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CHAPTER I

INTRODUCTION

The main focus of this thesis is the study of distributional aspects of income and

other dimensions of well-being. The first two essays pertain to the use of multidimensional

poverty measurement techniques. In the third essay I discuss a different distributional

aspect, namely, the middle class as evaluated by income polarization measures.

The multidimensional framework has captured the interest of not only academics

but also policy makers. Several measures of multidimensional poverty and inequality have

been proposed. Also several governments including India and Mexico have expressed the

need for a broader definition of poverty that incorporates aspects of well-being not captured

fully by income or consumption measures alone.

While several multidimensional poverty measures are available, data availability

restricts the choice of measures considerably. The Alkire and Foster (AF henceforth) (2010)

measure is used extensively in this thesis. This class of measures is best suited for the

problem at hand for several reasons. First, the data used have both ordinal and cardinal

variables. For this reason alone, several of the other measures cannot be used. For instance,

the measure proposed in Tsui (2002) is unsuitable for use with ordinal data. Secondly, we

are often interested in poverty estimates across groups and a (population) decomposable

measure is thus desirable. The measure proposed in Bourguignon and Chakravarty (2003)

does not satisfy this, but the AF measure does. Lastly, this framework lends itself easily to

statistical inference. In one of the essays discussed below I derive a simple test for comparing

poverty across two groups given a set of cutoffs for the AF measure. Also, in related work

(done jointly with Christopher Bennett) I explore the statistical inference procedures in
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more detail allowing for testing multiple inequalities simultaneously. Before I proceed any

further, a short discussion of the measure is advantageous. For reasons of brevity I will

refer to multidimensional poverty measures as poverty measures and, to differentiate it

from unidimensional measures, I will refer to the latter as income poverty measures.

Like its unidimensional counterpart, measurement of poverty in the multidimen-

sional framework can also be divided into two steps-identification and aggregation. The

identification step answers the question ‘Who is poor?’ The Alkire and Foster methodology

uses a dual cutoff to identify the poor. For each dimension there is a poverty line which

identifies individuals deprived in that specific dimension. The multidimensional case has a

second cutoff which gives the minimum number of dimensions that an individual must be

deprived to be considered poor. For example, if there are six dimensions being considered,

dimension-specific poverty lines identify the dimensions in which an individual is deprived.

If the second cutoff is chosen as four, then for the individual to be considered poor, she

should be deprived in at least four of the six dimensions. The aggregation step leads to an

overall measure of poverty accounting for the deprivation of all the individuals identified

as poor. For the aggregation step, the AF methodology uses a dimension-adjusted Foster,

Greer and Thorbecke (FGT) measure.

Two of the three essays use the AF methodology to make poverty comparisons

across different groups. The first essay “Re-Assessing “Trickle-Down” Using a Multidimen-

sional criterion: The Case of India” uses the multidimensional framework to gain a deeper

understanding of the characteristics of poverty in India. Here I attempt to gauge the ex-

tent of “trickle-down” accompanying the uneven-growth process for a developing country1.

Trickle-down has been addressed, so far, using income-based measures of inequality and

1“trickle-down” is a term often used to describe the top-down effect of development policy. The idea is
that effects of growth will gradually percolate down to all tiers of the society.
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poverty. However concerns over inequality in access to other dimensions that are impor-

tant for the quality of life such as education remains. Here I revisit trickle-down using a

broad-based measure of poverty which incorporates these other dimensions. The AF class

of measures is used to estimate multidimensional poverty in India utilizing National Sample

Survey (NSS) data. The measures are modified to account for the complex survey design of

the NSS and a test for differences in multidimensional poverty across subgroups of the pop-

ulation is also introduced. The AF poverty estimates are presented for the 16 major states

of India and are compared to income-based measures. Incorporating additional dimensions

such as education, availability of drinking water and others in poverty measurement results

in the reversal of several income-based conclusions about poverty across regions. The find-

ings suggest that equality across regions in terms of income is not synonymous with equality

in standard of living. The paper also finds that contrary to income-based findings, Hindus

are poorer than Muslims under the multidimensional criteria. To test the robustness of the

results different weighting schemes (for the dimensions) are also used.

In the first essay I develop a test to check the statistical significance of the pairwise

comparisons of poverty estimates. The test incorporates in its construction the complex

NSS survey design and allows the use of the survey weights. Multidimensional poverty mea-

sures give rise to a host of statistical hypotheses (other than comparison of pairwise poverty

estimates) which are of interest to applied economists and policy-makers alike. These ques-

tions necessitate a procedure that allows for testing of several claims simultaneously. The

second essay in this thesis provides a general testing procedure that allows multiple hypoth-

esis to be tested simultaneously. In the second essay (work done jointly with Christopher

Bennett) “Multidimensional Poverty: Measurement, Estimation, and Inference” I develop

a broader methodology for statistical inference for AF measures. I show that many hy-
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potheses can be treated in a unified manner and tested simultaneously using the minimum

p-value methodology of Bennett (2009). However it is only applicable to random sampling

procedures. Incorporating other survey designs in the multiple testing framework is a topic

of future research.

In the third essay I study a different aspect of the income distribution, the “middle

class” as measured by income polarization. In any society, especially in the developing world,

the middle-income group is often thought to be the main driver of economic growth. Unlike

the poor, this group has resources to spend on consumption and also the ability and will to

save and invest. There is a strong relationship between the size of the middle class and the

degree of income polarization in society (see Esteban and Ray (2010) for a comprehensive

discussion). A high degree of income polarization is suggestive of society dominated by two

income groups — the “haves” and the “have-nots” and thus a smaller middle class.

The essay “Electoral Uncertainty and the Growth of the “Middle Class”: Theory

and Evidence from India” (work done jointly with Anirban Mitra) investigates how the

presence of electoral uncertainty contributes to the rise of a “middle class” (middle-income

group) in the context of a developing country. The theory developed here is based on the

traditional Downsian (two-party) framework and predicts the following. Any increase in

electoral uncertainty in a district not only increases the aggregate level of transfers to the

district, but also leads to public expenditure that disproportionately benefits the poor as

compared to the rich. This in turn leads to lowering of income inequality and more impor-

tantly lessening of income polarization. I test this hypothesis using data from the Indian

parliamentary (national) elections which are combined with household-level consumption

expenditure data rounds from National Sample Survey Organization (NSSO) (1987-88 and

2003-04) to yield a panel of Indian districts. The empirical exercise reveals that districts
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that have experienced tight elections exhibit lower income polarization (alongside lesser

income inequality) and hence a larger middle class, in support of the theoretical model.
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CHAPTER II

RE-ASSESSING “TRICKLE-DOWN” USING A MULTIDIMENSIONAL CRITERION:
THE CASE OF INDIA

Introduction

A particularly serious concern, especially in the context of rapidly growing de-

veloping countries, involves the issue of “uneven growth”. There have been many studies

directed towards this issue (see Ray, 2010) and references therein) and the related one of

“trickle-down” (see for example, Basu and Mallick, 2008 ). Most of them focus on the

impact of economic reforms on changes in income inequality or income poverty (see Chaud-

huri and Ravallion, 2006 , Ravallion and Dutta, 2002 ). Even if one sees little or no change

in income inequality accompanying growth, can one infer that “trickle-down” has indeed

occurred? Consider the case of rural India.1 In the vast majority (if not all) of Indian

villages, access to many public facilities is often determined not so much by income but by

ethnic markers (like caste, religion, etc.), and so higher incomes are not always associated

with better access to basic facilities. This clearly highlights the need to focus on direct

access to public goods and consequent social capital formation. A closely related work in

this context is Banerjee and Somanathan (2007).2

One way to incorporate achievements in the dimensions of social capital and human

capital is to include them directly in a measure of well-being or rather, deprivation. This

1Over 70% of India’s population can be classified as rural.
2Banerjee and Somanathan (2007) look at the location of public goods between 1971 and 1991 in about

500 parliamentary constituencies in rural India to assess the differences in the allocation of public resources
over the period for the various ethnic groups. They find that the allocation in areas with large Scheduled
Caste populations has increased whereas the access is reduced in areas with Scheduled Tribes and Muslims.
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paper uses a multidimensional poverty methodology to assess differences in access to basic

facilities such as education by various regions and ethnic groups in India. Using this poverty

approach ensures I can capture differences across regions and also focus on the deprived

groups within these regions. If income poverty and multidimensional poverty estimates

diverge then we may need to reinterpret findings regarding the “trickle-down” phenomena;

as, income inequality following growth would not necessarily imply reduction in disparities

across households.

Several studies have shown that the decline in income poverty in India from 36%

in 1993-94 to 27% in 2003-04 has not been accompanied by similar improvements in other

dimensions relevant for development. For example, according to a World Bank report3,

India is among the countries with the highest prevalence of underweight children. The

performance in improving literacy has also been moderate compared to other nations in

Asia.4 The importance of dimensions of well-being in explaining differences in growth

and development is well documented.5 In this paper these dimensions of well-being are

incorporated into the measurement of poverty in such a way that the extent of deprivation

across dimensions by households can also be captured. I use a poverty measures that is

sensitive to the joint distribution of achievements across the dimensions. Merely looking at

deprivations in each of the dimensions separately does not inform us of the extent to which

a family is multiply deprived.

3See the World Bank report, India’s Undernourished Children: Call for Reform and Action.
457% of the population in India was literate according to the Census of India, 2000 which is well below

Thailand’s 96 percent, Sri Lanka’s 92 percent, Indonesia’s 87 percent, and China’s 84 percent (See Barooah
and Iyer, 2005).

5Chaudhari, Schneider and Chattopadhyay (2006) show that literacy and increased growth of newspapers
translates into better governance. Gamper-Rabindran, Khan and Timmins(2009) discuss the effect of piped
water on infant mortality in Brazil. In Datt and Ravallion(2002) initial conditions including indicators of
health, education and standard of living is recognized as one of the factors explaining regional differences
in pro-poor growth. Ferreira, Leite and Ravallion (2009) show that for Brazil impact of growth on poverty
reduction is primarily explained by differences in macroeconomic factors however initial conditions have a
significant albeit small effect.
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Several organizations and governments including the UNDP and the Government

of Mexico have adopted a multidimensional approach to the measurement of poverty.6 In

fact, the Multidimensional Poverty Index (MPI) developed by the UNDP is based on the

Alkire and Foster (2010) methodology, which is also the methodology used in this paper.

The Government of India has recognized the need to use a broader definition of poverty

incorporating these other dimensions. Recently the Planning Commission of India has

announced that it will use a broader definition to identify the poor, which will go beyond

income to incorporate other dimensions.7

For reason described in the Introduction, the Alkire and Foster (2010) methodology

is most suitable for the analysis done here. The data used is the NSS 60th round health

care and morbidity survey, conducted during 2003-04. The choice of dimensions is always a

challenge in any multidimensional analysis. The Human Development Index by the UNDP

measures well-being along three dimensions-education, health and standard of living. In this

essay dimensions are selected along similar lines. I use seven dimensions where sanitation,

drainage facilities, source of drinking water and primary cooking medium are essential for

better health outcomes; income and housing facilities are means to achieve a better standard

of living; and the last dimension is education.

Using a particular calibration the AF approach I find that 50% of the popula-

tion was poor in 2003-04 which is much higher than the official income poverty estimate of

27%.8 This divergence in estimated headcount ratios for the income criteria and the multi-

dimensional criteria may reflect the inability of the former to identify many who are truly

6For the news release by UNDP-OPHI see
http://hdr.undp.org/en/reports/global/hdr2010/news/title,20523,en.html

7The Hindustan Times (a news daily from India) has reported the Deputy Planning Commissioner an-
nouncing, ”In the new system poverty would be measured with reference to basic facilities like quality
education, good health sectors and clean drinking water availability.”

8The case of multidimensional poverty for the nation as a whole using a dimension cutoff of four.
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deprived, not necessarily in terms of earnings but on other fronts. Among all the people

regarded as poor according to the multidimensional criteria, a mere 45% are also income

deprived; i.e. the other 55% are not income deprived but are multidimensionally poor.

This paper focuses on comparisons of poverty across different regions and groups

of India. When making such comparisons, the differences in levels of poverty are sometimes

large enough to leave no room for doubt. However when the poverty estimates happen to

be very close to each other, when does it make sense to talk about differences in poverty?

Consequently, in addition to providing estimates of poverty among different groups, this

paper also tests whether these group-wise differences are statistically significant. For this

purpose, a simple standard test is developed, which allows us to check differences in multi-

dimensional poverty among groups. NSS is a multistage-stratified random sample; so first

the AF measures are modified to estimate the poverty levels when all observations are not

equally likely. Then the asymptotic properties of the test statistic for difference in poverty

across groups are established keeping in mind the sampling design of the NSS data.9

Income-based measures have been used to discuss disparities in the growth and

development experiences of the different Indian states. Datt and Ravallion (1998) find that

success rates in reducing poverty vary significantly across the different states. Further,

Deaton and Dreze (2002) have found that the regional differences in income poverty and

inequality have increased over the 1990s. Is this disparity restricted to income alone? Kerala

and Andhra Pradesh have similar levels of poverty according to the income headcount ratio

(See Table 5). On the other hand, it is widely believed that Kerala has done better in

improving the well being of its people. For instance, Kerala is the only state in India to

have nearly 100% literacy whereas Andhra Pradesh does not have as good a record. So why

9Bhattacharya (2005) has discussed the asymptotic properties for the estimation of the Gini coefficients
using NSS data and the analysis here closely follows this work.
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is it that income poverty estimates fail to capture these differences in well being? Could

incorporating other dimensions in the poverty estimation technique better inform us? On

the basis of the results presented here I argue that the answer is yes. In the multidimensional

framework, Kerala exhibits much lower poverty than Andhra Pradesh. In fact, Kerala does

so well in the multidimensional framework that it is next only to Punjab and Haryana.

This, of course, should not come as a surprise since the efforts of the government of Kerala

on improving the human capital have been documented in the literature (Sen,1999) .

Another special feature of the Indian economy and one that can detrimentally

impact India’s future performance is communalism - which often operates along religious

lines.10 In spite of the fact that the population is predominantly Hindu, India has a large

Muslim population. Poverty analysis has shown that there is a higher percentage of income

poor Muslims than Hindus (for example see Noland, 2005) ). Interestingly, when other

dimensions are added I find that Muslims are less poor than Hindus. Why is this the

case? Which dimensions are responsible? Could it be that Muslims are concentrated

in urban areas where health care, sanitation and other facilities are better provided? I

first estimate the contributions of the specific dimensions to the overall multidimensional

poverty estimates. I further investigate whether there are differences in the rural and

urban comparisons of Hindu and Muslim poverty estimates. I also divide Hindus into sub-

groups based on whether they belong to the Scheduled Castes and Tribe or not.11 I find

10Esteban and Ray (2008) refers to the linkages between economic inequality and ethnic conflict.
11In India, 85% of the population is Hindu and every Hindu is assigned a caste. Scheduled castes form

about16% of the Indian population. Their economic backwardness is a direct result of the caste system
which has been ingrained into the Indian social fabric for a long time. Caste membership is hereditary and
is reflective of the person’s traditional occupation choice. Particularly, members of the scheduled castes were
traditionally assigned low-paying, labor-intensive jobs. In fact, they were denied education and barred from
high-paying tasks.

Such an intra-group distinction does not apply to Muslims, since traditionally there were no castes as-
sociated with them and the Constitution of India does not recognize Muslims to be part of the Scheduled
Castes.The following is a link to an extract from the Constitution of India available on the Ministry of Law
and Justice (Government of India) web page, which clearly states that no Muslim group can be declared a
member of the Scheduled Castes in India: http://lawmin.nic.in/ld/subord/rule3a.htm.
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that the higher levels of Hindu poverty are driven by the extremely poor conditions of

the underprivileged Hindu minorities-Scheduled Castes and Tribes. On average, high caste

Hindus are less poor than the Muslims, whereas the low caste Hindus are considerably

poorer than the Muslims.

The main results in the paper are presented using equal weights for all the seven

dimensions. However the AF methodology allows for different weights to be used for the

various dimensions. Therefore other weighting schemes are also considered to check the

sensitivity of the results, namely progressively more weight is put on income relative to

the other dimensions. An equal weights approach puts approximately 15% weight on each

dimension. As the weight on income is increased above this, the main results of the paper

apply until the weight on income is about 30% (with equal weights on the other six dimen-

sions). Attributing more than 30% of the weight to income leads to results which mirror

those from the income poverty estimates.12

The rest of the paper is organized as follows. Section 2 describes the AF measures

in detail. Section 3 describes a modified estimator for use with complex samples and the

corresponding test statistic used for inference.13 Section 4 describes the data, the dimensions

used and the dual cutoffs applied. Section 5 discusses the main empirical finding and Section

6 concludes.

The Pα class of measures

The measurement of poverty can be described as a two step procedure. The first

stage involves the identification of the poor. The second stage is the aggregation step

12However, the sets of individuals who are identified as poor by the two criteria may well be very different.
13By complex survey designs I mean multistage stratified sampling or other forms of complex sampling

designs.
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where all the data are combined to give an overall measure of poverty. For unidimensional

poverty measurement, the identification step is characterized by setting a poverty line:

anyone below the poverty line is identified as poor. For the aggregation step there are

several poverty measures which can be used, includes for example the headcount ratio, the

poverty-gap measure or the FGT measure. For multidimensional poverty, the identification

and aggregation require modification.

The union approach, as described in Bourguignon and Chakravarty (2003) is one

of the commonly used identification procedures for multidimensional poverty measurement.

Under this approach a person is identified as poor if she is deprived in any one of the

dimensions being considered. For example, if the analysis involves six dimensions, then

a person is considered poor only if she is deprived in at least one of the six dimensions.

This measure will have a tendency to identify sizeable sections of the population as poor;

this could run contrary to our natural notion about poverty. On the other hand, the AF

measure allows for more flexibility. The AF methodology uses a dual cutoff to identify the

poor. The first set is the dimension specific cutoffs which identify whether the individual is

deprived in that particular dimension. The second cutoff explains how widespread (across

the dimensions) deprivation of the individual has to be for her to be considered poor. So

the second cutoff (k) gives the minimum number (or weighted sum) of dimensions the

individual has to be deprived in, to be considered poor. For aggregation Alkire and Foster

(2010) suggests a class of dimension-adjusted FGT measures. Since the primary analysis

uses equal weights (on all dimensions) the exposition of the AF measure presented below is

for equal weights14. Towards formulating the AF class I introduce the following notation.

Let i = 1, .....n denote the n individuals in a random sample drawn from the population

14A discussion of the more general case can be found in Alkire and Foster (2010).
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of interest. There are d dimensions being considered, which are denoted by j = 1, ..., d.

Let yij denote individual i′s achievement in dimension j. Therefore, yi is a d× 1 vector of

individual i′s achievements in all the d dimensions and y is n × d matrix of achievements

of all individuals in society. The two sets of cutoffs are given by z that is made up of d

dimension specific cutoffs (so zj is the deprivation cutoff for dimension j) and k ∈ [1, d] is the

poverty cutoff which requires an individual to be deprived in at least k of the d dimensions

to be considered poor. Finally I (·) represents the indicator function which takes the value

of 1 if the statement inside the parentheses is true and the value of zero otherwise. Let

ci =
d∑
j=1

I (yij < zj) .

Therefore ci gives the total number of dimensions in which individual i is deprived. For the

purposes of comparison with the income headcount ratio, the multidimensional headcount

ratio will also be used. This can be represented as:

H =
1

n

n∑
i=1

I (ci ≥ k) ,

and the AF class of multidimensional poverty measures can be expressed as the following:

Each individual’s level of poverty is given by:

πi (yi; z, k) = I (ci ≥ k)
1

d

 d∑
j=1

I (yij < zj)

(
zj − yij
zj

)α (1)

and multidimensional poverty for the society is given by:

P̃α (y; z, k) =
1

n

n∑
i=1

[πi (yi; z, k)] =
1

nd

n∑
i=1

I (ci ≥ k)


d∑
j=1

I (yij < zj)

(
zj − yij
zj

)α
 .
(2)
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For those with ci less than k, Equation 1will take the value of zero. For the

individuals identified as poor, i.e., ci is greater than k, Equation 1 gives the average level of

deprivation across dimensions. This is done by first calculating the normalized gap, given

by
zj−yij
zj

, when an individual is deprived and zero otherwise. The normalized gap is raised

to the power α, which for values of 0, 1 and 2 give the three most commonly used AF

measures. For α equal to zero (P0), an individual’s poverty level reduces to:

πi (yi; z, k) = I (ci ≥ k)
1

d

 d∑
j=1

I (yij < zj)

 .
In this case, the information about the depth of deprivation in the dimensions is not used.

For α equal to one, I obtain the poverty gap measure P1 which incorporates the information

about the depth of deprivation into the analysis. For α equal to two, I have the squared

gap measure P2 which puts more emphasis on the individuals who are severely deprived.

However for ordinal data the dimension - adjusted FGT measure with α equal to zero (or

P0) is most suitable. The only information P0 uses from the original data is whether or not

the individual is deprived in that dimension. If the individual is deprived with respect to a

particular dimension, she gets a value of one otherwise they get a value of zero.

Above I have described the AF measure when information is known about n in-

dividuals. If these n individuals constitute the entire society of interest, then we are done.

However in most empirical work the n individuals are a sample drawn from the population

of interest. In this case if the population had a joint distribution G (y1, y2, ..., yd) over the

d dimensions of interest, then the AF measures can be represented in the following form:

Pα (z, k) =

∫
π (y; z, k) dG (y) .
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Therefore P̃α (y; z, k) described in Equation 2 is the estimate for this population poverty

measure, when the sample is drawn randomly. Among others, Zheng (2001, 2004) describes

the one dimensional counterpart for the FGT measures, which is similarly the expected

value for the population.

However if the sample is not a simple random sample then P̃α (y; z, k) should

be modified to incorporate the complexity of the sample design. In the next section, I

propose an alternative estimate for Pα (y; z, k) . This new estimate is a weighted average of

the deprivation of all observed individuals.

A New Estimator and Test Statistic

Estimate of Pα for complex samples

If the sample is random then each observations is weighted by 1
n , where n is the

sample size and the estimate of poverty for the sample is the simple average of the depri-

vation of each individual represented by πi (yi; z, k) . However when there is a non-random

sample, then the weight on each observation will not be equal to 1
n . Incorporating the

non-randomness requires a good understanding of the weight that each observation should

have. This is the approach used to derive the alternative estimate of the AF measures.

The notation used and the results closely follow Bhattacharya (2005). The sam-

pling design is described as follows. Prior to sampling the population is divided into S first

stage strata. In the population the stratum s contains Hs clusters. A sample of ns (indexed

by ψs) clusters is drawn via simple random sample with replacement from stratum s, for

each s. The ψsth cluster has a total of Nsψs households. A simple random sample draws κ

(equal across clusters and strata and indexed by h) households from each cluster for each
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strata are drawn. The hth household in the ψsth cluster has νsψh members.

The weight of every individual in the hth household who is part of the ψsth cluster

of the sth stratum is given by

wsψsh =
NsψsHs

κnsvsψsh

Therefore the estimate for the AF measures incorporating the sample design is a simple

weighted average of the deprivation of each individual, πi (yi; z, k) . The weight on each

observation is wsψsh and the new estimate, P̂α (y; z, k) is :

P̂α (y; z, k) =
S∑
s=1

Hs

ns

ns∑
ψs=1

Nsψs

κ

κ∑
h=1

1

vsψsh

νsψsh∑
jh=1

πjh

=
S∑
s=1

ns∑
ψs=1

κ∑
h=1

νsψsh∑
jh=1

wsψshπjh .

In the appendix I provide the asymptotic distribution of this new estimator. It is

shown that this converges in probability to the population parameter Pα and is asymptoti-

cally normal. Therefore,

√
n
(
P̂α − Pα

)
−→d N (0, V )

where P̂α is the estimated poverty measure, Pα is the population equivalent of the poverty

estimate and V is the variance of the distribution. Using this information I propose a test

for differences in poverty across groups.

16



The Test

The Pa measure is a sample average of the individual specific measures πi (yi; z, k) .

Thus for a random sample the test would be a standard Wald test. However the NSS data

is a multistage-stratified random sample. It has been shown in Bhattacharya (2005) that

treating this sample as a random sample can give erroneous interpretation of results.

For a multistage-stratified sample (like NSS) I propose a test for the difference in

poverty across groups. Let the two groups be denoted by 1 and 2 and samples of sizes n1 and

n2, are drawn from the respective populations. The estimated multidimensional poverty

for the two groups are P̂ 1
α and P̂ 2

α respectively. The corresponding population parameters

of interest are denoted by P 1
α and P 2

α. Note that these estimates depend on the dimension

specific cutoff and the poverty cutoff that is used. For the analysis in this paper I will keep

these cutoffs fixed.

The null hypothesis I am interested in is

H0 : P 1
α − P 2

α = 0 (for a given k) and the alternative hypothesis is

H1 : P 1
α − P 2

α 6= 0

Let θ (k) = P 1
α − P 2

α and θ̂ (k) = P̂ 1
α − P̂ 2

α. Given that the samples for the two groups are

independent from each other I get:

√
n1

(
θ̂ (k)− θ (k)

)
−→d N (0, V1 + rV2) , where

√
ni

(
P̂ iα − P iα

)
−→d N (0, Vi) , i = 1, 2 and r = lim

n1,n2→∞
n1
n2

.

Let σ2 = V1 + rV2 and an estimate for σ2, denoted by σ̂2, is given by respective estimates

of V for the two groups as in Equation A.2 (in the appendix). So σ̂2 is equal to V̂1 + rV̂2.

Since I am only interested in making sure that the difference in the poverty esti-

mates of the two groups is statistically significant the analysis becomes much more simpli-
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fied. The null hypothesis I am testing is θ (k) = 0, against the alternate θ (k) 6= 0. This can

be tested using the simple test statistic

t =
θ̂ (k)

σ̂

which has an asymptotically standard normal distribution. At the (1− α) level of signifi-

cance the null hypothesis of equality in poverty levels across the two groups is rejected if

|t| > z1−α, where z1−α is the critical value from the standard normal distribution.

Description of Data

For this analysis, the NSS 60th round health and morbidity survey has been used.

This survey was conducted during 2003-04. The data used here were collected from house-

holds across the country in both rural and urban areas. The total number of households

surveyed is 47,302 and 26,566 for rural and urban areas respectively. The sampling pro-

cedure used in the NSS round is multi-stage stratified sampling. First, the entire nation

is divided into strata based on the size of population of the area. Then these strata are

further divided into clusters. The sampling proceeds in two steps. First, from each strata

a number of clusters are chosen randomly. Then in the second stage, from each of these

clusters a fixed number of households are chosen by random sampling without replacement.

This constitutes the sample of households observed.

Dimensions and the respective deprivation cutoffs

From these data I am able to get information on seven aspects of an individual’s

living standard. These dimensions span the individual’s income level, her education and
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Table 1.: Dimension Specific Deprivation cutoffs

Dimension Deprivation Cutoff

Income As given by the Planning Commission
Education Persons who have not obtained at least a primary education are deprived,

others are not.
Sanitation The non-availability of any sanitation facility indicates deprivation.
Drainage The non-availability of any drainage facility indicates deprivation.
Structure of House A person without any housing structure or a Kutcha unserviceable house is

deprived, others are not.
Source of Drinking water A person using a river/canal/pond/well is deprived, others are not.
Primary Cooking Medium A person without any cooking arrangement or using firewood/dung cakes is

deprived, others are not.

other indicators of her standard of living.

For the income poverty measure the poverty lines used are the rural and urban

poverty lines for every state as given in the press release of the Planning Commission. For

all the other dimensions, the thresholds that I have used are the basic minimum that a

person should have. Most of the times, the cutoff just divides the population into two

groups: people who have some access to the facility and those who have no access to the

facility at all. For example, for type of sanitation facilities a person is not deprived if she

has any kind of sanitation facility available. The precise definitions of the dimension specific

cutoffs are given in Table 1 and discussed in more detail below.15

The dimensions of interest and the respective deprivation cutoffs are:

1. Per Capita Expenditure: The survey contains information on the total monthly

expenditure of the household. This I have divided by the number of individuals in the

household to arrive at the per capita figures. The poverty lines used are the official

poverty lines given by the Planning Commission of India for the year 2003-04. The

poverty lines are different for rural and urban areas and are also different for each of

the states.

15The choice of cutoffs here is somewhat arbitrary and represents the author’s best estimate of minimal
criteria.
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2. Educational attainment: The last educational degree attained by each individual

in a household is listed. I have information as to whether a person ever got any

formal education, or did not finish primary school, or finished secondary school or

higher degrees. A person is considered education deprived if she has not completed

primary school. I do not use the official literacy definition16 as the cutoff since it

hardly provides any information about the individual’s cognitive abilities. Completion

of primary education implies that the individual is able to do simple math and follow

simple instructions, and this justifies the use of primary education as the cutoff.

3. Type of house structure: The survey also notes the types of houses the household

lives in. Information is furnished on whether it is a brick house or other type of mud

house. A person with no housing facilities is of course deprived in the dimension. Also

included in the deprived group are individuals who live in “kutcha” houses.17 The

NSS defines these houses as structures with walls made of material like grass, leaves,

reeds, etc., and roofs made of similar materials.

4. Type of sanitation facility and drainage: Proper sanitation and drainage facilities

can prevent the spread of diseases like diarrhea and malaria, etc. In some studies

these two dimensions have been treated as one. This paper treats them as separate

dimensions for the following reasons. First, the correlation coefficient between the

dimensions of drainage and sanitation is around 0.35 (see Table 2). The second reason

is conceptual - sanitation is a household characteristic whereas drainage typically

concerns the living conditions of the entire neighborhood.

A person is deprived in the dimension of sanitation if she lives in a household without

16A person is considered literate if she can sign her name.
17Kutcha in India means not firm/solid.
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any sanitation facilities; so a person with access to a shared toilet is not deprived by

this criteria. Even with such a minimalistic standard I find 62% of the population to

be deprived. For drainage a person is deprived only if there is no drainage facility

available in the area of her residence. This cutoff finds 47% of households to be de-

prived. In fact, this difference between deprivation in drainage and sanitation further

justifies treating them as separate dimensions.

5. Source of drinking water: The household is asked about the primary source of

drinking water. Since India is continually riddled with water shortages, access to

drinking water cannot be taken for granted.18 A person is considered to be deprived

in this dimension if the primary source of drinking water is anything other than tap

water or bottled water. By this cutoff almost 60% of the population are deprived in

this dimension.

6. Main cooking medium: In India, even to this day, many households cook using

firewood and dung-cakes. These individuals are more prone to respiratory problems.19

These individuals are considered deprived in this dimension. Also, individuals without

any arrangements for cooking (i.e. gatherers) are deprived.

Within a multidimensional framework, very closely related dimensions pose some

problems. Table 2 contains the pair-wise correlations among the seven dimensions used here.

It is readily checked that as such the correlations are low, with no individual correlation

being higher than 0.55 thus allaying concerns of closely related dimensions. Note that the

pair-wise correlation between income and the other dimensions is very low. This strengthens

18It is shown in Jalan & Ravallion (2003) that access to piped drinking water reduces the chances of
diarrhea among infants in India.

19 Of course if the cooking is done in a separate room or in the open then the problem is less severe.
However, the NSS is not able to give information on the arrangements of cooking beyond the cooking
medium.

21



Table 2.: Correlation among dimensions.

Dimensions Income Education Sanitation Drainage Housing Drinking
Water

Education 0.36
Sanitation 0.28 0.33
Drainage 0.37 0.35 0.35
Housing 0.25 0.29 0.26 0.40
Drinking Water 0.14 0.11 0.03 0.27 0.19
Cooking Medium 0.43 0.44 0.42 0.55 0.39 0.25

This table gives the raw correlations between all pairs of dimensions.

the case for such a multidimensional perspective of deprivation.

The dual cutoff for the AF methodology requires us to specify the minimum num-

ber of dimensions an individual must be deprived in to be considered poor. The primary

analysis in this paper is done using equal weights and so following the same idea a dual

cutoff of four is also used. In other words, an individual is considered poor only if she is

deprived in at least four of the seven dimensions. With this cutoff the percentage of house-

holds identified as poor is 50%.20 The results in the next section are discussed in detail

for equal weights on all dimensions and the dual cutoff of four. Results using other cutoffs

(mainly 3 and 5) and weighting schemes are also discussed later.

Results

First, the multidimensional poverty estimates of the nation are presented and con-

trasted with the income poverty estimates. Next I discuss the disparity in the poverty levels

across the states. These are contrasted with the income poverty estimates for the states.

Finally, the difference in the deprivations across different religious groups are discussed.

The baseline results presented here impute equal weights for the dimensions. How-

ever several robustness exercises with respect to the weighting scheme have also been con-

20This is much closer to the World Bank estimate of 42% of the population living below $1.25 a day in
India than the official income poverty estimates for India.
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ducted. For the comparisons of poverty across groups I find that varying the weight on

income from 15% (equal weights) to 30% ( and the remaining 70% divided equally among

the other six dimensions) preserves the main findings of the paper. As the weight on income

is increased further, the results of the multidimensional analysis closely resemble the results

for income poverty alone. This is only natural since increasing the emphasis on income

is tantamount to de-emphasizing the achievements in other dimensions. The fact remains

that one can deviate a considerable amount from equal weighting of the dimensions and

preserve the main findings of the paper.

Multidimensional poverty estimates for India

For the year 2003-04, the official income headcount ratio was 0.31, which implies

that 31% of the population lives below the poverty line. When I take k as four (i.e. a person

is identified as poor if she is deprived in four or more of the seven dimensions) around 50%

of the people are multidimensional poor (see Table 3 ).21 This is more in line with the

World Bank finding of 42% poverty (using a $1.25 a day poverty-line) in India than the

31% income-poverty headcount.22

Table 3 also reveals that in the case of India, being multidimensional poor does

not go hand in hand with being income poor. Among all the people who are poor in the

multidimensional sense, using the union approach (that is k equal to one) only 31% are also

21When calculating the multidimensional poverty measure for the union approach (that is k=1) almost
90% of the population is identified as poor. In other words, 90% of the population is deprived in at least
one of the seven dimensions. For the intersection approach, when k takes the value of seven, the number
of people identified as poor is less than 3%. This suggests that looking at an intermediate dimension cutoff
may yield more interesting insights.

22For income poverty the headcount ratio is the same as the FGT measure with alpha equal to zero. For
the World Bank estimates see Poverty Data: A supplement to World Development Indicators 2008. Note
for multidimensional poverty, the headcount ratio and the actual estimate of multidimensional poverty with
α set to zero diverge. The multidimensional headcount is an indicator of the incidence of poverty but to
gauge the depth of poverty in the multidimensional sense I look at the P0(k, z), the AF measure with alpha
equal to zero. I have discussed the multidimensional headcount and how it varies with changes in k (Table
3). P0(k, z) for India is also described in Table 3. For the union approach (with k equal to 1) I have that
P0(k, z) is equal to 0.466 and with k as four this estimate is 0.349.
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Table 3.: Poverty Estimates for all k (All India).

Cutoff (k) Headcount (in %) P0 Income Deprived ( as a % of
poor)

1 87.8 0.466 30.8
2 77.0 0.450 33.8
3 65.9 0.418 37.1
4 49.7 0.349 44.6
5 30.1 0.237 58.3
6 12.8 0.114 79.2
7 2.8 0.028 100.0

Notes: Column 2 gives the multidimensional Headcount measure. Column 3 gives the
Multidimensional poverty measure and Column 4 gives the percentage of Multidimensional
poor who are also deprived in the dimension of Income. These estimates use equal weights
for all the dimensions.

Table 4.: Robustness checks with alternative weighting schemes with k fixed at 3.5: All
India.

Weight on
Income (in
%)

Headcount P0(k = 3.5) Percentage deprived in
income

20 0.50 0.34 44.6%
25 0.52 0.34 47.0%
30 0.37 0.27 66.1%
35 0.37 0.27 66.1%
40 0.39 0.27 67.5%
45 0.29 0.23 90.7%

Notes: Each row uses a different weighting scheme. For example in the second row income
has 20 % of the weight and the rest 80 % is equally divided among the rest of the six
dimensions.

income deprived. Notice that the union approach identifies everyone who is income poor as

multidimensional poor, but if one is not income poor but is deprived in any other dimension

one is still counted as poor. At k equal to four, of all the people who are multidimensional

poor only 45% are also income deprived (see Table 3). Thus this measure can identify

people who lack access to basic facilities though they are not poor income-wise.

The results using alternative weighting schemes are presented in Table 4. Here the

weight on income is progressively increased from 15% (under equal weights) to 45% (the

rest 55% divided equally among the other 6 dimensions). Note that as the weight on income

24



increases the proportion of multidimensionally poor who are also income deprived rises from

45%(under equal weights) to 90%, when income itself accounts for 45% of the weight. This

should not really come as a surprise since the correlation between multidimensional poverty

and income poverty clearly rises when income starts to assume greater prominence among

the dimensions.

Poverty estimates: Decomposition by State

There exist huge disparities among the Indian states with respect to dimensions

such as growth, literacy and access to drinking water. The state of Kerala has achieved

almost 100% literacy, whereas states like Bihar and Rajasthan have literacy rates below

50%. Bihar and Uttar Pradesh have gross state domestic product (GSDP) per capita

which is half of that of Gujarat, Punjab, Haryana and Maharashtra. Disparities among the

states have increased over the years with policies having differential impacts in the various

states. For instance, the green revolution was initiated in India in 1965 to increase the

yield in agriculture. The two states that benefitted the most were Punjab and Haryana.

The success was muted in other parts of the nation; the BIMARU states (Bihar, Madhya

Pradesh, Rajasthan and Uttar Pradesh) lagged behind.

There also exist differences among the states with respect to the success of poverty

reduction schemes. This has been discussed in detail in Datt and Ravallion(2002). The

poverty estimates for the 16 major states clearly reflect these disparities. For the analysis

in this paper I will focus on these states, which together account for over 90% of India’s

population. I will exclude from the analysis the Union Territories and the states that are

primarily mountainous.23 Tables 5 and 6 give the income poverty and the multidimensional

23This is done as these excluded regions have special features which need to be accounted for separately
because of the terrain and the special treatment some of these regions receive from the central government.
This, though interesting, is tangential to the main questions being addressed here.
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poverty estimates for the 16 major states. I see from Table 5 that for Kerala, about 20% of

the population have incomes below the poverty line. Secondly, Maharashtra is considerably

worse than the other states. Table 5 clearly reveals that the states of Uttar Pradesh, Bihar,

Madhya Pradesh and Orissa have the worst income-poverty levels in the country with 40% or

more of the population making less than the subsistence minimum. On further exploration,

it will become clear that the differences are not restricted to income alone.

Banerjee and Somanathan (2007) have found that over the 1970 and 1980s there

has been a considerable equalization in the provision of public goods across states and ethnic

groups. Despite this there exist differences at the state levels in access to basic facilities. In

Development as Freedom, Amartya Sen gives a narrative of the accomplishments of Kerala’s

state government in providing basic amenities to its residents. Kerala has out-performed

other states in reducing its mortality rates and increasing life expectancy at birth. These

features are not (completely) captured by Kerala’s average performance in reducing income

poverty. The multidimensional measure better reflects the efforts of states like Kerala in

improving the lot of its people. The Government of Rajasthan has taken measures to reduce

the income poverty by initiatives to promote the area as a travel destination and putting

emphasis on the marketing of the regional handicrafts industry. However other facilities

required to improve well being have been neglected. As a consequence, people are more

broadly deprived in dimensions like availability of drinking water, drainage, etc. Let us now

turn to the specific results of the analysis incorporating these additional dimensions.

For the ease of exposition here I will use k of four (see Table 5). The results

are similar for other values of k, specifically for k equal to three and five (see Table 6).

Some remarks are in order here. First, though the poverty estimates for the states are

very close to each other, the overall range is very large, from 0.118 for Punjab to 0.679
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Table 5.: Income vs Multidimensional poverty: States of India.

Income Based Measure Multidimensional Measure

State Income Headcount State P0(k = 4)

Punjab 0.129 Punjab 0.118
Haryana 0.132 Haryana 0.150**
Gujarat 0.160 Kerala 0.156
Andhra Pradesh 0.172 Maharashtra 0.224***
Kerala 0.198 Tamil Nadu 0.261***
Tamil Nadu 0.237 Karnataka 0.275
Karnataka 0.279 Gujarat 0.289
Maharashtra 0.287 Andhra Pradesh 0.320*
Rajasthan 0.294 West Bengal 0.398***
West Bengal 0.346 Uttar Pradesh 0.408
Uttar Pradesh 0.373 Rajasthan 0.414
Madhya Pradesh 0.396 Madhya Pradesh 0.468***
Jharkhand 0.439 Jharkand 0.528***
Bihar 0.469 Bihar 0.538
Orissa 0.532 Chhattisgarh 0.572***
Chhattisgarh 0.543 Orissa 0.679***

Notes: Here the difference in poverty was tested between a particular state and the state immediately above
it. For example, the difference in poverty between Haryana and Punjab was tested and was found to be
significant at the 5% level. * represents significant at the 10% level and ** represents significant at the 5%
level *** represents significant at the 1% level

for Orissa. Secondly, using the test developed in this paper I find that the differences

in poverty estimates among the states are statistically significant for almost all pair wise

comparisons.24

The states which perform very well using the income-based approach (like Punjab

and Haryana) also happen to shine in the multidimensional framework; the same pattern

exists for the bottom-ranking states. Notably, the maximum differences are among the

middle-ranking states. There are states which greatly improve their relative standing vis-

à-vis other states. The foremost example of this kind of change in ranking is the case of

Kerala. I find that Keral is only out performend by Punjab, Haryana (the two agricultural

success stories of the nation) in providing basic services to its people. Maharashtra improves

its relative standing significantly when multidimensional poverty is measured rather than

24There are 128 combinations which are tested. The details of the test statistics are available from the
author on request. Almost all difference are significant except a few including the following. It is not possible
to statistically distinguish the poverty estimate of Tamil Nadu (0.261) from that of Karnataka (0.275). Also,
for Jharkhand (0.528) and Bihar (0.538) the multidimensional poverty estimates can not be statistically
distinguished from each other.

27



income poverty. In the multidimensional framework Maharashtra, in fact, does better than

Gujarat (one of the most prosperous states in the nation) and all the states in the south.

Let us now turn to the states that have done worse in this new framework. Gujarat

for instance is just below the two states with the lowest income poverty, namely, Punjab

and Haryana. However it does considerably worse than Maharashtra, Kerala and several

other states in terms of the multidimensional poverty measure P0. Andhra Pradesh which is

one of the more prosperous states also fails to impress in the multidimensional analysis. In

fact, Andhra Pradesh’s multidimensional poverty level is not far from those of the BIMARU

states.25

Table 6 shows that results are similar if the k value is set at 3 or 5, and hence

the results are largely robust to changes in the poverty cutoff. All these estimates give

equal weights to all the seven dimensions. A second form of robustness involves the use

of alternative weighting schemes for the dimensions. Table 20 (in the appendix) gives the

estimates of poverty levels as the weight on income is progressively increased from 20%

to 45% (and the other weights are proportionately decreased). Each column of this table

represents a different weighting scheme. For ease of comparison, in this table the k value

is fixed at 3.5. Table 21 (in the appendix) provides the rank of each state corresponding to

the poverty levels in Table 20. What is notable is that the ranking of the states remains

unaltered as one moves from equal weights to 30% weight on income alone.26 In short,

the results presented here are not particularly sensitive to the choice of k or the weighting

scheme used.

25This is perhaps not unexpected. Gujarat has witnessed severe outbreaks of Hindu-Muslim violence
over the decades (which seems to have intensified in the last 20 years); this clearly results in destruction
of social capital apart from creating widespread mistrust between religious groups. Also, successive state
governments in Andhra Pradesh have been accused of favoring urban development (especially by promoting
IT-led growth) at the expense of rural agriculture.

26When more than 30% weight is given to income, the ranking gradually start resembling the ranking
generated by the income headcount. This is hardly unexpected.
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Table 6.: Multidimensional poverty in the States of India: Alternative values of k.

State P0(k = 3) State P0(k = 5)

Punjab 0.191 Haryana 0.051
Haryana 0.263*** Kerala 0.057
Maharashtra 0.289 Punjab 0.057
Kerala 0.305*** Maharashtra 0.126***
Tamil Nadu 0.334 Karnataka 0.145**
Gujarat 0.340 Tamil Nadu 0.145
Karnataka 0.362*** Gujarat 0.170
Andhra Pradesh 0.391*** Andhra Pradesh 0.201**
West Bengal 0.463*** Uttar Pradesh 0.265***
Rajasthan 0.473 Rajasthan 0.298*
Uttar Pradesh 0.486 West Bengal 0.306
Madhya Pradesh 0.517*** Madhya Pradesh 0.341***
Jharkand 0.566*** Bihar 0.417***
Bihar 0.591*** Jharkand 0.425***
Chhattisgarh 0.613 Chhattisgarh 0.456
Orissa 0.700*** Orissa 0.605***

Notes: Here the difference in poverty was tested between a particular state and the state immediately above
it. For example, the difference in poverty between Haryana and Punjab was tested and was found to be
significant at the 5% level. * represents significant at the 10% level and ** represents significant at the 5%
level *** represents significant at the 1% level

Poverty estimates: By religious groups

Traditional income poverty analysis has found Muslims to be poorer than Hindus

(on average) in India (see for example Noland, 2005). This result does not hold for mul-

tidimensional poverty measure P0. Multidimensional poverty is unambiguously higher for

Hindus than Muslims in India, this result holds for k values of 1 through 5. For k values of

6 and 7 there is very little difference in poverty between the two groups (see Table 7). The

actual estimates for the two religions are numerically very close to each other. I use the test

proposed in the previous Section and find the differences are not significant for all values

of k. For the union approach (with k equal to 1) the difference between Hindu and Muslim

poverty is not significant. Using the intersection approach, the estimates are very small as

well. However for intermediate values of k, specifically k equal to 3 and 4 the difference is
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Table 7.: Mutlidimensional Poverty for Hindus and Muslims.

Cutoff (k) Headcount
(Hindu)

Headcount
(Muslim)

P-value P0 (Hindu) P0 (Mus-
lim)

P-values

1 0.878 0.906 0.002 0.474 0.463 0.230
2 0.776 0.777 0.941 0.459 0.444 0.134
3 0.673 0.638 0.019 0.430 0.404 0.022
4 0.516 0.460 0.001 0.362 0.328 0.006
5 0.312 0.283 0.056 0.246 0.227 0.132
6 0.130 0.141 0.410 0.116 0.125 0.398
7 0.029 0.033 0.516 0.029 0.033 0.516

The p-values given are for the test of differences in the poverty levels between Hindus and Muslims for the
given value of k.

highly significant.27

Figure 1.: Dimensional Decomposition of poverty. Notes The left panel gives the contributions of
each of the dimensions in the poverty levels of Hindus and Muslims at k equal to 3. The right side panel
gives the contributions of the dimensions when k is fixed at 4.

P0 provides results contrary to previous findings so the following question naturally

arises. Is it the case that some particular dimensions are driving these results? To answer

this, I decompose the poverty estimates for each group in terms of the contributions of

27Now looking at the multidimensional head count (in the left portion of the table), which gives the
proportion of the population which is multidimensional poor, I see that again, a higher proportion of Hindus
(compared to Muslims) are multidimensional poor. Again the difference in the values is not significant for
all values of k. I find that a significantly higher proportion of Hindus are poor when k is equal to 3, 4,
or 5. (also see Table 7). At k equal to one (which gives the union approach) I find a higher proportion
of Muslims to be poor. However at this k value almost 90% of the population is poor, which seems very
unrealistic according to standard notions of poverty.
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each of the dimensions. Figure 1 gives the percentage contribution of each dimension in

multidimensional poverty (for k equals 3 and 4) for the Hindus and Muslims respectively.

It is clear from the figure that the contribution of the dimensions of sanitation and drainage

to Hindu poverty (34%) is higher than that for Muslim poverty(28%). For Muslims, income

and education contribute more to overall poverty than they do for the Hindus.

A related question concerns the condition of low caste Hindu households as com-

pared to Muslims and high caste Hindus. It is important to bear in mind that the caste

system applies only to the Hindu population of India. Figure 2 shows graphically the levels

of poverty among the three groups - High caste Hindus, low caste Hindus, and Muslims.

High caste Hindus have the lowest levels of poverty followed by Muslims; the low caste Hin-

dus are the poorest. This result is very robust and holds for all values of k. The right-hand

panel of Figure 2 gives the dimensional decomposition of poverty across the three groups.

From the picture its is clear that the dimensional contributions of low caste Hindus and

Muslims are similar.28

Figure 2.: Contribution of each dimension in Multidimensional Poverty For High Caste
Hindus Low caste Hindus and Muslims.

28There is anecdotal evidence suggesting that in rural India low caste Hindus engage in more social
interactions with Muslims than with high caste Hindus. Often they reside in contiguous neighborhoods
which are some distance away from the neighborhoods populated by high caste Hindus.
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The population can be split on the basis of different markers as well. For example

I can compare Hindu and Muslim poverty across urban and rural areas. Table 22 in the

appendix gives the estimates of rural and urban poverty of Hindus and Muslims separately.

It should come as no surprise that for both religions the rural poverty is higher than urban

poverty. However in rural India, poverty among Hindus and Muslims is indistinguishable

(as can be seen by checking the corresponding p-values in the table). The overall differences

(urban and rural) between Hindus and Muslims is probably coming from the fact that rural

poverty is greater than urban poverty and a greater proportion of Muslims reside in urban

areas than in rural areas as compared to Hindus. Once the Hindu population is decomposed

along the caste dimension, it is evident that high caste Hindus are the least poor, followed

by Muslims. Also, low caste Hindus are the poorest in both rural and urban areas. 29

The analysis so far as assumed equal weights for all dimensions. I redo the robust-

ness checks as before in the comparison of poverty across states. Tables 24, 26, 25, and 23

in the appendix represent the results for the alternate weighting schemes. It is clear from

here that the main findings are preserved for a weight on income of up to 30%. A higher

weight on income reverts the results back to the comparisons based on income alone.

Conclusion

If economic development is about improving living standards, broadly conceived,

then one cannot neglect other achievements, that have a direct impact on well being such

as direct access to public facilities. To understand whether income growth in developing

countries has actually generated broad-based one has to look beyond poverty measures

which are solely income-based. This paper focuses on a measure of multidimensional poverty

29See table 23, in the appendix.
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developed by Alkire and Foster (2010) that is based on an individual’s access to basic public

goods like education, sanitation and drainage as well as income to provide a fresh empirical

perspective on the “trickle-down” issue.

Multidimensional measures of deprivation are computed for the 16 major states in

India and their relative rankings by this measure are provided. Interestingly, this ranking

turns out to be “quite different” from that provided by income poverty measures for the

same 16 states. The maximum differences in ranks is among the states that are “middle-

income” which resonates with the growth literature in cross-country studies (see for example

Quah, 1997, Bulli, 2001).

Kerala does much better when using the multidimensional framework as compared

to income poverty rankings. This is not surprising given the success of the literacy pro-

grams and other public policies implemented in the state (Sen, 1999). When using the

income poverty approach Maharashtra does not do remarkably well. However, under the

multidimensional framework only Punjab, Haryana and Kerala have less poverty than Ma-

harashtra. Andhra Pradesh is one of the states that have done rather poorly under the

multidimensional framework. This seems to give credence to the claim that the income

growth the state had achieved over that past ten years has not benefitted the masses.30

Similarly, Rajasthan, which is the success story for state initiative in industry, seems to do

considerably worse in this framework.

The poverty estimates are also computed for the two predominant religious groups

- Hindus and Muslims. I find that Muslims are less multidimensionally poor than Hindus

irrespective of the value of k used, though the results were statistically significant only for k

equal to 3 and 4. This is totally at odds with the income based approach which has always

30The state government in Andhra Pradesh during that period stressed “IT (information technology)-led”
growth which was primarily geared towards urban areas and possibly came at the expense of the rural sector.
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found Muslims to be the poorer group. Looking at urban areas alone I see that Muslims

are poorer than the Hindus. Access to facilities like sanitation, drainage, drinking water,

etc. is more uniform in urban areas the it is in rural areas. Given that differences are less in

the other dimensions, the income poor group (Muslims) are also the one who are poorer in

the multidimensional sense. On the other hand in rural areas I cannot distinguish between

Hindu and Muslim poverty levels. However low caste Hindus do exceptionally worse than

high caste hindus and Muslims in general.

I have tested the robustness of all the results imposing progressively more weight

on income compared to other dimensions. The findings are fairly robust to these alternative

weighting schemes. Only for weighting schemes that allot more than 30% weight on income

do these differences in Hindu-Muslim poverty or any other comparisons disappear. At this

point the results mirror the income poverty estimates which does not come as a surprise

since I am basically reducing the emphasis on the other dimensions.

By pointing out the divergence between rankings based on income poverty and mul-

tidimensional poverty this paper highlights the need to empirically re-examine the “trickle-

down” issue for developing countries. The analysis here reiterates the importance of focusing

on measures of direct access to public facilities as a means of improving living standards

and capabilities. Continued complacency with income-based poverty measures may prevent

us from successfully tapping the productive potential of the entire society.
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CHAPTER III

MULTIDIMENSIONAL POVERTY: MEASUREMENT, ESTIMATION, AND
INFERENCE

Introduction

Multidimensional poverty measures give rise to a rich set of testable hypotheses.

In this paper, I formulate a variety of these hypotheses - in the specific context of the

measure of Alkire and Foster (2010) - which are likely to be of particular interest to applied

economists and policy-makers alike. More importantly, I introduce a unified framework for

developing statistical tests of these and other related hypotheses.

Governments of several nations, including those of India and Mexico, as well as

numerous non-governmental agencies are in the process of adopting multidimensional mea-

sures of poverty to complement their traditional income (or consumption) analysis. The

adoption of a multidimensional approach is largely in response to arguments that income

alone does not completely identify the poor, and that there are other dimensions which are

relevant to the well-being of individuals. The goal of a multidimensional approach to poverty

analysis, therefore, is to move beyond the traditional univariate approach to incorporate

additional relevant indicators of well-being.

Following Sen (1976), poverty measurement has been viewed as a two step pro-

cedure involving both an identification and an aggregation step. Identification grapples

with the question: Who is poor? This involves the notion of poverty lines, whereby the

individuals below a poverty line are identified as poor. In the multidimensional approach of

Alkire and Foster (2010), however, two cutoffs must be considered for identification. First,
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for each dimension, a dimension-specific poverty line identifies the individuals deprived in

that particular dimension. The second cutoff determines the number of dimensions, k, in

which one must be deprived before they are considered (multidimensionally) poor. The

measures of Bourguingnon and Chakravarty (2005) and Tsui (2002), for example, adopt

a union approach to identification whereby any individual who is deprived in at least one

dimension is considered poor. In other words, their second cutoff is simply one dimension of

deprivation. In practice, however, the union approach often identifies substantially essential

high proportions of various populations as poor. In some instances, the union approach has

been found to identify more than 90% of a population as poor (Mitra, 2009).

Alkire and Foster (2010) recently proposed a new class of multidimensional poverty

measures based on the FGT class of unidimensional poverty measures. The AF measure is

remarkably simple, both conceptually and computationally. In the identification stage, the

AF measure involves selecting the second cutoff k to be any value between one (the union

approach) and the maximum number of dimensions d (the intersection approach). The ag-

gregation stage is then based on the FGT framework and thus retains many of the desirable

properties of the FGT class of measures. Among these properties is decomposability of the

overall poverty measures among sub-groups of the population. This property is essential,

for example, when one wishes to compare poverty across sub-regions or ethnic groups.

The Alkire-Foster methodology has also recently been applied in several empiri-

cal studies; see, e.g., Alkire and Seth (2008), Santos and Ura (2008), and Betana (2008).

However, these papers are primarily descriptive in nature due, largely, to a lack of available

statistical testing procedures.1 The present paper fills this void not only by formulating a

variety of novel and interesting statistical hypotheses in this context, but also by contribut-

1In contrast, statistical tests relating to the univariate approach to poverty analysis are well established;
see, for example, Anderson(1996), Davidson and Duclos (2000), Barrett and Donald (2003), and Linton,
Maasoumi and Whang (2005).
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ing to the literature a general framework for developing statistical tests of these and related

hypotheses. A distinguishing feature of this work is the emphasis on multiple testing proce-

dures which enable users to identify from within a collection of hypotheses those which are

not supported by the data. It is my contention that multiple testing procedures are of par-

ticular relevance in the context of multidimensional poverty analysis. Inferring, for instance,

the specific range of poverty lines over which a poverty ordering holds, the sub-collection

of measures over which a poverty ordering holds, or the specific dimensions (e.g. income,

health, education) in which a country or region is under-performing, are of greater policy

relevance than whether the ordering fails for some (possibly unidentified) poverty line, mea-

sure, or dimension. In contrast, most procedures currently applied in the context of poverty

analysis are joint tests which permit us to draw less informative inferences. Betana (2008)

for example, tests whether a poverty ordering based on the headcount ratio is consistent

over a collection of poverty lines. Betana (2008) approach, which is based on the empirical

likelihood ratio test developed in Davidson and Duclos (2006), allows him to infer only that

the hypothesized ordering is violated without necessarily providing any compelling evidence

concerning which poverty line(s) might suggest a reversal in the hypothesized ordering.

In contrast, I show that the recently introduced multiple testing procedures of

Bennett (2010) are particularly well-suited to simultaneous testing of the hypotheses which

arise naturally in the context of multidimensional measures.2 The principle advantage of

adopting multiple testing procedures is that, unlike the popular Wald-type tests (Wolak,

1989, Kodde and Palm,1986)e.g., for example, they offer compelling evidence concerning

the source(s) of rejection whenever rejection of the joint intersection hypothesis occurs. The

2For concreteness, I have chosen to frame the discussion in the context of the Alkire-Foster measure.
However, the methodology may also be extended, for example, to test hypotheses that arise from the
multidimensional orderings of Maasoumi and Lugo (2008) and Duclos, Sahn and Younger (2006). See also
Kakwani and Silber (2008) for an overview of these and other approaches.
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advantage of adopting the MinP procedure of Bennett (2010) , in particular, is that this

test is shown capable of correctly identifying more false hypotheses (sources of rejection)

than competing multiple testing procedures. Specific examples treated in this paper include

(though are not limited to) simultaneous tests of the poverty ordering for various parame-

terizations of the Alkire-Foster measure (e.g. robustness to choice to poverty lines and/or

k), simultaneous tests of poverty ordering of various populations relative to a benchmark

population, and simultaneous tests of dimension-specific (e.g., health, income, education)

poverty ordering.

To illustrate the methodology developed in this paper, I use the National Sample

Survey (NSS) 60th round health and morbidity data to study the differences in multidimen-

sional poverty among Hindus and Muslims in urban India. Two separate sets of hypotheses

are tested. The first corresponds to a robustness check on the second cutoff (k). I find that

for lower values of k, Muslims are poorer than Hindus. This is in accordance with income

based poverty comparisons which have generally found Muslims to be more deprived. In-

terestingly, for higher values of k the results suggest that Hindus are, in fact, poorer than

Muslims. In other words, a greater proportion of Hindus suffer from extreme poverty .

To further the understanding of this reversal, I also investigate which of the dimensions

may be responsible. Thus, the second set of tests correspond to a simultaneous test of the

component ordering for fixed values of k. The results here suggest that for higher values

of k, the difference in the contribution of income to Hindu and Muslim poverty is small

(sometimes even insignificant), and that the reversal in the poverty ordering among the two

ethnic groups is driven primarily by dimensions other than income. These results, while

interesting in and of themselves, serve to highlight the rich empirical welfare analysis that

can be conducted by coupling the statistical methodology with a multidimensional approach
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to poverty.

The remainder of this paper is as follows. In the next section I formulate a gen-

eralized version of the recently proposed Alkire-Foster class of multidimensional poverty

measures. Subsequently I discuss the formulation of a variety of statistical hypotheses and

show that they may be treated in a unified manner. Section 4 develops suitable test statis-

tics and the related asymptotics. Section 5 provides a discussion of the implementation of

the minimum p-value methodology, which is followed by an empirical illustration in Section

6.

Formulation

Let X = (X1, . . . , Xd) denote a random draw from a population with joint distri-

bution of achievement F . The components of X may be ordinal or cardinal. Without loss

of generality I assume that the first d1 ≤ d components of the random vector X are ordinal

whereas the remaining d− d1 are cardinal. For a fixed k, 1 ≤ k ≤ d, a pre-specified vector

of poverty lines ` ∈ (0, ¯̀]d, and a d × 1 vector of “weights” denoted by ω, I formulate the

multidimensional headcount ratio and generalized AF multidimensional poverty measures

as

H(`, k, ω, F ) = EF

1
 d∑
j=1

ωj1(Xj ≤ `j) ≥ k

 , (III.1)

and

Pα(`, k, ω, F ) =
1

d
EF

1
 d∑
j=1

ωj1(Xj ≤ `j) ≥ k

 d1∑
j=1

ωj1(Xj ≤ `j)


+

1

d
EF

1
 d∑
j=1

ωj1(Xj ≤ `j) ≥ k

 d∑
j=d1+1

ωj

(
`j −Xj

`j

)α
1(Xj ≤ `j)

 .
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(III.2)

For a given choice of k, ω, and `, I see that under either measure an individ-

ual with observed vector of achievement X = (X1, . . . , Xd) is identified as poor only if∑d
j=1 ωj1(Xj ≤ `j) ≥ k. Identification thus involves a dual cut-off approach. In the first

step, deprivation in dimension j is determined by comparing the level of achievement in

dimension j to the corresponding poverty line. In the second stage, an individual is iden-

tified as being poor only if the weighted (by ω) sum of the indicators of dimension-specific

poverty are at least equal to the multidimensional poverty threshold k.

When the dimensions are given equal weight (i.e. when ω equals the unit vector in

Rd), H(`, k, ω, F ) is simply the proportion of the population that is deprived in k or more

dimensions; or equivalently the probability that a randomly drawn person from population

F is deprived in k or more dimensions. Alternatively, the measure Pα(`, k, ω, F ), for α > 0,

is a weighted sum of H(`, k, ω;F ) where the individual weights correspond to FGT -type

measures (Foster, Greer, and Thorbecke 1984) of the individual dimensions, thus allowing

for the “depth” of deprivation to enter into the overall assessment of poverty. Greater

values of α correspond to greater emphasis being placed on the “depth” of deprivation

or equivalently greater emphasis being placed on the poorest of the poor. When α = 0,

Pα(`, k, ω, F ) reduces to a weighted sum of H(`, k, ω, F ) where the weights are simply the

probabilities of being deprived in each of the dimensions under consideration.3

Varying ω away from the unit vector amounts to a rescaling of the importance at-

tributed to the various dimensions of poverty. For instance, if ω = (2, 0.5, 0.5, 0.5) and k = 3,

then an individual is identified as poor only if they are deprived in the first dimension along

3In some situations, it may be of interest to allow the value of α to be dimension-dependent. Although I
have not formulated Pα(·) to explicitly account for this possibility, I note that such an extension can easily
be accommodated.
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with being deprived in at least two other dimensions. Thus, deprivation in dimension one

becomes a necessary condition for identification under this weighting scheme. In contrast, I

see that under the equally weighted scheme the same individual would be identified as poor

only if they are deprived in at least any three of the four dimensions. Thus, the choice of ω

(and, of course, k) plays a crucial role in the identification of deprived individuals.

In addition to being intuitive and simple to compute, the Alkire-Foster measure

also possesses the desirable properties of both subgroup and dimension-specific decompos-

ability. For example, if Z is a discrete random variable with Z = i denoting membership

in subgroup i, then I may write the poverty measure as a weighted sum of the subgroup

contributions to overall poverty, i.e.

Pα(`, k, ω, F ) =
1

d

∑
i

EF

1
 d∑
j=1

ωj1(Xj ≤ `j) ≥ k

×
 d1∑
j=1

ωj1(Xj ≤ `j) +

d∑
j=d1+1

ωj

(
`j −Xj

`j

)α
1(Xj ≤ `j)

 | Z = i

P (Z = i).

(III.3)

The values of H(`, k, ω, F ) and Pα(`, k, ω, F ) are clearly influenced by the parameters `, ω,

α, and k, about whose values there may be considerable disagreement. Consequently, it

may be of interest, for example, to test the robustness of a Alkire-Foster poverty ordering of

two populations to changes in these parameter values. The formulation of such hypotheses

is the subject of the next section.

Hypotheses

Let G denote the joint distribution of achievement of a population which is to

be compared to that of F . Tests of multidimensional poverty ordering will invariably in-
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volve hypotheses that are formulated based on the difference between H(`F , k, ω, F ) and

H(`G, k, ω,G), Pα(`F , k, ω, F ) and Pα(`G, k, ω,G), or the difference between several such

population parameters.4 In this section, I outline the basic structure of the statistical hy-

potheses which are treated in this paper. I begin with a number of specific examples that

are likely to be of particular interest to practitioners.
Example 1 (Poverty Component Analysis) Due to the composite nature of the mea-
sures, inferring, for example, that Pα(`G, k, ω,G) > Pα(`F , k, ω, F ) invariably leads to the
question: “In which dimensions is the population G worse off?” Consequently, it may be of
greater interest to consider both the Pα-ordering and the dimension specific ordering via a
simultaneous test of the d+ 1 hypotheses

H0 : Pα(`G, k, ω,G)− Pα(`F , k, ω, F ) ≤ 0

and

Hs : Pα,s(`G, k, ω,G)− Pα,s(`F , k, ω, F ) ≤ 0 for 1 ≤ s ≤ d,

where the additional subscript “s” on the measure Pα denotes the sth dimension’s contribu-
tion to the poverty measure.

Example 2 (Robustness) In empirical work researchers often observe the poverty order-
ing reverse when the value of α or k is adjusted. When this does not occur and the ordering
is consistent for all plausible values of α and k, the ordering is said to be robust. Along the
lines of the previous example, robustness over (say) α may be tested via a simultaneous test
of

Hs : Pαs(`G, k, ω,G)− Pαs(`F , k, ω, F ) ≤ 0 for 1 ≤ s ≤ S.

Clearly, testing for robustness over k is analogous, with the test being over various values
of k as opposed to various values of α.

Example 3 (Poverty Orderings relative to a Benchmark) For a given poverty mea-
sure, say Pα(·), an analyst may wish to identify those populations which have less poverty
than a benchmark population F0. Letting F1, . . . , FS denote the various populations that
have been chosen for comparison the testing problem can be formulated as a simultaneous
test of the S hypotheses

Hs : Pα(`Fs , k, ω, Fs)− Pα(`F0 , k, ω, F0) ≤ 0 for 1 ≤ s ≤ S.

The theme which is common to these (and many other) examples is that the

4The subscript on the poverty line vector highlights the fact that I allow for the pre-specified (exogenous)
poverty lines to differ across any two populations.
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hypotheses of interest may be written in the general form

EP [m(X; θ)] ≤ 0

where m is a vector-valued function, X is a random vector with distribution P , and θ is

a vector of (known) parameter values. This observation suggests that in the discussion of

statistical testing I may treat these and other seemingly disparate tests in a unified manner;

i.e., as simultaneous tests of multiple inequalities.

Estimation and Asymptotics

Fundamental to the testing procedures is the estimation of the multidimensional

headcount ratio and generalized Alkire-Foster (AF) poverty measures for various configu-

rations of the exogenous parameters α, `, ω, and k. In this section I discuss the estimation

strategy and I also establish the joint asymptotic distribution of the resulting estimators.

Since the specific estimators of interest and the associated joint distribution will invariably

depend upon the particular hypothesis under consideration, the asymptotic analysis here is

most aptly handled by treating the empirical poverty measures as a stochastic process in

the exogenous parameters and applying techniques from the empirical process literature for

their analysis. I therefore begin this section by introducing an empirical process which nests

many statistics, including for instance those pertinent to examples 1 through 3, as special

cases. Then, by establishing the weak convergence of this process, the joint asymptotic

normality of the statistics of interest may be obtained as simple corollaries.

In the analysis, I treat both the case of mutually dependent samples as well as

the case of independent samples, the former being relevant in examining the evolution of

poverty of a single group (e.g. changes in poverty over time), whereas the latter is relevant
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in comparing poverty across any two groups (e.g. cross-national) where sampling is done

independently within each group. For the sake of exposition I will assume, without loss of

generality, that the number of populations under consideration in any given hypothesis is

less than or equal to three. I begin the analysis with the dependent case.

Dependent Samples

Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be i.i.d. copies of a 3d × 1 random vector with

distribution P and d-dimensional marginal cdfs F , G, and H. I denote by Pn the empirical

measure based on a sample of size n from P , and I introduce the poverty vector functions

mi : (x, y, z) ∈ R3d → Rd+2, i = 1, 2, 3 which I define by

m1(x, y, z; `, k, ω, α) =



1 (A(x))

1 (A(x)) 1
d

[∑d1
j=1 ωj1(xj ≤ `j) +

∑d
j=1+d1

ωj

(
`j−xj
`j

)α
1(xj ≤ `j)

]
1 (A(x))ω11(x1 ≤ `1)

...

1 (A(x))ωd

(
`d−xd
`d

)α
1(xd ≤ `d)


,

(III.4)

m2(x, y, z; `, k, ω, α) = m1(z, x, y; `, k, ω, α),

and

m3(x, y, z; `, k, ω, α) = m1(y, z, x; `, k, ω, α),

where A(x) =
{∑d

j=1 ωj1(xj ≤ `j) ≥ k
}

. Thus, mi for i = 2, 3 is obtained from mi−1

through a cyclical permutation of the three d× 1 arguments x, y, and z. For a fixed choice

of parameters (`, k, ω, α) the poverty vectors associated with the F , G, and H distribu-
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tions are simple population means which may be estimated in a straightforward manner as

Pnm1(x, y, z; `, k, ω, α), Pnm3(x, y, z; `, k, ω, α), and Pnm2(x, y, z; `, k, ω, α), respectively.5

In each of the examples considered in the previous section, appropriate test statis-

tics of the individual hypotheses may be derived from

√
nPn[mi(x, y, z; `i, k, ω, α)−mj(x, y, z; `j , k, ω, α)], (III.5)

for some i, j ∈ {1, 2, 3} and some configuration of the parameters (k, ω, α). Consequently, a

treatment of the asymptotic behavior of the seemingly disparate cases may be handled in a

uniform manner by viewing (III.5) as a stochastic process in the parameters and applying

to it results from the empirical process literature. To this end, I begin by introducing the

class of real-valued functions

Fi = {〈mi(x, y, z; `, k, ω, α), h〉 : ` ∈ [0, ¯̀]d,

k ∈ [k, k̄],
∑

ωi = d, ωi ≥ 0, h ∈ [0, 1]d+2}
(III.6)

where i is a fixed integer belonging to the set {1, 2, 3} and 〈·, ·〉 denotes the scalar product of

two vectors. The goal is to establish that Fi is a Donsker class and hence that the empirical

process {
√
n(Pn − P )f : f ∈ Fi} converges weakly to a mean-zero Gaussian process in

`∞(Fi). Establishing this result, which I state formally as Theorem 1 below, will enable us

to obtain as corollaries a number of convergence results which will prove particularly useful

in the development of various statistical tests of interest.

Theorem 1 Suppose (X1, Y1, Z1), . . . , (Xn, Yn, Zn) are i.i.d. copies of a 3d × 1 random
vector with distribution P . Then, the class of functions Fi defined in (III.6) is P -Donsker
for i ∈ {1, 2, 3}.

Theorem 1 can be used to derive several important results. First, by defining the

5For a given probability measure P , the notation Pf denotes the expectation with repect to P , i.e.,
Pf :=

∫
fdP .
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class of functions

F ′i = { − 〈mi(y, x, z; `, k, ω, α), h〉 : z ∈ [0, z̄]d,

k ∈ [k, k̄],
∑

ωi = d, ωi ≥ 0, h ∈ [0, 1]d+2, 1 ≤ α ≤ 3}
(III.7)

I obtain via Theorem 1 and Donsker preservation under addition (Kosorok 2008, p.173)

that the empirical process

{
√
n(Pn − P )f : f ∈ F1 + F ′2}

converges weakly to a tight Gaussian process in `∞(F1 +F ′2). Since finite dimensional con-

vergence is necessary for weak convergence of the empirical process, I immediately obtain,

for example, the convergence of {
√
n(Pn − P )(f1, . . . , fS)} to a S-dimensional mean-zero

normal distribution provided fs ∈ F1 + F ′2 for s = 1, . . . , S. The connection to the testing

problem is made upon noticing that an element, say f , of F1 + F ′2 is of the form

f = 〈m1(x, y, z; `F , k, ω, α), h〉 − 〈m2(x, y, z; `G, k, ω, α), h′〉,

and hence, for h = h′ = (1, 0, . . . , 0) or h = h′ = (0, 1, 0, . . . , 0), the scaled and centered ran-

dom quantity
√
n(Pn−P )f is nothing other than the scaled and recentred difference between

the estimates of H(`F , k, ω, F ) and H(`G, k, ω,G), or Pα(`F , k, ω, F ) and Pα(`G, k, ω,G), re-

spectively.

Notice that Example 3 is a slight variation on the above themes in that it involves

a comparison between several populations. In order to subsume Example 3, I introduce the

class of functions Gj = F1 + F ′j and denote by H the class of functions

{〈f, λ〉 : f ∈ G2 × G3, λ ∈ [−1, 1]2}.

which is also P -Donsker under the conditions of Theorem 1. The application of these results
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to the testing problems are now made explicit by revisiting the earlier examples:

Example 4 (Example 1 continued) Let hi denote the ith standard basis vector in Rd+2,
ω ∈ Rd+ satisfy

∑
ωi = d, `G, `F ∈ (0, ¯̀]d, and α be a fixed positive integer. Then each

member of the finite collection

{〈m1(x, y, z; `F , k, ω, α), hi〉 − 〈m2(x, y, z; `G, k, ω, α), hi〉 : 2 ≤ i ≤ d+ 2} (III.8)

belongs to G2. I therefore obtain the convergence of

√
n(Pn − P )


m1,2(x, y, z; `G, k, ω, α)−m2,2(x, y, z; `F , k, ω, α)
m1,2(x, y, z; `G, k, ω, α)−m2,3(x, y, z; `F , k, ω, α)

...
m1,d+2(x, y, z; `G, k, ω, α)−m2,d+2(x, y, z; `F , k, ω, α)


to a mean-zero multivariate normal distribution.

Example 5 (Example 2 continued) Let h = (0, 1, 0, . . . , 0) ∈ Rd+2, ω ∈ Rd+ satisfy∑
ωi = d, `G, `F ∈ (0, ¯̀]d, and α(i) = i for i = 1, 2, 3. Then each member of the finite

collection {〈m2(x, y, z; `G, k, ω, α(i)), h〉 − 〈m1(x, y, z; `F , k, ω, α(i)), h〉 : 1 ≤ i ≤ 3} belongs
to G2. I therefore obtain the convergence of

√
n(Pn − P )

 m1,2(x, y, z; `F , k, ω, 1)−m2,2(x, y, z; `G, k, ω, 1)
m1,2(x, y, z; `F , k, ω, 2)−m2,2(x, y, z; `G, k, ω, 2)
m1,2(x, y, z; `F , k, ω, 3)−m2,2(x, y, z; `G, k, ω, 3)


to a mean-zero multivariate normal distribution.

Example 6 (Example 3 continued) Let h = (0, 1, 0, . . . , 0) ∈ Rd+2, ω ∈ Rd+ be a fixed
vector satisfying

∑
ωi = d, `G, `F , `H ∈ (0, ¯̀]d, and α be a fixed positive integer. Then each

member of the finite collection {〈f, λ〉 : f ∈ G2 × G3, λ ∈ {(1, 0), (0, 1)}} belongs to H. I
therefore obtain the convergence of

√
n(Pn − P )

(
m1,2(x, y, z; `F , k, ω, α)−m3,2(x, y, z; `H , k, ω, α)
m1,2(x, y, z; `F , k, ω, α)−m2,2(x, y, z; `G, k, ω, α)

)
to a mean-zero bivariate normal distribution..

Independent Samples

I now specialize the above results to the case where X = (X1, . . . , Xn1), Y =

(Y1, . . . , Yn2), and Z = (Z1, . . . , Zn3) are independent random samples with respective dis-

tributions PX , PY and PZ . To this end, let F denote the class of functions

{〈m(x; `, k, ω, α), h〉 : ` ∈ [0, ¯̀]d, k ∈ [k, k̄],
∑

ωi = d, ωi ≥ 0, h ∈ [0, 1]d+2}
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where m : Rd → Rd+2. Further, denote by Gn1,PX the signed measure
√
n1(Pn1,X−PX) with

analogous definitions for Gn2,PY and Gn3,PZ . For analyzing cases such as those presented in

Examples 1 and 2 my interest centers on the asymptotic behavior of an empirical process

of the form{(
n1n2
n1 + n2

)1/2 [
n
−1/2
1 Gn1,PXf1 − n

−1/2
2 Gn2,PY f2

]
: (f1, f2) ∈ F × F

}
(III.9)

In order to establish the asymptotic behavior of the empirical process in (III.9) I will require

the following assumption:

Assumption III.4.1 (Sampling Process) infi 6=j{ni/nj} → (0, 1) as n→∞.

From the independence assumption together with Assumption III.4.1 I obtain the

following important result:

Theorem 2 Suppose Assumption III.4.1 holds, then the empirical process in (III.9) con-
verges to the limit process{

λ
1/2
1 GPXf1 − (1− λ1)1/2GPY f2 : (f1, f2) ∈ F × F

}
for some λ ∈ (0, 1), where {GPXf : f ∈ F} and {GPY f : f ∈ F} are independent zero-mean
Gaussian processes.

The applications to the Examples 1 and 2 are immediate:

Example 7 (Example 1 continued) Let hi denote the ith standard basis vector in Rd+2,
ω ∈ Rd+ satisfy

∑
ωi = d, `G, `F ∈ (0, ¯̀]d, and α be a fixed positive integer. Then each

member of the finite collection {(〈m(x; `F , k, ω, α), hi〉, 〈m(x; `G, k, ω, α), hi〉) : 2 ≤ i ≤ d+2}
belongs to F × F . I therefore obtain form Theorem 2 the convergence of

(
n1n2
n1 + n2

)1/2

Gn2,PY


m2(x; `G, k, ω, α)
m3(x; `G, k, ω, α)

...
m(d+2)(x; `G, k, ω, α)

−Gn1,PX


m2(x; `F , k, ω, α)
m3(x; `F , k, ω, α)

...
md+2(x; `F , k, ω, α)




to a zero-mean multivariate normal distribution.

Example 8 (Example 2 continued) Let h = (0, 1, 0, . . . , 0) ∈ Rd+2, ω ∈ Rd+ satisfy∑
ωi = d, `G, `F ∈ (0, ¯̀]d, and α(i) = i for i = 1, 2, 3. Then each member of the finite

collection {(〈m(x; `F , k, ω, α(i)), h〉, 〈m(x; `G, k, ω, α(i)), h〉) : 1 ≤ i ≤ 3} belongs to F × F .
I therefore obtain the convergence of
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(
n1n2
n1 + n2

)1/2
Gn2,PY

 m2(x; `G, k, ω, 1)
m2(x; `G, k, ω, 2)
m2(x; `G, k, ω, 3)

−Gn1,PX

 m2(x; `F , k, ω, 1)
m2(x; `F , k, ω, 2)
m2(x; `F , k, ω, 3)


to a zero-mean multivariate normal distribution.

Again, as in the dependent case, testing problems such as those encountered in

Example 3 require a slight modification; namely, consider the process
η1/2

[
n
−1/2
1 Gn1,PXf1 − n

−1/2
2 Gn2,PY f2 + (n

−1/2
1 Gn1,PXf3 − n

−1/2
3 Gn3,PZf4)

]
: (f1, f2, f3, f4) ∈ F4

 (III.10)

where η =
(

n1n2n3
n1n2+n1n3+n2n3

)
. In order to establish the asymptotic behavior of the empirical

process in (III.10) I require the following assumption:

Assumption III.4.2 (Sampling Process) inf(i,j) 6=(k,l){(ninj)/(nknl)} → (0, 1) as n →
∞ whenever i 6= j and k 6= l.

From the independence assumption together with Assumption III.4.2 I am able to

establish the following important result:

Theorem 3 Suppose Assumption III.4.2 holds, then (III.10) converges to the limit process{
λ
1/2
1 GPXf1 − λ

1/2
2 GPY f2 + λ

1/2
1 GPXf3 − (1− λ3)1/2GPZf4 : (f1, f2, f3, f4) ∈ F4

}
for some λ1, λ2, λ3 ∈ (0, 1) with

∑
λi = 1, where {GPXf : f ∈ F}, {GPY f : f ∈ F}, and

{GPZf : f ∈ F} are independent zero-mean Gaussian processes.

I are now in a position to obtain the convergence result relevant to Example 3.

Example 9 (Example 3 continued) Let h = (0, 1, 0, . . . , 0) ∈ Rd+2, ω ∈ Rd+ be a fixed
vector satisfying

∑
ωi = d, `G, `F , `H ∈ (0, ¯̀]d, and α be a fixed positive integer. Then each

member of the finite collection {〈f, λ〉 : f ∈ G(2) × G(3), λ ∈ {(1, 0), (0, 1)}} belongs to H. I
therefore obtain the convergence of

√
η(Pn1,n2,n3 − P )

(
m3,2(x, y, z; `H , k, ω, α)−m1,2(x, y, z; `F , k, ω, α)
m2,2(x, y, z; `G, k, ω, α)−m1,2(x, y, z; `F , k, ω, α)

)
to a mean-zero bivariate normal distribution as an immediate consequence of Theorem 3.
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Testing Methodology

For a given collection (f1, . . . , fS) with fs, 1 ≤ s ≤ S, a member of the P -Donsker

class F (c.f. Examples 4 through 9), my interest centers on a simultaneous test of the

hypotheses

Hs : Pfs ≤ 0 against H ′s : Pfs > 0 1 ≤ s ≤ S.

It is well known that the classical Wald-type tests of (Wolak 1989) and (Kodde and Palm

1986), for example, can be applied here to test the joint intersection hypothesis

H0 : Pfs ≤ 0 for all 1 ≤ s ≤ S against HA : Pfs > 0 for some 1 ≤ s ≤ S

Unfortunately, a rejection of H0 based on the Wald-type test does not necessarily imply that

Hs is rejected for some 1 ≤ s ≤ S; indeed, I may reject the joint intersection hypothesis

H0 without finding compelling evidence against any individual hypothesis Hs. Thus, in

the context of Example 1, for instance, policy makers who adopt a Wald-type procedure

may infer that a country or region is underachieving and yet be unable to infer the specific

dimensions (e.g. income, health, education, etc.) which are responsible for the finding.

Clearly this is undesirable if policy makers wish to obtain compelling evidence regarding

dimension-specific underachievement and design targeted efforts accordingly.

In contrast to Wald-type tests, minimum p-value (MinP) tests are designed specif-

ically to allow one to identify the source(s) of rejection when rejection occurs. In order to

provide some background on the MinP methodology, I begin first by describing a suitable

procedure for the computation of bootstrap p-values. Towards this end, it is well known

Kosorok (2008) (page 20) that the Donsker property of F implies not only that

√
n(Pn − P )(f1, . . . , fS)⇒ NS(0,Ω(P )), (III.11)
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but also that

√
n(P̂n − Pn)(f1, . . . , fS)⇒ NS(0,Ω(P )), (III.12)

in probability, where P̂n denotes the bootstrap empirical measure and NS(0,Ω(P )) denotes

an S-dimensional normal distribution with covariance matrix Ω(P ) (the notation here re-

flects the dependence of Ω on the underlying probability mechanism P ). Letting Jn(·,Pn)

denote the bootstrap approximation (c.f. equation (III.12)) to the sampling distribution in

(III.11) and denoting by Jn,s(·,Pn) the sth marginal distribution, it is straightforward that

the bootstrap p-values associated with each of the component statistics may be obtained

from

p̂s = 1− Jn,s(
√
nPnfs,Pn) (III.13)

The bootstrap p-value p̂s in (III.13) provides a measure of the strength of evidence against

Hs, and it is tempting to reject Hs at the nominal level γ if p̂s < γ. This testing strategy,

however, ignores the multiplicity of the hypotheses under test and will tend to reject true

hypotheses too often in the sense that

ProbP

{
Reject at least one Hs, s ∈ I(P )

}
> γ (III.14)

whenever the collection of true hypotheses I(P ) contains two or more elements. For instance,

if S = 5, Pfs = 0 for every s (all Hs are true), and all tests are mutually independent, then,
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at the 5% level of significance

ProbP

{
Reject at least one Hs, s ∈ I(P )

}
= ProbP

{
min

1≤s≤S
p̂s < 0.05

}
n→∞−→ ProbP

{
min

1≤s≤S
Us < 0.05

}
= 1− (1− 0.05)5

= 0.226

(III.15)

where I have used the fact that the estimated p-values converge to mutually independent

uniform random variates under the assumed conditions. If the number of hypotheses S is

increased to 10 or the significance level of the test is increased to 10%, the corresponding

error rates jump to 0.401 and 0.409, respectively.6

The essence behind the classical MinP procedure lies in appropriately adjusting

the standard p-values so as to ensure, at least asymptotically, that

ProbP

{
Reject at least one Hs, s ∈ I(P )

}
≤ γ (III.16)

With the bootstrap distribution Jn(·, P ) already in hand, obtaining adjusted p-values sat-

isfying (III.16) is rather straightforward. Indeed, for a random draw Y from the known

distribution Jn(·,Pn) I may compute

p̂min = min
1≤s≤S

[1− Jn,s(Ys,Pn)]. (III.17)

The corresponding empirical distribution from B such draws, which I denote by Qn(·,Pn),

constitutes an approximation to the distribution of the minimum p-values and hence may

6The assumption of mutual independence is a worst case scenario with respect to error rate control and
is made here for illustrative purposes. In practice, I can generally expect some degree of dependence among
the hypotheses under test, however it is only in the case of perfect dependence that we can be guaranteed
of appropriate error rate control if we adopt the strategy of independently testing several hypotheses on the
basis of individual (unadjusted) p-values.
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be used to obtain the MinP adjusted p-values

p̂adjs = Qn(p̂s,Pn). (III.18)

In contrast to the liberal procedure in which the individual hypotheses are rejected if their

unadjusted p-values fall below the nominal level γ, it may be shown (Bennett 2010) that

testing the individual hypotheses based on the modified decision rule

Reject Hs if p̂adjs < γ

guarantees control of the error rate in (III.16), at least asymptotically. (Bennett 2010) also

demonstrates that the ability of the MinP test to identify false hypotheses can be greatly

enhanced by replacing the random draw Y ∼ Jn(·,Pn) which is subsequently evaluated in

(III.17) with a random draw from the bootstrap distribution JPCn (·,Pn) which is defined

according to

√
n(P̂n − Pn)(f1, . . . , fS)−

√
n(|Pnf1|1{|Pnf1|>δ1,n}, . . . , |PnfS |1{|PnfS |>δS,,n}) (III.19)

where the S × 1 vector δn is selected by the practitioner in accordance with Assumption

III.5.1 below:
Assumption III.5.1 i. ‖δn‖ = oP (1);7 ii. n→∞ inf1≤s≤S n

1/2δn,s →∞.

Remark 1 An example of a sequence δn satisfying the conditions of Assumption III.5.1
above is given by

δn,s =

√
2σ̂2n,s log logn

n
,

where σ̂2n,s denotes a consistent estimator of the asymptotic variance of
√
nPnfs.

To gain some intuition for the mechanics of this procedure first consider the case

where all of the hypotheses are on the boundary, i.e. Pfs = 0 for every s. In this case

7‖ · ‖ denotes the standard Euclidean norm.
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JPCn (·,Pn) and Jn(·,Pn) both converge to NS(0,Ω(P )), and consequently [1− Jn,s(Ys,Pn)]

where Y ∼ JPCn (·,Pn) converges to a uniform random variable for every s ∈ {1, . . . , S}.

Thus, asymptotically, the minimum is over an S × 1 vector random variable with uniform

(univariate) marginals, as should be expected when all of the Pfs = 0. In contrast, when

Pfs 6= 0 the sth marginal distribution JPCn,s (·,Pn) converges in probability to a degenerate

distribution at −∞ (the term
√
n(|Pnfs|1{|Pnfs|>δn,s} in (III.19) tends to −∞ with proba-

bility tending to 1 provided δn is chosen in accordance with Assumption III.5.1) in which

case

[1− Jn,s(Ys,Pn)]→ 1

in probability as n → ∞, and the index set over which the minimum is computed is

effectively reduced. Since the minimum p-value is generally decreasing in the number of

indices over which the minimum is computed, the elimination of any index for which Pfs 6= 0

generally reduces the adjusted p-values and ultimately enhances the test’s ability to detect

false hypotheses while still allowing us to maintain appropriate control over the error rate

(c.f. equation (III.16)). In fact, not only does this modification lead to greater power while

still maintaining appropriate error rate control, but it is also shown in (Bennett 2010) that

this modified MinP procedure is capable of identifying more false hypotheses than related

multiple testing procedures, including the iterative stepdown procedures of (Romano and

Wolf 2005) and (Hsu, Hsu, and Kuan 2010).

The implementation of the MinP testing procedure as described above in the

specific context of Example 1 and the case of dependent samples is conveniently summarized

in Algorithm 1 below :

Algorithm 1 (Example 1 Cont’d: The Dependent Case)

1. Draw a random sample of size n, i.e. {(X∗1 , Y ∗1 , Z∗1 ), . . . , (X∗n, Y
∗
n , Z

∗
n)}, from
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{(X1, Y1, Z1), . . . , (Xn, Yn, Zn)} and compute the difference

n−1
n∑
i=1

[
m(1)(X

∗
i , Y

∗
i , Z

∗
i : `, k, ω, α)−m(2)(X

∗
i , Y

∗
i , Z

∗
i : `, k, ω, α)

]
(III.20)

2. Repeat Step 1 B times and compute the empirical bootstrap distribution Jn(·,Pn) and
the B × S matrix of partially recentred bootstrap statistics using equation (III.19).

3. Compute the p-values of the S original and B×S partially recentred bootstrap statistics
by evaluating them in the appropriate marginal distributions Jn,s(·,Pn) of Jn(·,Pn).

4. Compute the empirical distribution of row-minimums from the B × S matrix of p-
values obtained in Step 3.

5. Compute the adjusted p-values corresponding to each test by evaluating the p-values
of the S original statistics (obtained in Step 2) in the empirical distribution obtained
via Step 4.

Aside from substituting for the appropriate statistics (i.e., in equation (III.20) of

Step 1), the algorithms for Examples 2 and 3 are identical, and are thus omitted. Sim-

ilarly, the modifications necessary for treating the case of independent samples are also

straightforward and I omit the details of the respective bootstrap algorithms.

Empirical Illustration

In this section, I apply the proposed testing methodology to data from India’s

National Sample Survey (NSS). I am particularly interested in examining the relative state

of poverty across two ethnic groups, namely Hindus and Muslims. India has a predominantly

Hindu population however it has a sizeable proportion of Muslims as well. Traditional

income poverty analysis has shown that a lesser proportion of Hindus are poor than the

corresponding numbers for Muslims. However, it is of interest to examine whether these

findings persist when relevant dimensions or indicators of poverty other than income (or

consumption) are included in the analysis. For the pupose of illustration I focus on a

comparison of Hindu-Muslim poverty. A more in-depth analysis of poverty in India using

55



this multidimensional framework and the same data has been done in Mitra (2009). In

that paper she studies the differences in poverty levels across different religions and regions.

She also compares poverty across Hindus and Muslims in rural and urban India. A simple

test is also proposed to compare poverty across two groups which incorporates the complex

survey design of the NSS. However the test is not extended to multiple inequality testing.

The data source is the National Sample Survey’s (NSS) 60th round health and

morbidity survey. This survey was conducted in the last 6 months of 2004. For the purposes

of this illustration I restrict attention to urban poverty, for which there are 26,566 households

included. Since I am looking only at Hindu and Muslim poverty all other households are

dropped. In India, these two religious groups together account for more than 95% of the

total population, and so the resulting sample of 20,243 Hindu households and 3,715 Muslim

households consists of the majority of all urban households.

While the NSS is a multistage stratified random sample, for the purpose of this

illustration I ignore the complications introduced by this particular sampling design and

instead assume the observations to be generated through the process of simple random

sampling. While ignoring the specific sampling design is likely to bias the findings,8 a

thorough consideration of the sampling design issue (e.g., providing a detailed discussion of

the NSS sampling design, modifying the bootstrap accordingly, etc.) is beyond the scope

of the current paper.

As for the dimensions of deprivation used in the analysis I include the following:

Per capita monthly expenditure (PCME), level of educational attainment, source of drinking

water, type of housing structure, type of sanitation, drainage facilities available and main

cooking medium. Since I am measuring household poverty and not individual level poverty,

8Bhattacharya (2007), for example, discusses in detail the effect of ignoring the sampling design of the
NSS on inequality measurement.
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Table 8.: Correlation between the dimensions

Income Housing Sanitation Drainage Water Cooking Medium

Income 1
Housing 0.2042 1
Sanitation 0.1684 0.3012 1
Drainage 0.3129 0.3841 0.2908 1
Water 0.1160 0.1218 0.0187 0.2243 1
Cooking Medium 0.3031 0.3754 0.3339 0.4270 0.1831 1
Education 0.3786 0.3063 0.2777 0.3330 0.0839 0.4748

I take for the education level the highest level of education earned by any member of the

household. Except per capita expenditure and education, all variables used in the analysis

are ordinal. I also implicitly treat all households equally in terms of size since the NSS

weighs all households in a village/block equally and therefore does not explicitly account

for household size.9

The dimensions are chosen to represent the standard of living and the capabilities

of the households to improve their position. A notable omission is health. Unfortunately,

reliable sources of data for health of individuals and households are not easily available

for India. One source for data on health for India is the National Family Health Survey,

however this survey does not ask about income or per capita expenditure. Researchers have

used this data after computing an asset index. However for the purpose of this analysis I

have chosen to use more standard measures of income at the cost of omitting the dimension

of health.

Of the seven dimensions used, one might be concerned about a high degree of

correlation and the inclusion of “redundant” dimensions. Surprisingly, I find correlations

between the various dimensions to be rather low. Indeed, as can be seen in Table 8, no

correlation coefficient exceeds 0.5.10 Therefore, by incorporating all of these dimensions I

9As pointed out by one of the referees, this is likely to bias the results since households typically have
different sizes and household size is likely correlated with both poverty and religion.

10I thank an anonymous referee for suggesting that I investigate the correlation among dimensions.
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Table 9.: Dimension Specific Poverty lines

Dimension Poverty line

Income As given by the Planning Commission
Education Having not obtained at least a primary education
Sanitation No sanitation facility available
Drainage No accessible drainage system
Housing Person does not reside in a pucca∗ structure
Source of Drinking water Person used a river, canal, pond, or well
Primary Cooking Medium Person had no cooking arrangement or used firewood or dung cakes

*Pucca refers to brick and mortar structures

am able to capture different forms of deprivation in urban India.

Table 9 gives the dimension specific poverty lines used. For PCME, I use the

poverty line as established by the Planning Commission of India. The remaining cut-offs

are chosen as to describe a minimum standard of living.

Table 10 summarizes the incidence of deprivation in each of the seven dimensions

for Hindus and Muslims, respectively. Note that in every dimension, except sanitation and

drainage, the incidence of poverty among Muslims is greater than among Hindus. Further,

note that the largest disparities appear to be in the dimensions of income, main cooking

medium, and education level.

Table 10.: Incidence of Deprivation expressed as a percentage

Dimension Incidence(Hindu) Incidence(Muslim)

Income 18.9% 30.8%
Housing 17.9% 19.5%

Sanitation 19.7% 15.8%
Drainage 16.8% 15.3%

Water 5.3% 8.8%
Cooking medium 26.2% 35.9%

Education 10.0% 17.1%

In addition to the dimension-specific poverty lines, the P0 and H measures (or

more generally the AF methodology) require us to set a second cut-off.11 The second cutoff

is the dimension cutoff k which in the analysis can take any value between 1 and 7. The

11For the sake of brevity I consider only the P0 measure and multidimensional headcount H
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Table 11.: Level of Poverty: Multidimensional Headcount

K=3 K=4 K=5 K=6

H for Hindus 0.187 0.113 0.054 0.016
H for Muslims 0.226 0.109 0.044 0.015
Adjusted p-values(Null: M-H≥0) 1.000 0.902 0.061 0.016
Adjusted p-values (Null: H-M≥0) 0.002 0.302 0.987 0.998

value of k may be set before the analysis is undertaken by governments or by the investigator

given the objectives of the exercise. Once k is fixed I may compute the associated level of

poverty. When k equals 5, for instance, I see that Hindus are poorer than Muslims under the

P0 measure of multidimensional poverty (see Table 12). This conclusion depends on both

the dimension specific poverty lines (which I assume here to be exogenously determined)

and the value of k (which may be set by the investigator). So a natural robustness check

would entail checking the levels of poverty for various values for k. For example if we see

that Hindus remain poorer than Muslims for k values ranging from, say, 3 through 6, then

we may infer that the poverty ordering is robust to the choice of k. This robustness check

corresponds to a multiple inequality test where the null hypotheses are given by:

Hk : H(`F , k, ω, F ) ≤ H(`G, k, ω,G), k=3,4,5,6,

and

Hk : Pα(`F , k, ω, F ) ≤ Pα(`G, k, ω,G), k=3,4,5,6.

The p-values from this test in fact suggest a reversal in the levels of poverty for

Hindus and Muslims as k is varied. When k equals 3, for example, I am able to infer that

poverty among Muslims is higher than poverty among Hindus. However for the higher k

values of 5 and 6 I reach the opposite conclusion. At k equals 4 there is no significant

difference between the levels of poverty for the two groups. It is important to emphasize
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Table 12.: Level of poverty: Multidimensional poverty

K=3 K=4 K=5 K=6

P0 for Hindus 0.107 0.075 0.041 0.014
P0 for Muslims 0.121 0.071 0.034 0.013
Adjusted p-values(Null: M-H≥0) 1.000 0.709 0.036 0.008
Adjusted p-values (Null: H-M≥0) 0.000 0.508 0.991 0.998

that the reported p-values are adjusted for multiplicity and thus permit us to draw valid

inferences concerning the individual hypotheses under test. Consulting unadjusted p-values,

on the other hand, would not protect against the multiplicity problem and generally lead

one to find “too many” false positives.

The observed reversal in the poverty ordering raises questions about a plausible

explanation. Perhaps this reversal is the result of the fact that Hindus can be divided

further on the basis of the caste to which they belong. Traditionally, the lower castes have

been found to be more deprived, for instance, being made to do menial labor for low wages,

and at the expense of receiving education. Even in modern times these castes have lagged

behind the rest of the population and constitute some of the poorest individuals in the

society. I therefore offer the following plausible explanation for the observed reversal: at

higher levels of k, I are primarily capturing the lower castes within the Hindu population.

Perhaps what I am observing then is low caste Hindus facing greater hardships, on average,

than the Indian Muslim population.12 Another plausible explanation for the reversal is

that for lower values of k, it may be the case that income contributes relatively more to

multidimensional poverty than it does for higher values of k. In such a case I will see that

for lower k, I have Hindus less poor, simply because they are less poor by any measure of

income poverty. But as k increases the other dimensions become increasingly important in

which case, I may see a reversal. A test of this second conjecture is pursued next.

12Regional and religious disaggregation of poverty in India is explored in greater depth in Singh(2009)
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For a given value of k, for example k equals 3 I decompose the P0 measure into the

contributions of each of the dimensions. I then test whether there is significant difference

between the contribution of each dimension to Hindu and Muslim poverty. More precisely,

I perform a simultaneous test of the d+ 1 hypotheses

H0 : P0(`G, k, ω,G)− P0(`F , k, ω, F ) ≤ 0

and

Hs : P0,s(`G, k, ω,G)− P0,s(`F , k, ω, F ) ≤ 0 for 1 ≤ s ≤ d,

where the additional subscript “s” on the measure Pα (α = 0) denotes the sth dimension’s

contribution to the poverty measure.

The results of the above test for k ∈ {3, 4, 5, 6} are presented in the table at the

end of the chapter. I have observed that poverty is higher among Muslims at k = 3. I

now see from the decomposition that incidence in income, housing, water, cooking medium,

and education are all lower for Hindus than for Muslims with k equal to 3. For k equals

4, there is no significant difference between Hindus and Muslim poverty and I also see that

most of the dimensions do not have significantly different contributions among Hindus and

Muslims. For k equal to 5, I find that Muslims are less poor than Hindus, and that there

is no significant difference in the contribution of income to Hindu and Muslim poverty

levels. The difference in overall poverty can be explained only by differences in the levels

of deprivation in the other dimensions, namely housing, sanitation and drainage for which

I may infer that there is more deprivation among Hindus than among Muslims. For k

equal to 6 I find stronger evidence of higher poverty among Hindus than among Muslims.

I find at this level of k I have that Hindu households are significantly more deprived in all
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dimensions.

In summary, I find that as k increases beyond 4, income is no longer enough to

differentiate between Hindu and Muslim poverty, and that only by including other dimen-

sions are we able to distinguish between Hindu and Muslim households in extreme poverty.

This is an interesting finding which lends empirical support to arguments advocating the

use of a multidimensional approach to poverty analysis.

Concluding Remarks

I have shown that the AF multidimensional approach to poverty naturally gives

rise to the consideration of multiple hypotheses. Specific examples include examining the

robustness of the AF ordering to the choice of poverty lines and/or the number of dimen-

sions of deprivation before one is considered poor, inferring poverty ordering of various

populations relative to a benchmark population, and inferring the specific dimensions in

which a population is underachieving. Additionally, I have shown how such hypotheses

can be treated in a unified manner and also tested using the minimum p-value (MinP)

methodology of Bennett (2010).

In applying the proposed methodology to study Hindu and Muslim poverty in

India, I have illustrated the tremendous scope for examining a wide range of hypotheses

and for revealing insights into the plight of the poor not otherwise captured by traditional

univariate approaches to poverty analysis. The use of India’s National Sample Survey in

this illustrative example, however, motivates a thorough consideration of issues raised by

the application of the methodology under various sampling designs. While beyond the scope

of the current paper, research into sampling design related issues in currently in progress.
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Finally, the focus in this paper has been on how to formulate and test rather general

hypotheses in the specific context of the Alkire-Foster multidimensional poverty measure.

However the proposed tests can be extended to test hypotheses that arise from alternative

multidimensional poverty or inequality ordering. Obvious examples include the multidi-

mensional ordering of Maasoumi and Lugo (2008) and Duclos, Sahn and Younger (2006).

Further, the proposed testing procedures can be extended to allow for sample-dependent

measurement parameters—e.g., estimated poverty lines—as opposed to the simpler case of

exogenous parameters as treated herein.
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CHAPTER IV

ELECTORAL UNCERTAINTY AND THE GROWTH OF THE “MIDDLE CLASS”
THEORY AND EVIDENCE FROM INDIA

Introduction

The “middle class” has resources to spend on consumption and also the ability

and will to save and invest. In the context of fast-growing developing nations such as

India,China and Brazil, the middle class has been posited as a driver of growth.1 The rise

of India’s “middle class” has been the subject of intense debate in recent times. There have

been several studies (see Topalova,2005, Bhagwati and Srinivasan, 2002) which have tried

to link the growth of the “middle class” to the policies of trade liberalization pursued since

the 1990s. Given the prominence of this group, it is important to identify the factors that

may impact the size of this group. This paper focuses on one such factor, namely the degree

of electoral uncertainty in society. Specifically, this paper studies the relationship between

electoral uncertainty and the degree of income polarization in society.

The degree of income polarization is a measure of the extent of clustering in society

along income lines (see Esteban and Ray, 2010for a comprehensive discussion). In particular,

a high degree of income polarization is suggestive of a society dominated by two income

groups — the “haves” and the “have-nots” and thus a smaller middle class.2 I investigate

how the tightness of the elections can affect the performance of the parties; in particular,

1The causes of the rise of the Indian middle class is highly-debated and is tied up with the evaluation of
whether growth in India since the 1980s has been “balanced”. In China, however, the high rates of growth
is almost entirely state-led.

2The measure of polarization posited by Foster and Wolfson (1992, 2010) is well-disposed towards cap-
turing the size of the middle class. In fact, this is the measure I use extensively in the paper.
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how the parties target the low and middle-income groups. Any district in which a political

party feels secure about victory will not only tend to get less attention from the party (in

terms of public spending) but will also experience reduced redistribution (within a district)

leading to low growth (if any) of the “middle class” in that district.

The literature so far has focused on how resources are targeted to districts that

are “swing” or “non-partisan” as opposed to districts that are strongly inclined towards one

party or another. Models of political competition which have directly addressed questions of

this nature (see for e.g., Lindbeck and Weibull (1987), Dixit and Londregan (1996, 1998), )

have generally concluded that “swing” districts get more targeted resources in the aggregate.

Such theoretical findings have been empirically investigated. For instance, Arulampalam

et al (2009) find evidence, in the case of India, of the central government making transfers

to state governments on the basis of political considerations. They find that a state which

is both aligned3 and swing4 in the last state election is estimated to receive 16% higher

transfers than a state which is unaligned and non-swing.

Bardhan and Mookherjee (2010) investigate political determinants of land reform

implementation in the Indian state of West Bengal since the late 1970s. Their findings

suggest that land reforms were better implemented in districts where there was more elec-

toral competition. Taking the discussion further, I investigate which groups within the

swing districts get the larger share of the benefits. This paper also has some commonalities

with the literature on “clientelism”. Bardhan and Mookherjee (1999) provide a theoretical

framework which connects electoral competitiveness to clientelism. However, their main

focus is the relationship between the degree of decentralization and clientelism.

3The state governtment and the central government have at least one party in common
4Swing is defined later in the theoretical model section
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In principle, the relationship between electoral uncertainty and income polarization

is complex as there are potentially several opposing forces at play. In an electorally secure

district, the political party which enjoys the advantage tends to feel less insecure and can

pursue investment in public infrastructure and broad-based development programmes in

a relatively unhindered manner. On the other hand, this party could simply fall back on

its inherent advantage and not pursue development with great zeal. After all, effective

administration is costly and if the party can afford to get re-elected without working hard

to improve the lot of the masses, it would like to exercise that option. Hence, overall the

effect of heightened electoral uncertainty on income polarization could be ambiguous.

The model presented here attempts to incorporate some elements of the above

intuition and is very much in the tradition of the standard two-party Downsian competi-

tion. Suppose there are three categories of public goods available in society — one that

disproportionately benefits the poor, another which disproportionately benefits the rich

and finally a pure public good which benefits all groups equally. One could think of these

benefits as augmenting the incomes of the citizens. For simplicity, I assume that there are

three income groups in society — the poor, the middle-income and the rich. I allow for

a continuous distribution of incomes in society but only require that the different income-

earners can be sorted into the three broad income groups; so within each group, there is

some heterogeneity of incomes.5

Prior to elections, each of the two political parties can commit to a certain level

of investment in each of these public goods. Of course, investment is costly — typically,

it requires the party candidate to lobby the central government for funds, monitor the

5There remains the question of whether the middle class in India is a significant chunk of the population
or whether it is a small minority located in half a dozen urban centres of the country (see Banerjee and
Piketty(2003)). The way I think of the “middle class” in any region is really in terms of a group which is
spread around the median income-earner in the region — thus, in very relative terms.
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progress of the projects and so on. Also, in the spirit of Lindbeck and Weibull (1987) and

Dixit and Londregan (1996) there is a constituency-level bias in favor of one party which is

drawn from some distribution known to all. This bias can be interpreted as the ideological

preferences of the voters in the constituency.6 Given that each party wishes to maximize

plurality net of investment costs, in equilibrium both parties end up proposing identical

investment platforms provided they face the same investment cost function.

The model also predicts that as the level of electoral uncertainty increases in the

district, the equilibrium level of investment in each type of public good increases; in other

words, there is greater transfer to the electorally competitive districts. This is in line

with the findings in Lindbeck and Weibull (1987) and Dixit and Londregan (1996). Most

importantly, I show that increased electoral uncertainty induces additional investment in

a manner that the additional benefits to the poor exceed the additional benefits to the

middle-income group, which in turn, exceed the additional benefits to the rich. The main

intuition behind such allocation is the following. Increased electoral uncertainty forces each

party to expend more effort into investment and so they allocate investment among the

three goods in such a manner that gets them the highest possible return in terms of votes.

The fact that the population mass of the poor exceeds that of the rich makes the former a

more attractive option in each party’s eyes when allocating additional investment. Thus,

increased electoral uncertainty reduces all inter-person income differences in society and

hence reduces inequality. Furthermore, by bringing both the poor and the rich “closer” to

the middle class group, it reduces polarization.

As far as the behavior of political parties is concerned, the stress is more on the

errors of “omission” rather than of “commission”; the intuition being that in secure districts,

6Typically using any such probalistic-voting setup helps guarantee an equilibrium in pure strategies,
which is something clearly desirable in this context.
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politicians tend to expend less effort and resources rather than actively pursue rent-seeking.

However, explicitly including clientelism in the spirit of Bardhan and Mookherjee (1999)

— in allowing political parties to gain some additional payoff from tilting policy towards

the rich in society — in the model would only reinforce the results. Increased electoral

uncertainty would make it more costly for the parties to cater to the rich.

The main theoretical finding, namely, that electorally “swing” constituencies tend

to exhibit lower degree of income polarization is supported by the empirical exercise. The

main variable representing electoral “swing” is the actual margin of winning; in other words,

I look at the difference between the percentage vote shares of the two parties that obtain the

highest number of votes in any constituency. The two NSS consumer expenditure rounds I

utilize have almost 16 years between them and these intervening years have been witness to

several national elections.7 In the baseline specification, I take an average of the winning

margins over several elections prior to each of the NSS expenditure rounds to get a measure

of the electoral volatility of the districts.

I also experiment with alternative variables for electoral swing; for example, I

restrict attention to the most recent election that took place before the relevant NSS ex-

penditure round (rather than take an average over several prior elections). The results I get

are robust to such variations — more “swing” districts exhibit lower (expenditure) polar-

ization. The pattern persists when I replace winning margin by simply the vote share of the

winning party. There is evidence of a similar relationship between inequality (as measured

by the Gini coefficient) and electoral uncertainty. Inter-quartile differences in expenditure

(normalized by the average level of expenditure) are also positively associated with higher

7The two rounds are the 43rd round (conducted in 1987-88) and the 61st round (conducted in 2003-04).
Also, national elections take place once every 5 years. Sometimes, they are more frequent. For instance,
when the incumbent government fails a “vote of confidence” (a sign that the ruling party has the support
of the majority of the national legislators) and is forced to resign, fresh elections are called.
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winning margins.

In sum, the empirical findings suggests a strong empirical relationship between

electoral uncertainty and the growth of the middle class. In particular, the empirical exercise

helps to identify at least one important channel which stifles the growth of the “middle class”

in India; namely, the under-performance of political parties in districts which are electorally

secure.

The remainder of the paper is organized as follows. Section 2 presents a simple

model of electoral competition which describes the impact of uncertainty in election out-

comes on equilibrium policy platforms and hence on the resulting income distribution in

society. Section 3 describes the data, the empirical strategy and findings and Section 4

concludes.

The model

Suppose that society is composed of a unit mass of individuals who differ in terms of

their incomes. For simplicity, assume that there are three distinct income groups in society

— the poor (denoted by p), the middle-income (denoted by m) and the rich (denoted by

r). Let G(.) represent the cdf of incomes in society and let ym and yr be two income levels

with 0 < ym < yr such that anyone with income lower than ym falls into group p and

anyone with income between ym and yr falls into group m. All individuals earning at least

yr constitute the group r. Also, let ni denote the mass of group i for i = p,m, r. I assume

that np > nr. Note that the way the income groups (and their corresponding sizes) have

been defined makes it clear that the median income earner in society could belong to any

of the three groups.8 However, it is reasonable to proceed with the presumption that the

8The only restriction I impose is that np exceed nr.
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median income-earner belongs to group m; in a sense, it provides a natural interpretation

of the notion of a “middle class”.

There are two political parties A and B who field candidates for election. Each

candidate proposes some (non-negative) allocation of investment in public goods. I assume

that there are three categories of public goods in society:

(i) Pro-poor public goods: Fix some level of investment in this good, say Ip. Any

additional investment in this good generates some positive benefits for all income groups.

However, the marginal benefit to group p outweighs that to group m which in turn exceeds

that to group r.

(ii) Pro-rich public goods: Fix some level of investment in this good, say Ir. Any

additional investment in this good generates some positive benefits for all income groups.

However, the marginal benefit to group r outweighs that to group m which in turn exceeds

that to group p.

(iii) Pure public goods: Fix some level of investment in this good, say Im. Any

additional investment in this good generates equal positive benefits for all income groups.

It is not difficult to cite examples of each type of public good particularly in

the context of developing countries. Foster and Rosenzweig (2001) posit a model with

three kinds of public goods — irrigation facilities (pumps, tanks, tubewells), roads and

schools — which differentially affect the welfare of the landed (and hence better-off) and

landless (and hence poor) households. Specifically, they show that public expenditure on

road-construction programs primarily benefit landless households by increasing local labor

demand and the public purchase of irrigation facilities increases agricultural production and

thus raises land rents which boost the incomes of the landed households. In the model, I

could think of public expenditure on schools as a pure public good.
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I will now make precise how investment in each of the three public goods affects

any citizen’s payoff. Suppose the level of investment in the three goods are given by I ≡

(Ip, Im, Ir) ≥ 0.

For an individual in group p, this generates a payoff (over and above her initial

exogenously given income) given by wp(I) = λβ(Ip) + β(Im) + µβ(Ir).

For an individual in group m, this generates a payoff (over and above her initial

exogenously given income) given by wm(I) = β(Ip) + β(Im) + β(Ir).

For an individual in group r, this generates a payoff (over and above her initial

exogenously given income) given by wr(I) = µβ(Ip) + β(Im) + λβ(Ir).

By the nature of the public goods defined above, it must be that λ > 1 > µ > 0.

I assume that β(0) = 0, β′(0) =∞, β′(x) > 0 for every x > 0 and β′′ < 0. See Figure 3 for

a useful illustration.

Ix
0

λβ(I)

β(I)

(1‐μ)β(x)

(λ‐1)β(x)

μβ(I)

Figure 3.: The Returns-from-Investment curves.
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Investment in any public good is costly in the sense that it requires effort by the

party’s candidate. One could think of this cost as lobbying costs for funds or monitoring

costs of the projects, etc. I assume that the cost of investment by party j is given by c(Îj)

where Îj = Ijp + Ijm + Ijr for j = A,B. Also, I assume that c(0) = c′(0) = 0, c′(I) > 0 for

every I > 0 and c′′ > 0.

An individual’s preferences over candidates (and their proposed policies) are de-

scribed as follows. First, individual v exhibits a bias av, positive or negative, for party A.

The corresponding payoff from B is normalized to be zero, so av is really a difference. This

ideological bias can stem from many things, say the parties stand on issues other than public

goods provision and so on. Moreover, I assume that every individual draws this bias from

the same distribution with cdf F (.) and corresponding density f positive everywhere on

the real line. Thus, it is this F function which captures the ideological leanings or partisan

nature of the constituency.

So the timing is as follows. Both parties A and B field their respective candidates

each of whom proposes a vector of investments, i.e. Ij ≡ (Ijp , I
j
m, I

j
r ) ≥ 0 for j = A,B.

Each voter then draws her bias from F (note, F is public information but each individual’s

realization is observed by the individual alone) and then votes for the party who promises

her higher utility. The party with the highest number of votes is declared the winner and

the winner’s proposed platform is implemented. Note, there is full-commitment from each

party’s side in keeping with the Downsian tradition.

Suppose (IA, IB) is offered by party A and party B, respectively. Consider a voter

v who belongs to income group i where i = p,m, r. She will vote for A′s candidate if

wi(IA) + av > wi(IB).
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Note, voter v will vote for B′s candidate if the opposite inequality holds and will be indif-

ferent in case of equality.

From the perspective of the party, an individual’s vote is stochastic. The proba-

bility that she will vote for party A′s candidate is given by

1− F (wi(IB)− wi(IA)).

Call it pi (note, it is the same for every voter v in group i). The expected plurality

for party A is proportional to
∑

i nipi.
9 Parties care about maximizing their respective

expected plurality but are also sensitive to the cost of investment. In particular, given B′s

platform IB, party A will choose IA to maximize:

∑
i

nipi − c(ÎA).

Similarly, party B will take IA as given and choose IB to maximize:

1−
∑
i

nipi − c(ÎB).

Assuming that F (wi(IB) − wi(IA)) is convex in IA (for any IB) and concave in

IB (for any IA) for each group i — in the same vein as Lindbeck and Weibull (1987) — is

sufficient to guarantee the existence of best-response functions for each of the two parties.

This sets the ground for the first result which is stated in Proposition 1 below.

Proposition 1 There is a unique equilibrium of this game. Moreover, the equilibrium is
symmetric with each party offering platform I∗ ≡ (I∗p , I

∗
m, I

∗
r ) where I∗ satisfies the following

equations (1)-(3):

f(0)β′(Ip)[npλ+ nm + nrµ] = c′(Î) (IV.1)

f(0)β′(Im) = c′(Î) (IV.2)

9To be precise, the expected plurality is given by
∑
i ni[pi − (1− pi)] =

∑
i ni[2pi − 1].
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f(0)β′(Ir)[npµ+ nm + nrλ] = c′(Î) (IV.3)

Moreover, I∗p > I∗r .

Proof. The proof is established in a few steps. First I show that there exists a

unique I∗ ≡ (I∗p , I
∗
m, I

∗
r ) which satisfies equations (1)-(3) and also I∗p > I∗r . Then I establish

that that both parties offering I∗ is an equilibrium of this game. The final step establishes

the uniqueness of the equilibrium.

STEP 1 (existence of I∗ ≡ (I∗p , I
∗
m, I

∗
r )):

From equations (1) and (2), I get:

β′(Ip) = β′(Im)/[npλ+ nm + nrµ].

This means Ip can be represented by some strictly increasing function of Im given that

β′′ < 0. Similarly, equations (1) and (3) yield that Ir can be represented by some strictly

increasing function of Im. Moreover, both Ip and Ir approach 0 as Im goes to 0 since

β′(0) =∞.

Now focus on equation (2). The RHS is simply an increasing function of Î. Note,

Î can be represented by some strictly increasing function of Im given the discussion above.

Hence, the RHS of equation (2) is a continuous and strictly increasing function of Im given

the strict convexity of c. The LHS of equation (2) is a continuous and strictly decreasing

function of Im owing to the strict concavity of β. Moreover, for values of Im arbitrarily

close to 0 LHS of (2) strictly exceeds RHS of (2) since c′(0) = 0 and β′ > 0. Also, the RHS

of (2) strictly exceeds LHS of (2) for exceedingly “large” values of Im since β is strictly

concave and c is strictly convex and increasing. This implies that there is a unique solution

— call it I∗ = (I∗p , I
∗
m, I

∗
r ) — to equations (1)-(3).
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Also, from equations (1) and (3), I get:

β′(I∗p )[npλ+ nm + nrµ] = β′(I∗r )[npµ+ nm + nrλ]

Re-arranging terms, I get:

β′(I∗p )

β′(I∗r )
=
npµ+ nm + nrλ

npλ+ nm + nrµ

Note that the RHS of the above equation is strictly less than unity since λ > µ

and np > nr. By the strict concavity of β I have that I∗p > I∗r .

STEP 2 (establishing that (I∗, I∗) constitutes an equilibrium):

Now I return to the basic problem each political party faces. Given IB, Party A

chooses IA to maximize:

∑
i

nipi − c(ÎA)

where

pi = 1− F (wi(IB)− wi(IA)).

Let

di ≡ wi(IB)− wi(IA).

The first order conditions are the following:

FOC(IAp ) : f(dp)λβ
′(IAp )np + f(dm)β′(IAp )nm + f(dr)µβ

′(IAp )nr = c′(ÎA) (IV.4)

FOC(IAm) : f(dp)β
′(IAm)np + f(dm)β′(IAm)nm + f(dr)β

′(IAm)nr = c′(ÎA) (IV.5)
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FOC(IAr ) : f(dp)µβ
′(IAr )np + f(dm)β′(IAr )nm + f(dr)λβ

′(IAr )nr = c′(ÎA) (IV.6)

Now, given IA, Party B chooses IB to maximize:

1−
∑
i

nipi − c(ÎB)

It is easily checked that B’s problem yields first-order conditions which are analogous to

Party A’s. They are:

FOC(IBp ) : f(dp)λβ
′(IBp )np + f(dm)β′(IBp )nm + f(dr)µβ

′(IBp )nr = c′(ÎB) (IV.7)

FOC(IBm) : f(dp)β
′(IBm)np + f(dm)β′(IBm)nm + f(dr)β

′(IBm)nr = c′(ÎB) (IV.8)

FOC(IBr ) : f(dp)µβ
′(IBr )np + f(dm)β′(IBr )nm + f(dr)λβ

′(IBr )nr = c′(ÎB) (IV.9)

Suppose Party B offers I∗. Then using Party A’s FOCs one can check that offering

I∗ constitutes a best-response for Party A. Similarly, when Party A offers I∗, offering I∗

constitutes a best-response for Party B (using Party B’s FOCs). Thus, I have established

that both parties offering I∗ is an equilibrium.

STEP 3 (uniqueness):

Suppose (IA, IB) is an equilibrium different from (I∗, I∗). There are two possibil-

ities: (i) ÎA = ÎB or (ii) ÎA 6= ÎB.

Suppose we are in case (i). From equations (5) and (8), note that ÎA = ÎB implies

IAm = IBm. Similarly, equations (4) and (7) yield IAp = IBp thus implying IA = IB. Combined
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with STEP 1, this means that IA = IB = I∗. This implies that case (i) is not a possibility.

Therefore we must be in case (ii).

Now suppose ÎA > ÎB. From equations (5) and (8), note that ÎA > ÎB implies

IAm < IBm. Similarly, equations (4) and (7) yield IAp < IBp . Finally, comparing equations (6)

and (9) yield IAr < IBr . This contradicts ÎA > ÎB. The case of ÎB > ÎA can be analogously

ruled out thus establishing that (I∗, I∗) is the only equilibrium of this game.

Combining STEPs (1)-(3) establishes the proposition.

Like in the previous literature (for instance, see Arulampalam et al (2009)) I

interpret the density of the bias evaluated at 0, namely f(0), to be an index of how swing or

non-partisan the constituency happens to be. To see why, consider two constituencies s and

t where fs(0) > ft(0). This is roughly equivalent to saying that constituency s, in relation

to t, has a higher proportion of citizens who are ideologically equidistant (or detached)

from either party. Thus, s is more swing than t and so the former constituency can be more

unpredictable in terms of election results. This suggests that competition should be tighter

in s as compared to t. In fact, in line with the findings of the previous literature, this is

what is stated in Proposition 2 below.

Proposition 2 Increased electoral uncertainty, as captured by a rise in f(0), results in
higher aggregate public good investment. Moreover, investment in every type of public good
is increased.

Proof. Let electoral uncertainty increase from f(0) to f(0). Now suppose that

the resulting equilibrium level of aggregate investment Î is such that Î ≤ Î. This implies,

using equation (2), that Im > Im. Similarly, equations (1) and (3) respectively imply that

Ip > Ip and Ir > Ir. This contradicts the initial supposition and establishes that Î > Î.

I noted in the proof of Proposition 1 (see STEP 1) that both Ip and Ir can be

represented by some strictly increasing function of Im. This observation combined with
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Î > Î establishes that investment in every type of public good is increased.

With these results in hand, I move on to the primary findings of the paper.

Proposition 3 Suppose the returns-from-investment function, β(x), is of the following
generic CES functional form:

β(x) =
x1−σ

1− σ
.

Also, let λ− 1 = 1− µ.
Then for any σ ∈ (0, 1), increased electoral uncertainty, as captured by a rise

in f(0), leads to an unambiguous lowering of income inequality and income polarization.
Hence for any σ ∈ (0, 1) and λ− 1 = 1− µ, any increase in the electoral competitiveness of
a constituency promotes the rise of the “middle class” therein.

Proof. Let electoral uncertainty increase so that f(0) rises to f̃(0). Let Ĩ represent

the corresponding platform proposed by both parties in equilibrium.

Consider the change in the incomes of the members of group i for i = p,m, r.

∆yp = λ[β(Ĩp)− β(Ip)] + [β(Ĩm)− β(Im)] + µ[β(Ĩr)− β(Ir)]

∆ym = [β(Ĩp)− β(Ip)] + [β(Ĩm)− β(Im)] + [β(Ĩr)− β(Ir)]

∆yr = µ[β(Ĩp)− β(Ip)] + [β(Ĩm)− β(Im)] + λ[β(Ĩr)− β(Ir)]

This implies the following relationships:

∆yp −∆ym = (λ− 1)[β(Ĩp)− β(Ip)] + (µ− 1)[β(Ĩr)− β(Ir)]

∆ym −∆yr = (1− µ)[β(Ĩp)− β(Ip)] + (1− λ)[β(Ĩr)− β(Ir)]

Therefore,

β(Ĩp)− β(Ip) > β(Ĩr)− β(Ir)

is sufficient to guarantee ∆yp > ∆ym and ∆ym > ∆yr whenever λ− 1 = 1− µ.
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For β(x) = x1−σ

1−σ , equations (1) and (3) imply:

β′(Ip)

β′(Ir)
= [Ir/Ip]

σ =
npµ+ nm + nrλ

npλ+ nm + nrµ
≡ ρ < 1

Next I show that β(Ĩp)− β(Ip) > β(Ĩr)− β(Ir) for any σ ∈ (0, 1).

Note, β(Ĩi)− β(Ii) = 1
1−σ [Ĩ1−σi − I1−σi ] for i = p,m, r. Therefore,

β(Ĩp)− β(Ip) > β(Ĩr)− β(Ir)⇔ Ĩ1−σp − I1−σp > Ĩ1−σr − I1−σr

Note,

Ĩ1−σp − I1−σp = Ĩ1−σr [(Ĩp/Ĩr)
1−σ − (Ip/Ĩr)

1−σ]

= Ĩ1−σr [ρ1−1/σ − (Ip/Ir)
1−σ(Ir/Ĩr)

1−σ]

= Ĩ1−σr [ρ1−1/σ − ρ1−1/σ(Ir/Ĩr)
1−σ]

= Ĩ1−σr ρ1−1/σ[1− (Ir/Ĩr)
1−σ]

On the other hand,

Ĩ1−σr − I1−σr = Ĩ1−σr [1− (Ir/Ĩr)
1−σ].

Therefore,

β(Ĩp)− β(Ip) > β(Ĩr)− β(Ir)⇔ ρ1−1/σ > 1.

But ρ1−1/σ > 1 for any σ ∈ (0, 1) since ρ < 1. This establishes ∆yp > ∆ym > ∆yr whenever

λ− 1 = 1− µ.

Intuitively, all income differences across individuals have been reduced in society.

To see this more formally, suppose G̃ represents the new income distribution with all income

normalized so that the mean income under the two distributions remain the same (mean-
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normalization). Since ∆yp > ∆ym > ∆yr, one can construct G from G̃ using a set of

regressive transfers; specifically, suitable transfers from the poorest np mass to the richest

nr mass will suffice. Therefore, income inequality as measured by any Lorenz-consistent

measure must have undergone a reduction.

To see the effect on income polarization, suppose Ĝ represents the new income

distribution with all income normalized so that the median income under the two distribu-

tions remain the same (median-normalization). Since ∆yp > ∆ym > ∆yr and the median

income-earner lies in group m, the mass of population earning between ym and yr is larger

under Ĝ than under G. This clearly implies a growth of the middle class and reduced

(income) polarization in terms of the Foster-Wolfson polarization measure (for a graphical

demonstration, see Figure 4).

The assumption λ − 1 = 1 − µ is really a kind of symmetry requirement on the

returns-from-investment functions. Consider either the p or the r group. This restriction

basically implies that the three different return functions (from the three different public

goods) for this group (either p or r) are such that the return from the pure public good

comes midway between the other two when the level of investment is held equal across the

three public goods (see Figure 3). Of course, this restriction need not always hold; but it is

useful to consider this at least as a benchmark case.

I will now explore the cases when λ− 1 6= 1− µ. In particular, it is important to

see how crucial this symmetry assumption (i.e. λ− 1 = 1− µ) really is.

It turns out that λ−1 = 1−µ is sufficient but not necessary for the main results. In

other words, the presence of some amount of asymmetry in the sense of λ−1 6= 1−µ does not

affect the relationship between electoral competitiveness and polarization (or inequality).

The following proposition attempts to outline the bounds on the asymmetry which can
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Figure 4.: Foster-Wolfson “Squeeze”. Panel A shows the shift in the income distribution.
Panel B shows the distributions once they are median normalized. In Panel C the image
has been reflected on the axis of the median. Panel D shows the Polarization Curves as in
Foster-Wolfson (2009)

82



sustain the main result.

Proposition 4 Let the returns-from-investment function, β(x), be as in Proposition 3 with
σ ∈ (0, 1). Consider any 0 < µ < 1 < λ such that λ−1 = 1−µ. These values of λ, µ and the

initial income distribution G determine the value of ρ1−1/σ(> 1) where ρ ≡ npµ+nm+nrλ
npλ+nm+nrµ

< 1.
Any asymmetry induced by changing either λ or µ does not affect the main findings of
Proposition 3 as long as the asymmetry is no higher than ρ1−1/σ. Moreover, ρ1−1/σ is a
lower bound on the maximum amount of asymmetry (i.e., either λ−1

1−µ > 1 or 1−µ
λ−1 > 1) that

can sustain the main findings in Proposition 3.

Proof. Note, ∆yp ≥ ∆ym ≥ ∆yr with at least one inequality strict, is sufficient

to generate the main findings of Proposition 3. The first inequality holds iff

(λ− 1)[β(Ĩp)− β(Ip)] ≥ (1− µ)[β(Ĩr)− β(Ir)]

and the second inequality holds iff

(1− µ)[β(Ĩp)− β(Ip)] ≥ (λ− 1)[β(Ĩr)− β(Ir)].

Now, from Proposition 3’s proof I have

β(Ĩp)− β(Ip)

β(Ĩr)− β(Ir)
= ρ1−1/σ > 1.

Consider an increase in λ such that λ − 1 > 1 − µ (the argument for λ − 1 < 1 − µ is

analogous) while keeping ρ at the initial value. Clearly, this leads to ∆yp > ∆ym. Also, as

long as λ−1
1−µ ≤ ρ

1−1/σ, I have ∆ym ≥ ∆yr.

It is easily checked that δρ
δλ < 0 (and δρ

δµ > 0). Thus, I have δρ1−1/σ

δλ > 0 (and

δρ1−1/σ

δµ < 0).

For λ−1 > 1−µ, this implies that the inequality concerning ∆ym and ∆yr is more

easily satisfied in the desired direction. An analogous argument works for λ − 1 < 1 − µ

(decreasing µ starting from the symmetry case) since δρ
δµ > 0.

This implies that ρ1−1/σ, where ρ is evaluated at the initial values of λ and µ under

the symmetry assumption, is a lower bound on the maximum amount of asymmetry that
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can sustain the main findings in Proposition 3.

Therefore, Proposition 4 demonstrates that the relationship between electoral com-

petitiveness and income polarization (or inequality) is a robust one; it withstands some

degree of asymmetry in the relative returns-from-investment functions.

In sum, the model above offers some interesting empirically testable predictions

which I take to the data from India.

Empirical Analysis

The theoretical model offers several empirically testable hypotheses. As of now, I

focus on the following:

[A] Any increase in electoral uncertainty leads to higher income polarization.

[B] Any increase in electoral uncertainty results in higher income inequality.

Data

To test these hypotheses I need to combine data on incomes with data on election

outcomes. In the case of India, nationally representative data on personal incomes is hard

to obtain since a vast majority of Indian households (primarily residing in rural parts) are

exempt from payment of income taxes (see Banerjee and Pikkety, 2003). However, there is

data on consumer expenditure in India which is publicly available; thus consumer expen-

diture serves as an excellent proxy for income in the analysis done here. These data are

collected by the National Sample Survey Organization (NSSO) . The National Sample Sur-

vey (NSS) is a large-scale consumer expenditure survey which is conducted quinquennially

and covers the entire nation; the unit of observation is a household. The recall period used

is 30 days, i.e., the surveyed households are asked to provide information on consumption
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expenditure incurred over the past 30 days. For the current study I use the 43rd and 61st

rounds of the NSS. The 43rd round was conducted during July 1987-June 1988 and the

61st round was conducted during July 2004-June 2005. Alongside information on consumer

expenditure, the survey also collects data on other socio-economic characteristics of the

(surveyed) households such as religion, caste, education.

This information on household expenditure is combined with election data ob-

tained from the Election Commission of India. I use the data for the parliamentary (or

federal level) elections from 1977 to 2004. During this period, 11 such general elections

took place in India. A proper test of the theory requires the use of some measure of the

electoral competitiveness of the district — the “swing” nature, so to speak. I primarily

utilize the difference in percentage vote shares of the two parties that obtain the highest

number of votes in any constituency. This is in line with Arulampalam et al (2009). I

use the winning margin and the vote share of the winning party — each averaged over the

3-4 elections prior to each expenditure round — in turn to capture the extent of electoral

competition in the district.

I also use the information about whether the constituency had a shift away from

or to a Congress Member of Parliament (MP). The use of a more refined measure of swing

which takes into account movements to and from different parties is not possible for the

following reason. There has been an immense proliferation of political parties at both the

state and central levels, most of it arising from the splitting up of the main existing national

or even regional parties. Moreover, various coalitions — ad hoc and otherwise — became

popular from the 1980s onward. This makes it very difficult to say whether there really has

been an effective shift of regime when say person X wins the same seat first as a candidate

of party L and then as a candidate of party R. Given the way the nature of politics and
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political parties evolved during this period, I chose to proceed with a rather conservative

division of parties into “Congress” and “Non-Congress” camps and recorded the movements

of a district between these camps over the different election periods.

A brief word about the Indian political system is in order. The Indian Parliament

is bicameral in nature. However, the Lok Sabha is the popularly elected House and is de

facto more powerful than the other House (Rajya Sabha). The popularly elected Members

of Parliament (MP) enjoy a five-year term after which fresh Lok Sabha elections are held.

There were 518 (Lok Sabha) constituencies in 1971. This went up to 542 after a Delimitation

order in 1976 and then to 543 in 1991.

Population is the basis of allocation of seats of the Lok Sabha. As far as possible,

every state gets representation in the Lok Sabha in proportion to its population as per

census figures. Hence, larger and more populous states have more seats in the Lok Sabha

as compared to their smaller and sparsely-populated counterparts. For example, Uttar

Pradesh (a north Indian state) with a population of over 166 million has 80 Lok Sabha

seats while the state of Nagaland with a population of less than 2 million has only one Lok

Sabha seat.

The NSSO expenditure rounds allow identification of the surveyed household up

to the district to which it belongs; no finer identification is possible. However, it is often the

case that a single district houses more than one electoral constituency; this is especially true

for more populous districts. Given the nature of the hypotheses, I have to restrict attention

to only single-constituency districts, i.e. to those places where a district corresponds to just

one single constituency.10 In the sample, there are 179 such districts that are follow for two

10In a district with several constituencies, the link between electoral competitivess and polarization (or
inequality) cannot be clearly established. For example, any change in polarization (or inequality) in any
one of the constituencies (presumably as a response to electoral competition in that constituency) does not
necessarily reflect a similar change in polarization (or inequality) in the district overall.
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Table 14.: Descriptive Statistics (1987-88).

Variable Mean Std Dev Min Max

Vote share of winner (in previous election) 54.347 8.299 35.910 81.080
Margin (in previous election) 22.055 14.025 0.030 64.080
Swing Congress 0.240 0.428 0.000 1.000
Average margin 23.587 8.837 3.930 51.370
Average Vote share of winner 55.356 5.126 41.907 74.405
Average pce 190.047 51.251 89.037 350.526
Literacy rate (%) 42.122 14.362 14.077 90.848
Population (%) 0.199 0.078 0.042 0.408
Rural population (%) 80.662 14.001 21.622 100.000
Headcount ratio (%) 34.209 17.831 4.023 83.317
Poverty gap ratio (%) 8.344 5.756 0.365 30.985
Gini (%) 30.038 5.065 15.816 47.209
Hindu population (%) 84.448 18.017 0.779 100.000
SC/ST (%) 29.877 15.195 0.261 88.176
Inter-quartile range/mean pce 0.531 0.083 0.272 0.810
Polarization (FW measure) 0.127 0.025 0.057 0.209

Notes: The information on electoral outcomes is from the Election Commission of India
statistical reports. The national elections were held in 1977, 1980 and 1984-85. The data
on the consumer expenditure and other demographic characteristics comes from the NSS
43rd round which was conducted during 1987-88.

time periods.11

Tables 14 and 15 provide the summary statistics of the variables used in the

analysis. Comparing the election data across the two periods, I see that elections clearly

became more competitive over the years. For instance, in the elections prior to 1988, the

average margin of victory varied between 4% and 51%. On the other hand, in the elections

between 1988 and 2004 the average margin was never higher than 31% for any constituency.

Between the two periods, both poverty and inequality have fallen on average across the

districts suggestive of a trend towards a secular balanced growth. Notably, polarization as

measured by the Foster-Wolfson index registers a decline – on average – when comparing

across the two periods; this is suggestive of the growth of the “middle class” over time.

Altogether, these tables clearly indicate that there was dynamism both on the income

distribution frontier and in the political scene in India during the period of this study.

11These 179 districts are not systematically different from the others. See Table 28 in the Appendix.
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Table 15.: Descriptive Statistics (2004-05).

Variable Mean Std Dev Min Max

Vote share of winner (in previous election) 48.794 8.189 26.540 69.830
Margin (in previous election) 11.270 8.970 0.190 40.660
Swing Congress 0.291 0.455 0.000 1.000
Average margin 11.433 5.820 2.573 30.433
Average Vote share of winner 46.211 6.183 29.837 62.823
Average pce 657.746 215.621 341.888 1,452.527
Literacy rate (%) 58.687 13.402 27.327 97.063
Population (%) 0.206 0.082 0.044 0.475
Rural population (%) 80.609 13.969 20.470 97.989
Headcount ratio (%) 23.024 16.060 0.000 67.986
Poverty gap ratio (%) 4.331 3.744 0.000 17.941
Gini (%) 26.162 5.514 11.621 43.083
Hindu population (%) 83.632 19.612 0.208 100.000
SC/ST (%) 29.757 15.920 0.000 91.977
Inter-quartile range/mean pce 0.473 0.104 0.202 0.954
Polarization (FW measure) 0.115 0.030 0.051 0.237

Notes: The information on electoral outcomes is from the Election Commission of India
statistical reports. The national elections were held in 1991-92, 1996, 1998 and 1999. The
data on the consumer expenditure and other demographic characteristics is from the NSS
61st round which was conducted during 2004-05.

I now move on to the details of the empirical strategy for the identification of the

relevant parameters.

Empirical Specification

The data provides us with a two-period panel spanning 1987-88 and 2004-05. I use

a linear fixed effects specification for the empirical exercise. Specifically, for every district

d in time period t, I have:

ydt = αd + γt + βXdt + ρZdt + εdt

where ydt is a measure of inequality or polarization, Xdt includes a vector of variables

describing the political climate in the district, (like average margin in the last 3-4 elections,

etc.). Zdt is the set of demographic and geographical controls used such as the population
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share of the district, percentage of Hindus in the district, literacy rates and average monthly

per capita expenditure for the district. αd represents the district fixed effects while γt

captures the time effect. Also, εdt is the error term in this panel specification.

The primary results are collected below.

Results

I first turn to the prediction given under [A], namely that increased electoral un-

certainty leads to lower income (in this case, proxied by consumer expenditure) polarization.

As discussed briefly before, I construct several measures to capture the extent of political

competition in a district. The primary proxy for electoral uncertainty exploits the difference

in percentage vote shares of the two parties that obtain the highest number of votes in any

constituency. This is in the spirit of Arulampalam et al (2009).

I use (i) the winning margin and (ii) the vote share of the winning party — each

averaged over the 3-4 elections prior to each expenditure round — in turn to capture the

extent of electoral competition in the district. The average margin in the previous 3 to 4

general elections is used as the primary variable to describe how closely the elections have

been in a district. I use the average across the previous few elections to ensure that I am

not capturing any effect particular to the previous election. The vote share of the winner is

also used as a measure of electoral competition. Clearly, the higher the percentage of votes

obtained by the winner, the lower the degree of electoral competitiveness in the district.

Main results

Table 16 gives the results for the benchmark case, the effect of average margin on

polarization. I find that an increase in the political competition (a lower average margin)
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Table 16.: Linear panel regression with average margin. Dependent variable is the Foster-
Wolfson measure of Polarization.

[1] [2] [3] [4] [5]

Average margin 0.006*** 0.005*** 0.005*** 0.006*** 0.006***
(0.002) (0.002) (0.002) (0.002) (0.002)

Population 0.267 0.256 0.261 0.250
(0.361) (0.360) (0.352) (0.351)

Rural percent -0.006* -0.006* -0.005* -0.005
(0.003) (0.003) (0.003) (0.003)

Hindu percent 0.001 0.001 0.001
(0.003) (0.003) (0.003)

SC/ST percent -0.002 -0.002 -0.002
(0.002) (0.002) (0.002)

Headcount (poverty) 0.002
(0.002)

Income gap (poverty) 0.009**
(0.004)

Number of observations 358 358 358 358 358
Adjusted R2 0.197 0.213 0.212 0.217 0.233

Notes: Dependent variable is the Foster-Wolfson measure of Polarization. Average margin
is constructed using the previous 3-4 general elections. All regressions contain district fixed
effects and time dummies. Robust standard errors clustered by district. * significant at 10
% ** significant at 5% ***significant at 1%.

is highly correlated with lower polarization or a larger middle class. This result is robust

to adding controls including the poverty headcount and poverty gap measures. Table 17

reflects that the result is robust to using the average vote share of winner in place of the

average margin.

Also, I use the normalized inter-quartile range as a proxy for the size of the middle

class, with lower values of this variable implying a larger middle class. Even then I see

that a higher average margin is congruent with greater difference between the two income

quartiles thus normalized (see Table 18).

Next, I turn to the hypothesis [B], which is that increased electoral uncertainty

leads to lower income (in this case, proxied by consumer expenditure) inequality. Table 29

shows that inequality is also higher when there is lesser political competition as measured

by the average margin.
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Table 17.: Linear panel regression with average vote. Dependent variable is the Foster-
Wolfson measure of Polarization.

[1] [2] [3] [4] [5]

Average vote share of winner 0.006** 0.005* 0.005* 0.005** 0.005**
(0.003) (0.003) (0.003) (0.003) (0.002)

Population 0.292 0.285 0.287 0.272
(0.365) (0.363) (0.356) (0.354)

Rural percent -0.006** -0.006** -0.006* -0.006*
(0.003) (0.003) (0.003) (0.003)

Hindu percent 0.001 0.001 0.001
(0.003) (0.003) (0.003)

SC/ST percent -0.002 -0.002 -0.002
(0.002) (0.002) (0.002)

Headcount (poverty) 0.001
(0.002)

Income gap (poverty) 0.009**
(0.004)

Number of observations 358 358 358 358 358
Adjusted R2 0.167 0.190 0.189 0.192 0.210

Notes: Dependent variable is the Foster-Wolfson measure of Polarization. Average vote
share of winning party is constructed using data from the previous 3-4 general elections.
All regressions contain district fixed effects and time dummies. Robust standard errors
clustered by district. * significant at 10 % ** significant at 5% *** significant at 1%.

Table 18.: Linear panel regression.with average margin. Dependent variable is the log of
the inter-quartile range normalized by the mean pce.

[1] [2] [3] [4] [5]

Average margin 0.005*** 0.004*** 0.005*** 0.005*** 0.005***
(0.002) (0.002) (0.002) (0.002) (0.002)

Population 0.254 0.249 0.256 0.242
(0.315) (0.315) (0.307) (0.306)

Rural percent -0.005** -0.005* -0.004* -0.004
(0.002) (0.003) (0.003) (0.003)

Hindu percent -0.001 0.000 -0.000
(0.002) (0.002) (0.002)

SC/ST percent -0.000 -0.001 -0.001
(0.002) (0.002) (0.002)

Headcount (poverty) 0.002**
(0.001)

Income gap (poverty) 0.012***
(0.003)

Number of observations 358 358 358 358 358
Adjusted R2 0.265 0.280 0.277 0.294 0.322

Notes: Dependent variable is the log of the inter-quartile range normalized by the mean
pce. Average margin is constructed using data from the previous 3-4 general elections.
All regressions contain district fixed effects and time dummies. Robust standard errors
clustered by district. * significant at 10 % ** significant at 5% ***significant at 1%
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Robustness checks

Rather than using the average values for the proxies of electoral competition in

the previous 3-4 elections, one could also use the margin and vote share of winner from the

most previous election. I do so and the results are similar to the earlier ones (see Table 30

and Table 31).

Another way to capture the idea of a swing district would be the following. One

could possibly identify whenever there is a change in the political party which wins the

election in the district. However in 1977 (the first election year I look at) there were only 20

recognized political parties which contested the elections. By 1999 the number of recognized

political parties had risen to 47. This significant rise in the number of political parties was

not merely a case of greater participation of the general populace in the political domain —

it was more the case that several political parties were created by the splintering of existing

political parties. Therefore, for the time horizon considered, I am unable to track whether

there was a swing away from a particular political party or that merely a segment of the

old party came back into power.

The only political party which has remained relatively “stable”, in the sense of

maintaining its core identity, is the Indian National Congress. Given the way the nature

of politics and political parties evolved during this period, I chose to proceed with a rather

conservative division of parties into “Congress” and “Non-Congress” camps and recorded the

movements of a district between these camps over the different election periods. Therefore,

as an additional measure of political regime change, I use whether or not the district moved

away from towards a Congress MP. I create a dummy variable which takes the value of 1

if there was a change to or from a Congress MP in the district and 0 otherwise. Note, the

swing congress variable is a very crude measure of the district’s electoral volatility and it
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Table 19.: Linear panel regression with swing away or towards Congress. Dependent variable
is the Foster-Wolfson measure of Polarization.

[1] [2] [3] [4] [5]

Swing congress -0.081*** -0.073** -0.074** -0.074** -0.073**
(0.029) (0.029) (0.030) (0.030) (0.030)

Population 0.486 0.471 0.480 0.472
(0.376) (0.370) (0.363) (0.361)

Rural percent -0.005* -0.005* -0.005* -0.005
(0.003) (0.003) (0.003) (0.003)

Hindu percent 0.002 0.002 0.002
(0.003) (0.003) (0.003)

SC/ST percent -0.002 -0.002 -0.002
(0.002) (0.002) (0.002)

Headcount (poverty) 0.001
(0.001)

Income gap (poverty) 0.008**
(0.004)

Number of observations 358 358 358 358 358
Adjusted R2 0.175 0.195 0.197 0.198 0.213

Notes: Dependent variable is the Foster-Wolfson measure of Polarization. All regressions
contain district fixed effects and time dummies. Robust standard errors clustered by district.
* significant at 10 % ** significant at 5% ***significant at 1%.

exhibits much less variation vis-a-vis the other measures of electoral competition.

Table 19 contains some of the results using this Swing Congress variable. The

first column in this table reveals a strong negative correlation between Swing Congress and

polarization in accordance with the previous findings. This effect is robust to the inclusion

of several controls; see columns (2) through (5).

The swing congress variable exhibits a similar effect on the degree of inequality in

the district as captured by the gini coefficient. The results are collected in Table 32 shows

that in all specifications the marginal effect of Swing Congress on inequality is significant

and negative. Therefore, these results reiterate the basic findings.

Concerns

I discuss two of the main concerns that arise in an empirical exercise of the kind

undertaken here. The first one is endogeneity due to reverse causality. One could argue
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that the middle class votes in a certain way so as to make the political contest close. The

second is the issue of migration as a result of political transfers or public goods provision.

I will briefly discuss each issue in turn.

The first concern regarding the voting behavior of the middle class implies the

following — it presumes that the members of the middle class vote in a markedly coordi-

nated fashion, which is perhaps not plausible in the Indian context. Bardhan et al (2008)

study political participation and targeting of public services in the Indian state of West

Bengal. In their words “...the difference in reported registration rates and turnouts were

modest, more similar to the European patterns rather than the steep asymmetries in the

United States. With regard to voting disturbances, there was no clear correlation with

socioeconomic status.” They also find that attendance rates (in political meetings, such as

rallies, election meetings called by political parties) did not exhibit any marked unevenness

across different land classes. So this does not seem to pose a serious problem. Also, in all

of the regressions presented so far, I look at the effect of elections on subsequent polariza-

tion (and inequality) — so that there is enough of a time lag with elections preceding the

corresponding expenditure rounds.

As to the second concern — namely, migration as a response to political trans-

fers/public goods provision — I can take some comfort in the fact that migration rates in

India are rather low in comparison with other developing nations. In fact, Munshi and

Rosenzweig (2009) explicitly state that “Among developing countries, India stands out

for its remarkably low levels of occupational and spatial mobility.” They delve into the

proximate causes behind this phenomenon and using a unique panel dataset (identifying

sub-caste (jati) membership) find that the existence of sub-caste networks that provide

mutual insurance to their members play a key role in restricting mobility.
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Taking stock of the entire empirical findings, one is lead to admit that there is

a serious relationship between the degree of electoral competition in a district and the

nature of redistribution pursued therein. More specifically, I find that districts which have

experienced tighter elections also tend to be the ones with lower levels of inequality and

polarization suggesting that the middle class thrives where political parties are perceived

to be relatively balanced in the eyes of the voters.

Conclusion

This paper attempts to study how the degree of electoral competition affects the

growth of a middle-income group — in other words, a middle class — in the context of a

developing nation. Most developing countries are typically characterized by high levels of

income inequality; the society is polarized with the affluent on one side and the destitute on

the other. Of course, there exist income-earners somewhere between the two poles but for

most developing nations, this intermediate group is quite small. However, it is this middle-

income group which can boost the economy by both consuming and saving. A growing

middle class is a healthy sign indicative of balanced growth and holds fewer threats of class

cleavages. Therefore, it is important to focus on factors which affect the growth of the

middle class. This paper studies the relationship between electoral uncertainty and the

degree of income polarization in society with the help of a simple theoretical framework

and then provides empirical findings in support of the theory.

The theory is based on the traditional two-party Downsian framework with ideo-

logical voters in the spirit of Lindbeck and Weibull (1987) and Dixit and Londregan (1996).

Here, the political parties can a priori commit to some levels of investment in three differ-

ent kinds of public goods — one that disproportionately benefits the poor, another which
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disproportionately benefits the rich and finally a pure public good which benefits all groups

equally. I assume that investment is costly and that each party wishes to maximize plu-

rality net of investment costs. I show that as the level of electoral uncertainty increases in

the district, the equilibrium level of investment in each type of public good increases; in

other words, there is greater transfer to the electorally competitive districts (in line with

the findings in the previous literature). Most importantly, I show that increased electoral

uncertainty induces additional investment in a manner that the additional benefits to the

poor exceed the additional benefits to the middle-income group, which in turn, exceed

the additional benefits to the rich. Thus, increased electoral uncertainty reduces all inter-

person income differences in society and hence reduces income inequality. Furthermore, by

bringing both the poor and the rich “closer” to the middle class group, it reduces income

polarization.

The model generates several empirically testable predictions which I then take

to data from India. India has had a vibrant democracy since the nation’s independence

in 1947. Although there have been several political parties since the 1950s, the national

elections had been by and large dominated by the Indian National Congress (INC) party.

However, since the 1980s there have been a tremendous proliferation of political parties

both at the state and the national levels. In fact, 1977 was witness to a non-Congress led

government at the centre for the first time since India’s independence.

Although the INC continues to be a major player in national elections till this day,

it no longer enjoys the kind of monopoly it did till the mid-1960s. Moreover, a majority of

elections in the 1990s resulted in “hung Parliaments” meaning that no single party obtained

a clear majority of seats and thus began the era of coalitional politics in India. The period

of study corresponds to the time after the INC had lost its quasi-monopoly in the political
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arena. So the data is from the phase where national elections were more intensely fought.

All of these factors contribute to making India an interesting candidate for testing the

hypotheses.

The previous literature has stressed the role of political competition in directing

transfers and have generally concluded that “swing” districts get more targeted resources

in the aggregate. I subject the main theoretical finding — namely, that electorally “swing”

constituencies tend to exhibit lower degree of income polarization — to rigorous empirical

analysis. I use data from the Indian parliamentary (national) elections which are combined

with household-level consumption expenditure data rounds from NSSO (1987-88 and 2003-

04) to yield a panel of Indian districts. The main variable representing electoral “swing”

is the actual margin of winning which is the difference between the percentage vote shares

of the two parties that obtain the highest number of votes in any constituency. Using this

variable as the baseline measure of electoral volatility of a district, I obtain that a district

which has experienced close elections tends to exhibit a lower degree of income polarization.

I repeat the analysis with alternative variables for electoral swing; for example,

I restrict attention to the most recent election that took place before the relevant NSS

expenditure round (rather than take an average over several prior elections). The results

I get are robust to such variations — more “swing” districts exhibit lower (expenditure)

polarization. The pattern persists when I replace winning margin by simply the vote share

of the winning party. There is evidence of a similar relationship between inequality (as

measured by the Gini coefficient) and electoral uncertainty. Inter-quartile differences in

expenditure (normalized by the average level of expenditure) also tend to be higher where

winning margins are wider.

Overall the empirical findings clearly suggest that greater electoral uncertainty is
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highly correlated with the growth of the middle class and reduces existing income disparities.

In particular, the empirical analysis helps to identify at least one important channel which

stifles the growth of the “middle class” in India; namely, the under-performance of political

parties in districts which are electorally secure. It is important to point out that the notion

of a middle class adopted here is fairly “local” in the following sense: the middle class in

a district is some group whose earnings correspond to any given income band around the

median income-earner in that district. Alternatively, one could think of a middle class at

the level of the nation and then study the proportion of people in each district which falls in

this “national middle class”. One could investigate how district-level political competition

affects the size of this “national middle class” in every district. I plan to explore this

question in future work.

In a way the results seem to highlight some drawbacks of the electoral mechanism.

The key issue here is the presence of people who are highly ideologically inclined towards

some political party or the other. A party which rides to victory on the back of large popular

support feels less inclined to cater to the toiling masses; after all, if the electorate likes the

party anyhow why should the latter bother working hard to reduce existing disparities?

However, if one extends this to a dynamic setting, the voters would potentially change their

opinion over time about the inactive (and ineffective) incumbent party. The problem often

is that the opposing party — the challenger, so to speak — may not be much of a viable

alternative. However, the very realization that perhaps each political party is ex-ante as

good as the other should drive this voter bias close to nil in expected terms thus inducing

better promises (and action) from both parties in future. Hence, over time one could expect

to see a convergence (towards zero) in voter biases.

The fact is that parties themselves change their stand and nature over time. This

98



makes any kind of convergence on part of voter biases quite unlikely. Incidentally, voter

biases in regions tend to persist over time. For example, in the context of the US, New

York has traditionally been Democrat. In India as well, this kind of party loyalty is fairly

common — for e.g., West Bengal (a state in eastern India) had been under the rule of a

Left-led coalitional government for over 30 years. There may be clientelistic relationships

which develop between incumbents and certain sections of the voters (see Bardhan and

Mookherjee (1999)) which create such long spells of governance by a party; perhaps longer

than what a dynamic extension of the simple model (with updating of voter biases) would

predict.

Finally, it would be interesting to explore how different political parties have re-

invented themselves over time and what impact has this had on their loyalists — perhaps

the conservatives of today would have been liberal half a century ago. A more holistic

view of the interplay between party evolution and changing voter loyalties could provide

meaningful insights to policy-making.
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APPENDIX A

Appendix to chapter II

Mathematical derivation of the distribution of Pα measures

The notation used and the results closely follow Bhattacharya (2005). The sam-

pling design is described as follows. Prior to sampling the population is divided into S first

stage strata. In the population the stratum s contains Hs clusters. A sample of ns (indexed

by ψs) clusters in drawn via simple random sample with replacement from stratum s, for

each s. The ψsth cluster has a total of Nsψs households. A simple random sample draws κ

(equal across clusters and strata and indexed by h) households from each cluster for each

strata is drawn. The hth household in the ψsth cluster has νsψh members. The density of

an individual characteristic π in the sth strata is given by dF (π | s) . Note that this joint

density can differ across strata so that the sampled observations from different strata are

independent but not identically distributed.

Let n =
∑S

s=1 ns and ns = nas with
∑S

s=1 as = 1. The weight of every individual

in the hth household in the ψsth cluster of the sth stratum is given by

wsψsh =
NsψsHs

κnsvsψsh

Now I am interested in the parameter Pa ( the poverty estimate for the population),

which solves the simple moment condition
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0 =
S∑
s=1

Hs

∫
(Pα − π) dF (π | s) .

So the MoM estimate of Pα is based on the sample analog of the equation given above and

can be written as :

S∑
s=1

Hs

ns

ns∑
ψs=1

Nsψs

κ

k∑
h=1

1

vsψsh

νsψsh∑
jh=1

(
P̂α − πjh

)
w 0 (A.1)

However for the purpose of the asymptotic analysis it is beneficial to rewrite the

above in the following way. I reindex the clusters so that they number from 1 to n. n

denotes the total number of clusters in the sample. For every i there is si which indicates

the stratum from which cluster i is drawn. Then, # (i | si = s) = ns for each 1 ≤ s ≤ S. So,

equation 1 can be rewritten as :

1

n

n∑
i=1

S∑
s=1

Hs

as
1 (si = s)

ns∑
ψs=1

Nss,i

κ

k∑
h=1

1

vsψsh

νsiih∑
jih=1

(
P̂α − πjih

)
w 0

Since the set up is identical to that in Bhattacharya (2005) I know that

p lim
n→∞

(P̂α − Pα) = 0, and

√
n
(
P̂α − Pα

)
−→ dN (0, V )

In this case V takes a simplified form since the parameter is simply a population

average. Here
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V = W0 = lim
n→∞

Wn, and

lim
n→∞

Wn = lim
n→∞

1

n

n∑
i=1

V ar

 S∑
s=1

Hs

as
1 (si = s)

ns∑
ψs=1

Nss,i

κ

κ∑
h=1

νsiih∑
jih=1

(
P̂α − πjih

)
An estimate of Wn is given in the paper and is the same which will be used here.

It is the following

V̂ = Ŵn = 4
S∑
s=1

ns − 1

ns

(
ns∑

ψs=1

κ∑
h=1

νsiih∑
jih=1

wscsh

(
P̂α − πjih

))2

(A.2)

This expression is simpler than the one used in Bhattacharya (2005) since in this

paper I don’t want to disaggregate the stratum and cluster effects, so I can combine terms

to get a simpler form for the variance.
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Robustness checks for empirical results

Table 20.: Robustness Check with alternate weighting Schemes. Comparison of levels of
poverty among states with k=3.5.

Weight on Income (Percent)

States 20% 25% 30% 35% 40% 45%

Andhra Pradesh 0.31 0.30 0.21 0.20 0.20 0.14
Bihar 0.53 0.53 0.45 0.45 0.45 0.40
Chhattisgarh 0.57 0.57 0.49 0.49 0.49 0.42
Gujarat 0.28 0.27 0.17 0.17 0.17 0.11
Haryana 0.14 0.15 0.08 0.08 0.09 0.08
Jharkand 0.52 0.51 0.44 0.44 0.44 0.37
Karnataka 0.27 0.28 0.20 0.20 0.21 0.18
Kerala 0.15 0.17 0.13 0.13 0.14 0.13
Madhya Pradesh 0.46 0.46 0.36 0.36 0.37 0.28
Maharashtra 0.22 0.23 0.18 0.18 0.19 0.17
Orissa 0.67 0.66 0.60 0.59 0.58 0.50
Punjab 0.11 0.12 0.08 0.08 0.09 0.08
Rajasthan 0.40 0.40 0.31 0.30 0.30 0.22
Tamil Nadu 0.25 0.26 0.18 0.18 0.19 0.16
Uttar Pradesh 0.40 0.40 0.31 0.31 0.32 0.27
West Bengal 0.39 0.39 0.33 0.33 0.33 0.28

Notes: Each column of this table gives the level of poverty in the state using a different
weighting scheme of the dimensions. As one moves from left to right each column puts more
weight on income and weighs all other dimensions equally. For example, column 5 puts 40
% weight on income and 10 % on each of the other 6 dimensions.
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Table 21.: Robustness Check with alternate weighting Schems: Comparison of Ranks of
states with k=3.5.

Weight on Income (Percent)

States 20 % 25 % 30 % 35% 40% 45%

Andhra Pradesh 8 8 8 8 7 5
Bihar 14 14 14 14 14 14
Chhattisgarh 15 15 15 15 15 15
Gujarat 7 6 4 4 4 3
Haryana 2 2 2 2 2 2
Jharkand 13 13 13 13 13 13
Karnataka 6 7 7 7 8 8
Kerala 3 3 3 3 3 4
Madhya Pradesh 12 12 12 12 12 12
Maharashtra 4 4 5 5 6 7
Orissa 16 16 16 16 16 16
Punjab 1 1 1 1 1 1
Rajasthan 11 10 9 9 9 9
Tamil Nadu 5 5 6 6 5 6
Uttar Pradesh 10 11 10 10 10 10
West Bengal 9 9 11 11 11 11

Notes: Each column of this table gives the relative rank of the state in a poverty comparison
using a different weighting scheme of the dimensions. As one moves from left to right each
column puts more weight on income and weighs all other dimensions equally. For example,
column 5 puts 40 % weight on income and 10% on each of the other 6 dimensions.

Table 22.: Multidimensional poverty for Hindus and Muslims for Rural and Urban areas.

Cutoff
(k)

P0 (Hindu-
Urban)

P0

(Muslim-
Urban)

P-values P0 (Hindu-
Rural)

P0

(Muslim-
Rural)

P-values

1 0.197 0.249 0.000 0.572 0.583 0.274
2 0.159 0.209 0.000 0.565 0.577 0.286
3 0.122 0.156 0.004 0.539 0.544 0.656
4 0.086 0.094 0.475 0.460 0.460 0.978
5 0.050 0.040 0.174 0.315 0.332 0.361
6 0.021 0.014 0.181 0.150 0.188 0.028
7 0.005 0.002 0.059 0.037 0.051 0.206

Notes: The p-values given are for the test of the difference among Hindu and Muslim
poverty in urban and rural areas separately.
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Table 23.: Differences in poverty based on differences in Caste among the Rural and Urban
populations.

Cutoff(k) P0 (Hindu-
High Rural)

P0 (Hindu-
High Urban)

P0 (Hindu-Low
Rural)

P0 (Hindu-Low
Urban)

P0 (Muslims-
Rural)

P0 (Muslims-
Urban)

1 0.529 0.166 0.658 0.323 0.583 0.249
2 0.521 0.127 0.656 0.293 0.577 0.209
3 0.488 0.093 0.642 0.243 0.544 0.156
4 0.397 0.064 0.587 0.177 0.460 0.094
5 0.249 0.037 0.451 0.106 0.332 0.040
6 0.103 0.014 0.245 0.049 0.188 0.014
7 0.023 0.003 0.067 0.014 0.051 0.002

Notes: Hindu-High-Rural describes the poverty level of High caste Hindus living in Rural
areas. Since Muslims do not have a caste system I only have poverty of Muslims in Rural
and urban areas (the group is not further divided on the basis of caste)

Table 24.: Robustness checkes with alternative weighting schemes: Differences among Hindu
and Muslim households.

Weight on In-
come (Percent)

P0 (Hindu) (Muslim)

20 0.35 0.32
25 0.35 0.34
30 0.27 0.28
35 0.27 0.29
40 0.28 0.30
45 0.23 0.27

Notes: Each row uses a different weighting scheme. For example in the second row income
has 20 % of the weight and the rest 80 % is equally divided among the rest of the six
dimensions

Table 25.: Robustness checkes with alternative weighting schemes(Differences among reli-
gious groups).

Weight on
Income
(Percent)

P0 (Hindu-
Rural)

P0 (Hindu-
Urban)

P0 (Muslims-
Rural)

P0 (Muslim-
Urban)

20 0.45 0.09 0.45 0.10
25 0.44 0.11 0.45 0.14
30 0.33 0.10 0.37 0.13
35 0.33 0.10 0.37 0.13
40 0.33 0.12 0.37 0.18
45 0.26 0.12 0.32 0.18

Notes: Each row uses a different weighting scheme. For example in the second row income
has 20 % of the weight and the rest 80 % is equally divided among the rest of the six
dimensions
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Table 26.: Differences in poverty based on differences in Caste among the Rural and Urban
populations.

Weight on
Income
(Percent)

P0 (Hindu-
High-Caste)

P0(Hindu-
Low-Caste)

P0(Muslims)

20 0.29 0.51 0.32
25 0.29 0.51 0.34
30 0.21 0.42 0.29
35 0.21 0.42 0.29
40 0.22 0.42 0.30
45 0.17 0.35 0.27

Notes: Each row uses a different weighting scheme. For example in the second row income
has 20 % of the weight and the rest 80 % is equally divided among the rest of the six
dimensions

Table 27.: Robustness checkes with alternative weighting schemes: Differences among reli-
gious groups in Rural and Urban areas.

Weight
on In-
come
(Per-
cent)

P0(Hindu-
HighRural)

P0(Hindu-
HighUrban)

P0(Hindu-
LowRural)

P0(Hindu-
LowUrban)

P0(Muslims-
Rural)

P0(Muslims-
Urban)

20 0.39 0.06 0.57 0.18 0.45 0.09
25 0.38 0.08 0.56 0.21 0.45 0.14
30 0.27 0.07 0.46 0.20 0.37 0.13
35 0.27 0.07 0.46 0.20 0.37 0.14
40 0.27 0.09 0.46 0.23 0.37 0.18
45 0.21 0.09 0.37 0.23 0.32 0.19

Notes: Each row uses a different weighting scheme. For example in the second row income
has 20 % of the weight and the rest 80 % is equally divided among the rest of the six
dimensions
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APPENDIX B

APPENDIX TO CHAPTER III

Proofs

Proof of Theorem 1. The proof turns out to be rather straightforward once

I combine the fact that F can be built up from simple Donsker classes together with well

established results on Donsker preservation. Thus, first introduce the classes

G1 =

1
 d∑
j=1

ωj1(xj ≤ `j) ≥ k

 : ` ∈ Rd++, k ∈ [k, k̄],
∑

ωi = d, ωi ≥ 0

 , (B.1)

G2 =

{
ω

(
`− x
`

)α
1(x ≤ `) : ` ∈ [0, ¯̀], 1 ≤ α ≤ 3, ω ∈ R

}
,

and

G3 =
{
ω1(x ≤ `) : ` ∈ [0, ¯̀], ω ∈ R

}
.

That G2 and G3 are Donsker follows trivially from Theorem 9.23 and Lemma 9.8 of (Kosorok

2008), respectively. By appealing again to Lemma 9.8 (Kosorok 2008), it follows directly

that G1 is Donsker if the collection

A = {A(`, ω, k) : k ∈ [k, k̄] ⊂ R++, ` ∈ Rd++,
∑

ωj = d, ω ∈ Rd+}, (B.2)

where A(`, ω, k) = {x ∈ Rd :
∑d

j=1 ωj1(xj ≤ `j) ≥ k}, forms a Vapnik-Červonenkis (VC)

class of sets. Letting D = {1, . . . , d} and recognizing that A ∈ A is always of the form

A =
∏

j∈S⊆D
(−∞, `j ]×

∏
j∈D\S

(−∞,∞)
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it follows that A is a subset of the collection of cells in Rd, and thus is VC with VC-index

less than or equal to d+ 1.

Given that G1, G2, and G3 are (uniformly bounded) Donsker classes, the proof

is completed upon repeated application of Corollary 9.32 together with Theorem 9.31 of

(Kosorok 2008).

Proof of Theorem 2. That F is a uniformly bounded Donsker class follows

from the proof of Theorem 1 above. As an immediate consequence I obtain

√
n1(Pn1,X − PX)f  GPXf, (B.3)

and

√
n2(Pn2,Y − PY )f  GPY f, (B.4)

in `∞(F ), where  denotes weak convergence. Then, noting that

(
n1n2
n1 + n2

)1/2 [
n
−1/2
1 Gn1,PXf1 − n

−1/2
2 Gn2,PY f2

]
(B.5)

may be written as[(
n2

n1 + n2

)1/2√
n1(Pn1,X − PX)f1 −

(
n1

n1 + n2

)1/2√
n2(Pn2,Y − PY )f2

]
, (B.6)

where f1, f2 ∈ F , I obtain the desired result as a direct consequence of (B.3), (B.4), the

assumed independence of the processes, and the convergence of the pre-multiplicative ratios

as implied by Assumption III.4.1.

Proof of Theorem 3. The proof is analogous to that of Theorem 2 and is

therefore omitted.
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APPENDIX C

APPENDIX TO CHAPTER IV

Table 28.: District-level summary statistics:Comparing Single-constituency with Non-Single
constituency districts.

[A] [B]

Single Non-Single Difference

Variables (district) N Mean N Mean S–NonS

IQR 182 0.520 145 0.528 -0.008
(0.089) (0.099) (0.010)

Q3/Q1 182 1.862 145 1.895 -0.033
(0.223) (0.267) (0.027)

Gini 182 0.295 145 0.303 -0.008
(0.052) (0.057) (0.006)

Per-capita exp. (in Rs.) 182 191.265 156 191.869 -0.605
(50.985) (54.656) (5.751)

SC population (%) 182 18.565 156 17.400 1.165
(9.644) (8.599) (1.001)

Population 182 0.203 156 0.374 -0.171
(0.086) (0.179) (0.015)***

NOTES: Panel A corresponds to the 182 districts where each district has just one constituency while

Panel B has data from the remaining 156 districts. Standard errors in parentheses for the columns

indicating differences; standard deviation in parentheses for all others. T-test used for comparing

differences. *significant at 10% **significant at 5% ***significant at 1%

119



Table 29.: Linear panel regression with average margin. Dependent variable is the Gini
coefficient.

[1] [2] [3] [4] [5]

Average margin 0.123*** 0.106** 0.101** 0.110** 0.108**
(0.044) (0.045) (0.043) (0.044) (0.043)

Population 6.783 6.208 6.329 6.067
(8.366) (8.255) (8.141) (8.110)

Rural percent -0.172*** -0.171*** -0.162*** -0.150**
(0.059) (0.058) (0.059) (0.059)

Hindu percent 0.023 0.033 0.031
(0.054) (0.055) (0.054)

SC/ST percent -0.082* -0.094** -0.093**
(0.042) (0.044) (0.042)

Headcount (poverty) 0.041
(0.025)

Income gap (poverty) 0.216***
(0.078)

Number of observations 358 358 358 358 358
Adjusted R2 0.338 0.366 0.378 0.385 0.399

Notes: Dependent variable is the Gini coefficient. Average margin is constructed using
data from the previous 3-4 general elections. All regressions contain district fixed effects
and time dummies. Robust standard errors clustered by district. *significant at 10 % **
significant at 5% ***significant at 1%.

Table 30.: Linear panel regression with margin of winning in last election. Dependent
variable is the Foster-Wolfson measure of Polarization.

[1] [2] [3] [4] [5]

Margin in last election 0.003** 0.002** 0.003** 0.003** 0.003**
(0.001) (0.001) (0.001) (0.001) (0.001)

Population 0.466 0.449 0.463 0.455
(0.375) (0.369) (0.362) (0.360)

Rural percent -0.005* -0.005* -0.005 -0.005
(0.003) (0.003) (0.003) (0.003)

Hindu percent 0.001 0.001 0.001
(0.003) (0.003) (0.003)

SC/ST percent -0.002 -0.003 -0.003
(0.002) (0.002) (0.002)

Headcount (poverty) 0.001
(0.001)

Income gap (poverty) 0.009**
(0.004)

Number of observations 358 358 358 358 358
Adjusted R2 0.170 0.191 0.193 0.196 0.213

Notes: Dependent variable is the Foster-Wolfson measure of Polarization. All regressions contain district
fixed effects and time dummies. Robust standard erros clustered by district. * significant at 10 % **
significant at 5% ***significant at 1%.
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Table 31.: Linear panel regression with winner’s vote share in last election. Dependent
variable is the Foster-Wolfson measure of Polarization.

[1] [2] [3] [4] [5]

Vote share of winner last election 0.003* 0.003 0.003 0.003* 0.003*
(0.002) (0.002) (0.002) (0.002) (0.002)

Population 0.415 0.398 0.408 0.400
(0.369) (0.364) (0.358) (0.355)

Rural percent -0.006** -0.006** -0.006* -0.005*
(0.003) (0.003) (0.003) (0.003)

Hindu percent 0.001 0.001 0.001
(0.003) (0.003) (0.003)

SC/ST percent -0.002 -0.002 -0.002
(0.002) (0.003) (0.002)

Headcount (poverty) 0.001
(0.001)

Income gap (poverty) 0.008**
(0.004)

Number of observations 358 358 358 358 358
Adjusted R2 0.158 0.182 0.183 0.185 0.201

Notes: Dependent variable is the Foster-Wolfson measure of Polarization. All regressions
contain district fixed effects and time dummies. Robust standard errors clustered by district.
* significant at 10 % ** significant at 5% ***significant at 1%.

Table 32.: Linear panel regression with swing away or towrds Congress. Dependent variable
is the Gini coefficient.

[1] [2] [3] [4] [5]

Swing Congress -1.930*** -1.673*** -1.664*** -1.667*** -1.650***
(0.631) (0.615) (0.629) (0.622) (0.612)

Population 11.320 10.568 10.827 10.589
(8.529) (8.310) (8.208) (8.167)

Rural percent -0.161*** -0.164*** -0.158*** -0.146**
(0.059) (0.058) (0.059) (0.059)

Hindu percent 0.049 0.058 0.058
(0.056) (0.057) (0.056)

SC/ST percent -0.086** -0.095** -0.097**
(0.043) (0.046) (0.044)

Headcount (poverty) 0.031
(0.025)

Income gap (poverty) 0.197**
(0.081)

Number of observations 358 358 358 358 358
Adjusted R2 0.331 0.361 0.375 0.378 0.392

Notes: Dependent variable is the Gini coefficient. All regressions contain district fixed
effects and time dummies. Robust standard errors clustered by district. * significant at 10
% ** significant at 5% ***significant at 1%.
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