Polyphosphazene-based gas separation membranes: Pushing the boundaries

254th ACS National Meeting in Washington, DC, August 20-24, 2017

Dr. Hunaid Nulwala CEO Liquid Ion Solutions LLC Pittsburgh, PA

Membrane/Solvent Integrated Process

Advantages

- Tail-end technology which is easily used in retrofits
- No steam extraction is required
- Heat pump is seamlessly integrated into the cooling and heating of absorption/stripping process
- Operating pressure of the stripper will be very flexible depending on the low quality heat

Disadvantage

• Capital cost could be intensive

Synthetic Membranes

- Used in variety of industrial, medical, and environmental applications.
 - desalination, dialysis, sterile filtration, food processing, dehydration
- Low energy requirements
- Compact design
- No moving parts and modular

Ho Bum Park et al. Science 2017;356:eaab0530

Membrane Terms

- Permeability is a *material* property: describes rate of permeation of a solute through a material, normalized by its thickness and the pressure driving force
- Permeance is a *membrane* property: calculated as solute flux through the membrane normalized by the pressure driving force (but not thickness)
- Ideal selectivity describes the ratio of the permeabilities (or permeances) of two different permeating species through a membrane, and is a *material* property
- High membrane permeance is achieved by both material selection (high permeability) and membrane design (low thickness)

CO₂ Separation Using Membranes

- Mechanism of separation: diffusion through a non-porous membrane
- A pressure driven process the driving force is the partial pressure difference of each gas in the feed and permeate.

- Selective removal of fast permeating gases from slow permeating gases.
- The solution-diffusion process can be approximated by Fick's law:

$$J = \frac{P(p_1 - p_2)}{l}$$

 $P = D^*S$

- Selectivity separation factor, α (typical selectivity for CO₂/N₂ is 20-45)
- Permeability = solubility (k) x diffusivity (D) (normalized over thickness)
- Either high selectivity or high permeability Trade-off.

Permeance Vs. Permeability

Permeance = 200 GPU		Film thickness =5	μm
Permeance = 400 GPU	→	Film thickness =2	.5 μm
Permeance = 1000 GPU		Film thickness =1	μ m
Permeance = 10000 GPU Film thickness =100 nm			
0 1 2	3	4	5
Thickness of the film			μM

- Current state-of-the-art fully commercialized membrane materials for CO₂/N₂ separations: 250 permeability with selectivity of 35-50.
- These are cast @ 100nm thickness, giving permeance of 2500 GPU.

The scale bar is in microns to illustrate permeability and permeance for a membrane material which as permeability of 1000 Barrers.

Membrane Material Advances

Needs

- More stable and robust membranes
 - Mechanically
 - Chemically
 - Thermally
- Higher permeability and selectivity
- Fundamental structure-propertyprocessing relations needs to be incorporated.

- Various approaches to exceed the upper bound and access better performing membranes.
 - Surface modification
 - Phase separated polymer blends
 - Mixed-matrix membranes (MMMs)
 - Inorganic membranes (superior in performance but are difficult to make large thin films)
 - Supported ionic liquids
 - Facilitated transport

Mixed Matrix Membranes

"True" MMM Transport

Particle Bypass

The Trouble with Mixed Matrix Membranes

- Poor compatibility of the polymer and inorganic particles that leads to poor adhesion at the organic-inorganic interface.
- General trade-off between selectivity and permeability

CO2 N2 True" MMM Transport

- Solutions:
 - Addition of interfacial agents
 - Surface modification of inorganic particles
 - Chemical modification of polymers
 - Use of flexible polymers

Insight

J. Mater. Chem. A, **2015**, *3*, 5014-5022 *U.S. Patent Application number:* 14/519,743

Interface

If you can't beat 'em, join 'em!

Interfacially-Controlled Envelope (ICE) Membranes

- Makes use of envelopment effects which have plagued mixed matrix membranes
- Diffusion phenomena determined by interactions with the particle and polymer surface
- Possibility of using simple nanoparticle fillers
- Advanced polymers allow an excellent starting point

Plan of Attack for Mixed Matrix Membranes

5-10 nm

- Use simple nanoparticle fillers
- Surface modify the particles to tune optimal interactions with CO₂ and the polymer
- Employ an advanced polymer with good compatibility and CO₂ transport properties
- Create a membrane in which diffusion phenomena are determined by interactions with the particle and polymer surface

Surface Functionalized Nanoparticles

- Careful and detailed screening of the surface modifier was carried out.
- Nanoparticles have been synthesized @ 200g levels for 3 different loadings

Polymer of Choice

Polyphosphazenes

Polyphosphazenes

Macromolecular Substitution

- Synthetic Simplicity: Nucleophilic Substitutions
- Synthetic Tunability: Homo-substitutions OR Mix-substitutions
- Property Tunability: Glass Transition Temperature, Solubility, Degradability, Hydrophobicity

Polymer Screening

Material Optimization

Challenges

- Not a film former
- Sticky
- Does not have required mechanical properties

Solution = Inter Penetrating Networks (IPN)

Glass Transition Studies

- Difference T_q of uncrosslinked Polyphoshazene vs. IPN is observed
- Minor difference is observed between IPN vs. ICE membranes in $T_{\rm a}$ studies.
 - Effect of extremely chain mobility
- 30 compositions of ICE membranes have been evaluated for their thermal properties.
 - Long-term stability test are on going.

Membrane Casting

Screening is done using films cast by hand

Polymer Membrane Results

Membrane Performance

%wt. Loading of Nanoparticles	Cast number	Characterization	Membrane results	
			Permeability	Selectivity
30% unmodified particles	LS-01-45A	Turned into a gel	N/A	N/A
		with white		
		precipitates (not		
		useable)		
10% surface modified 10 nm	LIS-01-41 A	SEM, TGA, DSC,	659	41
particles		Membrane		
		testing		
20% surface modified 10 nm	LS-01-51 B*	Membrane	675-1025	20-33
particles		testing		
40% surface modified 10 nm	LIS-01-41 B, LIS-01-	SEM, TGA, DSC,	1609	44
particles	43	membrane		
		testing		
60% surface modified 10 nm	LIS-01-51A*	TGA, DSC,	250-400	25-30
particles		Membrane		
		testing		

60% loading

Membrane Performance

- Membrane of half a micron would yield permeance of 3200 GPU with a selectivity of 44 for CO₂/N₂ separation.
- Work is being performed to convert these materials properties into membranes – Open for collaborations
- Module design— Open for collaborations and joint research.

Design of Experiments Matrix

- Further optimization of membrane composition Design of Experiments
 - Optimized surface modification of the nanoparticles
 - Optimized concentration of nanoparticles
 - Optimized level of crosslinking
- 30 composition done
- DSC studies complete
 - Minor differences in T_{g}
 - Structure-property relationship is being carried out
- Performance testing in Progress.

Using statistical analytical tools to optimize membrane composition

Acknowledgement

Liquid Ion Solutions, Carbon Capture Scientific and Penn State University gratefully acknowledge the support of the United States Department of Energy's National Energy Technology Laboratory under agreementDE-FE0026464, which is responsible for funding the work presented.

- Dr. Scott Chen
- Dr. Zijiang Pan
- Dr. Zhiwei Li
- Prof. Harry Allcock
- Dr. Zhongjing Li
- Dr. Yi Ren
- Dr. David Luebke
- Krystal Koe
- Dr. Xu Zhou

