Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
			000000			00000	000000000	000

Pointwise and Instance Segmentation for 3D Point Clouds MS Thesis Presentation

Sanket Gujar

Worcester Polytechnic Institute

April 11, 2019

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Schedule

- 1 Overview
- 2 Background
- 3 Problem Statement
- 4 Previous Approach
 - Projection Methods
 - Pointwise methods
- 5 Dataset
- 6 Pointer
- 7 Pointer Semantic
 - Architecture
 - Results
- 8 Pointer Instance
 - Architecture
 - Results
- 9 Pointer Capsnet
 - Architecture
 - Results

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
			000000			00000	00000000	000

Overview

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Motivation

Uber's self driving vehicle hit bicyclist, Perception classification history: 1. Unknown, 2. Vehicle, 3. Bicycle (1.3 secs before impact)

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Problem with Camera

Some examples where use of camera for self-driving cars can be dangerous.

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Problem with Camera

Cameras have limited dynamic range, making detection difficult.

Image Ref: Aurora's Approach to Development

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Better is LiDAR

Innovusion LiDAR front projection image

Invariant to lighting conditions \rightarrow same performance in day/night.

360° field of view \rightarrow crucial for lane changing and monitoring vehicles behind.

Image Ref: An Introduction to LIDAR: The Key Self-Driving Car Sensor

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Background

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Point clouds

Point cloud of chair, car, table and airplane from ModelNet10 Dataset

- Point cloud: a collection of data points defined by a given coordinates system.
- Generally produced by 3D scanners, which measure a large number of points on the external surfaces of objects around them.
- Used to create 3D CAD models for manufactured parts, for quality inspection, animation, rendering and mass customization applications.

Image Ref: An Introduction to LIDAR: The Key Self-Driving Car Sensor

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Semantic Segmentation

Semantic Segmentation example

Semantic segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain characteristics.

Image Ref: A Review on Deep Learning Techniques Applied to Semantic Segmentation

Sanket Gujar WPI	Pointwise and Instance Segmentation for 3D Point Clouds	April
------------------	---	-------

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Instance Segmentation

Instance Segmentation example

Instance segmentation is the process of detecting and delineating each distinct object of interest appearing in an image.

Image Ref: A Review on Deep Learning Techniques Applied to Semantic Segmentation

Sanket Gujar WPI	Pointwise and Instance Segmentation for 3D Point Clouds	Apr
------------------	---	-----

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

K-d Tree

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

K-nearest neighbors

Nearest neighbours for a point for K = 6

Nearest neighbor operation for a Tensor of size N x f

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Projections

Bird's eye view and front projections of L shape

- Bird's eye view is an elevated view from above, with a perspective as though the observer were a bird.
- Its a mapping of all point along z-axis on the x-y plane for our experiments.
- Front projection is mapping of all points along x-axis on y-z plane.

Image Ref: first angle - orthographic projection

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
			000000			00000	00000000	000

Problem Statement

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Problem Statement

Develop an architecture to do end-to-end pointwise and instance segmentation for 3D point clouds which should be able to handle large point clouds for self-driving vehicle perception stack

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Previous Approach

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
Projection N	lethods							

Projection Methods

Complex-YOLO [SMAG18] uses bird's eye view projection for detection

Run detection and localization network on bird's eye view or front projection images from LiDAR.

Projection methods are the fastest for detection and tracking for self-driving stack.

	00000			
Projection Methods				

Projection Methods

Lidar is sensitive enough to detect snow, making it more difficult to identify important objects.

- If rain drops or snow is picked by LiDAR sensor → noise distribution in projected images resulting in miss-classification.
- Miss-classification is a common issue when the vehicles are very close to each other.

Image Ref: Aurora's Approach to Development

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
Pointwise r	nethods							
Point	net							

Pointnet Architecture [QSMG16]

- Pointnet was the most successful initial approach to apply deep learning to 3D point clouds.
- The important feature of the architecture to use symmetric function to get invariance to certain transformation like rotation and translation.
- The architecture used spatial and feature transformer to align input points and point features.

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
Pointwise m	nethods							

Pointnet++

Pointnet++ Architecture [QYSG17]

- Pointnet++ is a hierarchical network that applies Pointnet recursively on a nested portioning of the input point cloud.
- The hierarchical structure is composed of a number of set abstraction levels. The set abstraction layers consist of three layers: Sampling layer, Grouping layer and Pointnet layer.

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
Pointwise m	nethods							

Edge Conv

Dynamic Graph CNN/ Edge Conv Architecture [WSL⁺18]

EdgeConv appealing property is that it incorporates local neighborhood information as it can be stacked or recurrently applied to learn global shape properties.

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet	
Pointwise methods									

Edge Conv Results

and a	and a			
I	I			
			MEAN CLASS ACCURACY	OVERALL ACCURACY
	1 a a	3DSHAPENETS [54]	77.3	84.7
		VOXNET [30]	83.0	85.9
		SUBVOLUME [35]	86.0	89.2
	all is an	POINTNET [34]	86.0	89.2
-		POINTNET++ [36]	-	90.7
	Store States	KD-NET (DEPTH 10) [20]	-	90.6
	Non Action	KD-NET (DEPTH 15) [20]	-	91.8
		OURS (BASELINE)	88.8	91.2
Ours	Ground truth	OURS	90.2	92.2
			J J J J Vorset Software Vorset Software <td>Image: Constraint of the second state of th</td>	Image: Constraint of the second state of th

Comparisons of model on Modelnet40. [Ours is EdgeConv here]

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
			000000			00000	00000000	000

Dataset

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
Mode	elNet40							

ModelNet40: Princeton 3D CAD model Dataset

ModelNet40 Dataset							
	Samples						
Training	94k with 40 labels						
Testing	24k with 40 labels						

Image Ref:Princeton ModelNet Dataset

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

KITTI Vision Benchmark Suite

3D bounding box annotations in Kitti Dataset [Gei12]

Kitti Dataset						
	Samples					
Training	7481					
Testing	7518					

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
KITT	l Reade	er						

a. Camera Image, b. LIDAR front projection on image with labels

The Kitti Dataset reader can provide dataset batches for training, does transformation with the caliberation matrix provided, create Birds eye view, provide instance and point segmentations labels

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

KITTI Reader

The Kitti Dataset reader can produce instance segmentation labels

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Pointer

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Approach to the problem

- The point can be represented by two properties which is its position in the frame (global) and the distribution of its neighboring points (local).
- Needed to develop an architecture that can embed both local and global features of the point cloud.
- Would learn to weight the importance of local and global features
- Would generate strong high level features that would make learning faster and easier.

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Point cloud features

Point cloud features

Global Features

- Consist of real 3D world coordinates x, y, z and feature provided by the sensor like intensity, phase of wave, rgb value etc.
- Is a feature of a single point.

Local features

- Consist of unit vector pointing from its neighbours to the point. x_i - x_j, where x_i is the neighbors of the point x_i.
- Is a feature of a single point depending on its neighbors.

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Pointer feature learning

- X_i is a point in the point clouds and x_j is the neighboring point in the point cloud. we can regard x_i as the central pixel and x_j : $(i, j) \in \varepsilon$ as a patch around it
- We define global features p_{ij} with function g_{θ} which is a parametric non-linear function parametrized by the set of learnable parameters θ

$$egin{aligned} eta_{ij} &= g_ heta(x_i, x_j) \ g_ heta &: \mathbb{R}^F imes \mathbb{R}^F o \mathbb{R}^F \end{aligned}$$

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Pointer feature learning

- X_i is a point in the point clouds and x_j is the neighboring point in the point cloud. we can regard x_i as the central pixel and x_j : $(i, j) \in \varepsilon$ as a patch around it
- We define global features p_{ij} with function g_{θ} which is a parametric non-linear function parametrized by the set of learnable parameters θ

$$egin{aligned} & \mathcal{P}_{ij} = g_{ heta}(x_i, x_j) \ & g_{ heta}: \mathbb{R}^{F} imes \mathbb{R}^{F} imes \mathbb{R}^{F} o \mathbb{R}^{F'} \end{aligned}$$

• We define local features q_{ij} with function h_{θ} which is also a parametric non-linear function parametrized by the set of learnable parameters θ

$$egin{aligned} q_{ij} &= h_ heta(x_i, x_i - x_j) \ q_ heta &: \mathbb{R}^F imes \mathbb{R}^F imes \mathbb{R}^F imes \mathbb{R}^{F'} \end{aligned}$$

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Pointer feature learning

Global Feature

$$p_{ij} = g_{\theta}(x_i, x_j)$$

Local Feature

$$q_{ij} = h_{\theta}(x_i, x_i - x_j)$$

 \blacksquare We define the fusion feature T_{ij} of local features q_{ij} and global feature p_{ij} with function M

$$T_{ij} = M(p_{ij}, q_{ij})$$

Here M is a learnable function which can be weighted sum or a convolutional layer or a concatenation layer

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Pointer feature learning

Global Feature

$$p_{ij} = g_{\theta}(x_i, x_j)$$

Local Feature

$$q_{ij} = h_{\theta}(x_i, x_i - x_j)$$

Fusion feature

$$T_{ij} = M(p_{ij}, q_{ij})$$

■ Finally, we define the Pointer operation by applying a channel-wise symmetric aggregation operation

(∑ or max)

$$x_i^{l+1} = \prod_{j:(i,j)} T_{ij}^l$$

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Pointer Block

Pointer Main Block

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Pointer Semantic

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic ●O○○○	Pointer Instance	Pointer Capsnet
Architecture								

Pointer Semantic Segmentation

Pointer Semantic Segmentation

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
Architecture								

Pointer Semantic Segmentation

Pointer Semantic Segmentation

Implementation Details

- \blacksquare Used Skip connections to increase the accuracy \rightarrow model size increases.
- Loss : Weighted cross-entropy \rightarrow give more loss to target class due to class imbalance.
- Machine : Turing Cluster Nvidia Pascal P100
- Training times : approx 2 days

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
Results								

Pointer Semantic Segmentation

Мс	odel Accuracy on Kitti Datas	set
Model	Accuracy	Target Class Accuracy
Pointnet++	97.12	45.34
EdgeConv	95.20	75.20
Pointer	94.88	83.40

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
Results								

Pointer Semantic Segmentation Visuals

Camera Image

Pointer Predictions

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
Results								

Pointer Semantic Segmentation Visuals (Pedestrians)

Pointer results (Pedestrains)

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Pointer Instance

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	●OOOOOOO	Pointer Capsnet
Architecture								

Pointer Clustering Instance Segmentation

Pointer Instance Segmentation Architecture

 \blacksquare B is the number of clusters formed and batch size \rightarrow which was 20 for experiments.

Bayesian Gaussian Mixture

Sanket	Gujar
--------	-------

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
			000000			00000	00000000	000
Architecture								

Pointer Vector Instance Segmentation

Pointer Instance Segmentation Architecture

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
							00000000	
Results								

Pointer Clustering Instance Segmentation Visuals

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
Results								

Pointer Vector Instance Segmentation Visuals

Figure: Pointer Instance Segmentation results

Pointer Instance Segmentation results link

Sanket Gujar

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance ○○○○●○○○	Pointer Capsnet
Results								

Pointer Instance Segmentation

Model Accuracy on Kitti Dataset									
Model	Accuracy	Target Class Accuracy							
Pointer Clustering	91.59	40.62							
Pointer Vector	93.38	82.91							

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance ○○○○○●○○	Pointer Capsnet
Results								
Futur	e Work							

- Efficient sampling method to reduce the number of inputs points
- Reducing the size and inference time of the model
- Efficient clustering method for Instance Segmentation

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
Results								
Conc	lusion							

- Pointer is more robust and camera independent pipeline for segmenting vehicles and pedestrian for an autonomous vehicle perception stack.
- Pointer is invariant to lighting conditions.
- Pointer is one of the initial approach to do instance segmentation using LIDAR data alone.
- Pointer can contribute to the development of self-driving vehicle perception stack to make roads more safer for pedestrains.

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
Results								
Refer	rences	l						

- Andreas Geiger, Are we ready for autonomous driving? the kitti vision benchmark suite, Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Washington, DC, USA), CVPR '12, IEEE Computer Society, 2012, pp. 3354–3361.
- Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas, **Pointnet: Deep learning on point sets for 3d classification and segmentation**, CoRR **abs/1612.00593** (2016).
- Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas, Pointnet++: Deep hierarchical feature learning on point sets in a metric space, CoRR abs/1706.02413 (2017).

Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton, **Dynamic routing between capsules**, CoRR **abs/1710.09829** (2017).

Martin Simon, Stefan Milz, Karl Amende, and Horst-Michael Gross, Complex-yolo: Real-time 3d object detection on point clouds, CoRR abs/1803.06199 (2018).

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon, Dynamic graph CNN for learning on point clouds, CoRR abs/1801.07829 (2018).

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Pointer Capsnet

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Capsule network

Convolutional neural network have the same prediction for both of the images.

- Internal data representation of a convolutional neural network does not take into account important spatial hierarchies between simple and complex objects.
- Hinton argued that in order to correctly do classification and object recognition, it is important to preserve hierarchical pose relationships between object parts.

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet

Capsule network

CNN do not have this capability to understand the change in orientation

- Capsules encode probability of detection of a feature as the length of their output vector and the state of the detected feature is encoded as the direction in which that vector points to.
- when detected feature moves around the image or its state somehow changes, the probability still stays the same (length of vector does not change), but its orientation changes.

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
			000000			00000	00000000	000

Capsule network

CapsNet Architecture [SFH17]

Approach

- The original capsule relies on the existence of a spatial relationship between elements in the feature map
- Whereas such features are lost in point permutation invariant formulation of 3D pointwise classification methods.
- We tried to extend capsule network for 3D point clouds by given the capsules the features extracted by pointer network.

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet ●○○
Architecture								

Pointer Capsnet Architecture

Pointer Capsnet Architecture

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet ○●○
Results								

Pointer Capsnet Results on ModelNet40

Pointer Capsnet Accuracy and loss

Overview	Background	Problem Statement	Previous Approach	Dataset	Pointer	Pointer Semantic	Pointer Instance	Pointer Capsnet
								000
Results								

Pointer Capsnet Results on ModelNet40

Model Accuracy on ModelNet40					
Model	Accuracy				
Pointnet	89.2				
Pointnet++	90.7				
EdgeConv	92.2				
3D Capsule (with Edgeconv)	92.7				
Pointer Capsnet	71.29				