Poll Question \#1

PIPE
FLOTATION

Josh Bealkley \&
Jennifer Schaff

Outline

- Why do we care?
-What is buoyancy?
- TWO methods to account for this our designs
- Factors of Safety
- Where the rubber meets the road...example problems!

Flotation Failure

U.S. 2019 Billion-Dollar Weather and Climate Disasters

This map denotes the approximate location for each of the 14 separate billion-dollar weather and climate disasters that impacted the United States during 2019.

National Weather Service

NOAA forecasters predict widespread flooding this spring, but do not expect it to be as severe or prolonged overall as the historic floods in 2019. Major to moderate flooding is likely in 23 states from the Northern Plains south to the Gulf Coast, with the most significant flood potential in parts of North Dakota, South Dakota and Minnesota.

Various levels of buoyancy depending on weight of the submerging body
$\stackrel{+}{4}$

Relative Weights

American Concrete Pipe Association

c)

CONCRETEPIPE.ORG

Pipe Weights

$$
\mathrm{V}=18.35 \mathrm{ft}^{3} / \mathrm{ft}
$$

$62.4 \mathrm{lb} / \mathrm{ft} 3$

|

WATER
CONCRETE
HDPE
$\mathrm{W}=1145 \mathrm{lb} / \mathrm{ft}$
$\mathrm{W}=867 \mathrm{lb} / \mathrm{ft}$
$\mathrm{W}=26 \mathrm{lb} / \mathrm{ft}$

STEEL
$\mathrm{W}=48 \mathrm{lb} / \mathrm{ft}$

48" PIPE

Poll Question \#2

Flotation Calculation

Soil Resistance + Pipe Weight - Buoyancy Force ≥ 0.0

Microstructure of Soil

Buoyant Weight of Soil

$$
\gamma_{b}=\gamma_{t}-\gamma_{w}
$$

- $\gamma_{\mathrm{t}}=$ saturated unit weight of soil (pcf)
- $\gamma_{w}=$ unit weight of water (pcf)

c)

American Ooncrete Pipe Association

(3)

CONCRETEPIPE.ORG

Methods of Calculating Soil Resistance for Buoyancy

1 - American Concrete Pipe Association (ACPA) Design Data (DD) 22

There are several installation conditions where there is the possibility that concrete pipe may float even though the density of concrete is approximately 2.4 times that of water. Some of these conditions are: the use of flooding to consolidate backfill; pipelines in areas which will be inundated, such as, a flood plain or under a future man-made lake; subaqueous pipelines; flowable fill installations; and pipelines in areas with a high groundwater table. When such conditions exist, flotation probability should be checked.

FLOTATION FACTORS

The buoyancy of concrete pipe depends upon the weight of the pipe, the weight of the volume of water displaced by the pipe, the weight of the liquid load carried by the pipe and the weight of the backfill. As a conservative practice in analysis, the line should be considered empty so the weight of any future liquid load is then an additional safety factor.

Pipe Weights

The average density of concrete is 150 pounds per cubic foot and the approximate weight per linear foot of circular concrete pipe may be calculated by the following equation:

$$
\begin{equation*}
W_{p}=\frac{-}{4}\left(B_{0}^{2}-D^{2}\right) 150 \tag{1}
\end{equation*}
$$

local conditions should be investigated when seeking solutions for specific projects.

Displaced Water Weight

When water is displaced a buoyant or upward force exists, and, if the buoyant force is greater than the weight of the object displacing the water, flotation will occur. The weight of fresh water displaced per linear foot of circular pipe can be calculated by the following equation:

$$
\begin{equation*}
\mathrm{W}_{\mathrm{w}}=\frac{-}{4}\left(\mathrm{~B}_{\mathrm{c}}^{2}\right) 62.4 \tag{2}
\end{equation*}
$$

where
$\mathrm{W}_{\mathrm{w}}=$ weight of displaced water per linear foot,
pounds,
$\mathrm{B}_{\mathrm{C}}=$ outside pipe diameter, feet.

The average weights of the volume of fresh water displaced per linear foot of C14 and C76 pipe are presented in Tables 3 and 4.

Backfill Weight

The weight of the backfill directly over the pipe assists in holding the pipe down. The unit weight of compacted backfill material varies with specific gravity, the grain size, and the degree of compaction. For preliminary computations, however, average values for surface dry

2 - Watkins/Moser (W/M)
 Utah State

Required Information

American Concrete Pipe Assocition

ACPA DD 22

Equation 4 - Concrete Pipe Design Manual

Watkins/Moser

$$
\begin{gathered}
\theta=45-\phi / 2 \\
\mathrm{R}_{\mathrm{s}}=\mathrm{PL}+2 \mathrm{X} \\
2 \mathrm{X}=\left[\left(\mathrm{H}+\mathrm{D}_{\mathrm{o}} / 2\right)^{2} \tan (45-\phi / 2)\right] \gamma_{\mathrm{b}} \\
\phi=\text { internal angle of friction }
\end{gathered}
$$

Watkins/Moser

$\phi=$ internal angle of friction

American Concrete Pipe Association

www.asce.org/accessengineering/

Poll Question \#3

Which method accounts for a larger value for the soil resistance?

a. ACPA DD 22/ Column Method b. The Bar Method
c. Watkins \& Moser Method d. The Numerical Method

Factors of Safety Geotechnical Engineering LRFD Bridge Substructures

Slope Stability 1.3 to 1.5
Foundation Bearing Capacity 2 to 3
Foundation Sliding 1.5+
Foundation Overturning 2.0+

ACPA DD 22 - Factors of Safety -Guidance

- Buoyancy Force
- Soil Resistance
- Factor of Safety

Is flotation a concern?

RC Pipe Weight =
$\mathrm{W}_{\mathrm{p}}=867 \mathrm{lb} / \mathrm{ft}$
Weight of Water
Displaced =
$W_{w}=\pi\left(d_{o} / 2\right)^{2} \gamma_{w}$
$\mathrm{W}_{\mathrm{w}}=1,145 \mathrm{lbs} / \mathrm{ft}$

$B F=-278 \mathrm{lb} / \mathrm{ft}$

ACPA Method Concrete Pipe

What is the Soil Resistance?

$$
R_{s}=W_{s}=P L=\gamma_{b}\left[H+\frac{D_{0}(4-\pi)}{8}\right] D_{o}
$$

Equation 4 - Concrete Pipe Design Manual

$$
\begin{gathered}
\mathrm{R}_{\mathrm{s}}=(120-62.4)\left[1+\frac{4.833(4-\pi)}{8}\right] 4.833 \\
\mathrm{R}_{\mathrm{s}}=423 \mathrm{lbs} / \mathrm{ft}
\end{gathered}
$$

Watkins/Moser Method Concrete

 Pipe$$
\begin{aligned}
& \theta=45-\phi / 2 \\
& \mathrm{R}_{\mathrm{s}}=\mathrm{PL}+2 \mathrm{X} \\
& 2 \mathrm{X}=\left[\left(\mathrm{H}+\mathrm{D}_{\mathrm{o}} / 2\right)^{2} \tan (45-\phi / 2)\right] \gamma_{\mathrm{b}} \\
& 2 \mathrm{X}=\left[(1+4.833 / 2)^{2} \tan (45-30 / 2)\right](120-62.4) \\
& \quad \mathrm{R}_{\mathrm{s}}=423+388=811 \mathrm{lbs} / \mathrm{ft}
\end{aligned}
$$

Results

ACPA Method

- Net force $=(B F \times F S)+R_{s}$
- $=(-278 \times 1.25)+423=75 \mathrm{lbs}$

Watkins/Moser Method

- Net force $=(B F \times F S)+R_{s}$
- $=(-278 \times 2.0)+811=255 \mathrm{lbs}$

RCP Results

Method	Buoyancy Force, BF (lbs/ft)	Soil Resistance $\mathrm{R}_{\mathrm{s}}(\mathrm{lbs} / \mathrm{ft})$	Factor of Safety, FS	Net Force $(\mathrm{lbs} / \mathrm{ft})$
ACPA	-278	423	1.25	75
W/M	-278	811	2.0	255

Poll Question \#4

- Buoyancy Force
- Soil Resistance
- Factor of Safety

Given:

CM Pipe Weight = $\mathrm{W}_{\mathrm{p}}=48 \mathrm{lb} / \mathrm{ft}$
$\gamma_{\mathrm{t}}=120 \mathrm{pcf}$
$\phi=30 \mathrm{deg}$

Is flotation a concern?

CM Pipe Weight =

 $\mathrm{W}_{\mathrm{p}}=48 \mathrm{lb} / \mathrm{ft}$Weight of Water
Displaced
$W_{w}=\pi\left(d_{o} / 2\right)^{2} \gamma_{w}$
$\mathrm{W}_{\mathrm{w}}=817 \mathrm{lbs} / \mathrm{ft}$
$B F=-769 \mathrm{lb} / \mathrm{ft}$

ACPA Method Metal Pipe

What is soil resistance?

$$
R_{s}=W_{s}=P L=\gamma_{b}\left[H+\frac{D_{0}(4-\pi)}{8}\right] D_{o}
$$

Equation 4 - Concrete Pipe Design Manual

$$
\begin{gathered}
\mathrm{R}_{\mathrm{s}}=(120-62.4)\left[1+\frac{4.08(4-\pi)}{8}\right] 4.08 \\
\mathrm{R}_{\mathrm{s}}=338 \mathrm{lbs} / \mathrm{ft}
\end{gathered}
$$

Watkins/Moser Method Metal Pipe

What is soil resistance?

$$
\begin{gathered}
\theta=45-\phi / 2 \\
\mathrm{R}_{\mathrm{s}}=\mathrm{PL}+2 \mathrm{X} \\
2 \mathrm{X}=\left[\left(\mathrm{H}+\mathrm{D}_{\mathrm{o}} / 2\right)^{2} \tan (45-\phi / 2)\right] \gamma_{\mathrm{b}} \\
2 \mathrm{X}=\left[(1+4.08 / 2)^{2} \tan (45-30 / 2)\right](120-62.4) \\
\mathrm{R}_{\mathrm{s}}=338+307=645 \mathrm{lbs} / \mathrm{ft}
\end{gathered}
$$

Results Metal Pipe

Method	Buoyancy Force, BF $(\mathrm{lbs} / \mathrm{ft})$	Soil Resistance $\mathrm{R}_{\mathrm{s}}(\mathrm{lbs} / \mathrm{ft})$	Factor of Safety, FS	Net Force $(\mathrm{lbs} / \mathrm{ft})$
ACPA	-769	338	1.25	-623
W/M	-769	645	2.0	-893

- Buoyancy Force
- Soil Resistance
- Factor of Safety

Given:

> HDPE Pipe Weight = $\mathrm{W}_{\mathrm{p}}=26 \mathrm{lb} / \mathrm{ft}$
> $\gamma_{\mathrm{t}}=120 \mathrm{pcf}$
> $\phi=30 \mathrm{deg}$

Is flotation a concern?

HDPE Pipe Weight = $W_{p}=26 \mathrm{lb} / \mathrm{ft}$

Weight of Water Displaced $W_{w}=\pi\left(d_{o} / 2\right)^{2} \gamma_{w}$
$\mathrm{W}_{\mathrm{w}}=885 \mathrm{lbs} / \mathrm{ft}$
$B F=-859 \mathrm{lb} / \mathrm{ft}$

ACPA HDPE Pipe

$$
R_{s}=W_{s}=P L=\gamma_{b}\left[H+\frac{D_{0}(4-\pi)}{8}\right] \quad D_{0}
$$

Equation 4 - Concrete Pipe Design Manual

$$
\begin{gathered}
\mathrm{R}_{\mathrm{s}}=(120-62.4)\left[1+\frac{4.25(4-\pi)}{8}\right] 4.25 \\
\mathrm{R}_{\mathrm{s}}=356 \mathrm{lbs} / \mathrm{ft}
\end{gathered}
$$

Watkins/Moser HDPE Pipe

$$
\begin{aligned}
& \theta=45-\phi / 2 \\
& 2 \mathrm{X}=\left[\left(\mathrm{H}+\mathrm{D}_{\mathrm{o}} / 2\right)^{2} \tan (45-\phi / 2)\right] \gamma_{\mathrm{b}} \\
& 2 \mathrm{X}= \\
& \\
& \quad\left[(1+4.25 / 2)^{2} \tan (45-30 / 2)\right](120-62.4) \\
& \\
& \mathrm{R}_{\mathrm{s}}=356+325=681 \mathrm{lbs} / \mathrm{ft}
\end{aligned}
$$

Results HDPE Pipe

Method	Buoyancy Force, BF $(\mathrm{lbs} / \mathrm{ft})$	Soil Resistance $\mathrm{R}_{\mathrm{s}}(\mathrm{lbs} / \mathrm{ft})$	Factor of Safety, FS	Net Force $(\mathrm{lbs} / \mathrm{ft})$
ACPA	-859	356	1.25	-717
W/M	-859	681	2.0	-1037

Comparison - ACPA Method

48" Pipe Type	Buoyancy Force, BF $(\mathrm{lbs} / \mathrm{ft})$	Soil Resistance $\mathrm{R}_{\mathrm{s}}(\mathrm{lbs} / \mathrm{ft})$	Factor of Safety, FS	Net Force $(\mathrm{lbs} / \mathrm{ft})$
HDPE	-859	356	1.25	-717
CMP	-769	338	1.25	-623
RCP	-278	423	1.25	75

Comparison - W/M Method

48" Pipe Type	Buoyancy Force, BF $(\mathrm{lbs} / \mathrm{ft})$	Soil Resistance $\mathrm{R}_{\mathrm{s}}(\mathrm{lbs} / \mathrm{ft})$	Factor of Safety, FS	Net Force $(\mathrm{lbs} / \mathrm{ft})$
HDPE	-859	681	2.0	-1037
CMP	-769	645	2.0	-893
RCP	-278	811	2.0	255

How Much Fill For a 48 Inch Pipe?

	Pipe Type		
Method	RCP	CMP	HDPE
ACPA	0.8 ft.	3.7 ft.	$4 \mathrm{ft} .^{*}$
M/W	0.5 ft.	2.8 ft.	3.0 ft.

[^0]
ACPA Min Fill to Avoid Flotation

Pipe Size (in)	Min. Fill (ft)	Pipe Size (in)	Min. Fill (ft)	Pipe Size (in)	Min. Fill (ft)
21	0.1	42	0.6	78	1.5
24	0.1	48	0.8	84	1.7
27	0.2	54	0.9	90	1.9
30	0.3	60	1.1	96	2.0
33	0.3	66	1.2	102	2.2
36	0.4	72	1.4	108	2.4

48" RCP Results

Shape	Buoyancy Force, BF $(\mathrm{lbs} / \mathrm{ft})$	Soil Resistance $\mathrm{R}_{\mathrm{s}}(\mathrm{lbs} / \mathrm{ft})$	Factor of Safety, FS	Net Force $(\mathrm{lbs} / \mathrm{ft})$
Elliptical	-226	471	1.25	188
Circular	-278	423	1.25	75

Poll Question \#5

c)

American Concrete Pipe Association

(3)

CONCRETEPIPE.ORG

Figure 5.19. Unanchored thin edge projecting.

Source: FHWA HDS 5

c)

American Concrete Pipe Association

Source: FHWA HDS 5

Poll Question \#6

The End

jbeakley@concretepipe.org

Jennifer.Schaff@countymaterials.com

Water Table Not up to the Surface

Given:

Is flotation a concern?

HDPE Pipe Weight = $\mathrm{W}_{\mathrm{p}}=62 \mathrm{lb} / \mathrm{ft}$

Weight of Water Displaced
$W_{w}=\pi\left(d_{o} / 2\right)^{2} \gamma_{w}$
$\mathrm{W}_{\mathrm{w}}=1373 \mathrm{lbs} / \mathrm{ft}$
$B F=-1311 \mathrm{lb} / \mathrm{ft}$

Water Table Not up to the Surface

$$
\begin{aligned}
\text { Net Force } & =(B F \times F S)+R_{s} \\
& =(-1311 \times 1.25)+R_{s}
\end{aligned}
$$

If the water table is above the top of the pipe and at or above the ground surface:

$$
\begin{equation*}
P_{s p}=\frac{\left(H+0.11 \frac{D_{o}}{12}\right) \gamma_{b}}{144} \tag{12.12.3.7-1}
\end{equation*}
$$

- If the water table is above the top of the pipe and below the ground surface:

$$
P_{s p}=\frac{1}{144}\left[\begin{array}{r}
{\left[\left(H_{W}-\frac{D_{o}}{24}\right)+0.11 \frac{D_{o}}{12}\right] \gamma_{b}+} \tag{12.12.3.7-2}\\
{\left[H-\left(H_{w}-\frac{D_{o}}{24}\right)\right] \gamma_{s}}
\end{array}\right]
$$

- If the water table is below the top of the pipe:

$$
\begin{equation*}
P_{s p}=\frac{\left(H+0.11 \frac{D_{o}}{12}\right) \gamma_{s}}{144} \tag{12.12.3.7-3}
\end{equation*}
$$

Calculation of Soil Resistance

$$
\begin{gathered}
R_{s}=\left(\gamma_{t}-\gamma_{w}\right)\left[H_{w}+\frac{D_{o}(4-\pi)}{8}\right] D_{o}+\gamma_{d}\left(H-H_{w}\right)\left(D_{o}\right) \\
R_{s}=(130-62.4)\left[1.5+\frac{5.29(4-\pi)}{8}\right] 5.29+110(3-1.5)(5.29) \\
R_{s}=739+873 \\
R_{s}=1612 \mathrm{lbs} / \mathrm{ft}
\end{gathered}
$$

Results HDPE Pipe

Method	Buoyancy Force, BF $(\mathrm{lbs} / \mathrm{ft})$	Soil Resistance $\mathrm{R}_{\mathrm{s}}(\mathrm{lbs} / \mathrm{ft})$	Factor of Safety, FS	Net Force $(\mathrm{lbs} / \mathrm{ft})$
ACPA	-1311	1612	1.25	-27

Floatation of Horizontal Elliptical Concrete Pipe

Illustration 5.3 Dimensions and Approximate Weights of Elliptical Concrete Pipe

ASTM C 507-Reinforced Concrete Elliptical Culvert,					
Storm Drain and Sewer Pipe					

1 Ft

Is Flotation a Concern?

RC Pipe Weight = $\mathrm{W}_{\mathrm{p}}=1000 \mathrm{lb} / \mathrm{ft}$

Area of Water Displaced $=19.64 \mathrm{ft}^{2}$

Weight of Water Displaced = $\mathrm{W}_{\mathrm{w}}=1,226 \mathrm{lbs} / \mathrm{ft}$
$B F=-226 \mathrm{lb} / \mathrm{ft}$

Areas of Elliptical Pipe for Buoyancy Purposes

Size (in)	Total Area $\left(\mathrm{ft}^{2}\right)$	Size (in)		Total Area $\left(\mathrm{ft}^{2}\right)$	
24×38	8.02	63×98		50.66	
27×42		9.55	68×106		58.14
29×45		11.44	72×113		66.38
32×49		13.58	77×121		75.70
34×53		15.58	82×128		84.09
38×60		19.64	87×136		93.62
43×68		25.02	92×143		103.95
48×76	30.49	97×151	114.74		
53×83	24.8	36.5	106×166		138.81
58×91	43.05	116×180		164.76	

What is the Soil Resistance from the Upper Haunch?

Rise $=38$ in \quad Span $=60$ in \quad Wall $=5.5$ in
$Y=38+2(5.5)=49$ in $\quad X=60+2(5.5)=71$ in
Rect. Area $=X^{*} Y=(49 \times 71) / 144=24.16 \mathrm{ft}^{2}$
Pipe Area $=19.64 \mathrm{ft}^{2}$
Upper Haunch Area $=(24.16-19.64) / 2=2.26 \mathrm{ft}^{2}$
Soil Weight from Upper Haunch $=2.26 \mathrm{ft}^{2} \times 1 \mathrm{ft} \times(120-62.4)=130 \mathrm{lbs} / \mathrm{ft}$

ACPA Method Concrete Pipe

What is the Soil Resistance from the soil prism above the crown?

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{s}}=\text { Upper Haunch }+ \text { Rectangular Soil Prism } \\
& \mathrm{R}_{\mathrm{s}}=130 \mathrm{lbs} / \mathrm{ft}+1 \mathrm{ft} \times(71 / 12) \times(120-62.4) \\
& \mathrm{R}_{\mathrm{s}}=471 \mathrm{lbs} / \mathrm{ft}
\end{aligned}
$$

48" RCP Results

Shape	Buoyancy Force, BF $(\mathrm{lbs} / \mathrm{ft})$	Soil Resistance $\mathrm{R}_{\mathrm{s}}(\mathrm{lbs} / \mathrm{ft})$	Factor of Safety, FS	Net Force $(\mathrm{lbs} / \mathrm{ft})$
Elliptical	-226	471	1.25	188
Circular	-278	423	1.25	75

Areas of Arch Pipe for Buoyancy Purposes

Size (in)		Total Area (ft ${ }^{2}$)	Size (in)	$\begin{aligned} & \text { Flow } \\ & \text { Area } \end{aligned}$	Total Area (ft ${ }^{2}$)
$18 \times 28^{1 / 2}$		4.5	54×88		37.9
$\begin{gathered} 22^{1 / 2} \mathrm{x} \\ 36^{1 / 4} \\ \hline \end{gathered}$		7.0	62×102	14.	50.4
$\begin{gathered} 26^{5} / 8 x \\ 43^{3} / 8 \end{gathered}$		9.8	72×115		64.5
$\begin{gathered} 31^{5 / 16 x} \\ 51^{1 / 8} \\ \hline \end{gathered}$		13.2	$\begin{gathered} 77^{1 / 2 x} \\ 122 \end{gathered}$		73.5
$36 \times 58^{1 / 2}$		17.2	$\begin{gathered} \hline 87^{1 / 8 x} \\ 138 \\ \hline \end{gathered}$	36.0	93.5
40×65		21.2	$\begin{gathered} 96^{7} / 8 \mathrm{x} \\ 154 \end{gathered}$	81.8	115.4
45×73		26.5	$\begin{gathered} 106^{1 / 2 x} \\ 168^{3} / 4 \end{gathered}$	99.	131.2

Flowable Fill

$$
A=1 / 2 r_{o}^{2}(\theta-\sin \theta)
$$

$\theta=\operatorname{invcos}\left[\left(\mathrm{r}_{\mathrm{o}}-\mathrm{x}\right) / \mathrm{r}_{\mathrm{o}}\right] 2$

Flowable Fill

- Using $\gamma_{\mathrm{ff}}=130 \mathrm{pcf}$
- Maximum depths of flowable fill
- HDPE pipe - 2 to 3 inches
- CMP pipe - 3 to 4 inches
- RCP pipe - approximately 40% of $D_{\text {。 }}$

References

- ACPA Design Data 22, Flotation of Circular Concrete Pipe
- Buried Pipe Design by A.P. Moser, second edition, McGraw hill
- Structural Mechanics of Buried Pipes by R.K. Watkins and L.R. Anderson, CRC press
- Pipeline Installation by A. Howard, relativity publishing
- Soil Engineering by M. Spangler \& R. Handy, Harper \& Row
- Federal Highways Administration

jbeakley@concretepipe.org

[^0]: *For plastic pipe, a good rule of thumb is fill height equal to pipe diameter.

