
Pollution, Ability, and Gender-Specific Investment Responses to

Shocks

Teresa Molina∗

September 6, 2016

Abstract

The long-term effects of early-life health shocks on later-life human capital are well-documented,
but the reasons why men and women often respond differently to these shocks are less well-studied.
In this paper, I document that exposure to pollution in the second trimester of gestation leads to
significantly lower cognitive ability in adulthood for both men and women. For women only, however,
this shock to cognitive ability also leads to lower high school completion and income. I show that the
gender difference in schooling responses is driven by two labor market features: (1) the higher female
tendency to choose the white-collar sector, and (2) the higher degree of complementarity between
schooling and ability in the white-collar wage function. I verify the latter by structurally estimating
these sector-specific cross-partials using a dynamic discrete choice model.

∗University of Southern California Department of Economics: 3620 S. Vermont Ave. KAP 300, Los Angeles, CA 90089;
email: tsmolina@usc.edu; This paper would not exist without the guidance, support, and patience of my advisor, John
Strauss, and Achyuta Adhvaryu and Anant Nyshadham. I am also grateful to Tushar Bharati, Joe Cummins, Yu-Wei Hsieh,
Katie Lim, and Matt Kahn for many helpful conversations. Thanks to seminar participants at USC, SoCCAM, and the
WEAI Annual Meeting and Graduate Student Workshop. I gratefully acknowledge funding from the USC Provost’s Ph.D.
Fellowship, the USC Dornsife INET graduate student fellowship, and the Oakley Endowed Fellowship. Special thanks to
Graciela Teruel and the MxFLS Support Team for providing me with restricted-use data. This is a preliminary draft.
Please do note cite without the author’s permission. All errors are my own.

1



1 Introduction

Shocks experienced very early in life can impact a wide range of outcomes in adulthood,1 by directly

affecting physical and cognitive ability (Almond and Currie, 2011), as well as by influencing the human

capital investment decisions made throughout an individual’s life (Almond and Mazumder, 2013). Early

life exposure to pollution has become a particularly salient example of this, partially due to growing

evidence for the physical and cognitive damage that can be caused by such exposure (Currie et al.,

2014). A number of studies have established a link between in utero exposure to air pollution and

birth outcomes (like birth weight or infant mortality),2 but there are only a handful that look at the

longer-term impact of such exposure (Sanders, 2012; Isen et al., 2014; Bharadwaj et al., 2014; Peet,

2016).3

In this paper, I estimate the long-term effects of in utero exposure to air pollution in Mexico and

investigate how local labor market opportunities influence the way parental schooling decisions respond

to this shock. High-quality pollution data dating back far enough to study the long-term effects of in

utero exposure is not available in Mexico, as in most other countries. Instead of direct measures of

pollution, I use thermal inversions, a meteorological phenomenon that negatively impacts air quality,

as a source of exogenous variation in pollution levels. I find that individuals exposed to more thermal

inversions (and thus worse pollution) during their second trimester in utero score significantly lower on

Raven’s tests of fluid intelligence in adolescence and adulthood. Though this negative cognitive shock

affects both men and women, it significantly reduces the probability of high school completion for women

only, which is consistent with a number of existing studies that find larger female schooling responses to

early-life health shocks or interventions (Bobonis et al., 2006; Maluccio et al., 2009; Field et al., 2009;

Maccini and Yang, 2009; Anderson, 2012; Hoynes et al., 2016). More interestingly, however, I find that

this gender difference is driven by the gender-specific probability of going into the white-collar sector,

and not gender alone. Finally, I find that thermal inversions also have a negative effect on income,

1In the medical and epidemiological literature, research on the hypothesis (popularized by Barker (1990)) that fetal
conditions can have long-term consequences dates back to discoveries of links between birth defects and in utero conditions
(Jones et al., 1973; McBride, 1961; Von Lenz and Knapp, 1962). Around the same time, a series of studies on the Dutch
famine in 1944 linked exposure to the famine with negative outcomes in adulthood (Stein et al., 1975). Almond and Currie
(2011) provide a more detailed history of the literature and the economic evidence that followed. See Heckman (2006) and
Currie and Vogl (2013) for other reviews of the evidence.

2See Chay and Greenstone (2003), Currie and Neidell (2005), Jayachandran (2009), and others summarized in Currie
et al. (2014).

3The bulk of existing research on long-term effects of pollution has focused on exposure to radiation from nuclear
accidents (Almond et al., 2009; Black et al., 2014), a much more extreme case of air pollution than what we might be
interested in for policy reasons.
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primarily for women, although this effect is not significantly different across genders.

It is not uncommon for authors of existing studies to use gender-specific labor market conditions to

explain gender differentials in the estimated effects of early-life shocks (Bhalotra and Venkataramani,

2013; Cutler et al., 2010; Hoddinott et al., 2008).4 Direct evidence for this link, however, is still limited.

This paper joins two recent exceptions (Pitt et al., 2012; Rosenzweig and Zhang, 2013), which both

find evidence of gender-specific schooling responses to physical health shocks, driven by the female

comparative advantage in brain-intensive jobs. I find that a different type of endowment shock – one

that has a very specific effect on cognitive (and not physical) ability – can also generate gender-specific

schooling responses. Strikingly, these differences disappear once I condition on the gender-specific

availability of white-collar jobs, implying that they are completely driven by differences in male and

female occupational choice.

By emphasizing the interaction between early-life shocks and labor market opportunities more gen-

erally, this paper addresses two other broad questions in the early life literature. First, how do early-life

shocks interact with policy interventions or economic conditions later in life (Adhvaryu et al., 2015;

Bharadwaj et al., 2014; Rossin-Slater and Wüst, 2015; Gunnsteinsson et al., 2014; Aguilar and Vi-

carelli, 2011)? Second, what can explain the substantial heterogeneity – both across and within studies

– in the estimated schooling responses reported in the existing literature?5 Given that labor market op-

portunities vary over time, across space, and across groups, this heterogeneity can be partially explained

by the main result of this paper: the labor market opportunities of affected individuals determine the

sign and magnitude of their schooling responses to shocks.

The types of occupations that are available to an individual are particularly important in this

context because different occupations have different wage functions: white-collar jobs (which tend to be

favored by women) reward schooling and ability differently than blue-collar ones do. I offer a concrete

illustration of this idea, using data from the Mexican Family Life Survey (MxFLS), in Figure 1. In

the left panel, I plot the relationship between annual income and Raven’s test scores, a commonly used

measure of fluid intelligence, separately for four different schooling-sector combinations. The right panel

plots, for each sector, the difference between the two schooling lines, which represents the return to high

4Labor market conditions are, of course, not the only explanation for gender differences. Biological differences between
males and females, which can affect how shocks or interventions physically affect individuals, may also be important (Field
et al., 2009; Bobonis et al., 2006). However, they are less useful for explaining why the sign of gender differences can vary
across contexts with similar types of shocks.

5Many studies find that negative (positive) shocks decrease (increase) schooling (Almond, 2006; Bleakley, 2007), while
others find no effect (Venkataramani, 2012), or much smaller effects for certain groups (Maluccio et al., 2009; Maccini and
Yang, 2009; Field et al., 2009; Cutler et al., 2010; Bleakley, 2010).
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school completion. One striking difference between the two sectors is immediately clear: the return

to high school is increasing in ability in the white-collar sector, but decreasing in ability in the blue-

collar sector. Put differently, the complementarity between schooling and ability appears to vary across

sectors. This idea has important implications for gender differences because of the fact that women and

men make different sectoral choices, as shown in Figure 2. In all but one of the eight countries shown,

women participate in the white-collar sector at much higher rates than men do. Taken together, these

two features of the labor market have important implications for how men and women respond to their

cognitive endowments: a young woman currently growing up in Mexico City and a man who was raised

in an Oaxacan farming village in the 1960’s should respond very differently to early-life cognitive shocks

because of the vastly different sectors they expect to enter.

Figure 1 Schooling-Ability Relationship

Notes: These local linear regressions use individuals aged 30 to 50 in the MxFLS. The white-collar and blue-collar sectors
are classified using the categories in Vogl (2014). Income is measured using the inverse hyperbolic sine of total earned annual
income.

To formalize this hypothesis, I develop a model in which the key parameters that drive differential

schooling responses to endowment shocks are the sector-specific cross-partials between schooling and

ability, which help to inform the discussion about the production function of skill (Cunha and Heckman,

2007; Cunha et al., 2010; Aizer and Cunha, 2012) and whether there are dynamic complementarities

between cognitive ability accumulated during childhood and schooling investments in adolescence. My
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Figure 2 Cross-Country White-Collar Shares, by Gender

Weighted shares calculated from adults aged 30 to 50 in the 2010 censuses of the listed
countries. White-collar jobs are identified using the ISCO occupation codes, classified using
the categories in Vogl (2014).

structural estimates of these key parameters reveal that schooling and ability are complements in the

the white-collar sector, but not in the blue-collar sector, highlighting that the existence or strength

of dynamic complementarities can be heterogeneous depending on occupational choices and sector-

specific wage functions. The significantly higher degree of complementarity in the white-collar sector

is consistent with the reduced-form finding that schooling responses to pollution are largest for those

likely to go into white-collar jobs.

Using the structural model, I conduct policy simulations to evaluate the effects of an intervention

aimed at improving the skills of a disadvantaged population. I find that such a policy will have larger

effects on female schooling and employment and would therefore have the added benefit of reducing

the gender gap in economic outcomes. The finding that women benefit more from improvements in

cognitive ability is consistent with the commonly made argument that large relative gains in female

education and employment outcomes, in the United States and across the globe, have been driven

by a rising services sector or technological change that favors brain-based jobs, in which women have

a comparative advantage (Goldin, 1995; Mammen and Paxson, 2000; Rendall, 2010; Olivetti, 2014;

Bhalotra et al., 2015). Several of these studies have argued that economic growth can generate improved
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outcomes for women precisely because it spurs the rise of this less physical sector,6 and I suggest yet

another channel through which economic development may improve female outcomes: by improving the

cognitive skills of a population, which should generate larger improvements for women than for men.

The next section provides some background information to motivate the use of pollution exposure

as a shock to cognitive ability and the use of thermal inversions as a driver of pollution. Section 3

outlines a model that illustrates how local labor market conditions can influence the way schooling

decisions respond to an early-life shock. I describe the various data sources I use to empirically test

model predictions in section 4. Sections 5 and 6 outline the reduced form and structural estimation

strategies, respectively. Results are discussed in section 7. Section 8 concludes.

2 Pollution and Thermal Inversions

2.1 Biological Effects of Pollution

This paper’s focus on in utero exposure to pollution is motivated by substantial medical and epidemio-

logical evidence showing that this kind of exposure can be harmful to the fetus (Lacasaña et al., 2005;

Peterson et al., 2015; Le et al., 2012; Saenen et al., 2015; Backes et al., 2013). Concrete evidence re-

garding the mechanisms that drive this finding is more limited, but there are a few commonly cited

suspected pathways, most of which are related to two types of pollutants: carbon monoxide (CO) and

particulate matter (PM-10 or PM-2.5).

CO is a colorless and odorless gas that binds more readily to hemoglobin than oxygen does, thus

reducing the body’s ability to carry oxygen. CO is produced in combustion, and its main source

(especially in urban areas) is vehicle emissions. In a pregnant woman, CO can hinder the delivery of

oxygen to the fetus by binding to maternal as well as fetal hemoglobin. By disrupting the transport of

necessary oxygen to cells during a critical period of development, CO can lead to long-term neurological

and skeletal damage (Aubard and Magne, 2000).

Particulate matter refers to a mixture of solid and liquid particles in the air, which includes fine par-

ticles known as PM-2.5 (with diameters less than 2.5 micrometers) and inhalable coarse particles known

as PM-10 (with diameters less than 10 but greater than 2.5 micrometers). These particles can either be

emitted directly from a source (like fires or construction sites) or form as a result of chemical reactions

6A number of studies have documented a U-shaped relationship – both across and within countries – between economic
development and female labor force participation (Goldin, 1995; Mammen and Paxson, 2000; Olivetti, 2014). The positively
sloped part of the U is often attributed to an expanding services sector, which is less developed in the left half of the curve.
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in the atmosphere. When inhaled by a pregnant woman, particulate matter can cause inflammation

or infection, which in turn can lead to the thickening of blood and plasma, hindering blood flow and

glucose transport to the placenta (Lacasaña et al., 2005). The effects of one particular component of

particulate matter, polycyclic aromatic hydrocarbons (PAHs), can be especially dangerous. PAHs are

thought to increase the prevalence of DNA adducts, which are associated with negative birth outcomes

like low birth weight and decreased head circumference (Perera et al., 1998; Le et al., 2012; Lacasaña

et al., 2005). Moreover, PAHs can cross the placental barrier and damage the fetal brain by causing

inflammation, oxidative stress, or damaging blood vessels. Recent evidence has shown this can result

in lower cognition later in childhood (Peterson et al., 2015).

Other than the specific cognitive effects of PAHs, most of the mechanisms discussed above do not

suggest that the effects of pollution should be solely cognitive. Disrupted blood flow and glucose or

oxygen transport could in theory have negative impacts on all aspects of fetal development. Whether

these end up having primarily physical or cognitive effects likely depends on the timing of such exposure

(Dobbing and Sands, 1973). For instance, medical and economic studies on exposure to radiation

(Otake, 1998; Almond et al., 2009; Black et al., 2014) flag the second trimester as the most sensitive

period for brain development.7 Although day-to-day air pollution and radiation are very different types

of pollution, these radiation studies highlight important generalizable findings – which are supported

by studies of external stressors other than radiation (Schwandt, 2016) – regarding the existence of

critical periods in brain development. In fact, the critical period highlighted by these studies coincide

with certain crucial processes of fetal brain development. Neuronal migration, the process by which

neurons migrate from their place of origin to their final location in the brain, peaks in the second

trimester and is largely complete by the beginning of the third trimester. Similarly, the refinement

of synaptic connections in the cortex, which involves a shift from transient placeholder connections to

more permanent ones, begins in the second trimester and peaks by the beginning of the third trimester

(Tau and Peterson, 2010).

As I outline in section 3, individuals make different schooling decisions and earn different wages

partially because of heterogeneous levels of skill. Any effect that in utero exposure to pollution has on

schooling and labor market outcomes is likely working through its biological effect on this unobserved

endowment, of which cognitive ability is undoubtedly an important component.

7Otake (1998) document that weeks 8 to 25 (late first and almost entire second trimester) are particularly crucial for
brain development. Black et al. (2014) also find that the 3rd, 4th, and 5th months of pregnancy were the critical periods
during which exposure to nuclear fallout resulted in lower IQ as adults.
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2.2 Thermal Inversions

A major obstacle to identifying the effects of exposure at birth on later life outcomes is the lack of

high quality historical data going back far enough to link adults with their in utero exposure. In order

to circumvent this issue, I rely on thermal inversions, a meteorological phenomenon known to increase

pollution, as an exogenous source of variation in pollution levels.

Air temperature typically falls with altitude, but when a thermal inversion occurs, this relationship

reverses, which results in a warm layer of air sitting above cooler air, trapping pollutants released near

the surface. That thermal inversions can negatively impact air quality is well-documented, both in the

atmospheric sciences literature (Jacobson, 2002) as well as more recently in the economics literature

(Jans et al., 2014; Arceo et al., 2016). There are three common types of inversions that are associated

with worsened air quality; they form in slightly different circumstances but all result in a warm layer

of air above a cooler layer.8

Radiation inversions take place at night, as the surface cools by emitting thermal infrared radiation.

Unlike during the day, when radiation from the sun tends to have a stronger opposing effect, this results

in cooler air near the surface than further above ground. Radiation inversions are more likely during

long, calm, and dry nights, when there is more time for the cooling to take place, less mixing in the air,

and little water vapor to absorb the thermal infrared energy. Subsidence inversions take place when

air descends and warms as it compresses, creating a warm layer above cooler air. This can happen in

mountainous regions, when air flows down the side of a slope, or in a high pressure system,9 which

are characterized by this descending movement and compression of air. Over coastal areas, marine

inversions take place when air above the sea (cooler than the air above land, which heats faster than

water during the day) flows inland, pushing the warm inland air upward, creating an inversion.

In general, inversions are the result of the combination of various atmospheric forces and geographic

conditions. I argue that after controlling for all of the relevant main effects (fixed geographic character-

istics, time of year, temperature, humidity, cloud coverage, etc.), the occurrence of a thermal inversion

is exogenous: essentially the random interaction of all of the necessary conditions. Like Jans et al.

(2014) and Arceo et al. (2016), I assume that thermal inversions can only affect my outcomes of interest

through their effect on pollution levels, once I have controlled for all of the weather controls, geographic

fixed effects, and non-linear time trends.

8See Jacobson (2002) for a more detailed discussion of the different types and causes of inversions.
9associated with high temperatures, clear skies, and light winds at the surface
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3 Model

The purpose of the model outlined in this section is to illustrate that local labor market opportunities

can affect how schooling decisions respond to an endowment shock like pollution exposure. Because

men and women tend to sort into sectors differently (as shown in Figure 2), male and female schooling

decisions should respond differently to an early-life shock to cognitive ability. A more detailed breakdown

of the types of jobs taken up by men and women, in Mexico specifically, is given in Table 1, where the

female tendency to choose white-collar jobs is quite clear. For instance, women are almost three times

as likely to be technicians and associate professionals or clerks, while men are over seven times more

likely to be skilled agricultural and fishery workers. This stylized fact is an important feature of the

model described below.

Table 1 Occupation Distributions by Gender

Occupation, ISCO Male Female

White-Collar ("Brains") 19.76 34.85

Legislators, senior officials and managers 5 4.47

Professionals 7.39 7.88

Technicians and associate professionals 4.08 12.04

Clerks 3.29 10.46

Blue-Collar ("Brawn") 80.25 65.15

Service workers and shop and market sales 17.62 29.63

Skilled agricultural and fishery workers 12.25 1.7

Crafts and related trades workers 24.23 8.26

Plant and machine operators and assemblers 14.19 5.44

Elementary occupations (domestic workers, 

laborers, etc)

11.96 20.12

Notes: 

Brains and brawn categorization from Vogl (2014)

Weighted percentages calculated from adults aged 30 to 50 in the 2010 Mexican 

Census.

Notes: Brain and brawn categorizations from Vogl (2014). Weighted percentages calculated from
adults aged 30 to 50 in the 2010 Mexican census.

Individuals are born with an ability endowment θ. As adults, individuals can work in one of two sec-

tors: a brain-intensive white-collar (k = 1) or a brawn-intensive blue-collar sector (k = 2).10 Each sector

has a different wage function, where educational attainment S and ability θ are rewarded differently. I

denote the sector-specific wage functions as

10I use brain-intensive and white-collar (as well as brawn-intensive and blue-collar) interchangeably. In my analysis, the
actual sector categorization relevant is the one used by Vogl (2014), shown in Table 1.
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Wk(S, θ;βk), (1)

where ∂Wk
∂S > 0, ∂Wk

∂θ > 0, ∂2Wk
∂S∂S < 0, and ∂2Wk

∂θ∂θ < 0 for k=1, 2. βk are the parameters that map ability

and schooling to wages (i.e. the returns to each of these inputs and the cross-partial between the two).

The opportunity cost of schooling takes the following form:

c(S, θ;α),

where ∂c
∂S > 0 and ∂2c

∂S∂S > 0.

Parents pick the optimal S to maximize their child’s expected future wages, net the cost of schooling,

as in the maximization problem below. By choosing to model only the schooling decision, which is the

focus of this paper, I assume that any major investments parents might make to change θ take place

before the crucial schooling decisions are made. This assumption is consistent with the well-documented

finding that there are higher returns to investing in a child’s skill formation early in life (before primary

school) compared to later in life (Cunha et al., 2010; Heckman, 2006) and that for children in Mexico,

the end of primary school marks the first critical schooling transition period (Behrman et al., 2011).

The maximization problem can be written

max
S

pjgW1(S, θ;β1) + (1− pjg)W2(S, θ;β2)− c(S, θ;α).

pjg represents the probability that an individual goes into the white-collar sector. In this simple

set-up, this probability only depends on the child’s gender g and location j, but I later allow for this

probability to be determined by individual schooling and ability as well. The location j subscript

captures variation in the availability of white-collar jobs across space (and over time). The g subscript

captures the fact that men and women participate in the white and blue collar sectors at different rates.

The first order conditions for optimal schooling are:

pjg
∂W1

∂S
+ (1− pjg)

∂W2

∂S
− ∂c

∂S
= 0

Taking the derivative with respect to θ and rearranging, we obtain the response of optimal schooling
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to a positive shock to θ:

dS∗

dθ
= −

[
pjg

∂2W1

∂S∂θ
+ (1− pjg)

∂2W2

∂S∂θ
− ∂2c

∂S∂θ

] [
pjg

∂2W1

∂S∂S
+ (1− pjg)

∂2W2

∂S∂S
− ∂2c

∂S∂S

]−1

As long as the wage functions differ across sectors, it is clear that the schooling response to a shock

will vary across pjg, a parameter that captures parental expectations about the local labor market (and is

therefore at least in part driven by actual conditions in the labor market). If it is the case that schooling

and ability are more complementary in brain-intensive than brawn-intensive jobs (∂
2W1
∂S∂θ >

∂2W2
∂S∂θ ), then

individuals exposed to higher pjg will exhibit a more positive schooling response to an ability shock

(higher dS∗

dθ ). The intuition is simple: higher pjg places greater weight on ∂2W1
∂S∂θ compared to ∂2W2

∂S∂θ . If

the opposite is true (∂
2W1
∂S∂θ <

∂2W2
∂S∂θ ), then higher pjg will translate to a less positive dS∗

dθ .

It should be noted that these model predictions remain unchanged if I relax the assumption of a

fixed pjg across individuals within location-gender groups. In particular, I allow pjg to take the following

form: pjg = p̄jg + p(S, θ), which means that there is a gender- and location-specific constant that does

not depend on schooling or ability, and a separate term (which does not vary over j or g) that governs

how schooling and ability affect the probability of a white collar sector choice. Using this functional

form for pjg, it can be shown that individuals facing a higher p̄jg will exhibit higher dS∗

dθ if schooling

and ability are more complementary in the white-collar than blue-collar sector. Though allowing for

level differences in pjg across j and g is intuitively appealing, this functional form assumption may still

be too restrictive if I am interested in obtaining consistent estimates of ∂2Wk
∂S∂θ . In the the structural

estimation described in section 6, I do not rely on this assumption and instead explicitly model the

sectoral choice.

As Figure 2 and Table 1 clearly show, women are on average more likely to enter the white-collar

sector than men, implying that pjf > pjm. Given this, we would expect women to exhibit larger dS∗

dθ

than men if there is greater complementarity between schooling and ability in the white-collar sector.

I test this hypothesis in two steps. First, I document that there are gender differences in the schooling

response to an exogenous cognitive shock (in utero exposure to pollution) which are driven by differences

in men’s and women’s labor market opportunities. Second, I structurally estimate sector-specific ∂2Wk
∂S∂θ

in order to confirm that the signs of these parameters are consistent with the gender differences that I

find.
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4 Data

This section outlines the pollution, weather, individual-level, and labor market data used to document

the effects of an exogenous shock to θ and pin down the role played by the local labor market.

4.1 Pollution Data

Given this paper’s focus on the long-term effects of in utero exposure to pollution, the ideal dataset for

this analysis would include pollution data going back to the in utero months of adults in the MxFLS.

Mexico is a rare example of a developing country that started collecting pollution data in the 1980’s, but

there are still data limitations that require me to use a source of variation in pollution rather than actual

pollution levels. The earliest pollution measurements date back to 1986, but for only CO in Mexico City,

for which there are large sections of missing data until about 1993. Other major cities began collecting

pollution data (for an increasing variety of pollutants) in the early 1990’s or late 2000’s. Currently,

16 cities make their pollution measurements for CO, O3, SO2, NO2, PM10, and most recently, PM2.5

publicly available on Mexico’s National Institute of Ecology (INECC) website. This data, however, does

not go back far enough to study at-birth exposure of adults and only covers a limited number of cities.

As a result of these limitations, I rely on thermal inversions as an exogenous driver of pollution

for which I have data going back to 1979. I use the INECC pollution measurements to verify the

link between inversions and pollution in my data. The INECC database also includes temperature

measurements for six cities, which I use to validate the temperature dataset described in the next

sub-section.

4.2 NARR data

I identify thermal inversions in Mexico using the North American Regional Renalysis (NARR) data,

which provides air temperatures just above the surface and at various pressure levels above sea-level on

a 0.3 x 0.3 degree grid (roughly 30km by 30 km) across the North American continent.11 Using atmo-

spheric modeling techniques, the NARR combines temperature, wind, moisture, and precipitation data

from a number of different sources, including various weather balloons, commercial aircraft recordings,

ground-based rainfall measurements, and satellite data.12 The resulting dataset records, every three

11NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at
http://www.esrl.noaa.gov/psd/.

12See Mesinger et al. (2006) for more detail about the various data sources and model.
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hours for each grid point, a wide array of meteorological variables at the surface, a few meters above the

surface, and at 29 pressure levels (extending vertically into the atmosphere), from 1000 hPa (roughly

equivalent to sea level) to 100 hPa (about 16,000 meters above sea-level).

To identify thermal inversions, I take the air temperature 2 meters above the surface13 and subtract

this from the air temperature recorded at the pressure level 25 hPa lower (roughly 300 meters higher)

than the surface pressure at a given location.14 I identify an inversion episode as any time this difference

is greater than zero. I use the 25 hPa increment because this is the smallest increment between pressure

levels available in the NARR data. Looking further above the surface (50 hPa or 75 hPa, for example)

does not detect many additional inversions and therefore, unsurprisingly, leaves my results virtually

unchanged. In general, I am most interested in the inversions close to the surface as they are likely to

have the largest effects on air quality.

Like Jans et al. (2014), I focus on nighttime inversions. There is greater variation in the occurrence

of nighttime (compared to daytime) inversions over time and across space, which makes nighttime inver-

sions much stronger predictors of pollution in my first-stage checks. Moreover, nighttime inversions are

much less visible than daytime inversions and are therefore less likely to generate behavioral responses.15

Detailed validation exercises have concluded that the NARR data closely matches observational

data and offers a considerable improvement over prior global reanalysis datasets (Mesinger et al., 2006).

Because all of these checks have included the United States and Canada, which may dominate the

validation exercises due to their size, I verify that these conclusions are still valid when I restrict to

only Mexico. First, using temperature data that is available on the same INECC pollution database

described above, I find a very high correlation (0.87) between the NARR 2-meter temperature and these

ground-level measurements. Secondly, I compare my measure of inversions to inversions calculated using

temperature readings from satellite data: NASA’s Atmospheric Infrared Sounder (AIRS), used by Jans

et al. (2014) to identify thermal inversions in Sweden. Because the AIRS was launched in 2002, the

data is too recent to use as my main measure of inversions or to instrument for my current measure of

inversions, but for two overlapping years (2002 and 2003), I find correlations between the NARR and

AIRS inversions measures of around 0.7.16

132-meter temperature is what is reported by meteorologists in weather reports and distinct from “skin” surface tem-
perature, which the NARR also records.

14Because of varying surface altitude across Mexico, I do not take temperature from the same pressure level for all points.
For example, for a municipality at sea level, I use the temperature at 975 hPa, whereas for a higher-altitude location in
Mexico City, I use the 700 pressure level because the surface pressure is 725.

15Daytime inversions are not always visible but are more likely to be seen in warm and humid climates like Mexico’s.
16It should be noted that there are several factors that complicate the comparison between the NARR and AIRS data.
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In addition to using the NARR to identify thermal inversions, I also utilize this dataset’s relative

humidity, wind speed, and total cloud coverage variables as important controls in all specifications.

Although precipitation is also available in the NARR dataset, I use ground measurements recorded by

Mexico’s National Meteorological Service (CONAGUA) to control for rainfall as these likely involve less

measurement error.

As mentioned above, Mexican pollution measures do not date back far enough to enable me to use

thermal inversions as an instrument for in utero exposure to pollution, as Arceo et al. (2016) do in

their study of the contemporaneous effects of pollution. However, using the pollution measures that do

exist, I check whether thermal inversions drive pollution levels in the years and cities for which I have

pollution data. To establish a link between thermal inversions (TIjym) and pollution levels (Pjym) in

a given municipality j, during the three-month period starting from year y and month m, I run the

following regression:

Pjym = α0 + α1TIjym + α′2Wjym + µj + δy + αm + vjym. (2)

I aggregate to the three-month period here because I eventually analyze the effects of pollution by

trimester. Pjym represents CO (8-hour daily maximum) or PM-10 (24-hour mean) averaged over the

three month period starting in year y and month m. TIjym represents the total number of days (per

month) with a nighttime inversion in that same three-month period. I include municipality (µj), year

(δy), and month (αm) fixed effects. Wjym is a vector of flexible weather controls (also averaged across

the three month period): linear, quadratic, and cubic terms of minimum, maximum, and mean 2-meter

temperature, rainfall, relative humidity, wind speed, and total cloud coverage. In this regression, these

weather controls are important because they influence the likelihood of a thermal inversion but also

have the potential to directly affect pollution levels. I aggregate to the three-month level because my

main analysis studies the effects of pollution by trimester.

Table 2 reports the results of this regression, using data from 1994, when more complete data was

being recorded, to 2009, the last year of available pollution data. Even after controlling for a complete

set of fixed effects and weather controls, inversions are positively and significantly related to both CO

First of all, the times at which the AIRS and NARR data recorded temperatures do not match up exactly. Secondly, the
AIRS data has a 1 by 1 degree resolution, substantially larger than the NARR’s 0.3 by 0.3 degree resolution. Finally, the
AIRS data records temperatures at fewer pressure levels than the NARR. If anything, these factors are likely to weaken
the correlation between the two measures, suggesting that a correlation of 0.7 may be an underestimate.
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and PM-10 levels. The F-statistics in this “quasi-first-stage” exceed conventional thresholds for strong

instruments.

Table 2 Relationship between Thermal Inversions and Pollution, 3-Month Periods

CO PM-10

Average Monthly Inversions During 3-

Month Period 0.0140*** 0.474***

(0.00254) (0.0828)

N 23821 21292

Mean of DV 2.306 55.17

Fstat 30.449 32.835

Standard errors in parentheses (clustered at municipality level)

* p<0.1  ** p<0.05*** p<0.01Notes:
* p< 0.1 ** p< 0.05 *** p< 0.01
Standard errors (clustered at municipality level) in parentheses.
CO and PM-10 represent three-month averages of the 8-hour daily maximum
(in ppm) and 24-hour daily mean (in µg/m3), respectively. All regressions con-
trol for month, year, and municipality fixed effects, cubic functions of average
monthly mean, minimum, and maximum 2m temperatures, average monthly
relative humidity, average monthly precipitation, and average monthly cloud
coverage during each relevant 3-month period.

4.3 Mexican Family Life Survey

All outcome variables come from the Mexican Family Life Survey (MxFLS), a nationally representative

longitudinal household survey that began in 2002 and conducted follow-ups in 2005 and 2009. In

addition to collecting standard demographic, schooling, and employment information, this survey also

measured several physical biomarkers (like height) and administered Raven’s tests of fluid intelligence.

I use these measures of cognitive ability and height, along with educational attainment and earned

annual income as my main outcomes of interest. I include individuals found in any wave of the survey

in order to obtain as large of a sample as possible. For all outcomes except for Raven’s scores, I take

the outcome from the most recent wave in which the individual was interviewed. For Raven’s tests, I

use each individual’s first test score in order to minimize the effect that test-taking experience (either

from the survey or elsewhere) may have on their scores.17

Another key variable obtained from the MxFLS is municipality of birth, a restricted-use variable

that enables me to link adults and adolescents (including those who have migrated) with pollution

17It should be noted that Raven’s tests were identical across waves.
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exposure specific to their birthplace at their time of birth.

Table 3 reports summary statistics for the outcomes and main regressors for all individuals with

non-missing thermal inversion data (implying a non-missing birth month, birth municipality, and birth

year after 1978) and who were at least 15 years of age in the last MxFLS wave in which they appeared.

These are the individuals old enough to have been included in the migration module of the survey,

which obtains information about place of birth. I report raw means for Raven’s test scores and height

in this table but use standardized variables in the regressions.18 The sample size for annual income is

much smaller compared to the other variables, primarily because I restrict to those who report work

as their primary activity in the week prior to the survey.19 I do this in order to exclude those still in

school but working part-time because their wages are likely a poor representation of their labor market

productivity. On average, individuals in this sample are exposed to approximately 18 inversion nights

per month during any given trimester.

4.4 Mexican Labor Market Data

In order to investigate the interaction between labor market conditions and pollution exposure, I use

occupation information (specifically, white-collar shares) from the 1990, 2000, and 2010 Mexican cen-

suses (Minnesota Population Center, 2015). Following Atkin (2016), I collapse to the commuting zone

level and link this labor market information to individuals using their commuting zone of residence

during their school-aged years. Commuting zones, which I discuss in more detail in section B.1 are

municipalities or groups of municipalities that better represent local labor markets: for instance, large

metropolitan areas or neighboring municipalities.

In some specifications, I directly use the gender-specific share of white-collar workers calculated from

the census. I assign these values to individuals based on the census conducted closest to the year in

which they turned 12. In other specifications, I predict values for years in between censuses and assign

individuals to the predicted values from the exact year they turned 12. To calculate these predicted

values, I use a shift-share strategy, similar to Bartik (1991) and others, which involves predicting

economic variables for geographic regions (like states or, in this case, commuting zones) by combining

national industry-level growth rates and baseline industry compositions for these regions of interest (see

18I standardize test scores using the full sample mean and standard deviation. For height, I use WHO standards for
everyone under 20 and for the remainder of the sample simply standardize using the gender-specific mean and standard
deviation of the sample population 20 and older. I identify and drop gross outliers.

19They make up about 40% of this relatively young sample. About 1,000 more are dropped due to missing income data.
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Table 3 Summary Statistics for Reduced Form Sample

Variable Name Mean
Standard 

Deviation
N

Outcome Variables

Raven's test score (% correct) 0.56 0.228 10320

Height (cm) 160.31 10.52 10398

Years of schooling 9.37 3.078 10715

Annual income 27761.21 61580.8 3155

Control Variables

Mother's Education 6.17 3.834 9770

Father's Education 6.50 4.258 9090

1(Male) 0.47 0.499 10848

Age for Raven's Test variable 17.18 3.357 10320

Age for height variable 20.13 4.506 10398

Age for schooling variables 20.21 4.449 10715

Age for income variable 22.45 3.698 3155

Dependent Variables

Average monthly inversions during trimester 1 18.09 8.206 10848

Average monthly inversions during trimester 2 17.93 8.235 10848

Average monthly inversions during trimester 3 17.80 8.288 10848

Notes: Sample includes individuals with non-missing thermal inversion data who were at least 15 years of
age in the last MxFLS wave in which they appeared.
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section B.1 for more details). I calculate national industry-level growth rates from Encuesta Nacional

de Ingresos y Gastos de los Hogares (ENIGH), a nationally representative household survey that was

first conducted by Mexico’s National Institute of Statistics and Geography (INEGI) in 1982, and every

two years since 1992.

5 Empirical Strategy

To estimate the effects of pollution, I directly regress my outcomes of interest on thermal inversion counts

over three month periods prior to and after a child’s birth. Using thermal inversions does not only help to

overcome the pollution data limitations described above but also addresses the endogeneity of pollution.

Pollution is not randomly assigned: individuals born in highly polluted areas are different from those

born in less polluted areas. While location fixed effects are often used to alleviate these residential

sorting concerns, they do not control for location-specific trends in pollution that may coincide with

trends in the outcomes of interest.

In this framework, thermal inversions can be thought of as an “instrument” that generates exogenous

variation in an endogenous variable that I do not observe. This endogenous variable is not a particular

pollutant but rather, air quality in general. The approach of this paper is not designed to estimate

the dose-response function of specific pollutants: rather, it offers a well-identified way to learn whether

being exposed to higher pollution while in utero has discernible effects in the long term.

For individual i, born in municipality j, in year y and month m, whose outcome yijymw comes from

survey wave w, I estimate the following specification:

yijymw = α0 +

4∑
k=−7

βkTI3k,3k+1,3k+2
jym +

4∑
k=−7

αkW
3k,3k+1,3k+2
jym + γXijymw + µj + (δy x νw) + ηm + εijymw.

(3)

TIa,a+1,a+2
jym represents the average number of monthly thermal inversions that took place in individual

i’s municipailty of birth during the three month period a to a + 2 months relative to the individual’s

birth month. I include all three month periods starting a year before conception (21 months before

birth) until a year after birth in order to identify critical periods and ensure that any effects I find in

the in utero period are not being driven by serial correlation in the thermal inversion variable year to
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year. Omitting the thermal inversion variables from before and after pregnancy could result in their

effects loading onto the trimester coefficients. The coefficients on inversions prior to conception also

serve as a falsification check, as pollution exposure before a child is conceived should not have direct

effects on that child’s outcomes.

Wa,a+1,a+2
jym is a vector of weather controls (rain, minimum, maximum, and mean temperatures,

total cloud coverage, relative humidity, and wind speed), averaged over each three-month period, along

with their squares and cubes. In this specification, municipality fixed effects (µj) address cross-sectional

pollution endogeneity concerns, including residential sorting issues, by ensuring that identification comes

from within-municipality variation over time. Year (δy) and month fixed effects (ηm) control flexibly for

long-term and seasonal time trends. The interaction of year and wave dummies (δy x νw) capture both

wave and age effects. Controls Xijymw include gender, mother’s education, and father’s education,

for which I set missing values to zero and include dummies for missing values. In more rigorous

specifications, I add various combinations of location fixed effects and location-specific trends in order

to allow for differential long-term and seasonal trends across space.

I run these regressions for the full sample and then separately for men and women. In order to

explore whether gender-specific labor market conditions play a role in determining schooling responses

to shocks, I also estimate a specification that interacts various labor market variables with the trimester

coefficients of interest.

I cluster the standard errors at the municipality level.20 As stated above, I am restricted to indi-

viduals born in 1979 or later due to the availability of the NARR data, and those who are at least 15

years of age in their most recent MxFLS interview. Because I am identifying off of variation within

municipalities over time (and controlling non-linearly for year and month effects), I also drop individuals

in municipalities with very small numbers of individuals (less than 30), which make up less than 5% of

the full sample.

6 Structural Estimation

In order to verify whether the results of the reduced form strategy described above are consistent with

the model predictions in section 3, consistent estimates of the sector-specific cross-partials between

schooling and ability are needed. This section describes the structural model, estimation methods, and

20There are 150 municipalities in the final sample.
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data used to obtain these parameters.

6.1 Model Set-Up

Schooling and occupational choice are endogenous decisions, potentially made jointly. As a result,

sector-specific Mincer-style regressions may not yield consistent estimates of the parameters of interest.

The endogeneity of schooling in a wage regression has long been acknowledged as an important issue to

consider when attempting to obtain causal estimates of the return to schooling (Griliches and Mason,

1972). Studies have used both structural approaches and instrumental variables strategies to deal with

this issue (Belzil, 2007). Similarly, self-selection into sectors is also recognized as a potential source

of bias in the estimation of sector-specific wage parameters (Roy, 1951; Heckman and Sedlacek, 1985),

for which structural approaches are, again, a common solution. In order to deal with both sources of

endogeneity, taking into account that schooling decisions may also depend on expected sectoral choice, I

use a two-period dynamic discrete choice model. This dynamic model moves away from the static setting

used in section 3, allowing individuals to choose their schooling in the first period (based on expected

future wages) and their occupational sector in the second period. In order to facilitate estimation, I

collapse the continuous schooling decision into a binary choice about whether to obtain a high school

degree.21

The agent’s decision tree is outlined in Figure 3. I use a similar set-up to that of Eisenhauer

et al. (2015), which models several discrete schooling decisions from high school enrollment to college

completion or dropout. I focus on a single schooling decision (high school completion) but expand

the model to include labor market decisions after graduation. In the first period, individuals (or their

parents) decide whether to obtain a high school degree.22 In the second period, they decide whether to

work in the white-collar sector, work in the blue-collar sector, or remain out of the labor force.

Figure 3 highlights that using a two-period model requires some drastic simplifications. For example,

once individuals have chosen their employment status and occupation, they do not change it. While

this is certainly a strong assumption, the majority of individuals in my sample do not switch sectors

across waves, as I discuss in more detail in section 6.4. Like the model in Eisenhauer et al. (2015), this

21High school completion is the only schooling milestone affected by the cognitive shock in the reduced form analysis.
See section 7.1.

22In the static model, I describe the schooling decision as a parent’s decision because it likely involves a sequence of
decisions, many of which are made when a child is still quite young. In this model, because I focus on high school
completion, which occurs slightly later in life, I will refer to the decision as the individual’s decision, even though the
identity of the decision maker is irrelevant, given that parents are simply maximizing their child’s expected future wages.
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Figure 3 Decision Tree
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framework can be viewed as a deliberately simplified version of the dynamic discrete choice model of

education and occupational choice in Keane and Wolpin (1997). These simplifications make it possible

to estimate a joint schooling and occupational choice model without the high-frequency panel data,

spanning at least a decade, that is typically required of papers aiming to model and predict the evolution

of wages over the life cycle. Because this particular exercise is not the focus of this paper, I use a simpler

model which allows me to estimate sector-specific wage parameters while accounting for the endogeneity

of schooling and sectoral choice, using only one cross-section of individuals of prime working age.

6.2 Wage Equations

In this model, the value of each state depends on the immediate net rewards, as well as the expected

future value of all feasible states made available by entering that state. I denote the current state

s ∈ S = {0, H, L, H0, H1, H2, L0, L1, L2}. When an individual goes from state s to s′, they earn

net rewards

R(s′) = Y (s′)− C(s′, s).

In the four states in which the individual is employed, Y (s′) is simply equal to the discounted sum of

annual income earned during their working lives (which I assume to be from age 30 to 50) given that

they have chosen s′. In other words, if they choose sector 1,

Y (s′) =1 (S(s′), θ;β1) =
20∑
t=0

δtw1(S(s), θ, t;β1) ∀s ∈ {H1, L1} , (4)
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and if they choose sector 2,

Y (s′) = W2(S(s′), θ;β2) =
20∑
t=0

δtw2(S(s), θ, t;β2) ∀s ∈ {H2, L2} , (5)

where now S is an indicator equal to 1 for high school completion and wk(S(s), θ, t;βk) is the income

earned in state s (which determines the sector k) at time t,23 expressed as a linear function of observed

characteristics and an unobserved component. Like in equation 1 in the static model, wages depend on

schooling and ability θ. Unobserved by the researcher but known to the agent, ability is captured by

an individual’s Raven’s test score plus a standard normal error, ν:

θ = Raven’s Score + ν,

in order to include other dimensions of skill in this measure of labor market ability. In this model, θ is

assumed to be the only source of dependency among the unobservables in the model.

Let A1 to A3 represent three indicator variables for each of the three 5-year age categories spanning

ages 36 to 50, which leaves the age group 30 to 35 as the omitted category. As in the Eisenhauer et al.

(2015) framework, which allows for a different set of coefficients for each state, I allow for the effects of

ability and experience to vary not only by sector but also by schooling level. Stochastic shocks ε(s, t) are

independently normally distributed with mean zero (and variance normalized to 1). These components

form the per-period wage functions for each sector:

w1(S(s), θ, t;β1) = β10 + β11S(s) + β12θ + β13S(s)θ+

6∑
j=4

β1jAj−3(t) +
9∑
j=7

β1jAj−6(t)S(s) +

k1∑
j=10

β1jX1j + ε(s, t)

∀s ∈ {H1, L1} (6)

w2(S(s), θ, t;β2) = β20 + β21S(s) + β22θ + β23S(s)θ+

6∑
j=4

β2jAj−3(t) +

9∑
j=7

β2jAj−6(t)S(s) +

k2∑
j=10

β2jX2j + ε(s, t)

∀s ∈ {H2, L2} . (7)

23Time, measured in years from the beginning of an individual’s working life, is equal to age minus 30.
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In terms of tying my reduced form results to the predictions of the conceptual framework, β13 and

β23 are the key parameters in question. These represent the non-separability between schooling and

ability in each sector: ∂2W1
∂S∂θ and ∂2W2

∂S∂θ , using the previous notation. Values greater than zero indicate a

positive cross-partial and therefore the existence of complementarities between schooling and ability in

the wage function. Most importantly, however, the difference between β13 and β23 will indicate whether

schooling and ability are more complementary in one sector than the other.

Individuals do not earn “adult” income in period 1, while high-school-aged. Even if they do earn

adolescent wages during this period, I do not observe this for the vast majority of individuals in the

data. However, I do allow for opportunity cost of schooling – which includes foregone wages – to vary

across individuals, as shown in the cost functions below.

6.3 Relative Cost Equations

At each node, I normalize the non-stochastic portion of the cost of one state (states L, H2, and L2

for nodes s = 0, s = H, and s = L, respectively) to equal zero because only relative costs can be

identified. Relative costs depend on θ, a vector of observed characteristics Qs, and stochastic shocks

η(s′, s). c(H, 0) represents the total cost of obtaining a high school degree, including the costs of primary

and junior high school (which are likely quite different from the costs of a high school degree alone).

c(H1, H) and c(L1, L) represent the cost of going into the white-collar sector, relative to the blue-collar

sector, for individuals with a high school degree and without a high school degree, respectively.

c(H, 0) = cH + αHθ +

qH∑
j=1

δHjQHj + η(H, 0)− η(L, 0) (8)

c(H1, H) = cH1 + αH1θ +

qH1∑
j=1

δH1jQH1j + η(H1, H)− η(H2, H) (9)

c(L1, L) = cL1 + αL1θ +

qL1∑
j=1

δL1jQL1j + η(L1, L)− η(L2, L) (10)

Net rewards for states H0 and L0 are defined below. Although individuals do receive non-monetary

rewards in these two states, I do not observe these rewards and cannot separately identify them from

costs. Instead, I allow for net rewards (Y (s′) − C(s′, s)) to be a function of S, θ, and observable
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characteristics:

Y (H0)− c(H0, H) = −(cH0 + αH0θ +

qH0∑
j=1

δH0jQH0j + η(H0, H)− η(H2, H)) (11)

Y (L0)− c(L0, L) = −(cL0 + αL0θ +

qL0∑
j=1

δL0jQL0j + η(L0, L)− η(L2, L)). (12)

The idiosyncratic shocks in the cost function, η(s′, s), are assumed to be independent across all

s and s′. I assume that they are drawn from a Type 1 extreme value distribution, with scale factors

specific to each node: ρη0 for the initial schooling decision, ρηH for the sector decision among high school

graduates, and ρηL for the sector decision among non-graduates. Although accompanied by a number

of strong assumptions,24 this error structure greatly reduces the computational burden of estimating

the model as it allows for an analytic expression of the likelihood function and the analytic calculation

of standard errors using the information matrix.

In period 1, individuals choose whether or not to go to high school based on current rewards and

the continuation value of each choice. In period 2, they choose whether to work and in which sector

to work, by comparing the expected net benefits of each choice. Individuals observe the cost shocks

η(s′, s) before they decide on their next state, but only observe the reward shocks ε(s) after making

their choice.

This set-up generates decision rules and transition probabilities (outlined in Appendix section C),

which I use to construct a likelihood function. I estimate the model using maximum likelihood, inte-

grating over the ability error term ν using 100 simulations, and setting the discount rate to 0.04.

6.4 Structural Estimation Sample

To estimate this model, I use a slightly different sample of individuals from the MxFLS and generate

additional labor market controls from the 1970 to 2000 decennial censuses.

The model only requires a cross-sectional snapshot of each individual’s final educational attainment,

chosen sector, and income from this sector. I restrict to those 30 and older to exclude late high school

graduates and those who have not entered their main “career” sector. I also restrict to those 50 and

younger to exclude early retirees and avoid classifying individuals into a sector they may have switched

into later in their careers (in preparation for retirement, for example). I take the schooling, sector, and

24This implies, for instance, a constant error variance across sector choices within each schooling branch and the inde-
pendence of irrelevant alternatives.
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wage information for each individual from the most recent survey wave in which they were aged between

30 and 50 and living in Mexico.25 It should be noted that this sample is distinct from the one used in

the reduced form analysis because thermal inversion data is only available for a relatively young sample

(born before 1979), while this model requires information from adults later in life.

As mentioned earlier, switching across sectors is ignored by the model. 15% of the individuals who

I observe more than once between the ages 30 and 50 switch between the white-collar and blue-collar

sector. More importantly, however, only 5% of those surveyed in all three waves switch more than

once.26 Most individuals appear to be picking a sector and staying in it, or else choosing a sector and

eventually ending up there (potentially after dabbling in the other sector first).

Like the sectoral decision, the “no work” decision is also a permanent one in this framework. In

order to avoid erroneously placing individuals who are only temporarily out of work in this category,

I only include individuals who report having never worked before in this group. Individuals who are

currently out of work, and are therefore missing sector and wage information, but who report having

worked before, are dropped from the analysis.

I measure income using the inverse hyperbolic sine of total annual income. Other variables I obtain

from the MxFLS include age, gender, maternal schooling, paternal schooling, and an urban indicator

for the individual’s place of residence. To represent the non-stochastic portion of ability θ, I use the

individual’s standardized Raven’s test score from the first test they took.

Zone-level labor market variables that serve as exclusion restrictions are obtained from the 1970 to

2000 decennial censuses. I calculate these variables by commuting zone, and assign them to individuals

based on their commuting zone of residence. Depending on the variable, I either assign individuals to

the value from the census during their school-aged years or their early working years. For school-aged

variables, I assign individuals to the census at the beginning of the decade in which they turned 12. For

early working age variables, I assign individuals to the census at the beginning of the decade in which

they turned 22.27

25Although the MxFLS tracks migrants, even those that move to the U.S., data from the detailed interviews of these
U.S. migrants are not publicly available. As a result, I include migrants in my analysis, but I use their income and sector
information from the most recent wave in which they were still in Mexico. Doing this alleviates concerns about comparing
income earned in the vastly different labor markets of the U.S. and Mexico.

26While the existence of switchers does suggest that an individual’s occupational choice is at least partially determined
by time-varying shocks or learning, it does not invalidate the important assumption underlying this framework: that
individuals can calculate, with reasonable accuracy, the probability that they end up in a particular sector for the majority
of their career.

27Because there is no 1980 census, for individuals whose school aged or working age census was the 1980 census, I use
the 1990 census instead.
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As a cost shifter in the white-collar cost equations (QH1 and QL1), I use the gender-specific pro-

portion of men or women in the white-collar sector in an individual’s municipality of residence in their

early working years. As a cost shifter in the cost equation for not working (QH0 and QL0), I use the

adult unemployment rate while the individual was working-aged. As a cost shifter in the schooling

opportunity cost equation (QH), I use gender-specific youth employment rates during an individual’s

school-aged years. Specifically, I calculate the proportion of boys (for males) or girls (for females) aged

12 to 15 and (separately) aged 16 to 18 who report being currently employed. Table 4 reports summary

statistics for all of the relevant variables described in this section.

Table 4 Summary Statistics for Structural Estimation Sample

Variable Name Mean
Standard 

Deviation
N

Individual-Level Variables

7.13 5.246 5265

0.25 0.433 5265

0.21 0.407 5265

0.45 0.497 5265

0.34 0.475 5265

0.52 0.240 5265

38.72 5.795 5265

0.41 0.491 5265

0.62 0.486 5265

3.35 3.477 5265

Total annual income (inverse hyperbolic sine) 
1(Completed high school)

1(White collar sector)

1(Blue collar sector)

1(Not employed)

Raven's test score (% correct)

Age

1(Male)

1(Urban)

Mother's education

Father's education 3.68 3.891 5265

Labor Market Variables

White collar proportion 0.33 0.170 5265

Unemployment rate 0.02 0.0127 5265

Youth employment rate (ages 12-15) 0.11 0.102 5265

Youth employment rate (ages 16-18) 0.32 0.197 5265

Notes: Sample includes individuals aged 30 to 50 who either reported being currently employed (with non-
missing sector and income information) or reported never having worked before. Individual-level variables
are from the Mexican Family Life Survey. Labor market variables are from the 1970 to 2000 censuses and
matched to individuals by their commuting zone of residence. White collar proportion is the fraction of
adult males (for men) and adult females (for women) working in the white collar sector during individual’s
early working years. Unemployment rate is the adult unemployment rate during an individual’s early
working years. Youth employment rate is the proportion of boys (for men) or girls (for women) in the
stated age category who report being employed during an individual’s school-aged years.
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7 Results

In this section, I begin by discussing the results from my reduced form analysis. After documenting the

main effects of pollution and the gender differences that I find, I then move on to investigate the labor

market mechanisms that could be driving these gender differences. Next, I address potential threats to

identification. Finally, I discuss the wage parameter estimates from the structural model.

7.1 Main Reduced Form Results

Figure 4 Effects of Pollution on Raven’s Test Scores

Notes: Intervals represent 90% confidence intervals. “Basic” coefficients are from regressions that control for birth month, birth year,
municipality of birth, and survey wave by birth year fixed effects, gender, mother’s education, father’s education, cubic functions of
average monthly mean, minimum, and maximum 2m temperatures, monthly relative humidity, monthly precipitation, and monthly
cloud coverage during each relevant 3-month period. “State-Specific Trends” include all basic controls, state-by-season fixed effects
and state-by-quadratic year trends. See Table A1, columns 1 and 2, for corresponding estimates.

To display my reduced form results, I graphically illustrate the estimated coefficients from equation

3. All corresponding tables are available in the Appendix. Figure 4 reports the estimated biological

effects of pollution on Raven’s test scores, a measure of cognitive ability. In addition to the coefficients

from the baseline specification, I plot the coefficients estimated from a specification that adds state-

specific quadratic year trends and state-specific season dummies, which split the year into four three-
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month periods. Across both specifications, thermal inversions in the second trimester have a significant

negative impact on Raven’s test scores. In the more rigorous specification, which adds state-specific

trends, I estimate a coefficient of -0.013, which implies that a standard deviation increase in average

monthly thermal inversions per trimester (8.2) leads to a 0.106 standard deviation decline in Raven’s

test scores. I do not find any significant effects associated with any of the other three-month periods,

and the second trimester coefficient is significantly different from both the first and third trimester

coefficient estimates. This is consistent with the medical and economic literature discussed in section

2.1, which flags the second trimester as a crucial period for brain development (Otake, 1998; Almond

et al., 2009; Black et al., 2014; Schwandt, 2016).

Figure 5 Effects of Pollution on Height

Notes: Intervals represent 90% confidence intervals. “Basic” coefficients are from regressions that control for birth month, birth year,
municipality of birth, and survey wave by birth year fixed effects, gender, mother’s education, father’s education, cubic functions of
average monthly mean, minimum, and maximum 2m temperatures, monthly relative humidity, monthly precipitation, and monthly
cloud coverage during each relevant 3-month period. “State-Specific Trends” include all basic controls, state-by-season fixed effects
and state-by-quadratic year trends. See Table A1, columns 3 and 4, for corresponding estimates.

In contrast, Figure 5 shows no evidence of a robust relationship between pollution exposure (in any

period) and height, which is often used as a cumulative measure of the quality of health and nutritional

inputs early in life (Thomas and Strauss, 1997; Maccini and Yang, 2009; Vogl, 2014) and has been shown

to be causally linked to fetal health measures like birthweight (Behrman and Rosenzweig, 2004; Black

28



et al., 2007). These results suggest that pollution did not substantially hinder the physical development

of fetuses and therefore that the negative impact of in utero pollution exposure was primarily cognitive.

Figure 6 Effects of Pollution on Health, by Gender

Notes: Intervals represent 90% confidence intervals. “Basic” coefficients are from regressions that control for birth month, birth year,
municipality of birth, and survey wave by birth year fixed effects, gender, mother’s education, father’s education, cubic functions of
average monthly mean, minimum, and maximum 2m temperatures, monthly relative humidity, monthly precipitation, and monthly
cloud coverage during each relevant 3-month period. “State-Specific Trends” include all basic controls, state-by-season fixed effects
and state-by-quadratic year trends. See Table A2, columns 2 and 4, for corresponding estimates. Although not plotted here, inversions
in all other three-month periods are included in these regressions.

In order to study differences across gender, I run these regressions separately for men and women.

In the following figures, I plot the coefficients from the state-specific trend specification for males and

females on the same graph, reporting only the three trimester coefficients (even though all regressions

control for the remaining three-month periods). In the Appendix, I report these trimester coefficients,

along with their differences (and associated standard errors). The first panel of Figure 6 shows that the

second trimester estimates for the effect of pollution on Raven’s scores are very similar in magnitude

for males and females: -0.0107 for females compared to -0.0127 for males, which are not significantly

different from each other. Neither coefficient is significant individually, likely due to the smaller sample

sizes, but given the significance of the negative effect in the full sample, the main takeaway from this

table is that cognition appears to be affected by pollution in similar ways for men and women. For
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height, in the second panel of Figure 6, there are no significant gender differences.

Figure 7 Effects of Pollution on Educational Attainment, by Gender

Notes: Intervals represent 90% confidence intervals. “Basic” coefficients are from regressions that control for birth month, birth year,
municipality of birth, and survey wave by birth year fixed effects, gender, mother’s education, father’s education, cubic functions of
average monthly mean, minimum, and maximum 2m temperatures, monthly relative humidity, monthly precipitation, and monthly
cloud coverage during each relevant 3-month period. “State-Specific Trends” include all basic controls, state-by-season fixed effects
and state-by-quadratic year trends. See Table A3, columns 2 and 4, for corresponding estimates. Although not plotted here, inversions
in all other three-month periods are included in these regressions. Sample is restricted to individuals aged 18 and older.

It is important to note that the effects being estimated here are reduced form effects: they are the

result of the biological effects of pollution as well as a series of investments made by parents up until

the age at which the Raven’s tests are administered and height is measured.28 Parents can observe

the cognitive ability and physical health of their child early on, and base their subsequent investment

decisions for this child (nutritional investments, vaccinations, time spent reading to the child, and so on)

on the endowment level that they observe. How these potentially ameliorating investments respond to

this pollution shock should depend on the returns to these investments (and whether they are increasing

or decreasing in endowments), parental budget constraints, and parental preferences. For parents with

more than one child, preferences over the distribution of quality across children may come in to play:

parents might want to either reinforce or compensate for ability differences between their children. If

28See Cunha and Heckman (2007), Cunha and Heckman (2008), and Cunha et al. (2010) for a commonly used dynamic
framework for the production function of skill).
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this were the case, we would expect to see the effects of pollution vary by the number of siblings an

individual has, but I do not find any evidence of this (results available on request). It should be noted,

however, that the number of siblings an individual has is not exogenous and that these findings are

descriptive at best.

Nevertheless, this does not rule out different motivations for potentially ameliorating investments,

and it is certainly possible that the effects I am estimating are underestimates (or even overestimates)

of the biological effect of pollution. The purpose of this analysis is not to tease out the biological effect

from the investment responses, as the data is not well-suited for this question: for the sample that I

am using, information on early parental investments is not available. What is important for the goals

of this paper is the fact that thermal inversions provide exogenous variation in cognitive ability, which

allows me to study how schooling decisions respond to an endowment shock.

Having established that in utero exposure to pollution acted as a negative and primarily cognitive

endowment shock that did not affect men and women differentially, I next ask whether there were any

differences in male and female schooling responses to this shock. For the following schooling regressions,

because I am interested in high school completion, I restrict to individuals old enough to have completed

high school (those aged 18 and older). Clear gender differences are illustrated in Figure 7. Though

both panels depict a similar pattern, the result is more pronounced in the regression on high school

completion (plotted in the right panel): thermal inversions had a significant negative impact on high

school completion for women only. The male coefficient, on the other hand, is positive, statistically

indistinguishable from zero, and significantly different from the female coefficient.

High school graduation appears to be the only milestone affected by pollution: Appendix Figure A1

shows that in utero thermal inversions had no significant impact on elementary school or junior high

school completion for either gender. This suggests that this cognitive shock had little effect on early

parental investment decisions. Instead, its primary effect seems to have been on an important later-life

schooling decision, made at a time when parents likely had more information about their child’s ability,

θ.

Figure 8 reports the effects of thermal inversions on income, again by gender, among those that

report work as their primary activity in the previous week. This deliberately excludes individuals who

may be working part time while still in school and whose annual income would not be an appropriate

measure of their labor market productivity. Once again, I find that thermal inversions in the second

trimester have a significant negative effect on female income. The effect of second trimester pollution on
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men is smaller in magnitude and not significantly different from zero, but still negative, sizable, and not

significantly different from the female coefficient. Unlike the high school completion results, Figure 8

does not offer clear-cut evidence for stark gender differences. Although it appears that pollution affected

incomes primarily for women, there also appear to be some non-negligible effects on men, which would

be consistent with existing examples of early-life circumstances that significantly affected male labor

market outcomes despite having very little effect on their schooling decisions (Hoddinott et al., 2008;

Rosenzweig and Zhang, 2013; Politi, 2015).

Figure 8 Effects of Pollution on Income, by Gender

Notes: Intervals represent 90% confidence intervals. “Basic” coefficients are from
regressions that control for birth month, birth year, municipality of birth, and
survey wave by birth year fixed effects, gender, mother’s education, father’s ed-
ucation, cubic functions of average monthly mean, minimum, and maximum 2m
temperatures, monthly relative humidity, monthly precipitation, and monthly
cloud coverage during each relevant 3-month period. “State-Specific Trends” in-
clude all basic controls, state-by-season fixed effects and state-by-quadratic year
trends. See Table A4, columns 2, for corresponding estimates. Although not
plotted here, inversions in all other three-month periods are included in these
regressions.

These results should be interpreted with caution. Because this is a young sample (aged 15 to 34),

the estimated coefficients represent the effect of pollution on early career outcomes, which might be

very different from the effects on lifetime income. In particular, the career wage trajectories of men

and women likely differ drastically; the direction and magnitude of the gender differences found here

may not be the same as those of the gender differences in lifetime income effects. Moreover, these
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regressions ignore selection into the sample of full-time workers, although I do not find evidence that

thermal inversions affected whether an individual reported work as their main activity (results available

upon request).

7.2 Labor Market Mechanisms

According to the model in section 3, gender differences in schooling responses to shocks can arise from

gender-specific tendencies to sort into the brain-intensive or brawn-intensive sector. In order to directly

test this, I take advantage of differences across space and over time in the proportion of men and women

in white collar jobs in local labor markets, which I argue can serve as reasonable proxies for pjg.
29 In

particular, the gender-specific proportion of white collar employment in the local labor market during a

child’s critical schooling transition period should be positively related to her parents’ expectations that

she will end up in a white collar job (pjg). Where this expected likelihood is higher, parents place more

weight on the the parameters of W1 than of W2. Like Rosenzweig and Zhang (2013), I focus on the

local labor market in which a child is residing at age 12. In Mexico, the end of elementary school is a

critical transition period during which a large proportion of children drop out (Behrman et al., 2011).

Moreover, for the majority of individuals in my sample, I have data on their municipality of residence

at age 12 specifically.

In Table 5, I run my main specification on the pooled sample of men and women, using high school

completion as my dependent variable. I interact the thermal inversion coefficients of interest with an

indicator for high pjg. Specifically, this indicator is equal to 1 if the predicted proportion of men (for

males) or women (for females) working in white collar jobs in the commuting zone in which the individual

was residing at age 12 falls in the top quartile of the predicted white-collar proportion distribution.30 The

results in Table 5 use a discrete transformation of proportions predicted by combining municipality-level

occupation distributions from the Census with national-level industry growth rates from the nationally

representative household survey ENIGH, using an industry shift-share strategy similar to Bartik (1991)

29Although it is difficult to capture expectations without subjective expectations data, the existing literature suggests
current labor market conditions can serve as a reasonable proxy for pjg. For example, Jensen (2010) finds that 70% of
survey respondents in rural India report that people in their community were their main source of information about
expected earnings. Similarly, Nguyen (2008) shows that information about current labor market conditions can affect
parental and child expectations about future returns. In a slightly different context, Attanasio and Kaufmann (2012) use
current conditions in the marriage market – gender ratios for certain education categories – to proxy for marriage market
expectations.

30Commuting zones are municipalities or collections of municipalities that better represent local labor markets than
individual municipalities. See Appendix section B for more details about these zones, as well as how the predicted
proportions were calculated.
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and others (See Data Appendix for more details). However, the pattern of results is robust to the use of

a continuous instead of a discrete measure (Table A6), as well as other methods of assigning individuals

to proportions, including simply assigning individuals the relevant value from the Census decade in

which they turned 12 (Table A7).

Across columns 1 and 2, the second trimester negative effect on high school completion found in

previous results appears to be concentrated among individuals facing a high likelihood of going into

the brain-intensive sector: the coefficient on the second trimester interaction is negative and significant

at the 1% level, while the main effect is positive but not significant. In fact, when I control for

the inversions interacted with a male dummy variable, it becomes clear that the gender-specific labor

market conditions, rather than gender itself, are driving the differences across men and women. In both

columns 3 and 4, the coefficient on second trimester inversions interacted with white collar proportions

is negative, significant at the 1% level, and almost the same magnitude as the coefficients in columns 1

and 2, while the gender difference (second trimester interacted with male) is much smaller in magnitude,

insignificant, and has the wrong sign. Columns 1 and 2 establish a clear link between labor market

conditions and investment responses to shocks, which most likely operates through the effect the current

labor market has on parental expectations.31 Columns 3 and 4 additionally show that gender differences

in this context are almost completely driven by these differential labor market conditions across genders.

7.3 Threats to Identification

7.3.1 Fertility Timing

The validity of the above analysis relies on the assumption that mothers in a given municipality who

experience many thermal inversions during their second trimester are not systematically different from

mothers in that same municipality who experience fewer thermal inversions in that same period. One

way of testing this is to regress observable maternal characteristics on the thermal inversion variables of

interest. Columns 1 and 3 of Table 6 report the results of regressing maternal years of schooling and an

indicator for whether an individual’s mother ever worked for pay,32 without any additional controls, on

thermal inversions in the second trimester. In both columns, there is no systematic relationship between

inversion exposure and these two maternal characteristics. In Columns 2 and 4, I report the results

31The finding that parental and child expectations can influence child schooling decisions is consistent with evidence
from subjective expectations data from urban Mexico (Kaufmann, 2014; Attanasio and Kaufmann, 2014).

32These are the only two maternal characteristics which are recorded in a comparable way for individuals with parents
living in the household and individuals whose parents do not live in the same household.
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Table 5 Effects of Pollution on High School Graduation, by Predicted White Collar
Proportions

(1) (2) (3) (4)

Average monthly inversions… HS Completion HS Completion HS Completion HS Completion

Trimester 1 0.00322 0.00364 0.00300 0.00384

(0.00347) (0.00349) (0.00674) (0.00691)

Trimester 2 0.00241 0.00277 0.00702 0.00763

(0.00337) (0.00350) (0.00563) (0.00583)

Trimester 3 0.00305 0.00384 0.00794 0.00870

(0.00364) (0.00375) (0.00708) (0.00735)

Trimester 1 0.0000148 -0.000335 0.0000284 -0.000604

x 1(Predicted white collar 

proportion in top quartile) (0.00395) (0.00402) (0.00598) (0.00609)

Trimester 2 -0.0104*** -0.0108*** -0.0146*** -0.0153***

x 1(Predicted white collar 

proportion in top quartile) (0.00376) (0.00383) (0.00542) (0.00574)

Trimester 3 0.000588 0.000875 -0.00378 -0.00349

x 1(Predicted white collar 

proportion in top quartile) (0.00376) (0.00380) (0.00612) (0.00625)

Trimester 1 0.000373 -0.000103

x 1(Male) (0.00627) (0.00645)

Trimester 2 -0.00515 -0.00550

x 1(Male) (0.00547) (0.00585)

Trimester 3 -0.00562 -0.00555

x 1(Male) (0.00628) (0.00635)

N 7214 7214 7214 7214

Dependent variable mean 0.363 0.363 0.363 0.363

Additional Fixed Effects None

state-by-season, 

state-by-quadratic-

year None

state-by-season, 

state-by-quadratic-

year

Standard errors in parentheses (clustered at municipality level)

* p<0.05  ** p<0.01*** p<0.001Notes:
Standard errors (clustered at municipality level) in parentheses. * p< 0.1 ** p< 0.05 *** p< 0.01
All regressions control for birth month, birth year, municipality of birth, and survey wave by birth year
fixed effects, gender, mother’s education, father’s education, cubic functions of average monthly mean,
minimum, and maximum 2m temperatures, monthly relative humidity, monthly precipitation, and monthly
cloud coverage during each relevant 3-month period. Regressions restrict to individuals aged 18 and older.
Predicted white collar proportions calculated using census data and annual growth rates from ENIGH. See
Data Appendix for details on the construction of predicted white collar proportions.
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of regressing these two variables on the entire specification used for the above analysis (excluding the

maternal and paternal schooling controls). None of the trimester coefficients are significantly different

from zero, suggesting that, conditional on all of the necessary fixed effects and weather controls, thermal

inversion exposure is truly exogenous to these maternal characteristics.

Of course, these two characteristics may not represent all of the observed or unobserved dimensions

that could be systematically correlated with thermal inversion exposure. Perhaps the more relevant

variables are those related to maternal characteristics in the year before birth, which are not available

in this dataset. For example, thermal inversions are more common in winter, and pregnant mothers who

are in their second trimester during the winter give birth in the spring. In areas where maize harvesting

happens in the spring, mothers who can afford to give birth in the spring might be systematically

different (less likely to be working in agriculture, for example) from mothers who choose instead to

give birth in the fall. In the current specification, month fixed effects help control for this, to a certain

extent, but only if these seasonal effects do not vary over time or space. In order to better control

for time-varying or municipality-specific seasonal effects, I run two additional specifications. In the

first specification, I replace the state-season fixed effects with municipality-season fixed effects. In the

second specification, I keep these municipality-season fixed effects and replace the separate year and

month fixed effects with interacted year-month dummies. The latter allow for month effects to differ

over time, which might be important if the incentives to time births have changed over the two decade

period spanning the birth years in my sample. As Appendix Figures A2 and A3 show, my main results

are quite robust to these specification changes: I find that pollution significantly reduces Raven’s test

scores for the whole sample, and high school completion for women only.

7.3.2 Mortality Selection

Given that in utero exposure to pollution is known to affect infant mortality, one important concern

is whether my results are being driven by selective mortality. First, it is worthwhile to note that if

we assume that the infants that do not survive as a result of pollution exposure are the weaker ones

who are also at the left tail of the ability distribution, my estimated effects should be an underestimate

of pollution’s true impact. However, in order to verify whether selective mortality is an issue in my

setting, I check whether thermal inversions before birth have any effect on cohort size or cohort gender

composition. Using all individuals in the MxFLS born after 1979 and old enough in at least one survey

wave to have been asked about their place of birth, I first calculate the total number of individuals
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Table 6 Maternal Characteristics and Thermal Inversions

(1) (1) (2) (2)

Average monthly inversions… Mother's Education Mother's Education 1(Mother Worked) 1(Mother Worked)

BEFORE CONCEPTION

19-21 months before birth -0.00180 0.00134

(0.0177) (0.00238)

16-18 months before birth -0.0229 -0.00329

(0.0194) (0.00219)

13-15 months before birth -0.0295 -0.00150

(0.0184) (0.00266)

10-12 months before birth -0.0137 0.00132

(0.0183) (0.00256)

DURING PREGNANCY

Trimester 1 0.00429 -0.00149

(0.0233) (0.00269)

Trimester 2 -0.000340 -0.00930 -0.0000635 0.00196

(0.0175) (0.0215) (0.00132) (0.00248)

Trimester 3 0.0125 0.00237

(0.0202) (0.00309)

AFTER BIRTH

0-2 months after birth -0.00557 -0.00119

(0.0178) (0.00262)

3-5 months after birth -0.00262 0.000120

(0.0199) (0.00281)

6-8 months after birth 0.0121 0.00153

(0.0170) (0.00257)

9-11 months after birth 0.0280 -0.00234

(0.0202) (0.00256)

N 10322 9770 11104 10496

Mean of dependent variable 6.105 6.170 0.462 0.466

Basic Controls No Yes No Yes

Additional Fixed Effects None

state-by-season, state-

by-quadratic-year None

state-by-season, state-

by-quadratic-year

Standard errors in parentheses (clustered at municipality level)

* p<0.1  ** p<0.05*** p<0.01
Notes:
Standard errors (clustered at municipality level) in parentheses. * p< 0.1 ** p< 0.05 *** p< 0.01
The “Basic Controls” included in columns 2 and 4 include: birth month, birth year, municipality of birth, and survey wave
by birth year fixed effects, gender, cubic functions of average monthly mean, minimum, and maximum 2m temperatures,
monthly relative humidity, monthly precipitation, and monthly cloud coverage during each relevant 3-month period.
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and fraction that is male for each birth municipality, birth month, and birth year combination. With

each observation representing a year-month-municipality, I regress these aggregate values on thermal

inversions during pregnancy and in the year before and after. My results, reported in Table 7, show no

evidence for selective mortality in this sample. While the absence of any pollution-driven changes in

cohort size may seem inconsistent with previous studies documenting a positive link between pollution

and infant mortality (Arceo et al., 2016; Jayachandran, 2009; Currie and Neidell, 2005; Chay and

Greenstone, 2003), it does not necessarily rule out the possibility that thermal inversions led to higher

infant mortality in this sample as well. These null effects are consistent with a situation in which

thermal inversions increased infant mortality by accelerating the deaths of infants who would have died

before reaching adolescence or adulthood in the absence of pollution. By the time I observe my sample,

pollution-driven changes in its composition do not appear to be a substantial concern.

7.4 Structural Estimates of Wage Function

The above analysis has shown that female schooling decisions are more strongly affected by a cognitive

endowment shock than male schooling decisions. This appears to be primarily driven by the higher

tendency of women to enter the white-collar sector. Recall that the model in section 3 predicted a

larger schooling response among women if schooling and ability are more complementary in the white

collar than in the blue collar sector, which I verify by structurally estimating these sector-specific

parameters.

Table 8 reports the estimates for the wage parameters from the model described in 6.1. The param-

eter estimates for the cost functions can be found in Appendix Tables A8 and A9. Simulations using

model parameters are able able to closely replicate the actual distribution of schooling-sector choices,

as discussed in Appendix section C.3.

In Table 8, the first two columns report the estimates and standard errors for the white-collar wage

parameters, the second two summarize the blue-collar wage function, and the last two look at the

differences between the two. There are several differences across the two sectors. Average wages are

higher in the white-collar sector than in the blue-collar sector. The age patterns differ across sectors

as well, with the white collar sector offering greater rewards for experience in the older age categories,

though the standard errors of these differences are large. Individuals in urban areas earn higher income

on average. Men earn significantly higher wages than women, conditioning on schooling and ability, in

both sectors. Notably, however, the male advantage is significantly larger in the blue-collar sector than
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Table 7 Effects of Pollution on Cohort Size

(1) (2) (3) (4)

Average monthly inversions… Cohort size Cohort size Fraction male Fraction male

BEFORE CONCEPTION

19-21 months before birth -0.00351 -0.00482 -0.000354 0.000394

(0.00329) (0.00322) (0.00271) (0.00269)

16-18 months before birth -0.00127 -0.00123 0.000777 0.00122

(0.00320) (0.00324) (0.00263) (0.00275)

13-15 months before birth 0.00514 0.00462 -0.00109 -0.000581

(0.00323) (0.00327) (0.00278) (0.00285)

10-12 months before birth 0.00369 0.00411 0.00254 0.00368

(0.00361) (0.00378) (0.00259) (0.00259)

DURING PREGNANCY

Trimester 1 0.00161 0.00178 -0.00134 -0.000932

(0.00331) (0.00344) (0.00246) (0.00256)

Trimester 2 0.00216 0.00295 -0.000612 -0.000372

(0.00357) (0.00348) (0.00284) (0.00277)

Trimester 3 -0.00557 -0.00593 -0.000615 -0.000327

(0.00467) (0.00483) (0.00240) (0.00233)

AFTER BIRTH

0-2 months after birth -0.000247 0.000248 0.000183 0.00142

(0.00397) (0.00403) (0.00244) (0.00257)

3-5 months after birth 0.000784 0.000110 -0.00167 -0.000926

(0.00379) (0.00408) (0.00267) (0.00276)

6-8 months after birth -0.00101 -0.00100 -0.000345 -0.000430

(0.00345) (0.00354) (0.00248) (0.00261)

9-11 months after birth -0.00439 -0.00472 -0.00131 -0.00119

(0.00361) (0.00365) (0.00307) (0.00316)

N (municipality-year-months) 10108 10108 10098 10098

Mean of dependent variable 1.352 1.352 0.482 0.482

Additional Fixed Effects None

state-by-season, state-

by-quadratic-year None

state-by-season, state-

by-quadratic-year

Notes:
Standard errors (clustered at municipality level) in parentheses. * p< 0.1 ** p< 0.05 *** p< 0.01
In these regressions, each observation represents a unique municipality-month-year combination. All regressions control for month,
year, and municipality fixed effects, cubic functions of average monthly mean, minimum, and maximum 2m temperatures, monthly
relative humidity, monthly precipitation, and monthly cloud coverage during each relevant 3-month period.
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in the white-collar sector, which is consistent with men having a comparative advantage in the more

physical blue-collar sector.

Most relevant to the model predictions in the previous section, however, is a comparison of the

sector-specific coefficients on the interaction between high school completion and ability. This term is

positive and significant in the white-collar sector, offering evidence for complementarities between ability

and educational investments in this sector. In the blue-collar sector, on the other hand, this term is

negative but not statistically significant. The difference between the two coefficients is significant at the

1% level.

Table 8 Wage Function Parameter Estimates

Estimate Standard Error Estimate Standard Error Estimate Standard Error

Constant 10.338 (0.117)*** 9.829 (0.058)*** 0.509 (0.127)***

HS 0.232 (0.121)* 0.200 (0.121)* 0.031 (0.169)

Ability -0.022 (0.063) 0.161 (0.030)*** -0.183 (0.070)***

HS x Ability 0.231 (0.079)*** -0.071 (0.069) 0.301 (0.103)***

HS: Age 35-40 0.106 (0.103) 0.189 (0.141) -0.083 (0.175)

HS: Age 41-45 0.144 (0.099) 0.248 (0.148)* -0.104 (0.178)

HS: Age 46-50 0.677 (0.112)*** 0.343 (0.185)* 0.334 (0.216)

No HS: Age 35-40 0.290 (0.140)** -0.005 (0.058) 0.295 (0.151)*

No HS: Age 41-45 0.245 (0.147)* -0.013 (0.060) 0.258 (0.159)

No HS: Age 46-50 0.315 (0.169)* 0.120 (0.071)* 0.196 (0.183)

Male 0.371 (0.060)*** 0.684 (0.045)*** -0.313 (0.073)***

Urban 0.205 (0.073)*** 0.419 (0.042)*** -0.214 (0.082)***

Mother's Education 0.019 (0.005)*** 0.008 (0.003)** 0.011 (0.004)**

Father's Education 0.018 (0.005)*** 0.005 (0.003)* 0.012 (0.004)***

Standard errors in parentheses

* p<0.1  ** p<0.05*** p<0.01

White Collar Blue Collar WC -- BC Difference

Notes:
p< 0.1 ** p< 0.05 *** p< 0.01
Standard errors are calculated using the information matrix.

In short, the cross-partial between schooling and ability is significantly higher in the white collar

sector compared to the blue collar sector. This finding confirms that the reduced form results discussed

earlier do indeed support the model predictions from section 3. Because women tend to sort dispro-

portionately into a sector where schooling and ability are more complementary, they exhibit stronger

schooling responses to a cognitive endowment shock.
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7.5 Policy Simulation

Given that men and women respond differently to cognitive shocks, policies aimed at improving cognitive

ability should also have different implications for each gender. An important advantage of the structural

approach taken here is the ability to conduct policy exercises to evaluate this claim. Of particular interest

to the literature on early-life circumstances are interventions aimed at improving the cognitive ability

of the most disadvantaged, usually at very young ages. One of the most well-studied examples of this

is the Head Start program in the United States. Initially developed as part of the “War on Poverty,” a

main goal of Head Start is to enable disadvantaged children to “begin schooling on an equal footing with

their more advantaged peers” (Currie, 2001). A smaller scale yet more intensive intervention conducted

in Kingston, Jamaica in the 1980’s has also yielded a number of important contributions to the early-life

literature.33 Targeting stunted children in poor neighborhoods in Kingston, this intervention consisted

of nutritional supplementation as well as a program of psychosocial stimulation (Grantham-McGregor

et al., 1991). In an experiment conducted in poor Guatemalan villages, exposure to a nutritional

supplementation program in the first two years of life was found to have long-term positive effects on

cognitive test scores measured in adulthood (Maluccio et al., 2009).

I therefore simulate a policy that brings up the left tail of the distribution by increasing the cognitive

ability of those below the 10th percentile to the level of the 10th percentile. I note that this is an

ambitious policy: very few interventions have had success in raising IQ in the long-run, and model Head

Start programs like the Perry preschool program are no exception (the IQ gains from such programs have

been found to have faded over time). Nevertheless, successful studies like the Jamaican and Guatemalan

experiments offer us with some guidance on what can contribute to effective interventions (outside of the

formal school system). Because the simulated policy is assumed to bring about cognitive improvements

without changing school quality, it should be thought of as a most closely related to these two programs.

I focus on a small percentage of the population for two reasons. First of all, my model is a partial

equilibrium model and cannot be used to predict the effects of policy changes that affect large portions

of the population and have general equilibrium effects. Secondly, due to budget constraints, policies

actually implemented by governments tend to focus on small fractions of the population. Head Start

targets children in families living below the poverty line (Aughinbaugh et al., 2001), who make up

33See, for example, Grantham-McGregor et al. (1991), Walker et al. (2000), Walker et al. (2011), and Gertler et al.
(2013).
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between 10 and 20% of the population.34 Similarly, two years after it first began, Mexico’s Oportunidades

program (which had a similar goal of improving the human capital of the most disadvantaged, but

targeted based on income and focused on educational attainment) reached about 10% of the entire

Mexican population (Behrman et al., 2005). The studies conducted in Jamaica and Guatemala were

constrained to small sample sizes of a few hundred and a few thousand, respectively.

In my sample, raising the cognitive ability of those below the 10th percentile to the level of the 10th

percentile is equivalent to an average test score improvement of about 0.4 standard deviations among

those that are affected. This lies in the range of the estimated effect sizes of the two successful studies

discussed above: the relatively intensive intervention in Jamaica increased adult cognitive ability by 0.6

standard deviations (Walker et al., 2011), while the nutritional supplementation program in Guatemala

increased Raven’s test scores by 0.25 standard deviations (Maluccio et al., 2009).

Table 9 summarizes the main results of this exercise. All values are calculated on the sub-sample

of individuals falling below the 10th percentile of the Raven’s test score distribution. Columns 1 and 2

focus on men, and columns 3 and 4 focus on women. In columns 5 and 6, I subtract the male values from

the female values. Columns 1, 3, and 5 report the probability of high school graduation, the probability

of employment, and income, prior to the policy. These are predicted values, obtained by calculating

50 simulations of the model using the actual Raven’s test scores (and other relevant variables) in the

data. Columns 2, 4, and 6 report the change that takes place as a result of increasing ability to the

10th percentile. Column 7 reports the female to male ratio in the level change (column 4 divided by

column 2).

The first row shows that increasing ability leads to an increase in the proportion of individuals who

graduate from high school, which is at baseline a mere 5% in this sample of low-ability individuals. As

reported in column 6, this increase is 0.7 percentage points (or 23%) larger for women than men, which

is is qualitatively consistent with both my reduced form results and conceptual framework.35 In the

second row, I find that the female employment response is over 7 times larger for women than men.

Female employment increases by over one percentage point, which is approximately 20% of the increase

in female labor force participation that took place in Mexico from 2002 to 2012. This closes the male-

female employment gap by almost one and a half percent. The last two rows summarize the resulting

34This figure varies across years.
35It should be noted that this figure cannot be compared to the reduced form results in Section 7. This policy simulation

uses a slightly older sample, restricts to a small sub-sample of individuals, and assumes a shock that hits only a particular
part of the distribution.
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changes in average income: first only among those working and then over the entire sample (assigning

zeros to the unemployed). Both of these statistics increase for both genders, but the increase in income

conditional on working is larger for men than women, due to more lower-ability women entering the

labor force. On the other hand, because of the larger improvements on the extensive margin for women,

unconditional average income increases by 46% more for women than men, closing the pre-policy income

gap by 0.6%. In short, the fact that improvements in cognitive ability result in different responses for

men and women has important implications for how interventions like this one might affect gender gaps

in schooling and employment outcomes. This particular intervention could help to close the gender gap

among low-ability individuals in employment rates, but not in conditional income levels.

Table 9 Effect of Improving Cognitive Ability on Schooling, Employment, and Income

(1) (3) (5) (7)

Female Level Change

Male Level Change

P(High School) 0.0495 0.0031 0.0504 0.0038 0.0009 0.0007 (79.01%) 1.2278

P(Employed) 0.9706 0.0015 0.3067 0.0108 -0.6639 0.0093 (-1.40%) 7.3352

Conditional Income 10.5223 0.0728 10.0555 0.0560 -0.4668 -0.0168 (3.59%) 0.7697

Unconditional Income 10.2133 0.0862 3.0841 0.1261 -7.1292 0.0399 (-0.56%) 1.4623

Male Female Female-Male Difference

(6)(4)(2)

Level change (% 

change)

Before 

policy

Level 

change 

Before 

policy

Level 

change 

Before 

policy

Notes: All values are calculated using the model to simulate 50 paths for each individual, restricting to those in the bottom 10th
percentile. “Before policy” reports the simulated averages using actual Raven’s test scores, “Level change” reports the change after
increasing ability to the 10th percentile. “Conditional Income” is the inverse hyperbolic sine of total annual income among positive
income earners, and “Unconditional Income” is the inverse hyperbolic sine of total annual income among all individuals, setting
income to zero for the unemployed.

8 Conclusion

This study offers evidence that gender differences in investment responses can arise from gender-specific

opportunities in the labor market. Long-term cognitive damage caused by pollution exposure in utero

appear to affect investment decisions and income of women, but not of men. Furthermore, this gender

difference appears to be largely driven by the different labor market conditions faced by men and women.

In particular, women have a comparative advantage in brain-intensive jobs, where I show that schooling

and ability are more complementary in the wage function. As a result of these features of the labor

market, policies aimed at improving cognitive ability will have larger effects on female schooling and

employment and may help to close the gap between male and female labor force participation in Mexico.

These results shed light on some important links between labor market conditions, parental ex-
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pectations, and investment responses to shocks. This paper joins Pitt et al. (2012) and Rosenzweig

and Zhang (2013) in underscoring the importance of gender-specific comparative advantage in deter-

mining how parents respond to shocks. Unlike the health shocks studied in these two papers, the

pollution exposure analyzed here is unique in the sense that it affected cognitive ability specifically, and

not physical health, which therefore broadens our understanding of what types of shocks can generate

differential investment responses by gender. This paper also offers evidence that parents respond to

expectations about their children’s future labor market opportunities, consistent with related studies

that use subjective expectations data (Kaufmann, 2014; Attanasio and Kaufmann, 2014), as well as

the broader literature documenting that labor market conditions, including both current and future job

opportunities, affect schooling decisions (Jensen, 2010; Atkin, 2016; Shah and Steinberg, 2015).

Finally, these results also speak to a broader question that has attracted much interest in the

economic literature of late: how do early-life shocks interact with events or conditions later in life?

Whether these events are policy interventions (Adhvaryu et al., 2015; Rossin-Slater and Wüst, 2015;

Gunnsteinsson et al., 2014; Aguilar and Vicarelli, 2011), economic shocks (Bharadwaj et al., 2014), or

simply the labor market conditions studied in this paper, the fact that they can interact with early-life

conditions in ways that we may not yet fully understand has important implications for policy as well

as for interpreting existing research.
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A Appendix Tables

A.1 Main Results

The tables in this section provide the coefficient estimates, standard errors, and observation counts for

the graphs in section 7.1. For each variable, the first column includes the basic fixed effects (municipality,

month, and year) and the second adds state-specific season fixed effects and state-specific quadratic

trends.
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Table A1 Effects of Pollution on Health

(1) (2) (3) (4)

Average monthly inversions… Raven's test z-score Raven's test z-score Height z-score Height z-score

BEFORE CONCEPTION

19-21 months before birth 0.00453 0.00351 -0.00105 -0.00283

(0.00463) (0.00466) (0.00580) (0.00605)

16-18 months before birth 0.00435 0.00297 -0.00177 -0.00242

(0.00387) (0.00398) (0.00519) (0.00515)

13-15 months before birth 0.00767 0.00556 0.00356 0.00221

(0.00497) (0.00507) (0.00501) (0.00507)

10-12 months before birth 0.00284 0.000185 0.00888* 0.00533

(0.00542) (0.00557) (0.00527) (0.00536)

DURING PREGNANCY

Trimester 1 0.00398 0.00324 0.00519 0.00570

(0.00595) (0.00592) (0.00542) (0.00526)

Trimester 2 -0.0119** -0.0130** 0.00187 0.000907

(0.00561) (0.00581) (0.00550) (0.00557)

Trimester 3 0.00465 0.00350 0.00254 0.00116

(0.00543) (0.00535) (0.00519) (0.00514)

AFTER BIRTH

0-2 months after birth -0.00349 -0.00448 -0.00196 -0.00442

(0.00615) (0.00634) (0.00467) (0.00470)

3-5 months after birth 0.00321 0.00318 0.000718 0.000341

(0.00457) (0.00477) (0.00539) (0.00530)

6-8 months after birth 0.000462 -0.000623 -0.000524 -0.00208

(0.00466) (0.00470) (0.00571) (0.00589)

9-11 months after birth -0.00594 -0.00846 -0.00133 -0.00207

(0.00502) (0.00521) (0.00539) (0.00552)

N 10320 10320 10398 10398

Mean of dependent variable 0.0164 0.0164 -1.008 -1.008

Additional Fixed Effects None

state-by-season, state-

by-quadratic-year None

state-by-season, state-

by-quadratic-year

Standard errors in parentheses (clustered at municipality level)

* p<0.1  ** p<0.05*** p<0.01
Notes:
Standard errors (clustered at municipality level) in parentheses. * p< 0.1 ** p< 0.05 *** p< 0.01
All regressions control for birth month, birth year, municipality of birth, and survey wave by birth year fixed effects,
gender, mother’s education, father’s education, cubic functions of average monthly mean, minimum, and maximum
2m temperatures, monthly relative humidity, monthly precipitation, and monthly cloud coverage during each relevant
3-month period.
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Table A2 Effects of Pollution on Health by Gender

(1) (2) (3) (4)

Average monthly inversions… Raven's test z-score Raven's test z-score Height z-score Height z-score

FEMALE

Trimester 1 0.00464 0.00221 0.00182 0.00603

(0.00774) (0.00790) (0.00810) (0.00818)

Trimester 2 -0.00971 -0.0107 0.00565 0.00453

(0.00832) (0.00850) (0.00729) (0.00756)

Trimester 3 0.00392 0.00257 -0.00178 -0.00153

(0.00770) (0.00784) (0.00668) (0.00668)

N 5455 5455 5506 5506

Dependent variable mean -0.00429 -0.00429 -1.043 -1.043

MALE

Trimester 1 0.00193 0.00155 0.00746 0.00521

(0.00754) (0.00761) (0.00754) (0.00759)

Trimester 2 -0.0139* -0.0127 -0.00539 -0.00830

(0.00814) (0.00883) (0.00805) (0.00825)

Trimester 3 0.00438 0.00294 0.0107 0.00790

(0.00862) (0.00842) (0.00831) (0.00826)

N 4865 4865 4892 4892

Dependent variable mean 0.0397 0.0397 -0.970 -0.970

MALE-FEMALE DIFFERENCE

Trimester 1 -0.00272 -0.000663 0.00564 -0.000822

(0.0101) (0.0109) (0.0111) (0.0115)

Trimester 2 -0.00422 -0.00199 -0.0110 -0.0128

(0.0117) (0.0122) (0.0108) (0.0110)

Trimester 3 0.000465 0.000376 0.0124 0.00943

(0.0120) (0.0120) (0.0105) (0.0106)

Additional Fixed Effects None

state-by-season, state-

by-quadratic-year None

state-by-season, state-

by-quadratic-year

Standard errors in parentheses (clustered at municipality level)

* p<0.1  ** p<0.05*** p<0.01
Notes:
Standard errors (clustered at municipality level) in parentheses. * p< 0.1 ** p< 0.05 *** p< 0.01
All regressions control for birth month, birth year, municipality of birth, and survey wave by birth year fixed effects,
gender, mother’s education, father’s education, cubic functions of average monthly mean, minimum, and maximum
2m temperatures, monthly relative humidity, monthly precipitation, and monthly cloud coverage during each relevant
3-month period.
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Table A3 Effects of Pollution on Schooling by Gender

(1) (2) (3) (4)

Average monthly inversions… Years of Schooling Years of Schooling HS Completion HS Completion

FEMALE

Trimester 1 0.0410 0.0460 0.00517 0.00648

(0.0289) (0.0287) (0.00486) (0.00482)

Trimester 2 -0.0241 -0.0200 -0.00821** -0.00757*

(0.0251) (0.0250) (0.00405) (0.00401)

Trimester 3 0.00532 0.0118 0.00156 0.00347

(0.0274) (0.0267) (0.00413) (0.00411)

N 3988 3988 3988 3988

Dependent variable mean 10.03 10.03 0.382 0.382

MALE

Trimester 1 0.0161 0.0216 -0.00141 -0.00112

(0.0290) (0.0285) (0.00434) (0.00436)

Trimester 2 0.00445 0.0100 0.00150 0.00298

(0.0284) (0.0298) (0.00396) (0.00415)

Trimester 3 0.0164 0.0145 0.00618 0.00602

(0.0249) (0.0261) (0.00452) (0.00480)

N 3365 3365 3365 3365

Dependent variable mean 9.866 9.866 0.343 0.343

MALE - FEMALE DIFFERENCE

Trimester 1 -0.0249 -0.0244 -0.00658 -0.00760

(0.0416) (0.0407) (0.00668) (0.00668)

Trimester 2 0.0286 0.0300 0.00971 0.0105*

(0.0400) (0.0404) (0.00593) (0.00611)

Trimester 3 0.0111 0.00276 0.00462 0.00255

(0.0350) (0.0356) (0.00592) (0.00605)

Additional Fixed Effects None

state-by-season, state-

by-quadratic-year None

state-by-season, state-

by-quadratic-year

Standard errors in parentheses (clustered at municipality level)

* p<0.1  ** p<0.05*** p<0.01
Notes:
Standard errors (clustered at municipality level) in parentheses. * p< 0.1 ** p< 0.05 *** p< 0.01
All regressions control for birth month, birth year, municipality of birth, and survey wave by birth year fixed effects,
gender, mother’s education, father’s education, cubic functions of average monthly mean, minimum, and maximum
2m temperatures, monthly relative humidity, monthly precipitation, and monthly cloud coverage during each relevant
3-month period.
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Table A4 Effects of Pollution on Income by Gender

(1) (2)

Average monthly inversions… Annual income Annual income

FEMALE

Trimester 1 -140.1 10.54

(545.4) (763.1)

Trimester 2 -1131.4** -1067.9*

(570.1) (585.7)

Trimester 3 -38.51 95.39

(735.5) (847.6)

N 946 946

Dependent variable mean 24314.0 24314.0

MALE

Trimester 1 -404.8 -766.2

(430.1) (521.2)

Trimester 2 -465.2 -653.8

(372.4) (415.4)

Trimester 3 -225.6 -508.7

(305.6) (312.1)

N 1833 1833

Dependent variable mean 31101.5 31101.5

MALE - FEMALE DIFFERENCE

Trimester 1 -264.7 -776.7

(649.7) (783.3)

Trimester 2 666.2 414.1

(656.4) (698.4)

Trimester 3 -187.1 -604.1

(666.6) (747.9)

Additional Fixed Effects None

state-by-season, state-

by-quadratic-year

Standard errors in parentheses (clustered at municipality level)

* p<0.1  ** p<0.05*** p<0.01

Notes:
Standard errors (clustered at municipality level) in parentheses. * p< 0.1 **
p< 0.05 *** p< 0.01
All regressions control for birth month, birth year, municipality of birth, and
survey wave by birth year fixed effects, gender, mother’s education, father’s ed-
ucation, cubic functions of average monthly mean, minimum, and maximum 2m
temperatures, monthly relative humidity, monthly precipitation, and monthly
cloud coverage during each relevant 3-month period.
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A.2 Additional Figures and Tables

Figure A1 Effects of Pollution on Early Educational Attainment, by Gender

Notes: Intervals represent 90% confidence intervals. “Basic” coefficients are from regressions that control for birth month, birth year,
municipality of birth, and survey wave by birth year fixed effects, gender, mother’s education, father’s education, cubic functions of
average monthly mean, minimum, and maximum 2m temperatures, monthly relative humidity, monthly precipitation, and monthly
cloud coverage during each relevant 3-month period. “State-Specific Trends” include all basic controls, state-by-season fixed effects
and state-by-quadratic year trends. See Table A5 (columns 2 and 4) for corresponding estimates. Although not plotted here, inversions
in all other three-month periods are included in these regressions. Sample is restricted to individuals aged 18 and older.
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Table A5 Effects of Pollution on Early Educational Attainment, by Gender

(1) (2) (3) (4)

Average monthly inversions…

Elementary School 

Completion

Elementary School 

Completion

Junior High School 

Completion

Junior High School 

Completion

FEMALE

Trimester 1 0.00119 0.00165 0.00443 0.00474

(0.00272) (0.00268) (0.00421) (0.00431)

Trimester 2 0.000538 0.000813 0.000131 0.00103

(0.00223) (0.00220) (0.00410) (0.00409)

Trimester 3 -0.000728 -0.000798 0.00242 0.00274

(0.00209) (0.00204) (0.00406) (0.00384)

N 3988 3988 3988 3988

Dependent variable mean 0.944 0.944 0.772 0.772

MALE

Trimester 1 0.000290 0.000427 -0.00153 -0.000878

(0.00247) (0.00260) (0.00431) (0.00418)

Trimester 2 -0.000467 -0.00133 0.000975 0.000186

(0.00284) (0.00297) (0.00470) (0.00485)

Trimester 3 -0.00114 -0.00196 -0.00236 -0.00184

(0.00281) (0.00292) (0.00432) (0.00447)

N 3365 3365 3365 3365

Dependent variable mean 0.938 0.938 0.753 0.753

MALE - FEMALE DIFFERENCE

Trimester 1 -0.000900 -0.00122 -0.00596 -0.00561

(0.00384) (0.00403) (0.00572) (0.00576)

Trimester 2 -0.00101 -0.00214 0.000843 -0.000848

(0.00368) (0.00388) (0.00667) (0.00646)

Trimester 3 -0.000409 -0.00116 -0.00479 -0.00459

(0.00353) (0.00354) (0.00606) (0.00599)

Additional Fixed Effects None

state-by-season, state-

by-quadratic-year None

state-by-season, state-

by-quadratic-year

Standard errors in parentheses (clustered at municipality level)

* p<0.05  ** p<0.01*** p<0.001
Notes:
Standard errors (clustered at municipality level) in parentheses. * p< 0.1 ** p< 0.05 *** p< 0.01
All regressions control for birth month, birth year, municipality of birth, and survey wave by birth year fixed effects,
gender, mother’s education, father’s education, cubic functions of average monthly mean, minimum, and maximum
2m temperatures, monthly relative humidity, monthly precipitation, and monthly cloud coverage during each relevant
3-month period.
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Figure A2 Effects of Pollution on Cognitive Ability, with Additional Fixed Effects

Notes: Intervals represent 90% confidence intervals. All regressions control for birth month, birth year, municipality of birth, and
survey wave by birth year fixed effects, state-by-quadratic year trends, gender, mother’s education, father’s education, cubic functions
of average monthly mean, minimum, and maximum 2m temperatures, monthly relative humidity, monthly precipitation, and monthly
cloud coverage during each relevant 3-month period.

60



Figure A3 Effects of Pollution on High School Completion by Gender, with Additional Fixed Effects

Notes: Intervals represent 90% confidence intervals. All regressions control for birth month, birth year, municipality of birth, and
survey wave by birth year fixed effects, state-by-quadratic year trends, gender, mother’s education, father’s education, cubic functions
of average monthly mean, minimum, and maximum 2m temperatures, monthly relative humidity, monthly precipitation, and monthly
cloud coverage during each relevant 3-month period. Sample is restricted to individuals aged 18 and older.

61



A.3 Alternative Methods of Assigning White Collar Proportions

These tables demonstrate the robustness of my results to the use of other proxies of pjg. Table A6 reports

the results from using a continuous version of the discrete measure used in Table 5. In columns 1 and 2,

the second trimester interaction is significant at the 10% level. In columns 3 and 4, which additionally

control for the male interaction terms, the magnitudes remain stable but the standard errors increase.

Though more imprecise, these results are consistent with the previous finding that gender-specific labor

market opportunities appear to be playing an important role, much more important than gender itself –

the male interaction with second trimester inversions is much smaller in magnitude and has a negative

sign.

Table A7 reports results of regressions that use a simpler assignment rule for pg: specifically, assigning

individuals with the relevant value from the Census decade in which they turned 12. Results are

consistent with those in Table 5.
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Table A6 Effects of Pollution on High School Graduation, by Predicted White Collar Pro-
portions: Continuous Measure

(1) (2) (3) (4)

Average monthly inversions… HS Completion HS Completion HS Completion HS Completion

Trimester 1 0.00246 0.00277 -0.00182 -0.00101

(0.00430) (0.00430) (0.00852) (0.00869)

Trimester 2 0.00307 0.00349 0.00433 0.00502

(0.00449) (0.00460) (0.00826) (0.00825)

Trimester 3 0.00339 0.00404 0.00862 0.00896

(0.00412) (0.00425) (0.00866) (0.00875)

Trimester 1 0.00254 0.00199 0.0113 0.00978

x Predicted white collar 

proportion (0.0119) (0.0121) (0.0180) (0.0184)

Trimester 2 -0.0218* -0.0226* -0.0246 -0.0261

x Predicted white collar 

proportion (0.0119) (0.0116) (0.0181) (0.0179)

Trimester 3 0.000480 0.00116 -0.0104 -0.00901

x Predicted white collar 

proportion (0.0109) (0.0112) (0.0178) (0.0180)

Trimester 1 0.00362 0.00319

x 1(Male) (0.00615) (0.00633)

Trimester 2 -0.000893 -0.00110

x 1(Male) (0.00593) (0.00614)

Trimester 3 -0.00451 -0.00428

x 1(Male) (0.00637) (0.00628)

N 7214 7214 7214 7214

Dependent variable mean 0.363 0.363 0.363 0.363

Additional Fixed Effects None

state-by-season, 

state-by-quadratic-

year None

state-by-season, 

state-by-quadratic-

year

Standard errors in parentheses (clustered at municipality level)

* p<0.05  ** p<0.01*** p<0.001Notes:
Standard errors (clustered at municipality level) in parentheses. * p< 0.1 ** p< 0.05 *** p< 0.01
All regressions control for birth month, birth year, municipality of birth, and survey wave by birth year fixed effects,
gender, mother’s education, father’s education, cubic functions of average monthly mean, minimum, and maximum
2m temperatures, monthly relative humidity, monthly precipitation, and monthly cloud coverage during each relevant
3-month period. Regressions restrict to individuals aged 18 and older. Predicted white collar proportions calculated
using census data and annual growth rates. See Data Appendix for details on the construction of predicted white collar
proportions.
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Table A7 Effects of Pollution on High School Graduation, by Predicted White Collar Pro-
portions: Assigning by Census Decade

(1) (2) (3) (4)

Average monthly inversions… HS Completion HS Completion HS Completion HS Completion

Trimester 1 -0.000108 0.000384 -0.00201 -0.000886

(0.00336) (0.00332) (0.00558) (0.00569)

Trimester 2 0.00259 0.00279 0.00691 0.00709

(0.00345) (0.00354) (0.00534) (0.00540)

Trimester 3 0.00369 0.00446 0.00878 0.00963

(0.00372) (0.00387) (0.00700) (0.00728)

Trimester 1 0.00346 0.00300 0.00479 0.00386

x 1(Predicted white collar 

proportion in top quartile) (0.00381) (0.00393) (0.00487) (0.00506)

Trimester 2 -0.00994** -0.0101** -0.0138*** -0.0140**

x 1(Predicted white collar 

proportion in top quartile) (0.00397) (0.00400) (0.00525) (0.00541)

Trimester 3 -0.000362 -0.000383 -0.00459 -0.00466

x 1(Predicted white collar 

proportion in top quartile) (0.00380) (0.00384) (0.00605) (0.00615)

Trimester 1 0.00246 0.00173

x 1(Male) (0.00515) (0.00531)

Trimester 2 -0.00467 -0.00471

x 1(Male) (0.00493) (0.00518)

Trimester 3 -0.00604 -0.00608

x 1(Male) (0.00632) (0.00636)

N 7317 7317 7317 7317

Dependent variable mean 0.363 0.363 0.363 0.363

Additional Fixed Effects None

state-by-season, 

state-by-quadratic-

year None

state-by-season, 

state-by-quadratic-

year

Standard errors in parentheses (clustered at municipality level)

* p<0.05  ** p<0.01*** p<0.001Notes:
Standard errors (clustered at municipality level) in parentheses. * p< 0.1 ** p< 0.05 *** p< 0.01
All regressions control for birth month, birth year, municipality of birth, and survey wave by birth year fixed effects,
gender, mother’s education, father’s education, cubic functions of average monthly mean, minimum, and maximum 2m
temperatures, monthly relative humidity, monthly precipitation, and monthly cloud coverage during each relevant 3-
month period. Regressions restrict to individuals aged 18 and older. White collar proportions are assigned to individuals
using data from the census of the decade in which they turned 12 years old.
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B Data Appendix

B.1 Predicting White Collar Proportions

Conceptually, pg represents a parent’s perception of the likelihood that their child will enter the white

collar sector. If parents use current conditions to inform this expectation, then this probability should

vary with the local labor market opportunities at times when children are making important schooling

transitions. Previous literature has found that the transition from elementary to junior high school

is a crucial one in Mexico, as large proportions of children tend to drop out (Behrman et al., 2011).

Therefore, for individuals in my sample, I aim to estimate labor market statistics in the year they turn

12 years old, in the municipality in which they are living at that age. For the vast majority of the

sample, I know exactly where they are living at age 12. If individuals report to be currently living in

the same municipality in which they were living at age 12, I use their current residence. If individuals

report that they were living in their municipality of birth when they were 12 years old, I use their

municipality of birth. For the remainder of individuals, who make up less than 10% of the sample, I

also assign them to their municipality of birth, acknowledging that there will be some measurement

error, because municipality of residence at age 12 is a restricted-use variable.

For the actual data on local labor market conditions, I use the 1990, 2000, and 2010 Mexican censuses,

which span the decades during which individuals in my sample transitioned from elementary to junior

high. I use the provided International Standard Classification of Occupations (ISCO) codes to categorize

individuals as working in “brain-intensive” or “brawn-intensive” jobs using the same categorization as

in Vogl (2014). I then calculate the proportion of men and women in white collar (brain-intensive)

jobs, separately for each commuting zone. Following Atkin (2016), I use commuting zones instead

of individual municipalities because these better represent local labor markets. For instance, large

metropolitan areas have large numbers of municipalities, with individuals often working and residing

in different ones. I combine all municipalities in the same Zona Metropolitan (according to the 2000

INEGI classification) into a single commuting zone and also combine municipalities where over 10% of

the working population in one reports commuting to another for work (according to the more detailed

version of the 2000 Census, obtained from INEGI).

This provides me with gender-specific white collar proportions for each commuting zone for 1990,

2000 and 2010. However, my empirical test requires knowledge about labor market conditions for each

birth cohort at age 12. I use two different methods to assign values to the individuals who turn twelve
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during intercensal years. The simplest method involves assigning individuals with the relevant value

from the Census just prior to the decade in which they turned 12: this would be the 2000 Census for

those who were born in the years 1988 to 1997, for example. These results are reported in Table A7.

The results discussed in the main body of the paper (Table 5) combine Census data with national-

level growth rates to predict intercensal years. I use data from INEGI’s ENIGH, a nationally represen-

tative household survey conducted starting in 1982, and every two years since 1992. For each year y,

I calculate national-level growth rates of six major industries36 (subscripted by j) relative to the most

recent census year decade d. I denote these growth rates gyjd. From the Census, in addition to the

gender-specific proportions of white collar jobs in each decade (pgd), I also calculate the gender-specific

share of brain-intensive jobs in each industry: sgjd. My predicted proportion, p̂gyjd, is simply:

p̂gyjd = pgd +

5∑
j=1

sgjdgyjd. (13)

36The six broad industry categories I use are: (1) agriculture, (2) oil, natural gas, and construction, (3) education,
health, and government, (4) manufacturing, (5) service and hospitality, and (6) trade.
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C Structural Estimation Details

In this section, I outline the decision rules, transition probabilities, and likelihood function used to

estimate the structural model in section 6.1. The last sub-section discusses model fit.

C.1 Agent’s Decision Rules

To simplify future notation, I collect all the non-stochastic terms of each state’s net rewards into one

parameter, so that they can now be written

Y (H1)− c(H1) = γH1 + ε̄(H1)− (η(H1, H)− η(H2, H))

Y (L1)− c(L1) = γL1 + ε̄(L1)− (η(L1, L)− η(L2, L))

Y (H2)− c(H2) = γH2 + ε̄(H2)

Y (L2)− c(L2) = γL2 + ε̄(L2)

Y (H0)− c(H0) = γH0 − (η(H0, H)− η(H2, H))

Y (L0)− c(L0) = γL0 − (η(L0, L)− η(L2, L))

Y (H)− c(H) = γH − (η(H, 0)− η(L, 0)),

where

γH1 =
1− δ21

1− δ

β10 + β11 + (β12 + β13)θ +

k1∑
j=10

β1jX1j

+
1− δ5

1− δ

6∑
j=4

(β1j + β1(j+3))δ
5(j−3)+1

−

cH1 + αH1θ +

qH1∑
j=1

δH1jQH1j


γL1 =

1− δ21

1− δ

β10 + β12θ +

k1∑
j=10

β1jX1j

+
1− δ5

1− δ

6∑
j=4

β1jδ
5(j−7)+1

−

cL1 + αL1θ +

qL1∑
j=1

δL1jQL1j


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γH2 =
1− δ21

1− δ

β20 + β21 + (β22 + β23)θ +

k2∑
j=10

β2jX2j

+
1− δ5

1− δ

6∑
j=4

(β2j + β2(j+3))δ
5(j−3)+1

γL2 =
1− δ21

1− δ

β20 + β22θ +

k2∑
j=10

β2jX2j

+
1− δ5

1− δ

6∑
j=4

β2jδ
5(j−7)+1

γH0 = −(cH0 + αH0θ +

qH0∑
j=1

δH0jQH0j)

γL0 = −(cL0 + αL0θ +

qL0∑
j=1

δL0jQL0j)

γH = −(cH + αHθ +

qH∑
j=1

δHjQHj).

The agent’s value function at state s is

V (s) = max
s′∈Sf (s)

{
Y (s)− c(s′, s) + E

[
V (s′)|I(s)

]}
, (14)

where I(s) denotes the agent’s information set at state s, and Sf (s) denotes the set of feasible states

at s. The second term on the right-hand side is the continuation value of state s, CV (s). The above

value function determines the agent’s decisions in each state. I solve for the optimal decision rules at

each node, starting with the terminal nodes.

An agent in s = H chooses H1 if, given her high school degree, the expected lifetime net rewards

from the white collar sector exceeds expected lifetime net rewards from the blue collar sector and the

expected net rewards from not working, i.e. if

γH1 − η(H1, H) > γH2 − η(H2, H) and (15)

γH1 − η(H1, H) > γH0 − η(H0, H). (16)

An agent chooses H2 if

γH2 − η(H2, H) ≥ γH1 − η(H1, H) and (17)

γH2 − η(H2, H) > γH0 − η(H0, H), (18)

and chooses H0 otherwise.
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Similarly, an agent in s = L chooses L1 if

γL1 − η(L1, L) > γL2 − η(L2, L) and (19)

γL1 − η(L1, L) > γL0 − η(L0, L), (20)

chooses L2 if

γL2 − η(L2, L) ≥ γL1 − η(L1, L) and (21)

γL2 − η(L2, L) > γL0 − η(L0, L), (22)

and chooses L0 otherwise.

These cutoff rules allow us to solve for the agent’s optimal decision in s = 0. Here, an agent will

choose H if the continuation value of high school, minus the expected opportunity cost of schooling

(−γH), exceeds the expected future rewards without a high school degree:

E [V (H)|I(0)] + γH > E [V (L)|I(0)] , (23)

where

E [V (H)|I(0)] = E [Y (H) + CV (H)]

= E [CV (H)]

= E

[
max

s∈{H1, H2, H0}

{
−c(s′, s) + E

[
V (s′)|I(s)

]}]
= ρηH ln(exp(

γH1

ρηH
) + exp(

γH2

ρηH
) + exp(

γH0

ρηH
)), (24)

where the simplification in the final line is due to the Type 1 extreme value distribution assumption.

Similarly,

E [V (L)|I(0)] = E [Y (L) + CV (L)]

= E [CV (L)]

= ρηL ln(exp(
γL1

ρηL
) + exp(

γL2

ρηL
) + exp(

γL0

ρηL
)), (25)
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Combining equations 23, 24, and 25, we can derive a cutoff rule for the agent’s first decision. She

will choose H if

ρηH ln(exp(
γH1

ρηH
) + exp(

γH2

ρηH
) + exp(

γH0

ρηH
)) + γH − η(H, 0)

> ρηL ln(exp(
γL1

ρηL
) + exp(

γL2

ρηL
) + exp(

γL0

ρηL
))− η(L, 0) (26)

C.2 Transition Probabilities and Likelihood Function

The individual likelihood contribution of a particular agent is the joint probability of observing that

agent’s same schooling choice, sectoral choice, and (for working individuals) income that is realized in

the data.37 Beginning with the choice probabilities, I define for each agent an indicator function d(s)

which equals 1 if the agent visits state s, and calculate the conditional probability of visiting each state

in Sv(s), the set of visited states. Collecting all of the observed characteristics in D and structural

parameters in a vector ψ, we can use the above cutoff rules to write out these transition probabilities

as follows:

37Although the agent observes the idiosyncratic shocks η(s′, s) (before deciding on their next state) and ε(s) (after
making their decision), the researcher does not.
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Pr(d(H) = 1|D,ψ, θ) =

[
1 + exp

(
− 1

ρη0

(
ρηH ln(e

γH1
ρηH + e

γH2
ρηH + e

γH0
ρηH ) + γH

−ρηL ln(e
γL1
ρηL + e

γL2
ρηL + e

γL0
ρηL )

))]−1

Pr(d(L) = 1|D,ψ, θ) =

[
1 + exp

(
1

ρη0

(
ρηH ln(e

γH1
ρηH + e

γH2
ρηH + e

γH0
ρηH ) + γH

−ρηL ln(e
γL1
ρηL + e

γL2
ρηL + e

γL0
ρηL )

))]−1

Pr(d(H1) = 1|D,ψ, θ) = exp(
γH1

ρηH
)

[
exp(

γH1

ρηH
) + exp(

γH2

ρηH
) + exp(

γH0

ρηH
)

]−1

Pr(d(H2) = 1|D,ψ, θ) = exp(
γH2

ρηH
)

[
exp(

γH1

ρηH
) + exp(

γH2

ρηH
) + exp(

γH0

ρηH
)

]−1

Pr(d(H0) = 1|D,ψ, θ) = exp(
γH0

ρηH
)

[
exp(

γH1

ρηH
) + exp(

γH2

ρηH
) + exp(

γH0

ρηH
)

]−1

Pr(d(L1) = 1|D,ψ, θ) = exp(
γL1

ρηL
)

[
exp(

γL1

ρηL
) + exp(

γL2

ρηL
) + exp(

γL0

ρηL
)

]−1

Pr(d(L2) = 1|D,ψ, θ) = exp(
γL2

ρηL
)

[
exp(

γL1

ρηL
) + exp(

γL2

ρηL
) + exp(

γL0

ρηL
)

]−1

Pr(d(L0) = 1|D,ψ, θ) = exp(
γL0

ρηL
)

[
exp(

γL1

ρηL
) + exp(

γL2

ρηL
) + exp(

γL0

ρηL
)

]−1

These transition probabilities are combined with the per-period wage functions (of which we only

observe one per working individual) to construct the individual likelihood function for observation i.

Recall that ti is the age of the individual (in the year their income is observed) minus 30. Then, i’s

contribution to the likelihood function is:

∫
Θ

∏
s∈S

{
Pr(di(s) = 1|Di, θi;ψ)

20∏
t=0

f(Yi(s, t)|D, θi;ψ)1(ti=t)

}1(s∈Svi )
dFθi(θi), (27)

71



where

f(Y (H1, t)|D, θ;ψ) = φ

β10 + β11 + (β12 + β13)θ +

6∑
j=4

(β1j + β1(j+3))Aj−3(t)− Y (H1, t)


f(Y (L1, t)|D, θ;ψ) = φ

β10 + β12θ +
6∑
j=4

β1jAj−7(t)− Y (L1, t)


f(Y (H2, t)|D, θ;ψ) = φ

β20 + β21 + (β22 + β23)θ +
6∑
j=4

(β2j + β2(j+3))Aj−3(t)− Y (H2, t)


f(Y (L2, t)|D, θ;ψ) = φ

β20 + β22θ +
6∑
j=4

β2jAj−7(t)− Y (L2, t)


f(Y (s, t)|D, θ;ψ) = 1 ∀s ∈ {H, L, H0, L0} .

θ is equal to the individual’s standardized Raven’s test score plus a standard normal error term. The

discount factor is set to 0.04. I use maximum likelihood to estimate the structural parameters ψ, using

100 simulations to calculate the integral over θ for each individual. The wage parameters are reported

in Table 8, while the following tables report the parameters for the cost equations.
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Table A8 Sector Choice Cost Parameter Estimates

Estimate
Standard 

Error

Panel A: White Collar - Blue Collar 

HS: Constant -1.989 (4.729)

HS: Ability 0.784 (1.364)

HS: White Collar Proportion 1.790 (4.692)

HS: Male 6.015 (4.203)

HS: Urban -5.751 (2.633)**

No HS: Constant 19.055 (2.560)***

No HS: Ability -3.591 (1.064)***

No HS: White Collar Proportion -8.105 (2.721)***

No HS: Male -4.499 (1.212)***

No HS: Urban -4.076 (1.287)***

Panel B: No Work - Blue Collar

HS: Constant -157.552 (3.797)***

HS: Ability 0.479 (1.283)

HS: Unemployment -1.962 (3.443)

HS: Male 28.158 (12.869)**

HS: Urban -4.276 (2.146)**

No HS: Constant -144.930 (0.978)***

No HS: Ability 2.026 (0.459)***

No HS: Unemployment -2.603 (1.091)**

No HS: Male 3.423 (3.292)

No HS: Urban -4.193 (0.810)***

HS: Scale Parameter 9.708 (3.230)***

No HS: Scale Parameter 2.908 (0.707)***

Standard errors in parentheses

* p<0.1  ** p<0.05*** p<0.01Notes:
p< 0.1 ** p< 0.05 *** p< 0.01
Standard errors are calculated using the information matrix.
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Table A9 Schooling Cost Parameter Estimates

Estimate
Standard 

Error

Constant 28.024 (11.747)**

Ability -3.328 (2.934)

Male -9.436 (4.135)**

Mother's Education -0.382 (0.472)

Father's Education -0.367 (0.462)

Youth Employment (12-15) -2.224 (2.753)

Youth Employment (16-18) 3.363 (3.481)

Scale Parameter 3.063 (3.179)

Standard errors in parentheses

* p<0.1  ** p<0.05*** p<0.01Notes:
p< 0.1 ** p< 0.05 *** p< 0.01
Standard errors are calculated using the information matrix.

C.3 Model Fit

To evaluate the fit of the model, I simulate the schooling and sector decisions of each individual using

the estimated model parameters and 50 different draws for the error terms. In Figure A4, I graph the

average proportion of individuals (across all replications) that fall into each of the six schooling-sector

combinations. The first panel illustrates the distribution for men, and the second illustrates the distri-

bution for women. Both show that the model performs well in terms of replicating the distribution of

choices in the data. Chi-squared tests cannot reject the equality of the actual and simulated distribu-

tions for either gender, with chi-squared statistics of 0.0004 and 0.0156 (p-values of essentially 1) for

men and women, respectively.
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Figure A4 Actual and Simulated Schooling-Sector Distributions

A. Male

B. Female

Notes: Black bars represent the proportion of individuals in each schooling-sector combination according to
the raw data. Each white bar represents the average proportion of individuals (across 50 simulations) that
fall into the relevant schooling-sector combination, after using model parameters to predict their decisions.
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