
Polynomial and Sinusoidal Functions Lesson #7: J . !
Polynomial Functions of Degrees Zero, One, and Two '
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In this unit, we will describe the characteristics of polynomial functions and sinusoidal
functions by analyzing their graphs and their equations. We will also determine the
polynomial function or sinusoidal function that best approximates data and solve problems
where a polynomial function or sinusoidal function can be used to model a situation.
In the first half of the unit we will focus on polynomial functions and in the second half of
the unit we will focus on sinusoidal functions.

Polynomial Functions

A polynomial function consists of one or more terms, which are separated
by + or - signs.

We have already met polynomial functions in one variable in previous mathematics courses.

For example, the functions f(x) = x2 - 4x - 5, fix) = 2x - 4, and fix) = 3 are polynomial
functions we have studied in earlier courses.

The degree of a polynomial function is the value of the highest exponent in the function.

If a polynomial function includes a term with no variable, this term is called a constant term.

a) Complete the following.

• The degree of fix) = x - 4x - 5 is " . The constant term is ' .

• The degree of fix) = 2x - 4 is ¦ The constant term is ____ .

• Since fix) = 3 can be written as fix) = 3x , the degree of fix) = 3. is .

A number that multiplies the variable in a polynomial is called a coefficient.
The leading coefficient is the number that multiplies the term with the highest power.

b) Complete the following.

• The leading coefficient of fix) = x2 - Ax - 5 is .
*

• The leading coefficient of fix) = 2x - 4 is

In a polynomial function, all the coefficients must be real numbers,
and all the exponents must be whole numbers.

c) Write a polynomial function that satisfies the following conditions.

• degree 2, leading coefficient-3 fifi) - -¦¦¦¦¦¦

• degree 2, leading coefficient 7, two terms fix) =   

» degree 1, leading coefficient 1 fix) = .  '

• degree 0 fix) =    

• degree 3, constant term -8 fix) = ¦¦¦
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332 Polynomial and Sinusoidal Functions Lesson #1: Polynomial Functions of Degrees 0,1, and 2

In the next three lessons, we will investigate the characteristics of polynomial functions
¦ of degrees 0,1,2, and 3.

Investigating Polynomial Functions of Degree Zero
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1. The graph of the function XT) = 3 is shown.

a) State the domain and range of fix) = 3.

£ ft rwif.
b) Write two other functions of degree zero

which can be graphed on the same grid.

iV?) = I f d*): -1
c) Sketch and label each of the functions in

b) on the grid.

d) Describe the general shape of each graph.
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e) State the number of y-intercepts of each graph. 1

f) Do any of your graphs have an x-intercept? If so, state the function. If not, can you
determine a polynomial function of degree zero that does have x-intercepts?
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g) Describe the relationship between the equation of each function
and the range of the function.
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Generalize the above work to complete the following statements
about all polynomial functions of degree zero in the form fix) = c.

a) The graph is a   line with a slope of   .

b) The domain is ¦  .

c) The range is ^ • (

d) There are x-intercepts, except for the :hinction/(x) = 1 '' .

e) There is 1 y-intercept.

3. a) Does the value of a polynomial function of degree zero depend on the value of x?

b) Since the values of a polynomial function of degree zero remain constant for all vah

of x, this type of function is called a     function.
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Investigating Polynomial Functions of Degree One

The graphs of four polynomial functions
of degree one are shown.

a) The graphs shown have many
characteristics in common. Make a list
of the common characteristics in the
space below.
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[x) = 2x - 4

h(x) = - —x
2

g(x) = -~x-4

b) How does the constant term in the polynomial function relate to one of the
characteristics of the graph?

c) How can you tell from the equation of the polynomial function whether the line
increases from quadrant 3 to quadrant 1 or decreases from quadrant 2 to quadrant 4?

d) The polynomial functions g(x) and h(x) are represented graphically by parallel lines.
i) How can we tell from the equations of the functions that this is the case?

ii) In general, what feature of the graph is represented by the leading coefficient
of a polynomial function of degree one?

2. Generalize the above work to complete the following statements
about all polynomial functions of degree one in the form ftx) = mx + b.

a) The shape of the graph is a i ivyL. with a slope of i .

b) The domain is . c) The range is .

d) There is 1. x-intercept and ¦¦ y-intercept. e) The y-intercept is O .

f) The direction of the line is determined by the value of the leading coefficient.
i) If the leading coefficient is , the line slopes up from quadrant 3

to quadrant 1.
ii) If the leading coefficient is  , the line slopes down from quadrant 2

to quadrant 4.

g) Since the graph of a polynomial function of degree one is a straight line, this type of
function is called a function.
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334 Polynomial and Sinusoidal Functions Lesson #1: Polynomial Functions of Degrees 0,1, and 2

Investigating Polynomial Functions of Degree Two

Polynomial functions of degree two are called quadratic functions and were studied in a
previous mathematics course.

1. The graphs of four polynomial functions of degree two are shown.

a) From the list of characteristics below, circle the ones which are the same for all the
graphs.

• Domain

• Range

• Number of x-inlercepts

{ • Number of y-intercepts

b) How does the y-intercept of each graph relate to the equation of the quadratic
function?
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c) The graphs are all parabolas opening up or down.

They all have one turning point which is either a maximum or mmimimi
:1

i) How can you tell from the equation of the polynomial function whether the
parabola opens up or opens down? HM.; ;
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ii) How can you tell from the equation of the polynomial function whether the
turning point is a maximum or a minimum?
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iii) Hie range can be written in the form y < number, or y > number.
How can you tell from the equation of the polynomial function which form is
appropriate?
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2. The graphs on the previous page show that polynomial functions of degree two can have
0,1, or 2 x-intercepts. The x-intercepts are the same as the zeros of the function.

Three of the functions on the previous page can be written in factored form as shown below.
Complete the following:

P P

a) The graph of j(x) = x2 - 4x + 5 = (x + Dfx - 5)1 has x-intercepts. at * I and u .

b) The graph of g(x) = -2x2 + 8x + 10 = -2(x + l)(x - 5) has J x-intercepts.
at -1 and

atc) The graph of h(x) = -2x2 + 8x - 8 = -2(x - 2)2 has J_ x-intercept

Consider the functions P(x) = 7(x - l)(x + 6) and Q(x) = -(x + 3)2.

a) State the zeros of each function.

b) Complete the table below with the characteristics of the graph of each function.

u

Direction of Number of Value(s) of Value of
Opening x-intercepts x-intercept(s) y-intercept

P(x) U-iP ' —

Q(X) ! _ .< —

/L ) /f /jf'i ' u

6s(£) -((' i i) '
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336 Polynomial and Sinusoidal Functions Lesson #1: Polynomial Functions of Degrees 0,1, and 2

End Behaviour of the Graph of a Polynomial Function

The end behaviour of the graph of a polynomial function describes the appearance of the
graph at the left and at the right tail, i.e. as the graph extends further and further to the left and
further and further to the right.

Degree Zero
For the graph of a polynomial function of degree 0 (i.e. a constant function), the Figure A
end behaviour at each tail is to remain at its constant value, as seen in Figure A. ^.
From left to right, the line extends from quadrant 2 to quadrant 1, or from
quadrant 3 to quadrant 4, or is the x-axis.

Degree One
For the graph of a polynomial function of degree 1 (a linear function), the end behaviour is
determined by the leading coefficient.

Complete the following, inserting the word "up" or "down" in each blank space.
Figure B

• If the leading coefficient is positive, as in Figure B, then the right tail of the
graph goes ' and the left tail of the graph goes .

Figure C
• If the leading coefficient is negative, as in Figure C, then the right tail of the

graph goes ri t\ m and the left tail of the graph goes .

Degree Two •

For the graph of a polynomial function of degree 2 (i.e. a quadratic function), the end
behaviour is also determined by the leading coefficient.

Complete the following, inserting the word "up" or "down" in each blank space.

• If the leading coefficient is positive, as in Figure D, then the right tail of Figure D
the graph goes _____ and the left tail of the graph goes _____ .

• If the leading coefficient is negative, as in Figure E, then the right tail of Figure e
the graph goes   and the left tail of the graph goes .

V
A

Complete the table using the word "up" or "down" to describe the end behaviour of the
graph of each function and the word "maximum", "minimum", or "none" to describe the
nature of the turning point of each graph.

Left Tail Right Tail Nature of
Turning Point

f(x) = -2x + 4 •

g(x) = 2x2~7
1 L..4 ¦*

h(x) = -5 + 3x

k(x) - 6 - 2x - xz ¦¦¦ ¦:

Complete Assignment Questions #1 - #9
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Assignment
1. Write a polynomial function/ix) of

a) degree zero b) degree one c) degree two

2. Write a polynomial ftmction_/(x) that satisfies the following conditions:

a) degree 2, leading coefficient 5

b) degree 0, y-intercept 5

c) degree 1, constant term -3

3. a) From the list of characteristics below, circle the ones that are the same for the graphs of
all polynomial functions of degree one. ' _

• Domain • Range • Number of x-intercepts • Number of y-intercepts

b) From the list of characteristics below, circle the ones that are the same for the graphs of
all polynomial functions of degree two.

• Domain • Range • Number of x-intercepts • Number of y-intercepts

4. a) Complete the table below with the characteristics, of the graph of each function.

Direction of
Opening

Number of
x-intercepts

Value(s) of
x-intercept(s)

Value of
y-intercept

P(x) = (x - l)(x + 5)

<2(x) = (x + 4)2

R(x) = x(2 - x)

b) State the zeros of P(x), Q(x), and R(x).
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