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Introduction

The Subject

This thesis is about Schubert Calculus on Grassmann Algebras (SCGA). Its main

goal consists in proposing a (new) axiomatic approach able to describe, within a

unified framework, different kind of intersection theories living on grassmannians,

such as the classical, the (small) quantum and the equivariant one. The latter

offers, according to the author’s opinion, the best application of the “SCGA phi-

losophy” among those discussed in this thesis and listed in the second part of the

present introduction.

Grassmann Varieties. The complex Grassmann scheme (or grassmannian va-

riety, or grassmannian tout court) Gk(Pn) (see Chapter 1) is a complete smooth

projective scheme parametrizing k-dimensional linear subspaces of Pn: it can be

also thought as the parameter space G(1 + k,C1+n) of all (1 + k)-dimensional

vector subspaces of C1+n. The most popular example is, perhaps, that of the

grassmannian G1(P3) of all the lines of the complex projective 3-space, which can

be realized as a smooth quadric hypersurface in the 5-dimensional projective space

(the Klein’s quadric).

Why Grassmann Algebras? To each module M on a commutative ring A, one

can attach its tensor algebra (T (M),⊗). The Grassmann algebra
∧

M is a suitable

quotient of T (M). It is more commonly known as exterior algebra but, in spite of

daily habits, we prefer the former terminology to emphasize the fact that there is

1



a Schubert Calculus (the subject of this thesis) living on two “Grassmann things”:

a variety and an algebra. The whole point, which does not seem to have attracted

any previous special attention in the literature, is that Grassmann algebras carry

natural structures able to cope with the intersection theory of grassmannians,

whose knowledge (amounting to know their Schubert calculus), allows, for example,

to solve a relevant class of enumerative problems in projective spaces like:

How many lines intersect 4 others in general position in P3?

which is perhaps the most famous among them.

Intersection theory on Grassmannians. The intersection theory of a Grass-

mann variety tells us, roughly speaking, how general subvarieties of Gk(Pn) do

intersect. Let us recall a basic and well known situation, that of the grassmannian

G(1,C3), a fancy way to refer to the projective plane P2, whose intersection the-

ory is governed by Bézout’s theorem: two general plane curves of degree d and d′

intersect

A cubic and a conic curve in the plane intersect at 6 points by Bézout’s theorem

at dd′ points (counting multiplicities if the curves do not intersect transversally).

The way one phrases this fact is that the Chow intersection ring A∗(P2) (which

can be identified with the integral cohomology H∗(P2,Z)) is isomorphic to the ring

Z[`]/(`3), where ` is the class of a line. The relation `3 = 0, holding in such a

ring, does not mean that three lines in the plane cannot intersect along a common

subvariety, but that the general ones do not!

The intersection (or cohomology) ring of a general grassmannian Gk(Pn) is

slightly more complicated: if 1 < k < n − k, one needs at least 1 + k elements
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to generate the ring as a Z-algebra and the relations can be expressed in terms of

symmetric functions in the Chern roots of either the universal quotient bundle or

the tautological bundle living on it.

SCGA. A SCGA (Section 2.2) is a pair (
∧

M, Dt) where M is a module over

an integral Z-algebra A and Dt :=
∑

i≥0 Dit
i :

∧
M −→ ∧

M [[t]] is an alge-

bra homomorphism whose coefficients Di ∈ EndA(
∧

M) are pairwise commuting,

Di(
∧1+k M) ⊆ ∧1+k M and D0 is an automorphism of

∧
M . The equation

Dt(α ∧ β) = Dtα ∧Dtβ, ∀α, β ∈
∧

M, (∗)

holding by definition, is said to be the fundamental equation of Schubert calculus

Dt on
∧

M . Notice that equality (∗) implies that the hth coefficient Dh of Dt

enjoys the hth-Leibniz’s rule with respect to the ∧-product:

Dh(α ∧ β) =
h∑

i=0

Diα ∧Dh−iβ, ∀α, β ∈
∧

M.

In particular D0 is an algebra homomorphism (D0(α ∧ β) = D0α ∧D0β) and D1

is a usual derivation (D1(α∧β) = D1α∧β +α∧D1β). The properties enjoyed by

the endomorphisms Dh are also properties of any SCGA. For instance, Newton’s

binomial formula for the pth iterated of D1:

Dp
1(α ∧ β) =

n∑

h=0

(
p

h

)
Dh

1α ∧Dp−h
1 β,

is itself a formula of (any) SCGA.

SCGP. Recall that
∧

M is a graded algebra, being the direct sum of all the

exterior powers of
∧1+k M of M :

∧
M = A⊕

⊕

k≥0

k+1∧
M, (

0∧
M := A,

1∧
M := M).

The pair (
∧1+k M,D

(k)
t ), where D

(k)
t := Dt|V1+k M

, will be said to be the Schubert

Calculus on the kth Grassmann Power (Definition 2.4.2) associated to the SCGA

3



(
∧

M,Dt) or, briefly, a k-SCGP. The pair (M,D
(0)
t ) will be said to be the root of

(
∧

M,Dt) and it is the (1 + k)th-root of (
∧1+k M,D

(k)
t ), for each k ≥ 0. To keep

track of the root of an SCGA we will also use the notation
∧

(M,D
(0)
t ). Given

any pair (M, Dt : M −→ M [[t]]), such that the coefficients of Dt are pairwise

commuting, it is easy to see that there is a unique SCGA having (M, D1) as a

root. An SCGA is said to be simple if D
(0)
i = (D

(0)
1 )i; it is said to be regular if

there exists m0 ∈ M such that the set {Dim0 | i ≥ 0} generates M as A-module.

A simple SCGA will be also written
∧

(M,D
(0)
1 ) or, since D

(0)
1 m = D1m for all

m ∈ M , also simply as
∧

(M, D1), abusing notation.

In [26] (see also [27] for more examples) a suitable SCGA on a free Z-module of

rank 1+n is constructed in such a way that the corresponding k-SCGP describes,

in a sense that will be explained in this thesis, Schubert Calculus on the Grassmann

Variety Gk(Pn) (k-SCGV). Then, while a k-SCGA is taking account of a fixed k-

SCGV, the SCGA deals with the intersection theory of Gk(Pn), for all 0 ≤ k ≤ n

at once! In particular, one learns that the intersection theory of Gk(Pn) is induced

by that of Pn by suitably extending the Chow ring A∗(Pn) to a ring of operators

on the Chow group A∗(Gk(Pn)) of Gk(Pn) – see the example below.

An example. Let M be a free Z-module spanned by ε := (ε0, ε1, ε2, ε3). Let

D1 : M −→ M be the endomorphism defined by:

D1ε
i = (1− δi3)ε

i+1−δi3 ,

where δi3 is the Kronecker’s delta. The matrix of D1 with respect to the basis ε

is a nilpotent Jordan block of maximal rank. Extend D1 to an endomorphism of
∧2 M by setting:

D1(ε
i ∧ εj) = D1ε

i ∧ εj + εi ∧D1ε
j.

Then one easily gets:

D4
1(ε

0 ∧ ε1) = 2 · ε2 ∧ ε3,

and Theorem 2.9 of [26] implies that D1 may be seen as the hyperplane class of

the Plücker embedding of G1(P3), represented by the variety of all the lines of P3

4



intersecting another fixed line while the coefficient 2 multiplying ε2∧ ε3 (“the class

of a point” in A∗(G1(P3)) is precisely the number of lines intersecting 4 others in

general position in P3.

Applications to (Equivariant) Cohomology of Grassmanni-

ans

The most important achievement of this thesis, according to the author’s opinion,

is the axiomatic characterization of a SCGA. It comes together with two compu-

tational tools, Leibniz’s rule and integration by parts, which are the very abstract

counterparts of the classical Pieri’s and Giambelli’s formulas holding in the in-

tersection ring of the complex grassmannian Gk(Pn). In other words, if some kind

of intersection theory on a Grassmann variety (or bundle) fits into any SCGA,

we automatically know what Giambelli’s and Pieri’s type formulas may expect to

compute, at least in principle, the structural constants of the involved intersection

algebra. When applying this general philosophy to equivariant cohomology, we so

get answers to questions raised in [43] about the construction of equivariant Pieri’s

formulas.

Regular Simple SCGAs. Our main applications come from a closer study

of regular simple SCGA defined over a free module (of at most countable rank)

over an integral Z-algebra A of characteristic zero. In other words we shall deal

with k-SCGP of the form
∧1+k(M,D1). For each k ≥ 0,

∧1+k M is obviously a

module over the ring A[T] := A[T1, T2, . . .] of the polynomials in infinitely many

indeterminates. In fact any such polynomial can be evaluated at D := (D1, D2, . . .)

yielding an operator on
∧1+k M . A key point of the theory is that if

∧
(M, D1) is

regular, then for each k ≥ 0 there exists an element generating
∧1+k M over A[T].

To any regular k-SCGA over a free module we then associate a ring

A∗(
1+k∧

(M, D1))

5



which isomorphic, as an A-module, to
∧1+k M itself, and will be said to be the

Poincaré dual of the k-SCGP
∧1+k(M, D1).

Intersection Theory of Grassmann Bundles. The most important applica-

tion of the SCGA idea, is the generalization of the main result of [26] to Schubert

Calculus on Grassmann bundles (as in [23]). Let p : E −→ X be a vector bun-

dle of rank 1 + n over a reasonably well behaved base variety X. Then we show

(Theorem 3.4.2) that the intersection theory of Gk(P(E)), where Gk(P(E)) is the

Grassmann bundle associated to E, is described by
∧1+k(M, D1), where M can be

identified with the Chow group A∗(P(E)) and D1 with the first Chern class of the

tautological subbundle OP(E)(−1) 1. “Describes” here means that A∗(Gk(P(E)),

thought of as a module over A∗(Gk(P(E)), is isomorphic to
∧1+k M , thought of

as a module over A∗(
∧1+k(M, D1)). When X is a point we get the result proven

in [26], and although such a generalization may taste as the nth new way to see old

results2, it says that the intersection theory of Gk(P(E)) (k > 0) can be achieved

by that of the projective bundle P(E), by taking exterior powers of A∗(P(E)),

in a suitable sense. This remark has a quite relevant consequence, implying the

strongest and most important application of the SCGA we have found up to now,

and described below.

Equivariant Cohomology of Grassmannians Acted on by a Torus. Sup-

pose that T is a (1 + p)-dimensional algebraic (i.e. T = (C∗)1+p) or compact (i.e.

T = (S1)1+p) torus acting on Pn via some diagonal action with only isolated fixed

points. For such a type of action the equivariant cohomology of the projective space

is well understood and we wonder how that of the grassmannian Gk(Pn), under

the induced action, looks like. Using Theorem (3.4.2) we can prove Theorem 4.1.10:

1The same general result has been achieved by Laksov and Thorup in [46], within the theory

of splitting algebras. Their proof of the determinantal formula in a polynomial ring was crucial

for understanding our situation.
2The structure of the Chow ring A∗(Gk(P(E))) was already well known!
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if A∗
T (Pn) := A∗(Pn×T ET )3 is described by some 0-SCGP (M,D1), then A∗

T (Gk(Pn))

is described by
∧1+k(M, D1). We apply this theorem to study equivariant coho-

mology of grassmannians to the situation studied by Knutson and Tao in [39],

who gave a combinatorial description based on results by Goresky-Kottwitz and

MacPherson ([30]). Knutson-Tao’s approach is based on the theory of puzzles.

Ours, instead, is closer to classical Schubert calculus, based on Pieri’s and Gi-

ambelli’s formulas, which, by construction, are already at our disposal. In princi-

ple Pieri’s type formulas can be deduced by the combinatorial description of the

equivariant cohomology of a full flag variety offered in [65]. However, with the

exceptions of a few, though relevant, cases (see [39], Proposition 2), this may be

quite tricky in general.

Our very explicit description, by constrast, does not invoque neither Robinson’s

framework nor puzzles. The strategy is very simple: first we find a 0-SCGP

which is equivalent to the equivariant cohomology of Pn. This is done directly

by hand via the explicit construction of an isomorphism. Then we construct the

k-SCGP
∧1+k(M, D1) and applies Theorem 4.1.10 to guarantee that, indeed, we

have achieved equivariant cohomology.

There are several problems studied by several authors in the equivariant coho-

mology of grassmannians, such as the determination of a corresponding Littlewood-

Richardson rule for the structure constants of the cohomology ring, as well as their

non negativity. We have not (yet?) a definitive answer to those type of questions.

By the way we are able to construct some D1-canonical bases for the equivariant

cohomology: in such bases, Giambelli’s formula coincides with the classical Gi-

ambelli’s determinantal one. The same holds for Pieri’s formula, provided that the

codimension of the two multiplied cycles does not exceed the dimension of Gk(Pn).

In this range, and for such a basis, the structure constants are the same as those

of the classical cohomology of grassmannians: hence Littlewood-Richardson rule

holds in this case. Since canonical bases always exist for any simple regular SCGA,

we may say, in a sense, that all the
∧1+k(M, D1) look quite the same and all look

3Here ET −→ BT is the universal T -principal bundle, see Chapter 4.
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like classical Schubert calculus: this is true in particular for quantum Schubert

calculus according to [5] and, as said, for the equivariant one. This important

observation, however, as already remarked, does not prevent us to get general for-

mulas in arbitrary bases. The best example is without doubt our Theorem 4.4.1,

where Pieri’s formula for T -equivariant cohomology of grassmannians is com-

puted also for the cases not deduced in the paper [39]4, so realizing the hopes of

the paper [43], in spite our Giambelli’s formula being of a rather different nature.

Other Applications

The other applications of SCGA shown in the thesis have been divided into two

parts. The former is more historical and pedagogical in its character and regards

enumerative applications, classical and new. The second is a miscellanea of results

regarding the Grassmannian of lines, obtained especially because of the simpler

combinatorics involved in a 1-SCGP (only second exterior powers occur!)

Enumerative Applications. Recall that the intersection ring of the grassman-

nian Gk(Pn) is generated by some Schubert cycles classically denoted as

(σ1, . . . , σk+1). The degree dk,n of the product σ
(1+k)(n−k)
1 is precisely the Plücker

degree of Gk(Pn). Such a number had already been computed by Schubert in [70],

using a combinatorial remark (see [23], p. 274) whose explanation is natural in

our framework (Sect. 5.1). We can find a new easier proof computing the degree

of any Schubert variety which has the advantage to generalize to other situations.

For instance, we will produce a combinatorial formula for σ
2(d−3)
2 , computing the

number of projectively non equivalent rational curves of degree d in P3 having

2d − 6 flexes at specified positions5 (see Section 5.2). Although the formula does

not look very nice (many summations over many indices) one can easily plug it in

R, a program for statistical computing, getting a table of the values up to d = 10.

4Even if in principle are deducible by Robinson’s description; see [65].
5This problem has been suggested to us by Prof. K. Ranestad
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Playing with Grassmannian of Lines. The intersection theory of a grass-

mannian of lines is described by a 1-SCGP (as in [26]), where computations are

very easy. Within this context

1. in Section 6.1 we (re)prove using SCGA framework that in the Grassmannian

G1(Pn), 0 or 1 are the only possible Littlewood-Richardson coefficients.

2. in Section 6.2 we deduce a formula computing the degree of all the intersection

products κa,b := σa
1σ

b
2 in A∗(G1(Pn+1)) with a + 2b = 2n. Plugging this

formula in Matematica c© or R, one easily gets a table for κa,b, varying a and

b;

3. in Section 6.4 some relationships with combinatorics are explored. In fact it

is known (see e.g. [53]), that the Plücker degree of G1(Pn+1) coincide with

the nth Catalan number Cn (the number of different ways a convex polygon

with n + 2 sides can be decomposed into triangles, by drawing straight lines

connecting vertices (see the figure below for C3).

Catalan’s numbers occur also in several problems of lattice path enumeration.

Niederhausen ([54], see also [76]) computed the number of different paths

from the origin to the points of a city map, bounded by some traffic blocks

and by a beach (whence the title of the paper “Catalan Traffic at the Beach”).

Then he show that such numbers, for points on the beach line, are precisely

the Catalans. We show that this fact is more than accidental: in a region of

the city map bounded by the y-axis and the beach (Fig. below), the solutions

to Niederhausen’s problem are precisely the numbers κ2m,n−m of lines of P1+n

intersecting a general configuration (in P1+n) of 2m subspaces of codimension

2 and n−m subspaces of codimension 3.

9



1

2 3 4 5 6
−1−2−3

A

B

E

C

H

Block point

1
1

2

14

42

0

1

3

9

28

90

1

1

3

6

121212

1

33

3 9

2

64

21 30 43 62

13 19

0

0

132

5

15

11

Start point

The easy proof relies on the differentiation formalism peculiar of a SCGA.

4. thinking of an exterior power of a module inside its exterior algebra, it is

natural to expect that the enumerative geometry of grassmannians Gk(Pn)

can be studied in terms of that of grassmannian Gk′(Pn′) with k′ < k and

n′ ≤ n. For instance we easily get formulas relating the degree of grass-

mannians G2(Pn) with degrees of grassmannians G1(Pn) (See Section 5.3).

It is reasonable to believe that there may exist some generating function

encoding all possible degrees of all possible grassmannians. To support this

belief, a generating function encoding the degrees of G1(Pn) is computed. It

is expressed in terms of modified Bessel functions and as a byproduct we also

got, a new generating function for the Catalan’s numbers (See Section 6.3);

About the References
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natorics, topology, analysis and representation theory. Since the pioneering papers
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plete) flag varieties (see the beautiful lecture notes [25]) and to other types of
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Chapter 1

Grassmann Varieties

In this chapter we review basics on grassmannian varieties and their intersection

theory, rephrasing some known facts borrowed from the standard references on

the subject like [23], [31], [50], to whom the reader who wants to get into more

details is really referred. The reader who want to read the subject in a historical

perspective should read [42]. An alternative exposition can be found in [27].

1.0.1 Notation. In this and subsequent chapters, we shall denote by Ik the

subset of N1+k of all increasing multi-indices of size 1 + k:

Ik := {(i0, i1, . . . , ik) ∈ N1+k | 0 ≤ i0 < i1 < . . . < ik}. (1.1)

One also denotes by Ik
n the subset of Ik such that in ≤ n:

Ik
n := {(i0, i1, . . . , ik) ∈ N1+k | 0 ≤ i0 < i1 < . . . < ik ≤ n} ⊂ Ik (1.2)

1.1 Generalities

1.1.1 Let V be a finite dimensional complex vector space. For each integer l ≥ 0,

the grassmannian variety Gl(V ) parametrizes l-dimensional vector subspaces of

V . If l = 0, then Gl(V ) is just a point (the null vectorspace [0]) while it is empty

if l-exceeds the dimension of V . Let

U := {Λ ∈ HomC(Cl, V ) | ∧l Λ 6= 0}
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be the Zariski open subset in HomC(Cl, V ) parametrizing linear map Λ : Cl −→ V

of maximal rank. Any Λ ∈ U determines [Λ] := Im(Λ) ⊆ Gl(V ). Two linear maps

Λ, Λ′ ∈ U determine the same subspace if and only if there exists φ ∈ Glk(C) such

that Λ′ = Λ ◦ φ. Hence, at least as a set, the grassmannian Gll(V ) can be seen

as the orbit space U/Gll(C). As a matter of fact, Gll(C) acts on U algebraically

and the quotient turns out to be a smooth projective variety or, in the analytic

category, a smooth compact connected holomorphic manifold. The smoothness

comes from the fact that Gl(V ) acts transitively on Gl(V ). Any Λ ∈ U shall be

identified with the l-tuple (vi) := (Λ(ei)), where (ei) is the canonical basis of Cl.

The corresponding l-plane shall be denoted also as [vi]1≤i≤l – see below.

1.1.2 Definition. The projective space associated to V is

P(V ) := G1(V ).

In other words the space P(V ) parametrizes the 1-dimensional subspaces of V .

In this thesis we are more interested in working with the projective grassmannian.

Let k ≥ 0 be an integer.

1.1.3 Definition. The grassmannian variety of the projective k-planes of P(V )

is:

Gk(P(V )) := G1+k(V ).

Evidently G0(P(V )) = P(V ), the set of points of P(V ) itself.

From now on, one will assume that dim(V ) = 1 + n and fix, once and for

all, a basis E := (e0, e1, . . . , en) . Let ε := (ε0, ε1, . . . , εn) be the dual basis (i.e.,

εj(ei) = δj
i ). A (projective) k-plane in P(V ) will be denoted as:

[Λ] = [v0,v1, . . . ,vk],

represented by the k + 1-frame1 Λ = (v0,v1, . . . ,vk). Let

{ei0 ∧ ei1 ∧ . . . ∧ eik | 0 ≤ i0 < i1 < . . . < ik ≤ n}
1A m-frame is an ordered set of m ≥ 1 linearly independent vectors.
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and

{εi0 ∧ εi1 ∧ . . . ∧ εik | 0 ≤ i0 < i1 < . . . < ik ≤ n}
be the bases of

∧k V and
∧k V ∨ ∼= (

∧k V )∨, induced by E and ε respectively.

Then Gk(P(V )) is covered by the following affine charts ([31]):

Ui0i1...ik := {[v0,v1, . . . ,vk] | εi0 ∧ εi1 ∧ . . . ∧ εik(v0∧v1∧ . . .∧vk) 6= 0 ≤ n}. (1.3)

Indeed there is a bijection between UI −→ C(n−k)(1+k) (I ∈ Ik
n). Since UI is a

dense open set, then dim Gk(P(V )) = (n− k)(1 + k).

1.1.4 An element of
∧1+k V is said to be decomposable if it is of the form

v0 ∧ v1 ∧ . . . ∧ vk, for some vi ∈ V . The grassmannian Gk(P(V )) can be then

identified with the subvariety in P(
∧1+k V ) of all non-zero decomposable elements.

The map
PlE : Gk(P(V )) −→ P(

∧1+k V )

[v0,v1, . . . ,vk] 7−→ v0 ∧ v1 ∧ . . . ∧ vk

is said to be the Plücker map.

1.1.5 Proposition. The Plücker map PlE is an embedding.

Proof. It is not hard to see that the Plücker map is injective. The key point is to

show that its tangent map is injective, too.

Let Bε := {z ∈ C | |z| < ε}, be a disc in the complex plane, [Λ] ∈ Gk(P(V ))

and γ : Bε −→ Gk(P(V )) is a holomorphic curve such that γ(0) := [Λ]. Then, any

tangent vector to [Λ] ∈ Gk(P(V )) is of the form (dγ/dz)z=0. Therefore,

T[Λ]PlE

(
dγ

dz

∣∣∣∣
z=0

)
=

(
d

dz
(εi0 ∧ εi1 ∧ . . . ∧ εik(z))

∣∣∣∣
z=0

)

(i0,i1,...,ik)∈Ik
n

.

is the tangent of the Plücker map at [Λ]. To prove the injectivity is then sufficient

to show that
dγ

dz

∣∣∣∣
z=0

6= 0 ⇒ T[Λ]PlE

(
d

dz

∣∣∣∣
z=0

γ(z)

)
6= 0.

Since this is a local property, it suffices to check it on an affine open set of the

Grassmannian of the form UI (I ∈ Ik
n) containing [Λ] . Up to a linear transforma-

tion permuting the elements of the basis En, one may assume that I = (01 . . . k).

Any k-plane in UI can be represented by a maximal rank matrix of the form:
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


I(k+1)×(k+1)

x1,0 . . . x1,k
...

. . .
...

...

xn−k,0 . . . xn−k,k




,

where a tangent vector can be written in the form (dxij/dz)|z=0. For each pair

(i, j), such that 0 ≤ i ≤ k and k + 1 ≤ j ≤ n, one has

(ε0 ∧ ε1 ∧ . . . ∧ ε̂ j ∧ . . . ∧ εk ∧ εk+i)(Λ) = (−1)k−j+i−1xij,

so that the tangent map can be written as
(

(−1)k−j+i−1 dxij

dz

∣∣∣∣
z=0

,
d

dz
εi0 ∧ εi1 ∧ . . . ∧ εik(γ(z))

∣∣∣∣
z=0

)

(i0,i1,...,ik)∈B

,

where B is the set of all elements of Ik
n such that ](B ∩ {0, 1 . . . , k}) ≤ k − 2.

Then, the null tangent vector is the unique pre-image of null vector through the

tangent of PlE , i.e. this is injective and the Plücker map is an embedding.

1.1.6 Another way to phrase the Plücker map is as follows,

[v0,v1, . . . ,vk] 7→ (εi0 ∧ εi1 ∧ . . . ∧ εik(v0 ∧ v1 ∧ . . . ∧ vk)),

where one sets:

εi0 ∧ εi1 ∧ . . . ∧ εik(v0 ∧ v1 ∧ . . . ∧ vk) =

∣∣∣∣∣∣∣∣∣∣

εi0(v0) εi0(v1) . . . εi0(vk)

εi1(v0) εi1(v0) . . . εi1(vk)
...

...
. . .

...

εik(v0) εik(v1) . . . εik(vk)

∣∣∣∣∣∣∣∣∣∣

.

1.1.7 Example. Let V := C⊕ C3. The Plücker map sends

Λ :=




a0 b0

a1 b1

a2 b2

a3 b3



∈ C4×2 7→ Pl(Λ) := (εi ∧ εj(Λ))0≤i<j≤3 =
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= (ε0 ∧ ε1(Λ) : ε0 ∧ ε2(Λ) : ε0 ∧ ε3(Λ) : ε1 ∧ ε2(Λ) : ε1 ∧ ε3(Λ) : ε2 ∧ ε3(Λ)) =

=

(∣∣∣∣∣
a0 b0

a1 b1

∣∣∣∣∣ ,

∣∣∣∣∣
a0 b0

a2 b2

∣∣∣∣∣ ,

∣∣∣∣∣
a0 b0

a3 b3

∣∣∣∣∣ ,

∣∣∣∣∣
a1 b1

a2 b2

∣∣∣∣∣ ,

∣∣∣∣∣
a1 b1

a3 b3

∣∣∣∣∣ ,

∣∣∣∣∣
a2 b2

a3 b3

∣∣∣∣∣

)
=

= (a0b1 − a1b0 : a0b2 − a2b0 : a0b3 − a3b0 : a1b2 − a2b1 : a1b3 − a3b1 : a2b3 − a3b2) ∈ P5.

Since, as it is apparent, the image of Λ depends only on its class modulo Gl2(C4),

one has really got a map from G1(P3) to P5. Notice that

(ε0 ∧ ε1)(Λ)(ε2 ∧ ε3)(Λ)− (ε0 ∧ ε2)(Λ)(ε1 ∧ ε3)(Λ) + (ε0 ∧ ε3)(Λ)(ε1 ∧ ε2)(Λ) = 0,

for each [Λ] ∈ G1(P3), which is the equation of the Klein quadric in P5 ∼= P(
∧2(C4)).

The conclusion is that the elements {εi0 ∧ εi1 ∈ ∧2 V } can be indeed thought of

as Plücker coordinates of P(
∧2 V ). More in general, {εi0 ∧ εi1 ∧ . . . ∧ εik ∈ ∧1+k V }

can be indeed thought of as Plücker coordinates of P(
∧1+k V ).

1.2 Intersection Theory on Gk(P(V ))

This section aims to quickly review some intersection theory on Grassmann vari-

eties to allow the suitable comparisons with the k-SCGPs studied later on.

1.2.1 Let Ad(X) be the group of d-dimensional cycles classes modulo rational

equivalence of a smooth projective complex variety. Let:

Ak(X) := An−k(X),

be the Chow group of cycles of X of codimension k. There is an obvious Z-module

isomorphism between A∗(X) := ⊕Ai(X) and A∗(X) (the Chow group). If X is

smooth (as in our hypothesis), one can put on A∗(X) ∼= A∗(X) an intersection

product { · : Ai(X)× Aj(X) −→ Ai+j(X)

(α, β) 7−→ α · β ,

making it into a ring.

1.2.2 Geometrical interpretation of the intersection product.
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Let V1 and V2 be two subvarieties of X. Recall that each irreducible component

W of V1 ∩ V2 satisfies codim(W ) ≤ codim(V1) + codim(V2). We say that V1 and

V2 intersect properly in X, if

codim(W ) = codim(V1) + codim(V2), for each W.

Thus, we have in A∗(X):

[V1] · [V2] =
∑
W

mW [W ], (1.4)

where the sum is over all irreducible components of the scheme theoretical inter-

section V1 ∩ V2, and mW is the intersection multiplicity of V1 and V2 along W .

Moreover they intersect transversally along W , if and only if there exists a point

w ∈ W such that w is a non singular point of V1 and V2, and the tangent space at

X satisfy

TwV1 + TwV2 = TwX.

The point w ∈ W is then non singular, and TwW = TwV1 ∩ TwV2. If V1 and V2

intersect transversally along W , the definition of intersection multiplicity is in such

a way that mW = 1. For this reason the product above is said to be intersection

product.

1.2.3 Intersection product on homogeneous varieties.

Let X is a G-homogeneous variety and [Y1] and [Y2] are any two cycles of X.

Kleiman’s transversality Theorem (see [41]) ensures that there exists a dense

Zariski open set U ⊂ G such that for each g ∈ U , Y1 and Lg(Y2) meet prop-

erly, where Lg : X −→ X denotes the left translation. In this case, according

to (1.4), [Y1] · [gY2] = [Y1∩Lg(Y2)]. Moreover, in the case of the group G = Gln(C),

which is that acting on grassmannians, the map (Lg) is proper and

(Lg)∗ : A∗(X) −→ A∗(X)

is the identity (Cf. [23], p. 207). In particular, the self intersection [Y ]2 is repre-

sented by the intersection of Y with a general translate of it.
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1.2.4 Remark. The cap product :

{
∩ : A∗(X)× A∗(X) −→ A∗(X)

(α, [V ]) 7−→ α ∩ [V ]
,

gives the Chow Group a module structure over A∗(X). The map α 7→ α ∩ [X]

induces an isomorphism (Poincaré duality)

Aj(X)⊗Z Q ∼= An−j(X)⊗Z Q.

1.2.5 To do intersection theory on grassmannians, one first notice that the basis

E of V induces a filtration E•:

E• : E0 := V ⊃ E1 ⊃ . . . ⊃ En ⊃ [0],

where Ei := [ei, ei+1, . . . , en]. If [Λ] is any (1 + k)-plane, one obviously gets the

chain of inclusions:

[Λ] ⊇ [Λ] ∩ E1 ⊇ . . . ⊇ [Λ] ∩ En ⊇ [0]

inducing the chain of inequalities

1 + k := dim([Λ]) ≥ dim([Λ] ∩ E1) ≥ . . . ≥ dim([Λ] ∩ En) ≥ 0. (1.5)

Let



ε0

ε1

...

εn




([v0,v1, . . . ,vk]) :=




ε0(v0) ε0(v1) . . . ε0(vk)

ε1(v0) ε1(v1) . . . ε1(vk)
...

...
. . .

...

εn(v0) εn(v1) . . . εn(vk)




be the matrix whose entries are the components of the (1+k)-frame [v0,v1, . . . ,vk]

in the E-basis and denote by ρi(E, Λ) the rank of the submatrix formed by the

first i rows (0 ≤ i ≤ k).

1.2.6 Proposition. The following equality holds:

dim(Ei ∩ [Λ]) := 1 + k − ρi(E, Λ).
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Proof. In fact, the vectors v ∈ [Λ] belonging to Ei must satisfy the linear system

of equations: {
εj(v) = 0 , 0 ≤ j ≤ i.

The dimension of the space of solutions is precisely 1 + k minus the rank of the

system, which is exactly ρi(E, Λ).

Because of the obvious inequalities:

ρi(E, Λ) ≤ ρi+1(E, Λ) ≤ ρi(E, Λ) + 1

(adding a row to a matrix, the rank increases at most of 1), one deduces that

dim(Ei+1 ∩ [Λ]) ≤ dim(Ei ∩ [Λ]) ≤ dim(Ei+1 ∩ [Λ]) + 1,

i.e., any possible dimension “jump” is not bigger than 1. The upshot is that in

the sequence:

k := dim([Λ] ∩ E0) ≥ dim([Λ] ∩ E1) ≥ . . . ≥ dim([Λ] ∩ En+1) = 0,

there are exactly 1 + k dimension jumps. Clearly, if [Λ] is in general position with

respect to the flag E•, the jump sequence is 1, 2, . . . , k + 1. Such a jump sequence

shall be also called the E•-Schubert index associated to the (1 + k)-plane [Λ]. It is

convenient to denote it as follows:

SchE•([Λ]) = (i0 + 1, i1 + 1, . . . , ik + 1),

where 0 ≤ i0 < i1 < . . . < ik ≤ n.

1.2.7 Definition. The E•-Schubert variety associated to the Schubert index (i0+

1, i1 + 1, . . . , ik + 1)} is:

Ωi0i1...ik(E
•) = {[Λ] | dim([Λ] ∩ Eij) ≥ k − j

The Schubert variety Ωi0i1...ik(E
•) is the closure of

◦
Ωi0i1...ik (E•) = {[Λ] | dim([Λ] ∩ Eij) = k − j }.
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1.2.8 Proposition. The set
◦
Ωi0i1...ik (E•) is an affine cell of codimension (i0 −

0) + (i1 − 1) + . . . + (ik − k).

Proof. The proof is easy and standard. It is basically omitted for typographical

reasons: it consists in finding suitable representatives of the k-planes lying in the

set Ωi0i1...ik . See e.g. [31] and [42].

To any (projective) k-plane one can obviously attach one and only one Schubert

index and therefore the Schubert cells form a partition of the grassmannian. A

well known result of algebraic topology guarantees that the homology classes of

their closures (the Schubert varieties themselves) generate the homology (or the

Chow group). Furthermore, Chow’s basis theorem says ([23], p.268) that Ωi0i1...ik =

[Ωi0i1...ik(E
•)] form a Z-basis of A∗(Gk(P(V )). The notation reflects the fact that

the Schubert class Ωi0i1...ik does not depend on the chosen flag. Denote by σi0i1...ik ∈
A∗(Gk(P(V )) its Poincaré dual, i.e.

σi0i1...ik ∩ [Gk(P(V )] = Ωi0i1...ik ,

where [Gk(P(V ))] denotes the fundamental class of Gk(P(V )).

1.2.9 Remark. In the current literature it is customary to index a Schubert

variety using partitions: if I = (i0, i1, . . . , ik) ∈ Ik
n, one writes Ωλ instead of ΩI

(as it is done, e.g., in [55]), where λ = λ(I) := (ik− k, . . . , i1− 1, i0− 0). Similarly

one writes σλ instead of σi0i1...ik . The σλ are said to be Schubert cycles and they

freely generate A∗(Gk(P(V )) as a module over the integers.

1.2.10 The general (projective)k-plane has Schubert index (1, 2, . . . , k + 1). In

fact, a projective k-plane is general with respect to the flag E• if its intersection

with E1+k (the subspace of codimension 1+k) is the null vector2. Indeed, the E•-

general k-plane lives in the complement of a Zariski closed set. Let us see that. If

[Λ] is not general, then dim([Λ]∩E1+k) > 0. Hence there exists 0 6= v ∈ [Λ]∩E1+k,

2the general homogeneous linear system of 1+k equations in 1+k unknowns, has no solution

but the trivial one
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i.e. there exists u ∈ C1+k \ {0}, such that Λ · u satisfies the linear system:

εi(Λ) · u = 0, 0 ≤ i ≤ k.

This is possible if det(εi(Λ)) = 0, i.e if ε0∧ε1 ∧ . . . ∧ εk(Λ) = 0. If Λ = (v0,v1, . . . ,vk),

the condition can be recast as:

ε0 ∧ ε1 ∧ . . . ∧ εk([Λ]) =

∣∣∣∣∣∣∣∣∣∣

ε0(v0) ε0(v1) . . . ε0(vk)

ε1(v0) ε1(v1) . . . ε1(vk)
...

...
. . .

...

εk(v0) εk(v1) . . . εk(vk)

∣∣∣∣∣∣∣∣∣∣

= 0.

1.2.11 Definition. (See [27]) The expression ε0 ∧ ε1 ∧ . . . ∧ εk([Λ]) is said to be

the E•-Schubert Wronskian at [Λ].

Hence the (projective) k-planes in E•-special position live in the zero-scheme

Z(ε0 ∧ ε1 ∧ . . . ∧ εk) of ε0 ∧ ε1 ∧ . . . ∧ εk. It is worth to remark that the latter

depends only on the flag E• and not on the adapted basis to the flag itself. For,

were (φ0, φ1, . . . , φn) another basis such that Ei = [φi+1, . . . , φn], then the trans-

formation matrix T from (εj) to the (φj) would be triangular, so that

φ0 ∧ φ1 ∧ φ2 ∧ . . . ∧ φk = det(T ) · ε0 ∧ ε1 ∧ . . . ∧ εk.

Let

0 −→ T1+k −→ Gk(P(V ))× V −→ Q1+k −→ 0, (1.6)

be the tautological exact sequence: T1+k is the universal tautological subbundle of

the trivial bundle Gk(P(V ))× V and Q1+k is the universal quotient bundle. Since

(ε0, ε1, . . . , εn) are sections of T ∨
1+k, it follows that ε0 ∧ ε1 ∧ . . . ∧ εk is a section of

the line bundle ∧kT ∨
1+k and thus that the class of the E•-special k-planes in the

Chow group A∗(Gk(P(V )) is precisely:

[Z(ε0 ∧ ε1 ∧ . . . ∧ εk)] = c1(∧1+kT ∨
1+k) ∩ [Gk(P(V )].

One easily sees that this class does not depend on the flag chosen: any two

Schubert-wronskians are sections of the same line bundle. Set σ1 = c1(
∧k T ∨

1+k),
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the first special Schubert cycle. Because of the exact sequence (1.6) and the fact

that ct(T1+k)ct(Q1+k) = 1 (ct is the Chern polynomial, see e.g. [23]), it also follows

that:

σ1 = c1(
k∧
T ∨

1+k) = −c1(
k∧
T1+k) = −c1(T1+k) = c1(Q1+k).

1.2.12 Suppose F • is another flag of V . Because of the transitive action of Gl(V )

on Gk(P(V )), there exists an automorphism g of V sending the flag F • onto the flag

E• and, consequently, the Schubert variety ΩI(F
•) isomorphically onto ΩI(E

•).

Since Gl(V ) is rational (and connected), their classes modulo rational equivalence

in A∗(Gk(P(V ))) are equal (Cf. Section 1.2.3). Then one lets:

ΩI = [ΩI(E
•)] ∈ A∗(Gk(P(V ))),

for some complete flag E• of V . One may also denote the same Schubert cycle as

Ωλ, where λ = λ(I) (Cf. Remark. 1.2.9). Clearly Ω01...k = Ω(0...0) = [Gk(P(V ))],

the fundamental class of Gk(P(V )). The class of ΩI(E
•) corresponds to a class in

A∗(Gk(P(V ))) classically denoted by σλ, related to it via the equality:

σλ ∩ [Gk(P(V ))] = Ωλ,

expressing Poincaré duality for grassmannians. The equality

σλ ∩Ωµ = σλ ∩ (σµ ∩ [Gk(P(V ))]) = (σλ · σµ) ∩ [Gk(P(V ))].

expresses instead the fact that A∗(Gk(V )) is a module over A∗(Gk(V )). One also

has:

1.2.13 Proposition (Chow basis theorem). The classes Ωλ := σλ∩ [Gk(V )],

of Schubert varieties modulo rational equivalence, freely generate the Chow group

A∗(Gk(P(V ))).

Proof [23], p. 268 or [31].

The following example serves as illustration of how Schubert Calculus should

work.
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1.2.14 Example. Let us look for the class in A∗(G2(P5)) of all the planes in-

tersecting a 3-dimensional projective linear subspace H ⊆ P5 along a line passing

through a point P ∈ H and incident to five 2-codimensional projective linear

subspaces (Π1, . . . , Π5) in general position in P5. The first step to solve such an

example is to identify the involved Schubert varieties. To do this is convenient to

see this problem in the affine grassmannian A∗(G(3,C6)).

Let E• be the complete flag:

C6 = E0 ⊃ E1 ⊃ E2 ⊃ E3 ⊃ E4 ⊃ E5 ⊃ E6 = (0)

If [Λ] ∈ G(3,C6) intersect a 4-dimensional subspace H of C6 along a 2-plane

containing a given 1-plane, one has that E5 ⊂ [Λ]∩E2, and that dim([Λ]∩E3) ≥ 2

thus, dim(E2 ∩ [Λ]) ≥ 2 and dim(E5 ∩ [Λ]) = 1. The most general such plane is

when the equality holds, which corresponds indeed to the k-planes having 1, 3, 5 as

a Schubert index. If a 3-plane [Λ], instead, meet E3 along a positive dimensional

vector subspace, then it belongs to the Schubert cycle Ω124(E
•), since for the most

general such 3-plane one has dim([Λ]∩E4) = 0. By Kleiman’s theorem, one knows

that it is possible to choose sufficiently general flags F •
0 , F •

1 . . . , F •
5 such that the

intersection:

X := Ω013(F
•
0 ) ∩ . . . ∩ Ω013(F

•
4 ) ∩ Ω024(F

•
5 )

is proper, i.e. such that the codimension of the intersection scheme coincides

with the sum of the codimensions of those one is intersecting. The class of X in

A∗(G(3,C3)) is then:

[X] = σ5
1 · σ31 ∩ [A∗(G(3,C3))]

and the problem now amounts to compute explicitly the product σ5
1σ31 ∈ A∗(G2(P5)).

1.2.15 Via the Poincaré isomorphism:

A∗(Gk(PV )) −→ A∗(Gk(PV )),
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sending σλ 7→ σλ∩[Gk(PV )], and by Proposition 1.2.13, it follows that A∗(Gk(PV ))

is generated as a Z-module by the Schubert cycles σλ. It turns out that σi =

ci(Q1+k) (see [23], p. 271). Doing intersection theory on the grassmannian amounts

to knowing how to multiply any two Schubert classes σλ and σµ, i.e. to know

σλ · σµ in A∗(Gk(PV )) or, equivalently, σλ ∩ Ωµ ∈ A∗(Gk(P(V ))). Using the

combinatorial language of Young diagrams (see [23]), one may also say that the

Chow ring A∗(Gk(P(V ))) is freely generated, as a module over the integers, by the

Schubert (co)cycles:

{σλ | λ is a partition contained in a (k + 1)(n− k) rectangle},

where σλ ∩ [Gk(P(V ))] is the class of a Schubert variety Ωλ(E
•) associated to any

flag E• of V . Schubert Calculus allows to write the product σλ ·σµ as an explicit

linear combination of elements of the given basis of A∗(Gk(PV )). It consists,

indeed, in an explicit algorithm to determine the structure constants {Cν
λµ} defined

by:

σλ · σµ =
∑

|ν|=|λ|+|µ|
Cν

λµσν .

The coefficients Cν
λν can be determined combinatorially via the

Littlewood-Richardson rule ([49], p. 68).

The other recipe consists in determining any product via reduction to known

cases. To this purpose, one first establishes a rule to multiply any Schubert cycle

with a special one. A special Schubert cycle is a cycle indexed by a partition of

length 1. Such a product is ruled by

1.2.16 Theorem (Pieri’s Formula). The following multiplication rule holds:

σh · σλ =
∑

µ

σµ (1.7)

2 Pieri’s formula can be also phrased by saying that sum (1.7) is over all the partitions µ

whose Young diagram Y (µ) is gotten by adding h boxes to Y (λ), in all possible ways, not two

on the same column. For instance, in G2(Pn−1), with n ≥ 9, one has:

σ2 · σ331 = σ531 + σ432 + σ333.
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the sum over all partitions such that |µ| = |λ|+ h and

n− k ≥ µ1 ≥ λ1 ≥ . . . ≥ µk ≥ λk.

where n = dim(V ).

Proof. (see e.g. [31], p. 203).

It is not difficult to prove that Pieri’s formula determines, indeed, the ring

structure of A∗(G). In particular, one can see that A∗(G) is generated, as a ring,

by the first k special Schubert cycles σ1, . . . , σk. This is a consequence of another

explicit consequence of Pieri’s formula, i.e. the determinantal Giambelli’s formula,

expressing the Schubert cycle σλ as a polynomial in the special ones:

1.2.17 Proposition (Giambelli’s Formula). The Schubert cycle associated

to a partition λ = (rk, . . . , r1) is a (determinantal) polynomial expression in the

special Schubert cycle σi’s:

σλ = ∆λ(σ) =

∣∣∣∣∣∣∣∣∣∣

σr1 σr2+1 . . . σrk+k−1

σr1−1 σr2 . . . σrk+k−2
...

...
. . .

...

σr1−k+1 σr2−k+2 . . . σrk

∣∣∣∣∣∣∣∣∣∣

= det(σrj+j−i).

Proof. It will be given in Section 3.3.5, within the formalism of S-derivations as

a consequence of a suitable “integration by parts”.

Therefore, the computation of an arbitrary product σλ · σµ is reduced to a

sequence of applications of Giambelli’s and Pieri’s formula: one first writes σλ

as a polynomial in the σi’s, and then applies Pieri’s formula as many times as

necessary and then again Giambelli’s and so on. Computations become intricate

in big grassmannians and for lengthy partitions, but products are computable in

principle.

The “graphical Pieri’s formula”, in terms of Young diagrams is depicted below:

∪ = + +
***

* * * .
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1.2.18 Remarks. Giambelli’s formula is a formal consequence of Pieri’s formula,

in spite trying to prove it may be rather tricky. See e.g. [31], p. 204–206, based on a

case by case combinatorial analysis. In [50], p. 13, the Author proves Giambelli’s

formula in the realm of symmetric functions, as a consequence of the so-called

Jacobi-Trudy formula (see [49], pp. 23 ff. and also [23], p. 422). In a subsequent

chapter we will report Giambelli’s formula on Grassmann algebras as in [27], which

it is based on the definition of determinant of a square matrix.

However, that proposed by Laksov and Thorup, in a recent preprint ([46]),

besides its elegance, seems to be the shortest and the most general.

1.2.19 Example (see [27]). Let V := C[X]/(X1+n) be the C-vector space of

polynomials of degree at most n. It is a n+1-dimensional C-vector space spanned

by the classes of 1, X,X2, . . . , Xn ∈ C[X] modulo (X1+n). Let z0 ∈ C and consider

the flag:

V ⊃ V (−z0) ⊃ V (−2z0) ⊃ . . . ⊃ V (−(n + 1)z0) = 0

where

V (−iz0) :=
(X − z0)

i + (X1+n)

X1+n
,

is the vector subspace of polynomials of degree less than or equal to n contained

in the ith power of the maximal ideal (X − z0) of C[X].

Let [Λ] be a subspace of dimension 1+k of V and let (p0(X), p1(X), . . . , pk(X))

be a basis of it. Then [Λ] is “special” with respect to the given flag, if there exists

0 6= p(X) ∈ [Λ] vanishing at z0 with multiplicity at least 1 + k. Write:

p(X) = a0p0(X) + a1p1(X) + a2p2(X) + . . . + akpk(X).

Then p(i)(z0) = 0 for all 0 ≤ i ≤ k, where p(i)(X) is the ith derivative of the

polynomial p(X). Hence [Λ] is “special” if the following determinant:

W (p0, p1, . . . , pk)(z0) :=

∣∣∣∣∣∣∣∣∣∣

p0(z0) p1(z0) . . . pk(z0)

p′0(z0) p′1(z0) . . . p′k(z0)
...

. . .
...

p
(k)
0 (z0) p

(k)
1 (z0) . . . p

(k)
k (z0)

∣∣∣∣∣∣∣∣∣∣

= 0.

This is a true wronskian and hence motivates the terminology of Definition 1.2.11.
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Chapter 2

Schubert Calculus on a

Grassmann Algebra

The aim of this Chapter is to develop an easy flexible algebraic formalism which the

paper [26] suggests to name Schubert Calculus on Grassmann Algebras (SCGA), by

contrast with Schubert Calculus on Grassmann Varieties (SCGV) (see also [28]).

The latter however motivated this work. To get into the matter of the subject,

one should first begin with some review on exterior algebras.

2.1 Exterior Algebras.

2.1.1 Tensor Algebra of a module. Let A be a commutative ring with unit

and let M and N be any two A-modules. A tensor product of M and N over A

is a pair (T, ψ) where T is an A-module and ψ is a bilinear map M × N −→ T

such that any bilinear map φ : M × N −→ P factors through ψ via a unique

module homomorphism T −→ P (see [2], p. 24). The tensor product is unique up

to a canonical isomorphism and it will be denoted by M ⊗A N . Accordingly, the

universal bilinear map will be denoted as ψ(m,n) := m⊗ n.

One may form the tensor algebra (T (M),⊗) of any A-module M . It is the
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direct sum:

T (M) =
⊕
p≥0

M⊗p

where

M0 := A, M⊗1 := M, M⊗p := M⊗p−1 ⊗A M.

The tensor product ⊗ is defined as follows: if m ∈ M⊗i and n ∈ M⊗j, then

m ⊗ n ∈ M⊗i+j is the universal image of (m,n) into M⊗i+j = M i ⊗A M j. Such

a product is then extended to all pairs of elements of T (M) via A-bilinearity. As

a classical example of tensor algebra one may recall the ring of polynomials A[X]

in one indeterminate X: it is the tensor algebra associated to A thought of as an

A-module over itself.

2.1.2 Exterior (or Grassmann) Algebra. The exterior algebra
∧

M of an

A-module M is the quotient of the tensor algebra T (M) modulo the bilateral ideal

IA := {m ⊗m |m ∈ M}. Let a : T (M) −→ ∧
M be the canonical epimorphism

and set:

m ∧ n := a(m⊗ n) = m⊗ n + IA.

Clearly m ∧ m = 0, ∀m ∈ ∧
M and m ∧ n = −n ∧ m as a consequence of the

fact that (m + n) ∧ (m + n) = 0 and then m ⊗ n + n ⊗ m ∈ IA. The image of

the submodule M⊗i through a is denoted by
∧i M . Hence one can decompose the

module
∧

M into the direct sum

∧
M :=

⊕
i≥0

i∧
M,

where
∧0 M := A and

∧1 M := M . The submodule
∧i M ⊆ ∧

M is said to be the

ith-exterior power of M . For each i ≥ 2 (the cases i = 0 and i = 1 being trivial),
∧i M enjoys a universal property, too. Recall that a multilinear map

φ : M × . . .×M︸ ︷︷ ︸
i times

is said to be alternating if and only if
{

φ(xτ(1), . . . , xτ(i)) = (−1)|τ |)φ(x1, . . . , xi)

φ(x, x, x3, . . . , xi) = 0, ∀x ∈ M
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where τ is a permutation on the set {1, 2, . . . , i}. There is a universal alternating

map:

M × . . .×M︸ ︷︷ ︸
i times

−→
i∧

M.

such that, for each alternating map ã : M × . . .×M︸ ︷︷ ︸
i times

−→ P , there exists a unique

ψ :
∧i M −→ P such that ã(m1, . . . , mi) = ψ(m1 ∧ . . . ∧mi).

2.1.3 Exterior algebra of a free module. The exterior algebra of a free A-

module M can be explicitly described as follows. Let (µ0, µ1, . . .) be an A-basis

of M . Then
∧1+k M is the A-module generated by all the expressions µi0 ∧ µi1 ∧

. . . ∧ µik subject to the relations

µiτ(0) ∧ µiτ(1) ∧ . . . ∧ µiτ(k) = (−1)|τ |µi0 ∧ µi1 ∧ . . . ∧ µik , ∀τ ∈ S1+k.

Therefore
∧1+k M is a free module spanned by the basis {µi0 ∧ µi1 ∧ . . . ∧ µik :

0 ≤ i0 < i1 < . . . < ik}. The following is a very important:

2.1.4 Definition. The weight of the basis element µi0 ∧ µi1 ∧ . . . ∧ µik ∈ ∧1+k M

is:

wt(µi0 ∧ µi1 ∧ . . . ∧ µik) = (i0 − 0) + (i1 − 1) + . . . + (ik − k) =

=
k∑

j=0

(ij − j) =
k∑

j=0

ij − k(k + 1)

2
, (2.1)

2.2 Derivations on Exterior Algebras

2.2.1 From now on, with an eye to the geometrical applications to be discussed

later on, the ring A will be assumed to be an integral Z-algebra of characteristic

zero. Let t be an indeterminate over A and let A[[t]] be the algebra of formal

power series in t. If M is an A-module, let M [[t]] be the formal power series with

coefficients in M , (i.e. sequences of elements of M written as series). Similarly,
∧

M [[t]] is the ring of formal power series with coefficients in the algebra
∧

M .
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The main goal of this section is to begin a systematic study of the properties of

algebra homomorphisms Dt :
∧

M −→ ∧
M [[t]]. They are in fact suited to model

cohomologies theories on grassmannian varieties.

2.2.2 If Dt :
∧

M −→ ∧
M [[t]] is an A-module homomorphism, denote by

D := (D0, D1, D2, . . .)

its sequence of coefficients, defined through the equality:

Dtα =
∑
i≥0

Di(α)ti, ∀α ∈
∧

M.

The definition below is basically taken from [26].

2.2.3 Definition. An A-module homomorphism Dt :
∧

M −→ ∧
M [[t]] is a

derivation on
∧

M if it is also an A-algebra homomorphism, i.e. if the equality

Dt(α ∧ β) = Dtα ∧Dtβ (2.2)

holds for each α, β ∈ ∧
M .

Since later on the coefficients {Di} will play the role of cohomology classes, we

need indeed a further hypothesis.

2.2.4 Definition. A derivation Dt on
∧

M is said to be homogeneous if Di(M) ⊆
M , for each i ≥ 0, and commutative if Di ◦Dj = Dj ◦Di for all i, j ≥ 0. A ho-

mogeneous derivation is said to be regular if D0 is an automorphism of
∧

M .

2.2.5 Remark. Notice that equation (2.2) says that for a homogeneous deriva-

tion all the degrees of the exterior algebra
∧1+k M are Di invariants, i.e. Di(

∧1+k M) ⊆
∧1+k M : the restriction of Di to

∧1+k M defines an endomorphism of
∧1+k M it-

self. One can easily check, by induction, that Dt is commutative if and only if

Di ◦Dj |M = Dj ◦Di|M .

2.2.6 Definition. A Schubert derivation(S-derivation) on
∧

M is a regular

commutative derivation on
∧

M .

A S-derivation will be denoted either by the symbol Dt (the formal power

series) or D (the sequence), with no substantial distinction.
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2.3 The Group St(
∧

M)

In spite of the use of a quite different language, this section has been deeply inspired

by [46] and [47].

2.3.1 Denote by St(
∧

M) the set of all S-derivations of
∧

M . To each Dt ∈
St(

∧
M), one may associate an A[[t]]-algebra homomorphism

D̂t :
∧

M [[t]] −→
∧

M [[t]]

defined by:

D̂t

∑
i≥0

αit
i =

∑
i≥0

Dtαi · ti =
∑

h≥0

(
∑

i+j=h

Diαj)t
h.

Confusing each α ∈ ∧
M with a constant formal power series with

∧
M -

coefficients, one sees that Dtα = D̂tα. Therefore:

(Dt ∗D′
t)(α) =

∑

h≥0

∑

i+j=h

Di(D′
jα)th = D̂t(

∑

j≥0

D′
jα · tj) = D̂t(D′

tα) = (D̂t ◦ D̂′
t)α. (2.3)

Moreover D̂t :
∧

M [[t]] −→ ∧
M [[t]] is an algebra homomorphism. In fact:

D̂t

( ∑
i≥0

αit
i ∧

∑
j≥0

βjt
j
)

= D̂t

∑

h≥0

( ∑

i+j=h

αi ∧ βj

)
th =

∑

h≥0

( ∑

i+j=h

Dt(αi ∧ βj)
)
th =

=
∑

h≥0

( ∑

i+j=h

Dtαi ∧Dtβj

)
th =

∑
i≥0

Dtαit
i ∧

∑
j≥0

Dtβjt
j =

= D̂t

∑
i≥0

αit
i ∧ D̂t

∑
j≥0

βjt
j, (2.4)

as desired. One can then show that:

2.3.2 Proposition. The pair (St(
∧

M), ∗) is a group.

Proof. Let us first show that if Dt, D
′
t ∈ St(

∧
M) then Dt ∗ D′

t ∈ St(
∧

M). In

fact, using (2.3) and (2.4):

(Dt ∗D′
t)(α ∧ β) = D̂t(D

′
t(α ∧ β)) = D̂t(D

′
tα ∧D′

tβ) =

= D̂t(D
′
tα) ∧ D̂t(D

′
tβ) = (Dt ∗D′

t)α ∧ (Dt ∗D′
t)β,
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as desired. By its very definition, ∗ is obviously associative. The neutral element of

St(
∧

M) is the map 1 :
∧

M −→ ∧
M [[t]] sending any α ∈ ∧

M to itself thought

of as a constant formal power series. Moreover, let Dt be the formal inverse of

Dt thought of as an invertible formal power series with coefficients in EndA(
∧

M)

(the existence of such an inverse is guaranteed by the invertibility of D0). Then

Dt ∈ St(
∧

M). In fact:

Dt(α ∧ β) = D̂t((Dt ∗Dt)α ∧ (Dt ∗Dt)β)
)

=

= D̂t(D̂tDtα ∧ D̂tDtβ) =

= (D̂t ◦ D̂t)(Dtα ∧Dtβ) = Dtα ∧Dtβ

completing the proof of the proposition.

2.3.3 Proposition. If D
(0)
t ∈ EndA(M)[[t]]) such that D

(0)
i ◦D

(0)
j = D

(0)
j ◦D

(0)
i ,

there is a unique Dt ∈ St(
∧

M) extending D
(0)
t : M −→ M [[t]], i.e, such that

Dt|M = D
(0)
t .

Proof. It suffices to extend D
(0)
t : M −→ M [[t]] to each degree

∧1+k M (k ≥ 0) of

the exterior algebra
∧

M . To this purpose, and for each k ≥ 0, one first consider

the map:

φt : M⊗(1+k) −→
1+k∧

M [[t]],

defined by:

mi0 ⊗mi1 ⊗ . . .⊗mik 7→ D
(0)
t mi1 ∧ . . . ∧D

(0)
t mik .

This map is clearly alternating and hence, by the universal property of exterior

powers, it factors through a unique map
∧1+k M −→ ∧1+k M [[t]], defined as:

D
(1+k)
t (mi0 ∧mi1 ∧ . . . ∧mik) = D

(0)
t mi1 ∧ . . . ∧D

(0)
t mik ,

on the basis elements, and extended by linearity. Then, for each α ∈ ∧1+k M and

for all k ≥ 0, one sets:

Dtα = D
(1+k)
t α.
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It follows that if α ∈ ∧1+k1 M and β ∈ ∧k2 M , equation (2.2) holds by definition

of Dt and the fact that α ∧ β is a finite A-linear combination of

{mi0 ∧mi1 ∧ . . . ∧mik1
∧mik1+1

∧ . . . ∧mik1+k2
; 0 ≤ i0 < i1 < . . . < ik1+k2}.

Since any element of
∧

M is a finite sum of homogeneous ones, equation (2.2)

holds for any arbitrary pair as well. The unicity part is straightforward: were D′
t

another extension of D
(0)
t , one would have:

D′
t(mi0∧mi1∧. . .∧mik) = D

(0)
t mi0∧D

(0)
t mi1∧. . .∧D

(0)
t mik = Dt(mi0∧mi1∧. . .∧mik),

for each mi0 ∧mi1 ∧ . . . ∧mik and each k ≥ 1. Hence D′
t = Dt.

Remark 2.2.5 says that Dt is commutative and homogeneous. Moreover, D0 :
∧

M −→ ∧
M is an A-automorphism of

∧
M : in fact

D−1
0 (mi0 ∧mi1 ∧ . . . ∧mik) = D−1

0 (mi0) ∧D−1
0 (mi1) ∧ . . . ∧D−1

0 (mik).

is the unique D0-preimage of a homogeneous element mi0 ∧mi1 ∧ . . .∧mik . Hence

Dt ∈ St(
∧

M).

2.4 Schubert Calculus on
∧

M

2.4.1 Definition. A Schubert Calculus on a Grassmann Algebra (SCGA) is

a pair (
∧

M, Dt) where Dt ∈ St(
∧

M). Equation (2.2) will be said to be the

fundamental equation of Dt-Schubert Calculus on
∧

M . The exterior algebra
∧

M is said to be the support, while Dt is the defining S-derivation. Choosing

Dt ∈ St(
∧

M) is the same as choosing a SCGA, the support being understood.

By Proposition 2.3.3, each (
∧

M, Dt) determines and is uniquely determined

by the pair (M, (Dt)|M ), which shall be called the root of (
∧

M, Dt). The notation
∧

(M,D
(0)
t ) shall be used to denote the unique SCGA extending the homomor-

phism D
(0)
t : M −→ M [[t]] to a S-derivation of

∧
M . Clearly one has:

(
1+k∧

M,Dt|V1+k M
) =

1+k∧
(M, Dt|M ),
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so that (M, Dt|M ) is the (1 + k)th-root of
∧1+k(M,Dt|M ).

2.4.2 Definition.The pair (
∧1+k M, Dt|V1+k M

) =
∧1+k(M,Dt|M ) will be said to

be the k-SCGP (Schubert Calculus on a Grassmann Power) associated to the SCGA

(
∧

M,Dt).

Hence any (M,D
(0)
t ) such that the coefficients of D

(0)
t are pairwise commuting

is the 0-SCGP of the corresponding SCGA
∧

(M, D
(0)
t ) and

∧1+k(M, D
(0)
t ) will be

the corresponding k-SCGP. Notice that if D
(0)
i = (D

(0)
1 )i, then the commutativity

condition is automatically satisfied.

2.4.3 Definition. Let (M,D
(0)
t ) be the root of a SCGA, where D

(0)
t :=

∑
i≥0 D

(0)
i ti.

The SCGA
∧

(M,D
(0)
t ) is said to be regular if and only if there exists m ∈ M such

that the sequence ⊕
i≥0

A ·Dim −→ M −→ 0

is exact. In this case m is said to be a fundamental element.

2.4.4 Definition. If a 0-SCGP (M,D
(0)
t ) is such that D

(0)
t =

∑
i≥0 Di

1t
i, then

the SCGA
∧

(M, Dt) (resp.
∧1+k(M, Dt)) is said to be simple.

If
∧

(M,Dt) is simple and regular, then, (m,D1m,D2
1m, . . .) generates M . In spite

of having defined some distinguished classes of SCGAs (the regular and/or simple)

the rules proven in next section holds for all SCGAs. Indeed they will be used

also for making computation in SCGAs of the special kind defined above.

2.5 Some computations in a general SCGA

Once a Dt ∈ St(
∧

M) has been chosen, the corresponding Schubert calculus on
∧

M is based on two important computational tools: Leibniz’s rule and integration

by parts. They are the abstract algebraic counterparts of Pieri’s and Giambelli’s

formulas of classical Schubert Calculus for Grassmann varieties or bundles (as

e.g. in [23], p. 266) as well as straightforward consequences of the fundamental

equation (2.2).
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2.5.1 Proposition (Leibniz Rule for Dh). For each h ≥ 0, the equality

Dh(α ∧ β) =
∑

{hi≥0 | h1+h2=h}
Dh1α ∧Dh2β, (2.5)

holds.

Proof. It is a consequence of equation (2.2). In the left hand side one has

Dt(α ∧ β) = α ∧ β + D1(α ∧ β)t + D2(α ∧ β)t2 + D3(α ∧ β)t3 + . . .

the right hand side instead

Dt(α) ∧Dt(β) = (D0α + D1αt + D2αt2 + . . .) ∧ (D0β + D1βt + D2βt2 + . . .)

= D0α ∧D0β + (D1α ∧D0β + D0α ∧D1β)t +

+(D2α ∧ β + D1α ∧D1β + α ∧D2β)t2 + . . .

Then, comparing both equations one sees that Dh(α ∧ β) is the coefficient of th

in the expansion of Dt(α ∧ β) and is also the coefficient of th in the expansion of

the wedge product Dt(α) ∧Dt(β), that is exactly the right hand side of Equation

(2.5).

In particular, D0 is a module isomorphism

D0(α ∧ β) = D0α ∧D0β,

and D1 satisfies the usual Leibniz’s rule

D1(α ∧ β) = D1α ∧ β + α ∧D1β.

2.5.2 Given a non-negative integer n and an ordered partition (n0, n1, . . . , nh) ∈
Z1+h of it (i.e.

∑
ni = n), define the multinomial coefficient

(
n

n0, n1, . . . , nh

)
, (2.6)
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through the equality

(x0 + x1 + . . . + xh)
n =

∑
n0+n1+...+nh=n

(
n

n0, n1, . . . , nh

)
xn0

0 xn1
1 . . . xnh

h , (2.7)

holding in the ring Z[x0, x1, . . . , xh]. Notice that
(

n
n0,n1,...,nh

)
= 0, whenever any of

the ni’s is negative instead, equals to

(
n

n0, n1, . . . , nh

)
=

n!

n0!n1! . . . nh!
, (2.8)

when all the ni’s are non-negative (with the convention 0! = 1).

2.5.3 Notation. For notational uniformity, also the usual binomial coefficient

(
n

n0

)
=

n!

n0!(n− n0)!

will be written as

(
n

n0, n1

)
.

2.5.4 Lemma.The multinomial coefficients (2.6) satisfy the following identity:

(
n

n0, n1, . . . , nh

)
=

h∑
i=0

(
n− 1

n0, n1, . . . , ni − 1, . . . , nh

)

Proof. To see this, one compares the coefficients of equality:

(x0 + x1 + . . . + xh)
n = (x0 + x1 + . . . + xh) · (x0 + x1 + . . . + xh)

n−1.

On one hand:

(x0 + · · ·+ xh)
n = (x0 + x1 + . . . + xh) · (x0 + x1 + . . . + xh)

n−1 =

= (x0 + x1 + . . . + xh) ·
∑

P
n′i=n−1

(
n− 1

n′0, n
′
1, . . . , n

′
h

)
x

n′0
0 x

n′1
1 . . . x

n′h
h

=
h∑

i=0

∑
P

n′i=n−1

(
n− 1

n′0, n
′
1, . . . , n

′
h

)
x

n′0
0 x

n′1
1 . . . x

n′i+1
i x

n′h
h .
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Then, by setting

{
n′j + 1 = nj if j = i

n′j = nj otherwise
, one sees that the equality:

(x0 + · · ·+ xh)
n =

∑
P

ni=n

h∑
i=0

(
n− 1

n0, . . . , ni − 1, . . . , n′h

)
xn0

0 xn1
1 . . . xni

i xnh
h , (2.9)

holds. On the other hand,

(x0 + · · ·+ xh)
n =

∑
P

ni=n

(
n

n0, n1, . . . , nh

)
xn0

0 xn1
1 . . . xnh

n (2.10)

Comparing the coefficients of the last sides of (2.9) and (2.10) respectively, one

gets the claim.

One needs to consider iterations of the operators Di’s.

2.5.5 Proposition. The nth iterated of Dh satisfies the equality:

Dn
h(α∧β) =

∑
n0+n1+...+nh=n

(
n

n0, n1, . . . , nh

) (
h∏

i=0

D
nh−i

i

)
α∧

(
h∏

i=0

Dni
i

)
β. (2.11)

Proof. The proof is by induction on the integer n. For n = 1 formula (2.7) is

nothing else than (2.5). Suppose it holds true for all n− 1 ≥ 1. Then,
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Dn
h(α ∧ β) = Dn−1

h

(
Dh(α ∧ β)

)
=

= Dn−1
h

( ∑

l+m=h

l,m≥0

Dlα ∧Dmβ

)
=

∑

l+m=h

l,m≥0

Dn−1
h

(
Dlα ∧Dmβ

)
=

=
∑

l+m=h

l,m≥0

n′0+...+n′h=n−1

ni≥0

(
n− 1

n′0, n
′
1, . . . , n

′
h

) h∏

i=0

D
n′h−i

i ·Dlα ∧
h∏

i=0

D
n′i
i ·Dmβ =

=
h∑

l=0

n′0+...+n′h=n−1

ni≥0

(
n− 1

n′0, n
′
1, . . . , n

′
h

)
D

n′0
h . . . D

n′h−l+1

l . . . D
n′h
0 α ∧D

n′0
0 . . . D

n′h−l+1

h−l . . . D
n′h
h β.

Setting n′h−l = nh−l − 1 and n′j = nj, for each j 6= h− l, one has:

Dn
h(α ∧ β) =

h∑

l=0

n0+...+nh=n

ni≥0

(
n− 1

n0, n1, . . . , nh−l − 1, . . . , nh

) h∏

i=0

D
nh−i

i α ∧
h∏

i=0

Dni
i β,

and by Lemma (2.5.4):

Dn
h(α ∧ β) =

∑

n0+...+nh=n

ni≥0

(
n

n0, n1, . . . , nh

) h∏

i=0

D
nh−i

i α ∧
h∏

i=0

Dni
i β

.

2.5.6 Corollary. The Newton binomial formula holds for D1:

Dn
1 (α ∧ β) =

∑

h+k=n

(
n

h, k

)
Dh

1α ∧Dk
1β. (2.12)
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Proof. It’s a consequence of Proposition 2.5.5, putting h = 1, k = n0 and m = n1

in equation (2.11).

2.5.7 Proposition. The following equality holds for each α0, α1, . . . , αk ∈
∧

M :

Dn
1 (α0 ∧α1 ∧ . . .∧αk) =

∑P
ni = n

ni ≥ 0

(
n

n0, n1, . . . , nk

)
Dn0

1 α0 ∧Dn1
1 α1 ∧ . . .∧Dnk

1 αk (2.13)

Proof. By induction on the integer k ≥ 1. For k = 1 the claim reduces to

Corollary 2.5.6. Suppose that the formula holds for k − 1. Then:

Dn
1 (α0 ∧ α1 ∧ . . . ∧ αk) =

∑

n0+n′1=n

(
n

n0, n′1

)
Dn0

1 α0 ∧D
n′1
1 (α1 ∧ . . . ∧ αk),

still by Corollary 2.5.6. Now, by induction, last side can be written as:

∑

n0+n′1=n

(
n

n0, n′1

)(
n′1

n1, n2, . . . , nk

)
Dn0

1 α0 ∧Dn1
1 α1 ∧ . . . ∧Dnk

1 αk =

=
∑

n0+n1+...+nk=n

(
n

n0, n1, . . . , nk

)
Dn0

1 α0 ∧Dn1
1 α1 ∧ . . . ∧Dnk

1 αk.

A similar expression for Dn
h(α0∧α1∧ . . .∧αk) can be computed once one knows

the corresponding one for Dn
h(α0 ∧ α1 ∧ . . . ∧ αk−1). To get it, let us consider the

set:

Rh
k =



λ = (λ1, . . . , λk) ∈ Nk | |λ| :=

k∑

j=0

λj ≤ h



 .

2.5.8 Proposition.The following equality holds for each α0, α1, . . . , αk ∈
∧

M

Dn
h(α0 ∧ . . . ∧ αk) =

∑(
n

N

) (
h∏

i=0

D

P
|δ|=h−i nδ

i

)
α0 ∧

(
h∏

i=0

D

P
δk=i nδ

i

)
α1 ∧ . . .

. . . ∧
(

h∏

i=0

D

P
δk−j+1=i nδ

i

)
αj ∧ . . . ∧

(
h∏

i=0

D

P
δ1=i nδ

i

)
αk (2.14)
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where δ ∈ Rh
k, N = (n(0,...,0), . . . , nδ, . . . , n(h,...,0))

1 and the sum is over all

n(0,...,0) + . . . + nδ + . . . , n(h,...,0) = n.

Proof. The proof is by induction on the integer k. For k = 1 the formula is true

by Proposition (2.11). Suppose then that the formula is true for k− 1 ≥ 1. Then,

we have :

Dn
h(α0 ∧ . . . ∧ αk) = Dn

h

(
(α0 ∧ . . . ∧ αk−1) ∧ αk

)
=

=
∑(

n

n0, . . . , nh

) h∏

i=0

D
nh−i

i

(
α0 ∧ . . . ∧ αk−1

) ∧
h∏

i=0

Dni
i αk =

=
∑(

n

n0, . . . , nh

)(
n0

N0

)
· . . . ·

(
nh

Nh

) h∏

i=0

D
P
|δ|=h−i nδ

i α0 ∧
h∏

i=0

D

P
δk=i nδ

i α1 ∧ . . .

. . . ∧
h∏

i=0

D

P
δk−j+1=i nδ

i αj ∧ . . . ∧
h∏

i=0

D
P

δ1=i nδ

i αk−1 ∧
h∏

i=0

Dni
i αk

where δ ∈ Rh
k, and:

Nj = (. . . , n(j,µ2,...,µk), . . . , n(j,λ2,...,λk), . . .), with (j, µ2, . . . , µk) <lex (j, λ2, . . . , λk)

since ni =
∑

µ2+...+µk≤h−i

n(i,µ2,...,µk), one may write as well:

Dn
h(α0 ∧ . . . ∧ αk) =

∑(
n

N

) h∏

i=0

D

P
|δ|=h−i nδ

i α0 ∧
h∏

i=0

D

P
δk=i nδ

i α1 ∧ . . .

. . . ∧
h∏

i=0

D

P
δk−j+1=i nδ

i αj ∧ . . . ∧
h∏

i=0

D

P
δ1=i nδ

i αk.

The proposition follows by induction.

2.5.9 Example. As an application of Proposition 2.5.8, an expression for

Dn
2 (α0 ∧ α1 ∧ α2).

will be computed. By definition, one has:

R2
2 = {00, 01, 02, 10, 11, 20}.

1ordered by (index)-lexicographical order, i.e.: nλ < nµ ⇔ λ <lex µ with λ, µ ∈ Rh
k
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Therefore, using Proposition 2.5.8:

Dn
2 (α0 ∧ α1 ∧ α3) =

∑ (
n

n00, n01, n02, n11, n20

)
Dn01+n10

1 Dn00
2 α0 ∧Dn01+n11

1 Dn02
2 α1D

n10+n11
1 Dn20

2 α2

where the sum is over n00 + n01 + n02 + n11 + n20 = n.

2.5.10 Proposition.

DhDl(α0 ∧ . . . ∧ αk) =
∑

{hi ≥ 0 | h0 + . . . + hk = h}
{li ≥ 0 | l0 + . . . + lk = l}

Dh0Dl0α0 ∧ . . . ∧Dhk
Dlkαk

Proof. The proof is a straightforward consequence of Leibniz Rule for Dh (Propo-

sition 2.5.5).

2.5.11 Proposition. The formula for the composition of iterated holds:

Dn
hDm

l (α0 ∧ . . . ∧ αk) =

=
∑

N,M

(
n

N

)(
m

M

) h∏

i=0

D
P
|δ|=h−i nδ

i

l∏

j=0

D
P
|λ|=l−j mλ

j α0 ∧
h∏

i=0

D

P
δk=i nδ

i

l∏

j=0

D

P
λk=j mλ

j α1 ∧ . . .

. . . ∧
h∏

i=0

D

P
δk−r+1=i nδ

i

l∏

j=0

D

P
λk−r+1=j mλ

r αr ∧ . . . ∧
h∏

i=0

D
P

δ1=i nδ

i

l∏

j=0

D
P

λ1=j mλ

j αk

(2.15)

where:

N = (n(0,...,0), . . . , nδ, . . . , n(h,...,0)), with δ ∈ Ph
k

and

M = (m(0,...,0), . . . , mδ, . . . , m(l,...,0)), with λ ∈ P l
k

Proof.

By applying twice Theorem 2.5.8 to α0 ∧ α1 ∧ . . . ∧ αk.

The other important tool of a SCGA is described in the following:
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2.5.12 Proposition. Let Dt, Et, Gt ∈ St(
∧

M) such that Dt ∗ Et = Gt. Then

the integration by parts formula holds:

∑

i+j=h

Diα∧Gjβ = Dh(α∧β)+Dh−1(α∧E1β)+ . . .+α∧Ehβ =
h∑

j=0

Dh−j(α∧Ejβ).

(2.16)

Proof. It is a consequence of the formula

D̂t(α ∧ Etβ) = Dtα ∧Gtβ. (2.17)

In fact, on the left hand side, one have

D̂t(α ∧ Etβ) = D̂t

(
α ∧

(∑
j≥0

Ej(β)tj

))
=

= D̂t

(∑
j≥0

(α ∧ Ej(β)) · tj
)

=

=
∑
j≥0

Dt(α ∧ Ej(β)) · tj =

=
∑
j≥0

(∑
i≥0

Di(α ∧ Ejβ) · ti
)

tj =

=
∑
j≥0

(∑
i≥0

Di(α ∧ Ejβ)

)
ti+j =

h∑
j≥0

Dh−j(α ∧ Ejβ)th (2.18)

On the right hand side, instead,

Dtα ∧Gtβ =

(∑
i≥0

Di(α)ti

)
∧

(∑
j≥0

Gj(β)tj

)
=

=
∑
i≥0

∑
j≥0

Di(α) ∧Gj(β)ti+j =
∑

i+j=h

Di(α) ∧Gj(β)th. (2.19)

Comparing the coefficients of th of the right sides of (2.18) and (2.19), the claim

is proven.
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2.5.13 In particular, if Et = Dt =
∑

i≥0(−1)iDit
i, then Gt = idVM (i.e. G0 = 1

and, for i > 0, Gi = 0) and then:

Dhα∧β =
∑

i≥0

(−1)iDh−i(α∧Diβ) = Dhα∧β−Dh−1α∧D1β+. . .+(−1)iα∧Dhβ. (2.20)

So, e.g.:

D1α∧β = D1(α∧β)−α∧D1β and D2α∧β = D2(α∧β)−D1(α∧D1β)+α∧D2β.
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Chapter 3

Simple and Regular SCGAs on

Free Modules

Classical Schubert Calculus on Grassmannian Varieties (SCGV) can be dealt with

via a particular kind of SCGA on a free Z-module ([26]). The natural hope is

that allowing modules over an integral Z-algebra of characteristic zero, one might

describe more general situations of some geometrical interest, such as intersection

theory on a Grassmann bundle. This hope can be indeed realized. In order to

generalize the SCGA studied in [26] to other more general situations one must

restricts the study to what one calls simple and regular SCGAs. A peculiarity of

such SCGAs is that they induce on M certain canonical bases suited to perform

computations almost like in the classical case.

3.1 A Convention

3.1.1 Let A be a graded Z-algebra, x = (x1, . . . , x1+k) a set of indeterminates and

M be a free A-module spanned by m := {mi}0≤i≤n for some n ∈ N∪{∞}. Let Φ :=

(φ0 := idM , φ1, . . .) be a sequence of pairwise commuting endomorphisms of M .

Via Φ one may equip M with a structure of module over A[x] := A[x1, x2, . . . , x1+k],
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by defining

P ·m = evΦ(P )(m) = P (Φ)(m),

where P (Φ) is the A-endomorphism given by P ∈ A[x] after “substituting” xi 7→
φi. Suppose, furthermore, that there is an A-epimorphism

A[x1, x2, . . . , x1+k] ·m0 −→ M −→ 0 (3.1)

Denote by A∗(M, Φ) the quotient A[x]/(ker(evΦ,m0)) (which as an A-module is

isomorphic to M) where

evΦ,m0 : A[x] −→ M (3.2)

sends A[x] 3 P 7→ P (Φ)(m0).

3.1.2 Definition. The ring A∗(M, Φ) is said to be the Φ-Poincaré dual of M or

also the intersection ring of the pair (M, Φ).

By construction, such a ring is generated by (φ1, φ2, . . .) the classes of φi modulo

ker(evΦ,m0). Then M gets a free A∗(M, Φ)-module of rank 1 generated by m0.

The module structure is completely determined by the Pieri’s products:

xi ·mj = φi(mj); (3.3)

For each m ∈ M there is Gm ∈ A[x] such that Gm(Φ)·m0 = m. The polynomial Gm

is unique up to an element of ker(evΦ,m0): it will be said a Giambelli’s polynomial

for m ∈ M . The element Gm(Φ), instead, is uniquely defined inA∗(M, Φ): abusing

notation will be denoted by the same symbol and abusing terminology will be said

the Giambelli’s polynomial of m. Since the mis are an A-basis for M , clearly

Gmi
(Φ) form a basis of A∗(M, Φ) as an A-module.

Denote by Gm
i (Φ) := Gmi

(Φ) be the Giambelli’s polynomial corresponding to

mi. To know the value of xi ·mj is the same as knowing the expression φi ◦Gm
j (Φ)

as linear combination of {Gm
i (Φ)}, i.e. the constant structures of the A-algebra

A∗(M, Φ).

3.1.3 Example. Let M = A∗(Pn) be the Chow group of Pn. As a Z-module

it is freely generated by Hi, the class of a hyperplane of dimension i. It is a
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free A∗(Pn)-module of rank 1 generated by Hn := [Pn]. In fact hi ∩ Hn = Hn−i,

where h = c1(OPn(1)). Hence the Giambelli’s polynomial of Hi is hn−i. Moreover,

recalling that A∗(Pn) = Z[h]/(h1+n) the Pieri’s products are

h ∩Hi = Hi−1.

3.1.4 Example. Let I ∈ Ik
n. Then A∗(Gk(Pn)) is a free Z-module generated by

σI , where σI ∩ [Gk(Pn)] = ΩI . Classical Giambelli’s formula says that σI = ∆I(σ).

Therefore

ΩI = ∆I(σ) ∩ [Gk(Pn)],

i.e. ∆I(σ) ∈ A∗(Gk(Pn)) is the Giambelli’s polynomial for ΩI . Pieri’s product are

σi ∩ ΩI

and can be computed via Pieri’s formula holding in A∗(Gk(Pn)). In fact:

σi ∩ ΩI = σi ∩ (σI ∩ [Gk(Pn)]) = (σi · σI) ∩ [Gk(Pn)]

and σi ∩ σI can be computed via Pieri’s formula.

3.2 Simple and Regular SCGAs on a Free-Module

over a Graded Algebra.

3.2.1 This section is strongly inspired by previous work already done by Laksov

and Thorup ([46], where the author identify a free A-module of rank n with the

quotient A[X]/(p), where p is a monic irreducible poolynomial of degree n. We

translate dear theory in a more elementary language which is suitable in view of

the subsequent applications. The Reader is advised to look at that paper.

3.2.2 Let A be a graded Z-algebra of characteristic zero:

A := A0 ⊕ A1 ⊕ A2 ⊕ . . . , (A0 = Z)
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and let M be a free A-module of rank 1 + n, for some n ∈ N ∪ {∞}, spanned by

the basis µ := (µ0, µ1, . . . , µn). The module M can be given the structure of a

graded A-module:

M := M0 ⊕M1 ⊕M2 ⊕ . . . (3.4)

by setting

Mh := Ah · µ0 ⊕ Ah−1 · µ1 ⊕ . . .⊕ A0 · µh.

If m ∈ Mh, one says that m has weight h (wt(m) = h). In particular wt(µh) = h.

For each k ≥ 0, let
∧1+k M be the (1 + k)th exterior power of M . Let

1+k∧
µ = {µi0 ∧ µi1 ∧ . . . ∧ µik | 0 ≤ i0 ≤ i1 ≤ . . . ≤ ik}

be the basis of
∧1+k M induced by µ. Then

∧1+k M is itself a graded A-module:

if a ∈ Aj, define the weight of a · µi0 ∧ µi1 ∧ . . . ∧ µik as:

wt(aµi0 ∧ µi1 ∧ . . . ∧ µik) = j + wt(µi0 ∧ µi1 ∧ . . . ∧ µik),

where

wt(µi0 ∧ µi1 ∧ . . . ∧ µik) = i0+(i1−1)+. . .+(ik−k) =
k∑

j=0

(ij−j) =
k∑

j=0

ij−k(k + 1)

2
.

Then one has
∧1+k M =

⊕
w≥0(

∧1+k M)w and (
∧1+k M)w is the Z-submodule of

∧1+k M of the elements of weight h

3.2.3 Let D1 : M −→ M be the unique endomorphism of M such that:

D1µ
i = (1− δin)µi+1−δin +

i+1∑
j=1

ai+1
j µi+1−j, 0 ≤ i ≤ n (3.5)

and where:

• n ∈ N ∪ {∞} and is equal to rk(M)− 1;

• δin is the Kronecker’s delta;

• aj+1
h ∈ Ah, ∀j ≥ 0 and all 0 ≤ h ≤ j + 1.

50



It follows that, with respect to the graduation (3.4), D1 is an endomorphism of M

homogeneous of degree 1. The definition of D1 depends of course on the choice of

the coefficients ai
j.

3.2.4 Another way to write formula (3.5).

It is worth to explain a little bit more the notation used in formula (3.5),

because it will be used again later on.

Case 1: n = ∞, i.e. when M has infinite countable rank over A (M is spanned

by (µ0, µ1, . . .)).

In this case, δin = 0 for each i ≥ 0 and then formula (3.5) simply says that

D1µ
i = µi+1 +

i+1∑
j=1

ai+1
j µi+1−j, (3.6)

for all i ≥ 0;

Case 2: n is finite, i.e. when M has finite countable rank over A (M is spanned

by (µ0, µ1, . . . , µn)).

In this case expression (3.6) holds for all 0 ≤ i ≤ n− 1 and D1µ
n is a (homo-

geneous of weight n + 1) A-linear combination of (µ0, µ1, . . . , µn), ie,

D1µ
n =

n∑
j=1

ai+1
j µi+1−j. (3.7)

Let
∧

(M, D1) be the simple SCGA associated to the pair (M,
∑

Di
1t

i).

3.2.5 Proposition. The SCGA
∧

(M,D1), where D1 is defined by formula (3.5)

is regular with fundamental element µ0.

Proof. For each i ≥ 0, let εi = Diµ
0 = Di

1µ
0 (agreeing that D0

1 = idM). Notice

that wt(εi) = wt(µi). The proof consists in showing that ε = (εi)0≤i≤n is an A-

basis of M , by checking that the matrix relating ε to µ is invertible. Indeed, we

claim that

εi = µi +
i∑

j=1

bi
jµ

i−j,
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for some bi
j ∈ Aj and for each 0 ≤ i ≤ n, showing that indeed ε freely generates

M as A-module. For i = 0, one has ε0 = µ0. Assume that the property holds for

all 0 ≤ h ≤ i− 1 ≤ n− 1. Then:

εi = Di
1µ

0 = D1(D
i−1
1 µ0) = D1(ε

i−1).

By the inductive hypothesis:

εi = D1ε
i−1 = D1(µ

i−1 +
i−1∑
j=1

bi−1
j µi−1−j) = µi +

i−1∑
j=1

bi−1
j D1µ

i−1−j. (3.8)

But
∑i−1

j=1 bi−1
j D1µ

i−1−j is a homogeneous linear combination of weight i of µ0, . . . , µi−1,

and hence equation (3.8) proves that ε is a basis and that the SCGA
∧

(M,D1) is

regular with fundamental element µ0.

3.2.6 If A = Z one falls in the same situation studied in [26], while if

D1µ
j = (1− δjn)µj+1−δjn + δjn(an+1

1 µn + . . . + an+1
n+1µ

0), 1

for all 0 ≤ j ≤ n, one says that µ is a D1-canonical basis for M . All the endo-

morphisms of the form (3.5) admit a D1-canonical basis, which will be denoted by

ε := (ε0, ε1, . . .): it is in fact sufficient to set

ε0 = µ0 and εi = Di
1µ

0. (3.9)

Notice that all the elements εi are homogeneous of weight i (wt(εi) = wt(µi) = i).

The ordered set ε is clearly a basis since it is related to µ via an invertible triangular

matrix B:

εj =
∑

i

Bj
i · µi,

where Bj
0 = 1, Bj

h = 0 for h > j and Bj
i = aj

i for 1 ≤ i ≤ j. Similarly:

1+k∧
ε := {εi0 ∧ εi1 ∧ . . . ∧ εik : 0 ≤ i0 < i1 < . . . < ik},

is a basis of
∧1+k M , again said to be D1-canonical (notice, once more, that

wt(µi0 ∧ µi1 ∧ . . . ∧ µik) = wt(εi0 ∧ εi1 ∧ . . . ∧ εik).

1One can write in another way as in 3.2.4.
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3.2.7 Lemma. Let (
∧

M, Dt) be a simple SCGA and let Dt :=
∑
j≥0

(−1)jDjt
j be

the inverse of Dt. Then Dh|V1+k M
= 0, for each h > 1 + k.

Proof. By induction on k. If k = 0 one has Dh(m) = 0, for each h ≥ 2 and

each m ∈ M . In fact Dt|M
=

∑
i≥0

Di
1t

i. Therefore Dt|M
= 1 −D1t, i.e. Dh|M = 0

for each h ≥ 2. Suppose now the property true for k and let h > 1 + k. Any

m1+k ∈
∧1+k M is a finite A-linear combination of elements of the form m ∧mk,

for suitables m ∈ M and mk ∈
∧k M . It suffices then to check the property for

elements of this form. One has:

Dh(m ∧mk) =
h∑

j=0

Djm ∧Dh−j(αk).

As Djm = 0 for j ≥ 2, one has:

h∑
j=0

Djm ∧Dh−jmk = D1m ∧Dh−1mk

and, by the inductive hypothesis, this last term vanishes too, because h− 1 > k.

As a consequence of the above property, one has a useful particular case of

integration by parts:

Dh(α ∧m) = Dhα ∧m + Dh−1(α ∧D1m), (3.10)

for each α ∈ ∧
M and each m ∈ M . This can be seen directly either by applying

Leibniz’s rule (2.5) for Dh or by applying formula (2.20) and observing that D1 =

D1 and Dj(ε
i) = 0, whenever j ≥ 2.

3.2.8 Lemma. For each h,m ≥ 0 and k ≥ 1, the following formula holds:

Dh(ε
m ∧ εm+1 ∧ . . . ∧ εm+k−1 ∧ εm+k) = εm ∧ εm+1 ∧ . . . ∧ εm+k−1 ∧ εm+k+h. (3.11)

Proof. By induction on k. Suppose the formula holds for all k − 1 ≥ 0 and all

m ≥ 0. Then one has:

Dh(ε
m ∧ εm+1 ∧ . . . ∧ εm+k−1 ∧ εm+k) =

= εm ∧Dh(ε
m+1 ∧ . . . ∧ εm+k−1 ∧ εm+k) + Dh−1(ε

m+1 ∧ εm+1 ∧ . . . ∧ εm+k−1 ∧ εm+k).
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The second summand vanishes because εm ∧ εm = 0 and the first, by induction, is

precisely

εm∧εm+1∧. . .∧εm+k−1∧εm+k+h.

3.2.9 Let Z[T] := Z[T1, T2, . . .] be the ring of polynomials in infinitely many

indeterminates and let A[T] := Z[T]⊗Z A. For each k ≥ 0, consider the map

evD,µ0∧µ1∧...∧µk : A[T] −→
1+k∧

M,

sending each P ∈ A[T] onto evD,µ0∧µ1∧...∧µk(P ) = P (D) · µ0 ∧ µ1 ∧ . . . ∧ µk. Here,

P (D) is the endomorphism of
∧1+k M gotten by “substituting” Ti = Di into the

polynomial P .

3.2.10 Theorem. The map evD,µ0∧µ1∧...∧µk is surjective.

Proof. It is sufficient to prove that for each element µi0 ∧ µi1 ∧ . . . ∧ µik ∈ ∧1+k µ,

there exists a polynomial Gµ
i0i1...ik

∈ A[T] such that

µi0 ∧ µi1 ∧ . . . ∧ µik = Gµ
i0i1...ik

(D) · µ0 ∧ µ1 ∧ . . . ∧ µk.

Since
∧1+k E is a basis of

∧1+k M too and, moreover,

ε0 ∧ ε1 ∧ . . . ∧ εk = µ0 ∧ µ1 ∧ . . . ∧ µk,

it is sufficient to prove that for each εi0 ∧ εi1 ∧ . . . ∧ εik , there exists Gε
i0i1...ik

∈ A[T]

such that

εi0 ∧ εi1 ∧ . . . ∧ εik = Gε
i0i1...ik

(D) · ε0 ∧ ε1 ∧ . . . ∧ εk,

since any µi0 ∧ µi1 ∧ . . . ∧ µik is a unique A-linear combinations of elements of
∧1+k ε.

Let 0 ≤ j ≤ k. Declare that
∧1+k M enjoys the property Gε

j if, for each

j < ij+1 < . . . < ik

there exists a polynomial Gε
j,ij+1,...,ik

∈ A[T] such that

ε0 ∧ ε1 ∧ . . . ∧ εj ∧ εij+1 ∧ . . . ∧ εik = Gj,ij+1,...,ik(D)ε0 ∧ ε1 ∧ . . . ∧ εk.
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We shall show, by descending induction, that
∧1+k M enjoys Gε

j for each 0 ≤
j ≤ k. In fact Gε

k is trivially true, while Gε
k−1 is true by Lemma 3.2.8. Let us

suppose that Gε
j holds for some 1 ≤ j ≤ k− 1. Then Gε

j−1 holds. In fact, for each

j − 1 < ij < . . . < ik,

ε0 ∧ ε1 ∧ . . .∧ εj−1 ∧ εij ∧ . . .∧ εik = Dij−j(ε
0 ∧ ε1 ∧ . . .∧ εj−1 ∧ εj)∧ εij+1 ∧ . . .∧ εik ,

by Lemma 3.2.8. Applying integration by parts (2.20) one has, therefore:

ε0∧ ε1∧ . . .∧ εj−1∧ εij ∧ . . .∧ εik =

ij−j∑

h=0

Dij−j−h(ε
0∧ ε1∧ . . . εj ∧Dh(ε

ij+1 ∧ . . .∧ εik)).

Since Dh(ε
ij+1 ∧ . . . ∧ εik) is a sum of elements of the form

εhj+1 ∧ . . . ∧ εhk ,

with j < hj+1 < . . . < hj, applying the inductive hypothesis, one concludes that

Gε
j−1 holds, too. In particular Gε

0 holds and the claim is proven.

3.2.11 Example. Let us find a polynomial Gε
i0i1

(T) such that

εi0 ∧ εi1 = Gε
i0i1

(D) · ε0 ∧ ε1.

Applying twice formula (2.20), one has:

εi0 ∧ εi1 = Di0ε
0 ∧ εi1 = Di0(ε

0 ∧ εi1)−Di0−1(ε
0 ∧ εi1+1) =

= Di0Di1−1(ε
0 ∧ ε1)−Di0−1Di1(ε

0 ∧ ε1) =

∣∣∣∣
Di0 Di1

Di0−1 Di1−1

∣∣∣∣ · ε0 ∧ ε1.

Thus, Gε
i0i1

(T) = Ti0Ti1−1 − Ti0−1Ti1 =

∣∣∣∣
Ti0 Ti1

Ti0−1 Ti1−1

∣∣∣∣

3.2.12 Definition. The intersection ring of the k-SCGP
∧1+k(M, D1) (see Def-

inition 2.4.2) is, by definition

A∗(
1+k∧

(M, D1)) =
A[T]

(ker(evD,µ0∧µ1∧...∧µk)
.
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3.2.13 Definitions. According to 3.1.1, Gµ
i0i1...ik

∈ A[T] such that

µi0 ∧ µi1 ∧ . . . ∧ µik = Gµ
i0i1...ik

(D)µ0 ∧ µ1 ∧ . . . ∧ µk.

will be said to be a Giambelli polynomial of µi0 ∧ µi1 ∧ . . . ∧ µik . It is unique

modulo ker(evD,µ0∧µ1∧...∧µk). On the other hand we shall say, abusing terminology,

that Gµ
i0i1...ik

(D) is the Giambelli’s polynomial of µi0 ∧ µi1 ∧ . . . ∧ µik , when seen

inside A∗(
∧1+k(M, D1)).

Similarly, for each εi0 ∧ εi1 ∧ . . . ∧ εik we shall denote by Gε
i0i1...ik

∈ A[T] a

Giambelli polynomial for εi0 ∧ εi1 ∧ . . . ∧ εik , i.e. such that:

εi0 ∧ εi1 ∧ . . . ∧ εik = Gε
i0i1...ik

(D)ε0 ∧ ε1 ∧ . . . ∧ εk.

3.2.14 Proposition. The ring A∗(
∧1+k(M, D1)) is generated by (D1, D2, . . . , D1+k).

Proof. In fact, by Lemma 3.2.7, we know that Dh(ε
i1 ∧ . . . ∧ εik) = 0, for each

h > 1 + k. Then Dh = 0 as element of A∗(
∧1+k(M, D1)). But one also has:

Dh −Dh−1D1 + . . . + (−1)hDh = 0

which, for h > 1+k says that Dh is a polynomial expression in Dh−1, Dh−2, . . . , D1.

In particular one knows that Dk+2 is a polynomial expression in D1, D2, . . . , D1+k.

3.3 Pieri and Giambelli’s Formulas in SCGA

3.3.1 Pieri’s Formula in Canonical form. In the D1-canonical basis
∧1+k ε

of
∧1+k M , the operators Dj have a particular simple expression:

Dh(ε
i0 ∧ εi1 ∧ . . . ∧ εik) =

∑
εi0+h0 ∧ εi1+h1 ∧ . . . ∧ εik+hk ,

the sum being over all (1 + k)-tuples of non negative integers (h0, h1, . . . , hk) such

that
∑

hi = h. Because the alternating feature of the ∧-product, some terms may

cancel. The remaining terms are predicted by Pieri’s formula for Dh.
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3.3.2 Proposition (Pieri’s formula in canonical form). Pieri’s formula for

Dh in the canonical basis ε holds:

Dh(ε
i0 ∧ εi1 ∧ . . . ∧ εik) =

∑

(hi)∈P (I,h)

εi0+h0 ∧ εi1+h1 ∧ . . . ∧ εik+hk , (3.12)

where P (I, h) is the set of all (1 + k)-tuples (hi) ∈ N1+k such that:

0 ≤ i0 ≤ i0 + h0 < i1 ≤ i1 + h1 < i2 ≤ i2 + h2 < . . . ≤ ik−1 + hk−1 < ik

and h0 + h1 + h2 + . . . + hk = h.

Proof. Equation (3.12) is defined over the integers and then the same proof is as

in [26], Theorem 2.4, where A = Z, works in this case. We repeat it below, up to

minor changes, for sake of completeness.

For k = 1, formula (3.12) is trivially true. Let us prove it directly for k = 2.

For each h ≥ 0, let us split sum (3.12) as:

Dh(ε
i0 ∧ εi1) =

∑

h0+h1=h

εi0+h0 ∧ εi1+h1 = P + P . (3.13)

where

P =
∑

i0+h0<i1

h0+h1=h

εi0+h0 ∧ εi1+h1 and P =
∑

i0+h0≥i1

h0+h1=h

εi0+h0 ∧ εi1+h1 .

One contends that P vanishes. In fact, on the finite set of all integers i1− i0 ≤
a ≤ i1 − i0 + h, define the bijection ρ(a) = i1 − i0 + h− a. Then:

2P =
h∑

h0=i1−i0

εi0+h0 ∧ εi1+h−h0 +
h∑

h0=i1−i0

εi0+ρ(h0) ∧ εi1+h−ρ(h0) =

=
h∑

h0=i1−i0

εi1+h−h0 ∧ εi0+h0 −
h∑

h0=i1−i0

εi0+h0 ∧ εi1+h1 = 0,

hence P = 0 and (3.12) holds for k = 2. Suppose now that (3.12) holds for all

1 ≤ k′ ≤ k − 1. Then, for each h ≥ 0:
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Dh(ε
i0 ∧ εi1 ∧ . . . ∧ εik) =

∑

h′k+hk=h

Dh′k(ε
i0 ∧ . . . ∧ εik−1) ∧Dhk

εik ,

and, by the inductive hypothesis:
∑

(hi)

(εi0+h0 ∧ . . . ∧ εik−2+hk−2 ∧ εik−1+hk−1) ∧ εik+hk , (3.14)

summed over all (hi) such that h0 + . . . + hk = h and

1 ≤ i0 + h0 < i1 ≤ . . . . . . ≤ ik−2 + hk−2 < ik−1. (3.15)

But now (3.14) can be equivalently written as:

∑

(hi,h′′)

εi0+h0 ∧ . . . ∧ εik−2+hk−2 ∧Dh′′(ε
ik−1 ∧ εik), (3.16)

where the sum is over all (h0, . . . , hk−2, h”) such that h0 + . . . + hk−2 + h′′ = h and

satisfying (3.15). Since

Dh”(ε
ik−1 ∧ εik) =

∑

ik−1+hk−1<ik

hk−1+hk=h”

εik−1+hk−1 ∧ εik+hk ,

by the inductive hypothesis, substituting into (3.16) one gets exactly sum (3.12).

3.3.3 Remark. The reason why one calls equality (3.12) Pieri’s formula, is due

to the fact that it coincides with the combinatorial Pieri’s formula. In fact, to

each finite increasing sequence

0 ≤ i0 < i1 < . . . < ik,

one may associate the partition of length ≤ 1 + k (see e.g. [49]):

λ = (λk, λk−1, . . . , λ1, λ0) = (ik − k, ik−1 − (k − 1), . . . , i1 − 1, i0).

Writing for a moment ελ for εi0 ∧ εi1 ∧ . . . ∧ εik , then Dhε
λ =

∑
ρ ερ, summed over

all partitions ρ of length ≤ 1 + k such that the Young diagram Y (ρ) of ρ is gotten

by the Young diagram Y (λ) by adding h boxes in all possible ways, no two on the

same column ([24])
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3.3.4 As is well known, Pieri’s formula implies in a purely formal way (using

some Jacobi-Trudy identities, see [50]) Giambelli’s determinantal formula, i.e. the

Giambelli’s polynomial of εi0 ∧ εi1 ∧ . . . ∧ εik , as in Definition 3.2.13, can be chosen

into the (Giambelli’s) determinantal form:

Gi0i1...ik(D) = ∆i0i1...ik(D) =

∣∣∣∣∣∣∣∣∣∣

Di0 Di1 . . . Dik

Di0−1 Di1−1 . . . Dik−1

...
...

. . .
...

Di0−k Di1−k . . . Dik−k

∣∣∣∣∣∣∣∣∣∣

. (3.17)

In other words:

εi0 ∧ εi1 ∧ . . . ∧ εik = ∆i0i1...ik(D) · ε0 ∧ ε1 ∧ . . . ∧ εk. (3.18)

Below, a proof within SCGA formalism is offered.

3.3.5 Giambelli’s Formula in Canonical Form. Let I ∈ Ik be a Schubert in-

dex. The Giambelli’s determinant ∆I(T) ∈ Z[T] associated to I = (i0, i1, . . . , ik) ∈
I1+k is:

∆I(T) =
∑

τ∈S1+k

(−1)|τ |Tiτ(0)
Tiτ(1)−1 · . . . · Tiτ(k)−k

=

∣∣∣∣∣∣∣∣∣

Ti0 Ti1 . . . Tik

Ti0−1 Ti1−1 . . . Tik−1
...

...
. . .

...

Ti0−k Ti1−k . . . Tik−k

∣∣∣∣∣∣∣∣∣
(3.19)

If λ = (rk, rk−1, . . . , r0) is the partition associated to λ, i.e., rj = ij−j, formula 3.19

can also be written as:

∆λ(T) =

∣∣∣∣∣∣∣∣∣∣

Tr0 Tr1+1 . . . Trk+k

Tr0−1 Tr1 . . . Trk+k−1

...
...

. . .
...

Tr0−k Tr1−k−1 . . . Trk

∣∣∣∣∣∣∣∣∣∣

(3.20)

Let us denote ∆I(D) the elements of EndA(
∧

M) defined by evD(∆I(T)). Our

target is to show that Giambelli’s determinant ∆I(D) is an explicit Giambelli’s
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polynomial for εi0 ∧ εi1 ∧ . . .∧ εik . To this purpose, for any pair of positive integers

(l, n), let Ll,n be the set of all (1 + n)-tuples (l0, l1, . . . , ln) such that 0 ≤ li ≤ 1

and l0 + l1 + . . . + ln = l. If n < l − 1 the set Ll,n is clearly empty.

3.3.6 Lemma. The following identity holds in
∧

M :

(Dh0Dh1 . . . Dhp−1Dhpα) ∧ εi =

=
p∑

l=0

(−1)l
∑

(lj)∈Ll,p

Dh0−l0Dh1−l1 . . . Dhp−1−lp−1Dhp−lp(α ∧ εi+l).
(3.21)

Proof. The proof is by induction on the integer p. For p = 1, formula (3.21) is

nothing else than formula (3.10). Suppose that (3.21) holds for the integer p−1 > 1

and any α ∈ ∧
M . One may then write

(Dh0Dh1 . . . Dhp−1Dhpα) ∧ εi = (Dh0Dh1 . . . Dhp−1(Dhpα)) ∧ εi =

=

p−1∑

l=0

(−1)l
∑

(lj)∈Ll,p−1

Dh0−l0Dh1−l1 . . . Dhp−1−lp−1(Dhpα ∧ εi+l) (3.22)

Using (3.10), the last side of formula (3.22) becomes:

=

p−1∑

l=0

(−1)l
∑

(lj)∈Ll,p−1

Dh0−l0Dh1−l1 ...Dhp−1−lp−1Dhp(α ∧ εi+l) +

+

p−1∑

l=0

(−1)l+1
∑

(lj)∈Ll,p−1

Dh0−l0Dh1−l1 ...Dhp−1−lp−1Dhp−1(α ∧ εi+l+1) =

=

p∑

l=0

(−1)l
∑

(lj)∈Ll,p

Dh0−l0Dh1−l1 ...Dhp−1−lp−1Dhp−lp(α ∧ εi+l).

Let λ = (rk, . . . , r1, r0), I = (r0, 1 + r1, . . . , k + rk) and denote by ∆ij
I (D) the

determinant of the matrix one gets by erasing the ith row and the jth column.

3.3.7 Theorem. Giambelli’s formula on
∧

M holds:

∆k,k
I (D)(α) ∧ εk+rk =

k−1∑

l=0

(−1)l∆k−l,k
I (D)(α ∧ εk+rk+l). (3.23)
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Proof. Since ∆k,k
I (D) = ∆(rk−1...r1,r0)(D), one has:

∆k,k
I (D)(α) ∧ εk+rk =

∑

σ∈Sk−1

(−1)|σ|Diσ(1)−1 ◦ . . . ◦Diσ(k−1)−(k−1)(α) ∧ εk+rk

Now one applies formula (3.21) to the r.h.s. of the above equation, getting:

∑

τ∈Sk−1

(−1)|τ |
k−1∑

l=0

(−1)
∑

(lα)∈Ll,k−1

Diτ (0)−l0 ◦Diτ (1)−1−l1 ◦ . . . ◦Diτ(k−1)−(k−1)−lk−1(α ∧ εk+rk+l) =

k−1∑

l=0

(−1)l
∑

(lα)∈Ll,k−1

∑

τ∈Sk−1

(−1)|τ |Diτ (0)−l0 ◦Diτ (1)−1−l1 ◦ . . . ◦Diτ(k−1)−(k−1)−lk−1(α ∧ εk+rk+l) =

=
k−1∑

l=0

(−1)l
∑

(lα)∈Ll,k−1

∣∣∣∣∣∣∣∣∣∣

Di0−l0 Di1−l1 . . . Dik−lk

Di0−1−l0 Di1−1−l1 . . . Dik−1−l1
...

...
. . .

...

Di0−k−l0 Di1−k−l1 . . . Dik−k−lk

∣∣∣∣∣∣∣∣∣∣

(α ∧ εk+rk+l).

But

∑

(lα)∈Ll,k−1

∣∣∣∣∣∣∣∣∣∣

Di0−l0 Di1−l1 . . . Dik−lk

Di0−1−l0 Di1−1−l1 . . . Dik−1−l1
...

...
. . .

...

Di0−k−l0 Di1−k−l1 . . . Dik−k−lk

∣∣∣∣∣∣∣∣∣∣

(α ∧ εk+rk+l) = ∆k−l,k
I (D)(α ∧ εk+rk+l),

proving Giambelli’s formula (3.23).

3.3.8 Corollary. Giambelli’s formula on
∧1+k M holds:

εi0 ∧ εi1 ∧ . . . ∧ εik = ∆I(D) · ε0 ∧ ε1 ∧ . . . ∧ εk. (3.24)

Proof. The proof is by induction on the integer k. For k = 0 one has εi0 = Di0ε
0

and the property holds. Suppose it holds for k−1. Then one has, using induction:

εi0 ∧ εi1 ∧ . . . ∧ εik−1 ∧ εik =

= ∆i0i1...ik−1
(D)(ε0 ∧ . . . ∧ εk−1) ∧ εik =

= ∆k,k
I (D)(α) ∧ εik ,

where one set α = ε0 ∧ ε1 ∧ . . . ∧ εk−1. Since for such an α one has

α ∧ εik+l = Dik−k+l(α ∧ εk),
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by applying Lemma 3.2.8, formula (3.23) can be written as:

∆k,k
I (D)(α) ∧ εik =

k−1∑

l=0

(−1)lDik−k+l∆
k−l,k
I (D)(α ∧ εk) =

= ∆I(D)ε0 ∧ ε1 ∧ . . . ∧ εk,

proving the claim.

3.3.9 In general. Working with the basis
∧1+k µ, one can get some corre-

sponding Pieri’s and Giambelli’s formulas. Since
∧

ε and
∧

µ are both A-bases of
∧1+k M , there exists a matrix:

B : Ik
n × Ik

n −→ A

(I, J) 7−→ BI
J := Bi0i1...in

j0j1...jn

such that

µi0 ∧ µi1 ∧ . . . ∧ µik =
∑

Bi0i1...ik
j0j1...jk

εj0 ∧ εj1 ∧ . . . ∧ εjk .

Let B the inverse matrix, i.e.:

∑

J∈Ik
n

Bi0i1...ik
j0j1...jk

·Bj0j1...jk

l0l1...lk
= δi0

l0
δi1
l1

. . . δik
lk

One has then

Dh(µi0 ∧ µi1 ∧ . . . ∧ µik) =
∑

J∈Ik
n

Bi0i1...ik
j0j1...jk

Dhεj0 ∧ εj1 ∧ . . . ∧ εjk =

=
∑

J∈Ik
n

Bi0i1...ik
j0j1...jk

∑

(hi)∈P (J,h)

εj0+h0 ∧ εj1+h1 ∧ . . . ∧ εjk+hk =

=
∑

J∈Ik
n

∑

(hi)∈P (J,h)

Bi0i1...ik
j0j1...jk

B
j0+h0,j1+h1,...,jk+hk

l0l1...lk
µl0 ∧ µl1 ∧ . . . ∧ µlk ,

and then apply Pieri’s for canonical bases. Moreover, using Giambelli’s for-

mula (3.18), one can write:

µi0 ∧ µi1 ∧ . . . ∧ µik =
∑

Bi0i1...ik
j0j1...jk

∆i0i1...ikε
0 ∧ ε1 ∧ . . . ∧ εk,

which can be thought of as the corresponding Giambelli’s for non canonical bases.

However, from our point of view, Giambelli’s polynomials can be found just by

integration by parts, as in the following:
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3.3.10 Example. The Giambelli’s polynomials Gµ
02(D), Gµ

03(D) and Gµ
12(D) are

given by

Gµ
02(D) = D1 − a1

1 − a2
1, (3.25)

Gµ
03(D) = D2 − (a1

1 + a2
1 + a3

1)D1 + a1
1a

3
1 + a1

1a
2
1 + a2

1a
3
1 + a2

1a
2
1 − a3

2 − (a2
1)

2 − a2
2,(3.26)

Gµ
12(D) = (D1 − a1

1 − a3
1)G

µ
02(D)−Gµ

03(D)− a3
2 (3.27)

Let us check that via two different methods.

• First method. Directly. To check the expression for Gµ
02(D), one notices that

the expression for D1µ
1 gives µ2 = D1µ

1 − (y1 − y0)µ
0. Hence:

µ0 ∧ µ2 = µ0 ∧D1µ
1 − a2

1µ
0 ∧ µ1 = (D1 − a1

1 − a2
1)(µ

0 ∧ µ1) (3.28)

proving the (3.25). Similarly, isolating µ3 into the expression

D2µ
1 = D2

1µ
1 = D1(µ

2 + a2
1µ

1 + a2
2µ

0) =

= µ3 + (a3
1 + a2

1)µ
2 + (a3

2 + (a2
1)

2 + a2
2)µ

1 + (a3
3 + a2

1a
2
2 + a2

2a
1
1)µ

0,

one can write

µ0 ∧ µ3 = µ0 ∧D2µ
1 − (a3

1 + a2
1)µ

0 ∧ µ2 − (a3
2 + (a2

1)
2 + a2

2)µ
0 ∧ µ1 =

= µ0 ∧D2µ
1 − (a3

1 + a2
1)µ

0 ∧D1µ
1 + a2

1(a
3
1 + a2

1)µ
0 ∧ µ1 +

−(a3
2 + (a2

1)
2 + a2

2)µ
0 ∧ µ1

Now integrating by parts:

µ0 ∧D2µ
1 = D2(µ

0 ∧ µ1)−D1(D1µ
0 ∧ µ1) = (D2 − a1

1D1)µ
0 ∧ µ1

Similarly:

µ0 ∧D1µ
1 = (D1 − a1

1)(µ
0 ∧ µ1)

Hence:

µ0∧µ3 = (D2− (a1
1 +a2

1 +a3
1)D1 +a1

1a
3
1 +a1

1a
2
1 +a2

1a
3
1 +a2

1a
2
1−a3

2− (a2
1)

2−a2
2)µ

0∧µ1

(3.29)
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proving the claimed expression for Gµ
03(D). Finally one has:

µ1 ∧ µ2 = D1µ
0 ∧ µ2 − a1

1µ
0 ∧ µ2 =

= D1(µ
0 ∧ µ2)− µ0 ∧D1µ

2 − a1
1µ

0 ∧ µ2 =

= (D1 − a1
1)G02(D)µ0 ∧ µ1 − µ0 ∧ µ3 − a3

1µ
0 ∧ µ2 − a3

2µ
0 ∧ µ1 =

= (D1 − a1
1 − a3

1)G02(D)µ0 ∧ µ1 −Gµ
03(D)µ0 ∧ µ1 − a3

2µ
0 ∧ µ1 =

= ((D1 − a1
1 − a3

1)G
µ
02(D)−Gµ

03(D)− a3
2)µ

0 ∧ µ1

proving also formula (3.27).

• Second method. Via canonical bases. One first write the first 4 elements

of the D1-canonical basis of the module M one is working on.

ε0 = µ0;

ε1 = µ1 + a1
1µ

0;

ε2 = µ2 + (a2
1 + a1

1)µ
1 + (a2

2 + (a1
1)

2)µ0;

ε3 = µ3 + (a1
1 + a2

1 + a3
1)µ

2 + (a3
2 + a2

2 + (a2
1)

2 + a2
1a

1
1 + (a1

1)
2)µ1 +

+(a3
3 + a2

2a
2
1 + (a1

1)
3 + 2a1

1a
2
2)µ

0.

Inverting the relations above:

µ0 = ε0;

µ1 = ε1 − a1
1ε

0;

µ2 = ε2 − (a2
1 + a1

1)ε
1 + (a2

1a
1
1 − a2

2)ε
0;

µ3 = ε3 − (a1
1 + a2

1 + a3
1)ε

2 − (a3
2 + a2

2 − a1
1a

2
1 − a3

1a
2
1 − a3

1a
1
1)ε

1 +

+(2a1
1a

2
2 + a2

1a
2
2 + a3

1a
2
2 + a3

2a
1
1 + (a1

1)
3 − a3

1a
2
1a

1
1)ε

0.

Therefore (recall that ε0 ∧ ε1 = µ0 ∧ µ1),

µ0 ∧ µ2 = ε0 ∧ [ε2 − (a2
1 + a1

1)ε
1 + ((a2

1 + a1
1)a

1
1 − (a2

2 + (a1
1)

2))ε0] =

= ε0 ∧ ε2 − (a2
1 + a1

1)ε
0 ∧ ε1 =
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At this point one uses the Giambelli’s determinantal formulas for the canonical

bases, getting:

= D1ε
0 ∧ ε1 − (a2

1 + a1
1)ε

0 ∧ ε1 = (D1 − (a2
1 + a1

1))ε
0 ∧ ε1.

so proving formula (3.25). As for Gµ
03(D) one has:

µ0 ∧ µ3 = ε0 ∧ (ε3 − (a1
1 + a2

1 + a3
1)ε

2 − (a3
2 + a2

2 − a1
1a

2
1 − a3

1a
2
1 − a3

1a
1
1)ε

1 +

+(2a1
1a

2
2 + a2

1a
2
2 + a3

1a
2
2 + a3

2a
1
1 + (a1

1)
3 − a3

1a
2
1a

1
1)ε

0)

= ε0 ∧ ε3 − (a1
1 + a2

1 + a3
1)ε

0 ∧ ε2 − (a3
2 + a2

2 − a1
1a

2
1 − a3

1a
2
1 − a3

1a
1
1)ε

0 ∧ ε1

and again, using the fact that ε0 ∧ ε3 = D2(ε
0 ∧ ε1) one gets:

(
D2 − (a1

1 + a2
1 + a3

1)D1 − (a3
2 + a2

2 − a1
1a

2
1 − a3

1a
2
1 − a3

1a
1
1)

)
ε0 ∧ ε1

proving formula (3.26). The proof of (3.27) works as before:

µ1 ∧ µ2 = (ε1 − a1
1ε

0) ∧ (ε2 − (a2
1 + a1

1)ε
1 + ((a2

1 + a1
1)a

1
1 − (a2

2 + (a1
1)

2))ε0)

= ε1 ∧ ε2 − ((a2
1 + a1

1)a
1
1 − (a2

2 + (a1
1)

2))ε1 ∧ ε0 − a1
1ε

0 ∧ ε2 + a1
1(a

2
1 + a1

1)ε
0 ∧ ε1

= ε1 ∧ ε2 + ((a2
1 + a1

1)a
1
1 − (a2

2 + (a1
1)

2) + a1
1(a

2
1 + a1

1))ε
0 ∧ ε1 − a1

1ε
0 ∧ ε2.

= ε1 ∧ ε2 + (a2
1a

1
1 − a2

2 + a1
1(a

2
1 + a1

1))ε
0 ∧ ε1 − a1

1ε
0 ∧ ε2

At this point one uses Giambelli’s determinantal formula (3.17) for ε1 ∧ ε2:

ε1 ∧ ε2 = (D2
1 −D2)ε

0 ∧ ε1,

easily deducible via integration by parts which is easier in this case because the

basis ε is canonical. As a consequence

µ1 ∧ µ2 =
(
D2

1 −D2 − a1
1D1 + (2a1

1a
2
1 + (a1

1)
2 − a2

2)
)
ε0 ∧ ε1,

which coincides with formula (3.27) up substituting the expression of Gµ
02(D) and

Gµ
03(D) in that same formula.
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3.3.11 Remark. The moral of the second part of Example 3.3.10 is that what-

ever is the regular simple SCGA on a free A-module one is working with, Gi-

ambelli’s formula for the basis element µi0 ∧ µi1 ∧ . . . ∧ µik is known once one

knows Giambelli’s formulas for the canonical bases, i.e. Giambelli’s formulas hold-

ing in classical Schubert Calculus!

3.4 Intersection Theory on Projective Bundles.

3.4.1 Let p : E −→ X be a vector bundle of rank 1 + n over a smooth connected

complex algebraic variety of dimension m ≥ 0. For each 0 ≤ k ≤ n, let pk :

Gk(P(E)) −→ X be the induced Grassmann bundle. Let

0 −→ Tk −→ p∗kE −→ Qk −→ 0,

be the k-tautological sequence over Gk(P(E)): Tk is the (rank 1 + k) universal

tautological sub-bundle of p∗kE, while Qk is the (rank n − k) universal quotient

bundle. If k = 0, p0 : P(E) −→ X is the usual projective bundle and T0 =

OP(E)(−1). Recall that A∗(P(E)) is an A∗(X) algebra generated by ζ := c1(T0)

with a relation defining the Chern classes of E. More precisely (see [23], p. 141):

A∗(P(E)) ∼= A∗(X)[ζ]

(ζn+1 + p∗c1(E)ζn + . . . + p∗cn(E))
. (3.30)

By Poincaré duality A∗(P(E)) ∼= A∗(P(E)) is freely generated by ε = (ε0, ε1, . . . , εn),

where εi is gotten by capping with the fundamental class:

εi := ζ i
1 ∩ [P(E)].

Define D1 : M −→ M by setting

D1ε
i = ζ ∩ εi = ζ ∩ (ζ i ∩ [Gk(P(E))] = ζ i+1 ∩ [Gk(P(E)], 0 ≤ i ≤ n.

Clearly one has

D1ε
i = (1− δin)εi+1−δin − δin(p∗c1(E)Dn

1 + . . . + p∗cn(E)) 0 ≤ i ≤ n,
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so that ε is a D1-canonical basis for M . By construction, the pair (M,D1) is a

0-SCGP and there is a natural identification between A∗(P(E)) and A∗(M,D1)

via the map ζ 7→ D1. We contend that the k-SCGP
∧1+k(M,D1) describes the

intersection theory of Gk(P(E)). Let us recall some basic facts quoted from [23],

p. 266ff: for our own commodity, some notation will be adapted in a obviously

equivalent way. Let Ct := ct(Qk − p∗kE) be the Chern polynomial of Qk − p∗kE ∈
K0(Gk(P(E))), the Grothendieck group of locally free sheaves on Gk(P(E)), and

let ∆I(C) := ∆I(Ct) be the Giambelli’s determinant associated to Ct and to

I ∈ Ik
n. Then, the basis theorem ([23], Proposition 14.6.5) implies that ∆I(C) and

∆I(C) ∩ [Gk(P(E)] freely generate A∗(Gk(P(E)) and A∗(Gk(P(E)), respectively,

as modules over A∗(X). In particular, A∗(Gk(P(E)) is generated by Ci := ci(Qk−
p∗kE) as A∗(X)-algebra. Let





∆ :
∧1+k M −→ A∗(Gk(P(E))

εi0 ∧ εi1 ∧ . . . ∧ εik 7−→ ∆i0i1...ik(C) ∩ [Gk(P(E))]

.

Clearly ∆ is an A∗(X)-module isomorphism. Moreover:

3.4.2 Theorem. The map C : A∗(
∧1+k(M,D1)) −→ A∗(Gk(P(E)) , Di 7→ Ci

is an A∗(X)-algebra isomorphism and the following diagram

A∗(
∧1+k(M,D1))⊗A∗(X)

∧1+k M −→ ∧1+k MyC⊗∆
y∆

A∗(Gk(P(E))⊗A∗(X) A∗(Gk(P(E))
∩−→ A∗(Gk(P(E))

(3.31)

is commutative, where ∩ is the capping bilinear map, the upper horizontal map

sends (Dh, ε
i0 ∧ εi1 ∧ . . . ∧ εik) 7→ Dh(ε

i0 ∧ εi1 ∧ . . . ∧ εik) and the vertical maps are

isomorphisms.

Proof. To begin with, the map C is an A∗(X)-module isomorphism. In fact the

A∗(X)-module A∗(
∧1+k(M, D1)) is freely generated by {∆I(D) | I ∈ Ik

n}, as well

as A∗(Gk(P(E)) is freely generated, by the basis theorem, by {∆I(C) | I ∈ Ik
n},

hence the map Di 7→ Ci sends ∆I(D) onto ∆I(C). This map is indeed an A∗(X)-

algebra isomorphism. To show this, since A∗(
∧1+k(M,D1)) and A∗(Gk(P(E)) are
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generated, as A∗(X)-algebras, by Di and Ci respectively, it suffices to show that:

C(Dh∆I(D)) = C(Dh)C(∆I(D)) = Ch∆I(C), (3.32)

for every 0 ≤ h ≤ k and every I = (i0, i1, . . . , ik) ∈ Ik
n.

Now,

Dh∆I(D)ε0∧ε1 ∧ . . . ∧ εk = Dh∆i0i1...ik(D)ε0∧ε1 ∧ . . . ∧ εk = Dh(ε
i0 ∧ εi1 ∧ . . . ∧ εik),

by Giambelli’s formula (3.18). On the other hand, applying Pieri’s formula (3.12),

one has

Dh(ε
i0 ∧ εi1 ∧ . . . ∧ εik) = Dh


 ∑

(hi)∈P (I,h)

εi0+h0 ∧ εi1+h1 ∧ . . . ∧ εik+hk


 =

=
∑

(hi)∈P (I,h)

∆I+H(D)ε0 ∧ ε1 ∧ . . . ∧ εk,

where one applied again Giambelli’s formula (3.18), by setting H = (h0, h1, . . . , hk) ∈
P (I, h). Therefore

Dh∆i0i1...ik(D) =
∑

(hi)∈P (I,h)

∆I+H(D)

in the ring A∗(
∧1+k(M, D1)) and, therefore:

C(Dh∆i0i1...ik(D)) = C(
∑

(hi)∈P (I,h)

∆I+H(D)) =
∑

(hi)∈P (I,h)

C(∆I+H(D)) =

=
∑

(hi)∈P (I,h)

∆I+H(C) = Ch∆I(C)

where last equality holds by Pieri’s formula in [23], p. 264, Lemma 14.5.2.

Hence equality (3.32) holds, implying that C is an A∗(X)-algebra isomorphism.

This implies that C ⊗∆ is an isomorphism too and that diagram (3.31) is com-

mutative, as a standard check easily shows.

Notice that when X is a point one gets, as particular cases, the results of ([26]).
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3.4.3 Remark. Notice that in (3.31) the pair (M,D1) is indeed (A∗(P(E)), ζ).

The diagram can be re-written as:

A∗(
∧1+k(A∗(P(E)), ζ))⊗A∗(X)

∧1+k A∗(P(E)) −→ ∧1+k A∗(P(E))yC⊗∆
y∆

A∗(Gk(P(E))⊗A∗(X) A∗(Gk(P(E))
∩−→ A∗(Gk(P(E))

To say that there is such a commutative diagram expressing the intersection theory

of Gk(P(E)) via that of P(E), by “taking exterior powers”, one shall briefly write,

as a reasonable notation:

A∗(Gk(P(E)) =
1+k∧

(A∗(P(E))). (3.33)

Equality (3.33) certainly holds in the category of A∗(X)-modules and will be un-

derstood at level of A∗(X)-algebras in the sense explained above (i.e. as algebra

of operators over
∧1+k A∗(P(E)).
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Chapter 4

Equivariant Cohomology of

Grassmannians

For space reasons we shall not recall in this chapter all preliminaries regarding the

general definitions of equivariant cohomology and/or intersection ring. However

there are very well established references on the subject, such as [11], [15] which

combine the difficulty of the subject with an advanced expository skill. To these

references we want also add [52], our first happy experience on the subject and the

beautiful exposition in [68]. For the reader not yet aware of basics definitions of

the theory, we want to address a quick introduction. The results of this chapter

will be also collected in [29].

4.1 T -Equivariant Intersection Theory of Grass-

mannians

4.1.1 Grassmann bundle. Let p : E −→ X be a holomorphic vector bundle of

rank 1 + n and let mαβ : Uα ∩ Uβ −→ Gl1+n(C) be a cocycle defining it, where

U := {Uα : α ∈ A} is an open covering of X trivializing E . The transition functions
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of the corresponding projective bundle p0 : P(E) −→ X are

[mαβ] : Uα ∩ Uβ −→ Sl1+n(C),

where one sets [mαβ] = mαβ/ det(mαβ). The Grassmann bundle

pk : Gk(P(E)) −→ X,

can be realized as follows. First recall that Gk(P(E)) = G1+k(E). Let

[∧1+kp] : P(
1+k∧

E) −→ X

be the projective bundle corresponding to the vector bundle

∧1+kp :
1+k∧

E −→ X.

Then Gk(P(E)) ⊆ P(
∧1+k E) is the closed subvariety of all points of P(

∧1+k E)

which over a point x ∈ X corresponds to the variety of C-lines spanned by a totally

decomposable vector of
∧1+k Ex. The induced fibration pk : Gk(P(E)) −→ X is

precisely the sought for Grassmann bundle. Its transition functions are the same

as those of the bundle P(
∧1+k E) which are themselves determined by those of E .

4.1.2 Bundles associated to a principal bundle. Let G be an algebraic group

and let P −→ X be a holomorphic principal G-bundle: P is a smooth complex

scheme acted on freely and algebraically on the right by G, in such a way that

the orbit space G\P is isomorphic to X, and the transition functions of P −→ X

are holomorphic. For example, the scheme C1+m \ {0} is acted on the right by

C∗ via componentwise multiplication and the orbit variety is precisely Pm. Hence

C1+m \ {0} −→ Pm is a holomorphic principal C∗-bundle over Pm meeting our

hypotheses.

Suppose now that F is a scheme equipped with any algebraic left G-action. The

following theorem is copied by [14], p. 91, (16.14.7), there stated in the category

of differentiable manifolds. However the same proof holds in the holomorphic

category.
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4.1.3 Theorem. The group G acts holomorphically on the right on P × F via

(p, f)g = (pg, g−1f). Suppose that the orbit scheme P ×G F : P × F/G exists

in the holomorphic category (it always exists in the differentiable category). Then

πF : P ×G F −→ X is a bundle ( the “associated bundle to F”) such that the fibers

are holomorphically equivalent to F .

Let us see a few applications of the above theorem. Suppose that ρ : G −→
Gl(V ) is a holomorphic representation, where V is a complex vector space. Then

V becomes a left G-module via the action g ∗ v = ρ(g)v. Let P ×ρ V −→ X be

the associated bundle to V (we write P ×ρ V instead of P ×G V to emphasize the

representation ρ). It is a vector bundle E −→ X whose transition functions are

precisely

ρ(gαβ) : Uα ∩ Uβ −→ Gl(V ),

where gαβ : Uα ∩ Uβ −→ G are the holomorphic transition functions of P −→ X

with respect to some open covering U = (Uα : α ∈ A) trivializing X. Similarly, one

concludes that P ×ρ G1+k(V ) −→ X is a holomorphic grassmann bundle over X.

One contends that indeed P ×ρ G1+k(V ) −→ X is isomorphic to G1+k(E) −→ X.

In fact the transition function of the first bundle are [∧kρ(gαβ)] where

∧1+kρ(gαβ(x))(v0 ∧ . . . ∧ vk) = ρ(gαβ(x))(v0) ∧ . . . ∧ ρ(gαβ(x))(vk)

while those of the second bundle are ∧1+k(ρ(gαβ)). But

∧1+k(ρ(gαβ))(x)(v0 ∧ . . . ∧ vk) = ρ(gαβ(x))(v0) ∧ . . . ∧ ρ(gαβ(x))(vk)

so that ∧1+kρ(gαβ) = ∧1+k(ρ(gαβ)).

4.1.4 Let G be a complex Lie group. Then there exists a universal G-bundle

EG −→ BG satisfying the following property: for each G-bundle P −→ X, there

exists a unique map φ : X −→ BG, up to homotopy equivalence, such that

P = φ∗BG. It turns out that EG is contractible, i.e. all the homotopy groups are

zero. Let now G being the compact torus T ′ := (S1)1+p, for some p ≥ 0, and let

ET ′ −→ BT ′ be the corresponding universal principal T ′-bundle : T ′ acts freely
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on ET ′, ET ′ is contractible and BT ′ is the product of (1+p)-copies of the complex

infinite projective space P∞. The latter is thought of as the inductive limit lim
−→
Pm,

with respect with the chain of natural inclusions

. . . ↪→ Pm ↪→ P1+m ↪→ . . . .

and equipped with the inductive topology. The principal T ′-bundle ET ′ itself

can be seen as the inductive limit of the bundles EmT ′ −→ BmT ′, where EmT ′ =

(S2m+1)1+p, BmT ′ = (S2m+1)1+p/(S1)1+p ∼= Pm. In particular EmT ′ is 2m-connected

(i.e. πi(S
2m+1) = 0 for all 1 ≤ i ≤ 2m).

If X is a paracompact topological space equipped with a continuous right T ′-

action, the T ′-equivariant cohomology ring of X is:

H∗
T ′(X) := H∗(ET ′ ×T ′ X)

The key result we shall need in the sequel is that for each m > r ≥ 0, there is a

map

φm,r,j : Hj(EmT ′ ×T ′ X) −→ Hj(ErT
′ ×T ′ X)

which is an isomorphism for all 0 ≤ j ≤ 2r (see [11], [37], [16]). In particular

H∗
T ′(X) =

⊕
i≥0 H i

T ′(X), where each H i
T ′(X) = lim← H i(EmT ′ ×T ′ X), where the

inverse limit is taken with respect to the the system of (iso)morphisms φm,r,j. It

follows that for each r ≥ 0, there is a morphism

φr,i : H i
T ′(X) −→ H i(ErT

′ ×T ′ X)

which is an isomorphism for each i ≤ 2m and such that, for each m ≥ r, the

natural inclusion ErT
′ ↪→ EmT ′ gives a map

ErT
′ ×T ′ X ↪→ EmT ′ ×T ′ X

inducing a ring homomorphism

φm,r : H∗(EmT ′ ×T ′ X) −→ H∗(ErT
′ ×T ′ X)
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such that φm,r,i : H i(EmT ′×T ′ X) −→ H i(ErT
′×T ′ X) is an isomorphism for each

j ≤ 2r. Moreover

φm,r,j ◦ φm,j = φr,j,

(by the universal property of the inverse limit).

It turns out that H∗
T ′(X) is a ring with respect to the equivariant cup product. If

ξ1 ∈ Hq1

T ′(X) and ξ2 ∈ Hq2

T ′(X), then for each r > q1+q2, H i
T ′(X) ∼= H i(ErT

′×T ′X),

for each 1 ≤ i ≤ r. Then one set:

ξ1 ∪ ξ2 = φ−1
r,q1+q2

(φr,q1(ξ1) ∪ φr,q2(ξ2)).

Notice that if m ≥ r, one has:

φ−1
r,q1+q2

(φr,q1(ξ1) ∪ φr,q2(ξ2)) =

= (φm,r,q1+q2 ◦ φm,q1+q2)
−1(φm,r,q1(φm,q1(ξ1)) ∪ φm,r,q2(φm,q2(ξ1))) =

= φ−1
m,q1+q2

◦ φ−1
m,r,q1+q2

◦ φm,r,q1+q2((φm,q1(ξ1)) ∪ φm,q2(ξ1)) =

= φ−1
m,q1+q2

(φm,q1(ξ1) ∪ φm,q2(ξ2)).

4.1.5 T -equivariant Chow groups. Let now X be a complex smooth projec-

tive variety acted on by T := (C∗)1+p, a (1+ p)-dimensional algebraic torus. Then

ET is the product of (1+p) copies of C∞ \{0} and BT is again (P∞)1+p. If T acts

on X, there is an obvious induced action of T ′ on X, and since S1 is a deformation

retract of C∗, it turns out that

H∗
T (X) = H∗

T ′(X).

From now on, then, we shall only deal with T -equivariant cohomology. It is possible

to define a Chow equivariant intersection theory (see e.g. [15], [11], [52] for details).

For the purposes of this exposition, we prefer to avoid the foundational details

involved in the definition of such a ring by invoquing a result of Bialynicki-Birula

([7]), saying that there is a natural cycle map, doubling degrees,

clT : A∗
T (Gk(Pn)) −→ H∗

T (Gk(Pn)),
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which is an isomorphism in this case (see also [11], p. 25). Hence, in the case that

T is a 1 + p dimensional torus, we define:

A∗
T (X) := H∗

T (X). (4.1)

Up to now, (4.1) is just a different notation for denoting the T -equivariant co-

homology. We shall relate it to the ordinary Chow intersection theory as fol-

lows. According to definition (4.1), for each m ≥ 0 and for each 0 ≤ i ≤ 2m,

Ai
T (X) = H i(EmT ×T X). Now, if X is a grassmannian Gk(Pn) (or the projective

space Pn itself, when k = 0), the bundle

EmT ×T Gk(Pn) −→ BmT,

is the grassmann bundle Gk(P(Em)) −→ (Pm)1+p, where Em −→ X is the holomor-

phic vector bundle EmT×TC1+n −→ BmT associated to EmT −→ BmT . Therefore

Gk(P(Em)) −→ BmT is a flag bundle over a CW-complex (the product of projec-

tive spaces) and by [23], p. , it follows that H∗(Gk(P(Em))) = A∗(Gk(P(Em)). The

latter, in particular, is a module over the ring A∗(BmT ) = H∗(BmT ).

Therefore we can link the equivariant Chow ring A∗
T (X) to Chow intersection

theory by saying that there is a map

φm,i : Ai
T (X) −→ Ai(EmT ×T X) = Ai(P(Em))

which is an isomorphism for all m ≥ 0 and all 0 ≤ i ≤ 2m.

4.1.6 Recall that the equivariant Chow ring A∗
T (Pn) (= H∗

T (X)) of Pn is a free

module of rank n + 1 over A = A∗
T (pt), generated by T -invariant cycles classes

represented by intersections of the (T -invariant) coordinates hyperplanes. Suppose

there is a regular 0-SCGP (M, D1), where

M = Aµ0 ⊕ Aµ1 ⊕ . . .⊕ Aµn,

such that:

i) M is a free A∗
T (Pn)-module of rank 1 generated by µ0. If ξ ∈ A∗

T (Pn) and η ∈ M ,

one writes ξ ∩′ η for the module multiplication;

76



ii) The rings A∗
T (Pn) and A∗(M,D1) ∼= A[T]/(ker(evD,µ0) are isomorphic, and the

following diagram
A∗

T (Pn)⊗A M
∩′−→ M

ι0

y
y1

A∗(M,D1)⊗A M −→ M

, (4.2)

is commutative, the vertical arrows being isomorphisms (the right one is just the

identity).

4.1.7 Let M(m) := A∗(BmT )µ0⊕A∗(BmT )µ1⊕ . . .⊕A∗(BmT )µn. Then one has

M(m)j = Aj(BmT )µ0 ⊕ Aj−1(BmT )µ1 ⊕ . . . Aj−n(BmT )µn

where one sets Ai(BmT ) = 0, if i < 0.

Now, for each j ≥ 0 there exists m such that Ai
T (pt) := Ai(BT ) = Ai(BmT ),

for all 0 ≤ i ≤ j. Hence

Mj = Aj(BT )µ0 ⊕ Aj−1(BT )µ1 ⊕ . . . Aj−n(BT )µn = M(m)j.

Hence M(m) can be seen as an approximation of M . Since Ai
T (BT ) = lim←−Ai(BmT ),

it follows that Mi = lim←−M(m)i. Let ψm,i : Mi −→ M(m)i be the approximation

map. Define D1,m : M(m) −→ M(m) as follows:

D1,mµj = ψm,j+1(D1µ
j)

Then (M(m), D1,m) is a 0-SCGP, and one can consider the corresponding k-SCGP

(
∧1+k(M(m), D1,m). We have an isomorphism

ιk,m : A∗(Gk(P(Em)) −→ A∗(
1+k∧

(M(m), D1,m)

which is that prescribed by Theorem 3.4.2.

Furthermore M(m) is isomorphic to A∗(P(Em)) through the A∗(BmT )-isomorphism

χ0,m : M(m) −→ A∗(P(Em)) defined by

µj 7−→ c1(T0,m)j ∩ [P(Em]
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where Tk,m is the tautological bundle over Gk(P(Em)). Hence the following diagram

A∗(P(Em))⊗M(m)
∩′−→ M(m)

1⊗χ0,m

y
y

A∗(P(Em))⊗ A∗(P(Em))
∩−→ A∗(P(Em))

ι0,m⊗χ0,m
−1

y
y

A∗(M(m), D1,m)⊗M(m)
dm−→ M(m)

has the top commutative square if ∩′ is defined as ξ ∩′ η = ξ ∩ χ0,mη. As for the

bottom one, is just a special case of Theorem 3.4.2 (for k = 0). Therefore the

diagram

A∗(P(Em))⊗M(m)
∩′−→ M(m)

ι0,m⊗1

y
y

A∗(M(m), D1,m)⊗M(m)
dm−→ M(m)

is commutative and is an approximation of the diagram (4.2).

4.1.8 Notice now that
∧1+k M(m) is an approximation of (

∧1+k M) in the fol-

lowing sense. For each w ≥ 0, there exists m > 0 and a natural approximation

isomorphism (
∧1+k M)i −→ (

∧1+k M(m))i. In fact

(
1+k∧

M)i =
⊕

0≤wt(I)≤i

Aw−wt(I)(BT ) ·
I∧

µ,

where if I = (i0, i1, . . . , ik) ∈ Ik
n, then

∧I µ = µi0 ∧ µi1 ∧ . . . ∧ µik . Let m >

max(w, ik). Then φm,j : Aj(BT ) −→ Aj(BmT ) is an isomorphism for all 0 ≤ j ≤
m. One can then write

(
1+k∧

M(m))i =
⊕

0≤wt(I)≤i

Aw−wt(I)(BmT )
I∧

µ =
⊕

0≤wt(I)≤i

φm,w−wt(I)(A
i−wt(I)(BT ))

I∧
µ

4.1.9 By abuse, denote again by ψm,i :
∧1+k M(m)i −→ (

∧1+k M(m))i the ap-

proximation homomorphism and define ψ′m,i : Ai(
∧1+k(M,D1) −→ Ai(

∧1+k(M(m), D1,m)
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and ψ′m,r : Ai(
∧1+k(M(m), D1,m) −→ Ai(

∧1+k(M(r), D1,r) imposing the commu-

tativity of the following two diagrams:

Ai(
∧1+k(M, D1))

ev
µi0∧µi1∧...∧µik−→ ∧1+k M i

ψ′m,i ↓ ↓ ψm,i

Ai(
∧1+k(M(m), D1,m))

ev
µi0∧µi1∧...∧µik−→ ∧1+k M(m)i

and

Ai(
∧1+k(M(m), D1,m))

ev
µi0∧µi1∧...∧µik−→ ∧1+k M(m)i

ψ′m,r,i ↓ ↓ ψm,r,i

Ai(
∧1+k(M(r), D1,r))

ev
µi0∧µi1∧...∧µik−→ ∧1+k M(r)i

Moreover ψ′r,i ◦ ψ′m,r,i = ψ′m,i as well as ψr,i ◦ ψm,r,i = ψm,i, by definition of inverse

limits. Let

ιk,m : A∗(Gk(P(Em)) −→ A∗(
1+k∧

(M, D1,m)

be the isomorphism defined in Theorem 3.4.2 (corresponding to the inverse of C

in diagram (4.3). Then, The main result of this section (and of the thesis) allows a

sharp description of the equivariant Schubert Calculus, alternative to the puzzle’s

techniques described in [39].

4.1.10 Theorem. There is an A-algebra isomorphism

ιk : A∗
T (Gk(Pn)) −→ A∗(

1+k∧
(M, D1)),

making
∧1+k M into a free A∗

T (Gk(Pn))-module of rank 1 spanned by

µ0∧µ1∧. . .∧µn isomorphic to
∧1+k M thought of as a module over A∗(

∧1+k(M,D1)).

Proof. Let ξ ∈ A∗
T (Gk(Pn)). It is a finite sum of homogeneous elements. So,

we may assume, without loss of generality, that ξ ∈ Ai
T (Gk(Pn)). Define ιk :

Ai
T (Gk(Pn)) −→ A∗(

∧1+k(M, D1)) as follows. Let m such that φm,i : Ai
T (Gk(Pn)) −→

Ai(Gk(P(Em)) is an isomorphism, and define:

ιk(ξ) = ψ′−1
m,i(ιk,m(φm,i(ξ)))

One has, for each q > m:

ψ′−1
m,i(ιk,m(φm,i(ξ))) = ψ′−1

q,i (ιk,q(φq,i(ξ)))
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and hence ιk(ξ) is well defined. We claim that ιk is an A-module homomorphism.

In fact

ιk(ξ1 ∪ ξ2) = ψ′−1
m,i+j(ιk,m(φm,i+j(ξ1 ∪ ξ2))) =

= ψ′−1
m,i+jιk,m(φm,i(ξ1) ∪ φm,j(ξ2)) =

= ψ′−1
m,i+j(ιk,m(φm,i(ξ1)ιk,m(φm,j(ξ2)) =

= ψ′−1
m,i(ιk,m(φm,i(ξ1) ∪ ψ′−1

m,i(ιk,m(φm,j(ξ2)) = ιk(ξ1) ∪ ιk(ξ2).

Moreover, if ιk(ξ) = 0, then ψ′−1
m,iιk,m(φm,i(ξ)) = 0, then φm,i(ξ) = 0, because ψ′−1

m,i

and ιk,m are isomorphisms, too. Then ξ = 0, because φm,i is an isomorphism.

Moreover, each η ∈ ∧1+k M i is sent onto ψm,i(η) and ι−1
k,mψm,i(η) is a pre-image of

η in Ai
T (Gk(Pn)). Hence ιk is an isomorphism.

Define ξ ∩′ η = ιk(ξ)η. Then the following diagram is commutative.

A∗
T (Gk(Pn))⊗A

∧1+k M
∩′−→ ∧1+k M

ιk ⊗ 1
y

y1

A∗(
∧1+k(M,D1))⊗A

∧1+k M
d−→ ∧1+k M

. (4.3)

and exhibits
∧1+k M as a free A∗

T (Gk(Pn))-module of rank 1 isomorphic to
∧1+k M

thought of as a free A∗(
∧1+k(M,D1)) of rank 1, generated by µi0 ∧ µi1 ∧ . . . ∧ µik .

4.2 Tao-Knutson T -Equivariant Schubert Calcu-

lus.

4.2.1 In this section we shall apply Theorem 4.1.10 to offer the promised alter-

native description of the equivariant Schubert Calculus investigated by Knutson

and Tao in [39]. There the authors use the combinatorial tool of puzzles, which is

interesting in its own. Our approach, however, will consist in identifying a 0-SCGP

(M,D1) describing the equivariant intersection ring of the projective space, and

looking at the corresponding
∧1+k(M,D1). The situation is as follows: a com-

pact n + 1-dimensional torus T := (S1)n+1 acts diagonally on Pn, with isolated
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fixed points and one aims to compute the T -equivariant Schubert Calculus, i.e. the

structure constant of the algebra. Our way to compute Schubert calculus is, instead

using puzzles, via Pieri’s and Giambelli’s formulas for equivariant cohomology.

4.2.2 The model. Let M be a free A-module of rank 1 + n spanned by

(µ0, µ1, . . . , µn), where A = Z[y0, y1, . . . , yn] (playing the role of the equivariant

cohomology of a point). Consider the 0-SCGP (M,D1), where D1 : M −→ M is

the unique A-endomorphism such that:

D1µ
j = (1− δjn)µj+1−δjn + (yj − y0)µ

j, 0 ≤ j ≤ n, (4.4)

where δjn is the Kronecker’s delta. Denote by D0 = D0
1 the identity of M and let

Gµ
i ∈ Z[T1] ⊂ Z[T] such that G0 = 1 and, for each 1 ≤ i ≤ n, Gµ

i ∈ A[T1] ⊂ A[T]

is defined by

Gµ
i =

i−1∏
j=0

(T1 − (yj − y0)),

so that

evD(Gµ
i ) := Gµ

i (D) =
i−1∏
j=0

(D1 − (yj − y0)D0) ∈ EndA(M).

In particular Gµ
1 (D) = D1. An easy check shows that, for 1 ≤ i ≤ n,

µi = Gµ
i (D) · µ0. (4.5)

In other words, Gµ
i is a Giambelli’s polynomial for µi, in the sense of for each

0 ≤ i ≤ n. Because of the surjection evD,µ0 : A[T] −→ M , one has:

A∗(M, D1) =
A[T]

(ker(evD,µ0))
∼= M. (4.6)

Hence, A∗(M, D1), is freely generated as a module over A, by

Gµ
0 (D) := 1, Gµ

1 (D), . . . , Gµ
n(D).

Since each Gµ
i (D) is an (explicit) A-polynomial expression in Gµ

1 (D) = D1 with

A-coefficients, it follows that D1 generates A∗(M, D1) as an A-algebra. Moreover,
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Dn+1
1 is a (unique) A-linear combination of 1, D1, . . . , D

n
1 since the last are A-

linearly independent in A∗(M,D1). The corresponding relation can be given by

noticing that (D1 − (yn − y0))µ
n = 0 i.e. (D1 − (yn − y0))G

µ
n(D)µ0 = 0, easily

implying that

A∗(M, D1) =
A[D1]

(
∏n

i=0(D1 − (yi − y0)))
(4.7)

4.2.3 We contend that the ring A∗(M, D1) is canonically isomorphic to the

T -equivariant intersection (or cohomology) ring of Pn, as implicitly described

in [39], to whom the reader is referred for additional details. Consider the module

A1+n :=
⊕n

i=0 H∗
T (pt) together with the A-algebra structure defined by componen-

twise multiplication of polynomials. Then, in [39], one identifies the equivariant

cohomology H∗
T (Pn) of Pn with the A-subalgebra of A1+n which is freely generated,

as A-module, by the classes

S0 := S̃011...1, S1 := S̃101...1, S2 := S̃110...1, Sn := S̃111...0

where the subscript of S denotes the position of the “0” in the indexing string of

S̃ (notice that our indeterminates y are indexed by the set {0, 1, . . . , n}, so all our

notation are 1-shifted with respect to those of [39]). The first generator S0 is the

(1 + n)-tuple whose components are all equal to 1 (the identity of H∗
T (Pn)), while

the components of Si (i > 0) must satisfy the Goresky–Kottwitz–MacPherson

(GKM) conditions ([30]): applying the recipe of [39], p. 230, one sees that Si can

be chosen in such a way that its jth component is:

Sj
i = (yj − y0) · (yj − y1) · . . . · (yj − yi−1) =

i−1∏

h=0

(yj − yh).

From these data it is obvious that H∗
T (Pn) is indeed generated as a ring by S1,

because each Si is an A-polynomial expression of S1. In fact:

Si = Gµ
i (S1). (4.8)

The proof of (4.8) is straightforward: it suffices to check equality for each compo-
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nent of Si. Then:

(Gµ
i (S1))

j =
i−1∏

h=0

(Sj
1 − (yh − y0)) =

i−1∏

h=0

(yj − y0 − yh + y0) =
i−1∏

h=0

(yj − yh) = Sj
i .

4.2.4 Proposition. There is a ring isomorphism ι : A∗(M, D1) −→ H∗
T (Pn)

given by D1 7→ S1.

Proof. Since any generator Gµ
i (D) of A∗(M, D1) (resp. H∗

T (Pn)) is a polynomial

expression in D1 (resp. in S1), it is sufficient to show that ι(Gµ
i (D)) = Si, and

this is true because of formula (4.8).

4.2.5 Notation. From now on, for notational simplicity, we shall use variables

Y1, . . . , Yn, defined by

Yi = yi − y0.

4.2.6 The k-SCGP
∧1+k(M, D1). By Theorem 4.1.10,

∧1+k M is a free module

of rank 1 over A∗
T (Gk(Pn)) which is itself isomorphic to A∗(

∧1+k(M, D1)) and

hence with it identified. One then knows that A∗
T (Gk(Pn)) is indeed generated by

(D1, . . . , Dk, D1+k)

as an A-algebra, by Proposition 3.2.14. As an A-module, instead, A∗
T (Gk(Pn)) is

freely generated by Giambelli’s polynomials Gµ
i0i1...ik

(D) (recall our various abuse

of notation and terminology in Section 3.1.1), one for each µi0 ∧ µi1 ∧ . . . ∧ µik .

Moreover we have Pieri’s type formulas at our disposal: they are just Leibniz’s

rule. As a matter of fact, Giambelli’s polynomial of µi0 ∧ µi1 ∧ . . . ∧ µik correspond

to the A-module basis indicated by Knutson and Tao. However we can use several

different bases, including the canonical ones, as we shall see in a moment.

4.2.7 Example. This example is a revisitation of [39], p. 231. Let A :=

Z[y0, y1, y2, y3], M := Aµ0 ⊕ . . .⊕ Aµ3 and D1 : M −→ M defined by

{
D1µ

i = µi+1 + Yiµ
i if 0 ≤ i < n

D1µ
n = Ynµ

n
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(recall Notation 4.2.5).

Let us lexicographically order the basis µi∧µj of
∧2 M . Then one easily finds,

either directly or via canonical bases as in Example 3.3.10,

Gµ
01(D) = 1;

Gµ
02(D) = D1 − Y1D0;

Gµ
03(D) = D2 − e1(Y1, Y2)D1 + e2(Y1, Y2)D0;

Gµ
12(D) = D2

1 −D2;

Gµ
13(D) =

(
D1 − Y3

)
Gµ

0,3(D);

Gµ
23(D) = (D2 − Y 2

3 )Gµ
03(D)− (Y1 + Y3)G

µ
13(D).

Notice that for each (i, j) ∈ I1
3 , Gµ

03(D) ∈ A∗(
∧2(M, D1)) is an A-endomorphisms

of M . Let us write the matrices associated to Gij(D) in the basis ∧2µ. Gµ
01(D) is

just the identity matrix (the 6 diagonal entries are all 1);

(Gµ
01) =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




As for Gµ
02(D) one has:

(
D1 − Y1D0

)
µ0 ∧ µ1 = µ1 ∧ µ1 + µ0 ∧ (µ2 + Y1µ

1)− (y1 − y0)µ0 ∧ µ1 =

= µ0 ∧ µ2

(
D1 − Y1D0

)
µ0 ∧ µ2 = µ1 ∧ µ2 + µ0 ∧ (µ3 + Y2µ

1)− (y1 − y0)µ0 ∧ µ2 =

= µ1 ∧ µ2 + µ0 ∧ µ3 + (Y2 −Y1)µ0 ∧ µ2

(
D1 − Y1D0

)
µ0 ∧ µ3 = µ1 ∧ µ3 + µ0 ∧ ((Y1 − Y0)µ3)− (Y1 − Y0)µ0 ∧ µ3 =

= µ1 ∧ µ3 + (Y3 −Y1)µ0 ∧ µ3
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(
D1 − Y1D0

)
µ1 ∧ µ2 = (µ2 + Y1µ

1) ∧ µ2 + µ1 ∧ (µ3 + Y2µ
2)− Y1µ

1 ∧ µ2 =

= Y1µ
1 ∧ µ2 + µ1 ∧ µ3 + Y2µ

1 ∧ µ2 − Y1µ
1 ∧ µ2 =

= µ1 ∧ µ3 + Y2µ1 ∧ µ2

(
D1 − Y1D0

)
µ1 ∧ µ3 = (µ2 + Y1µ

1) ∧ µ3 + µ1 ∧ (Y3µ
3)− Y1µ

1 ∧ µ3

= µ2 ∧ µ3 + Y3µ1 ∧ µ3

(
D1 − Y1D0

)
µ2 ∧ µ3 = (µ3 + Y2µ

2) ∧ µ3 + µ2 ∧ (Y3µ
3)− Y1µ

2 ∧ µ3

= (Y3 + Y2 −Y1)µ2 ∧ µ3

Then, matrix of Gµ
02 in the basis {µi ∧ µj} is:

(Gµ
02(D)) =




0 0 0 0 0 0

1 Y2−Y1 0 1 0 0

0 1 Y3−Y1 0 0 0

0 0 0 Y2 1 0

0 0 1 0 Y3 0

0 0 0 0 1 Y3+Y2−Y1




In the same way, one can compute the matrices of the remaining Gµ
ij(D), getting

(Gµ
0,3(D)) =




0 0 0 0 0 0

0 0 0 0 0 0

1 Y3−Y1 (Y3−Y1)(Y3−Y2) 0 0 0

0 0 0 0 0 0

0 1 Y3−Y2 Y3 Y3(Y3−Y2) 0

0 0 1 0 Y3 Y3(Y3−Y1)




(Gµ
1,2(D)) =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 Y2 0 Y1Y2 0 0

0 1 Y3 Y1 Y1Y3 0

0 0 0 1 Y3 Y2Y3



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(Gµ
1,3(D)) =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 Y3 Y3(Y3−Y2) Y1Y3 Y1Y3(Y3−Y2) 0

0 1 Y3 Y3 Y 2
3

Y2(Y3−Y1)Y3




(Gµ
2,3(D)) =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 Y3+Y2−Y1 Y3(Y3−Y1) Y3Y2 Y3Y2(Y3−Y1) Y2(Y3−Y1)Y3(Y2−Y1)




to each (i, j) such that 0 ≤ i < j ≤ 3, associates the sequence

aij : {0, 1, . . . , 3} −→ {0, 1}

such that aij(i) = 0, aij(j) = 0 and aij(m) = 1 if m 6= i, j, one sees that the

polynomials occurring in the diagonal of Gµ
ij(D) satisfy GKM conditions prescribed

to the restriction α ∈ A∗
T (G1(P3)) to the equivariant cohomology of a point. In

other words we got the basis described by Knutson and Tao: the map sends (remind

that we are using a left 1-shifted notation for the indices)

Gµ
i,j(D)7→S̃aij

.

The polynomials occurring in the picture at p. 231 of [39] are precisely the diagonals

elements of the triangular matrices associated Gµ
i,j(D): notice that our description

of the basis of equivariant cohomology is even more explicit of that occurring

in [39], since one “physically” sees, here, that setting all the y to zero one gets the

basis of the classical intersection ring of the Grassmannian (as a consequence of

the fact that our Giambelli’s are the classical ones setting all y to zero ).

86



In particular one gets the identification

γ :
∧2 M −→ A∗

T (G1(P3))

µi ∧ µj γ7−→ S̃aij

(4.9)

and one can easily check by hands that

S̃aij
S̃ahr

= γ(Gµ
ij(D)µh ∧ µr)

and this means that one may identify the A-basis described in [39] with our µi∧µj.

4.2.8 Consider the following diagram, depicting the Chevalley-Bruhat order in-

side I1
3 :

(01)

↓
(02)

↙ ↘
(12) (03)

↘ ↙
(13)

↓
(23)

Let α ∈ A∗
T (G1(P3)) and let αI = (αij) be the restriction of α to each fixed point

of the T -action: in particular each αij ∈ A∗
T (pt) = Z[y0, y1, y2, y3]. Then the GKM

conditions spelled in the article [39], can be translated into the following: αij−αij′

is divisible by yj′ − yi and αij − αi′j is divisible by yi − yi′ .

4.3 Equivariant Schubert Calculus in Canonical

bases.

Before continuing the analysis of equivariant Schubert calculus in the bases pro-

posed by Knutson and Tao, let us see what it looks like when canonical bases are

used. First of all we have a combinatorial proposition:
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4.3.1 Proposition.The following formula holds for all i > 0:

Di(µ
j) = Di

1(µ
j) =

i∑

l=0

hi−l(Yj, . . . , Yj+l)µ
j+l, 0 < j ≤ n (4.10)

where

hm(X1, . . . , Xk) =
∑

1≤i1≤i2≤...≤im≤k

Xi1 ·Xi2 · . . . ·Xim , h0 = 1

are the complete homogeneous symmetric functions.

Proof.

The proof is by induction on the integer i. If i = 1, by definition

D1µ
j = µj+1 + Yjµ

j

= µj+1 + h1(Yj)µ
j.

Suppose that the formula is true for i ≥ 1. Thus, since Di(µ
j) = D1D

i−1
1 (µj), the

induction’s hypothesis says that:

Di(µ
j) = D1

( i−1∑

l=0

hi−l−1(Yj, . . . , Yj+l)µ
j+l

)

=
i−1∑

l=0

hi−l−1(Yj, . . . , Yj+l)D1(µ
j+l) =

Using the first statement, one has:

=
i−1∑

l=0

hi−l−1(Yj, . . . , Yj+l)(µ
j+1 + h1(Yj)µ

j) =

=
i−1∑

l=0

hi−l−1(Yj, . . . , Yj+l)µ
j+l+1 +

i−1∑

l=0

hi−l−1(Yj, . . . , Yj+l)h1(Yj+l)µ
j+l =

Putting l′ = l + 1 in the first summation , one has:

=
i∑

l′=1

hi−l′(Yj, . . . , Yj+l′−1)µ
j+l′ +

i−1∑

l=0

hi−l−1(Yj, . . . , Yj+l)h1(Yj+l)µ
j+l =
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= h0(Yj, . . . , Yj+i−1)µ
j+i +

i−1∑

l′=1

hi−l′(Yj, . . . , Yj+l′−1)µ
j+l′ +

+hi−1(Yj)h1(Yj)µ
j +

i−1∑

l=1

hi−l−1(Yj, . . . , Yj+l)h1(Yj+l)µ
j+l =

Simplifying the summations, one sees that:

= h0(Yj, . . . , Yj+i−1)µ
j+i + hi(Yj)µ

j +

+
i−1∑

l′=1

(
hi−l′(Yj, . . . , Yj+l′−1) + hi−l−1(Yj, . . . , Yj+l)h1(Yj+l)

)
µj+l′ =

= h0(Yj, . . . , Yj+i−1)µ
j+i + hi(Yj)µ

j +
i−2∑

l′=1

hi−l′(Yj, . . . , Yj+l′)µ
j+l′

Therefore

Di(µ
j) =

i∑

l=0

hi−l(Yj, . . . , Yj+l)µ
j+l, 0 < j ≤ n.

Using the inductive hypothesis the Proposition is proven.

4.3.2 In particular:

Di+1µ
0 = Diµ

1 =
i∑

l=0

hi−l(Y1, . . . , Y1+l)µ
1+l = µi +

i−1∑

l=0

hi−l(Y1, . . . , Y1+l)µ
1+l.

It follows that the explicit expression of the D1-canonical basis ε is:

ε0 = µ0 and εj+1 =

j∑
m=0

hj−m(Y1, . . . , Y1+m)µ1+m, (4.11)

Canonical bases solve the problem of computing equivariant Schubert calculus

in the most classical possible combinatorial way. In fact:

4.3.3 Proposition. Let h ≥ 0. If ik + h ≤ n

Dhε
i0 ∧ εi1 ∧ . . . ∧ εik

can be computed via Pieri’s formula of classical Schubert calculus.
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Proof. In fact, if i + h ≤ n one has that

Dhε
i = εi+h,

and hence the same proof as Proposition 3.3.2 works in this case.

More than that one has:

4.3.4 Proposition. Giambelli’s determinantal formula holds:

εi0 ∧ εi1 ∧ . . . ∧ εik = ∆i0i1...ik(D)ε0 ∧ ε1 ∧ . . . ∧ εk.

Proof. It is Giambelli’s determinatal formula for canonical bases already proven

in Corollary 3.3.8.

It follows that {∆I(D) | I ∈ Ik
n} is an A-basis for the equivariant cohomology

of the grassmannian Gk(Pn). The structure constants {CK
IJ} defined by

∆I(D) ·∆J(D) =
∑

K∈Ik
n

CK
IJ∆K(D),

are the same as Littlewood-Richardson coefficients as soon as wt(I) + wt(J) ≤
(1 + k)(n− k). When wt(I) + wt(J) > (1 + k)(n− k), one uses the relation

D1ε
n = e1(Y1, . . . , Yn)εn − e2(Y1, . . . , Yn)εn−1 + . . . + (−1)nen(Y1, . . . , Yn)ε1

to get the desired expression.

4.3.1 The presentation of A∗
T (G1(P3)).

As a further illustration of our methods, let us deduce the presentation of the T -

equivariant intersection ring of A∗
T (G1(P3)). This is generated, as a Z[y0, y1, y2, y3]-

algebra, by D1 and D2. Let us explicitly write the canonical bases in this case:

ε0 = µ0

ε1 = µ1

ε2 = µ2 + Y1µ
1

ε3 = µ3 + (Y1 + Y2)µ
2 + Y 2

1 µ1 (4.12)
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from which

µ0 = ε0

µ1 = ε1 (4.13)

µ2 = ε2 − Y1ε
1 (4.14)

µ3 = ε3 − (Y1 + Y2)ε
2 + Y1Y2ε

1 (4.15)

Using expresion (4.12), one has:

D1ε
3 = (Y1 + Y2 + Y3)µ

3 + (Y 2
1 + Y1Y2 + Y 2

2 )µ2 + Y 3
1 µ1. (4.16)

(4.17)

Thus substituting expresions (4.13), (4.14), (4.15) into (4.16) and taking ei :=

ei(Y) = ei(Y1, Y2.Y3), one has:

D1ε
3 = e1ε

3 − e2ε
2 + e3ε

1 (4.18)

Also,

D2ε
3 = D2

1ε
3 = e1(e1ε

3 − e2ε
2 + e3ε

1)− e2ε
3 + e3ε

2 =

= e2
1ε

3 − (e1e2 − e3)ε
2 + e1e3ε

1 (4.19)

We claim that there is no relation in degree 2. In fact D2
1ε

0∧ε1 = ε0∧ε3+ε1∧ε2

and D2ε
0∧ε1 = ε0∧ε3. Any non trivial A-relation between D2

1 and D2 would hence

imply an A-relation between ε0∧ ε3 and ε1∧ ε2, and this is impossible because they

are A-linearly independent. One can find a relation between D3
1 and D1D2. In

fact

D3
1(ε

0 ∧ ε1) = D1(ε
0 ∧ ε3 + ε1 ∧ ε2) = 2ε1 ∧ ε3 + ε0 ∧D1ε

3

and

D1D2(ε
0 ∧ ε1) = D1(ε

0 ∧ ε3) = ε1 ∧ ε3 + ε0 ∧D1ε
3.
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Hence:

(D3
1 − 2D1D2)ε

0 ∧ ε1 + ε0 ∧D1ε
3 = 0 (4.20)

Substituting (4.18) into (4.20) one gets

0 = (D3
1 − 2D1D2)ε

0 ∧ ε1 + e1ε
0 ∧ ε3 − e2ε

0 ∧ ε2 + e3ε
0 ∧ ε1 =

= (D3
1 − 2D1D2 + e1D2 − e2D1 + e3D0)ε

0 ∧ ε1

Therefore

R3(D1, D2) := D3
1 − 2D1D2 + e1D2 − e2D1 + e3D0 = 0

in A∗(
∧2(M,D1)) = A∗

T (G1(P3)).

Similarly one has

D4
1ε

0∧ ε1 = D1(2ε
1∧ ε3 + ε0∧D1ε

3) = 2 · ε2∧ ε3 +2 · ε1∧D1ε
3 + ε1∧D1ε

3 + ε0∧D2
1ε

1

On the other hand

D2
2(ε

0 ∧ ε1) = D2(ε
0 ∧ ε3) = ε2 ∧ ε3 + ε1 ∧D1ε

3 + ε0 ∧D2
1ε

3

and then

(D4
1 − 2D2

2)ε
0 ∧ ε1 − ε0 ∧D2

1ε
3 + ε1 ∧D1ε

3 = 0 (4.21)

Plugging into (4.21) the expressions (4.18) and (4.19) and arguing as above, one

finally gets the relation:

D4
1− 2D2

2− (e2
1− e2)D2 +(e1e2− e3)D1 + e1e3 + e1(D1D2−D3)− e2(D

2
1−D2) = 0

Still, in the above formula, one must substitute D3 in terms of D1 and D2: we

know a priori that this relation exists, in fact:

0 = D3 = D2D1 −D1D2 + D3,

from where D3 = D3
1 − 2D1D2. The final expression is hence:

R4(D1, D2) := D4
1−2D2

2−e2
1D2+(e1e2−e3)D1+e1e3+e1(3D1D2−D3

1)−e2D
2
1 = 0
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Hence one can conclude that:

A∗
T (G1(P3)) =

A[D1, D2]

(R3(D1, D2), R4(D1, D2))
(4.22)

Notice that if one sets all y-indeterminates to be zero one gets the classical pre-

sentation of the intersection ring of the grassmannian G1(P3):

A∗(G1(P3)) =
A[D1, D2]

(D3
1 − 2D1D2, D4

1 − 2D2
2)

.

4.3.5 The equivariant intersection ring of G1(P3) in the bases S̃aij
. In the

basis S̃aij
used in [39], one has that A∗

T (G1(P3)) is generated by S̃a02 and S̃a03 . In

fact

D1 − Y1 7→ S̃a02 and D2 − (Y1 + Y2)D1 + Y1Y2 7→ S̃a03

Hence one gets

D1 = S̃a02 + Y1S̃a01 (4.23)

D2 = S̃a03 + (Y1 + Y2)S̃a02 − Y 2
1 S̃a01 (4.24)

expressions that, substituted into (4.22) give the desired presentation.

4.3.6 Some Examples of Computations.

1) In the first part of this example the reader is assumed to have some knowledge

of the puzzle technique, especially that involving the equivariant piece (see [39]).

In G1(P2) ∼= P2 one wants to compute

S̃a02 · S̃a12 (a02 = (010), a12 = (100)).

• Via puzzles. To make computations, one has to construct all the equivariant

puzzles with borders labelled with 010 and 100 (or 100 and 010) i.e.,

0
1

1

0

1

1

0

0

0 0

1

0

0

0

00

1

0

0 0

1

0

1

0
1

1

0

0

0

0

0

0 1

0

0 0

0

0
0 1

0
1

0

0
1

0

01
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in order to compute the weight of the equivariant piece, i.e.,

0 1 2 0 1 2 0 1 2

y2 − y0

y1 − y0
y2 − y1

so that, finally, one has:

S̃a02 · S̃a12 = (y2 − y0)S̃a12 = (y2 − y1 + y1 − y0)S̃a12 = S̃a02 · S̃a12

• Via SCGA. Recall that S̃a02 ≡ D1 − Y1D0 seen as element of A∗
T (P2) while

S̃a12 ≡ µ1∧µ2 seen as element of
∧2(Aε0⊕Aε1⊕Aε2). Therefore (see formula (4.9)):

S̃a02 · S̃a12 = γ((D1 − Y1)µ
1 ∧ µ2) = γ(D1(µ

1 ∧ µ2)− Y1µ
1 ∧ µ2) =

= γ(D1µ
1 ∧ µ2 + µ1 ∧D1µ

2 − Y1µ
1 ∧ µ2) =

= γ(Y1µ
1 ∧ µ2 + Y2µ

1 ∧ µ2 − Y1µ
1 ∧ µ2) =

= γ(Y2µ
1 ∧ µ2) = Y2S̃a12 = S̃a02 · S̃a12

2) In this example we shall compute the product

Gµ
123(D) ·Gµ

014(D)

in A∗
T (G2(Pn) with n very large. This means that we shall work with a free A-

module M of sufficiently high rank, spanned by µ = (µ0, µ1, . . .) studying the

2-SCGP
∧3(M, D1), D1 as in (4.4). This example is combinatorially tricky with

puzzles. First we observe that:

Gµ
123(D) ·Gµ

014(D)µ0 ∧ µ1 ∧ µ2 = Gµ
123(D)µ0 ∧ µ1 ∧ µ4

Although it is not strictly necessary, we shall use canonical bases to speed

up computations. To this purpose, in order to make notation easier, we shall
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write ej(Y1≤i≤n) (resp. hj(Y1≤i≤n)) to denote the jth elementary symmetric poly-

nomial (resp. the jth complete symmetric polynomial in (Y1, . . . , Yn). Of course

e1(Y1≤i≤n) = h1(Y1≤i≤n). First

µ1 ∧ µ2 ∧ µ3 = ε1 ∧ ε2 ∧ ε3.

On the other hand

µ0 ∧ µ1 ∧ µ4 = ε0 ∧ ε1 ∧ ε4 − e1(Y1≤i≤3)ε
0 ∧ ε1 ∧ ε3 + e2(Y1≤i≤3)ε

0 ∧ ε1 ∧ ε2.

We shall compute

Gε
123(D) · (ε0 ∧ ε1 ∧ ε4 − e1(Y1≤i≤3)ε

0 ∧ ε1 ∧ ε3 + e2(Y1≤i≤3)ε
0 ∧ ε1 ∧ ε2)

But Gε
123(D) = D3 := ∆123(D). Therefore

Gµ
123(D) ·Gµ

014(D)µ0 ∧ µ1 ∧ µ2 =

= D3(ε
0 ∧ ε1 ∧ ε4 − e1(Y1≤i≤3)ε

0 ∧ ε1 ∧ ε3 + e2(Y1≤i≤3)ε
0 ∧ ε1 ∧ ε2) =

= ε1 ∧ ε2 ∧ ε5 − e1(Y1≤i≤3)ε
1 ∧ ε2 ∧ ε4 + e2(Y1≤i≤3)ε

1 ∧ ε2 ∧ ε3 =

Returning to the original basis
∧3 µ, one easily gets:

Gµ
123(D) ·Gµ

014(D)µ0 ∧ µ1 ∧ µ2 =

= µ1 ∧ µ2 ∧ µ5 + [h1(Y1≤i≤4)− e1(Y1≤i≤3)]µ
1 ∧ µ2 ∧ µ4 +

+ [h2(Y1≤i≤4)− e1(Y1≤i≤3)h1(Y1≤i≤3) + e2(Y1≤i≤3)]µ
1 ∧ µ2 ∧ µ3 =

= µ1 ∧ µ2 ∧ µ5 + Y4µ
1 ∧ µ2 ∧ µ4 + (Y1 + Y2 + Y3 + Y4)Y4µ

1 ∧ µ2 ∧ µ3 =

=
(
Gµ

125(D) + Y4G
µ
124(D) + (Y1 + Y2 + Y3 + Y4)Y4G

µ
123(D)

)
µ0 ∧ µ1 ∧ µ2

showing the power of our methods.

4.4 Equivariant Pieri’s Formula

Let l ≥ 0 and µi0 ∧ µi1 ∧ . . . ∧ µik ∈ ∧1+k M . Leibniz’s rule of SCGA gives:
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Dl(µ
i0 ∧ . . . ∧ µik) =

∑

l0+l1+...+lk=l

Dl0µ
l0 ∧ . . . ∧Dlkµ

lk

Thus, using Equation (4.10), and defining (for computational reasons) Yj :=

yj − y0, one has:

=
∑

l0+l1+...+lk=l

[(
l0∑

m0=0

hl0−m0(Yi0 , Yi0+1, . . . , Yi0+m0)µ
i0+m0

)
∧ . . .

. . . ∧
(

lk∑
mk=0

hlk−mk
(Yik , Yik+1, . . . , Yik+mk

)µik+mk

)]
=

expanding the wedge products:

=
∑

l0+...+lk=l

[
l0+l1+...+lk∑

m0+...+mk=0

(
k∏

j=0

hlj−mj
(Yij , Yij+1, . . . , Yij+mj

)µi0+m0 ∧ . . . ∧ µik+mk

)]
=

=
l∑

m0+...+mk=0

[( ∑

l0+...+lk=l

k∏
j=0

hlj−mj
(Yij , Yij+1, . . . , Yij+mj

)

)
µi0+m0 ∧ . . . ∧ µik+mk

]
=

Therefore, by property of symmetric polynomials,

=
l∑

m0+...+mk=0

[
hl−Pk

j=0 mj
(Yi0 , . . . , Yi0+m0 , . . . , Yik , . . . , Yik+mk

)µi0+m0 ∧ . . . ∧ µik+mk

]
=

Thus, putting u = l −∑k
j=0 mj, one finally gets:

Dl(µ
i0 ∧ . . . ∧ µik) =

=
l∑

u=0

∑

m0+m1+...+mk+u=l

hu(Yi0 , . . . , Yi0+m0 , . . . , Yik , . . . , Yik+mk
)µi0+m0 ∧ . . . ∧ µik+mk
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Relying on what has been said, and keeping into account the alternating feature

of the ∧-product, causing cancellations of terms, we can finally state (solving a

problem proposed in [43]):

4.4.1 Theorem. Pieri’s formula for T -equivariant cohomology of grassmannians

holds:

Dl(µ
i0 ∧ . . . ∧ µik) =

=
l∑

u=0

∑

(mi)∈P (I,l−u)

hu(Yi0 , . . . , Yi0+m0 , . . . , Yik , . . . , Yik+mk
)µi0+m0 ∧ . . . ∧ µik+mk

(4.25)

where P (I, l − u) is the set of all (1 + k)-tuples (mi) ∈ N1+k such that:

0 ≤ i0 ≤ i0 + m0 < i1 ≤ i1 + m1 < i2 ≤ i2 + m2 < . . . ≤ ik−1 + mk−1 < ik

and m0 + m1 + m2 + . . . + mk = l − u.

Proof.

The proof is inspired by [26], and works by induction on the integer k. For k = 1,

formula (4.25) is trivially true. Let us prove it directly for k = 2. For each h ≥ 0,

let us split sum (4.25) as:

Dl(µ
i0 ∧ µi1) =

l∑
u=0

∑

m0+m1+u=l

hu(Yi0 , . . . , Yi0+m0 , Yi1 , . . . , Yi1+m1)µ
i0+m0 ∧ µi1+m1 =

= P + P

where

P =
l∑

u=0

∑

m0 + m1 = l − u

i0 + m0 < i1

hu(Yi0 , . . . , Yi0+m0 , Yi1 , . . . , Yi1+m1)µ
i0+m0 ∧ µi1+m1

and

P =
l∑

u=0

∑

m0 + m1 = l − u

i0 + m0 ≥ i1

hu(Yi0 , . . . , Yi0+m0 , Yi1 , . . . , Yi1+m1)µ
i0+m0 ∧ µi1+m1
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One contends that P vanishes. In fact, on the finite set of all integers i1 − i0 ≤
a ≤ i1 − i0 + l − u, define the bijection ρ(a) = i1 − i0 + l − u− a. Then:

2P =
l∑

u=0

l−u∑
m0=i1−i0

hu(Yi0 , . . . , Yi0+m0 , Yi1 , . . . , Yi1+l−u−m0)µ
i0+m0 ∧ µi1+l−u−m0 +

+
l∑

u=0

l−u∑
m0=i1−i0

hu(Yi0 , . . . , Yi0+ρ(m0), Yi1 , . . . , Yi1+l−u−ρ(m0))µ
i0+ρ(m0) ∧ µi1+l−u−ρ(m0) =

= −
l∑

u=0

l−u∑
m0=i1−i0

hu(Yi0 , . . . , Yi0+m0 , Yi1 , . . . , Yi1+l−u−m0)µ
i1+l−u−m0 ∧ µi0+m0 +

+
l∑

u=0

l−u∑
m0=i1−i0

hu(Yi0 , . . . , Yi0+m0 , Yi1 , . . . , Yi1+l−u−m0)µ
i1+l−u−m0 ∧ µi0+m0 = 0

hence P = 0 and (4.25) holds for k = 2. Suppose now that (4.25) holds for all

1 ≤ k′ ≤ k − 1. Then, for each h ≥ 0:

Dl(µ
i0 ∧ µi1 ∧ . . . ∧ µik) =

∑

l′k+lk=l

Dl′k(µ
i0 ∧ . . . ∧ µik−1) ∧Dlkµ

ik ,

and, by the inductive hypothesis:

=




l′k∑

u=0

∑

(mi)

hu(Yi0 , . . . , Yi0+m0 , . . . , Yik−1
, . . . , Yik−1+mk−1

)µi0+m0 ∧ . . . ∧ µik−1+mk−1


 ∧

∧



lk∑

mk=0

hlk−mk
(Yik , Yik+1, . . . , Yik+mk

)µik+mk


 (4.26)

summed over all (mi) such that m0 + . . . + mk = l − u and

1 ≤ i0 + m0 < i1 ≤ . . . . . . ≤ ik−2 + mk−2 < ik−1. (4.27)

But now (4.26) can be equivalently written as:

=




l−l′′∑

u=0

∑

(mi)

hu(Yi0 , . . . , Yi0+m0 , . . . , Yik−2
, . . . , Yik−2+mk−2

)µi0+m0 ∧ . . . ∧ µik−2+mk−2


 ∧

∧Dl′′
(
µik−1 ∧ µik

)
(4.28)
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where the sum is over all (m0, . . . , mk−2, l
′′) such that m0 + . . .+mk−2 + l′′ = l and

satisfying (4.27). Since

Dl′′(µik−1 ∧ µik) =

=
l′′∑

u=0

∑

mk−1 + mk = l′′ − u

ik−1 + mk−1 < ik

hu(Yik−1
, . . . , Yik−1+mk−1

, Yik , . . . , Yik+mk
)µik+mk ∧ µik+mk

by the inductive hypothesis, substituting into (4.28) one gets exactly sum (4.25).

4.4.2 Example. The coefficient of µ2 ∧ µ3 ∧ µ7 in the computation of D3(µ
2 ∧

µ3 ∧ µ5), is:

h1(Y2, Y3, Y5, Y6, Y7) = Y2 + Y3 + Y5 + Y6 + Y7 = y2 + y3 + y5 + y6 + y7 − 5y0.

4.4.3 In particular Pieri’s rule for codimension 1 subvarieties, is given by

D1(µ
i0 ∧ . . . ∧ µik) =

∑
n0+n1+...+nk=1

Dm0µ
i0 ∧ . . . ∧Dmk

µik =

=
∑

n0+n1+...+nk=1

(
n0∑

m0=0

hn0−m0(Yi0 , Yi0+1, . . . , Yi0+m0)µ
i0+m0 ∧ . . .

. . . ∧
nk∑

mk=0

hnk−mk
(Yik , Yik+1, . . . , Yik+mk

)µik+mk

)

=
k∑

j=0

µi0 ∧ . . . ∧



1∑
mj=0

h1−mj
(Yij , Yij+1, . . . , Yij+mj

)µij+mj


 ∧ . . . µik =

=
k∑

j=0

µi0 ∧ . . . ∧ (
h0(Yij , Yij+1)µ

ij+1 + h1(Yij)µ
ij
) ∧ . . . µik =

=
k∑

j=0

µi0 ∧ . . . ∧ (
µij+1 + Yijµ

ij
) ∧ . . . µik =
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=
k∑

j=0

µi0 ∧ . . . ∧ µij+1 ∧ . . . µik +
k∑

j=0

Yijµ
i0 ∧ . . . ∧ µij ∧ . . . µik =

=
k∑

j=0

µi0 ∧ . . . ∧ µij+1 ∧ . . . µik + (Yi0 + . . . + Yik)µ
i0 ∧ . . . ∧ µik

=
k∑

j=0

µi0 ∧ . . . ∧ µij+1 ∧ . . . µik +
k∑

r=0

Yikµ
i0 ∧ . . . ∧ µik

4.4.4 Remark. Knutson and Tao, in [39], computes a Pieri’s formula for codi-

mension 1 subvarieties. It can be gotten within our formalism as follows (see 4.4.5

for the detailed comparison).

Gµ
0,1,...,k−1,k+1(D)µi0 ∧ . . . ∧ µik =

=

(
D1 −

k∑
r=1

Yr

)
µi0 ∧ . . . ∧ µik =

=
k∑

j=0

µi0 ∧ . . . ∧ µij+1 ∧ . . . µik +

(
k∑

r=0

Yik −
k∑

r=1

Yr

)
µi0 ∧ . . . ∧ µik =

=
k∑

j=0

µi0 ∧ . . . ∧ µij+1 ∧ . . . µik +

(
k∑

r=0

(yik − yr)

)
µi0 ∧ . . . ∧ µik (4.29)

In fact,

D1(µ0 ∧ µ1 ∧ . . . ∧ µk) =
k∑

j=0

µ0 ∧ µ1 ∧ . . . µj−1 ∧D1(µj) ∧ µj+1 ∧ . . . ∧ µk

=
k∑

j=0

µ0 ∧ µ1 ∧ . . . µj−1 ∧ (µj+1 + Yjµ
j) ∧ µj+1 ∧ . . . ∧ µk

=
k∑

j=0

Yjµ
0 ∧ µ1 ∧ . . . µj−1 ∧ µj ∧ µj+1 ∧ . . . ∧ µk +

+µ0 ∧ µ1 ∧ . . . ∧ µk−1 ∧ µk+1

= (Y1 + . . . + Yk)µ0 ∧ µ1 ∧ . . . ∧ µk + µ0 ∧ µ1 ∧ . . . ∧ µk−1 ∧ µk+1

=
k∑

r=1

Yrµ
0 ∧ µ1 ∧ . . . ∧ µk + µ0 ∧ µ1 ∧ . . . ∧ µk−1 ∧ µk+1.
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4.4.5 Comparison with Pieri’s Formula as in [39].

Let 0 ≤ k ≤ n be a fixed integer. Denote, as in [39], by
{

n

k

}
the set of all the

sequences ai0i1...ik−1
: {0, 1, . . . , n− 1} −→ {0, 1} such that ai0i1...ik−1

(j) = 1 for all

j but {i0, i1, . . . , ik−1} where it takes the value 0. For example

{
4

2

}
= {1100, 1010, 1001, 0110, 0101, 0011}.

The elements of
{

n

k

}
may be clearly employed to index Schubert classes and are

used by Knutson and Tao to spell the puzzle rule as in [40]. The cardinality of this

set
{

n

k

}
is

(
n
k

)
.

Let S̃λ be the equivariant Schubert variety corresponding to some λ ∈ {
n

k

}
.

Then Pieri’s rule for a codimension 1 equivariant Schubert variety, as is spelled

in [39], is given by :

S̃divS̃λ =
(
S̃div|λ

)
S̃λ +

∑

λ′:λ′→λ

S̃λ′

where

i) div := a0,1,...,k−1,k+1 denotes the unique element of
{

n + 1

k + 1

}
with one inversion;

ii) the expression λ′ : λ′ → λ means that λ′ differs by λ in only two spots i, i + 1,

where λ has 01 and λ′ has 10;

iii) the coefficient
(
S̃div|λ

)
is given by ([39], p.236, Lemma 3):

(
S̃div|λ

)
=

n∑
j=0

(1− λ(j))yj −
k∑

i=0

yi

Thus, if λ = ai0,i1,...,ik one has:

(
S̃div|λ

)
= (yi0 + yi1 + . . . + yik)− (y0 + y1 + . . . + yk) =

k∑
r=0

(yir − yr).
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Therefore Knutson and Tao’s formula reads as:

S̃divS̃λ =
k∑

r=0

(yir − yr)S̃λ +
∑

λ′:λ′→λ

S̃λ′

which is precisely formula 4.29.
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Chapter 5

A few Enumerative Examples

In this section we go back to classical Schubert calculus to see how much SCGA

point of view may help in solving enumerative problems. Our main examples will

be i) offering a new way to prove the formula for computing the Plücker degree

dk,n of Schubert varieties in Gk(Pn) and ii) a combinatorial formula expressing the

number of projectively non equivalent rational curves of degree d in P3 having

flexes at 2d− 6 prescribed points.

5.0.6 Let M1+l be a free Z-module spanned by (ε0, ε1, . . . , εl) and let Dt ∈
St(

∧
M) induced by the shift polynomial Dt : Ml −→ Ml[[t]] defined by:

Dt(ε
j) =

∑
i≥0

(Diε
j)ti where Diε

j =

{
εi+j if i + j ≤ l

0 if i + j > l

Because of Pieri’s formula (3.12), the main result of [26], or its generalization (The-

orem 3.4.2), there is the following dictionary between the k-SCGP
∧1+k(M,D1)

and the SCGV on Gk(Pl):

5.0.7 Dictionary.
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σh ∈ H∗(Gk(Pn)) ↔ Dh ∈ A∗(
∧k+1 M1+n, D)

[Gk(Pn)] ↔ ε0 ∧ ε1 ∧ . . . ∧ εk

σρ ∩ [Gk(Pn)] ↔ εi0 ∧ εi1 ∧ . . . ∧ εik

(σh ∪ σρ) ∩ [Gk(Pn)] ↔ Dh(ε
i0 ∧ εi1 ∧ . . . ∧ εik)

(σλ ∪ σρ) ∩ [Gk(Pn)] ↔ ∆λ(D)(εi0 ∧ εi1 ∧ . . . ∧ εik)

where ρ = (i0, . . . , ik). In particular the degree dk,n of the Plücker image of Gk(Pn)

is given by

dk,n =

∫
σ

(k+1)(n−k)
1 ,

and therefore dk,n fits into the equality:

D
(k+1)(n−k)
1 ε0 ∧ ε1 ∧ . . . ∧ εk = dk,n · εn−k ∧ . . . ∧ εn.

5.1 Degree of Schubert Varieties

Let E = (e0, e1, . . . , en) be a E•-adapted basis of C1+n, ε = (ε0, ε1, . . . , εn) its dual

and let

E• : Pn := V 0 ⊃ V 1 ⊃ . . . ⊃ V n ⊃ V 1+n = ∅

be a complete flag of projective subspaces of Pn.

5.1.1 Proposition. Let di0,i1,...,ik be the Plücker degree of the Schubert variety

Ωi0,i1,...,ik(F
•). Then:

di0,i1,...,ik
=

∑

τ∈S1+k

(−1)|τ |
(

(n− k)(1 + k)− w

n− k + τ(0)− i0, n− k + τ(1)− i1, . . . , n− k + τ(k)− ik

)
(5.1)

=
∑

τ∈S1+k

(−1)|τ |
(

(n− k)(1 + k)− w

n− iτ(0) − k, n− iτ(1) − (k − 1), . . . , n− iτ(k) − (k − k)

)
(5.2)

where w is the codimension of Ωi0,i1,...,ik(F
•).

Proof.

The degree of the Schubert variety (Ωi0,i1,...,ik(F
•)) satisfies the following equal-

ity:

D
(1+k)(n−k)−w
1 εi0 ∧ εi1 ∧ . . . ∧ εik = di0,i1,...,ik · ε0 ∧ ε1 ∧ . . . ∧ εk
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Hence all the matter consists in evaluating the left hand side of the equality above.

This will be done by using the general formula (2.13).

D
N(n,k,w)
1 εi0 ∧ εi1 ∧ . . . ∧ εik =

∑(
N(n, k, w)

h0, h1, . . . , hk

)
εi0+h0 ∧ εi1+h1 ∧ . . . ∧ εik+hk

the sum over all distinct (1+k)-tuple of non negative integers (h0, h1, . . . , hk) such

that h0 + h1 + . . . + hk = N(n, k, w), where for sake of notational brevity we set

N(n, k, w) := (1 + k)(n − k) − w. The only surviving terms are those for which

(i0 + h0, i1 + h1, . . . , ik + hk) is a permutation of (n− k, n− k + 1, . . . , n), i.e.:

{(i0 + h0 = n− k + τ(0), i1 + h1 = n− k + τ(1), . . . , ik + hk = n− k + τ(k) : τ ∈ S1+n}.

This gives hj = n− k + τ(j)− ij. Therefore one concludes that:

di0,i1,...,ik =
∑

τ∈S1+n

(−1)|τ |
(

N(n, k, w)
n− k + τ(0)− i0, n− k + τ(1)− i1, . . . , n− k + τ(k)− ik

)
,

which is expression (5.1). Equation (5.2) is simply the “transpose” of (5.1).

In particular one has:

dk,n := d01...k =
∑

τ∈S1+n

(−1)|τ |
(

(1 + k)(n− k)
n− k + τ(0), n− k + τ(1)− 1, . . . , n− k + τ(k)− k

)
, (5.3)

5.1.2 Formula (5.2) is suited to be put in the classical form the degree of Schubert

varieties is known with. In fact:

∑

τ∈S1+k

(−1)|τ |
(

(n− k)(1 + k)− w

n− iτ(0) − k, n− iτ(1) − (k − 1), . . . , n− iτ(k) − (k − k)

)
=

∑

τ∈S1+k

(−1)|τ |
N(n, k, w)!

(n− iτ(0) − k)!(n− iτ(1) − (k − 1))! . . . (n− iτ(k))!
(5.4)

The common denominator of the alternating sum (5.4) is precisely

(n− i0)!(n− i1)! · (n− ik)! = (n− iτ (0))!(n− iτ (1))! · (n− iτ (k))!

for each τ ∈ S1+k. Therefore sum (5.4) can be written as:
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∑

τ∈S1+k

(−1)|τ |N(n, k, w)!
(n− i0)!(n− i1)! . . . (n− ik)!

· (n− iτ (0))!(n− iτ (1))! · . . . · (n− iτ (k))!
(n− iτ (0)− k)!(n− iτ (1)− (k − 1))! . . . (n− iτ (k))!

=

= N(n, k, w)!

∑
τ∈S1+k

(−1)|τ |
∏k−1

j0=0(n− iτ(0) − j0) ·
∏k−2

j1=0(n− iτ(1) − j1) · . . . · (n− iτ(k))

(n− i0)!(n− i1)! . . . (n− ik)!
(5.5)

Since the numerator of (5.5) is a homogeneous polynomial of degree k(k + 1)/2 in

n, n− 1, . . . , n− k + 1 and i0, i1, . . . ik and it changes sign if one permutes j ↔ k,

it must be an integral multiple of
∏

k<j(ij − ik). To determine this multiple it is

sufficient to compare the coefficients of a same monomial occurring on both sides.

In the expansion of the left hand side, the monomial

(−1)
k(k−1)

2 ik−1
0 ik−2

1 ik−3
2 · . . . · ik−1

occurs, corresponding to the identical substitution τ = (012 . . . k); the same mono-

mial, with the same sign, occurs on the right hand side, proving that the numerator

of formula (5.5) is indeed equal to
∏

k<j(ij − ik). Then the final formula is:

di0,i1,...,ik =
((n− k)(k + 1)− w)!

∏
j<k(ik − ij)

(n− i0)!(n− i1)! . . . (n− ik)!
. (5.6)

In particular:

dk,n := d012...k =
1!2! · . . . · k!((n− k)(k + 1))!

n!(n− 1)! . . . (n− k)!
. (5.7)

To generalize formulas (5.6) or (5.7) to other kind of integrals (=top intersec-

tion products in the cohomology ring) seems to be a hard task. However, the

generalization (5.3) is straightforward.

5.1.3 Remark. Proposition (5.1.1) can be seen as a particular case of the fol-

lowing Theorem (one takes I = (0, . . . , k) and J = (n− k, . . . , n)).

More in general, it is possible to compute the number

∫
((σ1)

|ρ|−|λ| ∪ σρ) ∩ [Gk(Pn)],
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where λ, ρ, are any partitions such that λ ¹ ρ in the Bruhat-Chevalley order.

Let I = (i0, i1, . . . , ik) and J = (j0, j1, . . . , jk) ∈ Ik
n be the index associated

respectively to the partitions λ and ρ. By our dictionary,
∫

((σ1)
|ρ|−|λ| ∪ σρ) ∩ [Gk(Pn)] = KI,J

where KI,J is given by the equality:

D
|J |−|I|
1 (εi0 ∧ . . . ∧ εik) = KI,J · εj0 ∧ . . . ∧ εjk .

Since λ ¹ ρ, also I ¹ J . Thus, this number is given by:

5.1.4 Proposition.

KI,J =
∑
σ∈Sk

(−1)|σ|
( |J | − |I|

σ(j0)− i0, . . . , σ(jk)− ik

)

= (|J | − |I|)! · |(alm)|
where |(alm)| is the determinant of the matrix (alm), where:

alm =
1

(jm − il)!
, 0 ≤ l,m ≤ k

Proof.

By Corollary 2.5.6, Newton’s binomial formula (2.12) holds. The proof is by

induction on the integer k. If k = 0, the formula is easily seen to be true, by

definition of the Di’s. In fact

Dj0−i0
1 εi0 =

(
j0 − i0
j0 − i0

)
εj0 ⇒ Dj0−i0

1 εi0 = εj0 .

If k = 1 we have, by (2.12):

D
|J |−|I|
1 (εi0 ∧ εi1) =

|j|−|I|∑

l=0

( |J | − |I|
l, |J | − |I| − l

)
Dl

1ε
i0 ∧D

|J |−|I|−l
1 εi1

=
|J |−|I|∑

l=0

( |J | − |I|
l, |J | − |I| − l

)
εi0+l ∧ εi1+|J |−|I|−l
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In the above sum one needs to check only the coefficient of the terms εj0 ∧ εj1 and

εj1 ∧ εj0 . Then
{

i0 + l = j0 ⇒ l = j0 − i0

i0 + l = j1 ⇒ l = j1 − i0

For this

D
|J|−|I|
1 (εi0 ∧ εi1) =

( |J | − |I|
j0 − i0, j0 + j1 − i0 − i1 − j0 + i0

)
−

( |J | − |I|
j1 − i0, j0 + j1 − i0 − i1 − j1 + i0

)

=
( |J | − |I|

j0 − i0, j1 − i1

)
−

( |J | − |I|
j1 − i0, j0 − i1

)
.

Now, suppose that the formula is true for each k ≥ 0. We have:

D
|J |−|I|
1 (εi0 ∧ . . . ∧ εik−1 ∧ εik) =

|J |−|I|∑

l=0

(|J |−|I|
l

)
Dl

1(ε
i0 ∧ . . . ∧ εik−1) ∧D

|J |−|I|−l
1 εik

=

|J |−|I|∑

l=0

(|J |−|I|
l

)
Dl

1(ε
i0 ∧ . . . ∧ εik−1) ∧ εik+|J |−|I|−l

In the above sum one needs to check the coefficient of the terms εσ(j1) ∧ . . . ∧
εσ(jk). Therefore,

ik + |J | − |I| − l = σ(jk) ⇒ l = |J | − |I|+ ik − σ(jk)

Then, by induction’s hypothesis, D
|J |−|I|
1 (εi0 ∧ . . . ∧ εik) is equal to

=
k∑

h=0

(|J|−|I|
l

) ∑

σ∈Sk−1

(−1)|σ|
( |J | − |I|

σ(j0)− i0, . . . , σ(jh−1)− ih−1, σ(jh+1)− ih, . . . , σ(jk)− ik−1

)
·

·(εj0 ∧ . . . ∧ ε̂jh ∧ . . . ∧ εjk) ∧ εjh

with jh = σ(jk) and l = |J | − |I|+ ik − σ(jk)
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=
k∑

h=0

(|J|−|I|
l

)
(−1)k−h

∑

σ∈Sk−1

(−1)|σ|
( |J | − |I|

σ(j0)− i0, . . . , σ(jh−1)− ih−1, σ(jh+1)− ih, . . . , σ(jk)− ik−1

)
·

·(εj1 ∧ . . . ∧ εjk)

=
k∑

h=0

∑

σ∈Sk−1

(−1)k−h+|σ|
( |J | − |I|

σ(j0)− i0, . . . , σ(jh−1)− ih−1, σ(jh+1)− ih, . . . , σ(jk)− ik−1, jh − ik

)
·

·(εj1 ∧ . . . ∧ εjk)

=
∑

σ∈Sk

(−1)|σ|
( |J | − |I|

σ(j0)− i0, . . . , σ(jk)− ik−1, σ(jh)− ik

)
εj1 ∧ . . . ∧ εjk

Then, by induction, the formula is true ∀ k ≥ 0

5.2 Flexes of Rational Curves

Our last example has been suggested us by K. Ranestad. One may like to compute

the number Nd of all projectively non equivalent rational curves of degree d in

P3 which have flexes at 2d − 6 prescribed points. These can be constructed by

projection of a rational normal curve in Pd with 2d − 6 marked points from a

Pd−4 intersecting the osculating plane of the curves at the marked points. Such a

number is counted precisely by

Nd =

∫
σ

2(d−3)
2

in the grassmannian Gd−3(Pd) ∼= G3(Pd). Basing on our dictionary, one has:

D
2(d−3)
2 ε0 ∧ ε1 ∧ ε2 ∧ ε3 = Nd · εd−3 ∧ εd−2 ∧ εd−1 ∧ εd.

An expression for Nd can be figured out by applying Proposition 2.5.8. One has:

=
∑(

n

n000, n001, n002, n010, n011, n020, n100, n101, n110, n200

)
Dn000

2 Dn001+n010+n100
1 α0 ∧
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∧Dn001+n011+n101
1 Dn002

2 α1 ∧Dn010+n011+n110
1 Dn020

2 α2 ∧Dn100+n101+n011
1 Dn200

2 α3

Renaming the nδ for commodity, one has:

D
2(d−3)
2 ε0 ∧ ε1 ∧ ε2 ∧ ε3 =

=
∑(

2(d− 3)
n0, . . . , n9

)
ε2n0+n1+n3+n6 ∧ ε1+2n2+n1+n4+n7 ∧ ε2+2n5+n3+n4+n8 ∧ ε3+2n9+n4+n6+n7 ,

the sum being over all non negative integers n0, . . . , n9 such that
∑9

i=0 ni =

2(d− 3).

We are interested in the coefficient of εd−3∧ εd−2∧ εd−1∧ εd, the class of a point.

Such a coefficient gets the contributions of all 10-uples of non-negative integers

such that:





2n0 + n1 + n3 + n6 = d− 3 + τ(0)

1 + 2n2 + n1 + n4 + n7 = d− 3 + τ(1)

2 + 2n5 + n3 + n4 + n8 = d− 3 + τ(2)

3 + 2n9 + n4 + n6 + n7 = d− 3 + τ(3)

(5.8)

where τ ∈ S4, the group of permutation on {0, 1, 2, 3}, or:





2n0 + n1 + n3 + n6 = d− 3 + τ(0)

2n2 + n1 + n4 + n7 = d− 3 + τ(1)− 1

2n5 + n3 + n4 + n8 = d− 3 + τ(2)− 2

2n9 + n4 + n6 + n7 = d− 3 + τ(3)− 3

(5.9)

Then

Nd =
∑

τ

(−1)|τ |
(

2(d− 3)
n0, n1, . . . , n9

)
(5.10)

the sum being over all τ ∈ S4 and over all (n0, n1, . . . , n9) satisfying (5.8) or (5.9).

Using the final formula in R (a program for statistical computing) (orMathematica

slower than R for these computations) one gets the following table:

n 0 1 2 3 4 5 6 7 8 9 10 · · ·
Nd 1 0 1 5 126 3396 114675 4430712 190720530 8942188632 449551230102 · · ·

110



which can also be achieved via the package Schubert developed by Katz and

Strømme. However we have a way to see (namely formula (5.10) together with

conditions (5.9) and (5.8)) how complicated a general formula expressing such

number may be.

5.3 Playing with S-Derivations.

Working in
∧k M suggests that Schubert calculus for grassmannians Gk(Pn) must

be linked recursively with Schubert calculus of Gk′(Pn′) with k′ < k and n′ ≤ n.

This is also observed in [31]. To this purpose, and as a matter of example, we

will determine the way of linking these Schubert Calculus for the grassmannians

G1(P1+n), G2(P2+n) and G3(P3+n).

5.3.1 Example. Working on
∧2 M2+n, one has:

D2n
1 (ε0 ∧ ε1) =

2n∑

h=0

(
2n

h

)
Dh

1 ε0 ∧D2n−h
1 ε1 =

2n∑

h=0

(
2n

h

)
εh ∧ ε2n+1−h (5.11)

Since D2n
1 sends (

∧2 M)0 onto (
∧2 M)2n (D1 is homogeneous of degree 1

with respect to the weight graduation of
∧2 M) and Dnε

0 = d0,nεn and Dnε0 =

d0,1+nε1+n it follows that only the sum

(
2n

n

)
d0,nε

n ∧ εn +

(
2n

n

)
d0,1+nε1+n ∧ εn

can survive in expression (5.11). Therefore:

D2n
1 ε0 ∧ ε1 =

[(
2n

n

)
d0,n −

(
2n

1 + n

)
d0,1+n

]
εn ∧ ε1+n (5.12)

so that

d1,1+n =

(
2n

n

)
d0,n −

(
2n

1 + n

)
d0,1+n =

(2n)!

(n + 1)!n!
(since d0,1+m = 1, ∀m).
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5.3.2 Example. Working on
∧3 M3+n, one has:

D3n
1 (ε0 ∧ ε1 ∧ ε3) =

3n∑

h=0

(
3n

h

)
Dh

1 (ε0 ∧ ε1) ∧ ε2+3n−h (5.13)

In the above sum only will survive multiples of the terms:

εn ∧ εn+1 ∧ εn+2, εn ∧ εn+2 ∧ εn+1 εn+1 ∧ εn+2 ∧ εn

Then, the possible values of h are 2n, 2n + 1 and 2n + 2. Thus,

D3n
1 (ε0 ∧ ε1 ∧ ε3) =

(
3n

2n

)
D2n

1 (ε0 ∧ ε1) ∧ ε2+n +

(
3n

2n + 1

)
D2n+1

1 (ε0 ∧ ε1) ∧ ε1+n +

+

(
3n

2n + 2

)
D2n+2

1 (ε0 ∧ ε1) ∧ εn

Using Example (5.3.1) one has the coefficient of the first addendum. For

the second one only observe that the coefficient of εn ∧ εn+2 in the expansion

of D2n+1
1 (ε0 ∧ ε1) is equal to the degree d1,2+n. In the last addendum, instead one

observes that the coefficient of εn+1∧ εn+2 in the expansion of D2n+2
1 (ε0∧ ε1) is the

degree d1,1+n. Thus,

D3n
1 (ε0 ∧ ε1 ∧ ε3) =

(
3n

2n

)
d1,2+nε

n ∧ εn+1 ∧ εn+2 +

(
3n

2n + 1

)
d1,2+nεn ∧ εn+2 ∧ εn+1 +

+

(
3n

2n + 2

)
d1,1+nε

n+1 ∧ εn+2 ∧ εn

d2,2+n =

[(
3n

2n

)
−

(
3n

2n + 1

)]
d1,2+n +

(
3n

2n + 2

)
d1,1+n

=

[(
3n

n

)
−

(
3n

n− 1

)]
d1,2+n +

(
3n

n− 2

)
d1,1+n

5.3.3 Example. Working on
∧4 M4+n, one has:

D4n
1 (ε0 ∧ ε1 ∧ ε2 ∧ ε3) =

4n∑

h=0

(
4n

h

)
Dh

1 (ε0 ∧ ε1 ∧ ε2) ∧ ε3+4n−h (5.14)
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In the above sum will only survive multiples of the terms:

εn∧εn+1∧εn+2∧εn+3, εn∧εn+1∧εn+3∧εn+2, εn∧εn+2∧εn+3∧εn+1 εn+1∧εn+2∧εn+3∧εn

Then, the possible values of h are 3n, 3n + 1, 3n + 2 and 3n + 3. Thus,

D4n
1 (ε0 ∧ ε1 ∧ ε2 ∧ ε3) =

=
(

4n

3n

)
D3n

1 (ε0 ∧ ε1 ∧ ε2) ∧ εn+3 +
(

4n

3n + 1

)
D3n+1

1 (ε0 ∧ ε1 ∧ ε2) ∧ εn+2 +

+
(

4n

3n + 2

)
D3n+2

1 (ε0 ∧ ε1 ∧ ε2) ∧ εn+1 +
(

4n

3n + 3

)
D3n+3

1 (ε0 ∧ ε1 ∧ ε2) ∧ εn

Using Example (5.3.3) one easily sees that the first addendum is d2,2+n. In

the same way, one see that the third and fourth addendum are d2,3+n. To end

computations one only needs to know the coefficient of the second addendum:

D3n+1
1 (ε0 ∧ ε1 ∧ ε2) =

3n+1∑

h=0

(
3n + 1

h

)
Dh

1 (ε0 ∧ ε1) ∧ ε3+3n−h

In the above sum will only survive multiples of the terms:

εn ∧ εn+1 ∧ εn+3, εn ∧ εn+3 ∧ εn+1 εn+1 ∧ εn+3 ∧ εn

Then, the possible values of h are 2n, 2n + 2 and 2n + 3.

Thus,

D3n+1
1 (ε0 ∧ ε1 ∧ ε2) =

(
3n + 1

2n

)
D2n

1 (ε0 ∧ ε1) ∧ εn+3 +

+
(

3n + 1
2n + 2

)
D2n+2

1 (ε0 ∧ ε1) ∧ εn+1 +
(

3n + 1
2n + 3

)
D2n+3

1 (ε0 ∧ ε1) ∧ εn

Using the same idea of previous examples one sees that the coefficients of the first,

second and third addenda are, respectively d1,1+n, d1,3+n − d1,2+n and d1,3+n.

Thus,

D3n+1
1 (ε0 ∧ ε1 ∧ ε2) =

(
3n + 1

2n

)
d1,1+nεn ∧ εn+1 ∧ εn+3 +

+
(

3n + 1
2n + 2

)
(d1,3+n − d1,2+n)εn ∧ εn+3 ∧ εn+1 +

+
(

3n + 1
2n + 3

)
d1,3+nεn+1 ∧ εn+3 ∧ εn =
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=
[(

3n + 1
2n

)
d1,1+n −

(
3n + 1
2n + 2

)
(d1,3+n − d1,2+n) +

(
3n + 1
2n + 3

)
d1,3+n

]
εn ∧ εn+1 ∧ εn+3 =

=
{(

3n + 1
2n

)
d1,1+n +

(
3n + 1
2n + 2

)
d1,2+n +

[(
3n + 1
2n + 3

)
−

(
3n + 1
2n + 2

)]
d1,3+n

}
εn ∧ εn+1 ∧ εn+3.

Reorganizing the results, one has:

D4n
1 (ε0 ∧ ε1 ∧ ε2 ∧ ε3) =

(
4n

3n

)
d2,2+nεn ∧ εn+1 ∧ εn+2 ∧ εn+3 +

+
(

4n

3n + 1

){(
3n + 1

2n

)
d1,1+n +

(
3n + 1
2n + 2

)
d1,2+n+

+
[(

3n + 1
2n + 3

)
−

(
3n + 1
2n + 2

)]
d1,3+n

}
εn ∧ εn+1 ∧ εn+3 ∧ εn+2 +

+
(

4n

3n + 2

)
d2,3+nεn ∧ εn+2 ∧ εn+3 ∧ εn+1 +

+
(

4n

3n + 3

)
d2,3+nεn+1 ∧ εn+2 ∧ εn+3 ∧ εn

Thus,

d3,3+n =
(

4n

n

)
d2,2+n +

[(
4n

n− 2

)
−

(
4n

n− 3

)]
d2,3+n −

(
4n

n− 1

){(
3n + 1
n + 1

)
d1,1+n+

+
(

3n + 1
n− 1

)
d1,2+n +

[(
3n + 1
n− 2

)
−

(
3n + 1
n− 1

)]
d1,3+n

}
.
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Chapter 6

The Grassmannian of Lines

The intersection theory of the Grassmannians of lines is described by a 1-SCGP (as

in [26]), where computations get very easy. The model for its intersection theory

is the same of Chapter 5 when k = 1.

This Chapter shall be devote to show some applications of our theory in the

grassmannian of Lines.

6.1 Littlewood-Richardson Coefficients

Littlewood-Richardson Coefficients have a variety of interpretations, often in terms

of symmetric functions, representation theory and geometry. In each case they

appear as structure coefficients of rings. In geometry, Littlewood-Richardson Co-

efficients are structure coefficients of the cohomology ring of the Grassmannian

with respect to the basis of Schubert cycles. In this section we prove, using our

framework, a well know result about Littlewood-Richardson coefficients: In the

Grassmannian G1(Pn) Littlewood-Richardson coefficients are always 0 or 1. First

recall:

6.1.1 Definition. Let ∆I(D) and ∆J(D) be the Giambelli’s polynomial for εI =

εi0 ∧ . . . ∧ εik and εJ = εj0 ∧ . . . ∧ εjk respectively. Then:

[εI ] ∗ [εJ ] = ∆I(D)(εJ)
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=
∑

|M |=|I|+|J |
CM

I,JεM (6.1)

with εM = εm0 ∧ . . . ∧ εmk and m0 < m1 . . . < mk.

The CM
I,J are the Littlewood-Richardson Coefficients.

6.1.2 Examples. Computing some LR coefficients in the Grassmannian G(1,Pn).

1) [ε1 ∧ ε2] ∗ [ε2 ∧ ε3] = ∆12(D)(ε0 ∧ ε1) ∗ [ε2 ∧ ε3] =

= ∆12(D)(ε2 ∧ ε3) =

=

∣∣∣∣
D1 D2

D0 D1

∣∣∣∣ (ε2 ∧ ε3) =

= (D2
1 −D2)(ε

2 ∧ ε3) = ε3 ∧ ε4.

Then,

C
(0,7)
(1,2),(2,3) = 0, C

(1,6)
(1,2),(2,3) = 0, C

(2,5)
(1,2),(2,3) = 0, C

(3,4)
(1,2),(2,3) = 1.

2) [ε1 ∧ ε3] ∗ [ε2 ∧ ε4] = ∆13(D)(ε0 ∧ ε1) ∗ [ε2 ∧ ε4] =

= ∆13(D)(ε2 ∧ ε4) =

=

∣∣∣∣
D1 D3

D0 D2

∣∣∣∣ (ε2 ∧ ε4) =

= (D1D2 −D3)(ε
2 ∧ ε4) =

= ε2 ∧ ε7 + ε3 ∧ ε6 + ε3 ∧ ε6 + ε4 ∧ ε5+

−ε2 ∧ ε7 − ε3 ∧ ε6 − ε4 ∧ ε5 − ε5 ∧ ε4

= ε3 ∧ ε6 + ε4 ∧ ε5

Then,

C
(2,7)
(1,3),(2,4) = 0 C

(3,6)
(1,3),(2,4) = 1 C

(4,5)
(1,3),(2,4) = 1

6.1.3 Proposition. (LR coefficients on G(1,Pn)) Let I, J and M be Schubert

indices of length 2, such that |I|+ |J | = |M |. Then,

0 ≤ CM
I,J ≤ 1.
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Proof.

∆(i0,i1)(D)(εj0 ∧ εj1) =

∣∣∣∣∣∣
Di0 Di1

Di0−1 Di1−1

∣∣∣∣∣∣
(εj0 ∧ εj1) = (Di0Di1−1 −Di1Di0−1)(εj0 ∧ εj1) =

=
∑

a0 + a1 = i0

c0 + c1 = i1 − 1

εj0+a0+c0 ∧ εj1+a1+c1 −
∑

b0 + b1 = i0 − 1

d0 + d1 = i1

εj0+b0+d0 ∧ εj1+b1+d1 =

=
i0∑

a0=0

i1−1∑

c0=0

εj0+a0+c0 ∧ εj1+i0+i1−(a0+c0+1) −
i0−1∑

b0=0

i1∑

d0=0

εj0+b0+d0 ∧ εj1+i0+i1−(b0+d0+1) =

=
i0−1∑

a0=0

i1−1∑

c0=0

εj0+a0+c0 ∧ εj1+i0+i1−(a0+c0+1) +
i1−1∑

c0=0

εj0+i0+c0 ∧ εj1+i1−(c0+1)−

−
i0−1∑

b0=0

i1−1∑

d0=0

εj0+b0+d0 ∧ εj1+i0+i1−(b0+d0+1) −
i0−1∑

b0=0

εj0+i1+b0 ∧ εj1+i0−(b0+1) =

=
i1−1∑

c0=0

εj0+i0+c0 ∧ εj1+i1−(c0+1) −
i0−1∑

b0=0

εj0+i1+b0 ∧ εj1+i0−(b0+1)

Since i1 − i0 > 0, then,

∆(i0,i1)(D)(εj0 ∧ εj1) =
i1−1∑

c0=0

εj0+i0+c0 ∧ εj1+i1−(c0+1) −
i0−1∑

b0=0

εj0+i1+b0 ∧ εj1+i0−(b0+1)

=
i1−i0−1∑

c0=0

εj0+i0+c0 ∧ εj1+i1−(c0+1) +
i1−1∑

c0=i1−i0

εj0+i0+c0 ∧ εj1+i1−(c0+1) −

−
i0−1∑

b0=0

εj0+i1+b0 ∧ εj1+i0−(b0+1)

=
i1−i0−1∑

c0=0

εj0+i0+c0 ∧ εj1+i1−(c0+1)

To prove that all coefficients are bigger or equal to zero, it is sufficient proves

that:

j0 + i0 + c0 < j1 + i1 − (c0 + 1), ∀ c0 s.t. 0 ≤ c0 ≤ i1 − i0 − 1 (j0 < j1, i0 < i1).

Let us suppose that j1 − j0 ≥ i1 − i0.(
j1 + i1 − (c0 + 1)

)
−

(
j0 + i0 + c0

)
= (j1 − j0) + (i1 − i0)− (2c0 + 1)
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> (j1 − j0) + (i1 − i0)− (2(i1 − i0 − 1) + 1)

> (j1 − j0)− (i1 − i0) + 1 > 0

Then,

j1 + i1 − (c0 + 1) > j0 + i0 + c0, ∀ c0 s.t. 0 ≤ c0 ≤ i1 − i0 − 1 (j0 < j1, i0 < i1).

For this, one concludes that 0 ≤ CM
I,J ≤ 1

6.1.4 Example A. Computing some LR coefficients in the Grassmannian G(1,Pn).

1A) [ε1 ∧ ε2] ∗ [ε2 ∧ ε3] = ∆12(D)(ε2 ∧ ε3) =

=
0∑

c0=0

ε3+c0 ∧ ε4−c0 = ε3 ∧ ε4;

2A) [ε1 ∧ ε3] ∗ [ε2 ∧ ε4] = ∆13(D)(ε2 ∧ ε4) =

=
1∑

c0=0

ε3+c0 ∧ ε6−c0 = ε3 ∧ ε6 + ε4 ∧ ε5.

6.2 Top Intersection Numbers in G1(P1+n)

Let M2+n the free Z-module spanned by (ε0, ε1, . . . , εn+1) and
∧2(M2+n, D1) the

2-SCGP as in Chapter 5.

Let a, b ≥ 0 such a + 2b = 2n. Then, in
∧2 M2+n, the following equality holds:

Da
1D

b
2(ε

0 ∧ ε1) = κa,b · εn ∧ εn+1

By virtue of our dictionary, κa,b is nothing else than
∫

σa
1σ

b
2 ∩ [G1(P1+n)].

One has:

∑(
a

a0, a1

)(
b

b0, b1, b2

) 1∏
i=0

D
a1−i

i

2∏
i=0

D
b2−i

i ε0 ∧
1∏

i=0

Dai
i

2∏
i=0

Dbi
i ε1 =
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=
∑(

a

a0, a1

)(
b

b0, b1, b2

)
Da0

1 Db1
1 Db0

2 ε0 ∧Da1
1 Db1

1 Db2
2 ε1 =

=
∑(

b

b0, b1, b2

)(
a

a0, a1

)
εa0+b1+2b0 ∧ ε1+a1+b1+2b2 =

=
b∑

b0=0

2n−2b∑
a0=0

(
2n− 2b

a0, 2n− 2b− a0

)
· Ca0,b0 (6.2)

where

Ca0,b0 =
(

b

b0, n− a0 − 2b0, b + b0 + a0 − n

)
−

(
b

b0, n− a0 − 2b0 + 1, b + b0 + a0 − n− 1

)

Formula (6.2) can be considered a new formula in Schubert calculus. Here is a

table computing κa,b asking Mathematica 5.1 to use formula (6.2).

n a b κa,b

1 0 0 1

2 0 1 0

2 0 1

3 0 2 1

2 1 1

4 0 2

4 0 3 1

2 2 2

4 1 3

6 0 5

5 0 4 3

2 3 4

4 2 6

6 1 9

8 0 14

n a b κa,b

6 0 5 6

2 4 9

4 3 13

6 2 19

8 1 28

10 0 42

7 0 6 15

2 5 21

4 4 30

6 3 43

8 2 62

10 1 90

12 0 132

n a b κa,b

8 0 7 36

2 6 51

4 5 72

6 4 102

8 3 145

10 2 207

12 1 297

14 0 429

9 0 8 91

2 7 127

4 6 178

6 5 250

8 4 352

10 3 497

12 2 704

14 1 1001

16 0 1430

n a b κa,b

10 0 9 232

2 8 323

4 7 450

6 6 628

8 5 878

10 4 1230

12 3 1727

14 2 2431

16 1 3432

18 0 4862
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6.2.1 Remark. The term Ca0,b0 in expression (6.2) can be simplified, one has

Ca0,b0 =
b!

b0!(n− a0 − 2b0)!(b + b0 + a0 − n)!
− b!

b0!(n− a0 − 2b0 + 1)!(b + b0 + a0 − n− 1)!

=
b! [(n− a0 − 2b0 + 1)− (b + b0 + a0 − n)]
b0!(n− a0 − 2b0 + 1)!(b + b0 + a0 − n)!

=
b!(2n− b− 2a0 − 3b0 + 1)

b0!(n− a0 − 2b0 + 1)!(b + b0 + a0 − n)!

=
(

b + 1
b0, n− a0 − 2b0 + 1, b + b0 + a0 − n

)
2n− b− 2a0 − 3b0 + 1

b + 1

and then,

κa,b =
b∑

b0=0

a∑
a0=0

(
a

a0

)(
b + 1

b0, n− a0 − 2b0 + 1, b + b0 + a0 − n

)
2n− b− 2a0 − 3b0 + 1

b + 1
,

6.2.2 In particular, if b = 0, we know that κa,0 is the Plücker degree of the

grassmannian G(1,Pn+1). Computing this number, we have:

κa,0 = κ2n,0 =
2n∑

a0=0

(
2n

a0

)(
1

0, n− a0 + 1, a0 − n

)
2n− 2a0 + 1

1

= −
(

2n

n + 1

)(
1

0, 0, 1

)
+

(
2n

n

)(
1

0, 1, 0

)

=
(

2n

n

)
−

(
2n

n + 1

)

=
1

n + 1
· (2n)!

n!n!
=

1
n + 1

(
2n

n

)
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6.3 Bessel Function and Degree of the Grass-

mannian of Lines

In Example 5.3.1( also in (6.2.2)) we have seen that the degree of the grassmannian

G1(P1+n) is the coefficient κ2n,0 := d1,1+n of the expansion

D2n
1 (ε0 ∧ ε1) = d1,1+nε

n ∧ ε1+n,

in
∧2 M where M is a free Z-module of rank 2 + n and D1 is the extension of

the shift endomorphism to
∧2 M . This coefficient, as remarked, is equal to the

Catalan number:

d1,1+n =
1

n + 1

(
2n

n

)
=

(2n)!

(n + 1)!n!
. (6.3)

In this chapter we will find an expression involving modified Bessel’s functions

as generating function for the Plücker degrees of the grassmannians of lines in a

projective space.

The problem is motivated because using our formalism (see Section 5.3, and

also [27]) we can easily prove that the degree of the grassmaniann Gk(Pk+n) can

be written as an explicit linear combination of degrees dk′,k′+n′ , with k′ < k. This

fact seems to suggest that it should be possible to collect all the degrees of the

grassmannians (for all k and n) in some general generating function. Below we

analyze a very special case, inspired by this philosophy.

6.3.1 A Few Words about Bessel Functions. As well known, for each z ∈ C,

the function fz(t) = e
1
2
z(t− 1

t
) is holomorphic on C \ {0} and admits therefore

a Laurent series expansion converging at the function itself at all points of its

domain:

e
1
2
z(t− 1

t
) =

∞∑
n=−∞

tnJn(z). (6.4)

The coefficient of tn (n ∈ Z) of such an expansion will be said Bessel function. An

explicit expression for Jn(z) is given by the equality:
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e
1
2
z(t− 1

t
) =

∞∑
r=0

(
1
2
z
)r

tr

r!

∞∑
s=0

(−1
2
z
)s

t−s

s!
.

Hence, for n ≥ 0 one has:

Jn(z) =
∞∑

s=0

(−1)s
(

1
2
z
)n+2s

s!(n + s)!
and J−n(z) = (−1)nJn(z). (6.5)

Differentiating expression (6.4) with respect to t, one gets the recurrence formulae:

Jn−1(z) + Jn+1(z) =
2n

z
Jn(z) and Jn−1(z)− Jn+1(z) = 2J

′
n(z),

from which the Bessel differential equation:

z2d2Jn(z)

dz2
+ z

dJn(z)

dz
+ (z2 − n2)Jn(z) = 0.

For each n ∈ Z, then, Jn(z) is a solution of the (Bessel) differential equation:

z2y
′′

+ zy
′
+ (z2 − n2)y = 0. (6.6)

Another linearly independent solution is given by the Weber’s function:

Yn(z) =
Jn(z) cos(nπ)− J−n(z)

sin nπ
. (6.7)

The function Jn(z) is also said to be the n-Bessel function of first kind while

Yn(z) the n-Bessel function of second kind. For each ν ∈ C one defines the Bessel

function of order ν, Jν(z) and Yν(z), to be solutions of the equation:

z2y
′′

+ zy
′
+ (z2 − ν2)y = 0 (6.8)

which will be called Bessel differential equation for functions of order ν.

The Bessel functions are related to the Hankel’s functions, also called Bessel

functions of the third kind,

H(1)
ν (z) = Jν(z) + iYν(z) (6.9)

H(2)
ν (z) = Jν(z)− iYν(z) (6.10)

This functions have many interesting properties.
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6.3.2 Modified Bessel functions. Now we consider the differential equation

z2y
′′

+ zy
′ − (z2 + n2)y = 0 (6.11)

called modified Bessel differential equation and occurring in many problems of

Mathematical Physics.

One of the solutions of this equation is called modified Bessel function of first

kind In(z). This solution is related with Jn(z) in this way :

In(z) = i−nJn(iz)

Then,

In(z) = i−n

∞∑
s=0

(−1)s
(

1
2
iz

)n+2s

s!(n + s)!

= i−nin
∞∑

s=0

(−1)si2s
(

1
2
z
)n+2s

s!(n + s)!

=
∞∑

s=0

(
1
2
z
)n+2s

s!(n + s)!
(6.12)

Then we can see that:

I−n(z) = In(z) (6.13)

In fact,

I−n(z) = inJ−n(iz) =

= in(−1)nJn(iz) =

= i2ni−n(−1)nJn(iz) =

= (−1)ni−n(−1)nJn(iz) =

= i−nJn(iz) = In(z)

The second solution of this equation is called modified Bessel function of second

kind, Kn(z) with

Kn(z) =
(π

2

) In(z)− I−n(z)

sin nπ
(6.14)
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6.3.3 A Generating Function for the d1,n+1’s. Easy computations show that

the numbers d1,1+n of formula (6.3) satisfy the recurrence below:

(n + 2)d1,n+2 − 2(2n + 1)d1,n+1 = 0, (6.15)

holding for each n ≥ 1. Let us organize them into a formal power series:

F (z) =
∞∑

n=0

d1,n+1

n!
zn. (6.16)

The power series F (z) is indeed an entire holomorphic function. In fact:

6.3.4 Proposition. The series (6.16) converges for all z ∈ C .

Proof. One simply applies the ratio test using the recursive relation (6.15). One

has:

lim
n→∞

∣∣∣∣∣
d1,n+2

(n+1)!

d1,n+1

n!

∣∣∣∣∣ = lim
n→∞

∣∣∣∣
n!d1,n+2

(n + 1)!d1,n+1

∣∣∣∣ =

= lim
n→∞

∣∣∣∣∣
2(2n+1)

n+2
d1,n+1

(n + 1)d1,n+1

∣∣∣∣∣ =

= lim
n→∞

∣∣∣∣
2(2n + 1)

(n + 1)(n + 2)

∣∣∣∣ = 0.

6.3.5 Proposition. The function w = F (z) (formula (6.16)) is solution of the

Cauchy problem: 



zw′′ + 2(1− 2z)w′ − 2w = 0

w(0) = 1

w′(0) = 1

. (6.17)

Proof. First of all one can immediately check that F (0) = F ′(0) = 1. Secondly,

using (6.15), one has that:

zF ′′ + 2(1− 2z)F ′ − 2F = (zF ′)′ + F ′ − 4(zF )′ + 2F.

Substituting expression (6.16) in the above equality, using (6.15), one then gets,

for each n ≥ 0:

[(zF )′ + F ′ − 4(zF )′ + 2F ](z) =
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=
∑
n≥0

(
(n + 1)d1,n+2

n!
+

d1,n+2

n!
− 4(n + 1)d1,n+1

n!
+

2d1,n+1

n!

)
zn =

=
∑
n≥0

(
(n + 2)d1,n+2 − 2(2n + 1)d1,n+1

n!

)
zn = 0.

6.3.6 Theorem. The solution of the Cauchy problem (6.17) is :

w(z) = e2z(I0(2z)− I1(2z)), (6.18)

where

In(z) =
∞∑

s=0

(
1
2
z
)n+2s

s!(n + s)!
(6.19)

is the modified Bessel function of first kind, satisfying Bessel’s differential equation

z2w′′ + zw′ − (z2 + n2)w = 0.

Proof. One first multiplies by z the differential equation occurring in (6.17), get-

ting

z2w′′ + 2(1− 2z)zw′ − 2zw = 0. (6.20)

Then one looks for a solution in the form of a convergent power series convergent

in a neighborhood of 0. This will be achieved using Frobenius method ([4], p. 1),

looking for a solution of the form:

w(z, m) =
∞∑

n=0

Anxn+m, with A0 6= 0. (6.21)

This is possible, in this case, because 2(1 − 2z)z and 2z are (entire) holomorphic

function. From equation (6.21) one has :

dw

dz
= mA0z

m−1 +
∞∑

k=1

(m + k)Akz
m+k−1,

d2w

dz2
= m(m− 1)A0z

m−2 +
∞∑

k=1

(m + k)(m + k − 1)Akz
m+k−2

.
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Then, in order to satisfy equation (6.17), for w = w(z), one must have:

z2d2w

dz2
+ z(2− 4z)

dw

dz
− 2zw = 0,

which, using the power series expansion, will be written as:

z2

[
m(m− 1)A0z

m−2 +
∞∑

k=1

(m + k)(m + k + 1)Akz
m+k−2

]
+

+2(1− 2z)z

[
mA0z

m−1 +
∞∑

k=1

(m + k)Akz
m+k−1

]
− 2z

[
A0z

m +
∞∑

k=1

Akz
m+k

]
= 0.

Dividing by zm, this gives:

[m(m− 1)A0 + 2mA0] z
m + [(m + 1)mA1 − 4mA0 − 2A0] z

m+1 + . . .

. . . + [(m + n)(m + n− 1)An + 2(m + n)An+

−4(m + n− 1)An−1 − 2An−1] z
m+n + . . . = 0,

and then,

(m2 + m)A0z
m +

[
(m + 1)mA1 − (m + 2)A0]z

m+1 + . . . +

+ {(m + n)(m + n + 1)An − [4(m + n− 1) + 2]An−1} zm+n = 0

The left-hand side of equation (6.22) identically vanishes in its convergence domain

if and only if all the coefficients occurring in the z-power series vanish. Imposing

such a vanishing one deduces that

m(m + 1)A0 = 0, (6.22)

together with the recursive relation:

An =
4(m + n− 1) + 2

(m + n)(m + n + 1)
An−1, (6.23)

holding for each n ≥ 1. Therefore, using (6.23) one has:

w(z, m) = A0z
m

[
1 +

4m + 2
(m + 1)(m + 2)

z +
(4m + 6)(4m + 2)

(m + 1)(m + 2)2(m + 3)
z2+

(6.24)

+
(4m + 10)(4m + 6)(4m + 2)

(m + 1)(m + 2)2(m + 3)2(m + 4)
z3 + . . .

]
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We know, by the way A1, A2, . . . have been constructed, that :

z2d2w

dx2
+ 2(1− 2z)z

dw

dz
− 2zw = m(m + 1)A0z

m−2.

That last equation can be rewritten in the form :

(
z2 d2

dz2
+ 2(1− 2z)z

d

dz
− 2z

)
w = m(m + 1)A0z

m. (6.25)

Since A0 6= 0, the right hand side of (6.25) is zero if and only if m = 0 or m = −1.

The case m = −1 must be excluded, since contrarily one would get solutions not

converging in any neighborhood of the origin of the complex plane. On the other

hand, setting m = 0, one has:
(

z2 d2

dz2
+ 2(1− 2z)z

d

dz
− 2z

)
w(z, 0) = 0,

which shows that w(z, 0) is a solution of equation (6.20). Using (6.24) one has

found, then:

w(z, 0) = 1 + z + z2 +
5

6
z3 +

7

12
z4 + . . . =

= 1 + z +
2

2!
z2 +

5

3!
z3 +

14

4!
z4 + . . .

Using (6.19), the fact that e2z =
∞∑

n=0

(2z)n

n!
and an easy computation, one finally

gets :

w(z, 0) = e2z(I0(2z)− I1(2z)),

a function solving the given Cauchy problem, as an immediate check shows.

We have hence proven that

6.3.7 Corollary.

F (z) = e2z(I0(2z)− I1(2z))

is a (exponential) generating function for the degrees of the grassmannians G1(Pn+1)

(n ≥ 0).
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6.4 Catalan Traffic and Top Intersection Num-

bers

6.4.1 Catalan Numbers. As remarked e.g. in [53] the nth Catalan number

Cn = 1
n+1

(
2n
n

)

is equal to the Plücker degree of the grassmannian of lines G1(Pn+1). Catalan

numbers occur in several combinatorial situations1, especially in problems of lattice

paths enumeration.

(0, 0)

(2, 2)

(0, 0)

(2, 2)

(0, 0)

(2, 2)

(0, 0)

(2, 2)

(1) (2) (3) (4)

Fig. 1. Paths (1), (2), (3), (4) are given respectively by the sequence of points

ς1 = (0, 0), (1, 0), (1, 1), (2, 1), (2, 2), ς2 = (0, 0), (0, 1), (0, 2), (1, 2), (2, 2), ς2(0, 0), (1, 1), (2, 2),

ς4 = (0, 0), (1, 1), (1, 2), (2, 2).

Recall that a lattice path ς of length ` is a finite sequence (a0, b0), . . . , (a`, b`)

of points of Z2, where (a0, b0) is the starting point, (a`, b`) is the end point and

a path reaches (a`, b`) starting from (a0, b0) through a sequence of steps obeying

certain rules. Figure 1 depicts some examples of lattice paths starting from (0, 0)

to (2, 2), where only unitary steps are allowed. Within this context, it is well

1 Just to give an example of the many combinatorial occurrences of Catalan’s, one can think

of Cn as the number of different ways a convex polygon with n+2 sides can be decomposed into

triangles, by drawing straight lines connecting vertices (the figure below depicts the case n = 3),

or as the number of finite sequences of 2n terms, such that n elements are equal to 1 and n

elements are equal to −1, and the sum of the first i elements is ≥ 0, for every 1 ≤ i ≤ 2n.
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known (see e.g. [75]), that Cn is the number of lattice paths joining (0, 0) to

(x, x) ∈ S := {(x, y) ∈ Z × Z | 0 ≤ x ≤ y}, allowing unitary steps only, along the

x or y direction.

6.4.2 The Catalan Traffic Game. In the paper [54], Niederhausen constructed

and studied the following traffic game. One is given of a city map C ⊆ Z2 where

one aims to enumerate lattice paths joining the origin to a point (m,n) ∈ C. The

city map is bounded by the line m + n = 0 (the beach) and the traffic rules (the

steps conditions) are subject to constraints, such as gates and block points (see Fig.

below).

1 2 3 4 5 6 7
−1−2−3−4

A

B

E

C

H

Block trafficStart here

Fig. 2. The city map with the traffic rule. The beach separates the town from the sea.

A first rule of the game is that one cannot walk beyond the beach line2. Further-

more:

i) At lattice points strictly below the line 2m+n = 0, only North (↑) or West (←)

directions are allowed;

ii) At lattice points strictly above the line 2m + n = 0, only East (→) or NE (↗)

directions are allowed;

iii) Block out all traffic at the points (m,n) ∈ Z2 lying on the line 2m+n = 1 (¥);

iv) On the line 2m + n = 0 (gates), allow W (←), E (→), and NE ( ↗) (because

of the road blocks at 2m + n = 1).

2Whence the title of the paper [54]: Catalan traffic at the beach.
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The city map of Fig. 2 is precisely that occurring in [54] after a harmless

counterclockwise rotation of 90 degrees.

Let Υ(m,n) be the number of distinct paths joining (0, 0) to (m,n) ∈ C. The

main result of [54], there proven in three different ways, is that Υ(n, n) = Cn. One

way this is proven is to show that the following recursive formula:





Υ(m + 1, n) = Υ(m,n) + Υ(m,n− 1)

Υ(0, 0) = 1

Υ(0, 1) = 0

(6.26)

holds for all (m,n) ∈ Z2 such that −n ≤ 2m ≤ 2n. Using recursive formula (6.26),

the city map can be completed by attaching the number Υ(m,n) to each (m,n) ∈
C:

1

2 3 4 5 6
−1−2−3

A

B

E

C

H

Block point

1
1

2

14

42

0

1

3

9

28

90

1

1

3

6

121212

1

33

3 9

2

64

21 30 43 62

13 19

0

0

132

5

15

11

Start point

Since Υ(n, n) turns out to be the nth Catalan number, it is also the degree of

the grassmannian G1(Pn+1) in its Plücker embedding. This fact can be generalized.

In fact the main result of this section is to prove the following:

6.4.3 Theorem. For all 0 ≤ m ≤ n, the number Υ(m,n) is the number κ2m,n−m

of lines in Pn+1 incident 2m linear subspaces of codimension 2 and n−m subspaces

of codimension 3 in general position in Pn+1.
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The proof will consist in showing that the numbers κ2m,n−m enjoy the same

recursion enjoyed by Υ.

6.4.4 Setup for the proof of Theorem 6.4.3. Let M be a free Z-module rank

n + 2 spanned by E := (ε0, ε1, . . . , εn+1). Let Dj : M −→ M be Dj
1, where D1 is

the unique Z-endomorphism of M whose matrix with respect to the basis E is a

Jordan block of maximal rank (See Section (3.2). Let Dt :
∧

M −→ ∧
M [[t]] be

the S-derivation gotten by extending Dt :=
∑

j≥0 Djt
j : M −→ M [[t]].

Moreover let Dt :=
∑

j≥0 Djt
j :

∧
M −→ ∧

M [[t]] the inverse of Dt ∈
St(

∧
M). By intersection theory on Grassmann varieties, the number of lines

in Pn+1 incident 2m linear subspaces of codimension 2 and n − m subspaces of

codimension 3 in general position in Pn+1 is computed by the degree
∫

G1(Pn+1)

σ2m
1 σn−m

2 ,

which, by virtue of the dictionary 5.0.7, is equal to the coefficient κ2m,n−m occurring

in the equality:

D2m
1 Dn−m

2 (ε0 ∧ ε1) = κ2m,n−m · εn ∧ εn+1 (6.27)

6.4.5 Proof of Theorem 6.4.3. For commodity, we set K(m, n) := κ2m,n−m.

Clearly K(0, 0) = 1 = Υ(0, 0) and K(0, 1) = 0 = Υ(0, 1). In fact

D0
1(ε

0 ∧ ε1) = 1 · ε0 ∧ ε1 and D2(ε
0 ∧ ε1) = 0.

Recall that D2 = D2
1 −D2. Now, using 6.27 and by definition of K(m,n), one

has

D2m
1 Dn−m

2 (ε0 ∧ ε1) = D2m
1 Dn−m−1

2 (D2
1 −D2)(ε

0 ∧ ε1) =

= (D2m+2
1 Dn−m−1

2 −D2m
1 Dn−m−1

2 D2)(ε
0 ∧ ε1) =

= D2m+2
1 Dn−m−1

2 (ε0 ∧ ε1)−D2m
1 Dn−m−1

2 D2(ε
0 ∧ ε1)(6.28)

Now, on the r.h.s of formula (6.28), the former summand is precisely K(m +

1, n)εn∧εn+1 while the latter, is equal to D2m
1 Dn−m−1

2 (ε1∧ε2). This last expression

can be read in
∧2 M ′, where M ′ is a free Z-module of rank n + 1, generated by
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(ε1, . . . , εn+1), and, therefore, is equal to κ2m,n−m−1ε
n ∧ εn+1. Hence, keeping in

mind that κ2m,n−m−1 = K(m,n− 1), one has, using (6.28):

K(m,n) · εn ∧ εn+1 = (K(m + 1, n)−K(m,n− 1)) · εn ∧ εn+1.

As a conclusion

K(m + 1, n) = K(m,n) + K(m,n− 1), (6.29)

which is the sought for recursive formula (compare with formula (6.26)), which

together with the initial conditions proves that Υ(m, n) = K(m,n), as claimed.

6.4.6 Then,

κ2m,n−m =
n−m∑

b=0

2m∑
a=0

(
2m

a

)(
n−m + 1

b, n− a− 2b + 1, b + a−m

)
m + n− 2a− 3b + 1

n−m + 1
, ∀ n ≥ m ≥ 0,

gives the way to arrive in the point (m, n) in the described city map starting from

(0, 0).

6.5 Bessel Functions and Catalan Traffic

In Chapter 6.3 we proved that:

F (z) = e2z(I0(2z)− I1(2z))

is a (exponential) generating function for the degrees of the grassmannians G1(Pn+1)

(n ≥ 0).

Then, using recursive relations 6.29, we have that:

6.5.1 Theorem.

Hk(z) =
k∑

h=0

(−1)h

(
k

h

)
F (k−h)(z), 0 ≤ k ≤ n. (6.30)

is a generating function for the integrals in the grassmannians G2(Cn+2), i.e.
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κ2(n−k),k = H
(n−k)
k (0), 0 ≤ k ≤ n.

Proof. The proof is by induction on the integer k. If k = 0, we have:

H0(z) = F (z).

Let us suppose that the formula is true for all k > 1:

Hk−1(z) =
k−1∑

h=0

(−1)h

(
k − 1

h

)
F (k−1−h)(z).

Then,

Hk(z) = H ′
k−1(z)−Hk−1(z)

=

(
k−1∑

h=0

(−1)h

(
k − 1

h

)
F (k−1−h)(z)

)′

−
k−1∑

h=0

(−1)h

(
k − 1

h

)
F (k−1−h)(z)

=
k−1∑

h=0

(−1)h

(
k − 1

h

)
F (k−h)(z)−

k−1∑

h=0

(−1)h

(
k − 1

h

)
F (k−1−h)(z)

= F (k) +
k−1∑

h=1

(−1)h

(
k − 1

h

)
F (k−h)(z)−

k−2∑

h=0

(−1)h

(
k − 1

h

)
F (k−1−h)(z) + (−1)k−1F

= F (k) +
k−2∑

r=0

(−1)r+1

(
k − 1
r + 1

)
F (k−r−1)(z) +

k−2∑

h=0

(−1)h+1

(
k − 1

h

)
F (k−1−h)(z) + (−1)k−1F

= F (k) +
k−2∑

r=0

(−1)r+1

((
k − 1
r + 1

)
+

(
k − 1

r

))
F (k−r−1)(z) + (−1)k−1F

= F (k) +
k−2∑

r=0

(−1)r+1

(
k

r

)
F (k−r−1)(z) + (−1)k−1F

=
k∑

h=0

(−1)h

(
k

h

)
F (k−h)(z)

6.5.2 In particular, since

dIµ(z)

dz
= I ′µ(z) =

1

2
[Iµ−1(z) + Iµ+1(z)],
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H1(z) = e2z(I1(2z)− I2(2z)) is a (exponential) generating function for (κ2(n−1),1),

the number of planes incident “2n − 2” linear subspaces of codimension 2 and

“1” linear subspaces of codimension 3 in general position in Pn+1. In fact, by the

theorem:

H1(z) = F ′(z)− F (z),m ≥ 1

= 2e2z(I0(2z)− I1(2z)) + e2z[2I1(2z)− I0(2z)− I2(2z)]−
−e2z(I0(2z)− I1(2z)) = e2z(I1(2z)− I2(2z)).

In the same way, one sees that the generating function for (κ2(n−2),2) is H2(z) =

e2z(I0(2z)− I3(2z)):

H2(z) = F ′′(z)− 2F ′(z) + F (z),m ≥ 2

= H ′
1(z)−H1(z) =

= e2z(I0(2z)− I3(2z)).
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[64] P. Pragacz, J. Ratajski, Formulas for Lagrangian and orthogonal degeneracy

loci; Q-polynomial approach, Comp. Math. 107 (1997), no. 1, 11–87.

[65] S. Robinson, A Pieri-type formula for H∗
T (SLn(C)/B), J Algebra 249, (2002),

38–58. 7, 8

[66] T. Santiago C. Oliveira, Degrees of Grassmannians of Lines, Atti Acc. Sci. di

Torino, 2005, to appear.

[67] T. Santiago C. Oliveira, “Catalan Traffic” and Integrals on the Grassmannian

of Lines, Dip. di Mat. Politecnico di Torino, Rapp. int. n.35, december 2005.

[68] J. S. Tymoczko, An introduction to equivariant cohomology and homol-

ogy, following Goresky, Kottwitz, and MacPherson, To be published in the

proceedings of the 2004 AMS conference for young algebraic geometers

arXiv:math.AG/0503369. 71

[69] H. C. H. Schubert, Kalkül der abzählenden Geometrie, 1879, reprinted with
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mension, Acta. Math., 8 (1886), pp. 97-118. 8, 10

[71] F. K. Schmidt, Die Wronskische Determinante in beliebigen differenzierbaren

Funktionenkörper, Math. Z. 45 (1939), 62–74.

[72] B. Siebert, G. Tian, On Quantum Cohomology rings of Fano manifolds and

a formula of Vafa and Intrilligator, Asian J. Math 1 (1997), 679–695.

[73] F. Sottile, Pieri’s formula for flag manifolds and Schubert polynomials, Ann.

Inst. Fourier (Grenoble), 46, (1996), no. 1, 89–110.

141



[74] T. A. Springer, Linear algebraic groups, (second edition) Progr. Math. 9,
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