# **Polyprotic Acids and Bases\_**

#### Third midterm exam on Monday, November 22

- 9-5 Review of Buffers
- **10-1** Diprotic Acids and Bases
- **10-2 Diprotic Buffers**
- **10-3 Polyprotic Acids and Bases**
- **10-4** Principle Species
- **10-5 Fractional Composition (omit equations)**

Today is last quiz (Adrian is grading tonight! Will be posted on web as soon as available)

will omit solubility

put up W13, W14 Week-in-Review

## **Polyprotic Acids and Bases**

polyprotic acid – capable of donating more than one proton polyprotic base – capable of accepting more than one proton

**EX 1.** What is the concentration of all species present in a 1.00 M solution of sulfuric acid where  $K_{a} = 1.2 \times 10^{-2}$ ?  $H_2SO_4$  strong acid => [acid] = [H+] = [conjugate base] => [H\_2SO\_4]\_o = [H^+] = [HSO\_4^-] = 1.00 M  $[OH-] = K_w / [H^+] = 1.01 \times 10^{-14}$ Major Species  $HSO_4^{-}(aq) + H_2O(l) \iff H_3O^{+}(aq) + SO_4^{2-}(aq)$  $H^+$ 1.0 1.0 ~0 С + X - X +X $HSO_4$ Ε 1.0 + x x1.0 - x $K_{a} = \frac{[H_{3}O^{+}][SO_{4}^{2-}]}{[HSO_{4}^{-}]} = \frac{(1.00 + x) x}{1.00 - x} \implies x = [SO_{4}^{2-}] = 0.012 \text{ M}$ H<sub>2</sub>O 100(0.012) = 1.2% OK by 5% rule, not OK by 1% rule, quadratic => x = [SO<sub>4</sub><sup>2-</sup>] = 0.0117 M,  $[H^+]_{total} = 1.00 + 0.0117 = 1.01 \text{ M}, [OH_-] = 1.00 \times 10^{-14} \text{ M}$ 

#### **REVIEW FROM MONDAY**

EX 2. What is the pH and concentration of all species present in a 5.00 M solution of phosphoric acid?  $K_{\rm a1} = 7.11 \times 10^{-3}$  $H_3PO_4(aq) + H_2O(l) \le H_3O^+(aq) + H_2PO_4^-(aq)$  $pK_{a1} = 2.1481$  $H_2PO_4^-(aq) + H_2O(l) <=> H_3O^+(aq) + HPO_4^{2-}(aq)$  $K_{a2} = 6.34 \times 10^{-8}$  $pK_{a2} = 7.1979$  $HPO_4^{2-}(aq) + H_2O(l) \le H_3O^+(aq) + PO_4^{3-}(aq)$  $K_{a3} = 4.22 \times 10^{-13}$  $pK_{a3} = 12.3746$ 

## **Polyprotic Acids and Bases**

**EX 2.** What is the pH and concentration of all species present in a 5.00 M solution of phosphoric acid? 100(0.1939)/5.00 = 3.9%OK by 5%, not by 1% rule  $K_{a1} = 7.11 \times 10^{-3}$   $H_3PO_4(aq) + H_2O(l) <=> H_3O^+(aq) + H_2PO_4^-(aq)$ quadratic = x = 0.1901 $[H_3O^+] = [H_2PO_4^-] = 0.190,$ EQ 5.00 - x x x  $[OH^{-}] = 5.3 \times 10^{-13} M$  $K_{a1} = \frac{[H_3O^+][H_2PO_4^-]}{[H_2PO_4^-]} = \frac{x^2}{5\ 00 - x} \implies x = [H_3O^+] = [H_2PO_4^-] = 0.1939 \text{ M}$  $[H_3PO_4] = 5.00 - 0.19 = 4.81, [OH^-] = 5.2 \times 10^{-13} M$ pH = 0.71 $K_{a2} = 6.34 \times 10^{-8}$   $H_2 PO_4^{-}(aq) + H_2 O(l) <=> H_3 O^{+}(aq) + HPO_4^{2-}(aq)$  $K_{a2} = \frac{[H_3O^+][HPO_4^{2-}]}{[H_2PO_4^{-}]} = 6.23 \times 10^{-3} \qquad K_{a3} = \frac{[H_3O^+][PO_4^{3-}]}{[HPO_4^{2-}]} = \frac{[H_3O^+][PO_4^{3-}]}{K_{a3}}$ => [PO<sub>4</sub><sup>3-</sup>] = 7.2 × 10<sup>-3</sup> M

### **Polyprotic Acids and Bases – Intermediate Form**

Consider a diprotic acid

H<sub>2</sub>A(aq) + H<sub>2</sub>O(l) 
$$\iff$$
 H<sub>3</sub>O<sup>+</sup>(aq) + HA<sup>-</sup>(aq) base  
HA<sup>-</sup>(aq) + H<sub>2</sub>O(l)  $\iff$  H<sub>3</sub>O<sup>+</sup>(aq) + A<sup>2-</sup>(aq)

If  $H_2A$  is a weak acid its conjugate base,  $HA^-$  is amphoteric. It can act as an acid (second equation) or as a base (reverse of first reaction). What is the pH of a solution of  $HA^-$  such as NaHA?

Exact Treatment (H pp. 216 - 218) for NaHA

species:  $H_2A$ ,  $HA^-$ ,  $A^{2-}$ ,  $H^+$ ,  $OH^-$ ,  $Na^+ =>$  need 6 equations charge balance:  $[H^+] + [Na^+] = [HA^-] + 2[A^{2-}] + [OH^-]$ 

material balance:  $M_{NaHA} = [Na^+] = [H_2A] + [HA^-] + [A^{2-}]$ 

equilibria: 
$$K_{al} = \frac{[H^+][HA^-]}{[H_2A]}$$
  $K_{a2} = \frac{[H^+][A^{2-}]}{[HA^-]}$   $K_w = [H^+][OH^-]$ 

One can show that

$$[H^+]^2 = \frac{K_{a1}K_{a2}[HA^-] + K_{a1}K_w}{K_{a1} + [HA^-]}$$

exact relation

### **Polyprotic Acids and Bases – Intermediate Form**

$$[H^{+}]^{2} = \frac{K_{a1}K_{a2}[HA] + K_{a1}K_{w}}{K_{a1} + [HA^{-}]}$$
1. when the major species is HA<sup>-</sup> => [HA-] = M<sub>HA</sub>. (F<sub>HA</sub>.)  

$$\approx \frac{K_{a1}K_{a2}M_{NaHA} + K_{a1}K_{w}}{K_{a1} + M_{NaHA}} = \frac{K_{a1}(K_{a2}M_{NaHA} + K_{w})}{K_{a1} + M_{NaHA}}$$
2. often  $K_{w} \ll K_{a2}M_{NaHA}$   

$$\approx \frac{K_{a1}K_{a2}M_{NaHA}}{K_{a1} + M_{NaHA}}$$
3. and  $K_{a1} \ll M_{NaHA}$  this often needs to be checked  

$$\approx \frac{K_{a1}K_{a2}M_{NaHA}}{M_{NaHA}} = K_{a1}K_{a2}$$
or

$$pH = \frac{1}{2}(pK_{a1} + pK_{a2})$$

### **Polyprotic Acids and Bases – Predominant Species**

$$pH = pK_a + \log_{10} \frac{[B]}{[A]}$$



### Fractional Composition Diagrams, α versus pH



## Z Chapter 6 (Chemical Equilibrium)

#### equilibrium constant

law of mass action activity/activity coefficient K (molarity)  $K_{\rm P}$  (partial pressures) reaction quotient, Q mathematics multiply reaction by *n* reverse reaction add reactions subtract reactions

#### solving equilibrium problems

homogeneous/heterogeneous reactions approximation for small K using quadratic formula Le Chatelier's Principle, change of

temperature total pressure concentrations/partial pressures

## Z Chapter 7.1 – 7.4, 7.6 (Strong Acids and Bases)

#### **Bronsted Lowry**

definition of acid/base conjugate acid/conjugate base autoionization know 7 common strong acids know soluble strong bases strength of acids/bases **pH scale** depends upon water autoionization temperature dependence

meaning of neutrality, acidity, basicity

## H Chapter 9 (Monoprotic Acid-Base Equilibria)

#### systematic treatment of equilibrium

mass balance charge balance why and when needed for strong acids/bases for weak acids/bases [ $K = x^2/(F - x)$ ] **acidity/basicity of salt solutions** strong acids/bases

conjugates

meaning of neutrality, acidity, basicity

#### buffers

what are they identify them quantitative response to added H<sup>+</sup>, OH<sup>-</sup> preparation moles of acid/conjugate molarities of acid/conjugate strong acid + base strong base + acid Henderson-Hasselbalch setting up and using an ICE table

## H Chapter 10 (Polyprotic Acid-Base Equilibria)

#### polyprotic acids and bases

write acid reactions identify amphoteric species intermediate form

how to determine pH from  ${\bf \sqrt{}}$ 

 $pH = \frac{1}{2} (pK_{a1} + pK_{a2})$ 

principle species

buffers fractional composition

not for Exam III