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Membrane/Solvent Integrated Process
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Advantages
• Tail-end technology which is 

easily used in retrofits
• No steam extraction is 

required
• Heat pump is seamlessly 

integrated into the cooling and 
heating of absorption/stripping 
process

• Operating pressure of the 
stripper will be very flexible 
depending on the low quality 
heat 

Disadvantage
• Capital cost could be intensive



• Used in variety of industrial, 
medical, and environmental 
applications. 
– desalination, dialysis, sterile 

filtration, food processing, 
dehydration 

• Low energy requirements
• Compact design
• No moving parts and modular

Synthetic Membranes
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Permeability/Selectivity 
Material Property

Accessing thin membranes

Material Processing 

Ho Bum Park et al. Science 2017;356:eaab0530

Stages



Membrane Terms
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• Permeability is a material property: describes rate of permeation of a solute through a material, 
normalized by its thickness and the pressure driving force

• Permeance is a membrane property: calculated as solute flux through the membrane normalized by 
the pressure driving force (but not thickness)

• Ideal selectivity describes the ratio of the permeabilities (or permeances) of two different 
permeating species through a membrane, and is a material property

• High membrane permeance is achieved by both material selection (high permeability) and 
membrane design (low thickness)



CO2 Separation Using Membranes

• Mechanism of separation: diffusion through a non-porous membrane
• A pressure driven process - the driving force is the partial pressure difference of each gas in the

feed and permeate.

• Selectivity - separation factor, α (typical selectivity for CO2/N2 is 20-45)
• Permeability = solubility (k) x diffusivity (D) (normalized over thickness)
• Either high selectivity or high permeability – Trade-off.

– Selective removal of fast 
permeating gases from slow 
permeating gases.

– The solution-diffusion process can 
be approximated by Fick’s law:
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Permeance Vs. Permeability

• Current state-of-the-art fully 
commercialized membrane 
materials for CO2/N2
separations: 250 permeability 
with selectivity of 35-50. 

• These are cast @ 100nm 
thickness, giving permeance of 
2500 GPU. 

The scale bar is in microns to illustrate permeability and permeance for a membrane material 
which as permeability of 1000 Barrers. 

6Mechanical Properties, Film Forming Ability



Needs
• More stable and robust membranes

– Mechanically
– Chemically
– Thermally

• Higher permeability and selectivity
• Fundamental structure-property-

processing relations needs to be 
incorporated.

• Various approaches to exceed the 
upper bound and access better 
performing membranes.
– Surface modification
– Phase separated polymer blends 
– Mixed-matrix membranes (MMMs)

• Inorganic membranes (superior in 
performance but are difficult to make 
large thin films)

– Supported ionic liquids
– Facilitated transport

Membrane Material Advances
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Mixed Matrix Membranes
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• Poor compatibility of the polymer and inorganic particles that leads to poor adhesion at 
the organic-inorganic interface.

• General trade-off between selectivity and permeability

The Trouble with Mixed Matrix Membranes

• Solutions:
- Addition of interfacial 

agents
- Surface modification of 

inorganic particles
- Chemical modification of 

polymers
- Use of flexible polymers 9



Insight
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J. Mater. Chem. A, 2015, 3, 5014-5022
U.S. Patent Application number: 14/519,743
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Interface

If you can’t beat ‘em, join ‘em!

• Makes use of envelopment effects which have plagued mixed matrix membranes

• Diffusion phenomena determined by interactions with the particle and polymer 
surface

• Possibility of using simple nanoparticle fillers

• Advanced polymers allow an excellent starting point
11

Interfacially-Controlled Envelope (ICE) Membranes



Plan of Attack for Mixed Matrix Membranes

• Use simple nanoparticle fillers
• Surface modify the particles to tune optimal interactions with CO2

and the polymer
• Employ an advanced polymer with good compatibility and CO2

transport properties
• Create a membrane in which diffusion phenomena are determined 

by interactions with the particle and polymer surface

CO2 N2

5-10 nm
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• Careful and detailed screening of 
the surface modifier was carried 
out.

• Nanoparticles have been 
synthesized @ 200g levels for 3 
different loadings

Surface Functionalized Nanoparticles
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Polymer particle interface



Ultra Flexible chains
High chain mobility

Improved gas solubility and 
diffusion

P N P N

R1

R2 R3

R4

Polymer of Choice

Excellent chemical and thermal 
stability

C-C =607ΔHf kJ/mol vs.
P-N =617 ΔHf kJ/mol

Macromolecular 
substitution
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Ring Opening Polymerization Living Cationic Polymerization

Poly(dichlorophosphazene)
Reactive Intermediate

• High Molecular Weight (MW)
• Relatively Large Scale Preparation
• Poor Molecular Weight Control
• Broad Poly-disperity (PD)
• No End-chain Modifications

• Relatively Lower MW
• Well-controlled MW and PD
• Room Temperature
• Small Scale Preparation
• End-chain Modifications

Organic-Inorganic Hybrid Polymeric System 
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Macromolecular Substitution

• Synthetic Simplicity: Nucleophilic Substitutions 
• Synthetic Tunability: Homo-substitutions OR Mix-substitutions
• Property Tunability:  Glass Transition Temperature, Solubility, 

Degradability, Hydrophobicity

Library of Over 700 
Different 

Polyphosphazenes
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Polymer Screening
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Challenges
• Not a film former 
• Sticky
• Does not have required 

mechanical properties

Material Optimization
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Solution = Inter Penetrating Networks (IPN)



• Difference Tg of uncrosslinked 
Polyphoshazene vs. IPN is observed

• Minor difference is observed 
between IPN vs. ICE membranes in 
Tg studies.
– Effect of extremely chain mobility

• 30 compositions of ICE membranes 
have been evaluated for their 
thermal properties.
– Long-term stability test are on going.

Glass Transition Studies

19

-100 -50 0 50 100 150 200
Temperature (°C)

Thermal Studies of Polyphosphazene IPN 
and ICE membranes

Polyphosphazene

IPN membrane

ICE 40%

P N P N

R1

R2 R3

R4



Membrane Casting
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Polymer dope

Knife

Screening is done using films cast by hand
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10-12 microns



Polymer Membrane Results 
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Membrane Performance
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%wt. Loading of Nanoparticles Cast number Characterization Membrane results

Permeability Selectivity

30% unmodified particles LS-01-45A Turned into a gel 

with white 

precipitates (not 

useable)

N/A N/A

10% surface modified 10 nm 

particles

LIS-01-41 A SEM, TGA, DSC, 

Membrane 

testing

659 41

20% surface modified 10 nm 

particles

LS-01-51 B* Membrane 

testing

675-1025 20-33

40% surface modified 10 nm 

particles

LIS-01-41 B, LIS-01-

43

SEM, TGA, DSC, 

membrane 

testing

1609 44

60% surface modified 10 nm 

particles

LIS-01-51A* TGA, DSC, 

Membrane 

testing

250-400 25-30
60% loading
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Literature data
This work

Robeson upper bound

• Membrane of half a micron 
would yield permeance of 3200 
GPU with a selectivity of 44 for 
CO2/N2 separation. 

• Work is being performed to 
convert these materials 
properties into membranes ― 
Open for collaborations 

• Module design― Open for 
collaborations and joint 
research.

Membrane Performance
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• Further optimization of membrane 
composition Design of Experiments
– Optimized surface modification of the 

nanoparticles
– Optimized concentration of 

nanoparticles
– Optimized level of crosslinking

• 30 composition done
• DSC studies complete

– Minor differences in Tg

– Structure-property relationship is being 
carried out

• Performance testing in Progress.

Design of Experiments Matrix

Using statistical analytical tools to 
optimize membrane composition 
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