Polarization behavior of Polarized MIMO System Measurement, Modeling and Statistical Validation

Yohei Konishi

Takada laboratory Department of International Development Engineering Tokyo Institute of Technology

MCRG Joint Seminar

11 June, 2009

Outline

I. Motivation

- MIMO: Benefits and Issues
- Objective of This Study
- II. Previous Work
 - Measurement and Parameter estimation
 - Regression analysis of polarization behavior

III. Main Results

- Procedure of Hypothesis Testing
- Results

IV. Conclusions

Benefits of MIMO

• MIMO:

Multiple antennas at both Tx and Rx

- Benefits
 - Higher spectral efficiency
 - Higher throughput
 - Higher reliability

Pre-Condition: Multipath rich environment Receiver can separate the data stream

"The benefits" heavily depends on the propagation channel
 "Channel" is a main factor which we can not control.

Issues of MIMO

MCRG

In the real world

- Inadequate scattering environment = Ricean fading
- Inadequate antenna spacing = Data stream correlation
- "MIMO" discovered new dimension = Space
 ..but Space is also finite.
- New dimension again: Polarization
 - Orthogonal by nature (V and H)
 - At least two data streams even in the severe environment
 - Realize compact antenna system

Polarization diversity

is essential for MIMO (Spatial diversity) system

MIMO Wireless Router (D-Link Systems Inc.)

Objective

MCRG

Quantifying the degree of depolarization to compare different measurement data in a strictly same sense.

- Establishment of good channel model is essential for the all aspects of radio system design
 - Antenna, Signal processing algorithm and Modulation/coding technique
- What kind of factors are insufficient in the current channel model?
 - Investigation of temporal behavior caused by moving scatterers
 - Including diffuse scattering in the model
 - Consideration of spherical mode expansion (solving plan wave limitation)
 - Polarization model
 - Most of the existence models use very simplistic assumptions.
 - How does the co-polar ratio vary in different environments?
 - How can we compare existence measurement based models in a strictly same sense? Advanced statistical analysis is necessary.

Polarization: Theory and Practice

- Polarization: time variations of electric field
 - Depolarization
 - by Rain
 - by lonosphere (Faraday rotation)
 - by scattering: most significant cause for MIMO

Polarization: in Practice

Power "Leak" exists. Measurement based model

Measurement

Channel sounding syster

RUSK channel sounder

Carrier freq.	4.5 GHz
Bandwidth	120 MHz
BS antenna (V-H pol.)	Uniform Rectangular Array 2 × 4 × 2pol. Elements
MS antenna (V-H pol.)	Stacked Uniform Circular Array 2 × 24 × 2pol. elements
Transmit signal	Wideband multitone
Max. delay	3.2µs
No. of MIMO channels	1536

 Fully switched system
 Rubidium reference clocks for switching frame synchronization

Double-directional measurement

Data processing

Parameter estimation

• RIMAX:

Gradient-based maximum likelihood parameter estimation

- Including diffuse scattering components
- Based on the conjugate gradient optimization strategy
- Variance of estimated parameter is used to improve model reliability
- RIMAX outputs:

$\gamma_{VV}, \gamma_{VH}, \gamma_{HV}, \gamma_{HH}$	Complex polarimetric path weights
$ heta^{BS}, \phi^{BS}$	Elevation and Azimuth angle at BS
$ heta^{MS}, \phi^{MS}$	Elevation and Azimuth angle at MS
au	Delay

NCRG

Measurement

Environment

- BS : highest in the area
- MS interval: 20 m (along the street)
- 6 snapshots are taken every MS position (50-60 snapshots measured) Small Macrocell Scenario

BS height	85 m
MS height	1.80 m
BS-MS distance	230m ~ 400 m
MS status	Static; moving (slow walk)
Structure type	Residential & industrial

Layout of the scenario.

Kawasaki City, Japan

Data processing

Multipath clusterization

- Cluster:
 - set of paths experienced similar propagation mechanism
 - * Cluster-wise modeling approach was adopted as COST273 framwork
- Automatic multipath clusterization
 - Second treatment of measured data
 - Details can be found in [1] and [2]
- Notes for the data treatment
 - 6 snapshots for every MS position were averaged.
 - Dynamic parameters are not considered.
 - Strongest paths (corresponds to the LoS) were removed using single path estimation.
 - [1] L. Materum et al., Proc. Int. Symp. Antennas Propag. (ISAP), pp. 854-857, Oct. 2008.
 - [2] L. Materum et al., EURASIP J. Wireless Commun. and Netw., Feb.2009.

Polarization Ratio

$$XPR_{V}^{BS} = 10 \log_{10} \left(\frac{\sum_{l \in \mathcal{C}_{k}} |\gamma_{VV,l}|^{2}}{\sum_{l \in \mathcal{C}_{k}} |\gamma_{VH,l}|^{2}} \right) \qquad XPR_{V}^{MS} = 10 \log_{10} \left(\frac{\sum_{l \in \mathcal{C}_{k}} |\gamma_{VV,l}|^{2}}{\sum_{l \in \mathcal{C}_{k}} |\gamma_{HV,l}|^{2}} \right) \\XPR_{H}^{BS} = 10 \log_{10} \left(\frac{\sum_{l \in \mathcal{C}_{k}} |\gamma_{HH,l}|^{2}}{\sum_{l \in \mathcal{C}_{k}} |\gamma_{HV,l}|^{2}} \right) \qquad XPR_{H}^{MS} = 10 \log_{10} \left(\frac{\sum_{l \in \mathcal{C}_{k}} |\gamma_{HH,l}|^{2}}{\sum_{l \in \mathcal{C}_{k}} |\gamma_{VH,l}|^{2}} \right)$$

• CPR: degree of V polarization with respect to the H polarization.

$$CPR = 10 \log_{10} \left(\frac{\sum_{l \in \mathcal{C}_k} |\gamma_{VV,l}|^2}{\sum_{l \in \mathcal{C}_k} |\gamma_{HH,l}|^2} \right)$$

TEC TEC

MCRG

Polarization Path Gain

- HH polarization pairs decay faster than VV polarization pairs.
- Co-pol. path gains ware 4.65dB higher than the cross-pol. ones.
- Similar observations;
 - [5], [6] : HH decays faster than VV.
 - [3] : co-pol. is <u>4~10dB</u> higher than cross-pol.
 - [4] : co-pol. is <u>7dB</u> higher than cross-pol.

XPR characteristics

Decay coefficient

XPR vs.	V pol.	H pol.
Elevation AoA	-0.12	-0.03
Azimuth AoA	-0.003	0.001
Delay	2.97	0.96

M TOKYO TIECH

MCRG

Pursuing Excellence

CPR characteristics

Decay coefficient

	CPR	
Elevation AoA	-0.0327	
Azimuth AoA	-0.0013	
Delay	3.1714	

Comparison of <u>Decay coefficient</u> dose not clarify the polarization behavior

Dependency quantification

- Correlation coefficient:
 - Linear-Linear: Delay and Elevation

$$-1 \le \frac{Cov(x,y)}{\sqrt{Var(x) \times Var(y)}} \le 1$$

- Linear-Circular: Azimuth

$$R_{x\theta}^2 = \frac{r_{xc}^2 + r_{xs}^2 - 2r_{xc}r_{xs}r_{cs}}{1 - r_{sc}^2}$$

$$r_{xc} = corr(x, cos(\theta))$$

$$r_{xs} = corr(x, sin(\theta))$$

$$r_{cs} = corr(cos(\theta), sin(\theta))$$

Medium correlation is observed between $\underline{XPR_V^{MS}}$

and elevation AoA

Variable x	Variable y		
	Elevation	Azimuth	Delay
	-0.3705	0.0013	0.1535
$\operatorname{XPR}_{H}^{^{MS}}$	-0.0437	0.0079	0.0433
CPR	-0.1354	0.0005	0.1926

* TOKYO TIEC

MCRG

Summary of Previous Work

Achievement

- Polarization behavior is analyzed by Regression approach
- Only the rough characteristics were studied

Problem

- The correlation coefficient indicates only the ordinal relation
- Difficult to compare with other results

Solution

• Strictly statistical analysis: Hypothesis testing

Procedure of Hypothesis Testing: T-Test

• Step 1

Assume "total correlation coefficient" = 0 (null hypothesis)

• Step 2

- Compute the test statistics:
$$t=rac{\overline{x}-\mu}{\sqrt{\sigma^2/n}}$$

- Step 3
 - Plot the probability density of T distribution with Significance level = 0.05
 Degree of freedom = 251 (Sample size)
- Step 4
 - Judgment: in the PDF plot,
 - I. 5% < "total correlation coefficient" < 95%

XPR/CPR is independent on the parameter in 5 $\%\,$ significance level

II. 5% >"total correlation coefficient" & "total correlation coefficient" > 95 %
 XPR/CPR is dependent on the parameter in 5 % significance level

Main Results: Statistical Validation

V polarization: XPR at MS

• V pol. : independent with Azimuth and Delay

: dependent on Elevation

11 June, 2009

MCRG Joint Seminar

Statistical analysis

H polarization: XPR at MS

• H pol. : independent with all parameters

Main Results: Statistical Validation

CPR results

- CPR : independent with Delay
 - : dependent on Azimuth and Elevation

Conclusions

- Multipath cluster polarization characteristics of a small urban macrocell at 4.5 GHz has been presented
- XPR and CPR dependency on the parameters were analyzed and validated by hypothesis testing

Future works

- Comparison by presented approach
 - Different measurement sites
 - Different parameter estimation algorithms
 - RIMAX outputs (path-wise)
 - Clustering outputs
 - Beamforming outputs

->Need more study to analyze polarization behavior

- Planning of the new measurement campaign
 - Proper scenario selection
 - Clear objective setting: focus on polarization

References

- MCRG Tokyo Tech
- [1] L. Materum, J. Takada, I. Ida, and Y. Oishi, "Improved multipath clustering of a small urban macrocellular MIMO environment at 4.5 GHz,"Proc. Int. Symp. Antennas Propag. (ISAP), pp. 854-857, Oct. 2008.
- [2] L. Materum, J. Takada, I. Ida, and Y. Oishi, "Mobile station spatio-temporal multipath clustering of an estimated wideband MIMO double-directional channel of a small urban 4.5 GHz macrocell," EURASIP J. Wireless Commun. and Netw., Feb.2009.
- [3] R. Vaughan, "Polarization diversity in mobile communications," IEEE Trans. Veh. Technol., vol. 39, pp. 177-186, Aug. 1990.
- [4] L. M. Correia (Ed.), Mobile Broadband Multimedia Networks (Techniques, Models and Tools for 4G), Elsevier, 2006.
- [5] I. Sirkova, "Overview of COST 273 Part I:propagation modeling and channel characterization", XLI ICEST, Sofia, Bulgaria, 2006.
- [6] I. Sirkova, "Overview of COST 273 Part II: Parabolic equation method application", XLI ICEST, Sofia, Bulgaria, 2006.
- [7] http://www.cost2100.org/
- [8] BY P. E. JUPP, AND K. V. MARDIA, "A general correlation coefficient for directional data and related regression problems," Biometrika, 67, 1, pp. 163-73, 1980

Thank you for listening!