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Abstract We present the first polynomial-time approximation schemes (PTASes)
for the following subset-connectivity problems in edge-weighted graphs of bounded-
genus: Steiner tree, low-connectivity survivable-network design, and subset
TSP. The schemes run in O(n log n) time for graphs embedded on both ori-
entable and nonorientable surfaces. This work generalizes the PTAS framework
from planar graphs to bounded-genus graphs: any problem that is shown to
be approximable by the planar PTAS framework of Borradaile, Klein, and
Mathieu (2007) will also be approximable in bounded-genus graphs by our
extension.

Keywords polynomial-time approximation scheme · bounded-genus graphs ·
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1 Introduction

In many practical scenarios of network design, input graphs have a natural
drawing on the sphere or, equivalently, the plane. In most cases, these em-
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beddings have few crossings, either to avoid digging multiple levels of tunnels
for fiber or cable or to avoid building overpasses in road networks. But a few
crossings are common, and can easily come in bunches where one tunnel or
overpass might carry several links or roads. Thus we naturally arrive at graphs
of small (bounded) genus, which is the topic of this work.

We develop a PTAS framework for subset-connectivity problems on edge-
weighted graphs of bounded-genus. In general, we are given a subset of the
nodes, called terminals, and the goal is to connect the terminals together with
some substructure of the graph by using cost within 1 + ε of the minimum
possible cost, for small ε. Our framework applies to three well-studied problems
in this framework. In Steiner Tree, the substructure must be connected, and
thus forms a tree. In Subset Tsp, the substructure must be a cycle; the cycle
may traverse vertices and edges multiple times, but pays for each traversal.
In {0, 1, 2}-edge-connectivity Survivable Network, the substructure must
have min{cx, cy} edge-disjoint paths connecting vertices x and y, where each
cx ∈ {0, 1, 2}; we allow the substructure to include multiple copies of an edge
in the graph, but pay for each copy separately. In particular, if cx = 1 for all
terminals x, then we obtain Steiner Tree; if cx = 2 for all terminals x, then
we obtain the minimum-cost 2-edge-connected multi-subgraph problem.

Our framework yields the first PTAS for all of these problems in bounded-
genus graphs. These PTASes are efficient, running in O(f(ε, g)n + n log n) =
Oε,g(n log n) time for graphs embedded on orientable surfaces and nonori-
entable surfaces. (We usually omit the mention of f(ε, g) by assuming ε and g
are constant, but we later bound f(ε, g) as singly exponential in a polynomial
in 1/ε and g.) In contrast, the problems we consider are APX-complete (and
constant-factor-approximable) for general graphs.

We build upon the recent PTAS framework of Borradaile, Klein, and Math-
ieu [9] for subset-connectivity problems on planar graphs. In fact, our re-
sult is strictly more general: any problem to which the previous planar-graph
framework applies can automatically be approximated by our framework as
well, resulting in PTASes for bounded-genus graphs. For example, Borradaile
and Klein [6] have recently given a PTAS for the {0, 1, 2}-edge-connectivity
Survivable Network problem using the planar framework. This will imply
a similar result in bounded-genus graphs. At the end of the paper, we discuss
progress (since the conference version of this paper appeared in 2009) on PTAS
development in planar graphs and how our paper fits in with this progress.
In contrast to the planar-graph framework, our PTASes have the attractive
feature that they run correctly on all graphs with the performance degrading
with the genus.

Our techniques for attacking bounded-genus graphs includes the recent
result of decompositions into bounded-treewidth graphs via contractions [14].1

We also use a simplified version of an algorithm for finding a short sequence of

1 Before the publication of [14], we used [15] together with fast algorithms for finding
shortest noncontractible cycles [10] but this can be avoided now.
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loops on a topological surface [18], and sophisticated dynamic programming.
Our aim is to prove the following theorem:

Theorem 1 There exists a PTAS for the Steiner Tree, Subset Tsp, and
{0, 1, 2}-edge-connected Survivable Network problems in edge-weighted graphs

of genus g with running time O(2poly(ε
−1,g)n+ n log n).

2 Preliminaries

All graphs G = (V,E) have n vertices, m edges and are undirected with edge
lengths (weights). The length of an edge e is denoted by `(e); the sum of
the lengths of the edges in a subgraph H or set of subgraphs H are denoted
`(H) and `(H), respectively. The shortest distance between vertices x and y
in a graph G is denoted distG(x, y). The boundary of a graph G embedded
in the plane is denoted by ∂G. For an edge e = uv, we define the operation
of contracting e as identifying u and v and removing all loops and duplicate
edges.

2.1 Embedded graphs

We use the basic terminology for embeddings as outlined by Mohar and
Thomassen [27]. In this paper, an embedding refers to a 2-cell embedding,
i.e., a drawing of the vertices and faces of the graph as points and arcs on a
surface such that every face is homeomorphic to an open disc. Such an em-
bedding can be described combinatorially by specifying the cyclic ordering of
edges around each vertex of the graph. A combinatorial embedding of a graph
G naturally induces such a 2-cell embedding on each subgraph of G. We only
consider compact surfaces without boundary.

If a surface contains a subset homeomorphic to a Möbius strip, it is nonori-
entable; otherwise it is orientable. For a 2-cell embedded graph G with f facial
walks, the number g = 2 +m− n− f is called the Euler genus of the surface.
The Euler genus is equal to twice the usual genus for orientable surfaces and
equals the usual genus for nonorientable surfaces. The dual of an embedded
graph G is defined as having the set of faces of G as its vertex set and having
an edge between two vertices if the corresponding faces of G are adjacent.
We denote the dual graph by G? and identify each edge of G with its corre-
sponding edge in G?. A cycle of an embedded graph is contractible if it can be
continuously deformed to a point; otherwise it is noncontractible.

We say that two paths P and Q cross at vertex x if there is a component
X of P ∩ Q that contains x such that, upon contracting X, edges of P and
Q alternate in the cyclic embedding around the contracted vertex. A cycle is
non-crossing if no two subpaths of the cycle cross.

We cut along a 2-sided cycle C by partitioning the edges adjacent to C
into left and right edges and replacing C with two copies C` and Cr, adja-
cent to the left or right edges, accordingly. The inside of these new cycles is
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“patched” with two new faces. If the resulting graph is disconnected, the cycle
is called separating, otherwise nonseparating. Cutting along a 1-sided cycle C
on nonorientable surfaces is defined similarly, only that C is replaced by one
bigger cycle C ′ that contains every edge of C exactly twice. We can likewise
cut along a tree T by taking C to be a non-crossing Euler tour of T . Cutting
along a tree creates a single new face corresponding to the inside of T . An
example of these concepts is illustrated in Figure 3. Mohar and Thomassen
give further technical details [27, pages 105–106].

2.2 Treewidth

Next we define the notions related to treewidth as introduced by Robertson
and Seymour [29]. A tree decomposition of a graph G is a pair (T, χ), where
T = (I, F ) is a tree and χ = {χi|i ∈ I} is a family of subsets of V (G), called
bags, such that

1. every vertex of G appears in some bag of χ;
2. for every edge e = uv of G, there exists a bag that contains both u and v;
3. for every vertex v of G, the set of bags that contain v form a connected

subtree Tv of T .

The width of a tree decomposition is one less than the maximum size of a bag
in χ. The treewidth of a graph G, denoted by tw(G), is the minimum width
over all possible tree decompositions of G.

2.3 Input definition

The input graph is G0 = (V0, E0) and has genus g0; the terminal set is Q. We
assume G0 is equipped with a combinatorial embedding; such an embedding
can be found in linear time if the genus is known to be fixed [26]. Let P be
the considered subset-connectivity problem. In Section 4.1, we show how to
find a subgraph G = (V,E) of G0, such that for 0 ≤ ε ≤ 1, there exists a
(1 + ε)-approximate solution of P in G0 that is also in G. Hence, we may use
G instead of G0 in the rest of the paper. Note that as a subgraph of G0, G is
automatically equipped with a combinatorial embedding.

Let OPT denote the length of an optimal Steiner tree spanning terminalsQ.
We define OPTP to be the length of an optimal solution to problem P. For the
problems that we solve, we require that OPTP = Θ(OPT) and in particular
that OPT ≤ OPTP ≤ µOPT for a constant µ > 1. The constant µ will be
used in Section 4 and is equal to 2 for both the subset TSP and {0, 1, 2}-
edge-connectivity problems. This requirement is also needed for the planar
case [6]. Because OPTP ≥ OPT, upper bounds in terms of OPT hold for all
the problems herein. As a result, we can safely drop the P subscript throughout
the paper.
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We show how to obtain a (1 + cε) OPTP solution for a fixed constant c.
To obtain a (1 + ε) OPTP solution, we can simply use ε′ = ε/c as input to the
algorithm.

2.4 Organization of the paper

In the next section, we overview the PTAS framework as developed by Bor-
radaile, Klein and Mathieu [9]. This framework involves constructing a grid-like
subgraph called the mortar graph, whose faces are referred to as bricks. They
prove a Structure Theorem that shows that there is a near-optimal solution to
P that crosses the boundary of each brick only a constant number of times.
Given this construction and structural property, they develop two methods for
obtaining a PTAS: by way of constructing a spanner, using the mortar graph
as a skeleton, followed by dynamic programming [7] and more directly by dy-
namic programming over the bricks [8]. These methods result in PTASes with
doubly and singly exponential dependence on poly(ε−1), respectively.

In the later sections, we generalize this framework to bounded-genus graphs.
In Section 4, we show how to construct a mortar graph for bounded-genus
graphs. We argue that a corresponding Structure Theorem follows directly
from the planar framework. In Sections 5.1 and 5.3, we show how to gener-
alize the two methods for obtaining a PTAS in planar graphs to bounded-
genus graphs. Finally, in Section 6, we prove a Structure Theorem for the
Subset Tsp problem. In planar graphs, a PTAS for this problem predated
(and inspired) the planar PTAS framework. However, in order to obtain a
PTAS for Subset Tsp in bounded-genus graphs, we must either generalize
the direct PTAS of Klein [22] or prove a Structure Theorem so that the PTAS
framework applies. We opt for the latter.

3 The planar framework (in abstract form)

In this section, we review the framework introduced by Klein [23] to obtain
approximation schemes in planar graphs and how it was used by Borradaile et
al. [9] for a PTAS for Steiner Tree in planar graphs. However, we already
generalize the concepts to a more abstract form that can be applied to the
bounded-genus case as well. In Section 3.6, we review a modified version of this
framework that was introduced in [9] to obtain a PTAS with better dependence
on 1/ε.

Let G be a graph with edge weights and OPT the solution value of an
optimization problem. The framework proposed by Klein [23] consists of the
following four steps:

1. Spanner step: Find a subgraph Gspan of G that has weight O(OPT) and
contains a (1 + ε

2 )-approximation of the optimal solution. Gspan is called a
spanner for the given problem.
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2. Thinning step: Find and contract a set of edges of Gspan of weight at most
O(εOPT) to obtain a graph Gthin that has bounded treewidth.

3. Dynamic-programming step: Use dynamic programming on graphs of bounded
treewidth to find the optimal solution to the problem in Gthin.

4. Lifting step: Convert this solution to a solution in G by incorporating some
of the edges that were contracted in the thinning step.

For planar graphs, it turns out that the most difficult step is the spanner
construction. Borradaile et al. [9] introduce the concept of a mortar graph
as an intermediate step and together with a Structure Theorem show how to
obtain a spanner for the Steiner Tree problem. We are going to review these
concepts, as needed for our work, below.

The technique used for thinning is called contraction decomposition and
has been recently generalized to all classes of H-minor-free graphs [14], which
include, in particular, bounded-genus graph. We review this technique in Sec-
tion 3.4.

3.1 Mortar graph

In [9], Borradaile, Klein and Mathieu developed a PTAS for the Steiner Tree
problem in planar graphs. The method involves finding a grid-like subgraph
called the mortar graph that spans the input terminals and has lengthO(OPT).
The set of feasible Steiner trees is restricted to those that cross between adja-
cent faces of the mortar graph only at a small number (per face of the mortar
graph) of pre-designated vertices called portals. A Structure Theorem guaran-
tees the existence of a nearly optimal solution (one that has length at most
(1 + ε) OPT) in this set.

Here we define the mortar graph in a more general way that also applies
to higher genus graphs. A path P in a graph G is ε-short in G if for every pair
of vertices x and y on P , the distance from x to y along P is at most (1 + ε)
times the distance from x to y in G: distP (x, y) ≤ (1 + ε) distG(x, y). Given a
graph G embedded on a surface and a set of terminals Q, a mortar graph is a
subgraph of G with the following properties:

Definition 1 (Mortar Graph and Bricks) Given a graph G embedded on
a surface of genus g, a set of terminals Q, and a number 0 < ε ≤ 1, consider a
subgraph MG := MG(G,Q, ε) of G spanning Q such that each facial walk of
MG encloses an area homeomorphic to an open disk. For each face F of MG,
we construct a brick B of G by cutting G along the facial walk ∂F ; B is the
planar subgraph of G embedded inside the face, including ∂F . We denote this
facial walk as the mortar boundary ∂B of B. We define the interior of B as
B without the edges of ∂B. We call MG a mortar graph if for some constants
α(ε, g) and κ(ε, g) (to be defined later), we have `(MG) ≤ αOPT and every
brick B satisfies the following properties:

1. B is planar.
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(a) (b) (c)

(d) (e)

Fig. 1 (a) An input graph G with mortar graph MG given by bold edges in (b). (c) The
set of bricks corresponding to MG. (d) A portal-connected graph, B+(MG, θ). The portal
edges are grey. (e) B+(MG, θ) with the bricks contracted, resulting in B÷(MG, θ). The dark
vertices are brick vertices.

2. The boundary of B is the union of four paths in the clockwise order W ,
N , E, S.

3. Every terminal of Q that is in B is on N or on S.
4. N is 0-short in B, and every subpath of S is ε-short in B (unless both E

and W are trivial paths, in which case every proper subpath of S is ε-short
in B).

5. There exists a number k ≤ κ and vertices s0, s1, s2, . . . , sk ordered from
left to right along S such that, for every i:

for any vertex x of S[si, si+1), the distance from x to si along S
is less than ε times the distance from x to N in B: distS(x, si) <
ε · distB(x,N).

The mortar graph and the set of bricks are illustrated in Figures 1 (a), (b)
and (c). We use the algorithm for finding a mortar graph in a planar graph as a
black-box, and hence it is not necessary to repeat the details of the algorithm.
We only present a rough sketch in order to introduce the main concepts that
are relevant to this work (see Fig. 2):

1. Find a 2-approximate Steiner tree T [25] and cut the graph open along T
to obtain a distinguished face H that we may think of as the outer face of
the graph.

2. Find shortest paths between certain parts of H. These paths result in the
N and S boundaries of the bricks.

3. Find shortest paths between certain vertices of the paths found in Step 2.
These paths are called columns, do not cross each other, and have a natural
order.
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T

(a) (b)

f
T

(c)

G’

(d)

N

S

(e)

Fig. 2 Construction of a mortar graph: (a) a 2-approximate Steiner tree T (with dark
edges); (b) splitting the 2-approximation along its Euler tour; (c) thinking of the newly
created face as the outer face; (d) adding shortest paths that comprise the north and south
boundaries of bricks with one shaded strip; (e) finding the columns inside each of the strips
from S to N .

4. Take every κth path found in Step 3. These paths are called supercolumns
and form the E and W boundaries of the bricks. We refer to κ as the
spacing of the supercolumns.

The mortar graph is composed of the edges of T (equivalently, H) and the
edges found in Steps 2 and 4. In [9], it is shown that the total length of the
mortar graph edges is at most 9ε−1 OPT.

One crucial observation is that the mortar graph can be built based on any
face H of a planar graph, as long as H contains all terminals and its weight is
bounded in terms of OPT. Therefore, we state the mortar graph construction
theorem of Borradaile et al. [9] in this more abstract form, based on the face
H instead of OPT:

Theorem 2 ([9]) Let 0 < ε ≤ 1 and G be a planar graph with outer face H
containing the terminals Q and such that `(H) ≤ α0 OPT, for some constant
α0. For α = (2α0 + 1)ε−1, there is a mortar graph MG(G,Q, ε) containing H
whose length is at most αOPT and whose supercolumns have length at most
εOPT with spacing κ = α0ε

−2(1 + ε−1). The mortar graph can be found in
O(n log n) time.

3.2 Structure Theorem

Along with the mortar graph, Borradaile et al. [9] define an operation B+ called
brick-copy that allows a succinct statement of the Structure Theorem. For each
brick B, a subset of θ vertices are selected as portals such that the distance
along ∂B between any vertex and the closest portal is at most `(∂B)/θ. For



9

every brick B, embed B in the corresponding face of MG and connect every
portal of B to the corresponding vertex of MG with a zero-length portal edge:
this defines B+(MG, θ). B+(MG, θ) is illustrated in Figure 1 (d). We denote
the set of all portal edges by Eportal. The following simple observation also
holds for bounded-genus graphs:

Observation 1 ([9]) If A is a connected subgraph of B+(MG, θ), then A −
Eportal is a connected subgraph of G spanning the same vertices of G.

The Structure Theorem is the heart of the correctness of the PTASes. It
essentially says that there is a constant θ depending polynomially on ε−1 such
that in finding a near-optimal solution in G, we can restrict our attention to
B+(MG, θ). We will state the theorem in its exact form for bounded-genus
graphs in Section 4.4.

3.3 Obtaining a spanner

Once a mortar graph MG is constructed, a spanner can be obtained as follows:
for each brick B defined by MG and for each subset X of the portals of B, find
the optimal Steiner tree for X in B (using the method of Erickson et al. [19]);
the spanner is the union of all these trees over all bricks plus the edges of the
mortar graph. The weight of the spanner is bounded by 2poly(ε

−1) OPT and it
can be constructed in O(n log n) time. The fact that the spanner contains a
near optimal solution follows from the Structure Theorem. See Section 5.1 for
the exact details and proof for all considered subset-connectivity problems in
bounded-genus graphs.

3.4 Contraction decomposition

Contraction decomposition is an algorithmic technique first introduced for
planar graphs [23], then generalized to bounded-genus graphs [15], and recently
to all H-minor-free graphs [14]. It essentially says that for a given H-minor-
free graph G and parameter η, we can partition the edges of G into η parts
such that contracting any part results in a graph of bounded treewidth.

The way to prove this theorem for planar graphs is similar to Baker’s
shifting technique for approximation schemes [3] but applied in the dual: the
algorithm is reduces to a breadth-first search in the dual and numbering the
layers periodically modulo k (however, the details are technically more in-
volved). For bounded-genus graphs, an O(n log n) algorithm was given in [15]
but the result on H-minor-free graphs [14] contains an improved algorithm for
bounded genus graphs that is essentially a breadth-first search in the radial
graph and runs in linear time:

Theorem 3 (Contraction Decomposition [14]) For a fixed genus g, and
any integer η ≥ 2 and for every graph G of Euler genus at most g, the edges
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of G can be partitioned into η sets such that contracting any one of the sets
results in a graph of treewidth at most O(g · η). Furthermore, such a partition
can be found in linear time.

3.5 PTAS via spanner

Together with the spanner obtained above, Klein’s framework [23] – that was
introduced in the beginning of this section – implies an O(n log n) PTAS for
Steiner Tree with doubly exponential dependence on ε−1 in planar graphs:

by choosing η = O(
`(Gspan)

εOPT ), we obtain a set of edges of weight O(εOPT)
to perform the thinning step, and then the dynamic programming and lifting
steps can easily follow.

3.6 PTAS via dynamic programming over bricks

In [9], Borradaile et al. present a PTAS that is singly exponential in a poly-
nomial in ε−1 for Steiner Tree in planar graphs. The idea is to incorporate
the spanner step into the dynamic-programming (DP) step and to use a some-
what modified thinning step. To this end, the operator brick-contraction B÷
is defined to be the application of the operation B+ followed by contracting
each brick to become a single vertex of degree at most θ (see Figure 1(e)).

The method we present for bounded-genus graphs in this work is different
and more generic than that of Borradaile et al. [9] and is given in Section 5.3.
However, for the sake of completeness and to make the differences clear, we
briefly review the earlier method below.

The thinning algorithm is applied to the mortar graph (as opposed to
a spanner) and since the weight of the mortar graph is polynomial in ε−1,
we are able to save an exponent at this stage. However, in [9] the thinning
is not done via a black-box contraction decomposition algorithm but rather
by decomposing the mortar graph into parts of bounded dual radius, called
parcels, such that the weight of the total boundary of all parcels is bounded by
O(εOPT). The operation B÷ is applied to each parcel individually and since
the number of portals is constant per brick, the bounded dual radius property
is maintained.

Afterwards, a carving decomposition of each parcel is found in such a way
that the contracted bricks appear only at the leaves of the decomposition tree.
A carving decomposition is a concept similar to a tree decomposition that
allows for efficient DP algorithms for hard problems when the width is small
– which is the case since the parcels have small dual radius. At those leaves of
the decomposition tree which are contracted bricks, we compute a DP table
containing optimal Steiner trees inside the brick for all possible noncrossing
partitions of the portals of the brick using the algorithm of [19]. Then we
combine these solutions with the rest of the parcel as we work our way up the
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carving decomposition tree – similar to standard DP algorithms on bounded
treewidth graphs.

Finally, we are able to combine the solutions of all parcels into a global
solution for the whole graph by incorporating the parcel boundaries since they
have negligible weight (to be precise, a number of auxiliary terminals have to
be added to the parcels to make this work but the details are not important
in this work).

4 Mortar graph and Structure Theorem for bounded-genus graphs

We use Theorem 2 to prove the existence of a mortar graph for genus-g em-
bedded graphs. This section is devoted to proving the following theorem:

Theorem 4 Let an embedded edge-weighted graph G of Euler genus g, a subset
of its vertices Q, an 0 < ε ≤ 1, and µ ≥ 1 be given. For α = (32µg + 9)ε−1,
there is a mortar graph MG(G,Q, ε) of G such that the length of MG is ≤
αOPT and the supercolumns of MG have length ≤ εOPT with spacing κ =
(16µg + 4)ε−2(1 + ε−1). The mortar graph can be found in O(n log n) time.

Let G0 = (V0, E0) be the input graph of genus g0 and Q be the terminal set.
In a first preprocessing step, we delete a number of unnecessary vertices and
edges of G0 to obtain a graph G = (V,E) of genus g ≤ g0 that still contains
every (1 + ε)-approximate solution for terminal set Q for all 0 ≤ ε ≤ 1 while
fulfilling certain bounds on the lengths of shortest paths. In the next step,
we find a cut graph CG of G that contains all terminals and whose length
is bounded by a constant times OPT. We cut G open along CG, so that it
becomes a planar graph with a simple cycle σ as boundary, where the length
of σ is twice that of CG. See Figure 3 for an illustration. Afterwards, the
remaining steps of building the mortar graph can be the same as in the planar
case, by way of Theorem 2.

For an edge e = vw in G0, we let

distG0
(r, e) = min{distG0

(r, v),distG0
(r, w)}+ `(e)

and say that e is at distance distG0
(r, e) from r.

4.1 Preprocessing the input graph

Our first step is to apply the following preprocessing procedure:

Algorithm Preprocess(G0, Q, µ).
Input. an arbitrary graph G0, terminals Q ⊆ V (G0), a constant µ ≥ 1
Output. a preprocessed subgraph of G0

1. Find a 2-approximate Steiner tree T0 for Q and contract it to a vertex r.
2. Find a shortest-path tree rooted at r.
3. Delete all vertices v and edges e of G0 with

distG0
(r, v),distG0

(r, e) > 2µ`(T0).
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(a) (b)

Fig. 3 (a) a cut graph of a tree drawn on a torus; (b) the result of cutting the surface open
along the cut graph: the shaded area is homeomorphic to a disc and the white area is the
additional face of the planarized surface.

Any deleted vertex or edge is at distance > 2µ`(T0) ≥ 2µOPT from any
terminal and hence can not be part of a (1 + ε)-approximation for any 0 ≤
ε ≤ 1. We call the resulting graph G = (V,E) and henceforth use G instead
of G0 in our algorithm. The preprocessing step can be accomplished in linear
time: step 1 using Müller-Hannemann and Tazari’s algorithm [30] and step 2
using Henzinger et al.’s algorithm [21]. Trivially, we have

Proposition 1 All vertices and edges of G are at distance at most 4µOPT
from T0.

4.2 Constructing a cut graph

A central fact that we use in this section and also in other parts of our work
is the following observation [17]:

Observation 2 Let G be a planar graph and T a spanning tree of G. Then
the set of edges E(G)−E(T ) induces a spanning tree T ? in the dual G?. If T
is a minimum spanning tree of G, then T ? is a maximum spanning tree of G?.

A similar lemma also holds for bounded-genus graphs: if T is a (minimum)
spanning tree of G and T ? a (maximum) spanning tree of G?−E(T ), then T ?

is a (maximum) spanning tree of G? and the size of the set of remaining edges
X := E(G) − E(T ) − E(T ?) is g, the Euler genus of G, by Euler’s formula.
Eppstein [16] defines such a triple (T, T ?, X) as a tree-cotree decomposition
of G and shows that such a decomposition can be found in linear time for
graphs on both orientable and nonorientable surfaces. Further he shows that
a tree-cotree decomposition generates a cut graph. For an r-rooted spanning
tree T and a non-tree edge e, we say that loop(T, e) is the elementary cycle
formed by e and the paths from r to e’s endpoints; Eppstein showed:

Lemma 1 (Lemma 2, [16]) Given a tree-cotree decomposition (T, T ?, X),
{loop(T, e) : e ∈ X} is a cut graph.

In order to construct a cut graph, we start again with a 2-approximation
T0 and contract it to a vertex r. Next, we look for a system of loops rooted
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at r: iteratively find short nonseparating cycles through r and cut the graph
open along each cycle. Erickson and Whittlesey [18] showed that, for orientable
surfaces, taking the shortest applicable cycle at each step results in the shortest
system of loops through r. They suggest a linear-time algorithm using the tree-
cotree decomposition (T, T ?, X) of Eppstein [16]. As we only need to bound
(as opposed to minimize) the length of our cut graph, we use the following,
simpler algorithm:

Algorithm Planarize(G0, Q, µ).
Input. a graph G0 of genus g, terminals Q ⊆ V (G0), a constant µ ≥ 1
Output. a preprocessed subgraph G ⊆ G0 and a cut graph CG of G

1. Apply Preprocess(G0, Q, µ) and let G be the obtained subgraph.
2. Find a 2-approximate Steiner tree T0 for Q and contract it to a vertex r.
3. Find a shortest-paths tree SPT rooted at r.
4. Uncontract r and set T1 = T0 ∪ SPT. (T1 is a spanning tree of G)
5. Find a spanning tree T ?1 in G? − E(T1). (T ?1 is a spanning tree of G?)
6. Let X := E(G)− E(T )− E(T ?).
7. Return CG := T0 ∪ {loop(T1, e) : e ∈ X} together with G.

Lemma 2 The algorithm Planarize returns a cut graph CG such that cut-
ting G open along CG results in a planar graph Gp with a face fσ whose facial
walk σ

(i) is a simple cycle;
(ii) contains all terminals (some terminals might appear more than once as

multiple copies might be created during the cutting process); and
(iii) has length `(σ) ≤ 2(8µg + 2) OPT.

The algorithm can be implemented in linear time.

Proof Clearly, (T1, T
?
1 , X) is tree-cotree decomposition ofG and so, by Lemma 1,

CG is a cut graph. By Euler’s formula, we get that |X| = g, the Euler genus
of G.

Each edge e = vw ∈ X completes a (nonseparating, not necessarily simple)
closed walk as follows: a shortest path P1 from T0 to v, the edge e, a shortest
path P2 from w to T0 and possibly a path P3 in T0. By Proposition 1, we know
that e is at distance at most 4µOPT from T0 and so, both P1 and P2, and at
least one of {P1 ∪ {e}, P2 ∪ {e}} have length at most 4µOPT. Hence, we have
that `(P1 ∪ {e} ∪ P2) ≤ 8µOPT. Because there are (exactly) g such cycles in
CG, we get that

`(CG) ≤ g · 8µOPT +`(T0) ≤ (8µg + 2) OPT .

Since CG is a connected cut graph and T ? ∩ CG = ∅, cutting G open along
CG results in a connected planar graph with boundary σ. Each edge of CG
appears twice in σ and each edge of σ is derived from CG, so `(σ) = 2`(CG)
(see Fig. 3).
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As mentioned in the previous section, T0 and SPT can be computed in
linear time on bounded-genus graphs [21,30]. T ?1 can be obtained, for example,
by a simple breadth-first-search in the dual. The remaining steps can also easily
be implemented in linear time. ut

4.3 Proof of Theorem 4

We complete the construction of a mortar graph for genus-g embedded graphs.
Let Gp be the result of planarizing G as guaranteed by Lemma 2. Gp

is a planar graph with boundary σ such that σ spans Q and has length ≤
2(8µg + 2) OPT. Let MG be the mortar graph guaranteed by Theorem 2 as
applied to G with σ as its outer face. Every edge of MG corresponds to an
edge of G. Let MG′ be the subgraph of G composed of edges corresponding
to MG. Every face f of MG (other than σ) corresponds to a face f ′ of MG′

and the interior of f ′ is homeomorphic to a disk on the surface in which G is
embedded. It is easy to verify that MG′ is indeed a mortar graph of G; and
the length bounds specified in the statement of the theorem follow directly
from Theorem 2 and the bound on the length of σ.

4.4 Structure Theorem

Recall the operation B+ called brick-copy introduced in Section 3.2 and illus-
trated in Figure 1 (d). The precise statement of the Structure Theorem for
bounded-genus graphs is as follows:

Theorem 5 (Structure Theorem) Let P be one of the subset-connectivity
problems Steiner Tree, {0, 1, 2}-edge-connectivity Survivable Network,
or Subset Tsp. Let G be an edge-weighted graph embedded on a surface,
Q ⊆ V (G) a given set of terminals, and 0 < ε ≤ 1. Let MG(G,Q, ε) be
a corresponding mortar graph of weight at most αOPT and supercolumns of
weight at most εOPT with spacing κ. There exist constants β(ε, κ) and θ(α, β)
depending polynomially on α and β such that

OPTP(B+(MG, θ), Q) ≤ (1 + cε) OPTP(G,Q) ,

where c is an absolute constant. Here β = o(ε−2.5κ) for Steiner Tree and
{0, 1, 2}-edge connectivity Survivable Network and β = O(κ) for Subset Tsp.
(Recall that α and κ depend polynomially on ε−1 and g by Theorem 4.)

It is due to our special way of defining and constructing a mortar graph
for bounded-genus graphs that this theorem follows immediately as for the
planar cases: the crucial point here is that our bricks are always planar –
even when the given graph is embedded in a surface of higher genus. The
Structure Theorem for Steiner Tree is proved in [9], the case of {0, 1, 2}-
edge-connectivity Survivable Network is studied in [6], and we show that
the theorem holds for Subset Tsp in Section 6. Note that for Subset Tsp, it
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is possible to obtain a singly exponential algorithm by following the spanner
construction of Klein [22] after performing the planarizing step (Lemma 2).
Our presentation here is chosen to unify the methods for all problems studied.
Whenever we wish to apply our framework to a new problem, it is essential to
prove a similar Structure Theorem for the considered problem.

5 Obtaining PTASes for bounded-genus graphs

We present two methods of obtaining polynomial-time approximation schemes.
The first is a generalization of the framework of Klein [22] for planar graphs as
introduced in Section 3. To this end, we show how to use the mortar graph for
bounded-genus graphs to obtain a spanner in Section 5.1, and then generalize
Klein’s framework to higher genus graphs in Section 5.2.

In the second method, dynamic programming is done over the bricks of
the mortar graph similar to the technique of Borradaile et al. [9] as intro-
duced in Section 3.6. However, our technique that we describe in Section 5.3 is
more general. The original technique required delving into the combinatorial
structure of the mortar graph and used the somewhat limited concept of a
carving decomposition in order to guide the dynamic program. We instead use
the tree decomposition resulting from a black-box contraction decomposition
algorithm to guide the dynamic program.

While both methods result in O(n log n)-time algorithms, the running time
of the first method is doubly exponential in a polynomial in g and ε−1 while
the second is singly exponential. The advantage of the first method is that it
is simpler and more generic.

5.1 Spanner for subset-connectivity problems

A spanner is a subgraph of lengthOε,g(OPT) that contains a (1+ε)-approximate
solution. Here we show how to find a spanner for bounded-genus graphs and the
subset-connectivity problems considered in this paper. After a mortar graph
is computed, the construction is, in fact, exactly the same as in the planar
cases, namely:

For each brick B defined by MG and for each subset X of the portals
of B, find the optimal Steiner tree of X in B (using the method of
Erickson et al. [19]). The spanner Gspan is the union of all these trees
over all bricks plus the edges of the mortar graph.

To prove the correctness of our spanner theorem for the case of {0, 1, 2}-edge-
connectivity Survivable Network, we need to appeal to the following result
of Borradaile and Klein, whose statement we have simplified here:

Theorem 6 ([6, Theorem 5]) Consider an instance of the {0, 1, 2}-edge
connectivity Survivable Network problem. There is a feasible solution S
to this instance that is a subgraph of B+(MG) such that
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– `(S) ≤ (1 + cε) OPT where c is an absolute constant, and
– the intersection of S with any brick B is a set of O(1) trees, the set of

leaves of which are portals.

Theorem 7 (Spanner Theorem) Let G be an edge-weighted graph embed-
ded on a surface of Euler genus g and Q ⊆ V (G) a given set of terminals.
There exists a spanner Gspan ⊆ G such that

Gspan is spanning: Gspan contains a (1+cε)-approximate solution to Steiner Tree,
{0, 1, 2}-edge-connected Survivable Network, and Subset Tsp; and

Gspan is short: `(Gspan) ≤ f(ε, g) OPT;

where the function f(ε, g) is singly exponential in a polynomial in ε−1 and g,
and c is an absolute constant. The spanner can be found in O(n log n) time.

Proof Given a mortar graph MG(G,Q, ε) as guaranteed by Theorem 4, a span-
ner is constructed as specified above. As in [9], the time to find Gspan is
O(n log n). It was proved in [9] that `(Gspan) ≤ (1 + 2θ+1)`(MG). Therefore,
`(Gspan) ≤ (1 + 2θ+1)αOPT and f(ε, g) = (1 + 2θ+1)α (recall that α and θ
depend polynomially on ε−1 and g).

Now we show that Gspan contains a near-optimal solution to each problem.
For Steiner Tree, the proof follows directly from the Structure Theorem:
the intersection of a minimal solution in B+(MG, θ) with a brick B is a forest
whose leaves are portals.

For {0, 1, 2}-edge-connected Survivable Network, we appeal to Theo-
rem 6: By the Structure Theorem, there is a solution H in B+(MG) that has
length at most (1 + cε) OPT. For each brick B, let HB be the intersection of
H with B. HB is the union of trees. Replace each tree with the Steiner tree
spanning the same subset as found in the spanner construction. Let H ′ be the
graph resulting from all such replacements: `(H ′) ≤ `(H) ≤ (1 + cε) OPT. By
Observation 1, the edges of H ′ − Eportal induce a solution to the problem of
length at most (1 + cε) OPT.

For Subset Tsp, the proof is similar. By the Structure Theorem, there is
a tour T of the terminals Q in B+(MG) that has length at most (1 + cε) OPT.
For each brick B, let K be a connected component of the intersection of T with
B. Because the terminals are in MG and not in B, K is a path between portals
of B: replace K with the Steiner tree (i.e., a shortest path) connecting these
two portals found in the construction of the spanner (in fact, for Subset Tsp,
it is sufficient to add only shortest paths between pairs of portals). Let T ′ be
the tour resulting from all these replacements: `(T ′) ≤ `(T ) ≤ (1 + cε) OPT.
Appealing to Observation 1, the edges of T ′ − Eportal induce a solution of
length at most (1 + cε) OPT. ut

Let us remark that for Subset Tsp we can obtain a polynomial-sized
spanner using the method of Klein [22] after applying Algorithm Planarize
of Section 4.2. For (spanning) Tsp, the spanner can even be constructed in
linear time using the algorithm of [23] after our planarizing step.2

2 We would like to thank Christian Sommer for a discussion on this matter.
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5.2 PTAS via spanner

We review the four steps of Klein’s framework [23] (see Section 3) in our
setting:

1. Spanner step: Find a spanner Gspan of G according to Theorem 7.
2. Thinning step: Apply the Contraction Decomposition Theorem 3, with η =

f(ε, g)/ε (where f(ε, g) is the function given in Theorem 7). Let S1, . . . , Sη
be the partition of the edges of Gspan as guaranteed by the theorem. Let
S∗ be the set in the partition with minimum weight: `(S∗) ≤ εOPT. Let
Gthin be the graph obtained from Gspan by contracting the edges of S∗.
By Theorem 3, Gthin has treewidth at most O(gε−1f(ε, g)).

3. Dynamic-programming step: Use dynamic programming (see, e.g. [24]) to
find the optimal solution to the problem in Gthin.

4. Lifting step: Convert this solution to a solution in G by incorporating some
of the edges of S∗. For Steiner Tree, at most one copy of each edge of
S∗ is introduced to maintain connectivity [9]. In the case of {0, 1, 2}-edge
connected Survivable Network, at most two copies of each edge of S∗

are required [6]. For Tsp and Subset Tsp, the method was explained
in [23,22].

Analysis of the running time. By Theorem 7, the time needed for the spanner
construction is O(2poly(ε

−1,g)n + n log n). By Theorem 3, thinning takes lin-
ear time using [14]. Dynamic programming takes time O(2poly(tw)n) [11,24];
since the treewidth of Gthin is O(gε−1f(ε, g)) and f(ε, g) is singly exponential
in polynomials in g and ε−1, this step is doubly exponential in polynomials
in g and ε−1. Lifting takes linear time. Hence, the overall running time is

O(22
poly(ε−1,g)

n + n log n). For the full Tsp the dependence on n is linear as
the spanner construction takes linear time after the planarizing step [23].

5.3 PTAS via dynamic programming over the bricks

In this section, we develop a PTAS with singly exponential dependence on a
polynomial in ε−1 and g for all subset-connectivity problems considered in this
work. Even though the basic idea of dynamic programming over the bricks is
similar to the planar case (cf. Section 3.6), our method is different and more
general as we apply the contraction decomposition as a black-box and work
with the resulting tree decomposition directly instead of using a carving de-
composition. Note that this approach also facilitates generalizations to higher
graph classes, like H-minor-free graphs, where the contraction decomposition
is an extremely complicated algorithm [14].

The operation brick-contraction, B÷, is defined as first applying brick-copy,
B+, and then contracting all the bricks (see Fig. 1(e)). We apply the contrac-
tion decomposition algorithm (Theorem 3 [14]) to B÷(MG) and contract a
set of edges S? in B÷(MG). However, we apply a special weight to portal
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edges so as to prevent them from being included in S?. Also, in B÷(MG),
we slightly modify the definition of contraction: after contracting an edge, we
do not delete parallel portal edges. Because portal edges connect the mortar
graph to the bricks, they are not parallel in the graph in which we find a
solution via dynamic programming. The details are given below.

Algorithm Thinning(G,MG).
Input. a graph G of fixed genus g, a mortar graph MG of G
Output. a set S? ⊆ E(B÷(MG)),

a tree decomposition (T, χ) of B÷(MG)/S?

1. For each face F of MG, assign weight `(∂F ) to each portal edge of
B÷(MG) enclosed in F ;

2. Apply the Contraction Decomposition Theorem 3 to B÷(MG) with
η := 3θαε−1 to obtain edge sets S1, . . . , Sη; let S? be the set of mini-
mum weight.

3. If S? includes a portal edge e of a brick B enclosed in a face F of MG,
add ∂F to S? and mark B as ignored.

4. Let MGthin := B÷(MG)/S? (but do not delete parallel portal edges).
5. Let (T, χ) be a tree decomposition of width O(g · η) of MGthin.
6. For each vertex b of MGthin that represents an unignored contracted

brick with portals {p1, . . . , pθ}:
6.1. Replace every occurrence of b in χ with {p1, . . . , pθ};
6.2. Add a bag {b, p1, . . . , pθ} to χ

and connect it to a bag containing {p1, . . . , pθ}.
7. Reset the weight of the portal edges back to zero.
8. Return (T, χ) and S?.

Lemma 3 The algorithm Thinning(G,MG) returns a set of edges S? and a
tree decomposition (T, χ) of B÷(MG)/S?, so that

(i) the treewidth of (T, χ) is at most ξ where ξ(ε, g) = O(gηθ) = O(g2ε−2θ2);
in particular, ξ is polynomial in ε−1 and g;

(ii) every brick is either
– marked as ignored, or
– none of its portal edges are in S?; and

(iii) `(S?) ≤ εOPT.

Proof We first verify that (T, χ) is indeed a tree decomposition. For a ver-
tex v and a tree decomposition (T ′, χ′), let T ′v denote the subtree of T ′ that
contains v in all of its bags. Let us denote the tree decomposition of step (5)
by (T 0, χ0). For each brick vertex b and each of its portals pi, we know that
T 0
b is connected and T 0

pi is connected and that these two subtrees intersect; it
follows that after the replacement in step (6.2), we have that Tpi = T 0

b ∪ T 0
pi

is a connected subtree of T and hence, (T, χ) is a valid tree decomposition.
Note that Theorem 3 guarantees a tree decomposition of width O(gη) if any of
S1, . . . , Sη are contracted; and in step (3), we only augment the set of edges to
be contracted. Hence, the treewidth of (T 0, χ0) is indeed O(gη) and with the
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construction in step (6.1), the size of each bag will be multiplied by a factor
of at most θ. This shows the correctness of claim (i). The correctness of claim
(ii) is immediate from the construction in step (3). It remains to verify claim
(iii).

Let L denote the weight of B÷(MG) after setting the weights of the portal
edges according to step (1) of the algorithm. We have that

L ≤ `(MG) +
∑
F

`(∂F )θ ≤ αOPT +θ
∑
F

`(∂F )

≤ αOPT +θ · 2αOPT ≤ 3θαOPT .

Hence, the weight of S?, as selected in step (2), is at most L/η ≤ 3θαOPT
3θαε−1 ≤

εOPT. The operation in step (3) does not add to the weight of S?: if ∂F
is added to S?, the additional weight is subtracted when the corresponding
portal-edge weights are set to zero in step (7). ut

If a brick is “ignored” by Thinning, the boundary of its enclosing mor-
tar graph face is completely added to S?. Because S? can be added to the
final solution, every potential connection through that brick can be rerouted
through S? around the boundary of the brick as explained in the lifting step
in Section 5.2. The interior of the brick is not needed.

What we have now is a tree decomposition of B÷(MG)/S? where some of
the leaves of the decomposition contain a contracted brick with all its portal
edges. We can perform standard dynamic-programming on this tree decompo-
sition as described in [1,24,11] only with some extra processing in these special
leaves. We briefly review the main idea of the DP and describe what has to be
done in the leaves. Recall that we can always ensure that the tree is binary and
root it at an arbitrary non-brick node that contains a terminal. For each node
t of the tree decomposition let Gt denote the subgraph of B+(MG)/S? that
is induced by all the nodes and bricks that appear in the subtree rooted at t
(note that here, we consider B+(MG) and not B÷(MG), i.e. the bricks are not
contracted). We maintain a DP table that contains the following information
at t:

– Subset Tsp: for each noncrossing pairing of the nodes in the bag t, we
calculate a set of paths inGt, one path for each pair, such that the collection
of these paths covers all terminals in Gt.

– Steiner Tree: for each noncrossing partition of the nodes in the bag t, we
calculate a set of Steiner trees in Gt, one tree for each part of the partition,
such that the collection of these trees covers all terminals in Gt.

– {0, 1, 2}-edge connectivity Survivable Network: similar to Steiner Tree,
the details are given in [6].

At those leaves of the decomposition which are not bricks, we can simply
compute this information by brute force. In the leaves that contain bricks, we
can compute optimal Steiner trees inside the brick for each subset of portals
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in polynomial time using the method of Erickson et al. [19].3 In the case of
Subset Tsp, we can use shortest paths as the interior of bricks does not
contain terminals; and for Survivable Network, the method is described
in [6]. The solution for each partition or pairing of the DP table is then simply
the union of the solutions of the subsets that comprise them.

At an the interior node t of the tree decomposition, we find the solution
for a given entry of the DP table by considering all combinations of entries of
the children’s tables with all choices of including the vertices introduced in t,
and take the minimum consistent solution that can be obtained. See [1,24,11]
for more details and [31] for an implementation-level exposition.

Analysis of the running time. As was shown for the planar Steiner Tree
PTAS [9], the total time spent in the leaves of the dynamic program is O(4θn).
The rest of the dynamic program takes time O(2poly(ξ)n) [24,11]. As contrac-
tion decomposition takes only linear time [14], the running time is dominated
by the mortar graph construction which is O(n log n) by Theorem 4. Hence,
the total time is O(2poly(ξ)n+ n log n) for the general case; in particular, this
is singly exponential in ε−1 and g, as desired. This proves Theorem 1.

6 A Structure Theorem for Subset Tsp

Here we prove the Structure Theorem for Subset Tsp. While this theorem
can be used to obtain a PTAS for the subset tour problem in planar graphs, a
PTAS for this problem [22] predates the mortar graph framework.

Like Steiner Tree and Survivable Network, the Structure Theorem
(Section 4.4) must be proved (Section 6.1) for the Subset Tsp problem. To
this end, in this section, we state and prove a local structure theorem (The-
orem 8, Figure 4). This local structure theorem describes how to replace the
intersection of a tour with a brick to reduce the number of times the tour con-
nects to the boundary of each brick. We only count a vertex as a connection if
it is the endpoint of an edge that is not on the boundary of the brick. We call
such a vertex a joining vertex. Only these connections contribute to the size of
the dynamic-programming table. While the intersection of a tour with a brick
is quite simple (a set of brick boundary-to-boundary paths), in modifying the
tour we must be careful to maintain that our solution is still a tour.

We will use the following lemma due to Arora:

Lemma 4 (Patching Lemma [2]) Let S be any line segment of length s
and let π be a closed path that crosses S at least thrice. Then we can break the
path in all but two of these places and add to it line segments lying on S of
total length at most 3s such that π changes into a closed path π′ that crosses
S at most twice.

3 Note that polynomial time is not crucial here as the number of portals is constant.
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This lemma applies to embedded graphs as well, as the patching process con-
nects two subpaths of the tour that end on a common side of S by a subpath of
S. When we apply the Patching Lemma, we do not allow automatic shortcuts;
that is, the tour π′ that we work with is a multi-subset of π ∪ S. Only after
application of the Patching Lemma do we use specific shortcuts in order to
achieve the crossing properties that we need.

Theorem 8 (TSP Property of Bricks) Let B be a brick of graph G with
boundary N ∪ E ∪ S ∪ W (where E and W are supercolumns). Let T be a
tour in G such that T crosses E and W at most 2 times each. Let H be the
intersection of T with B. Then there is another subgraph of B, H ′, such that:

(T1) H ′ has at most β(ε) joining vertices with ∂B.
(T2) `(H ′) ≤ (1 + 5ε)`(H).
(T3) There is a tour in the edge set (T \ H) ∪ H ′ that spans the vertices in

∂B ∩ T .

In the above, β(ε) = O(κ).

Proof We first remove ∂B from H. We partition the remaining edges 4 sets,
each composed of minimal ∂B-to-∂B paths: PS∨N ∪ PE∨W ∪ PS∧N . Paths in
PS∨N either start and end on S or start and end on N ; paths in PE∨W start
on E or W and end on ∂B; paths in PS∧N start on S and end on N . For the
constructions below, refer to Figure 4.

Since T crosses E and W at most 4 times, |PE∨W | ≤ 4. Therefore, this set
of paths result in at most 8 joining vertices with ∂B.

For each path P ∈ PS∨N , let P̂ be the minimal subpath of ∂B that spans
P ’s endpoints. Let P̂S∨N be the resulting set of paths. As N is 0-short and S
is ε-short, we have

`(P̂S∨N ) ≤ (1 + ε)`(PS∨N ). (1)

(In the case when E and W are trivial and P is a subpath connecting the

endpoints of S, N is shorter than P .) Since P̂S∨N are subpaths of ∂B, they

have no joining vertices with ∂B. Since paths in P̂S∨N correspond one-to-one
with paths in PS∨N , (T \ PS∨N ) ∪ P̂S∨N is a tour. See Figure 4(a).

It remains to deal with the paths in PS∧N . Let s0, s1, s2, . . . , sk (where
k ≤ κ) be the vertices of S guaranteed by the properties of the bricks (see
Definition 1). Let Xi be the subset of paths of PS∧N that start on S[si, si+1),
i.e., the vertices between si and si+1 including si but not si+1.

If |Xi| > 2, we do the following: Let Pi be the path in Xi whose endpoint
x on S is closest to si+1. Let Qi be the subpath of S from si to x. By the
properties of the bricks, `(Qi) ≤ ε`(Pi). Apply the Patching Lemma to the
tour T and path Qi; the new tour, T ′, crosses Qi at most twice. However T ′

may still have many joining vertices with Qi. Let Qi be the subpaths of Qi
that are added to the tour.

Let Li be a maximal set of N -to-N paths in Xi∪Qi. Li accounts for all but
two (corresponding to the two crossings of T ′ with Qi) of the joining vertices

of T ′ with Qi. For each path L ∈ Li, let L̂ be the minimal subpath of N that
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(a)

(b)

(c)

Fig. 4 (a) A brick with a tour crossing through it. The bold paths are in H. The bold
vertices are s0, s1, s2, . . . , sk. The dotted paths are in PS∧N , the first four of which are in
X1. (b) The patching process introduces the dotted paths on the lower boundary S of the
brick and reroutes the tour to cross S twice between s1 and s2. The dotted subpath L of the
top boundary N of the brick is used to replace the portion of the tour between its endpoints.
(c) The tour after the entire construction given by Theorem 8.

spans L’s endpoints and let L̂i be the resulting set of paths. Replacing Li with
L̂i, we still have a tour, since the paths have a one-to-one correspondence.
However, the resulting tour may no longer span all terminals on Qi. Adding
in two copies of Qi fixes this. Since N is 0-short, `(L̂i) ≤ `(Li).

Based on the above description, let X̂i = ((Xi ∪ Qi) \ Li) ∪ L̂i ∪ Qi ∪ Qi.
Replacing Xi with X̂i, we still have a tour as argued above. Since the additional
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length added is at most 5 copies of Qi, we have:

`(X̂i) ≤ `(Xi) + 5`(Qi) ≤ `(Xi) + 5ε`(Pi) ≤ (1 + 5ε)`(Xi). (2)

Since Li accounted for all but 2 of the joining vertices of T ′ with Qi - so all
but 4 of the joining vertices of Xi with ∂B - and L̂i has no joining vertices
with ∂B, X̂i has at most 4 joining vertices with ∂B.

Let P̂S∧N =
⋃
i X̂i. P̂S∧N has at most 6κ joining vertices with ∂B and, by

Equation (2),

`(P̂S∧N ) ≤ (1 + 5ε)`(PS∧N ). (3)

Let Ĥ be the union of the paths in PE∨W , P̂S∨N and P̂S∧N . Combining
Equations (1) and (3), we find that `(Ĥ) ≤ (1+5ε)`(H). By construction, the

edges in (T \H)∪Ĥ contain a tour. Ĥ has 6κ+8 joining vertices with ∂B. ut

6.1 Proof of the Structure Theorem for Subset Tsp

Using the TSP Property of Bricks, we prove the Structure Theorem (Sec-
tion 4.4) for Subset Tsp.

Let T be the optimal tour spanning terminals Q in G. From T we build a
tour T̂ spanning Q in B+(MG) such that `(T̂ ) ≤ (1 + cε)`(T ).

Let C be a supercolumn. By the Patching Lemma, if T crosses C at least
thrice, we can add to T at most three copies of C and create a new tour that
crosses C at most twice. We do not apply any short cuts to this new tour, and
let T1 be the tour that is a multi-subgraph of T ∪C that results from applying
the Patching Lemma to each supercolumn. Because the sum of the weights of
the supercolumns is at most εOPT,

`(T1) ≤ (1 + 3ε)`(T ). (4)

Let B be a brick of G. Let H be the intersection of T1 with B. By the
construction above, T1 satisfies the requirements of Theorem 8: let H ′ be the
guaranteed subgraph of B. We replace H with H ′ in T1. Let T2 be the tour
resulting from such replacements over all the bricks. Theorem 8 guarantees
that

`(T2) ≤ (1 + 5ε)`(T1). (5)

Now we map the edges of T2 to a subgraph of B+(MG). Every edge of
G has at least one corresponding edge in B+(MG). (Edges that are on the
boundaries of bricks appear three times in B+(MG); all other edges appear
once.) For every edge e of T2, we select one corresponding edge in B+(MG)
as follows: if e is an edge of MG select the corresponding mortar edge of
B+(MB), otherwise select the unique edge corresponding to e in B+(MG).
(An edge of B+(MG) is a mortar edge if it is in MG.) This process constructs
a subgraph T3 of B+(MG) such that

`(T3) = `(T2). (6)
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Because T3 is not connected, we connect it via portal and mortar edges.
Let VB be the set of joining vertices of T3 with ∂B for a brick B of B+(MG).
For any vertex v on the interior boundary ∂B of a brick, let pv be the portal
on ∂B that is closest to v, let Pv be the shortest v-to-pv path along ∂B and
let P ′v be the corresponding path of mortar edges. Let e be the portal edge
corresponding to pv. Add Pv, P

′
v, and e to T3. Repeat this process for every

v ∈ VB and for every brick B, building a graph T̂ . This completes the definition
of T̂ . From the construction, T̂ is a tour spanning the terminals Q in B+(MG).

Now we analyze the increase in length:

`(T̂ ) ≤ `(T3) +
∑
B∈B

∑
v∈VB

(`(Pv) + `(e) + `(P ′v)), (7)

and we have:∑
B∈B

∑
v∈VB

`(Pv) + `(e) + `(P ′v) = 2
∑
B∈B

∑
v∈VB

`(Pv), because `(portal edges) = 0

≤ 2
∑
B∈B

∑
v∈VB

`(∂B)/θ, by the choice of portals

≤ 2
∑
B∈B

β

θ
`(∂B), by Theorem 8

≤ 2
β

θ
2α(ε−1, g) OPT , by Theorem 4

≤ ε OPT , for θ = 4ε−1βα, as required.

Combining Equations (4), (5), (6) and (7), we obtain `(T̂ ) ≤ (1 + 3ε)(1 +
5ε)`(T ) + εOPT ≤ (1 + cε) OPT. The Structure Theorem is proved for the
Subset Tsp problem.

7 Conclusion and outlook

We presented a framework to obtain PTASes on bounded-genus graphs for
subset-connectivity problems, where we are given a graph, a set of terminal ver-
tices and certain connectivity requirements among the terminals. Specifically,
we obtained the first PTAS for Steiner Tree, Subset Tsp and {0, 1, 2}-
edge-connected Survivable Network on bounded-genus graphs and our
running time is O(n log n) with a constant that is singly exponential in ε−1

and the genus of the graph. Our method is based on the framework of Bor-
radaile et al. [9] for planar graphs; in fact, we generalize their work in the
sense that basically any problem that is shown to admit a PTAS on planar
graphs using their framework easily generalizes to bounded-genus graphs using
the methods presented in this work. Since the publication of the conference
version of this work, our method has also been applied to further problems
such as Steiner Forest [5] and prize-collecting variants [4].
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A natural question is to ask what other classes of graphs admit a PTAS for
the problems discussed in this work. An important generalization of bounded-
genus graphs are graphs that exclude a fixed graph H as a minor. Such H-
minor-free graphs have earned much attention in recent years. Many hard op-
timization problems have been shown to admit PTASes and fixed-parameter
algorithms on these classes of graphs; see, e.g., [20,13,12]. The recent contrac-
tion decomposition result for H-minor-free graphs of Demaine et al. [14] gives
rise to the first PTAS for the full Tsp in H-minor-graphs; however, this PTAS
is not efficient as it uses a spanner of weight O(log n ·OPT), and thus the run-

ning time of the PTAS is nf(ε
−1). Subset-connectivity problems, specifically

Subset Tsp and Steiner Tree, remain important open problems [20,14].
Very often, results onH-minor-free graphs are first shown for planar graphs,

then extended to bounded-genus graphs, and finally obtained for H-minor-free
graphs. This is due to the powerful decomposition theorem of Robertson and
Seymour [28] that essentially says that every H-minor-free graph can be de-
composed into a number of parts that are “almost embeddable” in a bounded-
genus surface. We conjecture that our framework extends to H-minor-free
graphs via this decomposition theorem. The advantage of our methodology is
that handling weighted graphs and subset-type problems are naturally incor-
porated, and thus it might be possible to combine all the steps for a potential
PTAS into a single framework for H-minor-free graphs based on what we pre-
sented in this work. Hence, whereas our work is an important step towards
this generalization, still a number of hard challenges remain.
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