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ABSTRACT

The Polyhedral Hull Online Compositing System is a prototype system which

merges live dynamic video and three dimensional synthetic imagery at interactive

frame-rates. This system captures video from convergent cameras and performs

geometric reconstruction to generate a three dimensional mesh. Utilizing the back-

ground geometry which is generated by an external renderer and the reconstructed

mesh, this system adds shadows and reflections to the final composite image. The

combination creates a perceptual link between the two otherwise disjoint environ-

ments. The computed mesh reconstruction allows this system to be view inde-

pendent, which is a major advantage over previous state-of-the-art systems. By

using modern graphics hardware and a distributed computing model to capture

and process live video data with synthetic three dimensional imagery into final

composites, we provide an economic alternative to standard commercial systems.

The texturing and reflection processes, two key parts of the Polyhedral Hull

Online Construction System, are described in detail in this thesis. The texturing

processes explore the problem of providing a visually plausible, view-independent

representation with only four video cameras capturing live data. The reflection

process calculates the dominant specular highlight of the live object in order to

render visually convincing results. These processes add degrees of realism so that

final composite image is a visually plausible merger of real and synthetic imagery.
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Chapter 1

Introduction

The entertainment industry’s usage of computer generated efffects has increased

dramatically in recent years. A particularly popular technique is to merge live

and synthetic imagery to replace traditional filmed footage. A computer modeled

environment, a “virtual set” eliminates the complexities of filming on location or

the difficulty of constructing elaborate sets. Furthermore, computers allow greater

flexibility since the virtual environments are not restriced to real life constraints.

Unfortunately current virtual set technology is expensive and restrictive in the

sense that most systems can not simulate global illumination effects. Our sys-

tem attempts to overcome these constraints using more economical off-the-shelf

components.

The prevalent system for single camera, two-dimensional, real and synthetic

compositing is chroma-keying. This process, also known as green-screening, seg-

ments an object in the foreground from the background so that it can be stitched

to a complex synthetic background to produce a final composite [Sel03]. The live

images in these scenes are simple two-dimensional polygons with video textures

mapped onto them. These virtual set systems have limited ability to accommo-

date shadows and reflections.

The goal of the Polyhedral Hull Online Construction System is to utilize three-

dimensional information to merge live video with synthetic imagery such that a

visually plausible composite can be generated in realtime. Reconstructing a three-

dimensional object from a set of planar images and adding texture, shadows, and

reflections to this object is both time consuming and mathematically complex.

1



2

However, the primary advantage of a three-dimensional reconstruction process is

that traditional computer graphics processes, such as ray-tracing can be used. Pre-

vious work either generated a two-dimensional object in realtime or reconstructed

a three-dimensional object after many minutes of computational work. The Poly-

hedral Online Construction System captures and reconstructs a three-dimensional

representation of a live actor or object and then renders it in a synthetic environ-

ment, adding textures, shadows, and reflections at an interactive frame rate.

The system is implemented in stages as shown in Figure 1.1. First, the live

object is captured by employing a set of video cameras that view it from different

angles. Second, a silhouette is extracted from each individual video image and

blurred to remove aliasing. After the contours are found for each image, by apply-

ing the rules of epipolar geometry, a polygonal mesh is reconstructed. A texture

is then generated for the mesh with information from each of the video cameras.

Finally, the compositing step merges the reconstructed and textured mesh with

the synthetic image and adds global illumination effects (shadows and reflections)

between the two portions of the composite. The addition of these shadows and

reflections creates a more coherent image that is both visually pleasing and believ-

able.

The Polyhedral Hull Online Construction System leverages the properties of

a three-dimensionional mesh to overcome pitfalls of two-dimensional techniques.

While there are other three-dimensional systems, such as the image based visual

hulls work [MBM01a], they are either offline or do not offer as much functionality as

our system. We chose to build a multi-stage pipeline consisting of image capture,

image segmentation, mesh reconstruction, texturing, shadowing, and reflection

stages to optimize our system for performance. This pipeline eliminates some of
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Figure 1.1: This diagram depicts each stage of the image processing, geometric

reconstruction and compositing process.
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the bottlenecks of previous systems by utilizing network communication to enable

us to process the necessary data in realtime.

The Polyhedral Hull Online Construction System improves lighting, reconstruc-

tion, and efficiency to achieve visually plausible images at interactive frame rates.

This allows the end-user to navigate around the composited environment and view

both the real and synthetic objects together. Each component of the system adds

realism to the final product. First, the visual hull is reconstructed, which produces

a three-dimensional mesh to interact with the other objects in the scene. Second,

during the texturing process, the mesh is overlaid with information from the group

of video cameras used for reconstruction, giving it a pose. Finally, during the

global illumination effects stages, shadows and reflections are added to unite the

real and synthetic portions, creating a single image in which all the elements of the

system interact with one another. The system has two distince advantages: First,

the three-dimensional representation, the polyhedral hull, is used to produce more

believable shadows. Second, because multiple cameras are used, the final images

are not restricted to a single viewpoint.

This thesis focuses on the texturing process and the addition of reflections to the

synthetic environment. The remainder of the thesis is organized as follows. Chap-

ter Two is a discussion of previous related work. Chapter Three describes the full

Polyhedral Hull Online Compositing System. Chapter Four details the challenges,

shortcomings and solutions of the texturing process in this system. Chapter Five

explores the reflection generation and composition in our final rendering. Chapter

Six concludes with a discussion of future work.



Chapter 2

Related Work

This chapter will review the work that is either motivational or has relevant signifi-

cance for our research. Motivationally speaking, there are a number of papers that

present new work, offering clear, improved results over previous systems, and rein-

forcing the first principles of Computer Vision and geometric reconstruction. Most

of the motivational work comes from the Computer Vision community, in which

geometric reconstruction is the core focus of their research. From a standpoint of

immediate relevance, we look at image-based visual hulls, view-dependent texture

mapping, and related works from recent Siggraph and EuroGraphics proceedings.

2.1 Motivation and Concepts

Our goal is to improve the visual hull reconstruction system, which is a contour-

based reconstruction engine. A visual hull is a three dimensional bounding volume

created by clipping projections of multiple two dimensional silhouettes against one

another. Overall, the system should be able to reconstruct a watertight mesh of

significantly high quality, so that it can be composited in a synthetic, globally

illuminated scene in a seamless manner. These high standards have led us to

carefully study the work of high-power offline computer vision algorithms.

2.2 Computer Vision Techniques

The Computer Vision community is a large, active branch of computer science

studies, which addresses the inverse of the computer graphics problem. In com-

puter graphics, we are primarily concerned with generating an image, given the

5
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pose of a camera, as well as the geometry, lighting and materials of a scene. In

Computer Vision, there is a notion to take an image as input, and to determine the

properties (generally the pose of a camera and the object locations or geometry)

of both the scene and the camera that generated it. This work is imperative to

our research, since we are utilizing images for geometric reconstruction and com-

positing them into a typical computer graphics scene. Our work is a natural cross

product of these two different bodies of work, of which we generally take a com-

puter graphics slanted approach, yet draw on many first principles adapted from

computer vision. The most critical bodies of relevant work are included below.

2.2.1 Epipolar Geometry

Epipolar geometry is the geometric relationship between two cameras. In our

example, these camera’s are labeled C1 and C2. The epipole of a camera is the

camera’s center, commonly referred to as the pinhole, as viewed from the other

camera. In the diagram below, the epipole labeled C ′

1s epipole is the camera center

of C1. An epipolar line is a line through the epipole of one camera and a point on

its viewing plane. A stereo-pair is two images of a scene, taken under the same

conditions, where the only difference is a change of camera position. In simple

stereo vision these epipolar lines run horizontally across imaging planes; due to

the position of the stereo pair of images in the same plane, the epipoles of each

camera are at infinity.

2.2.2 Stereopsis

Stereo matching is a quintessential problem in computer vision. It has been con-

sidered a hard and largely-open problem for many years. Numerous researchers
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Camera 1 Focal Point

Camera 2 Focal Point

C1’s Epipole

Epipolar

Line

Point in Space

Image Plane 1

Image Plane 2

Image of Point

Figure 2.1: An illustration of epipolar geometry. The image point viewed from

the camera1 can be located anywhere along the epipolar line shown in camera2.

Epipole1 which is of camera1 can be seen in the image plane of the camera2.

have dedicated a great deal of time to understanding it. Essential to the stereo

matching problem is the concept of disparity. Disparity is defined as the change

in location of a pixel along an epipolar line. The problem can be stated as “given

a pair of images of the same scene, I1 and I2, determine the disparity of each

pixel in I1 (change in location) relative to I2, along an epipolar line”. Once a

disparity map is established between cameras, depth of objects in images becomes
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Figure 2.2: On the left, a typical Marr-Poggio stereo pair. On the right a modern

day stereo pair provided by Takeo Kanade of Carnegie Mellon University.

a trivial calculation. However, vital to note that when working in a discretized en-

vironment, the precision of computed depth in these images is directly related to

the physical distance between the cameras. The linear distance between the cam-

era centers is referred to as the baseline of a stereo pair. The trade-off in stereo

matching is that to have a high precision computed depth there needs to be a large

baseline; however, as the baseline grows the correspondences are more difficult to

determine. A correspondence is the matching pixel in one image with the other.

This obviously motivates work to have an n way solution (using multiple input

images) for multi-view stereo, so that a much greater and more accurate range of

object location data can be obtained from images. Processing of stereo pairs was

originally pioneered by Poggio [MP76] in 1976. It was first developed to be used

on black and white noise images and therefore could be based on the assumptions

of: continuity, compatibility, uniqueness and epipolar lines. Continuity meant that

the disparity changed slow enough to guarantee that an adjacent disparity was a

good first guess. Compatibility was an assumption of no illumination difference; in

these binary images the black matched black and white matched white. Unique-

ness inferred that there was usually, if not always, a unique match between the

elements. Finally, the epipolar constraint assumed that all matches were along the
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epipolar lines of I1 and I2. This iterative method has changed over time to accept

more diverse sets of input images and to utilize different assumptions.

Takeo Kanade’s work [OK93] offers an n way solution for stereo, which he

bases on the assumptions of image intensities. An n way solution involves using

two or more images to reconstruct three-dimensional information. This work’s

assumption is that all images have the same pixel intensities and therefore can be

compared in this way, while still assuming the epipolar constraint. The overhead

and processing time of this work is very large, due to the number of degrees of

freedom allowed by multiple views. Previous works relied on comparing intensities

of pixels. Follow-up work suggested that the intensities or other properties of the

images be stated in terms of energy. Given a correct energy function, the solution

should simply be the minimum of the energy function.

These techniques for solving stereo matching often relied on simulated annealing

to find the minimum of this function. Annealing methods are iterative, step-wise

gradient-descent functions, which often suffer the problem of being caught in a

local minima, since this energy function is non-linear. Through repetition a “best

minimum” can be found, yet there is no guarantee that the best minimization is

actually the correct one. The computer vision group at Cornell University under

the direction of Ramin Zabih has produced state of the art work on this subject

[YB01] [KZ01] [DSZ00]. The energy minimization techniques described and im-

plemented by this group provide vastly superior results to the other methods, and

accelerate solution time. They use the idea of graph-cuts, known as the min-cut

problem in computer science. The min-cut problem comes from algorithmic work

on graphs. In a graph, a set of vertices and the edges between them, it can be

useful to know the minimum number of edges that need to be removed to seg-
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ment the graph into two graphs. This is known as the min-cut. Building off the

original Floyd-Fulkerson Min-Cut Max-Flow Algorithm, Zabih’s group developed

an algorithm for multi-way cuts which segments a graph into multiple graphs.

This multi-way cut algorithm can be employed to definitively solve the energy-

minimization problem; it does this in less time than simulated annealing (or other

methods). Figure 2.3 shows a comparision of these two techniques. Furthermore,

it provides a guarantee of validity which other methods cannot. However, all these

methods are still largely offline and take on the order of minutes to hours to run,

which is inadequate for our purposes. There is recent work from The University of

North Carolina [YP03] that provides promising images from real-time stereopsis

using commodity graphics hardware, although they are still too rudimentary for

our work. In the near future we will hopefully see a fully-functional, real-time

stereo system with the potential to be integrated into larger systems.

2.2.3 Structure from Motion

The “structure from motion” problem can be formally stated as follows: given

a set P of feature points in a set F of two-dimensional frames where each point

is identified, track the object through new frames.[Ull79] From a solution to this

problem it is then possible to recover the camera pose and the three-dimensional

structure of the scene. These processes have been studied in computer vision for

both orthographic and perspective projection viewing.[LH81] [TT94]. This work

is heavily constrained and often assumes non-deforming rigid bodies, in which all

tracked points can be seen in all captured frames. This work is a predecessor to

the markered tracking methods used in the special effects industry, which will be

covered in a subsequent section.
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Figure 2.3: This figure shows the results of two different vision algorithms

simulated-annealing and multi-way cuts in A and B respectively. The orginal two

images used as input are shown in C and D. The hand-calculated (using physical

measuring equipment) ground truth is shown in E. The coloration of the black and

white results indicates the depths of each pixel. Notice that in E the depths are

consistent and non-infinite (black). While it is clear that the min-cut algorithm is

better than simulated annealing in this case it still does not get a perfect solution,

especially along the edges of an object.

2.2.4 Voxel Coloring

Steven Seitz’s work [SD99] [SK02] on Voxel Coloring offers a great deal of motiva-

tion to our work. It is closely related to stereo matching and structure from motion

work and relies on much of the established knowledge from these areas. The Voxel

Coloring system considers the problem of reconstructing a photo-realistic 3D model

from images obtained from widely distributed viewpoints. They use an offline pro-

cess to do this; it provides photo integrity; meaning their model and the input
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images match when viewed from the input viewpoints. Furthermore, it proffers

broad viewport coverage from an input set of images over the entire viewing space.

The results are achieved by solving the color reconstruction problem, which they

formulate in their papers. The broad overview of their technique is to discretize a

scene into a set of voxels, then traverse them in a back-to-front order, looking for

color correspondence in the input images. This technique provides good results

for arbitrary viewing of a reconstructed object. Although offline and only sup-

porting Lambertian-like objects, the high-quality results motivate studying their

techniques.

2.3 Immediately Relevant Work

Presented here are the systems and papers that we utilized as a basis for our

current implementation. In our discussion of stereopsis we attempted to define a

standard for quality to which we will compare our results. However most solutions

benefit from a large amount of processing time and we have constrained ourselves

to work in real-time. We desire both quality and timeliness and this has led us to

explore different concepts.

2.3.1 Visual Hulls

Laurentini [Lau94] describes a visual hull as “a geometric tool to relate the 3D

shape of a concave object to its silhouettes or shadows.” More formally the def-

inition can be stated as “The Visual Hull of an Object S is the maximal object

silhouette-equivalent to S, i.e., which can be substituted for S without affecting

any silhouette.” The visual hull is a tighter fit to an object than the convex hull

of an object, yet still guarantees that the original object lies within its extents.
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Figure 2.4: This figure depicts the intersection of four silhouette cones that were

used to generate a visual hull of a teapot.

Figure 2.4 shows an example of a visual hull of a teapot.

2.3.2 Image Based Visual Hulls and Subsequent Work

The first work in the space of Image Based Visual Hulls arose in 2001 from the

graphics group at Massachusetts Institute of Technology [MBR+00] [MBM01b]

[Mat01]. This work is utilized as a starting point for a cluster of subsequent work

at other institutions, including our own work. The first iteration of MIT’s work

[MBR+00] [Mat01] was not a completed reconstruction system, but in fact one

that built a single image for each view based on the visual hull.
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The Image Based Visual Hulls system captures video input from a set of four

cameras and then uses an algorithm to generate the user-viewport based silhouette

and a view-dependent texture map to composite into a synthetic scene. This

system does not produce a mesh of a visual hull. Rather it produces a re-projected

photograph; in essence this was a two and a half dimension solution. It provides one

improvement over Jeremy Selan’s [Sel03] work at Cornell; this is arbitrary viewing.

Selan’s system only allowed for live video that was being merged to be viewed

from a fixed viewpoint. Matusik’s work leveraged a multi-camera setup to permit

viewing of the live video from any arbitrary position. While this improvement

offers a novel views of the input scene without having to move the cameras; it

offers no more photorealism than a traditional green screening application.

In 2002, the Polyhedral Visual Hulls work [MBM01b] implemented a system

based on their previous work, which yields a full 3-dimensional mesh. This was the

first fully real-time system to composite three-dimensional objects into synthetic

scenes. The clear advantage of having a mesh to represent the captured object is

that this work can be easily discretized into two parts: The first part is the image

acquisition and generation of a visual hull; the second part is the more traditional

computer graphics problem of scene generation given geometry, materials, and

lighting.

Matusik’s work contributed significantly to the community and has been uti-

lized by a number of other very closely related projects. Followup works have

appeared from Max-Planck [MLS03] and University of North Carolina [PSP03], as

well as other research institutions.
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Figure 2.5: Real objects illuminated by the Eucalyptus Grove and Grace Cathedral

lighting environments captured by Paul Debevec using the Image Based Lighting

Techniques. [Deb02]

2.3.3 Image-based Lighting

Paul Debevec’s work [Deb98] [DWT+02] [Deb02] [DTM96] offers a glimpse at the

possibilities provided by the utilization of modern computer graphics techniques

and hardware while allowing offline processing. Image based lighting [Deb02] incor-

porates the idea of capturing the complete irradiant light scene at a given point.

This work provides an extremely accurate construction of light placement in a

scene. It will be critical to the lighting matching step that is covered during the

forthcoming system setup chapter. The results that are shown using this method

are far superior to other real objects illuminated by captured environments.

In 2002, Debevec’s Lighting Reproduction Approach [DWT+02] went a step

further in matching the lighting of real scenes on a light stage. He clearly identified

the important imaging system properties that provide realism when compositing

scenes: brightness response curves, color balance, sharpness, lens flare and noise.

He also identified the important lighting elements that need a perceptual match,
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these being similar shading, highlights, direct illumination and shadows.

His earliest work [DTM96] provided a great example of a usable, yet minimally

taxing, user-driven geometric reconstruction system. This system aimed to render

realistic architectural models and was informally known as Façade. This system

was very useful for static scenes; however, since it required input from static im-

agery it did not support dynamic movement.

2.3.4 Video Flashlights

The Video Flashlights work by Sawhney, et. Al. [SAK+02] provides improved tex-

ture functionality over Matusik’s Polyhedral Visual Hulls System. It harnesses the

power of commodity graphics hardware to blend and overlay input from different

camera scenes, so that there is a seamless transition between otherwise discontin-

uous imaging. Their techniques are able to matte textures onto three-dimensional

objects, which are more realistic than the direct methods used in previous works.

Their work is incorporated into the final system that we have produced, in order

to reap the benefits of our graphics hardware.

2.4 Summary

This chapter reviewed the previous work related to producing composite images

from synthetic and real imagery. The motivational work comes mainly from the

Computer Vision community which uses mathematically time-intensive techniques

to produce the best quality three-dimensional reconstructions. The Computer

Graphics community’s work provides functional examples of systems that attempt

to accomplish similar goals.



Chapter 3

System Layout

The goal of our system is to merge live objects captured using video with synthetic

imagery, in real-time. We create a high level pipeline capable of delivering, theo-

retically, 15 frames per second. This system provides the user with an interactive

experience as they use our software.

Given the high level of computational complexity involved with geometric re-

construction, along with the goal of real-time results, the performance of our system

is a high priority. Throughout this chapter, we focus on the design and implemen-

tation of our hardware and software system. We describe the difficulties which

arise in trying to engineer a system that both captures geometry interactively and

also merges that geometry in a believable manner with a synthetic scene. We

justify the design choices that were made to assist in the future development of

similar systems.

3.1 System Overview

The chain of events that our system performs can be decomposed into eight broad

stages, each of which has its own set of design difficulties that need to be ad-

dressed. A graphical illustration of the segmented stages is shown in Figure 3.1.

In Figure 3.2 we list some of the challenges associated with each of the respec-

tive stages. In stage one, each of the video cameras in our system must capture

an image of the physical object that we want composited. Then, in stage two,

the frames must be segmented into their foreground and background components.

The next step, stage three, is to blur the segmented images. This removes small

17
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holes and smooths out the noise along the foreground/background boundaries. In

stage four the segmented image is found using a a contour finding algorithm. The

process extracts the foreground silhouettes, which, later serve as input to the hull

reconstruction algorithm. The frame and contour data is passed across the net-

work from the client machines to the central server in stage five. This data is used

in stage six to construct the polyhedral hull. In stage seven, the hull is textured

with the images captured from the cameras. Finally in stage eight, the composite

of the virtual environment and this live video is rendered to the screen. Using

this approach, we can implement effects such as shadows and surface reflections

between the real object and the virtual background.

The remainder of this chapter will be organized as follows. First, in Section 3.2,

we will discuss our hardware setup, as well as the computing paradigm used within

our system. Then we will briefly describe each of the major system modules ref-

erenced in Figure 3.1, with the exception of step six, the geometric reconstruction

algorithm, which is covered in detail in Henry Letteron’s thesis[Let04].

3.2 Hardware Setup

In this section, we describe the hardware infrastructure of which our system is

comprised. Further, we will discuss the client-server paradigm as selected for our

computing model, and how this architecture has affected our system. Figure 3.3

shows the hardware configuration of our system, and Figure 3.4 shows both the

utilized and theoretical maximum bandwidth between each component.
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Figure 3.1: The diagram above depicts each stage of the image processing, geo-

metric reconstruction and compositing process.
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Figure 3.2: The diagram above displays some of the challenges associated with

each stage in the algorithm.
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Figure 3.3: A diagram of the hardware configuration in our system.

3.2.1 Computer and Camera Specifications

We use four Sony DFW-X700 cameras to capture the foreground object. Figure

3.5 shows one of our cameras. The cameras have a half-inch CCD, and provide

progressive scan output at 15 frames per second up to a resolution of 1024x768.

Each camera uses standard c-mount lenses, coupled with 7.5mm fixed focal length

lenses. At this focal length, we are able to capture a subject of approximately six

feet in height from a distance of four meters. Each camera is linked to a separate

client computer using the IEEE 1394 (FireWire) interface, supporting transfer

speeds of up to 400Mbps. At 15 frames per second and a resolution of 1024x768

(three channel output), the maximum required bandwidth is 33.75 MB/sec, well
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Figure 3.4: A diagram of the utilized and theoretical data transfer rates in our

system.

below the upper limit of 50 MB/sec, even in the most demanding scenario. Each

camera has an external trigger which allows for capture synchronization.

As previously mentioned, each camera is tethered to a separate client com-

puter that performs the necessary image processing operations on the captured

video frames. The computers are single processor 3.0 Ghz Pentium 4 Machines

with 512MB of RAM and Gigabit Ethernet cards. These machines perform one

of the parallelizable steps in our processing pipeline. Specifically they extract the

foreground object from the image and find the line segments which define its sil-

houette. These tasks are highly computational in nature, thus making the CPU
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Figure 3.5: A DFW-X700 camera and the trigger circuit box.

the most critical component.

The client computers are networked to the server using Cat 5E crossover cables

which support Gigabit transfer speeds. The server has two two-port Intel 1000MT

Gigabit server cards which allow the four client machines to each have a direct

connection. The central server consists of dual 3.2 Ghz Pentium 4 Processors with

2GB of shared RAM and an NVIDIA Quaddro FX3000 graphics card. The server is

responsible for the hull reconstruction, as well as the final hardware rendering and

compositing, including shadow generation using advanced vertex and fragment

shaders. In order to perform these tasks interactively, the server is required to

have a high performance graphics board in addition to raw processing power. A

representative image of our hardware configuration can be seen in Figure 3.6.
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Figure 3.6: The configuration of our system in one of the rooms we tested in.

This diagram intends to show each of the individual components as well as the

entire system.

3.2.2 Client-Server Model

Many of the fundamental algorithms associated with geometric reconstruction and

image synthesis are highly computational in nature. The goal of our project is to

integrate these two areas into one encompassing system which is able to maintain

interactive frame rates. This requires that we collimate as much of the work as pos-

sible. In order to achieve this parallelization, we implement a client-server model

that distributes the workload across a networked array of computers. Each of the

video cameras is attached to a separate client computer that performs the neces-
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sary image segmentation and contour finding operations. After this processing is

performed, the client computers send the silhouette data and video textures across

the network to the server. The geometric reconstruction occurs on the server.

At the same time as the client computers are sampling the cameras and matting

out the foreground object from the greenscreen, the Real Time Global Illumina-

tion (RTGI) system is running on a separate cluster of computers for background

image generation, and the server is generating the polyhedral model from the pre-

vious frame. By pipelining these three disparate actions, we attempt to maximize

the throughput in our system, and minimize the time spent waiting for other pro-

cesses to complete their task. Since this is a pipelined system there is an associated

startup cost in processing, which results in a one frame latency.

3.3 Image Capture

As shown in Figure 3.1, the first step in our system is to capture an image of

the foreground object from each of the video cameras. This section covers camera

calibration, the synchronization of the cameras, and the control of the cameras’

internal and external parameters to achieve the best image quality and cleanest

foreground segmentation. We also describe the techniques used to maintain a

consistent lighting environment for capturing foreground geometry.

3.3.1 Camera Calibration

A fundamental requirement of the reconstruction algorithm is knowing both the

position and the orientation of the cameras in relation to each other within a

globally defined reference frame. These are known as the extrinsic parameters of

the camera. The intrinsic parameters, namely the principal point and focal length,
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must be discovered through calibration as well. The principal point is the location

where the principal axis intersects the image plane. The principal axis is the line

passing through the camera center that is perpendicular to the image plane. To

calibrate the cameras, we used the “Camera Calibration Toolbox for MATLAB”1.

This is illustrated in Figure 3.7 which shows both our captured checkerboard

images and an example of the Matlab routines we use to process them. To begin the

calibration process, we placed a checkerboard pattern within the scene such that

each of the four cameras had a clear view of the entire surface. We then captured

a frame from each camera, and used those as input to the calibration routine. The

calibration procedure, which uses Zhengyou Zhang’s technique [Zha00], returns

the grid reference frame with respect to each of the four cameras’ reference frames.

Since we desire the relationship that exists between the cameras, we convert each

camera frame to being dependent on the grid’s frame, so that the grid contains

our global orthonormal basis. More details on these procedures can be found in

the camera calibration section of the appendix, Appendix A.

3.3.2 Trigger Synchronization

It is imperative that each of the input images used for hull generation is captured

at the exact same instant in time because the reconstruction algorithm operates

by taking the intersection of the “silhouette cones” (Figure 2.4). A silhouette cone

is defined by an apex, which is located at the camera center, and the extrusion

of the polygonal object silhouette away from the camera center to infinity. If the

images are captured at even slightly varying instances in time, then the silhouettes

1The Camera Calibration Toolbox for MATLAB can be downloaded at the
URL: http://www.vision.caltech.edu/bouguetj/calib doc/
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Figure 3.7: An example screenshot of the MATLAB camera calibration toolbox

interface.

could potentially represent very different poses of the foreground object (assuming

the object is moving). The intersection of these extruded silhouette cones would

not accurately reproduce the original model at any of the different time steps, but

would most likely appear as indiscernible noise, containing geometry only where

the poses happened to overlap in space. To prevent this degenerate scenario from

occurring, the server is responsible for triggering each of the cameras simultane-

ously in the main loop of the program, ensuring that the sampling is consistent

at each time step. The server drives the trigger circuit by outputting signals on

the serial port. For implementation details concerning our use of the serial port as
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well as our trigger circuit design, refer to Appendix B.

3.3.3 Use of DirectShow for Camera Control

In order to establish software communication with the video cameras, we took

advantage of the DirectShow interface, a component of Microsoft’s DirectX 9 mul-

timedia suite. DirectShow allows for the configuration of a filter graph to manage

the flow of data from the camera capture device to the user’s program. DirectShow

also provides an interface for setting such camera parameters as white balance, ex-

posure, video capture format, and the active state of the external trigger. Our

camera control software, which runs on each of the four client computers, uses the

DirectShow interface to adjust the color balance of the incoming image in order to

achieve optimal greenscreen results.

3.3.4 Whitebalance Control

To improve the results of the image segmentation process the whitebalance on the

camera should be adjusted. By slightly strengthening the red and blue channels

it is possible to remove the excess color bleeding from the greenscreen that occurs

on light-colored surfaces. Alternately, by decreasing the red and blue channels

it is possible to compensate for shadows on the backdrop which leave parts of

the greenscreen marked as foreground. Decreasing the red and blue channels will

make the greenscreen surface appear more green, and thus can lead to less noise and

better results. Figure 3.8 illustrates these effects. Making this trade-off in color

balance is a subtle art, as it is important that the captured image appear as natural

as possible while remaining easy to segment cleanly. To maintain consistency,

the program saves a configuration file that documents the last used whitebalance
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Figure 3.8: Examples of color-balance adjustment. Clockwise from the upper-

left we see examples of common adjustments and their effects on the scene. Each

picture illustrates the effect which it is labeled.

values. These settings are then re-loaded the next time the program is started.

Similarly, values for the matte strength, blur threshold, and other camera-related

parameters are also stored and loaded.

3.3.5 Scene Lighting

The lighting of the foreground object and the greenscreen is an important factor

in determining the quality of the image segmentation and the resulting silhouette

contours. Ideally the greenscreen would be placed at infinity, so that there would
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be no interactions between it and the foreground subject. Allowing the subject

to be too close to the greenscreen often results in color bleeding, where parts of

the foreground object, most notable the edges, take on a greenish tint due to light

that is first been reflected off the screen and then bounced off the subject. Another

situation that can lead to problems is when the foreground object casts shadows

on to the surface of the greenscreen. This can be problematic because the darker

shadowed regions of the background are often misinterpreted as foreground. The

way we addressed these issues was to place several 500 watt halogen lamps in

a semi-circle configuration around the object acquisition area. Our goal was to

simulate a diffuse environment where light was coming from all directions, and

thus eliminate any hard shadows.

3.4 Image Segmentation

After an image has been captured from each of the video cameras, the next step is

to segment the foreground from the background. In this section we will cover the

initial foreground matting, as well as the subsequent Gaussian filtering operation

that we use to eliminate high frequency noise.

3.4.1 Foreground Matting

After the cameras have been triggered and a frame returned, the next step is to

segment the image into its foreground and background components. We borrow

the method employed by Selan [Sel03] for performing this operation. If a pixel’s

green channel value is higher than the maximum of the red and blue channels by

a preset margin then the pixel is marked background. This amount, termed the

“matte strength”, is a variable that can be adjusted in the software. If, conversely,
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Figure 3.9: The figure above shows the greenscreen that was used for segmenting

out foreground geometry.

the green channel is not significantly larger than both the red and blue channels, or

if the pixel is extremely bright, with a combined channel value over some predefined

threshold, then it is marked as foreground. When performing segmentation, we are

only concerned with the region of the image that corresponds to the greenscreen

(a subset of the entire image). The bounding box which defines this region of

interest, or ROI, can be set in our software. Any pixel which falls outside this area

is automatically marked as background and set to black in the segmented image.

Figure 3.9 shows the greenscreen backdrop for our image acquisition area.

3.4.2 Gaussian Blurring and Thresholding

The segmented foreground image is often plagued by noise, due to the imprecise

nature of the scene lighting and the image sensing device, as well as the non-
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homogeneous color of the greenscreen. As discussed in Section 3.3.5, areas of the

foreground that suffer from heavy color bleeding often have a greenish tint, and

are therefore erroneously marked as background. Conversely, areas of the back-

ground that receive heavy shadowing are often not recognizably green, and are thus

deemed foreground pixels. Inaccurately labeled pixels are also common where the

greenscreen meets the floor as the corner is usually dark, and around perturbations

in the greenscreen fabric or areas where the lighting undergoes sharp transitions.

We attempt to minimize these problem areas through physical means but it is

difficult to eliminate them completely. We also rely on software techniques to aid

in the image segmentation process. One way we alleviate noise is by convolving

with a Gaussian filter over the segmented binary image. Our Gaussian filter im-

plementation, which takes advantage of dynamic programming techniques, makes

multiple passes over the image in both the horizontal and vertical directions, each

time convolving the image with a box filter. We have found empirically that a

Gaussian sigma value between two and four works relatively well for removing the

noise in our captured images.

After the image has been blurred, each pixel has a gray-scale value between

0 (black) and 255 (white). The next step is to perform a threshold operation,

such that pixels which contain a value above the threshold are marked foreground,

or white, and those pixels with a value below the threshold are differentiated as

background, or black. This threshold value is a variable in software, and can be

adjusted as necessary for optimal segmentation.
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3.5 Contour Finding

The fourth stage in our system is to find the contours that approximate the object’s

shape. This section will discuss how we recover the silhouettes from the segmented

images, and a noise elimination approach that we use to prune away unwanted

contours.

3.5.1 Polygon Approximation

After the image has been segmented into foreground and background regions, the

silhouette contours that define the foreground object are extracted. This is done

using Intel’s open source computer vision library, OpenCV. We use the routine

cvFindContours() , which, uses an algorithm similar to that of marching squares,

in order to find and return the contours in a binary image. The contours that the

algorithm recovers are initially very fine in resolution, such that each edge only

spans neighboring pixels. To adjust the granularity of the contours, stringing to-

gether short edges in order to produce more representative line segments, one can

leverage the function cvApproxPoly(), which, takes as input the original contours

and a constant that denotes the desired level of contour resolution. The higher the

constant, the more coarse the final contours will be. A value of zero returns the

original contours with no change in granularity.

There is a trade-off to be made when using this routine. The higher the value, the

fewer the line segments there will be. This will result in less data, lower network

transfer times, and a quicker hull reconstruction process. However, the disadvan-

tage is that the geometry is less refined. For example, when finding the contours of

a hand, if the polygon approximation factor is set too high, the individual fingers
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will be lost and the hand will appear as a single polygon. If the approximation

factor is set too low, then the contour definitions will be more detailed but the

running time of the hull intersection routine will be much higher. This is a direct

result of the fact that there are now many more surfaces on which to perform

polygon intersections. The goal is to find a balance such that the contours are of a

high enough resolution to generate visually pleasing models and yet low enough to

maintain interactive frame rates. One proposed solution, employed by Matusik et

Al [MBM01a], is to have the approximation factor adjusted on the fly in software.

The contour resolution is decreased automatically when the program slows down,

and increased when there are extra cycles to devote to the mesh generation pro-

cess. In our system, the variable is user driven, as opposed to software controlled,

and can be adjusted on the fly to match the user’s current desire.

3.5.2 Noise Elimination

Despite our best efforts to eliminate noise at the segmentation stage, there are still

occasionally incorrectly marked pixels that bleed into the contour finding routine.

To counter this, we automatically throw away any contour that consists of three

or less edges. No reasonable foreground object would be so nondescript, and thus

we have found this to be a relatively successful way of removing background noise

from the contour detection process.

3.6 Data Transfer to Server

In order for the server to reconstruct, and later texture, a model of the foreground

object, it must acquire the necessary contour and image data from each of the

client machines. This is the fifth step in our system overview diagram, Figure 3.1,
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and will be the topic of this section.

3.6.1 Network Protocol and Region of Interest

After the silhouettes have been extracted from the segmented image, a buffer is

constructed that stores all the relevant data the server will need to compute the fi-

nal polyhedral hull. Instead of sending the entire video frame to the server, which is

later used for texturing the constructed hull, we only send the region that contains

the foreground object. By minimizing the amount of data transferred between the

client and server, the transfer times and the bandwidth consumed are also opti-

mized. To determine the minimum bounding extent of the foreground object, we

iterate through the line segments which define the contours and keep track of the

minimum and maximum (x,y) points. These two points constitute a bounding box

that encompasses any pixels potentially required during the texturing stage. The

pixels inside this region of interest, along with the contour definitions, are then sent

across the network. All our network communication is done over sockets, using the

winsock library that comes standard with the Windows operating system.

3.6.2 Use of Compression

In order to reduce the transfer times between the client computers and the server,

we experimented with compressing the data before sending it over the socket.

We used the zlib compression library for our testing 2. Unfortunately, the time

required to compress and decompress the data was more than the time saved in

transmission. This may not be true for all forms of compression (for example the

JPEG algorithm might prove faster), or for all data set sizes. However, we have

2The zlib library can be downloaded at the URL: http://www.gzip.org/zlib/
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currently settled on sending the data in its raw form.

3.7 Texturing the Polyhedral Hull

After the hull has been reconstructed the next step is to texture the model using

the original video frames. In this section, we briefly introduce our initial naive

texturing approach. A full discussion of the the naive approach and the more

advanced texture blending technique, is included in Chapter 4.

3.7.1 Naive Texturing Method

The source textures for the polyhedral hull are always comprised of the original

video streams. In the simplest case, the process of selecting the optimal video

image for texturing a particular hull surface reduces to a question of visibility and

orientation. In the best case scenario, each polygon to be textured corresponds

directly to a pixel or region of pixels from the set of video images. It is unlikely,

however that this will be the case and so we therefore attempt to find the nearest

match. We quantify the correctness of a match in the simplest case as smallest

dot product between the viewing vector and the surface normal. The dot product

indicates the cosine of the angle between the these two vectors. In the ideal case,

the surface normal of the polygon has a direct match, and the vectors are anti-

parallel resulting in a dot product of zero. We apply a simple visibility test for each

camera, once this has been done, we can then select the camera that has the best

viewing angle, using the aforementioned technique. Figure 3.10 shows an example

hull surface and the camera that this naive algorithm would select for texturing

that face.
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Figure 3.10: The optimal camera for texturing a hull surface is the one whose

viewing vector has the most opposing angle to the surface normal. In the diagram

above, Camera 2 would be the best choice, as it has the most direct view of the face.

3.8 Foreground and Background Compositing

The final stage in our system is to merge the reconstructed foreground object with

the background environment. It is at this point that we add in global illumination

effects, such as shadows and reflections, to enhance the plausibility of the composite

image. This section will focus on the method by which we generate our background

images, as well as the compositing process. The shadowing technique that we

developed for our system is discussed in detail in Henry Letteron’s thesis[Let04],

and the implementation of reflections is covered in Chapter 5.
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3.8.1 Background Image Generation

RTGI is the Program of Computer Graphics at Cornell’s “Real Time Global Il-

lumination” system. It is a ray tracer that is designed for both interactive walk-

throughs and the rendering of static scenes. The RTGI system can render in many

different modes, each having varying levels of quality and performance; however,

these options are all transparent to our system. As far as our software is con-

cerned, RTGI is a “black box” that feeds it background images for compositing

with our captured geometry. RTGI can be run in one of two modes, on a single

client computer or in walk-through mode, which takes advantage of the PCG’s

128 CPU cluster2. When running in walk-through mode, the pixels are distributed

among each of the machines, so that you can add secondary effects such as indirect

lighting while still achieving interactivity. Although the RTGI system can handle

an arbitrary number of light sources, our compositing software currently only sup-

ports hardware shadow generation for the primary light source in the scene. This

allows us to maintain user interactivity, as implementing hardware shadows from

multiple light sources requires additional rendering passes and texture lookups dur-

ing the shadow generation stage. As a result, we primarily deal with background

environments that have a relatively small number of lights.

3.8.2 Information Sharing

There are several parameters which need to be synchronized between the RTGI

system and our software. These include the camera position and orientation, the

primary light source location, and the current background model used for composit-

2The Cluster is 64 Computers with Dual 1.7Ghz Processors and a 1GB of RAM
per machine



39

ing. It is important to keep the cameras synchronized between the two systems,

so that if the user moves the camera within the RTGI framework, thus changing

the orientation of the background model with respect to the viewer, the captured

foreground geometry will be viewed from an identical pose. If this consistency is

not maintained, the alignment of the foreground object with respect to the back-

ground scene will be constantly changing – a highly disconcerting visual effect.

Therefore, in order to guarantee compatibility, the RTGI camera position, view

direction, up vector, field of view, and aspect ratio are transmitted to our software

each frame. Similarly, the main light source in the scene must also be in the same

position on both ends of the system. The RTGI environment allows the user to

modify the light positions on the fly, and consequently our software needs to be

made aware of such changes. This ensures that the hardware shadows cast by the

foreground object will match the rest of the shadows in the background image.

Unfortunately, as it is beyond the scope of this project to attempt to re-light the

captured video frames, any changes to the scene lighting will not be incorporated

in the textures used to shade the foreground geometry. Thus the user must main-

tain a plausible lighting environment in which to insert the captured model. RTGI

is also responsible for which background model is currently in use, and it needs to

alert our software when a model transition is being made.

3.8.3 Hardware Compositing Process

When a background image is received from the RTGI system, it is loaded into

the color buffer on the graphics board. Our software stores a local copy of the

scene model, and the next step is to render this geometry into the depth buffer.

While the scene geometry is being rendered, the color buffer on the graphics card
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is disabled for writing. This prevents the ray-traced background image, which we

previously loaded into the color buffer, from being overwritten with a hardware

generated version. Then the color buffer is re-enabled for writing, and the captured

foreground geometry is drawn. Because the depth buffer already has the scene

geometry at this point, the depths are composited correctly.

In lieu of having our program render the scene into the depth buffer, we also

experimented with RTGI forwarding along the depth data for the background

image. Since the ray tracer has already generated a depth value for each pixel in

the scene, it would seem logical to try and reuse this information by passing it

over the network to our reconstruction server. However, we found that the time

required to transfer the depth data across the network and load it into the z-buffer

on the graphics board was significantly longer than it took to render the scene in

hardware. Furthermore, a copy of the scene model is required on the reconstruction

server for rendering shadows.

When performing shadow generation in our system, one needs to be able to

render the scene from the point of view of the light source, thus requiring a local

copy of the scene geometry. This might prove to be computationally prohibitive

when dealing with highly complex scenes, for example when there are multiple

polygons that exist within the space of a single pixel. Should this scenario ever

arise, it may prove advantageous to revert back to a system where RTGI passes

over the depth data for the generated background image, and then use a differ-

ent approach for shadowing. This would eliminate the need for the compositing

software to maintain a local copy of the scene model and would achieve a greater

separation of complexity.
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3.8.4 Object Positioning

The software which we have developed allows the user to rotate, translate, and

scale the captured geometry so that it fits correctly within the scene. Exact posi-

tioning is necessary in order to create a convincing composite. Furthermore, the

scenes in which we are inserting the subject are often modeled using arbitrary

scales, uncorrelated to any physical units. In order to scale the model without also

affecting its positioning, we first determine the center of the object. We imple-

mented two different methods for computing the center of the object. The first

approach is to use the average position of all the points which define the object’s

hull, which approximates the centroid of the object. The second approach is to use

the center of the bounding box which surrounds the geometry. The latter method

has proven to be the better of the two, as the exact positioning of the vertices which

define the hull are constantly changing due to slight variations in image intensity

and numerical imprecision during the reconstruction processes. Using the former

method, the centroid shifts slightly each frame, and consequently the model skips

around within the scene. This motion is highly disconcerting, and detracts from

the realism. The bounding box method is less affected by the inherent noise which

plagues the individual vertex positions. The temporal variation is much less, and

consequently the jittering of the object within the scene is also drastically reduced.

Finally, to position the foreground object within the scene, it is first translated

such that its center is situated at the origin. The object is then scaled up or down

to the user-specified size and then translated back to its original location.



Chapter 4

Texturing

4.1 Introduction

In pursuit of our overall goal – to merge live video with synthetic imagery – we

add a texture to the polyhedral hull. This chapter addresses the process by which

this texturing is performed. We select the best data from the video streams to

achieve results that look close to perceptually correct from any viewing angle.

The texturing of the polyhedral hull is the penultimate stage of the reconstruc-

tion system. At this point we have segmented the foreground from the background

and used our knowledge of epipolar geometry to reconstruct a polygonal mesh

(Figure 3.1). The resulting polyhedral hull is a three-dimensional shape defined by

a set of triangular polygons. By adding a texture, we transform this set of polygons

into a fully-defined textured surface representation, so that it can be composited

into the scene. Figure 4.1 shows how textures add substantial realism to the final

composite image.

4.2 Basic Texture Mapping

In computer graphics, textures are often added to geometry to give the impression

of high-definition detail in a final image. By adding a texture to a simple mesh, it is

possible to obscure tessellation boundaries and other visually disturbing artifacts

that arise from simplistic modeling. Furthermore, it provides an alternative to

tedious or often impossible modeling tasks. The basic texture mapping process is

illustrated in Figure 4.2.

42
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Figure 4.1: An example composite with and without texturing. (A) Without

texturing, the polygonal hull can only be displayed as a set of polygonal surfaces,

flat-shaded polygons in this case. (B) With texturing, the coarse geometry of the

polyhedral hull is masked yielding a believable composite image.

The first step in this process is the capture of a texture. This can be ac-

complished in a number of ways, including photographing real-world materials,

scanning previous art or documentation, or mathematically generating a procedu-

ral texture, such as a fractal. For photographic textures, to preserve the highest

quality throughout the entire process, the texture should be captured with the

viewing direction orthogonal to the overall surface of the texture. Furthermore the

source textures should be captured from planar surfaces as in the brick example

shown in Figure 4.2.

In order to ensure uniform sample density across a captured texture from a

planar surface the distance D from the camera to the surface must be large. This

ensures that the angle between the viewing vector of the camera and the surface
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normal of the texture sample is constant. If the distance is too small the sampling

is not uniform. In the case where the texture is built utilizing a mathematical

procedure, the resulting texture should reflect this orthogonal capture process.

We refer to this captured or generated texture as the source texture.

The second step in the standard texturing process is to specify the relationship

of the source texture to the surface of the object. This relationship defines a

mapping between all the polygons on the three-dimensional object’s surface in the

XY Z coordinate system and the UV coordinate space of the source textures. Once

this relationship is established, a viewing matrix can be applied to transform our

textured object definitions to a representation in image space.

In state-of-the-art compositing systems there is a single video camera which

is utilized. This camera captures the object as a two-dimensional “billboard” to

which the texture is applied [Sel03]1. Since the virtual camera view is restricted

to the fixed position and orientation of the physical video capture camera and

hardware, it can accommodate precisely this type of texture-mapping process and

the resulting composite image is easily generated.

Our system is different in the sense that it is view-independent and three di-

mensional. We replace the simplistic billboarding with a texturing process to ac-

commodate the three dimensional mesh generated during the reconstruction stage

of our system. The texture or raw-video data is mapped onto the reconstructed

object during this process, which is detailed during the remainder of this chapter.

Because the reconstruction process is split from the texturing process we have two

different types of cameras in our system: a reconstruction camera which captures

1In Selan’s ’03 work the silhouette of the object was super-imposed on a translu-
cent quadrilateral. This quadrilateral defined the region of display and computa-
tion, not the silhouette.
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Figure 4.2: An example of basic texture mapping. A source texture has been

captured from a camera that lies orthogonal to the texture surface. When mapping

from the UV coordinate space of the source texture to the object space coordinates

a UV mapping matrix is applied. The Viewing matrix is applied to translate,

rotate, and scale the object to its viewing position in world space. Both the UV

Mapping and Viewing Matrices can be inverted to perform these operations in the

opposite directions. In practice both matrices are concatenated and the texture is

then sampled using standard mip-mapping hardware.
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raw video and a view-independent end user camera, the viewport camera, which is

used to view the final reconstructed mesh with textures applied.

4.3 Our Texturing Problem

A major difference between our system and previous state-of-the-art compositing

systems is that we obtain three-dimensional geometry so that the resulting tex-

tured polyhedral hull can be placed in a virtual three-dimensional environment,

interacting with the virtual geometry and lighting by casting believable shadows

and reflections. Furthermore, this system exhibits view-independence, allowing the

end-user total flexibility to move the virtual camera to arbitrary positions within

the synthetic environment. By using our polyhedral hull and by offering an un-

restricted choice of viewing angles to the end-user, we confront a unique set of

problems which must be addressed to successfully achieve our goals.

First, the reconstructed hull is larger than the original object, and our recon-

struction cameras do not cover every viewpoint. This results in missing texture

information. Second, the source textures captured from the video cameras are gen-

erally poor. They are neither orthogonally captured, nor are the source textures’

surfaces planar. To alleviate these problems we utilize multiple captured source

textures, one from each of the n reconstruction cameras. Obviously some camera

positions will provide better source textures than others for each reconstructed

polygon of our polyhedral hull. This however presents another dilemma: how to

choose which of the source textures to use and how to interpolate smoothly be-

tween the textures for arbitrary viewing positions. Each of these problems and our

implemented solutions will be discussed in detail below.
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4.3.1 Larger Reconstructed Object

During the reconstruction phase of our system we use a shape-from-silhouette

algorithm to generate our polyhedral hull. This hull represents the extents of our

object. It is a tighter fit than a bounding box, and even a convex hull, but it

does not capture the full complexities of the original object. The result is a coarse

geometry that has a slightly larger volume than the original object. Theoretically,

the best case scenario yields a polyhedral hull that is the exact volume of the

original but it has been demonstrated in our work that this theoretical ideal is not

achievable in real-life scenes [Let04].

The inequality between the reconstructed and original object’s volume causes

problems when we texture our reconstructed object. The source textures used dur-

ing the texturing process are taken from the reconstruction cameras. Each texture

is a two-dimensional representation of a portion of the original three-dimensional

object’s surface. However, our reconstructed mesh has a larger volume and there-

fore a larger projected surface area than the actual object. Consequently, the source

textures do not map directly to the surfaces of the reconstructed polyhedral hull

(Figure 4.3).

A second reason why our reconstructed object is slightly larger is the man-

ner in which we prepare our data for reconstruction. Through a chroma-keying

process we segment the foreground object from the background image. During

this segmentation process a Gaussian filter is applied to remove noise from the

boundaries of the object; this process however slightly enlarges the boundaries of

the silhouette. Since these silhouettes are slightly bigger than the original object’s

silhouette the resulting reconstructed object is slightly larger. In order to provide

a perceptually accurate final composite we must compensate for the differences
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between the larger reconstructed hull and the smaller textures.

4.3.2 Missing Texture Information

There are two cases where texture information is not available for our polyhedral

hull. First, since we do not have full coverage of the original object from our

reconstruction cameras there are triangles on the reconstructed mesh that do not

correspond to any of the available textures. This case arises when the hull is viewed

from outside the extreme bounds of the reconstruction cameras. When this is the

case the triangle in question receives a medium gray color and is left untextured.

The system uses gray to represent the untextured regions since it is a neutral and

inoffensive color, but does not misrepresent the results of our system. This gives the

end-user the visual cue that the current camera configuration cannot completely

represent their desired viewpoint. The most commonly untextured regions are the

back-facing polygons of the mesh, ones which are not seen by any reconstruction

camera.

The second case where texture data is missing is when the mesh is not wa-

tertight. With the reconstruction algorithm utilized, a non-watertight mesh is

generated. To approximate a watertight mesh we iterate over the vertices of the

entire mesh, combining vertices that are within a very small range of one another.

The watertight process is described in Henry Letteron’s work [Let04]. This mostly

alleviates the problem, but occasionally a gap in the mesh is seen. The texture

mapping process can only add a texture to polygons. If there are areas which are

not watertight, there are no polygons to be textured and the synthetic background

of the composite shows through.
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Figure 4.3: This diagram shows the reconstruction of a blue sphere. (A) Overhead

view of two reconstruction cameras and their silhouette cones, projected onto the

top view of a sphere. (B) Each camera’s views. These are used as source textures

in the texturing processes. (C) The reconstructed hull from a perspective view phys-

ically above the midpoint of the two reconstruction cameras. This is the polyhedral

hull of our computed sphere, using two-reconstruction cameras. The original object

is shown overlaid on the hull, illustrating the difference between the reconstruction

and original. The challenge is how to fill in the missing textures.



50

Figure 4.4: (A) The cube is reconstructed as a diamond-like shape by the two

reconstruction views. (B) View from each of the reconstruction cameras. (C) The

viewport cameras view of the non textured image, alongside the textured version.

Notice that the texture is repeated. Two reconstructed faces in (A) would map to

the same region on the original object.
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4.3.3 Non-orthogonal Texture Capture and Choice of Source

Texture

Since we only have n fixed reconstruction cameras we do not necessarily view the

object from the particular arbitrary viewing angle the end-user desires. As a result

the source textures could be poorly applied to the reconstructed hull as is seen in

Figure 4.4. This also means that we do not have an even sampling of our source

textures over the entire surface. A texel is an atomic element of a texture, just as

a pixel is of a digital picture. When evaluating the appropriateness of a texture

for rendering it is preferred to have a higher texel density than pixel density.

As mentioned earlier in this chapter, during the standard texture mapping

process the ideal source textures would be captured using a camera whose image-

plane is orthogonal to the surface on which the texture exists. In our system

the reconstruction cameras view the live object at angles that are often far from

orthogonal. This causes the sampling frequency of the texture to change over the

entire image. (Figure 4.5)

The sample frequency of a texture depends on two factors:

1. The distance D between the reconstruction camera and the small area from

which the texture is sampled, called a patch.

2. The cosine of the angle between the reconstruction camera’s viewing vector

and the estimated surface normal of the patch.

If either of these two dimensions changes then the sampling frequency of a

texture changes. There are three reasons that these dimensions might change in a

system such as ours.
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Since camera images are taken in perspective, the aforementioned cosine changes

over the surface of a sampled polygon. This problem is neglible, in our system,

because the distance D is sufficiently larger than the size of any particular patch.

Second our source texture is not planar. Our system is designed to use a human

being as a reconstruction subject. Humans are certainly not polyhedral objects so

our system has the problem that at any given point the surface normal is different

from adjacent points. In our system since we do not know the original geometry

of our reconstructed object we approximate its surface normals by using ones from

the reconstructed mesh, which consists of planar polygons.

Finally since the source textures do not lie orthogonal to the camera at every

point. In fact there are some polygons for which the aforementioned angle is very

large. This problem is aggravated as the surfaces are farther and farther from

orthogonal to the camera. Our texturing solution focuses on solving this problem

first, since it is the most visually displeasing.

4.4 Our Texturing Solutions

In the previous section we described the problems encountered when attempting

to apply textures at the end of the polyhedral hull reconstruction process. The

remainder of this chapter details the texturing procedures we developed to solve

these problems, completing the polyhedral visual hull system. By using infor-

mation from multiple source textures intelligently many of the problems that we

encounter can be solved.

We implemented two texturing methods. Our initial work to provide visually

correct texturing, the direct texturing method, uses a single source texture for each

region of the polyhedral hull. However, after implementing the direct texturing
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Figure 4.5: This figure shows the traditional texturing method juxtaposed with

the texture samples that are generated using the polyhedral hull system. On the

left is a orthogonally viewed texture. The texture has the same sample frequency

across the entire image. We assume the distance from the object to the camera

is much larger than the size of the object, and therefore the spatial frequency does

not change over an orthogonally viewed image. On the right are two cameras that

represent the texturing process in our system. The textures that these cameras

capture have varying sample frequencies relative to the perspective viewing angle.

We design our method to favor textures with high sample frequency.
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method, we discovered that it introduced new problems: we see them manifested as

visual discontinuities and a problem we call view-skew. We then developed a more

sophisticated texturing method called the blending method which provides better

results. The blending method addresses both the texturing problems outlined in

the previous section and those which arise when direct texturing is employed. For

the remainder of this chapter we define the angle between the surface normal of a

polygon and a reconstruction camera’s viewing vector as the camera-normal angle.

4.4.1 The Direct Texturing Method

This direct texturing method is the simplest texturing method and is effective in

some cases. At a high level this process can be thought of as importance-based

source texture sampling from the viewport camera location. The multi-staged

process selects the portions from each of the reconstruction cameras source textures

which contribute the most realistic textures for that viewpoint. This process is

shown in Figure 4.6.

4.4.2 Stage One: Texture Capture

During the capture phase, each reconstruction camera in the system transmits its

image to the server. The cameras are synchronized with one another. For each

frame, the raw video image data is sent to the server along with the contour of

the object that has been found. We utilize the raw video in the highest resolution

possible from each of our cameras. We do not filter any of the raw data from

the cameras. There is some noise and color bleeding from the video capture and

chroma-keying process, which can be seen in the final composites.
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Figure 4.6: A stage diagram of the direct texturing method implemented in our

system.

4.4.3 Stage Two: Visibility Determination

In the second stage of the texturing process we compute per-polygon reconstruction

visibility so that we can ensure that texture data is not inappropriately applied to

polygons which do not correspond to any source texture region. We iterate over

all the polygons in the reconstructed mesh and compute a boolean visibility value

indicating whether or not it can be seen by a reconstruction camera. This is easily

done because we reuse computations performed in the geometric reconstruction

phase of our system.

Each reconstruction has a set of edge-bins associated with it. An edge-bin

is best thought of as a view-dependent z-buffer which lists each of the polygons

which could be visible, from nearest to farthest. Utilizing this structure it is easy

to determine which polygons are seen by a camera and can therefore be textured
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by it. We start by marking every polygon as not visible. For each camera we

iterate over all of its bins, marking the first polygon in the bin as visible. All other

polygons in the bin are not marked visible and will not receive any texture data

from this reconstruction camera. Please refer to [MBM01a] or [Let04] for details

on the edge-bin data algorithm and data structure.

In the case where more than one camera can see a particular polygon the system

must decide which camera’s texture contribution to utilize. This is the third stage

of our process. For any polygons that are not seen by a reconstruction camera or

are only partially visible the texture is set to neutral grey, which indicates that this

camera configuration should not contribute texture information to that region.

4.4.4 Stage Three: Texture Contribution Calculation

Once we have determined the visible polygons, the next task is to select the best

source texture from our reconstruction cameras, so that we can generate a visually

plausible composite image. To do this we must define a metric with which we can

delineate between the multiple source textures we have available for use. Using

this metric, we choose a source texture for each polygon in the reconstructed mesh.

The metric we chose to implement is based on the camera-normal angle. The

premise is that the best source texture would have been captured with the re-

construction camera’s view direction orthogonal to the original object’s surface

normal. We estimate how closely any given reconstruction camera’s source texture

approximates this ideal by computing the dot product of the camera’s viewing

vector and the surface normal of the polygon in the reconstructed mesh. This dot

product is used as a positively-correlated metric, and the source texture with the

highest value is chosen. Again, this is computed per-polygon.
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4.4.5 Stage Four: Final Rendering

Finally, we render each polygon with its associated texture, using the graphics

hardware of the server. An example of the resulting composite is shown in Figure

4.7.

4.4.6 Direct Texturing Analysis

This direct texturing method addresses each of the problems identified in the previ-

ous section. By using the mathematical calculation for the closest aligned camera,

we address the problems of non-orthogonal source texture capture and our choice

of source texture. Choosing the most closely aligned camera to the viewport cam-

era minimizes the effects of non-orthogonal source textures. Because the use of this

metric maximizes its cosine value of the camera-normal angle, and sample density

is proportional to its cosine, the selected texture inherently has the best spatial

frequency of the samples available.

The coarse geometry is addressed by providing a mapping between the source

textures from the original object and the reconstructed mesh. In all regions where

the cameras can view the original object, we have a mapping from the source-

textures to the reconstructed mesh. It should be noted that in back-facing and

partially visible regions these areas are colored grey to indicate the lack of infor-

mation unobtrusively.

The direct texturing process is simple to understand and can provide visually

acceptable results. We discovered, however, that the results were not visually

convincing outside of certain special cases. This method seems to be completely

acceptable only for cases when the viewport camera is closely aligned with one of

the reconstruction cameras. This severely limits view-independence.
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Figure 4.7: An example of a well textured polyhedral hull using the direct method.

These results look very realistic due to the relatively small angle between the viewing

directions of the viewport camera and reconstruction camera.
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There are two types of visually disturbing artifacts which can be seen as a

result of this texturing process. The most obvious are the texture discontinuities

which occur when the choice of source texture changes abruptly along the surface

of the reconstructed mesh. The second type of artifact is more subtle and is caused

by view skew. Since we only have a relatively small number of cameras there are

many virtual camera positions which share the same direct texturing solution.

Thus, although the object may move, the same texture is used, masking what

should be a perceivable change in object geometry.

4.4.7 Discontinuities

Since any given polygon only uses one source texture, in cases where the origin of

the source texture switches from one camera to another we see a discontinuity, sig-

naling the end of one camera’s viewing dominance and the beginning of another’s.

This is illustrated in Figure 4.8.

By using this approach we are treating camera relevance as a step function

over the viewing space. At the point where the dot products between two adja-

cent reconstruction cameras are the same the boolean check for camera-dominance

switches from one camera to another. We see this offensive visual artifact in our

results (Figure 4.8). The step function description is important to understand here,

as it illustrates the way which the direct method treats source textures. In both

the mathematical description and the reconstructed texture we see rapid changes

in the graph of data which are represented as visual discontinuities. Figure 4.9

illustrates this.
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Figure 4.8: On the far left we see the portion of the texture that was contributed

by one camera. In the middle we see the portion of the texture from the second

camera. On the right we see the poorly textured polyhedral mesh, using the direct

method. At the bottom of the diagram is a plan view of the approximate camera

positions that generated this composite image.
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Figure 4.9: Here is an example of reconstruction camera contribution for a region

of the reconstructed teapot using the direct texturing method. The camera on the

left has a smaller camera-normal angle in the blue region; where the color shifts to

red the camera on the right has a smaller angle. There is an obvious and abrupt

shift from the blue camera’s contribution to the red camera’s as is expected. The

icon in the upper left hand corner shows a step function which is the mathematical

equivalent of the direct texturing method.
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4.4.8 View-Skew

The view-skew problem is a less visually detectable problem, since it can only be

seen in the live operation of the system or in video, but it is still quite visually dis-

pleasing. Direct texturing often yields the same texturing solution for two distinct

but similar viewport camera locations. The effect is that the user sees the same

texture repetitively despite the fact that the underlying geometry changes.

The view-skew problem is illustrated in Figure 4.10 in which the viewport

camera pans around our static model, Howie. One of the four reconstruction

cameras contributes the dominant portion of the texture. As we pan, the majority

of the texture solution to the composite remains unchanged; the only detectable

change to the texture occurs around the silhouette edges. Thus, the rotation of

the underlying geometry is completely unnoticeable.

To address these two new problems we designed a blending approach. This

approach was derived from the direct texturing method but introduces a greater

level of sophistication in the texturing process.

4.4.9 The Blending Method

The blending method represents an advance over the direct method; it addresses

the ambiguity in and subsequent difficulty of mapping source textures to poly-

gons by using multiple textures simultaneously. The direct texturing process often

yields inadequate composites due to discontinuities and view-skew. The goal of our

blending method is to reduce the problems introduced by direct texturing. Tex-

ture blending provides true view independence since it addresses these problems

in addition to the original texturing issues.

In this method, in contrast to the direct method, there are a series of additional
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Figure 4.10: An example of the view-skew problem. Notice that as the viewport

camera is rotated around the object only the edges of the texture change. Ninety

percent of the texture remains unchanged. The changes in the geometry are masked

so this is disconcerting. We expect to see changes in the textures and geometry;

instead we see nothing but a sudden shift as a discontinuity arises.

calculations during the the camera contribution stage to utilize textures judiciously.

The stage diagram for the blending process is illustrated in Figure 4.11.

4.5 Overview

The direct method implementation of texturing causes visual problems, such as

discontinuity or view-skew. This method discards data and therefore relies on only

a small subset of the original non-orthogonally sampled source textures. Direct

texturing only picks the single best source texture. It misses any potentially useful
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Figure 4.11: A stage diagram of the blending process implemented in our system.

information that the remaining n − 1 textures might contain.

To better texture the polyhedral mesh we use multiple source textures to pro-

vide the most realistic composites at each polygon. We assume that the relevance

of each texture is a continuously varying function over a surface. In order to

generate textures in areas where we do not have an exact match from one of our

reconstruction cameras, we sample each of the source textures and use a linear com-

bination of these to provide a visually plausible texture. This effectively eliminates

the discontinuity problem that is prevelant in the direct method implementation.

Because it allows for smoothly varying textures from multiple sources this also

reduces the view-skew. This is illustrated in Figure 4.12 where we see the two

methods juxtaposed.

We blend textures by rendering each of the reconstruction cameras’ views as a

variable-opacity texture-map. The following process is performed for every polygon
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Figure 4.12: An example of the two different texturing processes. On the left

(A) is the basic, direct texturing method and on the right is the blended texturing

blending. Notice on the left the repetition of arms. On the right (B), there is

a single representation of the entire model. The slight line visible in the texture

blended example is due to chroma-key noise.

in the reconstructed mesh. First, we calculate the texture coordinates in each

of the n source textures, using our knowledge of the projection matrices. Once

these values are calculated, they are stored in n different texture maps, one for

each source texture. Next, we evaluate a metric which represents how closely the

pose of the reconstruction and viewport cameras match for each reconstruction

camera. The value of the metric for each camera is used as the blending weight

for the corresponding source texture, after appropriate normalization. The last

step renders each of the texture maps in a separate pass, using the alpha buffer to
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Figure 4.13: Here we see blending from two cameras. The red and blue regions

overlap and are blended into purple with varying intensities. In the upper left is

the mathematical equivalent of the blending function, showing overlapping cosine

curves.

compute the linear combination of textures (Figure 4.13).

4.5.1 Stage One: Capture

The capture step is the same as in the direct texturing method. No special pro-

cessing for the texturing method is done. All that is accomplished in this step is

the capture of the source textures from each of the reconstruction cameras and the

transmission of the textures from the client computers to the server.
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4.5.2 Stage Two: Visibility

Unlike the direct texturing method which determines visibility using the edge-bin

data structure, the blending method tests the normal at each polygon against

each camera’s viewing vector to determine the visibility of each polygon for each

reconstruction camera. In this way we compute which cameras are able to view

the polygon and should have a camera relevance and blending weight calculated.

Figure 4.14 shows how we use the dot product as a boolean indicator of visibility.

This visibility calculation eliminates all of the back-facing polygons for each recon-

struction camera, but does not eliminate cases where a polygon occludes another.

These occlusion errors are less perceptible because of the blending process. Since

we are constrained to produce real-time results no additional occlusion removal

calculations are executed.

4.5.3 Stage Three: Blending

One of the crucial parts of texture blending is the ability to identify the relevance

of the reconstruction camera to the overall blended texture. This involves the use

of a metric to demarcate each camera’s effectiveness. We experimented with two

methods, which we will call the viewing-angle and camera-normal metrics (Figure

4.15). The viewing-angle metric assigns a value to the angle between the viewport

camera and the reconstruction camera. The camera-normal metric compares the

normal of the surface to be textured to the viewing-vector of the reconstruction

camera. This method is the same as that which is used in the direct texturing

process. While both of these metrics produce a blended texture, the results can be

vastly different. We discuss our choice of one method over the other later in this

section.
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Figure 4.14: Here we see a scenario of both visible, and non-visible texture areas

from a particular reconstruction camera’s point of view. The camera’s normal is

colored black and is clearly anti-parallel with the nearer polygon’s normal, seen

in blue. The dot product is also obviously negative since two vectors pointed in

opposite directions always result in a negative dot product. Further we see that this

reconstruction camera will have no information for the vertex with the pink normal,

as it is back-facing to this particular camera. As is expected, the dot product of

this normal and the camera normal yields a positive value. This visibility process

removes back-facing polygons only. It does not handle occlusion by other polygons.



69

The viewing-angle metric is computed by comparing the cosine of the angle

of the viewing rays of the reconstruction cameras and the viewport camera. We

construct rays from the center of the polygon to be textured to each of the camera

centers and compute the dot-products which corresponds to the cosine of the angle

between these vectors. In this case the largest dot product represents the most

closely aligned viewing angle with the viewport camera. In our testing, results of

this method were visually poor, so we developed another metric called the camera-

normal method. Unfortunately we have no comparison between these two methods

since the viewing-angle method was completely removed from the final system.

The camera-normal metric is calculated by comparison of the surface normal

of the triangular polygon with the reconstruction camera’s viewing vector. We

remember from the visibility test that the dot product of these two vectors is

negative, indicating that the camera can see this polygon if it is the nearest polygon

to the reconstruction camera. During the visibility test, if the dot product is

negative the value is recorded so it can be used later. This method gives importance

to the cameras that most directly view each polygon we texture. The camera which

has a value nearest to negative one indicates that its viewing ray is most nearly

orthogonal to the polygon. Upon visual inspection we found that this metric yields

better results than the viewing-angle metric.

We chose to utilize the camera-normal method in our final system. The camera-

normal method is our best effort to choose the minimum angle of any reconstruction

camera’s viewing ray and the normal of the source texture sample, and yielded good

results.
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Figure 4.15: On the top half of the diagram we see the viewing-angle method.

It shows that the minimal angles between the viewing rays of the camera would

be obtained at cameras three and four. However, these cameras have an extremely

skewed interpretation of the texture at the polygon in question. This results in more

coherence to the viewport camera but yields bad texture samples. In the bottom half

of the diagram we see the camera-normal method. Using this method the cameras

with the most direct view are those which are chosen to have the greatest texture

importance. In this scenario the yellow surface normal and associated polygon

is visible by all cameras. The dot-product values are recorded for each of these

cameras and used as relative relevance values. Camera one will have the most

negative dot-product followed by cameras two, three and four in that order.
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4.5.4 Stage Four: Compositing

Once we have determined the relevance of each camera we are then ready to use

a blending function to modulate between each of the four textures. After the

application of the blending function we can use the graphics hardware to render

the mesh using each of the variable opacity texture maps. The overall idea is to

take a relative contribution from each of the reconstruction cameras as if they

were control points in a parametric curve. This contribution is calculated at every

polygon for every reconstruction camera. We then modulate our reconstruction

camera textures into a final composite image. We normalize the calculated blending

weights so they sum to one. Once this is done these values can be used as opacity

values for multi-pass rendering of our final composite. Since we have a relevance

for each polygon we are able to use the alpha channel of the texture maps to render

our composite image as a linear combination of the inputs. Each texture map has

different alpha values, equal to the normalized blending weight, for each polygon

in the reconstructed mesh.

We experimented with blending all n cameras, as well as using just the two

with the highest metric values. Our final system utilizes the two highest metric

values since it is significantly faster without any perceptible loss in quality.

4.5.5 Blending Analysis

It is important to note that many other blending functions could be utilized to

provide either equivalent or different results. In our system, we opted to use

a simple blending function since it provided adequate results while minimizing

processing time. In future work, especially with different configurations or number

of reconstruction cameras it would behoove the designers to test a wide array of
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blending functions. In order to minimize processing, we avoided using the arc

cosine function or any unnecessary divisions since these operations are expensive

and texture blending already adds a significant overhead to the system.

As previously stated, we also empirically found the best results using just the

two most coherent cameras instead of blending between all the texture samples

from n reconstruction cameras. The reason for this is probably due to the evenly-

spaced reconstruction camera distribution. In our camera configuration, it was

nearly impossible to find a novel viewpoint where three or more cameras are able to

view the polygon, or the camera relevance is significant for each camera. In future

systems, given ample space, it would be interesting to try different configurations

resulting in the use of different blending functions.



Chapter 5

Reflection Effects

5.1 Introduction

The polyhedral hull system provides a visually plausible composite of live video

and computer generated synthetic imagery in a real-time environment. To achieve

our goal of visually acceptable composites we utilized global illumination effects to

provide visual cues for the interaction between the real and synthetic components.

This chapter presents a novel implementation that generates and composites spec-

ular reflections of a reconstructed object into a synthetic scene on a single planar

surface. Shadowing, another global illumination component also supported by the

polyhedral hull system is described in Henry Letteron’s thesis [Let04]. Our algo-

rithm is designed with both rendering speed and image quality in mind; it is a

process that has extremely low overhead and does not affect the overall frame-rate

while also yielding convincing composite images.

There is a virtual disconnect that exists between the live and synthetic ob-

jects in traditional chroma-keying and compositing work. The different portions

of the composite do not interact with one another. In order to achieve our overall

goal of merging live video in a synthetic environment, we must break the vir-

tual barrier between the two environments. In traditional chroma-keying systems

and advanced computer generated dynamic scenes [Deb98] there is a clear divi-

sion between the foreground and background. Previous work from the Program of

Computer Graphics [Sel03] covered some interaction between the billboarded rep-

resentation of the live object and the synthetic surrounding scene; however, this

work stopped short of complex interactions since there was no captured geometry

73
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to embrace for further visual cues.

Our system for polyhedral hull reconstruction and composition provides us with

a number of advantages over previous work. First, we construct a three dimensional

vertex mesh that has all the properties of a standard modeled one. This mesh is

key in the pursuit of our goal – a visually plausible composite image. Without it

we would not be able to interact optically with the synthetic background. Another

important advance over previous work is the integration with the Realtime Global

Illumination System (RTGI) [PTG02]. This technology provides a stable and

mature system for background generation.

These advantages allow us to bridge the foreground and background divide.

Utilizing RTGI and the reconstructed three-dimensional geometry our system adds

dynamic shadowing to the initial polyhedral system [Let04]. Taking this work a

step further and adding a specular reflection from the object into the scene adds

another layer of realism to the final composites (Figure 5.1). In this chapter we

present our implementation of specular reflections. The forthcoming sections detail

the implementation as well as the results of our work.

5.2 Unique Reflection Environment

The polyhedral hull reconstruction system merges dynamic live objects and three-

dimensional synthetic scenes. To accomplish this task we must overcome a unique

set of obstacles. The most relevant with respect to global illumination effects, such

as specular reflections, is determining the position and orientation of the lighting

in both environments. Our dynamic object is filmed in a studio environment and

the lighting properties of that studio are an inherent part of the video images

used for texturing. In order to provide a visually plausible composite we need to
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Figure 5.1: (A) On the left a scene without a reflection. Notice that the object

seems to be floating and does not interact optically with the surrounding environ-

ment. (B) On the right a scene with a reflection. The object appears to be grounded

and part of the scene.

understand the position and orientation of the lighting in the studio as well as the

synthetic three-dimensional environment. There are two possible solutions to this

complication: perform inverse global illumination or assume matched lighting.

Inverse global illumination, or de-lighting and re-lighting the object, is an open

research question. It requires that all the material properties of the object and both

the environment and lighting of our dynamic real-environment be known. Because

of the flexibility given to the user in terms of object selection, it is impractical to

know the material properties of every object that could possibly be reconstructed.

It is not yet well understood how cloth, hair and skin – the three common materials

encountered when imaging human beings – behave optically, and even if it were

possible to understand the properties of every material, our reconstructed mesh
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would need to be segmented into sub-meshes, each composed of a simple material.

This image-space segmentation is still considered an open research question within

the computer vision community. For all of these reasons we did not pursue the

option of using inverse global illumination.

We chose the second option: to assume a matched lighting environment between

the video studio where dynamic live video is captured and the synthetic three-

dimensional background environment. By utilizing a matched lighting assumption

our system is able to provide plausible composites without the significant delighting

and re-lighting computations that inverse global illumination would require.

Another unique problem our system must address is the identification of reflec-

tive surfaces in the synthetic three-dimensional environment. In order to represent

every possible specular reflection in the final composite, our system would have to

identify every polygon with a specular component and compute a reflection on that

polygon. Computing specular reflections is normally accomplished by ray-tracing,

a rather slow and largely offline process. We employ a fast method to render

a reflection on a polygonal patch; however, even with this speed-up it would be

impractical to compute the specular reflection for every polygon.

Our implementation allows the user to see reflections of our dynamic object

in a manner which neglibly affects the overall frame-rate. In order to maintain

interactivity we make some simplifying assumptions. First we assume that the

reflected surface is planar and unoccluded. This allows us to use a simplified math

to project a reflection on a planar surface. Second, because the reflective surface

is unoccluded there is no need to calculate where the reflection is occluded, a

process that is computationally expensive. Third, we restrict our attention to the

single most important reflection. By limiting our system to one reflection there is
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no need to account for interreflections which again is computationally expensive.

Even with these restrictive assumptions however our system produces believable

images.

5.3 Hardware Rendering Methods

In order to generate realistic looking images faster than traditional ray-tracing

methods hardware solutions were explored. Since the late 1970’s hardware methods

have been used to approximate ray-traced images.

5.3.1 Reflection Mapping

Synthetically rendered reflection and environment maps were first introduced in

1976 by Blinn [BN76]. The terms environment mapping and reflection mapping

are used interchangeably throughout the literature, and since our system gener-

ates reflections based on this technique, the latter term is adopted in this text.

The purpose of environment maps is to add complexity to simple objects so that

they appear to interact with their surroundings. Blinn introduced the idea of

computing lighting contributions in a scene separately from the rasterization of an

object(Figure 5.2).

If the lighting contribution from all the surfaces including every light is com-

puted at each pixel in the scene a “reflection map” can be generated. This pixel-

based key for light contribution represents a component of a final image. The

other component of the final image is the pixel-based rasterization of each three-

dimensional object in the scene. Taking a linear combination of these two compo-

nents produces a final composite image. With the advent of specialized graphics

hardware the rasterization process can be done very fast, leaving only the pre-
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Figure 5.2: The first reflection mapped scene. (A) A map of a room with windows

(B) The reflection map composited on a teapot model. [BN76]

computation of the reflection map for the general purpose processor. The pre-

computation presumes a static environment and does not include self-occlusion.

Once the objects are rasterized to a frame-buffer the shading of each pixel in the

buffer can be modified by the corresponding value in the reflection map. This

adds environmental lighting properties to the final image. This is clearly a gross

simplification of global illumination. Without occlusion information and material

properties, shadows and reflections between objects in the scene could not be calcu-

lated properly; they are approximated. Reflection mapping, however, presented a

large time improvement over ray-traced solutions, and despite its limited abilities,

it provides visually pleasing results.

Since the late 1970s both general purpose computing hardware and graphics

specific hardware has improved in speed and complexity. In order to generate a

reflection for an object, a reflection map is generated by rendering the scene from

that object’s point of view. After this is done for every reflective object in the
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scene, the reflection maps can be successively applied using the graphics hardware

to add realism and complexity. Applying multiple maps (i.e. reflection maps,

shadow maps, texture maps) in a hardware rendering process is commonplace

using today’s graphics hardware.

In the polyhedral hull system, shadows are generated for a single light source

using penumbra and shadow maps. First, the shadowing process computes a depth

image of the composited live object and synthetic environment from the point of

view of the light. After this is done, the depth image is used to generate shadow

regions in the composited scene. Despite the hardware accelerations this process

is still computationally expensive. The shadowing process takes approximately a

quarter of the total rendering time for any frame in the system. Adding another

stage in our process that takes this amount of time would sacrifice our real-time

goal [Let04].

In an interactive system in which geometry is known in advance, such as a gam-

ing environment, adding both shadows and reflections using mapping techniques

would be more feasible. But, our system has to allow for video capture, data

transfer and reconstruction, which consume the remaining time in the per-frame

computations. Therefore our implementation of reflections had to add minimal

frame-rate delay.

5.3.2 Physically Based Reflections

The method that our system uses provides identical results to reflection mapping,

but utilizes previous data and computations from earlier stages of the system.

Reflection mapping generates a map by rendering all of the objects from the point

of view of the reflective surface. The physically based reflection process leverages
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the fact that we are compositing a live object into a three-dimensional synthetic

environment. By the time the system enters the final compositing stages, the live

object has been reconstructed, positioned in the virtual environment relative to

the viewport camera, and textured. Since these calculations have already been

executed it is possible to use them to determine where the reflections in the scene

will appear. Furthermore, since our system only handles reflections of the dynamic

object in the synthetic scene it is possible to make more assumptions that simplify

this process.

The most important observation about specular reflections is that the angle of

incidence from the eye is equal to the angle of reflection (Figure 5.3). This allows

us to avoid computing a reflection map since we also already know the reflective

surface in the synthetic model, which in the parallel shadowing structure takes up

90% of the shadowing time [Let04]. Figure 5.5 shows the difference in computation

time between the shadowing and reflection steps.

If a reflection falls on a specular floor, then it is simple to calculate. To render

a reflection, a transformation about the reflection line is performed by the graphics

hardware. This transformation places the object where the virtual image belongs.

The mesh is then rasterized using a de-saturated alpha value to give a plausibly

lit reflective surface (Figure 5.3). The de-saturated alpha value is a user controlled

variable that changes the appearance of the reflection.

When a reflection does not fall on the floor another simple approximation

is utilized. In order to construct a reflection at the appropriate location in an

image, an arbitrary reflection line is established. The reflection line is calculated

as follows. First, the centroid of the reconstruction center and the center of the

reflected surface are found. The midpoint between these two centers is one point
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Eye

Side View of Object

Reflection Angle
Incident Angle =

View Ray

Virtual object reflected over the reflection line

Figure 5.3: This diagram shows that the incidence angle on the reflective surface

is the same as the angle of reflection on the same surface. The reflection line lies

in the plane of the surfaces perpendicular to the viewing ray. This observation

allows us to simplify our reflection rendering.

on the reflection line. The reflection line is constructed orthogonally to the line

formed between the centers. Figure 5.4 illustrates this calculation. This line is

then used as described in the previous paragraph.

Our program uses a default setting which gives the appearance of the reflection

on a polished wood surface. Our reconstructed mesh has only a few thousand

polygons that can be rasterized extremely quickly by the graphics hardware, and

since little extra computation is needed by the already taxed general purpose
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Figure 5.4: This diagram shows the calculation of a reflection line. The recon-

structed teapot is to be reflected onto the table top surface in blue. The teapot’s

reflection is mirrored over the reflection line in order to place the reflection cor-

rectly.

processor, there is a miniscule cost associated with rendering reflections.

5.4 Analysis

The reflections in our system offer yet another visual cue that establishes the

relationship between the real and synthetic parts of our composite image. We

add a reflection by utilizing calculations from previous stages of the system to

minimize processing time. The results are within the bounds of visual plausibility

and dynamically respond to changes in the system. Finally, the reflective surfaces

in the synthetic images can be selected so that the strongest reflective object,

whether it is on the floor, wall, table, or mirror can be shown. Our system cannot

handle reflections on partially occluded planar surfaces or on curved surfaces.

Although our reflection process provides adequate results, it is far from perfect
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Figure 5.5: The total processing time of the shadowing process is a significant

portion of the total rendering time per-frame. For this reason the reflection imple-

mentation must be extremely efficient in order to ensure real-time results.

and it certainly could be improved. First, to increase the visual cues and to be

able to correctly demonstrate compositing in a complex scene, such as a hall of

mirrors, this system should be extended to offer specular reflection on multiple

surfaces. This addition to the system would offer significant overhead since the

stencil buffer on the graphics card would be need to utilized to provide reflection

clipping. Secondly, even though this process scales in a purely linear fashion and

is very time efficient to begin with, the cumulative overhead of rendering our

reconstructed mesh many times would begin to be evident. The conclusion presents

an analysis of how this work should be improved in the long-term.
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Figure 5.6: Captured output from the Polyhedral Hull Online Compositing Sys-

tem showing a reconstructed mesh with texture blending, shadowing and a specular

reflection on the floor. The captured video object is fully merged into the RTGI

background environment.



Chapter 6

Conclusion

This thesis has presented the Polyhedral Hull Online Compositing System, a three-

dimensional reconstruction system that merges live video imagery with computer-

generated synthetic environments. The improvement that the Polyhedral Hull

Online Compositing System presents over previous systems is the real-time three-

dimensional reconstruction which allows the incorporation of limited but realis-

tic shadows and reflections for added realism. This system offers significant im-

provement over traditional two-dimensional processes such as chroma-keying, since

three-dimensional information can be exploited to correctly generate physically-

based global illumination effects. Furthermore, the Polyhedral Hull Online Com-

positing System presents techniques to merge texture information captured from

multiple sources so that they appear coherent. Because we have a three-dimensional

reconstruction obtained from multiple cameras, we also offer view- independence

to the end-user as there is a limited set of constraints placed on viewing the final

composite image.

The reconstruction system is built on widely available, consumer-grade hard-

ware in order to minimize cost and to provide an alternative to higher priced op-

tions while maintaining visually plausible results. This hardware is used to build a

pipeline to efficiently reconstruct, texture, composite, and add global illumination

effects to the final resulting image.

This thesis described two specific aspects of the pipeline: texturing and re-

flections. The texturing portion of the pipeline utilizes weighted importances of

captured images to determine the relevant portions of each reconstruction cam-
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era’s view. Once these portions are determined it is then possible to blend them

together to produce a final texture that looks coherent. During the reflections

stage of the pipeline, the live object is reflected onto a mirrored or polished surface

in order to visually link the disjoint parts of the composite [Let04] [PTG02].

6.1 Prototype System

This system served as an experimental model that demonstrated that the concepts

and design ideas are plausible. Overall the prototype is functional with some por-

tions of the system working better than others. One initial goal of this system

was to recreate a three-dimensional mesh from two-dimensional live video imagery

using multiple cameras. The visual hull reconstruction methods provided a reason-

able approximation of the three-dimensional geometry at interactive (15 fps) rates.

Unfortunately the reconstructed geometry suffered from two problems. First, the

extents of the reconstructed object did not match the physical extents; this caused

subsequent problems in the system related to texturing. Second, the reconstructed

geometry is not watertight, and although this is masked in some cases, it is a prob-

lem that will need to be addressed in the future. Once a mesh was generated, the

goal was to merge the view-independent mesh into a synthetic scene.

Merging this view-independent mesh into the synthetic scene was more difficult

than the reconstruction process. The biggest issues arose with the application of

the view-dependent textures for the mesh. Chapter 4 detailed the entire process of

reconstructing a texture utilizing rudimentary techniques that provided passable

results in some, but not all, cases. The system was able to capture texture informa-

tion from multiple cameras, simultaneously allowing for the selection or blending

of different textures. However, this did not mask the problems that arose when
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texture information was missing. In the end, it did not provide greater realism then

what could be provided by a single-texture camera. The texture information was

generally the same from frame to frame even though a new geometry was generated

each time, and this perceptually overrode the changing geometry. Blending two

or more textures is not a straightforward process. In order to blend two images

together the registration, or overlap between one another must be known. The

blended textures often suffered from discontinuities as in a region where one input

image is favored, by mathematical comparision, over another. This can often be

seen along edges of occlusion on an object.

The Global Illumination techniques, despite their simple implementations and

coarse approximation, provided convincing additional realism. The limited shad-

ows and reflections worked since human perception is generally unable to determine

which light a shadow is generated by or how light transport is hitting a surface to

cause a reflection.

6.2 Future Work

The Polyhedral Hull Online Compositing System demonstrated that it is possible

to merge imagery from real and synthetic scenes with view independence and have

have plausible results. Future systems could build off of this research and improve

the results to obtain superior quality systems to those available today which still

utilize two-dimensional techniques.

The first area of improvement is the reconstruction of the geometry. The most

important improvement would be to generate a single watertight mesh with a tight

bound on the actual object being reconstructed. More cameras and processing

power would aid this process, but the reconstruction algorithm itself may need to
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be modified as well.

Another area that needs improvement is the generation of global illumination

effects. Currently, the global illumination effects only support a single shadow

and a single reflection. A significant improvement could be achieved by utilizing

a system which can dynamically update objects on a per-frame basis. This would

allow for the support of support more complex global illumination effects including

interreflections and multiple shadows.

Finally, the texturing process offers opportunities for vast improvement. Sim-

ple improvements such as adding more cameras could help to provide a better

prototype, but would not completely solve the problem. Algorithms and tech-

niques need to be developed to resample, interpolate, and re-use texture data in a

meaningful way from frame to frame. In order to re-use texture data, correspon-

dences would have to be registered on a per-pixel basis from camera to camera.

These correspondences would indicate which pixels are the same in each image.

Currently only the relationships between the physical locations of the cameras in

a scene are known, not the information that a camera captures. Pixel to pixel

correspondences between the cameras could greatly aid in fully view-independent

texture reconstruction that looks accurate.

6.3 Summary

This thesis focused on the texturing and reflections process of the Polyhedral Hull

Online Construction System. The system utilizes three-dimensional information

to merge live video with synthetic imagery such that a visually plausible composite

can be generated in real-time, allowing the end-user to navigate around the com-

posited environment and view both the real and synthetic objects together. The
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prototype system accomplished the overall goal: to merge the reconstructed three-

dimensional objects from live video imagery and the computer-generated synthetic

scenes in a globally illuminated environment at interactive rates. Hopefully, in the

future, this system will be improved upon by reducing computation times and

creating more realistic images with more advanced global illumination integration.

The results shown in this thesis are exciting and we hope they motivate new work

on this topic.



Appendix A

Camera Calibration

The camera calibration toolbox for MATLAB was used exclusively for determining

the intrinsic and extrinsic parameters of the cameras in our system. The input

to the toolbox is a sequence of digital images, each containing the surface of a

checkerboard. The user selects the four corners which define the outer extents

of the checkerboard, and the software can then perform automatic extraction of

the internal grid corners. As the toolbox computes the grid corners, it prompts

the user to enter a value for the adjustment of radial distortion (if desired). The

main calibration routine can then be executed, which utilizes a gradient descent

technique to minimize the reprojection error of the grid pixels. This returns the

internal and external parameters of the camera.

The format of the returned data is such that each camera is considered its own

world reference frame, and the rotation and translation vector to the grid origin

are given. This is not ideal for our purposes, as we require a single world reference

frame, in terms of which each camera basis and position are given. To make this

conversion, we invert each camera’s rotation matrix, by taking its transpose, and

then we negate each camera’s translation vector and multiply it by the camera’s

new rotation matrix. In MATLAB syntax, this resolves to the following for a single

camera:

Camera1 RotationMatrix = Rc 1’

Camera1 Translation = Camera1 RotationMatrix * (-Tc 1)
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Where “Rc 1” is the rotation matrix returned by the toolbox for Camera 1 and

“Tc 1” is the translation vector returned by the toolbox for Camera 1. After we

have the location and pose of each camera in terms of a global reference frame, we

convert the reference frame such that it is the same right-handed basis that our

system uses internally. In our system, the x-axis is positive to the left, the y-axis

is positive in the up direction, and the z-axis is positive going into the screen. The

MATLAB syntax to make this conversion for a single camera is:

Cam1 RotTmp = [Cam1 RotMat(2,:); -Cam1 RotMat(1,:); Cam1 RotMat(3,:)]

Cam1 RotationFixed = [-Cam1 RotTmp(:,1) -Cam1 RotTmp(:,2) Cam1 RotTmp(:,3)]

Cam1 TranslationFixed = [Cam1 Trans(2,:); -Cam1 Trans(1,:); Cam1 Trans(3,:)]

The “fixed” rotation matrices and translation vectors, along with the principal

point and focal length, are stored in a settings file that is loaded into our program

each time it is executed. This provides the necessary information for computing

the cameras’ projection matrices as well as the fundamental matrices which relate

the cameras.



Appendix B

Trigger Circuit Design

Each of the DFW-X700 cameras has an external trigger that can be used to drive

the capture process, by sending a low pulse of at least 1MS duration on the “TRIG

IN” connector, pin 3. The cameras have an internal pull-up resistor, so in order to

trigger the low signal, we simply pull pin 3 to ground when we want an image to

be captured. For our trigger design, we take advantage of the serial port, COM1,

on the central server. According to the RS232 standard, the serial port transmits

a ‘1’, or logic high, as -3 to -25 volts and a ‘0’, or logic low, as +3 to +25 volts. We

use the data transmit pin on the DB9 serial port connection to control our trigger

circuit. When no data is being actively transmitted, our serial port outputs -11

volts on the data transmit pin. When we want the signal to go high, we write out

a packet of zeros, and the data transmit pin goes to +7.5 volts.

The trigger circuit is quite simple and consists of an NPN transistor and a

2.2k resistor. The signal ground (SG) from the serial port, pin 5, is tied to the

emitter pin on the 2N3904 transistor, as is the ground from each of the four trigger

cables which run to the cameras. The data transmit pin (DT), or pin 3, from the

serial port is tied to the base pin on the transistor through the 2.2k resistor, and

the collector pin is attached to the positive leads of the trigger cables. When our

software, running on the server, writes a string of zeros to the serial port, the DT

pin goes high, permitting the flow of electrons from the emitter to the collector,

and pulling the “TRIG IN” pins on each of the cameras to ground. This causes

the trigger to fire, and an image to be captured.
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