellow Springs, OH), calibrated daily according to 

the manufacturer’s procedures (YSI, 2009). Additional observations included general weather conditions, 

ambient air temperature, tidal conditions, previous rainfall, approximate channel depth, and current direction and 

strength. Meteorological data was collected with a Kestrel K3000 hand-held weather station (Nielsen-Kellerman, 

Boothwyn, PA) and through visual observations. 

2.2 Flow Measurements and Tidal Prism Calculation 

Although some tidal prism measurements and estimations for the Boynton Inlet have been made (Table 1), we 

chose to directly measure ebb and flood tidal prisms for the two intensives. To estimate the volume of water 

passing through the Boynton Inlet per unit time, a SonTek Argonaut 500-kHz side-looking ADCP was installed 

on February 20, 2007 on the north side of the inlet (pointed nearly due south) at a point chosen to best represent 

the mean channel velocity (“F” in Figure 2). The instrument made simultaneous measurements of the water level 

at the location of the instrument and of the flow velocity across the channel. Water level was measured using 

pressure and upward looking acoustical sensors located on the instrument. Water velocity was measured by 

averaging the Doppler velocity returned from 450 acoustical pings transmitted over a 7.5 minute interval at a 

1-Hz rate; these data were recorded every 15 minutes. The acoustic measurement volume was programmed to 

encompass approximately the middle 50% of the channel width and was vertically located at the mid-water 

depth relative to the mean low water level.  

 

Table1. Boynton Inlet Ebb and Flood Tidal Prism and Maximum Flow 

Reference Ebb TP 
(m3) 

Flood TP 
(m3) 

Max Ebb Flow 
Velocity (cm/s) 

Max Flood Flow 
Velelocity (cm/s) 

This report, Jun 07 3.16E+06 2.97E+06 145.7 -148.8 

This report, Sep 07 5.21E+06 3.64E+06 165.5 133.4 

Stamates 2013 (13-month 
study) 

3.45E+06 2.98E+06   

Carr-Betts 1999 1.90E+06    

Marino 1986 3.10E+06    

CP&E: Lake Worth Inlet 
Management Plan 1998 

1.61E+06  243.8 274.3 

ATM SLWI Feasibility Report 
(undated) 

4.00E+06 3.60E+06 310.9  

 

To correct for the particular characteristics of the Boynton Inlet and the instrument installation, a series of 

calibration exercises were conducted using a 1200-kHz down-looking Rio-Grande Doppler sonar (Teledyne RD, 

Poway CA). This instrument was repeatedly transected across the inlet during the tidal cycle (flood and ebb). 

During these transects, velocity data were gathered across the entire width of the inlet and throughout nearly the 

entire water column. Water velocity data from these calibration exercises enabled the correction of the velocity 

measurements made by the side-looking Doppler sonar to more closely represent the true mean channel velocity 

of the inlet (Ruhl and Simpson 2005). The measurement system and results are described in Stamates (2013). 

The water level measurement, in conjunction with measurements of the channel geometry, provided an estimate 

of the cross sectional area of the channel during the measurement interval. The product of the channel cross 

sectional area estimate (m2) and the estimate of the mean channel velocity (m s–1) provided the average flux (m3 

s–1) of water passing through the channel during the measurement interval. The product of the average flux 

measurement and the time of the measurement interval (900 s) provided the estimated volume (m3) of water 

transported through the Boynton Inlet during the measurement interval. All the volume measurements made 

during a particular tidal phase, as determined by the sign of the velocity, were summed to estimate the tidal 

prism for that tidal phase. Tidal prism and maximum flow velocities from this study and from previous studies 

are given in Table 1.  

Figure 4 presents the ebb and flood tidal prism volumes for two intensives, flow rates of the principal canals 

feeding the LWL (C17, C51, and C16), winds from the Lake Worth Pier (NOAA/NDBC LKWF1), and rainfall 

rates from sites near the canal monitoring sites preceding and during the intensives. The ebb or flood tidal prism 
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can be affected by the strength of the northern directed wind component (Stamates 2013). Thus, on 2-June, a 

strong south wind was present (denoted as “An” in Figure 4). On that day, rainfall was heavy as was canal flow. 

The wind diminished the ebb prism, presumably forcing the water to exit through the Lake Worth Inlet. By 

4-June, the winds had generally abated and the ebb and flood prisms were more typical. During the September 

intensive, winds were not strong and tidal flows were unaffected by wind. For these times in Figure 4, canal flow 

and rainfall were somewhat correlated (r2=0.69 for June, r2=0.42 for September); note how closely canal flow 

follows rainfall on 2-June (a primary function of the canal system is flood control, [SFWMD 2010]). 

 

 

Figure 4. Meteorological and hydrodrological data during the June 2007 and September 2007 intensives. Topmost 

panels: wind arrows (meteorological format) from the LWKF1 buoy (http://www.ndbc.noaa.gov/). Second panels: 

ebb and flood flow volumes through the Boynton Inlet (this paper), ebb tides positive, with sampled tidal pulses 

shown in black. Minimum ebb flow event denoted by "A". Third panels: canal flow from canals C17, C51, C16. 

Bottom panels: rainfall at FDEP sites S155 (16583), S44 (16674), and S41 (16675). Flow and rain data are from 

the Florida Department of Environmental Protection (FDEP DBHYDRO, http://www.sfwmd.gov/dbhydroplsql, 

accessed 11-August-2011) 

 

Discrete water sample results and inlet flow rates versus sampling time from the June and September intensives 

are presented in Figures 5 and 6, and are summarized in Figure 7, in which averages from each ebb and flood 

tide are shown. Each flood tide brings in high salinity, low nutrient water; each ebb tide is characterized by the 

inverse. The expected pattern for concentration changes during ebb tide flow was increasing concentration of 

continentally-derived materials and decreasing salinity through the ebb tide, as water originating more distant 

from the inlet (thus more continentally impacted and less marine impacted) exits the inlet. We see this most 
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clearly with turbidity on the June 5 ebb tides (“An” in Figure 6). However, in many cases elevated nutrient 

concentrations (and lower salinities) were also observed at the start of the ebb flow, e.g., “B” in Figure 6. This 

feature suggests that flow characteristics from the Lake Worth Lagoon through the Boynton Inlet are different 

for different flow rates, and that nutrient concentrations in the lagoon may not be spatially homogeneous. Thus, 

we may speculate that as flow rates change during the course of the ebb tide, the flow characteristics of water 

moving towards the inlet changes, i.e. a wide, shallow flow including the sand trap area ("D" in Figure 2, lower 

panel) at low flow rates changes to primary flow within the channel ("C" in Figure 2) at higher flow rates, 

removing water with different chemical characteristics. 

 

Figure 5. Concentration data for salinity, TN, NH4, TSS, turbidity, N+N, and Si from the June 2007 intensive vs 

time (UTC). The solid line in the bottom panel represents the flow through the Boynton Inlet (right-hand axis), 

with positive values being seaward (ebb tide) flow. Ebb tide flow times are denoted by a grey background. 

Notations “A” and “B” refer to patterns of concentration changes during ebb tides 

 

Figure 6. Concentrations of Si, N+N, PO4, and NH4 from samples obtained during the September 2007 intensive. 

Format is similar to Figure 5 



www.ccsenet.org/enrr Environment and Natural Resources Research Vol. 5, No. 2; 2015 

88 

 

Figure 7. Upper panel: Concentrations of N+N (μM), TOC (mg/L), NH4 (μM), TSS (mg/L), TDS (mg/L), TN 

(mg/L-N), and Si (μM), averaged over each tidal pulse, for the June 2007 intensive. The x-axis labels denote the 

ebb tide (E1, E2, ...) or flood tide (F1, F2, ...) pulse. Symbols at “A” denote concentrations of N+N, NH4, TSS, and 

Si found in nearshore samples away from point sources. Lower panel: Concentrations of N+N (μM), NO2 (μM), 

NO3 (μM), NH4 (μM), PO4 (μM) and Si (μM), averaged over each tidal pulse for the September 2007 intensive. 

Symbols at “A” denote concentrations of N+N, NO2, NO3, NH4, PO4, and Si (/10) found in nearshore samples 

away from point sources (see text) 

 

The flux of material exiting the Boynton Inlet was then calculated as the product of the concentration and flow 

data summed over the tidal flow. Beginning with the inlet flow data, concentrations were linearly interpolated 

onto the flow measurement bin times of 15 minute duration to cover the ebb or flow period. Extrapolation of 

nutrient data for a few 15-minute bins to complete the beginning of the first tidal pulse and to complete the last 

tidal pulse were performed (this correction added <2% to the fluxes). These approximations enabled the flux 

estimates to extend over all eight tidal pulses for both intensives. These data are shown in Figure 8. It is noted 

that the fluxes in the outgoing pulses varied substantially; e.g. N+N ranged from 16 to 565 kg. The similarity of 

the concentrations (Figures 7) and the fluxes (Figure 8) is evident; what was noted about the trends in 

concentrations applies equally to the trends in fluxes. Notably, the ebb tide fluxes may be equal to or even less 

than the flood tide fluxes, e.g. the fourth ebb and flood pulses in June. Not all relevant analytes were measured in 

both intensives; for example, TN was only measured during the June 2007 intensive. This was critical because 

inorganic nitrate (N+N, Figure 5) was only a small portion (4-19%) of the TN in June (Figure 6). Similarly, TSS 

and TOC were found to have substantial concentrations in June, as did TDP and DOP in September. 
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Figure 8. Flux of nutrients for the two 48-hour intensive sampling periods: June 2007 (upper panel) and September 

2007 (lower panel). Format is similar to Figure 5, with noted concentrations reduced by 10 for plot readability 

 

Figure 7 presents an overview of the sequence of ebb and flood tide concentrations. It was expected that the 

flood tide concentrations (aside from salinities) would be consistently lower than those of ebb tide concentrations. 

It was found, however, that both flood and ebb concentrations varied widely. For both intensives, ebb tide 

concentrations decreased across the entire intensive, with the final ebb tide concentrations were comparable to 

the previous flood tide concentrations. This suggests that the rainfall events prior to each intensive (Figure 4) 

brought a nutrient loading from nearby or upstream sources, filled the Lake Worth Lagoon, and required several 

days to wash through the Boynton Inlet. 

While the data from this work was limited to the two intensives, an estimate the annual flux through the Boynton 

Inlet can be made. We reexamine the year-to-year variance. While a long-term record of concentrations or flow 

at the Boynton Inlet is not available, we have referred previously (Figure 3) to the 19-year record for site 

C17S44 (C17 canal) and C51S155 (C51 canal) for Jan-1990 to 2009 (Taylor Engineering 2009). If we take the 

19-year data set as representative of the ‘normal’, an annual flux derived from the data in this report would be 

too low. If the average N+N flux from the intensives data is computed as an annual average (assuming the same 

flux for a year), it would be equivalent to ~115 MT. This compares to an average N+N flux from the three canal 

sources for 2007 of 148 MT. The average N+N flux for the 19 years is 978 MT, or about 6.6 times as much. This 

implies that we should multiply the net fluxes listed in Figure 7 by that number to account for the evidently low 

amount of material exiting the Inlet on the particular days chosen for the experiment, when compared to the 

19-year average.  
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3. Discussion  

The flux of several important nutrients to the coastal ocean via the Boynton Inlet has been presented. We may 

compare these results to another known point source of anthropogenic nutrients, viz., treated-wastewater ocean 

outfalls. Published data from the Florida Department of Environmental Protection (FDEP 2006) lists a number of 

nutrient concentrations (as the average of monthly averages for a 14-month period in 2003-2004) from six 

outfalls operational at that time. Some of these analytes were also measured in the Boynton Inlet intensive 

experiment and are listed in Table 2 (TN was not measured during the September 2007 intensive). These data 

indicate that the Boynton Inlet provided a flux of nutrients to the coastal ocean comparable to and sometimes 

exceeding that of the nearby ocean outfalls. 

 

Table 2. Comparison of daily mass flux from three ocean outfalls in the region and the Boynton Inlet.  

Source NH4 kgN/d N+N kgN/d TN kgN/d TSS kg/d 

Boynton-Delray 571.3 200.2 913.2 439.5 

Boca Raton 425.3 133.7 684.5 243.0 

Hollywood 1779.3 179.4 2482.1 2541.9 

Boynton Inlet (Sept) 655.0 633.5 n/a n/a 

Boynton Inlet (June) 56.9 122.3 616.3 6566.4 

 

4. Conclusions 

A variety of chemical and physical measurements were obtained during two 48-hour sampling intensives 

conducted in 2007, including chemical and oceanographic information to help understand the processes that 

affect Florida’s coastal environment and coral reef habitats. The nutrient flux from the Boynton Inlet was found 

to be substantial, and quite variable, and comparable to that of nearby treated-wastewater plant ocean outfalls. 

Elevated concentrations seen in the inlet were not observed a few kilometers away from the inlet. The data also 

suggest that excess rain and canal flow leads to elevated nutrient concentrations in the Boynton Inlet that are 

rapidly washed into the coastal ocean. 

These results suggest that the Boynton Inlet is an important but not a dominant contributor to the nutrient loading 

of the coastal ocean. A rigorous determination of the relevant nutrient budgets would require that these kinds of 

flux assessments be made with other point and non-point sources such as the remaining inlets, atmospheric 

deposition, ocean upwelling, ship discharges, and groundwater discharge. Considering the range of variance in 

the fluxes reported herein, these results demonstrate the need for more data-intensive flux measurement 

programs to be initiated which could better account for the large number of variables that contribute to inlet 

fluxes. This is particularly recommendable where there is an urgent need to determine the impacts of land-based 

pollutant sources, to control anthropogenic water discharges, and guide the operation and development of water 

and sewer infrastructure. 
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