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Abstract

We introduce polyglot language models, re-
current neural network models trained to pre-
dict symbol sequences in many different lan-
guages using shared representations of sym-
bols and conditioning on typological infor-
mation about the language to be predicted.
We apply these to the problem of modeling
phone sequences—a domain in which univer-
sal symbol inventories and cross-linguistically
shared feature representations are a natural
fit. Intrinsic evaluation on held-out perplexity,
qualitative analysis of the learned representa-
tions, and extrinsic evaluation in two down-
stream applications that make use of phonetic
features show (i) that polyglot models bet-
ter generalize to held-out data than compara-
ble monolingual models and (ii) that polyglot
phonetic feature representations are of higher
quality than those learned monolingually.

1 Introduction

Nearly all existing language model (LM) architec-
tures are designed to model one language at a time.
This is unsurprising considering the historical im-
portance of count-based models in which every sur-
face form of a word is a separately modeled entity
(English cat and Spanish gato would not likely ben-
efit from sharing counts). However, recent mod-
els that use distributed representations—in partic-
ular models that share representations across lan-
guages (Hermann and Blunsom, 2014; Faruqui and
Dyer, 2014; Huang et al., 2015; Lu et al., 2015, inter
alia)—suggest universal models applicable to mul-
tiple languages are a possibility. This paper takes a

step in this direction.

We introduce polyglot language models: neural
network language models that are trained on and ap-
plied to any number of languages. Our goals with
these models are the following. First, to facilitate
data and parameter sharing, providing more training
resources to languages, which is especially valuable
in low-resource settings. Second, models trained on
diverse languages with diverse linguistic properties
will better be able to learn naturalistic representa-
tions that are less likely to “overfit” to a single lin-
guistic outlier. Finally, polyglot models offer con-
venience in a multilingual world: a single model re-
places dozens of different models.

Exploration of polyglot language models at the
sentence level—the traditional domain of language
modeling—requires dealing with a massive event
space (i.e., the union of words across many lan-
guages). To work in a more tractable domain, we
evaluate our model on phone-based language mod-
eling, the modeling sequences of sounds, rather than
words. We choose this domain since a common
assumption of many theories of phonology is that
all spoken languages construct words from a finite
inventory of phonetic symbols (represented conve-
niently as the elements of the the International Pho-
netic Alphabet; IPA) which are distinguished by
language-universal features (e.g., place and manner
of articulation, voicing status, etc.). Although our
focus is on sound sequences, our solution can be
ported to the semantic/syntactic problem as resulting
from adaptation to constraints on semantic/syntactic
structure.

This paper makes two primary contributions: in



modeling and in applications. In §2, we intro-
duce a novel polyglot neural language model (NLM)
architecture. Despite being trained on multiple
languages, the multilingual model is more effec-
tive (9.5% lower perplexity) than individual mod-
els, and substantially more effective than naive base-
lines (over 25% lower perplexity). Our most effec-
tive polyglot architecture conditions not only on the
identity of the language being predicted in each se-
quence, but also on a vector representation of its
phono-typological properties. In addition to learn-
ing representations of phones as part of the poly-
glot language modeling objective, the model incor-
porates features about linguistic typology to im-
prove generalization performance (§3). Our sec-
ond primary contribution is to show that down-
stream applications are improved by using polyglot-
learned phone representations. We focus on two
tasks: predicting adapted word forms in models of
cross-lingual lexical borrowing and speech synthe-
sis (§4). Our experimental results (§5) show that
in borrowing, we improve over the current state-
of-the-art, and in speech synthesis, our features are
more effective than manually-designed phonetic fea-
tures. Finally, we analyze the phonological content
of learned representations, finding that our polyglot
models discover standard phonological categories
such as length and nasalization, and that these are
grouped correctly across languages with different
phonetic inventories and contrastive features.

2 Model

In this section, we first describe in §2.1 the under-
lying framework of our model—RNNLM—a stan-
dard recurrent neural network based language model
(Mikolov et al., 2010; Sundermeyer et al., 2012).
Then, in §2.2, we define a Polyglot LM—a modi-
fication of RNNLM to incorporate language infor-
mation, both learned and hand-crafted.

Problem definition. In the phonological LM,
phones (sounds) are the basic units. Mapping
from words to phones is defined in pronunciation
dictionaries. For example, “cats” [kæts] is a se-
quence of four phones. Given a prefix of phones
φ1, φ2, . . . , φt−1, the task of the LM is to estimate
the conditional probability of the next phone p(φt |
φ1, φ2, . . . , φt−1).

2.1 RNNLM

In NLMs, a vocabulary V (here, a set of phones
composing all word types in the language) is repre-
sented as a matrix of parameters X ∈ Rd×|V |, with
|V | phone types represented as d-dimensional vec-
tors. X is often denoted as lookup table. Phones in
the input sequence are first converted to phone vec-
tors, where φi is represented by xi by multiplying
the phone indicator (one-hot vector of length |V |)
and the lookup table.

At each time step t, most recent phone prefix vec-
tor1 xt and hidden state ht−1 are transformed to
compute a new hidden representation:

ht = f(xt,ht−1),

where f is a non-linear transformation. In the orig-
inal RNNLMs (Mikolov et al., 2010), the transfor-
mation is such that:

ht = tanh(Whxxt + Whh
ht−1 + bh).

To overcome the notorious problem in recurrent
neural networks of vanishing gradients (Bengio et
al., 1994), following Sundermeyer et al. (2012),
in recurrent layer we use long short-term mem-
ory (LSTM) units (Hochreiter and Schmidhuber,
1997):2

ht = LSTM(xt,ht−1).

Given the hidden sequence ht, the output se-
quence is then computed as follows:

p(φt = i | φ1, . . . , φt−1) =

softmax(Woutht + bout)i,

where softmax(xi) = exi∑
j e

xj ensures a valid proba-

bility distribution over output phones.

1We are reading at each time step the most recent n-gram
context rather than—as is more common in RNNLMs—a sin-
gle phone context. Empirically, this works better for phone se-
quences, and we hypothesize that this lets the learner rely on
direct connections for local phenomena (which are abundant
in phonology) and minimally use the recurrent state to model
longer-range effects.

2For brevity, we omit the equations describing the LSTM
cells; they can be found in (Graves, 2013, eq. 7–11).



2.2 Polyglot LM
We now describe our modifications to RNNLM to
account for multilinguality. The architecture is de-
picted in figure 1. Our task is to estimate the
conditional probability of the next phone given the
preceding phones and the language (`): p(φt |
φ1, . . . , φt−1, `).

In a multilingual NLM, we define a vocabulary
V ∗ to be the union of vocabularies of all training
languages, assuming that all language vocabularies
are mapped to a shared representation (here, IPA).
In addition, we maintain V` with a special symbol
for each language (e.g., φenglish, φarabic). Language
symbol vectors are parameters in the new lookup ta-
ble X` ∈ Rd×|#langs| (e.g., xenglish, xarabic). The
inputs to the Polyglot LM are the phone vectors xt,
the language character vector x`, and the typolog-
ical feature vector constructed externally t`. The
typological feature vector will be discussed in the
following section.

The input layer is passed to the hidden local-
context layer:

ct = Wcxxt + Wclang
xlang + bc.

The local-context vector is then passed to the hidden
LSTM global-context layer, similarly to the previ-
ously described RNNLM:

gt = LSTM(ct,gt−1).

In the next step, the global-context vector gt is
“factored” by the typology of the training language,
to integrate manually-defined language features. To
obtain this, we first project the (potentially high-
dimensional) t` into a low-dimensional vector, and
apply non-linearity. Then, we multiply the gt and
the projected language layer, to obtain a global-
context-language matrix:

f` = tanh(W`t` + b`),

G`
t = gt ⊗ f>` .

Finally, we vectorize the resulting matrix into a
column vector and compute the output sequence as
follows:

p(φt = i | φ1, . . . , φt−1, `) =

softmax(Woutvec(G`
t) + bout)i.
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Figure 1: Architecture of the Polyglot LM.

Model training. Parameters of the models are the
lookup tables X and X`, weight matrices Wi, and
bias vectors bi. Parameter optimization is per-
formed using stochastic updates to minimize the cat-
egorical cross-entropy loss (which is equivalent to
minimizing perplexity and maximizing likelihood):
H(φ, φ̂) = −Σiφ̂i log φi, where φ is predicted and
φ̂ is the gold label.

3 Typological features

Typological information is fed to the model via
vectors of 190 binary typological features, all of
which are phonological (related to sound structure)
in their nature. These feature vectors are derived
from data from the WALS (Dryer and Haspelmath,
2013), PHOIBLE (Moran et al., 2014), and Ethno-
logue (Lewis et al., 2015) typological databases via
extensive post-processing and analysis.3 The fea-
tures primarily concern properties of sound invento-
ries (i.e., the set of phones or phonemes occurring in
a language) and are mostly of one of four types:

1. Single segment represented in an inventory;

3This data resource, which provides standardized
phono-typological information for 2,273 languages,
is available at https://github.com/dmort27/
uriel-phonology/tarball/0.1. It is a subset of the
URIEL database, a comprehensive database of typological
features encoding syntactic and morphological (as well as
phonological) properties of languages. It is available at
http://cs.cmu.edu/~dmortens/uriel.html.



e.g., does language `’s sound inventory include
/g/, a voiced velar stop?

2. Class of segments represented in an inven-
tory; e.g., does language `’s sound inventory
include voiced fricatives like /z/ and /v/?

3. Minimal contrast represented in an inven-
tory; e.g., does language `’s sound inventory
include two sounds that differ only in voicing,
such as /t/ and /d/?

4. Number of sounds representative of a class
that are present in an inventory; e.g., does
language `’s sound inventory include exactly
five vowels?

The motivation and criteria for coding each indi-
vidual feature required extensive linguistic knowl-
edge and analysis. Consider the case of tense vowels
like /i/ and /u/ in “beet” and “boot” in contrast with
lax vowels like /I/ and /U/ in “bit” and “book.” Only
through linguistic analysis does it become evident
that (1) all languages have tense vowels—a feature
based on the presence of tense vowels is uninforma-
tive and that (2) a significant minority of languages
make a distinction between tense and lax vowels—a
feature based on whether languages display a mini-
mal difference of this kind would be more useful.

4 Applications of Phonetic Vectors

Learned continuous word representations—word
vectors—are an important by-product of neural
LMs, and these are used as features in numerous
NLP applications, including chunking (Turian et al.,
2010), part-of-speech tagging (Ling et al., 2015), de-
pendency parsing (Lazaridou et al., 2013; Bansal et
al., 2014; Dyer et al., 2015; Watanabe and Sumita,
2015), named entity recognition (Guo et al., 2014),
and sentiment analysis (Socher et al., 2013; Wang
et al., 2015). We evaluate phone vectors learned
by Polyglot LMs in two downstream applications
that rely on phonology: modeling lexical borrowing
(§4.1) and speech synthesis (§4.2).

4.1 Lexical borrowing
Lexical borrowing is the adoption of words from
another language, that inevitably happens when
speakers of different languages communicate for
a long period of time (Thomason and Kauf-
man, 2001). Borrowed words—also called loan-

words—constitute 10–70% of most language lexi-
cons (Haspelmath, 2009); these are content words
of foreign origin that are adapted in the language
and are not perceived as foreign by language speak-
ers. Computational modeling of cross-lingual trans-
formations of loanwords is effective for inferring
lexical correspondences across languages with lim-
ited parallel data, benefiting applications such as
machine translation (Tsvetkov and Dyer, 2015;
Tsvetkov and Dyer, 2016).

In the process of their nativization in a for-
eign language, loanwords undergo primar-
ily phonological adaptation, namely inser-
tion/deletion/substitution of phones to adapt to the
phonotactic constraints of the recipient language. If
a foreign phone is not present in the recipient lan-
guage, it is usually replaced with its closest native
equivalent—we thus hypothesize that cross-lingual
phonological features learned by the Polyglot LM
can be useful in models of borrowing to quantify
cross-lingual similarities of sounds.

To test this hypothesis, we augment the hand-
engineered models proposed by Tsvetkov and Dyer
(2016) with features from phone vectors learned
by our model. Inputs to the borrowing framework
are loanwords (in Swahili, Romanian, Maltese), and
outputs are their corresponding “donor” words in the
donor language (Arabic, French, Italian, resp.). The
framework is implemented as a cascade of finite-
state transducers with insertion/deletion/substitution
operations on sounds, weighted by high-level con-
ceptual linguistic constraints that are learned in a
supervised manner. Given a loanword, the sys-
tem produces a candidate donor word with lower
ranked violations than other candidates, using the
shortest path algorithm. In the original borrow-
ing model, insertion/deletion/substitution operations
are unweighted. In this work, we integrate tran-
sition weights in the phone substitution transduc-
ers, which are cosine distances between phone vec-
tors learned by our model. Our intuition is that
similar sounds appear in similar contexts, even if
they are not present in the same language (e.g., /sQ/
in Arabic is adapted to /s/ in Swahili). Thus, if
our model effectively captures cross-lingual signals,
similar sounds should have smaller distances in the
vector space, which can improve the shortest path
results. Figure 2 illustrates our modifications to the



original framework.

0

0.3

0.8

weights from phonetic features

0

Figure 2: Distances between phone vectors learned by the

Polyglot LM are integrated as substitution weights in the lexical

borrowing transducers. An English word cat [kæt] is adapted to

its Russian counterpart кот [kot]. The transducer has also an er-

roneous path to кит [kit] ‘whale’. In the original system, both

paths are weighted with the same feature IDENT-IO-V, firing

on vowel substitution. Our modification allows the borrowing

model to identify more plausible paths by weighting substitu-

tion operations.

4.2 Speech synthesis
Speech synthesis is the process of converting text
into speech. It has various applications, such as
screen readers for the visually impaired and hands-
free voice based systems. Text-to-speech (TTS) sys-
tems are also used as part of speech-to-speech trans-
lation systems and spoken dialog systems, such as
personal digital assistants. Natural and intelligible
TTS systems exist for a number of languages in the
world today. However, building TTS systems re-
mains prohibitive for many languages due to the lack
of linguistic resources and data.

The language-specific resources that are tradition-
ally used for building TTS systems in a new lan-
guage are: (1) audio recordings with transcripts; (2)
pronunciation lexicon or letter to sound rules; and
(3) a phone set definition. Standard TTS systems to-
day use phone sets designed by experts. Typically,
these phone sets also contain phonetic features for
each phoneme, which are used as features in models
of the spectrum and prosody. The phonetic features
available in standard TTS systems are multidimen-
sional vectors indicating various properties of each
phoneme, such as whether it is a vowel or consonant,
vowel length and height, place of articulation of a
consonant, etc. Constructing these features by hand
can be labor intensive, and coming up with such fea-
tures automatically may be useful in low-resource
scenarios.

In this work, we replace manually engineered
phonetic features with phone vectors, which are then

used by classification and regression trees for mod-
eling the spectrum. Each phoneme in our phone set
is assigned an automatically constructed phone vec-
tor, and each member of the phone vector is treated
as a phoneme-level feature which is used in place of
the manually engineered phonetic features. While
prior work has explored TTS augmented with acous-
tic features (Watts et al., 2015), to the best of our
knowledge, we are the first to replace manually en-
gineered phonetic features in TTS systems with au-
tomatically constructed phone vectors.

5 Experiments

Our experimental evaluation of our proposed poly-
glot models consists of two parts: (i) an intrinsic
evaluation where phone sequences are modeled with
independent models and (ii) an extrinsic evaluation
of the learned phonetic representations. Before dis-
cussing these results, we provide details of the data
resources we used.

5.1 Resources and experimental setup

Resources. We experiment with the following lan-
guages: Arabic (AR), French (FR), Hindi (HI), Ital-
ian (IT), Maltese (MT), Romanian (RO), Swahili
(SW), Tamil (TA), and Telugu (TE). In our language
modeling experiments, two main sources of data are
pronunciation dictionaries and typological features
described in §3. The dictionaries for AR, FR, HI,
TA, and TE are taken from in-house speech recog-
nition/synthesis systems. For remaining languages,
the dictionaries are automatically constructed using
the Omniglot grapheme-to-IPA conversion rules.4

We use two types of pronunciation dictionaries:
(1) AR, FR, HI, IT, MT, RO, and SW dictionaries used
in experiments with lexical borrowing; and (2) EN,
HI, TA, and TE dictionaries used in experiments with
speech synthesis. The former are mapped to IPA,
with the resulting phone vocabulary size—the num-
ber of distinct phones across IPA dictionaries—of
127 phones. The latter are encoded using the Uni-
Tran universal transliteration resource (Qian et al.,
2010), with a vocabulary of 79 phone types.

From the (word-type) pronunciation dictionaries,
we remove 15% of the words for development, and
a further 10% for testing; the rest of the data is

4http://omniglot.com/writing/



AR FR HI IT MT RO SW

train 1,868/18,485 238/1,851 193/1,536 988/901 114/1,152 387/4,661 659/7,239
dev 366/3,627 47/363 38/302 19/176 22/226 76/916 130/1,422
test 208/2,057 27/207 22/173 11/100 13/128 43/524 73/806

Table 1: Train/dev/test counts for IPA pronunciation dictionaries for words (phone sequences) and phone tokens, in thousands:

#thousands of sequences/# thousands of tokens.

EN HI TA TE

train 101/867 191/1,523 74/780 71/690
dev 20/169 37/300 14/152 14/135
test 11/97 21/171 8/87 8/77

Table 2: Train/dev/test statistics for UniTran pronunciation dic-

tionaries for words (phone sequences) and phone tokens, in

thousands: #thousands of sequences/# thousands of tokens.

used to train the models. In tables 1 and 2 we
list—for both types of pronunciation dictionaries—
train/dev/test data statistics for words (phone se-
quences) and phone tokens. We concatenate each
phone sequence with beginning and end symbols
(<s>, </s>).

Hyperparameters. We used the following net-
work architecture: 100-dimensional phone vectors,
with hidden local-context and LSTM layers of size
100, and hidden language layer of size 20. All
language models were trained using the left con-
text of 3 phones (4-gram LMs). Across all lan-
guage modeling experiments, parameter optimiza-
tion was performed on the dev set using the Adam
algorithm (Kingma and Ba, 2014) with mini-batches
of size 100 to train the models for 5 epochs.

5.2 Intrinsic perplexity evaluation

Perplexity is the standard evaluation measure for
language models, which has been shown to corre-
late strongly with error rates in downstream appli-
cations (Klakow and Peters, 2002). We evaluated
perplexities across several architectures, and several
monolingual and multilingual setups. We kept the
same hyper-parameters across all setups, as detailed
in §5. Perplexities of LMs trained on the two types
of pronunciation dictionaries were evaluated sepa-
rately; table 3 summarizes perplexities of the models
trained on IPA dictionaries, and table 4 summarizes
perplexities of the UniTran LMs.

In columns, we compare three model architec-
tures: baseline denotes the standard RNNLM archi-

tecture described in §2.1; +lang denotes the Poly-
glot LM architecture described in §2.2 with input
language vector but without typological features and
language layer; finally, +typology denotes the full
Polyglot LM architecture. This setup lets us sepa-
rately evaluate the contribution of modified architec-
ture and the contribution of auxiliary set of features
introduced via the language layer.

Test languages are IT in table 3, and HI in table 4.
The rows correspond to different sets of training lan-
guages for the models: monolingual is for training
and testing on the same language; +similar denotes
training on three typologically similar languages: IT,
FR, RO in table 3, and HI, TA, TE in table 4; +dissim-
ilar denotes training on four languages, three similar
and one typologically dissimilar language, to eval-
uate robustness of multilingual systems to diverse
types of data. The final sets of training languages
are IT, FR, RO, HI in table 3, and HI, TA, TE, EN in
table 4.

Perplexity (↓)
training set baseline +lang +typology

monolingual 4.36 – –
+similar 5.73 4.93 4.24 (↓ 26.0%)
+dissimilar 5.88 4.98 4.41 (↓ 25.0%)

Table 3: Perplexity experiments with IT as test language. Train-

ing languages: monolingual: IT; +similar: IT, FR, RO; +dissim-

ilar: IT, FR, RO, HI.

Perplexity (↓)
training set baseline +lang +typology

monolingual 3.70 – –
+similar 4.14 3.78 3.35 (↓ 19.1%)
+dissimilar 4.29 3.82 3.42 (↓ 20.3%)

Table 4: Perplexity experiments with HI as test language.

Training languages: monolingual: HI; +similar: HI, TA, TE;

+dissimilar: HI, TA, TE, EN.

We see several patterns of results. First, polyglot
models require, unsurprisingly, information about



what language they are predicting to obtain good
modeling performance. Second, typological in-
formation is more valuable than letting the model
learn representations of the language along with the
characters. Finally, typology-augmented polyglot
models outperform their monolingual baseline, pro-
viding evidence in support of the hypothesis that
cross-lingual evidence is useful not only for learning
cross-lingual representations and models, but mono-
lingual ones as well.

5.3 Lexical borrowing experiments

We fully reproduced lexical borrowing models de-
scribed in (Tsvetkov and Dyer, 2016) for three lan-
guage pairs: AR–SW, FR–RO, and IT–MT. Train and
test corpora are donor–loanword pairs in the lan-
guage pairs. Corpora statistics are given in table 5
(note that these are extremely small data sets; thus
small numbers of highly informative features a nec-
essary for good generalization). We use the repro-
duced systems as the baselines, and compare these
to the corresponding systems augmented with phone
vectors, as described in §4.1.

AR–SW FR–RO IT–MT

train 417 282 425
test 73 50 75

Table 5: Number of training and test pairs the the borrowing

datasets.

Integrated vectors were obtained from a single
polyglot model with typology, trained on all lan-
guages with IPA dictionaries. For comparison with
the results in table 3, perplexity of the model on
the IT dataset (used for evaluation is §5.2) is 4.16,
even lower than in the model trained on four lan-
guages. To retrain the high-level conceptual lin-
guistic features learned by the borrowing models,
we initialized the augmented systems with feature
weights learned by the baselines, and retrained. Fi-
nal weights were established using cross-validation.
Then, we evaluated the accuracy of the augmented
borrowing systems on the held-out test data.

Accuracies are shown in table 6. We observe im-
provements of up to 5% in accuracies of FR–RO

and IT–MT pairs. Effectiveness of the same polyglot
model trained on multiple languages and integrated
in different downstream systems supports our as-

sumption that the model remains stable and effective
with addition of languages. Our model is less effec-
tive for the AR–SW language pair. We speculate that
the results are worse, because this is a pair of (ty-
pologically) more distant languages; consequently,
the phonological adaptation processes that happen in
loanword assimilation are more complex than mere
substitutions of similar phones that we are targeting
via the integration of phone vectors.

Accuracy (↑)
AR–SW FR–RO IT–MT

baseline 48.4 75.6 83.3
+multilingual 46.9 80.6 87.1

Table 6: Accuracies of the baseline models of lexical borrow-

ing and the models augmented with phone vectors. In all the

experiments, we use vectors from a single Polyglot LM model

trained on AR, SW, FR, RO, IT, MT.

5.4 Speech synthesis experiments

A popular objective metric for measuring the qual-
ity of synthetic speech is the Mel Cepstral Distortion
(MCD) (Hu and Loizou, 2008). The MCD metric
calculates an L2 norm of the Mel Frequency Cep-
stral Coefficients (MFCCs) of natural speech from
a held out test set, and synthetic speech generated
from the same test set. Since this is a distance met-
ric, a lower value of MCD suggests better synthesis.
The MCD is a database-specific metric, but experi-
ments by Kominek et al. (Kominek et al., 2008) have
shown that a decrease in MCD of 0.08 is perceptu-
ally significant, and a decrease of 0.12 is equivalent
to doubling the size of the TTS database. In our ex-
periments, we use MCD to measure the relative im-
provement obtained by our techniques.

We conducted experiments on the IIIT-H Hindi
voice database (Prahallad et al., 2012), a 2 hour
single speaker database recorded by a professional
male speaker. We used the same front end (UniTran)
to build all the Hindi TTS systems, with the only dif-
ference between the systems being the presence or
absence of phonetic features and our vectors. For all
our voice-based experiments, we built CLUSTER-
GEN Statistical Parametric Synthesis voices (Black,
2006) using the Festvox voice building tools (Black
and Lenzo, 2003) and the Festival speech synthesis
engine (Black and Taylor, 1997).



The baseline TTS system was built using no pho-
netic features. We also built a TTS system with stan-
dard hand-crafted phonetic features. Table 7 shows
the MCD for the HI baseline, the standard TTS with
hand-crafted features, and augmented TTS systems
built using monolingual and multilingual phone vec-
tors constructed with Polyglot LMs.

MCD (↓)
baseline 4.58
+monolingual 4.40
+multilingual 4.39
+hand-crafted 4.41

Table 7: MCD for the HI TTS systems. Polyglot LM training

languages: monolingual: HI; +multilingual: HI, TA, TE, EN.

Our multilingual vectors outperform the baseline,
with a significant decrease of 0.19 in MCD. Cru-
cially, TTS systems augmented with the Polyglot
LM phone vectors outperform also the standard TTS
with hand-crafted features. We found that using
both feature sets added no value, suggesting that
learned phone vectors are capturing information that
is equivalent to the hand-engineered vectors.

5.5 Qualitative analysis of vectors
Phone vectors learned by Polyglot LMs are mere se-
quences of real numbers. An interesting question
is whether these vectors capture linguistic (phono-
logical) qualities of phones they are encoding. To
analyze to what extent our vectors capture linguis-
tic properties of phones, we use the QVEC—a tool
to quantify and interpret linguistic content of vec-
tor space models (Tsvetkov et al., 2015). The tool
aligns dimensions in a matrix of learned distributed
representations with dimensions of a hand-crafted
linguistic matrix. Alignments are induced via cor-
relating columns in the distributed and the linguistic
matrices. To analyze the content of the distributed
matrix, annotations from the linguistic matrix are
projected via the maximally-correlated alignments.

We constructed a phonological matrix in which
5,059 rows are IPA phones and 21 columns are
boolean indicators of universal phonological prop-
erties, e.g. consonant, voiced, labial.5 We the pro-
jected annotations from the linguistic matrix and

5This matrix is described in Littell et al. (2016) and is avail-
able at https://github.com/dmort27/panphon/.

manually examined aligned dimensions in the phone
vectors from §5.3 (trained on six languages). In the
maximally-correlated columns—corresponding to
linguistic features long, consonant, nasalized—we
examined phones with highest coefficients. These
were: [5:, U:, i:, O:, E:] for long; [v, ñ,

>
dZ, d, f, j,

>
ts, N] for consonant; and [Õ, Ẽ, Ã, œ̃] for nasalized.
Clearly, the learned representation discover standard
phonological features. Moreover, these top-ranked
sounds are not grouped by a single language, e.g.,
/
>
dZ/ is present in Arabic but not in French, and /ñ, N/

are present in French but not in Arabic. From this
analysis, we conclude that (1) the model discovers
linguistically meaningful phonetic features; (2) the
model induces meaningful related groupings across
languages.

6 Related Work

Multilingual language models. Interpolation of
monolingual LMs is an alternative to obtain a mul-
tilingual model (Harbeck et al., 1997; Weng et
al., 1997). However, interpolated models still re-
quire a trained model per language, and do not
allow parameter sharing at training time. Bilin-
gual language models trained on concatenated cor-
pora were explored mainly in speech recognition
(Ward et al., 1998; Wang et al., 2002; Fügen et
al., 2003). Adaptations have been proposed to ap-
ply language models in bilingual settings in machine
translation (Niehues et al., 2011) and code switching
(Adel et al., 2013). These approaches, however, re-
quire adaptation to every pair of languages, and an
adapted model cannot be applied to more than two
languages.

Independently, Ammar et al. (2016) used a dif-
ferent polyglot architecture for multilingual depen-
dency parsing. This work has also confirmed the
utility of polyglot architectures in leveraging mul-
tilinguality.

Multimodal neural language models. Multi-
modal language modeling is integrating image/video
modalities in text LMs. Our work is inspired by the
neural multimodal LMs (Kiros and Salakhutdinov,
2013; Kiros et al., 2015), which defined language
models conditional on visual contexts, although we
use a different language model architecture (recur-
rent vs. log-bilinear) and a different approach to gat-



ing modality.

7 Conclusion

We presented a novel multilingual language model
architecture. The model obtains substantial gains
in perplexity, and improves downstream text and
speech applications. Although we focus on phonol-
ogy, our approach is general, and can be applied
in problems that integrate divergent modalities, e.g.,
topic modeling, and multilingual tagging and pars-
ing.
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nockỳ, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. In Proc. Inter-
speech, pages 1045–1048.

Steven Moran, Daniel McCloy, and Richard Wright, ed-
itors. 2014. PHOIBLE Online. Max Planck In-
stitute for Evolutionary Anthropology. http://
phoible.org/.

Jan Niehues, Teresa Herrmann, Stephan Vogel, and Alex
Waibel. 2011. Wider context by using bilingual lan-
guage models in machine translation. In Proc. WMT,
pages 198–206.

Kishore Prahallad, E. Naresh Kumar, Venkatesh Keri,
S. Rajendran, and Alan W Black. 2012. The IIIT-H
Indic speech databases. In Proc. Interspeech.

Ting Qian, Kristy Hollingshead, Su-youn Yoon, Kyoung-
young Kim, Richard Sproat, and Malta LREC. 2010.
A Python toolkit for universal transliteration. In Proc.
LREC.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Y. Ng, and Christo-
pher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proc.
EMNLP.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. LSTM neural networks for language modeling.
In Proc. Interspeech.

Sarah Grey Thomason and Terrence Kaufman. 2001.
Language contact. Edinburgh University Press Edin-
burgh.

Yulia Tsvetkov and Chris Dyer. 2015. Lexicon stratifica-
tion for translating out-of-vocabulary words. In Proc.
ACL, pages 125–131.

Yulia Tsvetkov and Chris Dyer. 2016. Cross-lingual
bridges with models of lexical borrowing. JAIR,
55:63–93.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guil-
laume Lample, and Chris Dyer. 2015. Evalua-
tion of word vector representations by subspace align-
ment. In Proc. EMNLP. https://github.com/
ytsvetko/qvec.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In Proc. ACL.

Zhirong Wang, Umut Topkara, Tanja Schultz, and Alex
Waibel. 2002. Towards universal speech recognition.
In Proc. ICMI, page 247.

Xin Wang, Yuanchao Liu, Chengjie Sun, Baoxun Wang,
and Xiaolong Wang. 2015. Predicting polarities
of tweets by composing word embeddings with long
short-term memory. In Proc. ACL, pages 1343–1353.

Todd Ward, Salim Roukos, Chalapathy Neti, Jerome
Gros, Mark Epstein, and Satya Dharanipragada. 1998.
Towards speech understanding across multiple lan-
guages. In Proc. ICSLP.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based neural constituent parsing. In Proc. ACL.

Oliver Watts, Zhizheng Wu, and Simon King. 2015.
Sentence-level control vectors for deep neural network
speech synthesis. In Proc. Interspeech.

Fuliang Weng, Harry Bratt, Leonardo Neumeyer, and An-
dreas Stolcke. 1997. A study of multilingual speech
recognition. In Proc. EUROSPEECH, pages 359–362.


