## Polyprotic Acids and Bases

## Third midterm exam on Monday, November 22

## 9-5 Review of Buffers

10-1 Diprotic Acids and Bases
10-2 Diprotic Buffers
10-3 Polyprotic Acids and Bases
10-4 Principle Species
10-5 Fractional Composition (omit equations)

Today is last quiz (Adrian is grading tonight! Will be posted on web as soon as available)
will omit solubility
put up W13, W14 Week-in-Review

## Polyprotic Acids and Bases

polyprotic acid - capable of donating more than one proton polyprotic base - capable of accepting more than one proton

EX 1. What is the concentration of all species present in a 1.00 M solution of sulfuric acid where $K_{\mathrm{a}}=1.2 \times 10^{-2}$ ?
$\mathrm{H}_{2} \mathrm{SO}_{4}$ strong acid $=>[$ acid $]=[\mathrm{H}+]=[$ conjugate base $]=>\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]_{0}=\left[\mathrm{H}^{+}\right]=\left[\mathrm{HSO}_{4}^{-}\right]=1.00 \mathrm{M}$ [OH-] $=K_{w} /\left[\mathrm{H}^{+}\right]=1.01 \times 10^{-14}$

Major Species

Q $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& 100(0.012)=1.2 \% \text { OK by } 5 \% \text { rule, not OK by } 1 \% \text { rule, quadratic }=>x=\left[\mathrm{SO}_{4}^{2-}\right]=0.0117 \mathrm{M}, \\
& {\left[\mathrm{H}^{+}\right]_{\text {total }}=1.00+0.0117=1.01 \mathrm{M},[\mathrm{OH}-]=1.00 \times 10^{-14} \mathrm{M}}
\end{aligned}
$$

EX 2 . What is the pH and concentration of all species present in a 5.00 M solution of phosphoric acid?
$K_{\mathrm{al}}=7.11 \times 10^{-3}$

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(a q)+\mathrm{H}_{2} \mathrm{O}(l)<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)
$$

$$
\mathrm{p} K_{\mathrm{a} 1}=2.1481
$$

$K_{\mathrm{a} 2}=6.34 \times 10^{-8}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HPO}_{4}^{2-}(a q)$

$$
\mathrm{p} K_{\mathrm{a} 2}=7.1979
$$

$K_{\mathrm{a} 3}=4.22 \times 10^{-13}$

$$
\mathrm{HPO}_{4}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{PO}_{4}^{3-}(a q)
$$

$$
\mathrm{p} K_{\mathrm{a} 3}=12.3746
$$

## Polyprotic Acids and Bases

EX 2. What is the pH and concentration of all species present in a 5.00 M solution of phosphoric acid?
$100(0.1939) / 5.00=3.9 \%$,
$K_{\mathrm{a} 1}=7.11 \times 10^{-3} \quad \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})<=>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$
$\mathrm{EQ} \quad 5.00-x$ OK by $5 \%$, not by $1 \%$ rule quadratic $=>x=0.1901$ $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=0.190$, $\left[\mathrm{OH}^{-}\right]=5.3 \times 10^{-13} \mathrm{M}$
$K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=\frac{x^{2}}{5.00-x} \Rightarrow x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=0.1939 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=5.00-0.19=4.81,\left[\mathrm{OH}^{-}\right]=5.2 \times 10^{-13} \mathrm{M} \quad \mathrm{pH}=0.71$
$K_{\mathrm{a} 2}=6.34 \times 10^{-8} \quad \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})<=>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})$
$K_{\mathrm{a} 2}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HPO}_{4}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]}=\mathbf{6 . 2 3} \times 10^{-3} \quad K_{\mathrm{a} 3}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{PO}_{4}{ }^{3-}\right]}{\left[\mathrm{HPO}_{4}{ }^{2-}\right]}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{PO}_{4}{ }^{3-}\right]}{K_{\mathrm{a} 2}}$
$=>\left[\mathrm{PO}_{4}{ }^{3-}\right]=7.2 \times 10^{-3} \mathrm{M}$

## Polyprotic Acids and Bases - Intermediate Form

Consider a diprotic acid

$$
\mathrm{H}_{2} \mathrm{~A}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HA}^{-}(a q) \text { base }
$$

$$
\text { acid } \mathrm{HA}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{2-}(a q)
$$

If $\mathrm{H}_{2} \mathrm{~A}$ is a weak acid its conjugate base, $\mathrm{HA}^{-}$is amphoteric. It can act as an acid (second equation) or as a base (reverse of first reaction). What is the pH of a solution of $\mathrm{HA}^{-}$such as NaHA?
Exact Treatment (H pp. 216-218) for NaHA
species: $\mathrm{H}_{2} \mathrm{~A}, \mathrm{HA}^{-}, \mathrm{A}^{2-}, \mathrm{H}^{+}, \mathrm{OH}^{-}, \mathrm{Na}^{+}=>$need 6 equations
charge balance: $\left[\mathrm{H}^{+}\right]+\left[\mathrm{Na}^{+}\right]=\left[\mathrm{HA}^{-}\right]+2\left[\mathrm{~A}^{2-}\right]+\left[\mathrm{OH}^{-}\right]$
material balance: $\mathrm{M}_{\mathrm{NaHA}}=\left[\mathrm{Na}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{~A}\right]+\left[\mathrm{HA}^{-}\right]+\left[\mathrm{A}^{2-}\right]$
equilibria: $\quad K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HA}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]} \quad K_{\mathrm{a} 2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{2-}\right]}{\left[\mathrm{HA}^{-}\right]} \quad K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
One can show that

$$
\left[\mathrm{H}^{+}\right]^{2}=\frac{K_{\mathrm{a} 1} K_{\mathrm{a} 2}\left[\mathrm{HA}^{-}\right]+K_{\mathrm{a} 1} K_{\mathrm{w}}}{K_{\mathrm{a} 1}+\left[\mathrm{HA}^{-}\right]}
$$

## Polyprotic Acids and Bases - Intermediate Form

$$
\left[\mathrm{H}^{+}\right]^{2}=\frac{K_{\mathrm{a} 1} K_{\mathrm{a} 2}\left[\mathrm{HA}^{-}\right]+K_{\mathrm{a} 1} K_{\mathrm{w}}}{K_{\mathrm{a} 1}+\left[\mathrm{HA}^{-}\right]}
$$

1. when the major species is $\mathrm{HA}^{-}=>\left[\mathrm{HA}^{-}\right]=\mathrm{M}_{\text {HA- }}\left(\mathrm{F}_{\text {HA- }}\right)$

$$
\approx \frac{K_{\mathrm{a} 1} K_{\mathrm{a} 2} \mathrm{M}_{\mathrm{NaHA}}+K_{\mathrm{a} 1} K_{\mathrm{w}}}{K_{\mathrm{a} 1}+\mathrm{M}_{\mathrm{NaHA}}}-\frac{K_{\mathrm{a} 1}\left(K_{\mathrm{a} 2} \mathrm{M}_{\mathrm{NaHA}}+K_{\mathrm{w}}\right)}{K_{\mathrm{a} 1}+\mathrm{M}_{\mathrm{NaHA}}}
$$

2. often $K_{\mathrm{w}} \ll K_{\mathrm{a} 2} \mathrm{M}_{\mathrm{NaHA}}$

$$
\approx \frac{K_{\mathrm{a} 1} K_{\mathrm{a} 2} \mathrm{M}_{\mathrm{NaHA}}}{K_{\mathrm{a} 1}+\mathrm{M}_{\mathrm{NaHA}}}
$$

3. and $K_{\mathrm{al}} \ll \mathrm{M}_{\mathrm{NaHA}}$

> this often needs to be checked

$$
\approx \frac{K_{\mathrm{a} 1} K_{\mathrm{a} 2} \mathrm{M}_{\mathrm{NaHA}}}{\mathrm{M}_{\mathrm{NaHA}}}=K_{\mathrm{a} 1} K_{\mathrm{a} 2}
$$

or

$$
\mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{\mathrm{a} 1}+\mathrm{p} K_{\mathrm{a} 2}\right)
$$

## Polyprotic Acids and Bases - Predominant Species

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}]}{[\mathrm{A}]}
$$



## Fractional Composition Diagrams, $\alpha$ versus pH


monoprotic acid, HA

diprotic acid, $\mathrm{H}_{2} \mathrm{~A}$

## Z Chapter 6 (Chemical Equilibrium)

equilibrium constant
law of mass action
activity/activity coefficient
$K$ (molarity)
$K_{\mathrm{P}}$ (partial pressures)
reaction quotient, $Q$ mathematics
multiply reaction by $n$ reverse reaction add reactions subtract reactions
solving equilibrium problems
homogeneous/heterogeneous reactions approximation for small K using quadratic formula
Le Chatelier's Principle, change of
temperature
total pressure
concentrations/partial pressures

## Z Chapter 7.1 - 7.4, 7.6 (Strong Acids and Bases)

## Bronsted Lowry

definition of acid/base
conjugate acid/conjugate base
autoionization
know 7 common strong acids
know soluble strong bases
strength of acids/bases
pH scale
depends upon water autoionization
temperature dependence
meaning of neutrality, acidity, basicity

## H Chapter 9 (Monoprotic Acid-Base Equilibria)

systematic treatment of equilibrium
mass balance
charge balance
why and when needed
for strong acids/bases
for weak acids/bases $\left[K=x^{2} /(F-x)\right]$
acidity/basicity of salt solutions
strong acids/bases
conjugates
meaning of neutrality, acidity, basicity
buffers
what are they
identify them
quantitative response to added $\mathrm{H}^{+}, \mathrm{OH}^{-}$
preparation
moles of acid/conjugate
molarities of acid/conjugate
strong acid + base
strong base + acid
Henderson-Hasselbalch
setting up and using an ICE table

## H Chapter 10 (Polyprotic Acid-Base Equilibria)

polyprotic acids and bases
write acid reactions
identify amphoteric species
intermediate form
how to determine pH from $\sqrt{ }$
$\mathrm{pH}=1 / 2\left(\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}\right)$
principle species
buffers
fractional composition
not for Exam III

