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Abstract—Polarization mode dispersion (PMD), a potentially
limiting impairment in high-speed long-distance fiber-optic com-
munication systems, refers to the distortion of propagating optical
pulses due to random birefringences in an optical system. Because
these perturbations (which can be introduced through manufac-
turing imperfections, cabling stresses, installation procedures, and
environmental sensitivities of fiber and other in-line components)
are unknowable and continually changing, PMD is unique among
optical impairments. This makes PMD both a fascinating research
subject and potentially one of the most challenging technical
obstacles for future optoelectronic transmission. Mitigation and
compensation techniques, proper emulation, and accurate predic-
tion of PMD-induced outage probabilities critically depend on the
understanding and modeling of the statistics of PMD in installed
links. Using extensive data on buried fibers used in long-haul high-
speed links, the authors discuss the proposition that most of the
temporal PMD changes that are observed in installed routes arise
primarily from a relatively small number of “hot spots” along the
route that are exposed to the ambient environment, whereas the
buried shielded sections remain largely stable for month-long time
periods. It follows that the temporal variations of the differential
group delay for any given channel constitute a distinct statistical
distribution with its own channel-specific mean value. The impact
of these observations on outage statistics is analyzed, and the
implications for future optoelectronic fiber-based transmission are
discussed.

Index Terms—Communication systems, optical fiber communi-
cation, optical fiber dispersion, optical fiber polarization.

I. INTRODUCTION

F IBER optics revolutionized telecommunications over two
decades ago, spurred by the promise of a low-loss trans-

mission medium with seemingly infinite bandwidth. However,
as the bandwidths of transported signals rapidly increased in the
late 1980s, birefringence, which is a dependence of refractive
index on the state of polarization (SOP), became recognized
as a new impairment. Essentially, if the transit times for an
optical fiber pulse were different for the x and y polarizations,
for example, then an optical pulse launched in an arbitrary SOP
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would create two time-displaced replicas at the receiver, intro-
ducing distortion errors. As pulse widths became shorter with
higher bandwidths, this differential time displacement, called
differential group delay (DGD, defined later), became more
injurious. Even more troubling was the recognition that this im-
pairment varied from fiber-to-fiber (even in the same lot), from
wavelength to wavelength for a given fiber at any given time,
and even at each wavelength over time. For carriers, this ran-
domness begs the question of how to assess the likelihood that
any given fiber will suffer an outage for a given system. Since
billions of dollars of fiber were installed before these problems
surfaced, and transmission rates are likely to increase, it is
clear that this problem has enduring economic implications.

Early views of these issues were fleshed out in the late 1980s
and early 1990s, the impairment became known as “polariza-
tion mode dispersion” (PMD), and research has continued to the
present (the term PMD is also used to quantify the phenomenon
by the introduction of a PMD vector, to be defined in Section II).
As a measure of the maturity of the field, there have been
several reviews [1], [2] (including one of over 130 pages [3])
since the earliest work of Poole and Wagner [4] as well as
two recent books [5], [6] concerned with PMD: the theoretical
foundations are well established.

During the telecom bubble, the temporary overbuild of fiber
routes with low-PMD fibers allowed the widespread deploy-
ment of 10 Gb/s systems, mitigating the need for immediate
PMD compensation. For a while, most carriers seemed to have
enough recent vintage fiber to satisfy the increasing de-
mand of their customers using multiple wavelength-division-
multiplexed channels to form terabit per second links. However,
as the telecommunications industry comes out from a long
downturn, there is a renewed interest in PMD as “good” fibers
have been cherry picked on existing routes and even better fiber
is needed for the worldwide deployment of 40 Gb/s systems
that has already begun.

PMD-related research can be roughly divided in seven over-
lapping subfields, each involving both theoretical and experi-
mental work.

1) Development of low-PMD fiber. The PMD coefficient of
the fiber, having units of picosecond per square root kilo-
meter, is roughly proportional to the fiber birefringence
and inversely proportional to the birefringence correlation
length. The former parameter has been improved by
better control over the drawing process, and the latter was
shortened dramatically by the introduction of so-called
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spun fibers. By twisting the fiber in the drawing process,
one dramatically increases the rate at which the birefrin-
gence axis changes its orientation along the fiber. That
leads to a faster randomization and to significantly lower
PMD coefficients, down to 0.01 ps/km1/2.

2) Faithful emulation of PMD. For system testing purposes,
it is highly impractical to wait for a rare instance of high
PMD in a fiber. Therefore, PMD emulators, for which any
value of PMD may be programmed at will, are used for
testing single-channel systems. For multichannel testing,
it is important that the PMD correlation among the chan-
nels be close enough to that in the real fiber. It remains an
open question of whether emulators are adequate to study
the interaction of nonlinear and polarization effects.

3) Modulation formats and receiver impact. From the ear-
liest days, it was clear that the return-to-zero (RZ) mod-
ulation format would be more robust to uncompensated
PMD links than nonreturn-to-zero (NRZ) formats. Later,
the robustness of other formats such as carrier-suppressed
RZ and duobinary formats was studied. The interaction of
PMD with nonlinearities adds another dimension to the
problem.

4) In-service monitoring of PMD and PMD-induced
penalties. The evolution of the magnitude and direction
of the PMD vector is driven by temperature variation
indoors, as well as outdoors, changes in the stress level in
cables, and technical crew activities. When the bit error
rate in a system increases, it is therefore desirable to be
able to tell whether the system performance degradation
is caused by PMD or other deleterious effects. Several
methods have been developed for in-service estimation of
the PMD-induced penalty. Various measurable quantities
can be used for that purpose, including eye opening,
synchronous and asynchronous histograms, degree of po-
larization, various frequency components, and frequency-
resolved SOP traces.

5) PMD compensation by optical and electronic means.
PMD compensation techniques can be categorized by
the location of the device (input, output, distributed), its
tracking speed, and the number of degrees of freedom.
Optical techniques have been developed that introduce a
compensating PMD (with only a few degrees of freedom)
to cancel a large measure of a link’s PMD at a given wave-
length, but the problem for multiple wavelengths is still
an issue. Electronic methods center on tapped delay lines
and delayed decision techniques at the receiver to infer
the transmitted signal. While it must be implemented at
each receiver, this approach uses integrated electronics,
whose speed and processing power keep increasing. PMD
compensation has gone a long way to reach a status
where it is quite well developed in terms of understanding
the requirements, laboratory demonstrations, and some
field tests. However, at present, there seems to be no
commercially viable multichannel solution.

6) System aspects of PMD: calculation and measurement of
outage statistics, development of optimal PMD avoidance
strategies, etc. Historically, there have been three distinct
system approaches to PMD mitigation. If the PMD is low,

it can be ignored. For a medium severity of PMD, the
problem can be avoided either by cherry picking good
fiber among the available fiber strands in a cable or letting
higher logical levels of the communication system worry
about it. Finally, if the system has high PMD, it needs to
be actively mitigated.

7) Study of PMD statistics and dynamics of installed fiber
plant. Unless PMD is so low that it can be ignored, it is
obvious that the single most important piece of informa-
tion, which is crucial to formulating outage probabilities,
evaluating mitigation strategies, and developing com-
pensation techniques, is the full understanding of PMD
dynamics.

Existing theoretical tools and developments have been suc-
cessful in predicting the statistical properties of an infinite
ensemble of statistically equivalent fibers, and thus, a carrier
might reliably estimate the number of transmission systems
that can be expected to suffer an outage due to PMD. But the
prediction of what will happen to a particular traffic-bearing
field-installed fiber is a more difficult theoretical issue and
also provides more valuable operational knowledge: is this
fiber-optic transmission system (currently operational, creating
revenue, and subject to service level agreements) likely to fail
in the future, and if so, when and for how long? Much of the
discussion to date has made implicit use of what might be called
the “fast mixing assumption” that, from moment to moment, the
fiber’s state randomly samples the statistical ensemble and is
equally likely to evolve into any of the other ensemble elements.
In this view, the outage time per year would be calculated from
the appropriate cumulative distribution function. While com-
plete mixing undoubtedly occurs over long enough time scales,
we will present evidence, gathered by groups on all continents,
that the fast mixing assumption is generally not valid in field-
installed (buried) fibers over practical time scales, and we will
give an interpretation that has evolved over the last few years.

This paper is organized as follows: Section II contains an
overview of birefringence and PMD, briefly reviews early field
measurements, and introduces a “hinge” model for viewing
such results. Since the model has slightly different emphases
than the conventional model, this section’s review is aimed
at elucidating the terminology and concepts that we will use
later in the text. Our development uses what has become the
conventional notation [2]. The next two sections deal with long-
term measurements of installed fibers that were not carrying
live traffic, i.e., “dark” fibers. In Section III, we review our mea-
surements of urban and suburban routes that were performed
with the traditional interferometric technique and compare
them to measurements by other groups. In the Appendix, we
also discuss uncertainties in estimates of the magnitude of PMD
associated with this technique and relate them to the nature
of links composed of long stretches of buried fiber. Analysis
of the measurement statistics gives evidence that fast mixing
is not taking place. A more detailed measurement technique
using wavelength-resolved measurements of dark fibers [7]
gives greater insight into the dynamics of buried fibers and
is discussed in Section IV. By comparing experimental PMD
measurements with the ambient temperature, we show that it is



4586 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 12, DECEMBER 2006

possible to establish upper bounds on the variability of buried
sections of the fiber. While such dark fiber experiments are use-
ful in developing an understanding of the underlying processes,
deployed systems are much more complex. Section V deals
with measurements on a live system. We discuss the conse-
quences of optical components in offices and huts, as well as the
presence of active components in the optical path, and describe
them as another class of polarization-rotating “hinges.” The last
two sections describe how the experimental results developed
in Sections III–V change the view of how outages arise and
persist. In Section VI, temporal DGD statistics is reviewed, and
the fact that outage probabilities can be expected to vary as
a function of communication frequency is addressed. Finally,
in Section VII, we explore several numerical and analytical
approaches that might be taken to exploit the properties of these
channel-specific outages. We conclude with open questions that
might be addressed in future studies.

II. BACKGROUND

A. Birefringence

The fundamental physical effect this paper is concerned with
is the fact that imperfections and perturbations in fibers create
polarization-dependent changes in the optical index of refrac-
tion. These are generally described as different indices of re-
fraction (and hence different propagation velocities) for two
distinct polarization eigenstates. The SOPs corresponding to
these eigenstates are usually labeled “slow” and “fast”: they
are not generally the “x” and “y” polarizations but depend on
the direction and nature of the perturbations that cause them.
An arbitrary SOP can be resolved into components along the
slow and fast eigenstates, and after propagating down a fiber
of length L, these components will suffer a differential phase
delay (due to differences in phase velocities vp of the two
eigenstates) of

∆τp =
L

vps
− L

vpf
=

[
βs − βf

ω

]
L =

β

ω
L (1)

where the s and f subscripts denote the slow and fast eigen-
states, respectively, and β is the difference between the two
propagation constants. Since the SOP depends on the rela-
tive phase of the two components, it evolves as lightwave
propagates. Information-bearing signals, however, have spec-
tral content and travel at the group velocity. The DGD for a
signal traversing the same birefringent medium, using the usual
definition of group velocity, is

∆τg =
L

vgs
− L

vgf
=

[
∂βs

∂ω
− ∂βf

∂ω

]
L =

∂β

∂ω
L = β′L. (2)

It is generally assumed that the group and phase velocities
are similar, and their eigenstates are identical, arising from the
physical perturbations.

The birefringence’s magnitude and the orientation of its axes
are generally not constant but vary randomly along the length
of the fiber, which greatly complicates the above description
for long telecom fibers. The most useful way to describe the

Fig. 1. Polarization evolution. Input polarization s0 evolves in traversing two
sections of birefringent fiber (lower inset). At ω0, SOPs evolve on the Poincare
sphere by sequentially rotating, with propagation distance, about dotted vectors
β0

1 and β0
2, which represent the sections’ birefringences. At frequency ω0 +

∆ω, SOPs evolve by rotating about solid vectors β+
1 and β+

2 , where each are
expressible as a first-order expansion (light arrows). The PMD viewpoint is
that the output SOP for each section rotates about a PMD vector with changing
frequency (light curves). Since each section’s SOP is rotated by succeeding
sections, the overall PMD vector is a concatenation of rotated section PMD
vectors (see text).

situation is a geometrical representation based on the Poincare
sphere. While the details [2], [8], [9] are beyond the scope of
this paper, the basic representation is crucial and can be seen in
outline form in Fig. 1. In short, a) each SOP is represented by a
point (i.e., vector) on the Poincare sphere, b) the birefringence
at a given fiber location is represented by a vector β, pointing in
the direction corresponding to the SOP of the slow eigenstate,
and c) the SOPs rotate about the birefringence vector β at a rate
equal to the magnitude of β, namely β. Thus, the SOP rotates
about a constant birefringence β by a total of βL radians in
traversing a length L, regardless of the angle or “latitude” of
the SOP with respect to β.

Any actual fiber will have a β that varies with length, and this
is shown schematically in Fig. 1 as a fiber with two sections
(lower inset), with birefringences β0

1 and β0
2, represented by

dotted arrows at the top of the Poincare sphere. (Here, su-
perscripts denote frequency, and subscripts denote the section
number, so β0

1 represents the birefringence vector of section
“1” at optical frequency ω0.) In traversing “section 1,” an initial
SOP of s0 at frequency ω0 rotates β1L radians about β0

1 to
SOP s01 followed by a rotation of β2L radians about β0

2 to SOP
s02. Further sections would continue the rotations, and a general
optical fiber might be considered as a concatenation of such
birefringent sections. This “retarder plate” model of a fiber is
the most commonly used model for fibers. The lower inset in
Fig. 1 shows the fiber as constructed of a series of retarder
plates, each with its own birefringence, causing the polarization
at each frequency to evolve as it propagates down the fiber.
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B. PMD

In contrast to the monochromatic (i.e., at frequency ω0) case,
PMD is concerned with the behavior of signals that have finite
spectral content. Consider a component of the optical signal at
a nearby optical frequency ω0 + ∆ω. This component expe-
riences birefringences that are slightly different (solid arrows,
β+

1 and β+
2 ); therefore, this light (although launched in the

same SOP) will travel on slightly different arcs to s+
1 and s+

2

under the influences of these new β vectors. Since we assume
that ∆ω is small compared to ω0, β+

1 can be expressed as a
first-order expansion β+

1 = β0
1 + β′

1∆ω, and similarly for β+
2

(gray arrows in Fig. 1). In examining the SOP evolution under
β+

1 , we see that s+
1 can be viewed as an additional rotation of

s01 by (β′
1∆ω)L about vector β′

1∆ω, taking s01 to s+
1 (light

curve) since it is a differential rotation. But the same rotation
can also be viewed as a rotation of (β′

1L)∆ω. This latter form
is the definition of PMD. We say that τ1 = β′

1L is the PMD
for section 1, that the magnitude |τ1| = β′

1L is the DGD for
section 1 (see eq. 2), and that the SOP moves on the Poincare
sphere by an angle of |τ1|∆ω for a frequency offset of ∆ω. The
same thing occurs for section 2, although now we are operating
on s+

1 , which can be considered at the sum of two arcs: one
from s0 to s01, and one from s01 to s+

1 .
This figure illustrates all the essential points needed for our

discussion of PMD. 1) Each section has its own PMD, shown
as gray arcs generated by rotations about β′

1L and β′
2L (cor-

responding to τ1 and τ2). These generate rotations for output
SOPs as the optical frequency is changed. 2) The net effect of
changing the optical frequency, when viewed at the final output
of section 2, is that the SOP is rotated about some “other”
axis, represented by vector τ on the right. This is the PMD for
the entire link since it describes how the polarization disperses
with optical frequency. 3) The PMD τ is not the vector sum
of τ1 and τ2 because the rotation done by τ1 occurs at a
different orientation than the rotation done by τ2: there was an
intervening rotation by β0

2L. That is, when τ2 rotates s+
1 , it can

be viewed as simultaneously rotating s01 and the gray arc (gen-
erated by τ1) connecting s01 and s+

1 . This “imaged” arc, labeled
as PMD′

1, can be viewed as having been caused by a version of
τ1 that is imaged by the same rotation. This is the source of
the concatenation rule [3] and is responsible for much of the
richness of the PMD properties: each section’s PMD vector is
rotated by all sections following it, creating an image PMD at
the output. The sum of these imaged PMDs is the total PMD.

The formal mathematical description of the arguments above,
when the sections are reduced to infinitesimals, is the set
of dynamical equations first proposed by Poole et al. [10],
expressed in conventional form as

∂�s

∂z
= �β × �s (3)

∂�s

∂ω
=�τ × �s (4)

∂�τ

∂z
= �β′ + �β × �τ . (5)

In words, the first equation states that β, the phase velocity
birefringence, rotates the SOP (at a fixed frequency) as a

function of distance. The second equation states that the PMD
rotates the SOP (at a fixed distance) as a function of frequency.
The third equation states that the PMD grows, as one moves
down the fiber through a small section, by rotating the existing
PMD about β of that section and adding the section’s PMD
β′∆z to the result, as described above.

C. Statistics of PMD

From the early work of Curti et al. [11] and Foschini and
Poole [12] to recent times, the analogy of the random driving
term above (β′) to Brownian motion has been exploited as
a set of stochastic differential equations (SDE) to glean the
statistical properties of the total PMD vector. The “white noise”
spectrum requires special mathematical approaches but results
in relatively simple differential equations to solve. By its nature,
the SDE approach is more suited for treating uniform systems.
With the model developed above, however, we can represent
more varied situations, such as inhomogeneous statistics for
birefringence, we can describe the potential for PMD vectors
to evolve continually in time, and we can also investigate some
of the statistical properties. For instance, we saw above that
the fiber’s PMD vector is the sum of each fiber section’s PMD
vectors after each of them has been imaged all the way down
the end of the fiber. This problem is, in fact, identical to that of
a classical gas in which molecules have random velocities, and
therefore, we can appropriate the result that the net distribution
for the mean length of the PMD vector (the DGD) has a
Maxwellian distribution.

The model also suggests a view of how the PMDs at neigh-
boring frequencies are related, i.e., the spectral autocorrelation
of the PMD. If the PMD for each section is large enough, or
if the frequency spread is large enough, each section’s image
at the output will be totally uncorrelated with the image at
the original frequency. However, although the two PMDs are
uncorrelated, they still will be drawn from the same Maxwellian
distribution. This shows that if one samples over a wide enough
optical bandwidth, it is essentially equivalent to picking another
element from the ensemble, and the situation will look like the
“fast mixing” assumption. On the other hand, if the statistics
are not Maxwellian, it is an indication that only a restricted set
of the ensemble is being sampled.

Another application we will use is the idea that the retarder
plates may be nonuniform: One plate may have a much greater
PMD than the others. Simple geometric arguments show us that
the total PMD will be dominated by this vector, which is a point
to which we will return in later sections.

D. Field Measurements

As mentioned above, PMD can be expected to change in
time. The sources of these changes are variations in the magni-
tude or orientation of the birefringences (and hence the section
PMDs) over time, and perturbations such as temperature, pres-
sure, stress, cabling orientation, bending, relaxation, aging, etc.,
are all expected to make changes in the PMD. Environmental
sensitivity was recognized very early when Poole et al. first no-
ticed a temporal DGD drift in laboratory spools [13], and then
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observed related transmission power penalties [14]. At about
the same time, De Angelis et al. observed large changes in
signal SOP in buried terrestrial links, in which some fiber con-
nectors were contained in cabinets placed above ground [15].
These changes occurred at sunrise and sunset and were ascribed
to abrupt changes in ambient temperature. Thus, the environ-
mental sensitivity of long links has been established since the
earliest days of PMD.

As the deployment of 10- and 40-Gb/s systems was antic-
ipated in the late 1990s, many field experiments were per-
formed [16]–[24]. Most of these were focused on determining
the PMD’s rate of change in installed routes, presumably to
ascertain how long an operating link might be expected to
remain viable. The results reported by different groups varied
dramatically, but all of them indicated that the PMD variations
in installed cables are rather slow. These variations occurred on
time scales ranging from a few hours to several days. Such a
large spread suggested that the particular details of the cable
installation must play a significant role in PMD dynamics. This
further motivated a search for a unifying model that would
describe the PMD temporal dynamics of any fiber route.

At the other end of the time scale, investigations into po-
tential sources of very rapid fluctuations also proceeded since
many rights of way were under or near heavily used transporta-
tion routes that were expected to subject the fibers to vibrations.
Several experiments looked for fast (millisecond scale) PMD
variations [22], [25]–[28]. While fast events do indeed occur in
installed fibers, they are generally solitary, isolated in time, and
very rare. Up to date, the consensus in the industry is that fast
events most likely originate from human activities in the offices.

E. Hinge Model

As a carrier, AT&T has long been interested in understanding
the fundamentals of PMD on long routes, and in this paper,
we will review several experimental efforts that have been
undertaken both in AT&T and outside in the last four to five
years with a focus on gaining insight into the polarization
dynamics of installed fiber routes. We will show evidence
suggesting that most of the temporal changes in PMD that
have been observed in installed routes arise primarily from a
relatively small number of “hot spots” along the route that are
exposed to the environment. On the other hand, the long buried
sections that make up the bulk of the link length remain largely
stable for periods on the order of weeks to a month. Hourly
and daily environmental changes cause fiber in the hot spots to
change in birefringence and thus to act as time-dependent po-
larization rotators. The general picture, then, is that a long link
is considered to be a large, but finite, set of concatenated fiber
sections (retarder plates, as in the inset to Fig. 1). While each
of the retarder plates has a random birefringence, for the most
part, they are fixed in time due to the stable environment they
experience in their buried conduits. At a few places (bridges,
etc.), the conduits are not buried but are exposed to ambient
temperature. These sections can change their birefringence in
time. When viewed at the output, the fiber’s PMD is then
composed of a relatively small number of large stable PMD
vectors (the buried sections) that suffer, in addition to the stable

rotations by succeeding buried sections, time-varying rotations
from the hot spot sections. These time-varying rotations can be
thought of as hinges that add a time-dependent component to
the images of the longer stable sections. As such, instead of the
conventional retarder plate model of a long fiber link, a more
apt mode, at least in terms of its time evolution, would be as
a few-section PMD emulator. This is the essence of our hinge
model [29]. The major statistical implication of our empirical
hinge model is that the temporal statistics of PMD becomes
channel specific, thus requiring a new perspective on PMD-
driven system outages.

Armed with this background, we are in a position to review
the existing experimental data for long-term issues in PMD.

III. LONG-TERM MEASUREMENTS OF SPECTRALLY

AVERAGED DGD ON DARK BURIED FIBERS

An interferometric PMD measurement technique [30] per-
mits one to obtain a frequency average of fiber DGD values in a
single quick scan. Relative ease of use and a variety of available
commercial instruments made it the carriers’ technique of
choice for routine PMD characterization of their installed fiber
plants. The widely accepted metric for the PMD of the fibers
is the value of the rms DGD averaged over an infinitely large
frequency range, namely τrms.

It turns out that this parameter τrms cannot be measured
precisely for recent vintage ultralow DGD fibers. The problem
is not fundamental but rather technological. Experimentally,
τrms is approximated by τB

rms, namely the rms DGD when
averaged over a finite bandwidth B. The resulting rms DGD
τB
rms is a stochastic variable itself with known distribution

and standard deviation, analytically expressed for sufficiently
large B as σ ∝ √

τrms/B [31], [32]. The lower the τrms of
a fiber, the wider is the bandwidth of its DGD frequency
autocorrelation function [32], [33], and thus the wider is the
bandwidth needed to sample all possible values of τ . Therefore,
a wider frequency range B is needed for τB

rms to be an accurate
estimate of the mean DGD value τrms of low-PMD fibers. With
current commercial light sources having a spectrum of no more
than 100 nm, a measured mean DGD value τB

rms of 0.2 ps
(which corresponds to a 100-km link of a 0.02-ps/km1/2 fiber)
approximates the true value τrms with a 100% error! The aggre-
gate errors for multispan routes are addressed in Appendix.

However, because the quantity τB
rms is not a unique fiber

constant, it can be used to monitor the stability of installed
fibers over time. If the fiber under test is exposed to a time-
varying environment (as for installed cables), the details of the
fiber DGD frequency spectrum τ(f) change in time, which, in
turn, is likely to cause observable changes in τB

rms since it is a
sample over a finite region of the spectrum.

In 2002, long-term field measurements of τB
rms were per-

formed on multiple fiber strands in three different AT&T routes
[34], [35]. Two were suburban ones laid out along a major
highway, about 80 km each. The third route, which is 7 km
long, was located in a major city. The measured fiber strands
were a mixture of single-mode and TrueWaveRS fibers and
belonged to different ribbons. Data were continuously taken for
several days in the months of February and August of 2002.
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Fig. 2. Measured rms DGD τB
rms for three completely buried city fibers (thick

lines). The data are independent of the ambient temperature (thin green line,
right axis).

Fig. 3. RMS DGD τB
rms for eight fibers in a suburban buried cable. The data

span nine days in February and seven days in August. Strong daily variations
are evident from the data.

Fig. 2 shows the values of mean DGD for three city fibers
continuously measured together with the simultaneously mea-
sured ambient temperature. As temperature evolved with time,
almost no change in τB

rms was observed for this link, which was
a fully buried underground. On the other hand, the two suburban
links with a few sections exposed to temperature variations
(such as tens of meters long bridge attachments) show small
and largely reversible variations in mean DGD estimates, which
track the ambient temperature. The left side of Fig. 3 shows
values of τB

rms for eight fibers in the same cable measured in
February, and the right side of Fig. 3 shows data for the same
fibers obtained half a year later (the temperature, which was
also measured is not shown). The exact functional dependence
on temperature varies from one fiber strand to another [34], [36]
and might not be very informative because the measured data
represent a spectral average. However, the mere presence of
diurnal shifts occurring only on fibers with exposed sections
suggests the major role these short sections play in the rather
complex PMD temporal dynamics. This conclusion is in accord
with results from other groups on various routes across the
globe [15], [21], [36]–[39].

A related but more important conjecture follows from data on
the long-term stability of completely buried parts [35]. Indeed,
these diurnal fluctuations are small in amplitude and occur

around the same level even when measured half a year later for
six fibers in Fig. 3, whereas for two fibers, the levels shifted just
slightly. The resulting distributions of τB

rms taken at different
times deviate strongly from the Gaussian shape predicted by
the central limit theorem and are much narrower than the
theoretical value [31], [32]. These discrepancies indicate that
for each fiber, the set of measured values {τB

rms} represent only
a minor portion of the entire ensemble of all possible states of
that fiber. In other words, fibers are not sufficiently scrambled,
apparently due to the time stability of our buried links. This
suggests that mixing is taking place slowly on these time scales.

IV. WAVELENGTH-RESOLVED LONG-TERM DGD
MONITORING EXPERIMENTS ON DARK FIBERS

A. Experimental Data

Further insight into the long-term stability of dark fibers can
be gained from the month-long spectral PMD measurement on
installed fiber [40], [41]. By employing the Müller matrix meth-
od [7] with optical preamplification, this experiment encom-
passed a wide optical band (100 nm) and long reach (160 km).
The measurement equipment was collocated, and the link was
looped back, consisting of two fibers described in the previous
section and shown in Fig. 3. These were predominantly buried
fibers: several sections, such as bridge attachments tens of
meters long, were left vulnerable to environmental changes.

Daily local ambient temperature changes of about 10 ◦C were
reflected in the DGD spectra, causing DGD changes for each
wavelength. For some wavelengths, the changes were relatively
large (about 0.5 ps compared with mean DGD of 0.64 ps),
whereas for others, they were small. The overall spectrum
appears to be “breathing” with temperature: peaks and valleys
change their levels while remaining at the same wavelength
[41]. In our laboratory, we observe much a simpler behavior
(a shift of the total spectrum in wavelength with temperature)
on spooled fiber of the same type, i.e., when the entire fiber
is immersed in a time-varying temperature bath. Interestingly,
such a shift can be explained in terms of phase conservation
of the lightwave: the phase of the lightwave, which controls
the polarization properties, is related to the ratio of the optical
path to the wavelength, i.e., φ ≈ nL/λ, where n is the refractive
index, and L is the physical length [42]. Inside the thermal bath,
the optical path nL changes uniformly along each section of the
fiber length, and this change (when sufficiently small) can be
compensated by corresponding adjustments in λ. Thus, spectral
breathing being different from spectral shift is indicative of the
nonuniformity of the applied temperature in the field fibers.

Surprisingly, the DGD spectral changes were largely re-
versible. That is, when at some later time the temperature
returned to a previous value, the DGD also returned to its pre-
vious value. In other words, by viewing the DGD at any given
wavelength as a function of temperature alone, one can account
for most of the variations observed. Two DGD spectra taken
15 days apart but at the same temperature look surprisingly
alike despite large changes, in the interim, in both T and DGD
(Fig. 4). Such a comparison of full DGD spectra conditioned
on temperature, which was made for the first time in [40]
and [41], separates the temperature-driven variations caused
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Fig. 4. Two DGD spectra taken two weeks apart but with the same tempera-
ture on a buried cable with several exposed parts. Note the similarity in spectral
features despite large changes happened in the interim.

Fig. 5. Changes in DGD for three wavelengths λ = 1529.5 nm (•),
1533.5 nm (◦), and 1556.5 nm (�) presented as a function of time. The
data span over three weeks of measurements. A reference point DGDref(λ)
is chosen at T = 0 ◦C. From [41].

by the exposed parts from the underlying slowly varying long-
term structure of DGD spectra, which is presumably related to
changes in buried parts of the fiber.

This idea can be further illustrated by plotting the deviations
in DGD for several wavelengths: ∆DGD(λi) = DGD(λi) −
DGDref(λi) not as a function of time but of temperature
(Fig. 5). Here, a reference value DGDref(λi) is chosen at
one point in time, when the temperature was 0 ◦C. The data
sets span a time period of 21 days. An unexpected monotonic
functional dependence with temperature can be clearly seen for
each wavelength. The scatter of the data, which tend to increase
for data sets covering a longer time span [41], suggests an
increasing influence of the slow irreversible changes in the fiber
system, which apparently occur on a time scale comparable to
a month.

B. Quantitative Analysis

To quantify these irreversible variations in DGD and to sepa-
rate them from the functional DGD dependence on temperature,

Fig. 6. Variability ξ as a function of time (squares). ξ is the average deviation
that the DGD at any given wavelength experiences, normalized to the mean
DGD. Thin line is a guide to the eye.

we introduce the “variability” metric

ξ(t, t0) =

√
〈(τ(λ, t) − τ(λ, t0))

2〉λ√
(3π − 8)/4 × 〈τ〉 . (6)

It is the rms difference between two DGD(λ) spectra taken
at times t and t0 normalized so that ξ = 0 for two identical
spectra and ξ = 1 for two completely decorrelated spectra with
the same mean 〈τ〉. We note that ξ can be viewed as the average
deviation that the DGD at any given wavelength experiences,
normalized to the mean DGD. The averaged variability com-
puted for spectra conditioned on the same temperature is shown
schematically in Fig. 6. For the DGD spectra taken at the same
temperature but as many as 20 days apart, the variability is only
ξ = 0.39. In contrast, daily excursions of the temperature could
cause variabilities of up to ξ = 0.89.

A similar correlation analysis was proposed by the Telecom
Italia team [37]. By assuming a periodic temperature, the
authors compared DGD spectra taken 24 h apart. The results of
both experiments are in qualitative agreement, but the Telecom
Italia fiber showed faster decorrelation. The metric R(t) used
in [37] is related to the variability ξ by the simple relation
R(T ) = 1 − ξ2. Thus, the reported R value for time separation
of seven days of 0.1 is equivalent to a ξ of 0.95. The ambiguity
in the temperature (i.e., a temperature measurement might have
revealed variations that were not perfectly periodic) might have
caused the seemingly faster decorrelation.

To summarize, the observed spectral evolution was ascribed
to the fact that only a few sections, tens of meters long and
located over the length of the link, are exposed to ambient
temperature variations. A possible explanation of how changes
of a very short (relative to the total route length) section
could result in rather large changes in DGD is the hypothesis
that these sections act as polarization rotators [37], [40], [41].
Indeed, when only one fiber section keeps changing while the
rest are constant, the concatenation rule reduces to a summation
of two vectors connected by a hinge. The movement of only
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Fig. 7. Experimental DGD (normalized to its mean value) as a function of
wavelength and time (vertical axis) for the link comprised of two buried fibers
connected in a hut via an EDFA. From [44].

one hinge can cause large changes in DGD, especially if the
hinge is located near the middle of the fiber. Later simulations
confirmed that a reversible SOP rotator with amplitude (in the
Stokes space) of only π/3 radians can result in DGD changes of
the magnitude observed [43]. On the other hand, the observed
reversibility suggests two things: first, that the hinges seem to
be somewhat, if not completely, reversible, and second, that the
buried sections are largely stable. In other words, even if the
increase in ξ is attributed solely to the buried parts (assuming a
complete reversibility of ideal hinges with ambient temperature
changes that are uniform over the link), an observed decorrela-
tion of the entire fiber on a month-long scale serves as a lower
bound on the decorrelation time scale of the buried parts.

C. Manifestation of the Hinges

The way hinges manifest themselves in field PMD data
depends on many factors, such as their number, driving forces,
and the scope of rotation. Two illustrative examples are given in
Figs. 7 and 8. Here, instantaneous DGD values are represented
by color as a function of wavelength and time, with the warmer
color corresponding to higher values. Fig. 7 presents 18 days
worth of experimental data obtained by Kondamuri et al. [44]
on the concatenation of two Sprint fiber spans (95 km each)
joined via an erbium-doped fiber amplifier (EDFA). The same
authors report rapid variations in DGD compared to that ob-
served on individual fibers [45] and spectral localization of
high-DGD events. Both features are evident on the plot. Al-
though the cause of variation was not reported in [44], we
suspect they arise from several hinges along the route. To in-
vestigate this hypothesis we performed a rather straightforward
hinge modeling, results of which, presented in Fig. 8, are seem-
ingly similar to the real data shown in Fig. 7. Five stable fiber
spans, each consisting of 200 randomly birefringent sections,
were connected by four hinges [43]. Hinges were modeled as
Stokes-space rotators about fixed frequency-independent axes
whose angle of rotation α evolved as a predetermined function
of time: αk = 1.5π sin[2πft + (k − 1)π/8] + 2πt/500, where
f = 1/50, where k is the hinge number. Quasi-periodicity in

Fig. 8. Numerical DGD as a function of wavelength and time (vertical axis)
for a link with four hinges. Note the quasi-periodicity and spectral persistence
of high and low DGD events similar to that of the data in Fig. 7.

time and spectral persistence of both high and low DGD event
relate Fig. 8 to Fig. 7.

V. PMD EXPERIMENTS ON FIELD-DEPLOYED

TELECOM SYSTEM

The PMD penalties in a fiber-optic communication system
are not exclusively controlled by the PMD of the fiber itself and
its dynamics. Various system components, which are regularly
placed along the link, such as optical amplifiers and dispersion
compensation modules (DCMs), may also play an important
role in determining both the output SOP and the temporal
dynamics of the system PMD. Here, we describe an experi-
ment focused on elucidating the effect of repeaters and their
equipment. A commercial ultralong-haul Raman-amplified
40-Gb/s system, which is comprised of six spans, was in-
stalled between two major cities [46]. The two end terminals
(T1, T2) were placed in switching offices in the cities, and five
repeaters (R1–R5) were installed in small unmanned buildings,
with R3 collocated with R1. (Note that our use of the term
“repeater” is something of an anachronism: these sites contain
optical amplifier equipment.) Span lengths ranged from 43 to
111 km, and the total T1–T2 distance was 493 km. For the tests
described below and reported in detail [29], [47]–[52], three
different configurations looped back to T1 from R1, R3, and T2
were used, with corresponding transmission distances of 222,
562, and 986 km, respectively. For long-term PMD monitoring,
a tunable probe laser with a controlled SOP was injected via
a coupler onto T1’s “transmit” fiber, and a polarimeter was
used to measure the returning light tapped from T1’s “receive”
fiber. The usual data traffic was disabled so only the probe was
present through the amplified media. Again, the Müller matrix
method was utilized. In a separate experiment, Boroditsky et al.
devised an original in situ technique to measure PMD using
a “live” data-carrying channel, thereby not only obviating the
need for a probe laser but also establishing a correlation be-
tween the time-varying PMD and the quality of transmission
[51], [52].
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Fig. 9. Colorplot of the DGD spectral evolution in time (horizontal axis)
measured through a field-installed 986-km Raman-amplified system.

Fig. 10. Equipment temperature in the optical amplifier’s sites measured
concurrently with the data in Fig. 9. The data are shifted for clarity. Vertical
scale is indicated by 1 ◦C bar.

The temporal evolution of the DGD spectrum of the full
986 km is shown as a colorplot in Fig. 9. The most surprising
features are the fast (< 1 h) and dramatic variations of the DGD
of the system. Since these were too fast to arise from outdoor
temperature effects, we investigated the temperatures inside the
buildings that house the equipment and found that they changed
on a similar time scale. While each building interior is temper-
ature controlled with a conventional thermostat, the latter has a
hysteresis band of about 1 ◦C. Thus, small (1 ◦C to 1.5 ◦C) and
periodic (1–3 h) temperature variations are to be anticipated.
Fig. 10 shows the temperature inside all repeater sites as well
as inside T2. Note the relatively large magnitude of temperature
fluctuations at remote locations R1 and R3 compared to the
high temperature stability at the city office, which is located in a
well air-conditioned building. While the DGD spectrum shows
a seemingly visual correlation with the temperature fluctuations
in Fig. 10, the different temporal characteristics of temperature
at various locations do not give rise to a statistically significant
correlation coefficient. Nevertheless, the apparent dependence
of the DGD spectrum on repeater temperature prompted us to

Fig. 11. (a) DGD for three optical frequencies 187.5 THz (blue), 187.0 THz
(green), and 186.5 THz (orange) measured on shorter 562-km field deployed
system. (b) Equipment temperature in two locations along the route.

carry out a controlled heating experiment in the hut housing
R1 and R3. Every repeater in our system contained a dispersion
compensation module (DCM) – a packaged spool of negative
chromatic dispersion fiber chosen to match the positive disper-
sion of the transmission fiber. We heated the DCMs in the hut
one by one and simultaneously monitored the DGD spectrum
at the T1 terminal. Indeed, abrupt heating gave rise to a slightly
delayed but rapid change in the DGD spectrum. Moreover,
heating of the other parts of the system did not seem to produce
any effect. Additionally, we verified in a separate laboratory test
that the DCMs acted as strong polarization rotators in response
to heating by 1 ◦C to 2 ◦C. We thus conclude that the DCMs are
temperature-dependent polarization rotators producing large
rotations for temperature fluctuations of the order of ∼1 ◦C.
Such characteristics make the DCM an excellent candidate for
being a temperature-controlled hinge.

Fig. 11 presents the recorded temporal variations of the
system’s DGD spectra for three optical frequencies, acquired
over a shorter 562-km route. To reduce the number of possible
hinges, the system was shortened by looping at the third re-
peater, resulting in a T1–R1–R2–R3–R2–R1–T1 configuration.
Also, a different lower PMD fiber strand from the same cable
was used in this configuration. Note that the hut housing
R1 and R3 not only shows the strongest and most distinct
temperature oscillations, but unlike the other huts, this one
happened to house two repeaters, so the signal passed through it
four times, magnifying the effect of temperature variations. By
reducing the number of hinges, nearly all features in the spec-
trum can be quite clearly traced to the temperature variations
in the two remaining huts, which are shown at the bottom of
the figure. These observations lead us to generalize the hinge
picture to include not only bridges but also in-line components,
which, like bridges, are discretely distributed along the link and
are exposed to temperature or other environmental effects.
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Fig. 12. Long-term DGD measurement for an amplified link with periodic
spans and equal PMD of spans. Note some diurnal repeatability together with
smaller and faster oscillations, most clearly seen at 1553 nm around the 60-h
mark. From [54].

Several experiments on PMD dynamics in installed
European links support our hinge model. For example,
Weiershausen et al. report drastic differences in polarization
dynamics originating from buried links and DCMs [53]. More
recently, Leppla et al. report similar PMD dynamics observed
on links in three routes in Germany and France [54]. The DGD
data from one of the links are plotted in Fig. 12. The authors
of [54] attribute the periodicity seen on the color panel to
temperature-driven reversible hinges.

A. Long-Term Lab Study of Polarization Rotation by a DCM

A more detailed long-term laboratory study of the polar-
ization rotation caused by a DCM subjected to small daily
temperature fluctuations of the type expected in large telecom-
munication offices was conducted by Brodsky et al. [55].
For nine months, frequency-dependent polarization transfer
matrices and the temperature of a DCM were simultaneously
measured. The DCM was placed in a room with conventional
temperature-regulation: benign conditions similar to that of a
field office. Fig. 13 depicts output SOP traces on the Poincare
sphere for three optical frequencies with a fixed input polar-
ization. The observed polarization rotation had different char-
acteristics on short and long timescales. On small timescales
of about five to ten temperature peaks (usually 0.6 ◦C–1 ◦C
amplitude peaks were occurring each 12–24 h), the DCM had a
practically repeatable and reversible response, rotating the input
polarization back and forth by any number between 0◦ and
180◦ on the Poincare sphere depending on optical frequency
and time. However, on longer time scales, an additional random
component is added to the rotation, which does not seem to be
related to the observed temperature changes. At random times,
either the angle or the direction of rotation or both could drift

Fig. 13. Polarization evolution by a DCM. Output SOP traces as a function of
time for fixed input SOP are presented on the Poincare sphere for three typical
frequencies. Each sphere shows nine months of continuous data.

significantly in a relatively abrupt fashion, starting a signifi-
cantly different output SOP trace on the sphere. Autocorrelation
analysis determined the average time between these shifts to be
about 30 days.

VI. STATISTICAL IMPLICATION OF THE HINGE MODEL

DGD temporal statistics is important because engineering
rules governing a system’s test and deployment procedure rely
heavily on it. It is often believed that the scrambling of DGD
spectra over time leads to frequency-independent statistics for
any given channel. In other words, the DGD at any given
frequency is believed to sample the same Maxwellian distri-
bution with the same mean value τmean. The validity of this
assumption rests on a model in which dozens to hundreds of
birefringent fiber sections undergo random reorientations over
timescales of interests.

However, if DGD dynamics depends only on a small number
of hinges, as we expect for field-installed fibers, we would
expect the DGD statistics for those fibers to be different.
Indeed, one may view the PMD vector at each frequency to
be made of several fixed-length vectors (representing “dead”
buried sections) connected by active hinges. These fixed vectors
are larger at some frequencies and smaller at others. Therefore,
for each frequency, the resulting DGD is the magnitude of
the vector sum of the randomly oriented vectors, each of
fixed length. Then, over the timescales for which the buried
fiber can be considered “dead” [21], [23], [24], [41], gyrating
hinges produce a distribution of DGD values that, for each
individual frequency, is similar to that of a typical fixed-section
PMD emulator. However, in contrast to typical emulators, the
frequency-dependent lengths of the individual sections result in
frequency-dependent mean DGD values 〈τch〉time.

Brodsky et al. presented a statistical analysis of the data
described in Section IV [49], [50]. Interestingly, as DGD spec-
tra change over time, some spectral variations remain: some
channels were observed, on the average, to experience a mean
DGD almost twice as high as others. That is, as the DGD for a
given channel varies in time, it constitutes a distinct statistical
distribution dependent on the magnitude of the PMD for the
stable sections at that channel’s optical frequency, so that the
mean value 〈τch〉time is channel specific and can differ among
channels by a factor of about 2. Also, the standard deviation of
the distribution sampled by each channel σch was found to be
frequency dependent as well. It seems to be higher for larger
values of 〈τch〉time.
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Fig. 14. Experimental DGD probability density of observations (symbols).
Thin lines are guides to the eye. From [50].

Fig. 14 shows the experimental probability density func-
tions of τch for two example channels 186.65 THz (◦) and
188.15 THz (�). The data shown were collected in over 60 h
of measurements, 10 h of which is shown on Fig. 11. The fiber
passed through two huts (twice through one of them) experienc-
ing strong temperature oscillations, so we surmise that during
these measurements, we had a system with effectively only five
active hinges [48]. Rapid reorientation of the hinges insured that
we assembled a few hundred statistically independent samples
during the measurement interval. The plot clearly demonstrates
that the DGD at each frequency exhibits a distinct statistical
distribution. The time-averaged DGD of these two channels
is 〈τch〉time = 1.8 and 1.0 ps for 186.65 and 188.15 THz,
respectively. Other channels (our experimental frequency range
was 186.5–188.5 THz) had mean values between these two
cases. The measured DGD spectra can be divided into several
correlated spectral bands of ≈0.3 THz width. DGD values
taken at frequencies further apart than this display distributions
that may have noticeably different mean values 〈τch〉time. A
similar behavior was observed on all data sets taken on different
system configurations and different fiber strands as long as there
were temperature variations driving the hinges [49], [50]. In
addition, other field and numerical experiments [43], [44], [54]
demonstrated related trends, as shown, for example, in
Figs. 7 and 8.

Experimental determination of the exact shape of each chan-
nel’s DGD time distributions is a nearly insurmountable task
due to the limited number of DGD samples. However, each
of such distributions could be approximated by a known dis-
tribution of a PMD emulator with sections of fixed magnitude.
This approximation is valid under the following two conditions,
namely 1) the buried fiber sections are assumed to remain
fixed, and 2) the hinges are assumed to sample all of their
accessible states. Fig. 15 plots these probability distribution
functions for several emulators. Here, six numbers represent-
ing six fixed-section lengths were randomly drawn from a
Maxwellian distribution with rms value τrms = 1/

√
6. Then, an

analytical expression derived by Antonelli and Mecozzi [56]
was used to compute the distributions. Different colors cor-
respond to different section sets, each containing six ran-

Fig. 15. Analytical probability distribution functions for a fixed-length-
section emulator [56]. Different colors represent different choice of the fixed-
length sections (see text). Note the variations between different distributions
and the truncation of pdf at a finite τ : Only one distribution extends beyond 3 ps.

domly drawn numbers. Note the two important features,
namely 1) the variations between different distributions and
2) the truncation of pdf at a finite τ .

VII. PMD OUTAGES REVISITED

The existence of the channel-specific temporal DGD distri-
bution has significant implications for the statistics of system
outages. Recently, Boroditsky et al. showed via simulations
that the outage statistics of a system with a finite fixed number
of polarization rotation points (i.e., hinges) differs from what
one would expect from a truly Maxwellian system, namely
every channel has its own outage probability [57]. In a system
with hinges, some channels will have an outage probability
lower than the one expected from a Maxwellian distribution
and will be more reliable, while other channels will have higher
outage probabilities and will be prone to frequent outages.
Furthermore, it turns out that a significant fraction of channels
are guaranteed to be outage free for long periods of time, as
long as the sections of the route between hinges do not change.
This last property follows directly from the pdf’s truncation at
a finite τ : The PMD vector cannot be longer than the sum of the
(relatively fixed) buried section PMDs.

In addition to DGD, a more realistic outage calculation
should, of course, encompass variable launch conditions, re-
ceiver properties [58], [59] and, possibly, the effects of higher-
order PMD [60]. The preliminary outage calculation for the
hinge model [49], [57], [61], for simplicity, defined the out-
age probability of a given channel as the probability for its
instantaneous DGD to exceed a certain maximum value. Conse-
quently, the outage probability is reduced to the area under the
tail of the DGD’s pdf. Interestingly, a more rigorous analysis
proposed by Kogelnik et al. (to be discussed below) exhibits
similar qualitative behavior [62]. Both calculations were greatly
simplified due to the prior derivation of an analytical expres-
sion for the probability distributions functions of an arbitrary
multisection PMD emulator [56]. Indeed, in the framework of
the hinge model with buried sections fixed in time, the time-
domain DGD distribution for every channel is given by the pdf
of a corresponding channel-specific emulator. To quantify the
analysis here, we will refer to two complementary measures,
namely 1) the compliant capacity fraction (CCF) and 2) the



BRODSKY et al.: POLARIZATION MODE DISPERSION OF INSTALLED FIBERS 4595

Fig. 16. (a) Distribution of the outage probability among channels in a system with the same values of the maximum DGD but different number of hinges.
(b) Fraction of channels with outage probability less than abscissa in a system with N = 10 hinges for various values τmax of the maximum DGD tolerated by a
receiver. From [57].

noncompliant capacity ratio (NCR) [62], to describe a fraction
of channels with outage probability smaller or larger, respec-
tively, than the outage specification.

A. Compliant Capacity Fraction

The cumulative probability for outages Pout of a system
with maximum tolerable DGD τmax = 2.5τrms for differing
numbers of hinges in a system (N = 5, 10, 15) [57] is plotted
in Fig. 16(a). In other words, it shows the fraction of channels
whose outage probabilities are smaller than the value of the
desired outage probability on the horizontal axis Pout. This
plotted quantity is the CCF. As before, an outage probability,
Pout, is the probability for the instantaneous DGD value τ to ex-
ceed a certain threshold τmax. For example, if a system has ten
hinges, and the desired outage probability is 10−6, according to
the hinge model, we expect that 40% of the channels will have
an outage probability better than 10−6, while the remaining
60% will not satisfy the outage specification. Given that the
range of outage probabilities of interest covers several orders
of magnitude, Pout is plotted on a logarithmic scale. Clearly,
as the number of degrees of freedom increases, the system
starts to behave more like a Maxwellian system, and plots
in Fig. 16(a) tend toward the step-like shape corresponding
to the situation when all channels have identical Maxwellian
statistics in time and the same outage probability: 2 · 10−4 in
this case. Approaching it from another direction, we can think
of the reduction of degrees of freedom in a system as “washing
out” the step-function describing the outage probability. As a
result, some channels have an outage probability smaller than,
but some channels have an outage probability larger than, that
expected from a Maxwellian distribution.

The concept of CCF is further illustrated in Fig. 16(b), which
plots CCF again as a function of specified outage probability
Pout but now for a system with ten hinges for three different
PMD tolerance levels τmax. For a finite number of hinges,
a significant number of channels have a very small outage
probability due to the truncation effect from the finite number
of sections. However, there is a small fraction of channels
(with relatively large individual sections) that exceeds the con-

Fig. 17. NCR as a function of Pspec for links with five hinges, 1-dB margin,
and 40-Gb/s NRZ modulation. The link’s mean DGD is indicated on each
curve. The dotted lines indicate the traditional outage probabilities obtained
from Maxwellian distribution. The dashed horizontal lines are the asymptotes
of zero outage probability for each mean DGD. From [62].

ventional threshold of τmax = 3τrms frequently and, thus, has
an outage probability significantly larger than 4.2 × 10−5. In
fact, 90% of the channels will have an outage probability less
than 4.2 × 10−5 for a realistic case of 15 or fewer hinges and
τmax = 3τrms. Interestingly, at the limit of Pout = 0, the curves
tend to a constant nonzero value, corresponding to the fraction
of completely outage-free channels. For these channels, the
arithmetical sum of “frozen” PMD vectors does not exceed the
threshold value τmax.

B. Noncompliant Capacity Ratio

The outage probabilities for the hinge model were analyzed
more rigorously in [62] using the outage map approach and thus
taking the receiver design into account. Another metric called
NCR was introduced in [62]. For historical reasons, the outage
scale is chosen in the direction opposite to that in Figs. 16
and 17. Furthermore, since the NCR is complementary to the
CCF, plots in Figs. 16 and 17 can be most easily compared by
rotating either one by 180◦.

The simulation results for the NRZ modulation format and
a selected number of mean DGDs are shown in Fig. 17 as a
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function of the specified outage for a typical 40 Gb/s system
with five hinges and receiver maximum PMD tolerance of
τmax ∼ 6.9 ps. Plots for the RZ format look similar except
that the corresponding mean DGDs are about twice as large.
Compare the results shown in Fig. 17 for the hinge model
with the traditional results corresponding to an infinite number
of hinges. For the latter, there is a distinct outage probability,
marked by a vertical dotted line, for each specified mean DGD,
marked by an open circle. In the traditional case, all spectral
bands have the same outage characteristics. Therefore, as dis-
cussed above, for a given mean DGD, e.g., 2.5 ps, all bands will
either satisfy a specified outage or violate it. There will be an
abrupt transition from NCR = 0 to NCR = 1. This transition
occurs at the outage value marked by the dotted line, i.e., all
bands are guaranteed an outage probability of less than about
5 × 10−5 as long as ∆τ = 2.5 ps or less. As the number of
hinges increases from the five-hinge case discussed below, the
NCR curves get steeper and approach the vertical dotted lines.

C. New Possibilities to Cope With PMD Outages

This new way of looking at outages highlights the utmost
importance of in-service PMD monitoring techniques [63]–[65]
and possibly opens a new paradigm in addressing the PMD
impairment altogether. Indeed, if it was possible to know which
channels are outage free, these channels could be used for high-
availability services. Alternatively, increasing the tolerance to-
ward PMD either by improving the system or by choosing a
slightly better fiber should increase the fraction of outage-free
channels. For example, as follows from Fig. 16, this fraction
can be tuned from 75% to 96% by changing the tolerance from
τmax = 2.5τrms to τmax = 3τrms for a system with ten hinges.
On the other hand, the fiber constraints could be relaxed. If a
route has 15 or fewer hinges, then by using tunable transponders
(currently an emerging technology), the PMD outage problem
could be solved by simply underutilizing the overall capacity
by as little as 10% and using the 90% of “good” channels in
the system. Finally, since service level agreements are typically
written in terms of the outage per month or per year, it might
make sense to artificially add extra degrees of freedom (say,
several slow polarization scramblers mid-span) to force more
predictable PMD dynamics closer to those described by a
Maxwellian distribution over a desired timescale.

VIII. CONCLUSION AND GOALS FOR FUTURE STUDY

In this paper, we reviewed a wealth of experimental data that
point to the long-term stability of DGD in buried fiber-optic
cables and that identify localized sections of the links, either
exposed sections of fibers or in-line components, as the source
of the most DGD important time dynamics up to month-long
time scales. Important features as well as the most significant
implication of the results of reviewed experiments were sum-
marized in a simple empirical hinge model. This model serves
as a physical description and a calculational basis for new
analyses of outage probabilities. The experimental evidence
and analytic results have changed the fundamental view of sys-
tem vulnerability to PMD: Instead of all channels being equally

vulnerable at all times to PMD-induced outages, systems with
hinges are expected to possess a significant number of channels
that would be outage free for long time periods, and a smaller
number of channels that should experience frequent outages.
Further studies of the dynamics of completely buried sections
and hinges, with the aim of more accurately determining the
characteristic timescales, are needed to assess the limitations of
the early models. Such studies, augmented with more sophis-
ticated outage models and strategies to use them, should be an
important part of our efforts to remove PMD as an impediment
to the ever-increasing transmission throughputs.

APPENDIX

UNCERTAINTY OF CALCULATED RMS DGD OF

A MULTISPAN ROUTE

Since the rms DGD value τrms serves as the principal metric
describing a fiber system’s PMD properties, telecom carriers
routinely characterize their installed fiber plants by measur-
ing the rms DGD value of each individual fiber span (span
length is about 80 km) in a system, that is, τ rms

i for the ith
span in the overall link. As discussed in Section III, what is
experimentally attainable is not the true rms DGD value of an
installed low-PMD fiber span τ rms

i but rather its statistically
uncertain estimate τi [31], [32]. Interestingly, if spectrally
resolved measurements are used for rms DGD estimation, the
estimate’s variance can be reduced by 50% using statistical
properties of the second-order PMD [66]. Normally, when
many spans are concatenated to form a long route, the multispan
DGD value τΣ is calculated based on experimentally measured
individual span values τi according to the formula τ2

Σ = Στ2
i .

Unavoidable measurement ambiguity in each τi causes, in turn,
the uncertainty in τΣ. A question vital to any carrier is by how
much the computed value τΣ is likely to differ from the true rms
value τ rms

Σ . Below, we present simple arguments allowing us to
estimate this uncertainty.

Mathematically, this problem can be reformulated as find-
ing a standard deviation σΣ of an algebraic function τΣ =
τΣ(τ1, τ2, . . . , τN ) of N random variables τi, each of which
has a known standard deviation σi (recall that for the fixed
measurement bandwidth σi ≈ τ

1/2
i [32]). The variables τi are

statistically independent as they represent different fibers. Thus,
the following formula can be applied [67]:

σ2
Σ =

∑ (
∂τΣ

∂τi

)2

σ2
i =

∑
τ2
i σ2

i∑
τ2
i

. (7)

It is illustrative to examine two important asymptotic cases.
First, let us consider identical spans. In other words, the mean
values and standard deviations of measured variables τi are
identical among spans, i.e., for every i, 〈τi〉 = τ0 and σi = σ0.
In this case, the expression in (7) simplifies to

σ2
Σ =

∑
τ2
0 σ2

0∑
τ2
0

= σ2
0 . (8)

Therefore, σΣ = σ0, i.e., the absolute error with which the
calculated τΣ approximates the true value τΣ does not accumu-
late with the number of spans N . But since the value τ rms

Σ itself
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grows as
√

N(τΣ =
√

Nτ0), the relative error becomes smaller
for larger N .

Another important situation is when one span’s DGD domi-
nates the rest; therefore, for every i �= k 〈τi〉 � 〈τk〉, and, cor-
respondingly, 〈σi〉 � 〈σk〉. It follows from (7) that σΣ = σk.
Indeed

σ2
Σ =

∑
τ2
i σ2

i∑
τ2
i

≈ τ2
kσ2

k

τ2
k

= σ2
k. (9)

The resulting absolute aggregate error σΣ is equal to that of
the worst span σk and, once again, is independent of the number
of spans N .

In the two cases presented above, we illustrated that the
absolute uncertainty of the computed value τΣ is either ap-
proximately equal to each span’s uncertainty or to that of the
principal contributor of the DGD. More realistic situations
are in between the two cases. Generalizing, we conclude that
despite huge relative errors inherent to each τi, the relative error
for τΣ decreases roughly as

√
N with the number of spans

N . The conclusion is somewhat counterintuitive: to obtain a
multispan rms DGD value τ rms

Σ with better precision, a route
should be divided into a larger number of shorter spans, and
each of them measured individually. Although each span’s
measurements will be less precise this way, the final result for
τ2
Σ = Στ2

i improves due to the larger number of measurements.
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