
Polar Coordinates (r, θ)

Polar Coordinates (r , θ) in the plane are described
by

r = distance from the origin

and

θ ∈ [0, 2π) is the counter-clockwise angle.

We make the convention

(−r, θ) = (r, θ + π).
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Plotting points

Example Plot the points whose polar coordinates are given.

(a)
(
1, 5

π

4

)
(b) (2, 3π) (c)

(
2,−2

π

3

)
(d)

(
−3, 3

π

4

)
Solution The points are plotted in Figure 3. In part (d) the point(
−3, 3π

4

)
is located three units from the pole in the fourth

quadrant because the angle 3π
4 is in the second quadrant and

r = −3 is negative.
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Coordinate conversion - Polar/Cartesian

x = r cos θ y = r sin θ

r2 = x2 + y2 tan θ = y
x
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Example Convert the point
(
2, π

3

)
from polar to

Cartesian coordinates.

Solution Since r = 2 and θ = π
3 ,

x = r cos θ = 2 cos
π

3
= 2 · 1

2
= 1

y = r sin θ = 2 sin
π

3
= 2 ·

√
3

2
=
√

3

Therefore, the point is (1,
√

3) in Cartesian
coordinates.
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Example Represent the point with Cartesian
coordinates (1,−1) in terms of polar coordinates.

Solution If we choose r to be positive, then

r =
√

x2 + y 2 =
√

12 + (−1)2 =
√

2

tan θ =
y

x
= −1

Since the point (1,−1) lies in the fourth quadrant,
we choose θ = −π

4 or θ = 7 π
4 . Thus, one possible

answer is
(√

2,−π
4

)
; another is

(√
2, 7 π

4

)
.
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Graph of a polar equation

Definition The graph of a polar equation
r = f (θ), or more generally F (r , θ) = 0, consists of
all points P that have at least one polar
representation (r , θ) whose coordinates satisfy the
equation.



Example What curve is represented by the polar
equation r = 2?

Solution The curve consists of all points (r, θ) with
r = 2. Since r represents the distance from the
point to the pole, the curve r = 2 represents the
circle with center O and radius 2. In general, the
equation r = a represents a circle with center O and
radius |a|.
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Sketch the curve with polar equation r = 2 cos θ.

Solution Plotting points we find what seems to be
a circle:
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Example Find the Cartesian coordinates for
r = 2 cos θ.

Solution Since x = r cos θ, the equation r = 2 cos θ

becomes r = 2x
r or

2x = r 2 = x2 + y 2

or
x2 − 2x + y 2 = 0

or
(x − 1)2 + y 2 = 1.

This is the equation of a circle of radius 1 centered
at (1, 0).
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curve is called a cardioid. Solution
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Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as a
parameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves and
the Product Rule, we have

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

We locate horizontal tangents by finding the points where
dy
dθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dx
dθ = 0 (provided that dy

dθ 6= 0).



Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as a
parameter and write its parametric equations as

x = r cos θ

= f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves and
the Product Rule, we have

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

We locate horizontal tangents by finding the points where
dy
dθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dx
dθ = 0 (provided that dy

dθ 6= 0).



Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as a
parameter and write its parametric equations as

x = r cos θ = f(θ) cos θ

y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves and
the Product Rule, we have

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

We locate horizontal tangents by finding the points where
dy
dθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dx
dθ = 0 (provided that dy

dθ 6= 0).



Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as a
parameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ

= f(θ) sin θ

Then, using the method for finding slopes of parametric curves and
the Product Rule, we have

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

We locate horizontal tangents by finding the points where
dy
dθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dx
dθ = 0 (provided that dy

dθ 6= 0).



Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as a
parameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves and
the Product Rule, we have

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

We locate horizontal tangents by finding the points where
dy
dθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dx
dθ = 0 (provided that dy

dθ 6= 0).



Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as a
parameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves and
the Product Rule, we have

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

We locate horizontal tangents by finding the points where
dy
dθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dx
dθ = 0 (provided that dy

dθ 6= 0).



Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as a
parameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves and
the Product Rule, we have

dy

dx

=
dy
dθ
dx
dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

We locate horizontal tangents by finding the points where
dy
dθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dx
dθ = 0 (provided that dy

dθ 6= 0).



Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as a
parameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves and
the Product Rule, we have

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

We locate horizontal tangents by finding the points where
dy
dθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dx
dθ = 0 (provided that dy

dθ 6= 0).



Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as a
parameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves and
the Product Rule, we have

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

We locate horizontal tangents by finding the points where
dy
dθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dx
dθ = 0 (provided that dy

dθ 6= 0).



Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as a
parameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves and
the Product Rule, we have

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

We locate horizontal tangents by finding the points where
dy
dθ = 0 (provided that dx

dθ 6= 0.)

Likewise, we locate vertical

tangents at the points where dx
dθ = 0 (provided that dy

dθ 6= 0).



Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as a
parameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves and
the Product Rule, we have

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

We locate horizontal tangents by finding the points where
dy
dθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dx
dθ = 0 (provided that dy

dθ 6= 0).



Example For the cardioid r = 1 + sin θ find the
slope of the tangent line when θ = π

3 .

Solution

dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ
=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point where
θ = π

3 is
dy

dx

∣∣∣∣
θ= π

3

=
cos

(
π
3

)
(1 + 2 sin

(
π
3

)
)

(1 + sin
(

π
3

)
)(1− 2 sin

(
π
3

)
)

=
1
2 (1 +

√
3)

(1 +
√

3
2 )(1−

√
3)

=
1 +

√
3

(2 +
√

3)(1−
√

3)
=

1 +
√

3

−1−
√

3
= −1



Example For the cardioid r = 1 + sin θ find the
slope of the tangent line when θ = π

3 . Solution

dy

dx

=
dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ
=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point where
θ = π

3 is
dy

dx

∣∣∣∣
θ= π

3

=
cos

(
π
3

)
(1 + 2 sin

(
π
3

)
)

(1 + sin
(

π
3

)
)(1− 2 sin

(
π
3

)
)

=
1
2 (1 +

√
3)

(1 +
√

3
2 )(1−

√
3)

=
1 +

√
3

(2 +
√

3)(1−
√

3)
=

1 +
√

3

−1−
√

3
= −1



Example For the cardioid r = 1 + sin θ find the
slope of the tangent line when θ = π

3 . Solution

dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ
=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point where
θ = π

3 is
dy

dx

∣∣∣∣
θ= π

3

=
cos

(
π
3

)
(1 + 2 sin

(
π
3

)
)

(1 + sin
(

π
3

)
)(1− 2 sin

(
π
3

)
)

=
1
2 (1 +

√
3)

(1 +
√

3
2 )(1−

√
3)

=
1 +

√
3

(2 +
√

3)(1−
√

3)
=

1 +
√

3

−1−
√

3
= −1



Example For the cardioid r = 1 + sin θ find the
slope of the tangent line when θ = π

3 . Solution

dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ
=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point where
θ = π

3 is
dy

dx

∣∣∣∣
θ= π

3

=
cos

(
π
3

)
(1 + 2 sin

(
π
3

)
)

(1 + sin
(

π
3

)
)(1− 2 sin

(
π
3

)
)

=
1
2 (1 +

√
3)

(1 +
√

3
2 )(1−

√
3)

=
1 +

√
3

(2 +
√

3)(1−
√

3)
=

1 +
√

3

−1−
√

3
= −1



Example For the cardioid r = 1 + sin θ find the
slope of the tangent line when θ = π

3 . Solution

dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ

=
cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point where
θ = π

3 is
dy

dx

∣∣∣∣
θ= π

3

=
cos

(
π
3

)
(1 + 2 sin

(
π
3

)
)

(1 + sin
(

π
3

)
)(1− 2 sin

(
π
3

)
)

=
1
2 (1 +

√
3)

(1 +
√

3
2 )(1−

√
3)

=
1 +

√
3

(2 +
√

3)(1−
√

3)
=

1 +
√

3

−1−
√

3
= −1



Example For the cardioid r = 1 + sin θ find the
slope of the tangent line when θ = π

3 . Solution

dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ
=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point where
θ = π

3 is
dy

dx

∣∣∣∣
θ= π

3

=
cos

(
π
3

)
(1 + 2 sin

(
π
3

)
)

(1 + sin
(

π
3

)
)(1− 2 sin

(
π
3

)
)

=
1
2 (1 +

√
3)

(1 +
√

3
2 )(1−

√
3)

=
1 +

√
3

(2 +
√

3)(1−
√

3)
=

1 +
√

3

−1−
√

3
= −1



Example For the cardioid r = 1 + sin θ find the
slope of the tangent line when θ = π

3 . Solution

dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ
=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point where
θ = π

3 is

dy

dx

∣∣∣∣
θ= π

3

=
cos

(
π
3

)
(1 + 2 sin

(
π
3

)
)

(1 + sin
(

π
3

)
)(1− 2 sin

(
π
3

)
)

=
1
2 (1 +

√
3)

(1 +
√

3
2 )(1−

√
3)

=
1 +

√
3

(2 +
√

3)(1−
√

3)
=

1 +
√

3

−1−
√

3
= −1



Example For the cardioid r = 1 + sin θ find the
slope of the tangent line when θ = π

3 . Solution

dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ
=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point where
θ = π

3 is
dy

dx

∣∣∣∣
θ= π

3

=
cos

(
π
3

)
(1 + 2 sin

(
π
3

)
)

(1 + sin
(

π
3

)
)(1− 2 sin

(
π
3

)
)

=
1
2 (1 +

√
3)

(1 +
√

3
2 )(1−

√
3)

=
1 +

√
3

(2 +
√

3)(1−
√

3)
=

1 +
√

3

−1−
√

3
= −1



Example For the cardioid r = 1 + sin θ find the
slope of the tangent line when θ = π

3 . Solution

dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ
=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point where
θ = π

3 is
dy

dx

∣∣∣∣
θ= π

3

=
cos

(
π
3

)
(1 + 2 sin

(
π
3

)
)

(1 + sin
(

π
3

)
)(1− 2 sin

(
π
3

)
)

=
1
2 (1 +

√
3)

(1 +
√

3
2 )(1−

√
3)

=
1 +

√
3

(2 +
√

3)(1−
√

3)
=

1 +
√

3

−1−
√

3
= −1



Example For the cardioid r = 1 + sin θ find the
slope of the tangent line when θ = π

3 . Solution

dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ
=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point where
θ = π

3 is
dy

dx

∣∣∣∣
θ= π

3

=
cos

(
π
3

)
(1 + 2 sin

(
π
3

)
)

(1 + sin
(

π
3

)
)(1− 2 sin

(
π
3

)
)

=
1
2 (1 +

√
3)

(1 +
√

3
2 )(1−

√
3)

=
1 +

√
3

(2 +
√

3)(1−
√

3)

=
1 +

√
3

−1−
√

3
= −1



Example For the cardioid r = 1 + sin θ find the
slope of the tangent line when θ = π

3 . Solution

dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ
=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point where
θ = π

3 is
dy

dx

∣∣∣∣
θ= π

3

=
cos

(
π
3

)
(1 + 2 sin

(
π
3

)
)

(1 + sin
(

π
3

)
)(1− 2 sin

(
π
3

)
)

=
1
2 (1 +

√
3)

(1 +
√

3
2 )(1−

√
3)

=
1 +

√
3

(2 +
√

3)(1−
√

3)
=

1 +
√

3

−1−
√

3

= −1



Example For the cardioid r = 1 + sin θ find the
slope of the tangent line when θ = π

3 . Solution

dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ
=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point where
θ = π

3 is
dy

dx

∣∣∣∣
θ= π

3

=
cos

(
π
3

)
(1 + 2 sin

(
π
3

)
)

(1 + sin
(

π
3

)
)(1− 2 sin

(
π
3

)
)

=
1
2 (1 +

√
3)

(1 +
√

3
2 )(1−

√
3)

=
1 +

√
3

(2 +
√

3)(1−
√

3)
=

1 +
√

3

−1−
√

3
= −1



Area under a polar graph r = f(θ)

The area of a region ”under” a polar function

r = f(θ) is described by either of the following

formulas.

These formulas arise from the fact that

the area of a θ1 ≤ θ ≤ θ2 portion of a circle of

radius r is given by 1
2(θ2 − θ1)r

2.

A =
∫ b
a

1
2[f(θ)]2 dθ,

A =
∫ b
a

1
2r

2 dθ,

Also see the two figures below.
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Example Find the area enclosed by one loop of
the four-leaved rose r = cos 2θ.

Solution First
recall the picture of this curve:

By our area formulas,

Area =

∫ π
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4
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2
(1 + cos 4θ)dθ =

1

4
(θ +

1

4
sin 4θ)

∣∣∣∣π
4

−π
4

=
π

8
.
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Speed and length

Definition The velocity vector of a curve
C(t) = (x(t), y(t)) is

C′(t) = (x′(t), y′(t)). The
speed of C(t) is
s(t) = |C′(t)| =

√
(x′(t))2 + (y′(t))2.

Since the integral of the speed is the distance
traveled or length for C : [a,b] → R2,

Length of a curve(C) =

∫ b

a

s(t) dt

=

∫ b

a

√
(x′(t))2 + (y′(t))2 dt.
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Problem 30 As the parameter t increases forever, starting at
t = 0, the curve with parametric equations{

x = e−t cos t,
y = e−t sin t

spirals inward toward the origin, getting ever closer to the origin (but
never actually reaching) as t →∞.

Find the length of this spiral curve.

Solution The tangent vector to the curve
c(t) = (x(t), y(t)) = (e−t cos t, e−t sin t| is c′(t) and it is found by
taking the derivative of the coordinate functions:
c′(t) = (x′(t), y′(t)). So,
c′(t) = (−e−t cos t− e−t sin t,−e−t sin t + e−t cos t) =
−e−t(cos t + sin t, sin t− cos t). Recall that the speed s(t) of c(t)
is |c′(t)| which is equal to

√
(x′(t))2 + (y′(t))2 and the length is

the integral of the speed:∫ ∞

0

√
e−2t(cos2 t + sin2 t + 2 cos t sin t + sin2 t + cos2 t− 2 cos t sin t)dt

=

∫ ∞

0
e−t

√
2 dt = ĺım

t→∞
−
√

2e−t
∣∣∣t
0

=
√

2.
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Length formula

In polar coordinates x = r cos θ, y = r sin θ.

Then

dx

dθ
=

dr

dθ
cos θ − r sin θ

dy

dθ
=

dr

dθ
sin θ + r cos θ.

Using cos2 θ + sin2 θ = 1, we get(
dx

dθ

)2

+

(
dy

dθ

)2

=

(
dr

dθ

)2

cos2 θ − 2r
dr

dθ
cos θ sin θ + r2 sin2 θ

+

(
dr

dθ

)2

sin2 θ + 2r
dr

dθ
sin θ cos θ + r2 sin2 θ

=

(
dr

dθ

)2

+ r2.

Thus the length L of a polar curve r = f(θ), a ≤ θ ≤ b, is:

L =

∫ b

a

√
r2 +

(
dr

dθ

)2

dθ.
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