Polar Coordinates (\mathbf{r}, θ)

Polar Coordinates (r, θ) in the plane are described by

Polar Coordinates (\mathbf{r}, θ)

Polar Coordinates (r, θ) in the plane are described by

$$
r=\text { distance from the origin }
$$

Polar Coordinates (\mathbf{r}, θ)

Polar Coordinates (r, θ) in the plane are described by $r=$ distance from the origin and
$\theta \in[0,2 \pi)$ is the counter-clockwise angle.

Polar Coordinates (\mathbf{r}, θ)

Polar Coordinates (r, θ) in the plane are described by $r=$ distance from the origin and
$\theta \in[0,2 \pi)$ is the counter-clockwise angle.
We make the convention

$$
(-\mathbf{r}, \theta)=(\mathbf{r}, \theta+\pi)
$$

Polar Coordinates (\mathbf{r}, θ)

Polar Coordinates (r, θ) in the plane are described by
and
$\theta \in[\mathbf{0}, \mathbf{2 \pi})$ is the counter-clockwise angle.
We make the convention

$$
(-\mathbf{r}, \theta)=(\mathbf{r}, \theta+\pi) .
$$

Plotting points

Example Plot the points whose polar coordinates are given.

Plotting points

Example Plot the points whose polar coordinates are given.
(a) $\left(1,5 \frac{\pi}{4}\right)$
$\begin{array}{ll}\text { (b) }(2,3 \pi) & \text { (c) }\left(2,-2 \frac{\pi}{3}\right)\end{array}$
(d) $\left(-3,3 \frac{\pi}{4}\right)$

Plotting points

Example Plot the points whose polar coordinates are given.
(a) $\left(1,5 \frac{\pi}{4}\right)$
(b) $(2,3 \pi)$
(c) $\left(2,-2 \frac{\pi}{3}\right)$
(d) $\left(-3,3 \frac{\pi}{4}\right)$

Solution The points are plotted in Figure 3.

Plotting points

Example Plot the points whose polar coordinates are given.
(a) $\left(1,5 \frac{\pi}{4}\right)$
(b) $(2,3 \pi)$
(c) $\left(2,-2 \frac{\pi}{3}\right)$
(d) $\left(-3,3 \frac{\pi}{4}\right)$

Solution The points are plotted in Figure 3. In part (d) the point $\left(-3,3 \frac{\pi}{4}\right)$ is located three units from the pole in the fourth quadrant because the angle $3 \frac{\pi}{4}$ is in the second quadrant and $r=-3$ is negative.

Plotting points

Example Plot the points whose polar coordinates are given．
（a）$\left(1,5 \frac{\pi}{4}\right)$
（b）$(2,3 \pi)$
（c）$\left(2,-2 \frac{\pi}{3}\right)$
（d）$\left(-3,3 \frac{\pi}{4}\right)$

Solution The points are plotted in Figure 3．In part（d）the point $\left(-3,3 \frac{\pi}{4}\right)$ is located three units from the pole in the fourth quadrant because the angle $3 \frac{\pi}{4}$ is in the second quadrant and $r=-3$ is negative．

FIGURE 3

Coordinate conversion－Polar／Cartesian

Coordinate conversion - Polar/Cartesian

$\mathbf{x}=\mathbf{r} \cos \theta \quad \mathbf{y}=\mathbf{r} \sin \theta$

Coordinate conversion - Polar/Cartesian

$$
\mathbf{x}=\mathbf{r} \cos \theta \quad \mathbf{y}=\mathbf{r} \sin \theta
$$

$$
\mathbf{r}^{2}=\mathbf{x}^{\mathbf{2}}+\mathbf{y}^{\mathbf{2}} \quad \tan \theta=\frac{\mathbf{y}}{\mathbf{x}}
$$

Example Convert the point $\left(2, \frac{\pi}{3}\right)$ from polar to Cartesian coordinates.

Example Convert the point ($2, \frac{\pi}{3}$) from polar to Cartesian coordinates.
Solution Since $r=2$ and $\theta=\frac{\pi}{3}$,

Example Convert the point ($2, \frac{\pi}{3}$) from polar to Cartesian coordinates. Solution Since $r=2$ and $\theta=\frac{\pi}{3}$,

$$
x=r \cos \theta
$$

Example Convert the point $\left(2, \frac{\pi}{3}\right)$ from polar to Cartesian coordinates.
Solution Since $r=2$ and $\theta=\frac{\pi}{3}$,

$$
x=r \cos \theta=2 \cos \frac{\pi}{3}
$$

Example Convert the point $\left(2, \frac{\pi}{3}\right)$ from polar to Cartesian coordinates.
Solution Since $r=2$ and $\theta=\frac{\pi}{3}$,

$$
x=r \cos \theta=2 \cos \frac{\pi}{3}=2 \cdot \frac{1}{2}
$$

Example Convert the point $\left(2, \frac{\pi}{3}\right)$ from polar to Cartesian coordinates.
Solution Since $r=2$ and $\theta=\frac{\pi}{3}$,

$$
x=r \cos \theta=2 \cos \frac{\pi}{3}=2 \cdot \frac{1}{2}=1
$$

Example Convert the point $\left(2, \frac{\pi}{3}\right)$ from polar to Cartesian coordinates.
Solution Since $r=2$ and $\theta=\frac{\pi}{3}$,

$$
x=r \cos \theta=2 \cos \frac{\pi}{3}=2 \cdot \frac{1}{2}=1
$$

y

Example Convert the point $\left(2, \frac{\pi}{3}\right)$ from polar to Cartesian coordinates.
Solution Since $r=2$ and $\theta=\frac{\pi}{3}$,

$$
\begin{aligned}
& x=r \cos \theta=2 \cos \frac{\pi}{3}=2 \cdot \frac{1}{2}=1 \\
& y=r \sin \theta
\end{aligned}
$$

Example Convert the point $\left(2, \frac{\pi}{3}\right)$ from polar to Cartesian coordinates.
Solution Since $r=2$ and $\theta=\frac{\pi}{3}$,

$$
\begin{aligned}
& x=r \cos \theta=2 \cos \frac{\pi}{3}=2 \cdot \frac{1}{2}=1 \\
& y=r \sin \theta=2 \sin \frac{\pi}{3}
\end{aligned}
$$

Example Convert the point $\left(2, \frac{\pi}{3}\right)$ from polar to Cartesian coordinates.
Solution Since $r=2$ and $\theta=\frac{\pi}{3}$,

$$
\begin{aligned}
& x=r \cos \theta=2 \cos \frac{\pi}{3}=2 \cdot \frac{1}{2}=1 \\
& y=r \sin \theta=2 \sin \frac{\pi}{3}=2 \cdot \frac{\sqrt{3}}{2}
\end{aligned}
$$

Example Convert the point $\left(2, \frac{\pi}{3}\right)$ from polar to Cartesian coordinates.
Solution Since $r=2$ and $\theta=\frac{\pi}{3}$,

$$
\begin{gathered}
x=r \cos \theta=2 \cos \frac{\pi}{3}=2 \cdot \frac{1}{2}=1 \\
y=r \sin \theta=2 \sin \frac{\pi}{3}=2 \cdot \frac{\sqrt{3}}{2}=\sqrt{3}
\end{gathered}
$$

Example Convert the point $\left(2, \frac{\pi}{3}\right)$ from polar to Cartesian coordinates.
Solution Since $r=2$ and $\theta=\frac{\pi}{3}$,

$$
\begin{gathered}
x=r \cos \theta=2 \cos \frac{\pi}{3}=2 \cdot \frac{1}{2}=1 \\
y=r \sin \theta=2 \sin \frac{\pi}{3}=2 \cdot \frac{\sqrt{3}}{2}=\sqrt{3}
\end{gathered}
$$

Therefore, the point is $(1, \sqrt{3})$ in Cartesian coordinates.

Example Represent the point with Cartesian coordinates $(1,-1)$ in terms of polar coordinates.

Example Represent the point with Cartesian coordinates $(1,-1)$ in terms of polar coordinates. Solution If we choose r to be positive, then

Example Represent the point with Cartesian coordinates $(1,-1)$ in terms of polar coordinates. Solution If we choose r to be positive, then

$$
r=\sqrt{x^{2}+y^{2}}
$$

Example Represent the point with Cartesian coordinates $(1,-1)$ in terms of polar coordinates.
Solution If we choose r to be positive, then

$$
r=\sqrt{x^{2}+y^{2}}=\sqrt{1^{2}+(-1)^{2}}
$$

Example Represent the point with Cartesian coordinates $(1,-1)$ in terms of polar coordinates.
Solution If we choose r to be positive, then

$$
r=\sqrt{x^{2}+y^{2}}=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}
$$

Example Represent the point with Cartesian coordinates $(1,-1)$ in terms of polar coordinates.
Solution If we choose r to be positive, then

$$
r=\sqrt{x^{2}+y^{2}}=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}
$$

$\tan \theta$

Example Represent the point with Cartesian coordinates $(1,-1)$ in terms of polar coordinates.
Solution If we choose r to be positive, then

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}}=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2} \\
\tan \theta=\frac{y}{x}
\end{gathered}
$$

Example Represent the point with Cartesian coordinates $(1,-1)$ in terms of polar coordinates.
Solution If we choose r to be positive, then

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}}=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2} \\
\tan \theta=\frac{y}{x}=-1
\end{gathered}
$$

Example Represent the point with Cartesian coordinates $(1,-1)$ in terms of polar coordinates.
Solution If we choose r to be positive, then

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}}=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2} \\
\tan \theta=\frac{y}{x}=-1
\end{gathered}
$$

Since the point $(1,-1)$ lies in the fourth quadrant, we choose $\theta=-\frac{\pi}{4}$ or $\theta=7 \frac{\pi}{4}$.

Example Represent the point with Cartesian coordinates $(1,-1)$ in terms of polar coordinates. Solution If we choose r to be positive, then

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}}=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2} \\
\tan \theta=\frac{y}{x}=-1
\end{gathered}
$$

Since the point $(1,-1)$ lies in the fourth quadrant, we choose $\theta=-\frac{\pi}{4}$ or $\theta=7 \frac{\pi}{4}$. Thus, one possible answer is $\left(\sqrt{2},-\frac{\pi}{4}\right)$; another is $\left(\sqrt{2}, 7 \frac{\pi}{4}\right)$.

Graph of a polar equation

Definition The graph of a polar equation $r=f(\theta)$, or more generally $F(r, \theta)=0$, consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

Example What curve is represented by the polar equation $r=2$?

Example What curve is represented by the polar equation $r=2$?
Solution The curve consists of all points (\mathbf{r}, θ) with $r=2$.

Example What curve is represented by the polar equation $r=2$?
Solution The curve consists of all points (\mathbf{r}, θ) with $r=2$. Since r represents the distance from the point to the pole, the curve $\mathbf{r}=\mathbf{2}$ represents the circle with center O and radius 2 .

Example What curve is represented by the polar equation $r=2$?
Solution The curve consists of all points (\mathbf{r}, θ) with $r=2$. Since r represents the distance from the point to the pole, the curve $\mathbf{r}=\mathbf{2}$ represents the circle with center O and radius 2 . In general, the equation $\mathbf{r}=\mathbf{a}$ represents a circle with center O and radius $|\mathbf{a}|$.

Example What curve is represented by the polar equation $r=2$?
Solution The curve consists of all points (\mathbf{r}, θ) with $r=2$. Since r represents the distance from the point to the pole, the curve $\mathbf{r}=\mathbf{2}$ represents the circle with center O and radius 2 . In general, the equation $\mathbf{r}=\mathbf{a}$ represents a circle with center O and radius $|\mathbf{a}|$.

Sketch the curve with polar equation $\mathbf{r}=2 \cos \theta$.

Sketch the curve with polar equation $\mathbf{r}=2 \cos \theta$. Solution Plotting points we find what seems to be a circle:

Sketch the curve with polar equation $\mathbf{r}=2 \cos \theta$. Solution Plotting points we find what seems to be a circle:

Example Find the Cartesian coordinates for $r=2 \cos \theta$.

Example Find the Cartesian coordinates for $r=2 \cos \theta$.
Solution Since $x=r \cos \theta$, the equation $r=2 \cos \theta$ becomes $r=\frac{2 x}{r}$ or

Example Find the Cartesian coordinates for $r=2 \cos \theta$.
Solution Since $x=r \cos \theta$, the equation $r=2 \cos \theta$ becomes $r=\frac{2 x}{r}$ or

$$
2 x
$$

Example Find the Cartesian coordinates for $r=2 \cos \theta$.
Solution Since $x=r \cos \theta$, the equation $r=2 \cos \theta$ becomes $r=\frac{2 x}{r}$ or

$$
2 x=r^{2}
$$

Example Find the Cartesian coordinates for $r=2 \cos \theta$.
Solution Since $x=r \cos \theta$, the equation $r=2 \cos \theta$ becomes $r=\frac{2 x}{r}$ or

$$
2 x=r^{2}=x^{2}+y^{2}
$$

Example Find the Cartesian coordinates for $r=2 \cos \theta$.
Solution Since $x=r \cos \theta$, the equation $r=2 \cos \theta$ becomes $r=\frac{2 x}{r}$ or

$$
2 x=r^{2}=x^{2}+y^{2}
$$

or

$$
x^{2}-2 x+y^{2}=0
$$

Example Find the Cartesian coordinates for $r=2 \cos \theta$.
Solution Since $x=r \cos \theta$, the equation $r=2 \cos \theta$ becomes $r=\frac{2 x}{r}$ or

$$
2 x=r^{2}=x^{2}+y^{2}
$$

or

$$
x^{2}-2 x+y^{2}=0
$$

or

$$
(x-1)^{2}+y^{2}=1 .
$$

Example Find the Cartesian coordinates for $r=2 \cos \theta$.
Solution Since $x=r \cos \theta$, the equation $r=2 \cos \theta$ becomes $r=\frac{2 x}{r}$ or

$$
2 x=r^{2}=x^{2}+y^{2}
$$

or

$$
x^{2}-2 x+y^{2}=0
$$

or

$$
(x-1)^{2}+y^{2}=1
$$

This is the equation of a circle of radius 1 centered at $(1,0)$.

Cardioid

Example Sketch the curve $r=1+\sin \theta$.

Cardioid

Example Sketch the curve $r=1+\sin \theta$. This curve is called a cardioid.

Cardioid

Example Sketch the curve $r=1+\sin \theta$. This curve is called a cardioid. Solution

Cardioid

Example Sketch the curve $r=1+\sin \theta$ ．This curve is called a cardioid．Solution

Four-leaved rose

Example Sketch the curve $r=\cos 2 \theta$.

Four-leaved rose

Example Sketch the curve $r=\cos 2 \theta$. This curve is called a four-leaved rose.

Four-leaved rose

Example Sketch the curve $r=\cos 2 \theta$. This curve is called a four-leaved rose. Solution

Four-leaved rose

Example Sketch the curve $r=\cos 2 \theta$. This curve is called a four-leaved rose. Solution

Tangents to Polar Curves

To find a tangent line to a polar curve $\mathbf{r}=\mathbf{f}(\theta)$ we regard θ as a parameter and write its parametric equations as

Tangents to Polar Curves

To find a tangent line to a polar curve $\mathbf{r}=\mathbf{f}(\theta)$ we regard θ as a parameter and write its parametric equations as

$$
\mathbf{x}=\mathbf{r} \cos \theta
$$

Tangents to Polar Curves

To find a tangent line to a polar curve $\mathbf{r}=\mathbf{f}(\theta)$ we regard θ as a parameter and write its parametric equations as

$$
\mathbf{x}=\mathbf{r} \cos \theta=\mathbf{f}(\theta) \cos \theta
$$

Tangents to Polar Curves

To find a tangent line to a polar curve $\mathbf{r}=\mathbf{f}(\theta)$ we regard θ as a parameter and write its parametric equations as

$$
\mathbf{x}=\mathbf{r} \cos \theta=\mathbf{f}(\theta) \cos \theta \quad \mathbf{y}=\mathbf{r} \sin \theta
$$

Tangents to Polar Curves

To find a tangent line to a polar curve $\mathbf{r}=\mathbf{f}(\theta)$ we regard θ as a parameter and write its parametric equations as

$$
\mathbf{x}=\mathbf{r} \cos \theta=\mathbf{f}(\theta) \cos \theta \quad \mathbf{y}=\mathbf{r} \sin \theta=\mathbf{f}(\theta) \sin \theta
$$

Tangents to Polar Curves

To find a tangent line to a polar curve $\mathbf{r}=\mathbf{f}(\theta)$ we regard θ as a parameter and write its parametric equations as

$$
\mathbf{x}=\mathbf{r} \cos \theta=\mathbf{f}(\theta) \cos \theta \quad \mathbf{y}=\mathbf{r} \sin \theta=\mathbf{f}(\theta) \sin \theta
$$

Then, using the method for finding slopes of parametric curves and the Product Rule, we have

Tangents to Polar Curves

To find a tangent line to a polar curve $\mathbf{r}=\mathbf{f}(\theta)$ we regard θ as a parameter and write its parametric equations as

$$
\mathbf{x}=\mathbf{r} \cos \theta=\mathbf{f}(\theta) \cos \theta \quad \mathbf{y}=\mathbf{r} \sin \theta=\mathbf{f}(\theta) \sin \theta
$$

Then, using the method for finding slopes of parametric curves and the Product Rule, we have

$$
\frac{d y}{d x}
$$

Tangents to Polar Curves

To find a tangent line to a polar curve $\mathbf{r}=\mathbf{f}(\theta)$ we regard θ as a parameter and write its parametric equations as

$$
\mathbf{x}=\mathbf{r} \cos \theta=\mathbf{f}(\theta) \cos \theta \quad \mathbf{y}=\mathbf{r} \sin \theta=\mathbf{f}(\theta) \sin \theta
$$

Then, using the method for finding slopes of parametric curves and the Product Rule, we have

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}
$$

Tangents to Polar Curves

To find a tangent line to a polar curve $\mathbf{r}=\mathbf{f}(\theta)$ we regard θ as a parameter and write its parametric equations as

$$
\mathbf{x}=\mathbf{r} \cos \theta=\mathbf{f}(\theta) \cos \theta \quad \mathbf{y}=\mathbf{r} \sin \theta=\mathbf{f}(\theta) \sin \theta
$$

Then, using the method for finding slopes of parametric curves and the Product Rule, we have

$$
\frac{\mathbf{d y}}{\mathbf{d x}}=\frac{\frac{\mathbf{d y}}{\mathbf{d} \theta}}{\frac{\mathbf{d x}}{\mathbf{d} \theta}}=\frac{\frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta+\mathbf{r} \cos \theta}{\frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta-\mathbf{r} \sin \theta}
$$

Tangents to Polar Curves

To find a tangent line to a polar curve $\mathbf{r}=\mathbf{f}(\theta)$ we regard θ as a parameter and write its parametric equations as

$$
\mathbf{x}=\mathbf{r} \cos \theta=\mathbf{f}(\theta) \cos \theta \quad \mathbf{y}=\mathbf{r} \sin \theta=\mathbf{f}(\theta) \sin \theta
$$

Then, using the method for finding slopes of parametric curves and the Product Rule, we have

$$
\frac{\mathbf{d y}}{\mathbf{d x}}=\frac{\frac{\mathbf{d y}}{\mathbf{d} \theta}}{\frac{\mathbf{d x}}{\mathbf{d} \theta}}=\frac{\frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta+\mathbf{r} \cos \theta}{\frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta-\mathbf{r} \sin \theta}
$$

We locate horizontal tangents by finding the points where $\frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathbf{0}$ (provided that $\frac{d x}{d \theta} \neq 0$.)

Tangents to Polar Curves

To find a tangent line to a polar curve $\mathbf{r}=\mathbf{f}(\theta)$ we regard θ as a parameter and write its parametric equations as

$$
\mathbf{x}=\mathbf{r} \cos \theta=\mathbf{f}(\theta) \cos \theta \quad \mathbf{y}=\mathbf{r} \sin \theta=\mathbf{f}(\theta) \sin \theta
$$

Then, using the method for finding slopes of parametric curves and the Product Rule, we have

$$
\frac{\mathbf{d y}}{\mathbf{d x}}=\frac{\frac{\mathbf{d y}}{\mathbf{d} \theta}}{\frac{\mathbf{d x}}{\mathbf{d} \theta}}=\frac{\frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta+\mathbf{r} \cos \theta}{\frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta-\mathbf{r} \sin \theta}
$$

We locate horizontal tangents by finding the points where $\frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathbf{0}$ (provided that $\frac{d x}{d \theta} \neq 0$.) Likewise, we locate vertical tangents at the points where $\frac{\mathrm{dx}}{\mathrm{d} \theta}=0$ (provided that $\frac{d y}{d \theta} \neq 0$).

Example For the cardioid $\mathbf{r}=\mathbf{1}+\sin \theta$ find the slope of the tangent line when $\theta=\frac{\pi}{3}$.

Example For the cardioid $\mathbf{r}=\mathbf{1}+\sin \theta$ find the slope of the tangent line when $\theta=\frac{\pi}{3}$. Solution

$\frac{d y}{d x}$

Example For the cardioid $\mathbf{r}=\mathbf{1}+\sin \theta$ find the slope of the tangent line when $\theta=\frac{\pi}{3}$. Solution
$\frac{\mathbf{d y}}{\mathbf{d x}}=\frac{\frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta+\mathbf{r} \cos \theta}{\frac{\mathbf{d} \theta}{\mathrm{d} \theta} \cos \theta-\mathbf{r} \sin \theta}$

Example For the cardioid $\mathbf{r}=\mathbf{1}+\sin \theta$ find the slope of the tangent line when $\theta=\frac{\pi}{3}$. Solution

$$
\frac{\mathbf{d y}}{\mathbf{d x}}=\frac{\frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta+\mathbf{r} \cos \theta}{\frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta-\mathbf{r} \sin \theta}=\frac{\cos \theta \sin \theta+(\mathbf{1}+\sin \theta) \cos \theta}{\cos \theta \cos \theta-(\mathbf{1}+\sin \theta) \sin \theta}
$$

Example For the cardioid $\mathbf{r}=\mathbf{1}+\sin \theta$ find the slope of the tangent line when $\theta=\frac{\pi}{3}$. Solution

$$
\begin{aligned}
\frac{\mathbf{d y}}{\mathbf{d x}} & =\frac{\frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta+\mathbf{r} \cos \theta}{\frac{\mathbf{d r} \theta}{\mathrm{d} \theta} \cos \theta-\mathbf{r} \sin \theta}=\frac{\cos \theta \sin \theta+(\mathbf{1}+\sin \theta) \cos \theta}{\cos \theta \cos \theta-(\mathbf{1}+\sin \theta) \sin \theta} \\
& =\frac{\cos \theta(\mathbf{1}+\mathbf{2} \sin \theta)}{\mathbf{1}-\mathbf{2} \sin ^{2} \theta-\sin \theta}
\end{aligned}
$$

Example For the cardioid $\mathbf{r}=\mathbf{1}+\sin \theta$ find the slope of the tangent line when $\theta=\frac{\pi}{3}$. Solution

$$
\begin{aligned}
\frac{\mathbf{d y}}{\mathbf{d x}} & =\frac{\frac{\mathbf{d r}}{\mathrm{d} \theta} \sin \theta+\mathbf{r} \cos \theta}{\frac{\mathbf{d r}}{\mathrm{d} \theta} \cos \theta-\mathbf{r} \sin \theta}=\frac{\cos \theta \sin \theta+(\mathbf{1}+\sin \theta) \cos \theta}{\cos \theta \cos \theta-(\mathbf{1}+\sin \theta) \sin \theta} \\
& =\frac{\cos \theta(\mathbf{1}+\mathbf{2} \sin \theta)}{\mathbf{1}-\mathbf{2} \sin ^{2} \theta-\sin \theta}=\frac{\cos \theta(\mathbf{1}+\mathbf{2} \sin \theta)}{(\mathbf{1}+\sin \theta)(\mathbf{1}-\mathbf{2} \sin \theta)}
\end{aligned}
$$

Example For the cardioid $\mathbf{r}=\mathbf{1}+\sin \theta$ find the slope of the tangent line when $\theta=\frac{\pi}{3}$. Solution

$$
\begin{aligned}
\frac{\mathbf{d y}}{\mathbf{d x}} & =\frac{\frac{\mathbf{d r}}{\mathrm{d} \theta} \sin \theta+\mathbf{r} \cos \theta}{\frac{\mathbf{d r}}{\mathrm{d} \theta} \cos \theta-\mathbf{r} \sin \theta}=\frac{\cos \theta \sin \theta+(\mathbf{1}+\sin \theta) \cos \theta}{\cos \theta \cos \theta-(\mathbf{1}+\sin \theta) \sin \theta} \\
& =\frac{\cos \theta(\mathbf{1}+\mathbf{2} \sin \theta)}{\mathbf{1}-\mathbf{2} \sin ^{2} \theta-\sin \theta}=\frac{\cos \theta(\mathbf{1}+\mathbf{2} \sin \theta)}{(\mathbf{1}+\sin \theta)(\mathbf{1}-\mathbf{2} \sin \theta)}
\end{aligned}
$$

The slope of the tangent at the point where $\theta=\frac{\pi}{3}$ is

Example For the cardioid $\mathbf{r}=\mathbf{1}+\sin \theta$ find the slope of the tangent line when $\theta=\frac{\pi}{3}$. Solution

$$
\begin{aligned}
\frac{\mathbf{d y}}{\mathbf{d} \mathbf{x}} & =\frac{\frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta+\mathbf{r} \cos \theta}{\frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta-\mathbf{r} \sin \theta}=\frac{\cos \theta \sin \theta+(\mathbf{1}+\sin \theta) \cos \theta}{\cos \theta \cos \theta-(\mathbf{1}+\sin \theta) \sin \theta} \\
& =\frac{\cos \theta(\mathbf{1}+\mathbf{2} \sin \theta)}{\mathbf{1}-\mathbf{2} \sin ^{2} \theta-\sin \theta}=\frac{\cos \theta(\mathbf{1}+\mathbf{2} \sin \theta)}{(\mathbf{1}+\sin \theta)(\mathbf{1}-\mathbf{2} \sin \theta)}
\end{aligned}
$$

The slope of the tangent at the point where $\theta=\frac{\pi}{3}$ is

$$
\left.\frac{\mathbf{d y}}{\mathrm{dx}}\right|_{\theta=\frac{\pi}{3}}=\frac{\cos \left(\frac{\pi}{3}\right)\left(\mathbf{1}+\mathbf{2} \sin \left(\frac{\pi}{3}\right)\right)}{\left(1+\sin \left(\frac{\pi}{3}\right)\right)\left(\mathbf{1}-\mathbf{2} \sin \left(\frac{\pi}{3}\right)\right)}
$$

Example For the cardioid $\mathbf{r}=\mathbf{1}+\sin \theta$ find the slope of the tangent line when $\theta=\frac{\pi}{3}$. Solution

$$
\begin{aligned}
\frac{\mathbf{d y}}{\mathbf{d} \mathbf{x}} & =\frac{\frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta+\mathbf{r} \cos \theta}{\frac{\mathbf{d} \mathbf{r}}{\mathbf{d} \theta} \cos \theta-\mathbf{r} \sin \theta}=\frac{\cos \theta \sin \theta+(\mathbf{1}+\sin \theta) \cos \theta}{\cos \theta \cos \theta-(\mathbf{1}+\sin \theta) \sin \theta} \\
& =\frac{\cos \theta(\mathbf{1}+\mathbf{2} \sin \theta)}{\mathbf{1}-\mathbf{2} \sin ^{2} \theta-\sin \theta}=\frac{\cos \theta(\mathbf{1}+\mathbf{2} \sin \theta)}{(\mathbf{1}+\sin \theta)(\mathbf{1}-\mathbf{2} \sin \theta)}
\end{aligned}
$$

The slope of the tangent at the point where $\theta=\frac{\pi}{3}$ is

$$
\begin{aligned}
& \left.\quad \frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\theta=\frac{\pi}{3}}=\frac{\cos \left(\frac{\pi}{3}\right)\left(\mathbf{1}+2 \sin \left(\frac{\pi}{3}\right)\right)}{\left(1+\sin \left(\frac{\pi}{3}\right)\right)\left(\mathbf{1}-\mathbf{2} \sin \left(\frac{\pi}{3}\right)\right)} \\
& =\frac{\frac{1}{2}(\mathbf{1}+\sqrt{\mathbf{3}})}{\left(1+\frac{\sqrt{3}}{2}\right)(\mathbf{1}-\sqrt{3})}
\end{aligned}
$$

Example For the cardioid $\mathbf{r}=\mathbf{1}+\sin \theta$ find the slope of the tangent line when $\theta=\frac{\pi}{3}$. Solution

$$
\begin{aligned}
\frac{\mathbf{d y}}{\mathbf{d x}} & =\frac{\frac{\mathbf{d r}}{\mathrm{d} \theta} \sin \theta+\mathbf{r} \cos \theta}{\frac{\mathbf{d r}}{\mathrm{d} \theta} \cos \theta-\mathbf{r} \sin \theta}=\frac{\cos \theta \sin \theta+(\mathbf{1}+\sin \theta) \cos \theta}{\cos \theta \cos \theta-(\mathbf{1}+\sin \theta) \sin \theta} \\
& =\frac{\cos \theta(\mathbf{1}+\mathbf{2} \sin \theta)}{\mathbf{1}-\mathbf{2} \sin ^{2} \theta-\sin \theta}=\frac{\cos \theta(\mathbf{1}+\mathbf{2} \sin \theta)}{(\mathbf{1}+\sin \theta)(\mathbf{1}-\mathbf{2} \sin \theta)}
\end{aligned}
$$

The slope of the tangent at the point where $\theta=\frac{\pi}{3}$ is

$$
\begin{aligned}
&\left.\frac{\mathbf{d y}}{\mathbf{d x}}\right|_{\theta=\frac{\pi}{3}}=\frac{\cos \left(\frac{\pi}{3}\right)\left(1+2 \sin \left(\frac{\pi}{3}\right)\right)}{\left(1+\sin \left(\frac{\pi}{3}\right)\right)\left(1-2 \sin \left(\frac{\pi}{3}\right)\right)} \\
&=\frac{\frac{1}{2}(1+\sqrt{3})}{\left(1+\frac{\sqrt{3}}{2}\right)(1-\sqrt{3})}=\frac{1+\sqrt{3}}{(2+\sqrt{3})(1-\sqrt{3})}
\end{aligned}
$$

Example For the cardioid $\mathbf{r}=\mathbf{1}+\sin \theta$ find the slope of the tangent line when $\theta=\frac{\pi}{3}$. Solution

$$
\begin{aligned}
\frac{\mathbf{d y}}{\mathbf{d x}} & =\frac{\frac{\mathbf{d r}}{\mathrm{d} \theta} \sin \theta+\mathbf{r} \cos \theta}{\frac{\mathbf{d r}}{\mathrm{d} \theta} \cos \theta-\mathbf{r} \sin \theta}=\frac{\cos \theta \sin \theta+(\mathbf{1}+\sin \theta) \cos \theta}{\cos \theta \cos \theta-(\mathbf{1}+\sin \theta) \sin \theta} \\
& =\frac{\cos \theta(\mathbf{1}+\mathbf{2} \sin \theta)}{\mathbf{1}-\mathbf{2} \sin ^{2} \theta-\sin \theta}=\frac{\cos \theta(\mathbf{1}+\mathbf{2} \sin \theta)}{(\mathbf{1}+\sin \theta)(\mathbf{1}-\mathbf{2} \sin \theta)}
\end{aligned}
$$

The slope of the tangent at the point where $\theta=\frac{\pi}{3}$ is

$$
\begin{gathered}
\left.\frac{\mathbf{d y}}{\mathbf{d x}}\right|_{\theta=\frac{\pi}{3}}=\frac{\cos \left(\frac{\pi}{3}\right)\left(1+2 \sin \left(\frac{\pi}{3}\right)\right)}{\left(1+\sin \left(\frac{\pi}{3}\right)\right)\left(1-2 \sin \left(\frac{\pi}{3}\right)\right)} \\
=\frac{\frac{1}{2}(1+\sqrt{3})}{\left(1+\frac{\sqrt{3}}{2}\right)(1-\sqrt{3})}=\frac{1+\sqrt{3}}{(2+\sqrt{3})(1-\sqrt{3})}=\frac{1+\sqrt{3}}{-1-\sqrt{3}}
\end{gathered}
$$

Example For the cardioid $\mathbf{r}=\mathbf{1}+\sin \theta$ find the slope of the tangent line when $\theta=\frac{\pi}{3}$. Solution

$$
\begin{aligned}
\frac{\mathbf{d y}}{\mathbf{d x}} & =\frac{\frac{\mathbf{d r}}{\mathrm{d} \theta} \sin \theta+\mathbf{r} \cos \theta}{\frac{\mathbf{d r}}{\mathrm{d} \theta} \cos \theta-\mathbf{r} \sin \theta}=\frac{\cos \theta \sin \theta+(\mathbf{1}+\sin \theta) \cos \theta}{\cos \theta \cos \theta-(\mathbf{1}+\sin \theta) \sin \theta} \\
& =\frac{\cos \theta(\mathbf{1}+\mathbf{2} \sin \theta)}{\mathbf{1}-\mathbf{2} \sin ^{2} \theta-\sin \theta}=\frac{\cos \theta(\mathbf{1}+\mathbf{2} \sin \theta)}{(\mathbf{1}+\sin \theta)(\mathbf{1}-\mathbf{2} \sin \theta)}
\end{aligned}
$$

The slope of the tangent at the point where $\theta=\frac{\pi}{3}$ is

$$
\begin{gathered}
\left.\frac{\mathbf{d y}}{\mathbf{d x}}\right|_{\theta=\frac{\pi}{3}}=\frac{\cos \left(\frac{\pi}{3}\right)\left(1+2 \sin \left(\frac{\pi}{3}\right)\right)}{\left(1+\sin \left(\frac{\pi}{3}\right)\right)\left(1-2 \sin \left(\frac{\pi}{3}\right)\right)} \\
=\frac{\frac{1}{2}(1+\sqrt{3})}{\left(1+\frac{\sqrt{3}}{2}\right)(1-\sqrt{3})}=\frac{1+\sqrt{3}}{(2+\sqrt{3})(1-\sqrt{3})}=\frac{1+\sqrt{3}}{-1-\sqrt{3}}=-1
\end{gathered}
$$

Area under a polar graph $\mathbf{r}=\mathbf{f}(\theta)$

The area of a region "under" a polar function $\mathbf{r}=\mathbf{f}(\theta)$ is described by either of the following formulas.

Area under a polar graph $\mathbf{r}=\mathbf{f}(\theta)$

The area of a region "under" a polar function $\mathbf{r}=\mathbf{f}(\theta)$ is described by either of the following formulas. These formulas arise from the fact that the area of a $\theta_{1} \leq \theta \leq \theta_{2}$ portion of a circle of radius r is given by $\frac{1}{2}\left(\theta_{2}-\theta_{1}\right) r^{2}$.

Area under a polar graph $\mathbf{r}=\mathbf{f}(\theta)$

The area of a region "under" a polar function $\mathbf{r}=\mathbf{f}(\theta)$ is described by either of the following formulas. These formulas arise from the fact that the area of a $\theta_{1} \leq \theta \leq \theta_{2}$ portion of a circle of radius r is given by $\frac{1}{2}\left(\theta_{2}-\theta_{1}\right) r^{2}$.

$$
\mathbf{A}=\int_{\mathbf{a}}^{\mathbf{b}} \frac{1}{2}[\mathbf{f}(\theta)]^{2} \mathbf{d} \theta
$$

Area under a polar graph $\mathbf{r}=\mathbf{f}(\theta)$

The area of a region "under" a polar function $\mathbf{r}=\mathbf{f}(\theta)$ is described by either of the following formulas. These formulas arise from the fact that the area of a $\theta_{1} \leq \theta \leq \theta_{2}$ portion of a circle of radius r is given by $\frac{1}{2}\left(\theta_{2}-\theta_{1}\right) r^{2}$.

$$
\mathbf{A}=\int_{\mathbf{a}}^{\mathbf{b}} \frac{1}{2}[\mathbf{f}(\theta)]^{2} \mathbf{d} \theta,
$$

$$
\mathbf{A}=\int_{\mathbf{a}}^{\mathbf{b}} \frac{1}{\mathbf{2}} \mathbf{r}^{2} \mathbf{d} \theta
$$

Area under a polar graph $\mathbf{r}=\mathbf{f}(\theta)$

The area of a region "under" a polar function $\mathbf{r}=\mathbf{f}(\theta)$ is described by either of the following formulas. These formulas arise from the fact that the area of a $\theta_{1} \leq \theta \leq \theta_{2}$ portion of a circle of radius r is given by $\frac{1}{2}\left(\theta_{2}-\theta_{1}\right) r^{2}$.

$$
\mathbf{A}=\int_{\mathbf{a}}^{\mathbf{b}} \frac{1}{2}[\mathbf{f}(\theta)]^{2} \mathbf{d} \theta
$$

$$
\mathbf{A}=\int_{\mathbf{a}}^{\mathbf{b}} \frac{1}{2} \mathbf{r}^{2} \mathbf{d} \theta
$$

Also see the two figures below.

Area under a polar graph $\mathbf{r}=\mathbf{f}(\theta)$

Area under a polar graph $\mathbf{r}=\mathbf{f}(\theta)$

Example Find the area enclosed by one loop of the four-leaved rose $r=\cos 2 \theta$.

Example Find the area enclosed by one loop of the four-leaved rose $r=\cos 2 \theta$. Solution First recall the picture of this curve:

Example Find the area enclosed by one loop of the four-leaved rose $r=\cos 2 \theta$. Solution First recall the picture of this curve:

Example Find the area enclosed by one loop of the four-leaved rose $r=\cos 2 \theta$. Solution First recall the picture of this curve:

By our area formulas,

Example Find the area enclosed by one loop of the four-leaved rose $r=\cos 2 \theta$. Solution First recall the picture of this curve:

By our area formulas,
Area

Example Find the area enclosed by one loop of the four-leaved rose $r=\cos 2 \theta$. Solution First recall the picture of this curve:

By our area formulas,

$$
\text { Area }=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} r^{2} d \theta
$$

Example Find the area enclosed by one loop of the four-leaved rose $r=\cos 2 \theta$. Solution First recall the picture of this curve:

By our area formulas,

$$
\text { Area }=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} \mathbf{r}^{2} d \theta=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos ^{2} 2 \theta \mathbf{d} \theta
$$

Example Find the area enclosed by one loop of the four-leaved rose $r=\cos 2 \theta$. Solution First recall the picture of this curve:

By our area formulas,

$$
\text { Area }=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} \mathbf{r}^{2} d \theta=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos ^{2} 2 \theta \mathbf{d} \theta=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos ^{2} 2 \theta \mathbf{d} \theta
$$

Example Find the area enclosed by one loop of the four-leaved rose $r=\cos 2 \theta$. Solution First recall the picture of this curve:

By our area formulas,

$$
\begin{aligned}
& \text { Area }=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} \mathbf{r}^{2} \mathbf{d} \theta=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos ^{2} 2 \theta \mathbf{d} \theta=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos ^{2} 2 \theta \mathbf{d} \theta \\
& \quad=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2}(1+\cos 4 \theta) \mathbf{d} \theta
\end{aligned}
$$

Example Find the area enclosed by one loop of the four-leaved rose $r=\cos 2 \theta$. Solution First recall the picture of this curve:

By our area formulas,

$$
\begin{aligned}
& \text { Area }=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} \mathbf{r}^{2} d \theta=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos ^{2} 2 \theta \mathbf{d} \theta=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos ^{2} 2 \theta \mathbf{d} \theta \\
& \quad=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2}(1+\cos 4 \theta) \mathbf{d} \theta=\left.\frac{1}{4}\left(\theta+\frac{1}{4} \sin 4 \theta\right)\right|_{-\frac{\pi}{4}} ^{\frac{\pi}{4}}
\end{aligned}
$$

Example Find the area enclosed by one loop of the four-leaved rose $r=\cos 2 \theta$. Solution First recall the picture of this curve:

By our area formulas,

$$
\begin{aligned}
& \text { Area }=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} \mathbf{r}^{2} d \theta=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos ^{2} 2 \theta \mathbf{d} \theta=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos ^{2} 2 \theta \mathbf{d} \theta \\
& \quad=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2}(1+\cos 4 \theta) \mathbf{d} \theta=\left.\frac{1}{4}\left(\theta+\frac{1}{4} \sin 4 \theta\right)\right|_{-\frac{\pi}{4}} ^{\frac{\pi}{4}}=\frac{\pi}{8} .
\end{aligned}
$$

Speed and length

Definition The velocity vector of a curve $\mathbf{C}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))$ is

Speed and length

Definition The velocity vector of a curve $\mathbf{C}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))$ is $\mathbf{C}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right.$).

Speed and length

Definition The velocity vector of a curve $\mathbf{C}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))$ is $\mathbf{C}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$. The speed of $\mathbf{C}(\mathbf{t})$ is

Speed and length

Definition The velocity vector of a curve $\mathbf{C}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))$ is $\mathbf{C}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$. The speed of $\mathbf{C}(\mathbf{t})$ is
$\mathbf{s}(\mathbf{t})=\left|\mathbf{C}^{\prime}(\mathbf{t})\right|$

Speed and length

Definition The velocity vector of a curve $\mathbf{C}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))$ is $\mathbf{C}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$. The speed of $\mathbf{C}(\mathbf{t})$ is
$\mathbf{s}(\mathbf{t})=\left|\mathbf{C}^{\prime}(\mathbf{t})\right|=\sqrt{\left(\mathbf{x}^{\prime}(\mathbf{t})\right)^{2}+\left(\mathbf{y}^{\prime}(\mathbf{t})\right)^{2}}$.

Speed and length

Definition The velocity vector of a curve $\mathbf{C}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))$ is $\mathbf{C}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$. The speed of $\mathbf{C}(\mathbf{t})$ is
$\mathbf{s}(\mathbf{t})=\left|\mathbf{C}^{\prime}(\mathbf{t})\right|=\sqrt{\left(\mathbf{x}^{\prime}(\mathbf{t})\right)^{2}+\left(\mathbf{y}^{\prime}(\mathbf{t})\right)^{2}}$.
Since the integral of the speed is the distance traveled or length for $\mathbf{C}:[\mathbf{a}, \mathbf{b}] \rightarrow \mathbb{R}^{2}$,

Speed and length

Definition The velocity vector of a curve $\mathbf{C}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))$ is $\mathbf{C}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$. The speed of $\mathbf{C}(\mathbf{t})$ is
$\mathrm{s}(\mathrm{t})=\left|\mathbf{C}^{\prime}(\mathbf{t})\right|=\sqrt{\left(\mathbf{x}^{\prime}(\mathbf{t})\right)^{2}+\left(\mathbf{y}^{\prime}(\mathbf{t})\right)^{2}}$.
Since the integral of the speed is the distance traveled or length for $\mathbf{C}:[\mathbf{a}, \mathbf{b}] \rightarrow \mathbb{R}^{2}$,

Length of a curve(C)

Speed and length

Definition The velocity vector of a curve $\mathbf{C}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))$ is $\mathbf{C}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$. The speed of $\mathbf{C}(\mathbf{t})$ is
$\mathbf{s}(\mathbf{t})=\left|\mathbf{C}^{\prime}(\mathbf{t})\right|=\sqrt{\left(\mathbf{x}^{\prime}(\mathbf{t})\right)^{2}+\left(\mathbf{y}^{\prime}(\mathbf{t})\right)^{2}}$.
Since the integral of the speed is the distance traveled or length for $\mathbf{C}:[\mathbf{a}, \mathbf{b}] \rightarrow \mathbb{R}^{2}$,

Length of a curve $(\mathbf{C})=\int_{a}^{b} s(t) d t$

Speed and length

Definition The velocity vector of a curve $\mathbf{C}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))$ is $\mathbf{C}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$. The speed of $\mathbf{C}(\mathbf{t})$ is
$\mathbf{s}(\mathbf{t})=\left|\mathbf{C}^{\prime}(\mathbf{t})\right|=\sqrt{\left(\mathbf{x}^{\prime}(\mathbf{t})\right)^{2}+\left(\mathbf{y}^{\prime}(\mathbf{t})\right)^{2}}$.
Since the integral of the speed is the distance traveled or length for $\mathbf{C}:[\mathbf{a}, \mathbf{b}] \rightarrow \mathbb{R}^{2}$,

Length of a curve $(\mathbf{C})=\int_{a}^{b} s(t) d t$

$$
=\int_{\mathbf{a}}^{\mathbf{b}} \sqrt{\left(\mathbf{x}^{\prime}(\mathbf{t})\right)^{2}+\left(\mathbf{y}^{\prime}(\mathbf{t})\right)^{2}} \mathbf{d t} .
$$

Problem 30 As the parameter t increases forever, starting at $t=0$, the curve with parametric equations
$\left\{\begin{array}{c}x=e^{-t} \cos t, \\ y=e^{-t} \sin t\end{array}\right.$
spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \rightarrow \infty$.

Problem 30 As the parameter t increases forever, starting at $t=0$, the curve with parametric equations
$\left\{\begin{array}{c}x=e^{-t} \cos t, \\ y=e^{-t} \sin t\end{array}\right.$
spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \rightarrow \infty$. Find the length of this spiral curve.

Problem 30 As the parameter t increases forever, starting at $t=0$, the curve with parametric equations
$\left\{\begin{array}{c}x=e^{-t} \cos t, \\ y=e^{-t} \sin t\end{array}\right.$
spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \rightarrow \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve $\mathbf{c}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))=\left(\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}, \mathbf{e}^{-\mathbf{t}} \sin \mathbf{t} \mid\right.$ is $\mathbf{c}^{\prime}(\mathbf{t})$ and it is found by taking the derivative of the coordinate functions:

Problem 30 As the parameter t increases forever, starting at
$t=0$, the curve with parametric equations
$\left\{\begin{array}{c}x=e^{-t} \cos t, \\ y=e^{-t} \sin t\end{array}\right.$
spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \rightarrow \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve $\mathbf{c}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))=\left(\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}, \mathbf{e}^{-\mathbf{t}} \sin \mathbf{t} \mid\right.$ is $\mathbf{c}^{\prime}(\mathbf{t})$ and it is found by taking the derivative of the coordinate functions:
$\mathbf{c}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$.

Problem 30 As the parameter t increases forever, starting at
$t=0$, the curve with parametric equations
$\left\{\begin{array}{c}x=e^{-t} \cos t, \\ y=e^{-t} \sin t\end{array}\right.$
spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \rightarrow \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve $\mathbf{c}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))=\left(\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}, \mathbf{e}^{-\mathbf{t}} \sin \mathbf{t} \mid\right.$ is $\mathbf{c}^{\prime}(\mathbf{t})$ and it is found by taking the derivative of the coordinate functions:
$\mathbf{c}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$. So,
$\mathbf{c}^{\prime}(\mathbf{t})=\left(-\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t},-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t}+\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}\right)$

Problem 30 As the parameter t increases forever, starting at
$t=0$, the curve with parametric equations
$\left\{\begin{array}{c}x=e^{-t} \cos t, \\ y=e^{-t} \sin t\end{array}\right.$
spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \rightarrow \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve $\mathbf{c}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))=\left(\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}, \mathbf{e}^{-\mathbf{t}} \sin \mathbf{t} \mid\right.$ is $\mathbf{c}^{\prime}(\mathbf{t})$ and it is found by taking the derivative of the coordinate functions:
$\mathbf{c}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$. So,
$\mathbf{c}^{\prime}(\mathbf{t})=\left(-\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t},-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t}+\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}\right)=$
$-\mathbf{e}^{-\mathbf{t}}(\cos \mathbf{t}+\sin t, \sin t-\cos t)$.

Problem 30 As the parameter t increases forever, starting at
$t=0$, the curve with parametric equations
$\left\{\begin{array}{c}x=e^{-t} \cos t, \\ y=e^{-t} \sin t\end{array}\right.$
spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \rightarrow \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve $\mathbf{c}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))=\left(\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}, \mathbf{e}^{-\mathbf{t}} \sin \mathbf{t} \mid\right.$ is $\mathbf{c}^{\prime}(\mathbf{t})$ and it is found by taking the derivative of the coordinate functions:
$\mathbf{c}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$. So,
$\mathbf{c}^{\prime}(\mathbf{t})=\left(-\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t},-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t}+\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}\right)=$ $-\mathbf{e}^{-\mathbf{t}}(\cos \mathbf{t}+\sin \mathbf{t}, \sin \mathbf{t}-\cos \mathbf{t})$. Recall that the speed $\mathbf{s}(\mathbf{t})$ of $\mathbf{c}(\mathbf{t})$ is $\left|\mathbf{c}^{\prime}(\mathbf{t})\right|$

Problem 30 As the parameter t increases forever, starting at
$t=0$, the curve with parametric equations
$\left\{\begin{array}{c}x=e^{-t} \cos t, \\ y=e^{-t} \sin t\end{array}\right.$
spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \rightarrow \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve $\mathbf{c}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))=\left(\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}, \mathbf{e}^{-\mathbf{t}} \sin \mathbf{t} \mid\right.$ is $\mathbf{c}^{\prime}(\mathbf{t})$ and it is found by taking the derivative of the coordinate functions:
$\mathbf{c}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$. So,
$\mathbf{c}^{\prime}(\mathbf{t})=\left(-\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t},-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t}+\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}\right)=$
$-\mathbf{e}^{-\mathbf{t}}(\cos \mathbf{t}+\sin \mathbf{t}, \sin \mathbf{t}-\cos \mathbf{t})$. Recall that the speed $\mathbf{s}(\mathbf{t})$ of $\mathbf{c}(\mathbf{t})$ is $\left|\mathbf{c}^{\prime}(\mathbf{t})\right|$ which is equal to $\sqrt{\left(\mathbf{x}^{\prime}(\mathbf{t})\right)^{2}+\left(\mathbf{y}^{\prime}(\mathbf{t})\right)^{2}}$

Problem 30 As the parameter t increases forever, starting at
$t=0$, the curve with parametric equations
$\left\{\begin{array}{c}x=e^{-t} \cos t, \\ y=e^{-t} \sin t\end{array}\right.$
spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \rightarrow \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve $\mathbf{c}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))=\left(\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}, \mathbf{e}^{-\mathbf{t}} \sin \mathbf{t} \mid\right.$ is $\mathbf{c}^{\prime}(\mathbf{t})$ and it is found by taking the derivative of the coordinate functions:
$\mathbf{c}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$. So,
$\mathbf{c}^{\prime}(\mathbf{t})=\left(-\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t},-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t}+\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}\right)=$ $-\mathbf{e}^{-\mathbf{t}}(\cos \mathbf{t}+\sin \mathbf{t}, \sin \mathbf{t}-\cos \mathbf{t})$. Recall that the speed $\mathbf{s}(\mathbf{t})$ of $\mathbf{c}(\mathbf{t})$ is $\left|\mathbf{c}^{\prime}(\mathbf{t})\right|$ which is equal to $\sqrt{\left(\mathbf{x}^{\prime}(\mathbf{t})\right)^{2}+\left(\mathbf{y}^{\prime}(\mathbf{t})\right)^{2}}$ and the length is the integral of the speed:

Problem 30 As the parameter t increases forever, starting at $t=0$, the curve with parametric equations
$\left\{\begin{array}{c}x=e^{-t} \cos t, \\ y=e^{-t} \sin t\end{array}\right.$
spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \rightarrow \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve $\mathbf{c}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))=\left(\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}, \mathbf{e}^{-\mathbf{t}} \sin \mathbf{t} \mid\right.$ is $\mathbf{c}^{\prime}(\mathbf{t})$ and it is found by taking the derivative of the coordinate functions:
$\mathbf{c}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$. So,
$\mathbf{c}^{\prime}(\mathbf{t})=\left(-\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t},-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t}+\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}\right)=$ $-\mathbf{e}^{-\mathbf{t}}(\cos \mathbf{t}+\sin \mathbf{t}, \sin \mathbf{t}-\cos \mathbf{t})$. Recall that the speed $\mathbf{s}(\mathbf{t})$ of $\mathbf{c}(\mathbf{t})$ is $\left|\mathbf{c}^{\prime}(\mathbf{t})\right|$ which is equal to $\sqrt{\left(\mathbf{x}^{\prime}(\mathbf{t})\right)^{2}+\left(\mathbf{y}^{\prime}(\mathbf{t})\right)^{2}}$ and the length is the integral of the speed:
$\int_{0}^{\infty} \sqrt{e^{-2 t}\left(\cos ^{2} t+\sin ^{2} t+2 \cos t \sin t+\sin ^{2} t+\cos ^{2} t-2 \cos t \sin t\right)} d t$

Problem 30 As the parameter t increases forever, starting at $t=0$, the curve with parametric equations
$\left\{\begin{array}{c}x=e^{-t} \cos t, \\ y=e^{-t} \sin t\end{array}\right.$
spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \rightarrow \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve $\mathbf{c}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))=\left(\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}, \mathbf{e}^{-\mathbf{t}} \sin \mathbf{t} \mid\right.$ is $\mathbf{c}^{\prime}(\mathbf{t})$ and it is found by taking the derivative of the coordinate functions:
$\mathbf{c}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$. So,
$\mathbf{c}^{\prime}(\mathbf{t})=\left(-\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t},-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t}+\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}\right)=$ $-\mathbf{e}^{-\mathbf{t}}(\cos \mathbf{t}+\sin \mathbf{t}, \sin \mathbf{t}-\cos \mathbf{t})$. Recall that the speed $\mathbf{s}(\mathbf{t})$ of $\mathbf{c}(\mathbf{t})$ is $\left|\mathbf{c}^{\prime}(\mathbf{t})\right|$ which is equal to $\sqrt{\left(\mathbf{x}^{\prime}(\mathbf{t})\right)^{2}+\left(\mathbf{y}^{\prime}(\mathbf{t})\right)^{2}}$ and the length is the integral of the speed:
$\int_{0}^{\infty} \sqrt{e^{-2 t}\left(\cos ^{2} t+\sin ^{2} t+2 \cos t \sin t+\sin ^{2} t+\cos ^{2} t-2 \cos t \sin t\right)} d t$

$$
=\int_{0}^{\infty} e^{-t} \sqrt{2} d t
$$

Problem 30 As the parameter t increases forever, starting at $t=0$, the curve with parametric equations
$\left\{\begin{array}{c}x=e^{-t} \cos t, \\ y=e^{-t} \sin t\end{array}\right.$
spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \rightarrow \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve $\mathbf{c}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))=\left(\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}, \mathbf{e}^{-\mathbf{t}} \sin \mathbf{t} \mid\right.$ is $\mathbf{c}^{\prime}(\mathbf{t})$ and it is found by taking the derivative of the coordinate functions:
$\mathbf{c}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$. So,
$\mathbf{c}^{\prime}(\mathbf{t})=\left(-\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t},-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t}+\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}\right)=$
$-\mathbf{e}^{-\mathbf{t}}(\cos \mathbf{t}+\sin \mathbf{t}, \sin \mathbf{t}-\cos \mathbf{t})$. Recall that the speed $\mathbf{s}(\mathbf{t})$ of $\mathbf{c}(\mathbf{t})$ is $\left|\mathbf{c}^{\prime}(\mathbf{t})\right|$ which is equal to $\sqrt{\left(\mathbf{x}^{\prime}(\mathbf{t})\right)^{2}+\left(\mathbf{y}^{\prime}(\mathbf{t})\right)^{2}}$ and the length is the integral of the speed:

$$
\int_{0}^{\infty} \sqrt{e^{-2 t}\left(\cos ^{2} t+\sin ^{2} t+2 \cos t \sin t+\sin ^{2} t+\cos ^{2} t-2 \cos t \sin t\right)} d t
$$

$$
=\int_{0}^{\infty} e^{-t} \sqrt{2} d t=\lim _{t \rightarrow \infty}-\left.\sqrt{2} e^{-t}\right|_{0} ^{t}
$$

Problem 30 As the parameter t increases forever, starting at $t=0$, the curve with parametric equations
$\left\{\begin{array}{c}x=e^{-t} \cos t, \\ y=e^{-t} \sin t\end{array}\right.$
spirals inward toward the origin, getting ever closer to the origin (but never actually reaching) as $t \rightarrow \infty$. Find the length of this spiral curve.

Solution The tangent vector to the curve $\mathbf{c}(\mathbf{t})=(\mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}))=\left(\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}, \mathbf{e}^{-\mathbf{t}} \sin \mathbf{t} \mid\right.$ is $\mathbf{c}^{\prime}(\mathbf{t})$ and it is found by taking the derivative of the coordinate functions:
$\mathbf{c}^{\prime}(\mathbf{t})=\left(\mathbf{x}^{\prime}(\mathbf{t}), \mathbf{y}^{\prime}(\mathbf{t})\right)$. So,
$\mathbf{c}^{\prime}(\mathbf{t})=\left(-\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t},-\mathbf{e}^{-\mathbf{t}} \sin \mathbf{t}+\mathbf{e}^{-\mathbf{t}} \cos \mathbf{t}\right)=$
$-\mathbf{e}^{-\mathbf{t}}(\cos \mathbf{t}+\sin \mathbf{t}, \sin \mathbf{t}-\cos \mathbf{t})$. Recall that the speed $\mathbf{s}(\mathbf{t})$ of $\mathbf{c}(\mathbf{t})$ is $\left|\mathbf{c}^{\prime}(\mathbf{t})\right|$ which is equal to $\sqrt{\left(\mathbf{x}^{\prime}(\mathbf{t})\right)^{2}+\left(\mathbf{y}^{\prime}(\mathbf{t})\right)^{2}}$ and the length is the integral of the speed:
$\int_{0}^{\infty} \sqrt{e^{-2 t}\left(\cos ^{2} t+\sin ^{2} t+2 \cos t \sin t+\sin ^{2} t+\cos ^{2} t-2 \cos t \sin t\right)} d t$

$$
=\int_{0}^{\infty} e^{-t} \sqrt{2} d t=\lim _{t \rightarrow \infty}-\left.\sqrt{2} e^{-t}\right|_{0} ^{t}=\sqrt{2}
$$

Length formula

In polar coordinates $\mathbf{x}=\mathbf{r} \cos \theta, \mathbf{y}=\mathbf{r} \sin \theta$.

Length formula

In polar coordinates $\mathbf{x}=\mathbf{r} \cos \theta, \mathbf{y}=\mathbf{r} \sin \theta$. Then $\frac{\mathbf{d x}}{\mathrm{d} \theta}$

Length formula

In polar coordinates $\mathbf{x}=\mathbf{r} \cos \theta, \mathbf{y}=\mathbf{r} \sin \theta$. Then

$$
\frac{\mathbf{d x}}{\mathbf{d} \theta}=\frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta-\mathbf{r} \sin \theta
$$

Length formula

In polar coordinates $\mathbf{x}=\mathbf{r} \cos \theta, \mathbf{y}=\mathbf{r} \sin \theta$. Then

$$
\frac{\mathbf{d} \mathbf{x}}{\mathbf{d} \theta}=\frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta-\mathbf{r} \sin \theta \quad \frac{\mathbf{d y}}{\mathbf{d} \theta}
$$

Length formula

In polar coordinates $\mathbf{x}=\mathbf{r} \cos \theta, \mathbf{y}=\mathbf{r} \sin \theta$. Then

$$
\frac{\mathbf{d x}}{\mathbf{d} \theta}=\frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta-\mathbf{r} \sin \theta \quad \frac{\mathbf{d y}}{\mathbf{d} \theta}=\frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta+\mathbf{r} \cos \theta
$$

Length formula

In polar coordinates $\mathbf{x}=\mathbf{r} \cos \theta, \mathbf{y}=\mathbf{r} \sin \theta$. Then

$$
\frac{\mathbf{d} \mathbf{x}}{\mathbf{d} \theta}=\frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta-\mathbf{r} \sin \theta \quad \frac{\mathbf{d y}}{\mathbf{d} \theta}=\frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta+\mathbf{r} \cos \theta
$$

Using $\cos ^{2} \theta+\sin ^{2} \theta=1$, we get

Length formula

In polar coordinates $\mathbf{x}=\mathbf{r} \cos \theta, \mathbf{y}=\mathbf{r} \sin \theta$. Then

$$
\frac{\mathbf{d x}}{\mathbf{d} \theta}=\frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta-\mathbf{r} \sin \theta \quad \frac{\mathbf{d y}}{\mathbf{d} \theta}=\frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta+\mathbf{r} \cos \theta .
$$

Using $\cos ^{2} \theta+\sin ^{2} \theta=1$, we get

$$
\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}
$$

Length formula

In polar coordinates $\mathbf{x}=\mathbf{r} \cos \theta, \mathbf{y}=\mathbf{r} \sin \theta$. Then

$$
\frac{\mathbf{d} \mathbf{x}}{\mathbf{d} \theta}=\frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta-\mathbf{r} \sin \theta \quad \frac{\mathbf{d y}}{\mathbf{d} \theta}=\frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta+\mathbf{r} \cos \theta .
$$

Using $\cos ^{2} \theta+\sin ^{2} \theta=1$, we get

$$
\begin{gathered}
\left(\frac{\mathbf{d} \mathbf{x}}{\mathbf{d} \theta}\right)^{2}+\left(\frac{\mathbf{d} \mathbf{y}}{\mathbf{d} \theta}\right)^{2}=\left(\frac{\mathbf{d r}}{\mathbf{d} \theta}\right)^{2} \cos ^{2} \theta-\mathbf{2} \mathbf{r} \frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta \sin \theta+\mathbf{r}^{2} \sin ^{2} \theta \\
+\left(\frac{\mathbf{d r}}{\mathbf{d} \theta}\right)^{2} \sin ^{2} \theta+\mathbf{2 r} \frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta \cos \theta+\mathbf{r}^{2} \sin ^{2} \theta
\end{gathered}
$$

Length formula

In polar coordinates $\mathbf{x}=\mathbf{r} \cos \theta, \mathbf{y}=\mathbf{r} \sin \theta$. Then

$$
\frac{\mathbf{d x}}{\mathbf{d} \theta}=\frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta-\mathbf{r} \sin \theta \quad \frac{\mathbf{d y}}{\mathbf{d} \theta}=\frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta+\mathbf{r} \cos \theta .
$$

Using $\cos ^{2} \theta+\sin ^{2} \theta=1$, we get

$$
\begin{gathered}
\left(\frac{\mathbf{d} \mathbf{x}}{\mathbf{d} \theta}\right)^{2}+\left(\frac{\mathbf{d} \mathbf{y}}{\mathbf{d} \theta}\right)^{2}=\left(\frac{\mathbf{d} \mathbf{r}}{\mathbf{d} \theta}\right)^{2} \cos ^{2} \theta-\mathbf{2} \mathbf{r} \frac{\mathbf{r}}{\mathbf{d} \theta} \cos \theta \sin \theta+\mathbf{r}^{2} \sin ^{2} \theta \\
+\left(\frac{\mathbf{d} \mathbf{r}}{\mathbf{d} \theta}\right)^{2} \sin ^{2} \theta+2 \mathbf{r} \frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta \cos \theta+\mathbf{r}^{2} \sin ^{2} \theta \\
=\left(\frac{\mathbf{d r}}{\mathbf{d} \theta}\right)^{2}+\mathbf{r}^{2}
\end{gathered}
$$

Length formula

In polar coordinates $\mathbf{x}=\mathbf{r} \cos \theta, \mathbf{y}=\mathbf{r} \sin \theta$. Then

$$
\frac{\mathbf{d x}}{\mathbf{d} \theta}=\frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta-\mathbf{r} \sin \theta \quad \frac{\mathbf{d y}}{\mathbf{d} \theta}=\frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta+\mathbf{r} \cos \theta .
$$

Using $\cos ^{2} \theta+\sin ^{2} \theta=1$, we get

$$
\begin{gathered}
\left(\frac{\mathbf{d} \mathbf{x}}{\mathbf{d} \theta}\right)^{2}+\left(\frac{\mathbf{d} \mathbf{y}}{\mathbf{d} \theta}\right)^{2}=\left(\frac{\mathbf{d} \mathbf{r}}{\mathbf{d} \theta}\right)^{2} \cos ^{2} \theta-2 \mathbf{r} \frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta \sin \theta+\mathbf{r}^{2} \sin ^{2} \theta \\
+\left(\frac{\mathbf{d r}}{\mathbf{d} \theta}\right)^{2} \sin ^{2} \theta+2 \mathbf{r} \frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta \cos \theta+\mathbf{r}^{2} \sin ^{2} \theta \\
=\left(\frac{\mathbf{d r}}{\mathbf{d} \theta}\right)^{2}+\mathbf{r}^{2}
\end{gathered}
$$

Thus the length \mathbf{L} of a polar curve $\mathbf{r}=\mathbf{f}(\theta), a \leq \theta \leq b$, is:

Length formula

In polar coordinates $\mathbf{x}=\mathbf{r} \cos \theta, \mathbf{y}=\mathbf{r} \sin \theta$. Then

$$
\frac{\mathbf{d x}}{\mathbf{d} \theta}=\frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta-\mathbf{r} \sin \theta \quad \frac{\mathbf{d y}}{\mathbf{d} \theta}=\frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta+\mathbf{r} \cos \theta .
$$

Using $\cos ^{2} \theta+\sin ^{2} \theta=1$, we get

$$
\begin{gathered}
\left(\frac{\mathbf{d} \mathbf{x}}{\mathbf{d} \theta}\right)^{2}+\left(\frac{\mathbf{d} \mathbf{y}}{\mathbf{d} \theta}\right)^{2}=\left(\frac{\mathbf{d r}}{\mathbf{d} \theta}\right)^{2} \cos ^{2} \theta-2 \mathbf{r} \frac{\mathbf{d r}}{\mathbf{d} \theta} \cos \theta \sin \theta+\mathbf{r}^{2} \sin ^{2} \theta \\
+\left(\frac{\mathbf{d r}}{\mathbf{d} \theta}\right)^{2} \sin ^{2} \theta+2 \mathbf{r} \frac{\mathbf{d r}}{\mathbf{d} \theta} \sin \theta \cos \theta+\mathbf{r}^{2} \sin ^{2} \theta \\
=\left(\frac{\mathbf{d} \mathbf{r}}{\mathbf{d} \theta}\right)^{2}+\mathbf{r}^{2}
\end{gathered}
$$

Thus the length \mathbf{L} of a polar curve $\mathbf{r}=\mathbf{f}(\theta), a \leq \theta \leq b$, is:

$$
\mathbf{L}=\int_{\mathbf{a}}^{\mathbf{b}} \sqrt{\mathbf{r}^{2}+\left(\frac{\mathbf{d r}}{\mathbf{d} \theta}\right)^{2}} \mathbf{d} \theta
$$

