Points of Concurrency

Concurrent lines are three or more lines that intersect at the same point. The mutual point of intersection is called the point of concurrency.

M is the point of concurrency of lines \mathbf{w}, \mathbf{y}, and \mathbf{x}.

Concurrency of the Medians

The median of a triangle is the line segment that joins the vertex to the midpoint of the opposite side of the triangle.

The three medians of a triangle are concurrent in a point that is called the centroid.

There is a special relationship that involves the line segments when all of the three medians meet.
$* * *$ The distance from each vertex to the centroid is two-thirds of the length of the entire median drawn from that vertex***

The Eour Centers of a Triangle

In a triangle, the following sets of lines are concurrent:

- The three medians.
- The three altitudes.
- The perpendicular bisectors of each of the three sides of a triangle.
The three angle bisectors of each angle in the triangle.

In addition, the distance from each centroid to the opposite side (midpoint) is one-third of the distance of the entire median.

O is the centroid of $\triangle A B C$, points D, F, and E are midpoints.
$\overline{O F}=\frac{1}{3} \overline{B F}$
$\overline{O E}=\frac{1}{3} \overline{A E}$
$\overline{O D}=\frac{1}{3} \overline{C D}$

The centroid also divides the median into two segments in the ratio 2:1, such that:

$$
\frac{A O}{O E}=\frac{2}{1} \text { and } \frac{C O}{O D}=\frac{2}{1} \text { and } \frac{B O}{O F}=\frac{2}{1}
$$

If you notice, the bigger part of the ratio is the segment that is drawn from the vertex to the centroid. The smaller part of the median is always the part that is drawn from the centroid to the midpoint of the opposite side.

When working with these ratios, it is important to never mix the two up!!!

Examples:

1) In $\triangle R S T$, medians $\overline{T M}$ and $\overline{S P}$ are concurrent at point Q . If $\mathrm{TQ}=3 x-1$ and $\mathrm{QM}=x+1$, what is the length of median TM?
2) In $\triangle A B C$, points J, K, and L are the midpoints of sides $A B, B C$, and $A C$, respectively. If the three medians of the triangle intersect at point P and the length of $L P$ is 6 , what is the length of $B L$?
3) In triangle $A B C$, medians $A D, B E$, and $C F$ are concurrent at point P. If $A D=24$ inches, find the length of AP.

More Examples!!!

4) In the diagram Jose found centroid P by constructing the three medians. He measured CF and found it to be 6 inches. If PF $=x$, then what equation can be used to find the value of x ?
(1) $x+x=6$
(2) $2 x+x=6$
(3) $3 x+2 x=6$ (4) $x+(2 / 3) x=6$

The Coordinates of the Centroid

Given three vertices of a triangle: $\left(x^{1}, y^{1}\right),\left(x^{2}, y^{2}\right)$, and $\left(x^{3}, y^{3}\right)$, the coordinates of the centroid are theaverage of all of those points. Therefore, the coordinates of the centroid can be found by this rule:

$$
\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
$$

This helps to explain the fact that the centroid is the "center of gravity" of a triangle because it is exactly in the middle of a triangle.

Examples

1. Given $\triangle A B C$ with coordinates $A(0,0), B(4,0)$, and $C(2,6)$, what are the coordinates of the centroid?

2. $\triangle A B C$ has vertices $A(-3,3), B(2,5)$, and $C(4,-3)$. What are the coordinates of the centroid of $\triangle A B C$?

Location of the Circumcenter

Unlike the centroid, the circumcenter is not always located inside the triangle. The location of the circumcenter depends on the type of triangle that we have.

Acute Triangle:

The circumcenter is located inside the triangle.

Right Triangle:

The circumcenter is located on the triangle.

Obtuse Triangle:

The circumcenter is located outside the triangle.

Properties of the Circumcenter

The circumcenter is the center of the circle that can be circumscribed around the triangle.

Concurrency of the Angle Bisectors

An angle bisector is a line segment with one endpoint on any vertex of a triangle that extends to the opposite side of the triangle and bisects the angle. There are three angle bisectors of a triangle.

The three angle bisectors of a triangle are concurrent in a point equidistant from the sides of a triangle. The point of concurrency of the angle bisectors of a triangle is known as theincenter of a triangle.

The incenter will always be locatedinside the triangle.

Examples

1. The perpendicular bisectors of $\triangle A B C$ intersect at point P. If $A P=20$ and $B P=2 x+4$, then what is the value of x ?
2. The perpendicular bisectors of $\triangle A B C$ intersect at point P. $A P=5+x, B P=10$, and $C P=2 y$. Find x and y.
3. The perpendicular bisectors of $\triangle A B C$ are concurrent at P. $A P=2 x-4, B P=y+6$, and $C P=12$. Find x and y

Properties of the Incenter

The incenter is the center of a circle that isinscribed inside a triangle.

Concussency of the Altitudes

An altitude of a triangle is a line segment that is drawn from the vertex to the opposite side and is perpendicular to the side. There are three altitudes in a triangle.

The altitudes of a triangle, extended if necessary, are concurrent in a point called the orthocenter of the triangle.

Location of the Orthocenter

The orthocenter can fall in the interior of the triangle, on the side of the triangle, or in the exterior of the triangle.

Acute Triangle

The orthocenter is located inside the triangle.

Right Triangle

The orthocenter is locatedon the right angle.

Obtuse Triangle

The orthocenter is located outside the triangle.

