

Prospectus 2018-19

POLYTECH^{*} ORLÉANS School of Engineering of the University of Orléans

Courses Syllabus

Polytech Orléans

Site Léonard de Vinci 8, rue Léonard de Vinci 45072 ORLÉANS cedex 02 Site Galilée 12, rue de Blois – BP 6744 45067 ORLÉANS cedex 02

Site du Pôle Universitaire d'Eure-et-Loir 21, rue de Loigny-la-Bataille 28000 CHARTRES

Contents

Scientific courses and Syllabus5
Civil and Geo-environmental Engineering (GC)7
Sustainable Construction (COD)9
Geoenvironmental Engineering (GEN)12
Public Works and Land-Use Planning (TPA)16
Engineering Physics and Embedded Systems (GPSE) 21
Plasma Engineering (GP) and Computer vision and Embedded Systems (SE)24
Innovations in Design and Materials (ICM)
Materials and structures (MS)
Mechatronic system modelling (EcoSyM)37
Multiphysics modelling and simulation (MSP)42
Technologies for Energy, Aerospace Engineering and Motorization (TEAM).50
All trainings – Classics teaching units62
Personal Projects
French Courses 70

4 | **PROSPECTUS 2018/19**

Scientific courses and Syllabus

▷ : less than 20 % of the course is taught in English - documentation in English provided ▷▷ : between 20 and 75 % of the course is taught in English ▷▷▷ : more than 75 % of the course is taught in English

6 | **PROSPECTUS 2018/19**

Civil and Geo-environmental Engineering (GC)

Course Unit Code	Course Unit Title	Total Hours without ind. work	ECTS Credits			
Fall Semest	er (September – December)					
	Sustainable Construction (COD)					
9CD01	Dynamic and environmental impacts on structures - Ouvrages sous sollicitations dynamiques et environnementales	70	8			
9CD02	Construction Sites and Project Management - Chantiers du bâtiment et maîtrise d'œuvre	112.5	11			
9CD03	Thermal and aeraulic buildings - <i>Thermique et aéraulique des bâtiments</i>	40	5			
Geoenvironmental Engineering (GEN)						
9GE01	Polluted sites and soils - Sites et sols pollués	55	6			
9GE02	Water Resource and Environment Management - Gestion de l'eau et des milieux associés	72.5	8			
9GE03	Design and Depollution Works - <i>Bureaux d'études et chantiers de dépollution</i>	46.25	5			
9GE04	Site preparation - Préparation de chantier TP	48.75	5			
Public Works and Land-Use Planning (TPA)						
9TP01	Urban Design and Planning - Conception des aménagements	112.5	12			
9TP02	Site preparation - Préparation de chantier TP	48.75	5			
9TP03	Public Works - Travaux publics	61.25	7			
Spring Sem	ester (January – March)					
AGC01	Project – Projet d'entreprise	170	10			
Studente h	ave to choose one option and then only nick up courses it	this option				

Students have to choose one option and then only pick up courses in this option.

8 **PROSPECTUS 2018/19**

Civil and Geo-environmental Engineering

9CD01

Dynamic and environnmental impacts on structures

Supervisor: Dashnor HOXHA

ECTS:8

Semestre 9

Learning Outcomes

On completing this teaching unit engineering students will be able to:

- Estimate wind and snow loads following Eurocodes
- Analyze behavior of structures under dynamic loads
- Design structures/buildings in seismic zones following Eurocodes 8
- Characterize soil-structure interactions, design underground structures
- Design foundations of bridges and special foundations
- Quantify the impact of environnemental agents on structures

Teaching Process (syllabus)

Assessment of wind and snow loads, following Eurocode rules

Analyzes following EN 1991-3 et EN-1991-4 of wind and snow loads, design practice, simplified and computerbased models

Dynamics of structures

- SDOF, free and forced vibrations, harmonic, periodic and arbitrary dynamic loads, transfer function
- MDOF : modal analysis, Rayleigh quotient, Ritz vectors

Earthquake design of buildings

- Eurocode 8 for design of buildings : lateral force method, modal analyses, classes of behavior
- Eurocode-Compliant Seismic analysis
- Seismic retrofitting of existing structures

Soil Structure interactions

- Bases of soil-structure interaction
- Design of supports for underground constructions
- Foundations, deep foundations, special foundations under dynamic solicitation

Assessment of environmental impact on structures

- Ageing of concrete structures, case studies
- Monitoring of ageing, methods of reparation and renovation
- Stone ageing ,characterization and reparation

Assessment Mode

Written exams, project reports							
Workload							
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD		
42.5h	8.75h	18.75h			70h		
Proportion of the TU in English:		역석					

Civil and Geo-environmental Engineering 9CD02 Semester 9 **Construction Sites and Project Management** Supervisor: Naïma BELAYACHI **ECTS: 11** Learning Outcomes On completing this teaching unit engineering students will be able to: Plan a construction site; Manage a construction site financially; Plan construction for a specific project; Manage human resources according to the construction scheduling; Manage materials and equipment; Study the economic aspect of construction; Assess risks, comply with safety regulations; Read and analyze project requirements and documents; Read construction drawings, analyze their structure and dimension the steel reinforcement; Study the rehabilitation of a building according to seismic, thermal regulation; suggest reinforcement for a given structure; Find building sustainable solutions (building waste, bio-sourced insulation materials, organic concrete). **Teaching Process (syllabus)** Analyzing tender enquiries • Identifying a building operation boundaries and interfaces Identifying construction modes and organizational methods used to plan a construction site • Assessing environmental impact Calculating material quantities (quantity surveying) Introducing different technical constraints and suggestion of technical and economic variants Managing an actual project and calculation of structures in implementation phases (project teaching) Dimensioning the elements of a structure made of reinforced concrete in both average and accidental (seism) situations, application of earthquake-resistant building regulation Sustainable bioclimatic design and thermal rehabilitation Dimensioning of wooden structures. Dimensioning of wooden joints and sections. Technology of wood. Assessment Mode A report and oral defense for each design office project; an exam on construction sites and wood structures Workload STUDENT Lectures Classes Labs Individual Project work WORKLOAD work 26.25h 55h 31.25h 23.75h 112.5h 印 Proportion of the TU in English:

Civil and Geo-e	environmental E	ngineering		9CD03	Semester 9
	Thern	nal and a	eraulic bu	ildings	
Supervisor:	Marwen BO	UASKER			ECTS: 5
Learning Outcon	nes				
At the end of this	teaching unit, the	student engineer	s will be able to :		
Know tł	ne heat transfer m	odes			
Design a	a solar thermal col	lection system			
 Apply the 	ne different therm	al standards			
 Establis 	h the thermal bala	nce of a room			
0	a ventilation netwo				
Design a	an air treatment b	attery			
Tooching Drocos	c (program)				
Teaching Proces Thermal buildir					
	able energy				
	pture systems				
	l losses in a buildir	Ig			
	lance of a room	0			
 Application 	tion of labels and t	hermal standards			
	sation at the surfa				
Aeraulic					
Charact	eristic equations o	f ducted air flows			
 Calculat 	ion of air ducts				
 Fan sele 	ection (constant j n	nethod, static pre	ssure gain method)	
Aeraulio	c exchanges and co	ondensations			
Air treat	tment				
Assessment Moc	1e				
	on thermal buildir	ig insulation and f	Lexam on aeraulic	2	
				-	
Workload					
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD
18.75h	21.25h				40h

Civil and Geo-e	nvironmental En	gineering		9GE01	Semester 9		
Polluted sites and soils							
Supervisor:	Mikael MOTI				ECTS:6		
-					LCIJ.U		
Learning Outcon	nes						
	is teaching unit eng and biogeochemist	-					
Evaluate	e and model the bel	navior of key-poll	utants in environm	ental compartme	nts		
Design i soils (PS	innovative remedia S)	tion strategies (p	hysical, chemical a	and biological) for	polluted sites and		
Teaching Process	s (syllabus)						
Geochemistry o	f contaminants						
	ction to environmer	ntal geochemistry	,				
Geoche	mistry of surface wa	aters					
Geoche	mistry of groundwa	ters					
Biogeoc	hemistry of soils						
Hydroge	eochemical modellin	ng					
Pollutio	n chemistry						
 Ecodyna 	amics of contamina	nts					
Contaminated s	ites and soils dia	gnosis					
Diagnos							
Measure	ement and prediction	on of pollution (w	vaters)				
Measure	ement and prediction	on of pollution (so	oils, sediments and	wastes)			
_	is and decontamina						
_	is and decontamina		d metalloids				
,	-chemical treatmen	ts					
Bioreme							
Phytoremediation							
Assessment Mode							
A report for part 1 and a report and oral defense for each project for part B							
Workload							
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD		
35h	15h	5h			55h		
Proportion of the	e TU in English:	여녀녀					

Civil and Geo-environmental Engineering

9GE02

Water Resource and Environment Management

Supervisor:

Christian DÉFARGE

ECTS: 8

Learning Outcomes

On completing this teaching unit engineering students will be able to:

- Consider risks in land-use planning (floods...) and water management (living organisms...)
- Implement hydrogeological methods in the field (flow, piezometric map, pumping test...)
- Model water and pollutant transfer in surface and underground hydrologic systems
- Size, implement, pilot and evaluate water and wastewater treatment processes and plants

Teaching Process (syllabus)

Geobiology of resources and processes

- Living organisms present in water, bioindicators, biological water-related diseases, invasive species
- Roles of living organisms in natural waters and environments, use in water treatment processes

Vulnerability, risks

- Risk management chain: uncertainty/issues, security/protection, forecasting, damage repair
- Study of dangers and crisis management
- Principles and methods for the prioritization of water resource vulnerability and GIS application of the indicator-based approach

Field hydrology

- Flow measurement via exploration of the velocity field exploration and chemical gauging
- Drawing up a piezometric map and delimitation of the system
- Well-production test to characterize the hydrodynamic properties

Water management

- Notions of hydrological cycle, residence time and groundwater storage volume
- Interaction between reservoirs, mixing, tools for active resource management using hydrodynamic modeling (Modflow software)
- Mass transfer mechanisms, at pore level and at the macroscopic level, pollutant reactivity

Water and wastewater treatment

- Classroom lessons: Water and wastewater treatment processes and plants, case studies
- On-site lessons: Drinking water production plants (ultrafiltration, iron and manganese removal, etc.), urban and industrial wastewater treatment plants (activated sludge, biological filters, etc.)

Assessment Mode

Reports on case studies and field work

Workload					
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD
45h	27.5h		12.5h		72.5h
Proportion of the TU in English:		1 1 1 1 1			

Civil and Geo-er	nvironmental Er	gineering		9GE03	Semester 9
	Desig	n and De	pollution	Works	
Supervisor:	Christian [DEFARGE			ECTS: 5
Learning Outcom	es				
Realize aProportion	s teaching unit eng an environmental rtificial tracer test on devices for activ projects and work	impact assessme s and interpretative management of	nt ons of aquifers and po	lution mitigation	
Teaching Process	(syllabus)				
specific t Hazard a Simulatic environr Artificial tracer t Practice	ssessments strictly opic such as public ssessment on of the activity nental impact asse ests applied to e of artificial trace	e easement or du of an environm ssment for a qua ngineering er tests (sizing,	sts ental engineering rry's operation	consultants: stud	management and a ly in groups of an spectrofluorimetric
Synthesi	n, concentration-ti s and data interpre dies on tracer tests	tation in the kars		f the Val d'Orléans rocesses	, report writing
What is a choose a Monitori	ng between classe	ect? The needs o ion technology? n project	f a client? How to	e case for understa build a remediatio	and: n strategy? How to
Assessment Mode Case studies and fi					
Workload	1		1		1
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD
28.75h Proportion of the	17.5h TU in English:	44 4	<u> </u>		46.25h

Civil and Geo-env	ironmental Engineering	9GE04	Semester 9		
Site preparation					
Supervisor:	Laurent JOSSERAND		ECTS: 5		

Learning Outcomes

On completing this teaching unit engineering students will be able to:

- Master main geophysics tests, their implementation conditions and their fields of applicability in civil engineering;
- Identify pollutants in a polluted soil and measure the degree of pollution; ٠
- Make diagnoses of a site pollution and study remediation methods (Learning Outcome 3).
- Propose technical solutions for a site deconstruction or dismantling an industrial site ٠

Teaching Process (syllabus)

This TU is divided in two main parts. The first one deals with geophysical in-situ tests, like resistivity, seismic. These tests will allow us to obtain datas on geological layer.

The second one deals with Polluted site management method (Typology of pollution, regulations and hazards, stakeholders, inventory and database), Diagnosing pollution (Geochemistry of pollutants in soils and aquifers, impact of pollution, methodological tools), Measuring and predicting pollution (Sampling, sampling techniques, identifying the dominant parameters, in situ measurements, methods of analysis), Physical and biological pollution control, remediation of polluted sites

Assessment Mode

Classes assessments, reports, individual assessments and synthesis reports

Workload

Lectures 25h	Classes 13.75h	Labs 10h	Individual work 9h	Project work	STUDENT WORKLOAD 48.75h
Proportion of th	e TU in English:	þþ			

Civil and Geo-e	nvironmental l	Ingineering		9TP01	Semester 9	
	Urb	an Desig	n and pla	nning		
Supervisor:	Xavier BRU	NETAUD			ECTS: 12	
Learning Outcom	nes					
 On completing this teaching unit engineering students will be able to: Design load-bearing structures and foundations for small engineering works according to site data and the work specifications; Understand the transportation issues at stake in urban environments, the main modes of transportation and the associated infrastructures as well as their planning and design techniques. Design and compute a pavement structure according to specifications (traffic), given supporting soil and climate environment; Design and dimension the rainwater and wastewater sewer system including associated storage basins; Draw a linear infrastructure (road, railroad) using Mensura software; 						
Teaching Proces	e the geometry o					
 Engineering works Specifications, site and regulation data. Load-bearing structure design: foundation design and calculation. Overview of the main types of bridge design. Transport infrastructures Urban transport map, urban planning. Pre-DUP studies. Exclusive lanes for public transport. Rail infrastructures. 						
	ne French dimensi		nciples using Alizé	software. Case st	udies (Alizé).	
Sewer systems design and dimensioning Revision on hydraulics and Mensura software. Case studies on actual rainwater / wastewater projects using Mensura.						
Road alignment "Alignments" drawing on Mensura. Implementation of an alignment project on Mensura.						
Structural design Calculation of the structural elements of reinforced concrete, prestressed and metallic structures. Application of seismic codes						
Assessment Mode						
Construction of a	model of bridge,	written exams, pr	ojects reports.			
Workload			1	1		
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD	
63.75h	16.25h	32.5h	16.25h		112.5h	
Proportion of the	e TU in English:	Ð				

<u></u>	~ ·			•
(ivil and	Geo-enviro	nmental	Fugue	arina
Civil alla		mincincul	Linginics	- mg

9TP02

Site preparation

Supervisor: Laurent JOSSERAND

ECTS: 5

Semester 9

Learning Outcomes

On completing this teaching unit engineering students will be able to:

- Master main geophysics tests, their implementation conditions and their fields of applicability in civil engineering;
- Identify pollutants in a polluted soil and measure the degree of pollution;
- Make diagnoses of a site pollution and study remediation methods (Learning Outcome 3).
- Propose technical solutions for a site deconstruction or dismantling an industrial site

Teaching Process (syllabus)

This TU is divided in two main parts. The first one deals with geophysical in-situ tests, like resistivity, seismic. These tests will allow us to obtain datas on geological layer.

The second one deals with Polluted site management method (Typology of pollution, regulations and hazards, stakeholders, inventory and database), Diagnosing pollution (Geochemistry of pollutants in soils and aquifers, impact of pollution, methodological tools), Measuring and predicting pollution (Sampling, sampling techniques, identifying the dominant parameters, in situ measurements, methods of analysis), Physical and biological pollution control, remediation of polluted sites

Assessment Mode

Classes assessments, reports, individual assessments and synthesis reports

Wor	'kla	ad

Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD
25h	13.75h	10h	9h		48.75h
Proportion of th	e TU in English:	정대			

Civil and Geo o	environmental E	ingineering		9TP03	Semester 9				
Public Works									
Supervisor:	Laurent JO	SSERAND			ECTS:7				
Learning Outcor	Learning Outcomes								
 On completing this teaching unit engineering students will be able to: Define the schedule of quantities for a construction site; optimize its tasks and organization. Through productivity, they will be able to estimate its duration, cost and environmental impact limited to greenhouse gases. Choose and optimize quantities of materials necessary to construction sites among which stones, soils, pipes, coated materials Acquired knowledge about these hydrocarbon coated materials and their bonding agents will allow students to optimize their compositions; 									
Teaching Proces	s (syllabus)								
allow students to their future profe constru use of r implem	b deepen their knows essional position: action sites, study of natural stones, entation of netwo coated materials	owledge and skills of economical vari rks (wastewater,	while giving ther ants or solutions rainwater, multitu		.),				
Assessment Mod	le								
Classes assessme	nts, reports, indivi	dual assessments	and synthesis rep	orts					
Workload									
Lectures Classes Labs Individual Project work STUDENT work WORKLOAD									
	Proportion of the TU in English:								
•	-								

Civil and Geo-	environmental I	Ingineering		AGC01	Semester 10		
Project							
Supervisor:	Naïma BELA	YACHI			ECTS: 10		
 Conduc Develo Set a b Perform Work a 	his teaching unit er ct a study to solve p and consolidate ill of specifications n regular follow-up utonomously;	an industrial or res disciplinary skills a and schedule task with the actors o	search issue using a cquired during the s; f the project, plan	three-year trainin	ıg; ıs;		
 Project Establi: Writing Task so Identifi Risk an Techni Update Deliver 	 Synthesize the progress made and present them in a written report and oral presentation. Teaching Process (syllabus) Project and format selection (solo, duo or group work) Establishment of contact with the limited partner of the study (company or laboratory) Writing of the bill of specifications submitted to the limited partner for approval Task scheduling and follow-up meetings Identification of the tools and resources necessary to the project conduct Risk analysis and fallback solutions Technical realization of the study Update of the project follow-up and implementation of fallback solutions if required Delivery of a synthesis report Oral presentation of the results of the study 						
Assessment Mo Report and oral o							
Workload							
Lectures	Classes	Labs	Individual work	Project work 170h	STUDENT WORKLOAD 170h		
Proportion of th	e TU in English:	너너너					

20 | **PROSPECTUS**2018/19

Engineering Physics and Embedded Systems (GPSE)

Course Unit Code	Course Unit Title	Total Hours without ind. work	ECTS Credits				
Fall Semest	Fall Semester (September – December)						
9GP01	Computer vision and Embedded Systems – Vision & éclairage	75	8				
9GP02	Guided Experiments and Low pressure plasma or Computer vision Engineering - Spécialisation et projet en photonique, plasma ou objets connectés	115	16				
Spring Sem	ester (January – March)						
AGP01	Project – Projet d'entreprise	170	10				
The Fall Semester could be complete with a personal project in a lab (see Personal projects)							

22 | **PROSPECTUS** 2018/19

Engineering Physics and Embedded Systems

9GP01

Semester 9

ソン

Computer Vision & Embedded Systems

Supervisors: Sylvie TREUILLET

ECTS:8

Objectives

On completing this teaching unit engineering students will be able to:

Teaching Process (syllabus)

- Introduction to image processing focused on machine vision, quality control and metrology
- Introduction to geometric vision and embedded vision (calibration, 3D localization), focused on the Smartphone and applications of vision to robotics
- Introduction to object recognition and machine learning

Key Applications

- Industrial vision for quality control (presence / absence, position, counting, character recognition, dimensions, fault detection, sorting, etc.)
- Learning and recognition of objects, video surveillance (pedestrians, vehicle)
- Metrology, Vision for Robotics, Augmented Reality

Assessment Mode						
Report and oral defense						
Workload						
Lectures	Classes	Labs	Individual work	Project work	STUDIENT WORKLAND	
3,75h		33,75 h		37,5h	75h	
Proportion of the TU in English:		1444				

Guided Experiments and Low pressure plasma or computed vision Engineering. Supervisors: Rémi DUSSART ECTS: 16 Objective Computed vision Engineering students will be able to: (Specialization in Plasma engineering) 0. Completing this teaching unit engineering students will be able to: (Specialization in Plasma engineering) Use and control the treatment of materials 0. Design a plasma reactor for the treatment of materials after treatment of materials or for the optoelectronic Diagnose the plasmas/lasers and characterize the mateirlas after treatment of materials or for the optoelectronic systems) 0. Develop some Smartphone and IoT applications Diagno sette plasmas/lasers and characterize the mateirlas after treatment 10. Use Linux in the programming of connected objects Design systems HM (Interaction Human Machine) Properties of plasmas 0. General properties of plasmas Electric Discharges (DC, RF and microwaves) 0. Optical diagnosis Electric Discharges (DC, RF and microwaves) 0. Optical disensor Guided projects: choice among 4 projects 0. Optical disensor Suided projects: choice among 4 projects 0. Optical disensor Suided projects: choice among 4 projects 0. Smartphone as an IoT Empodedde Linux 0. Sign software Project Asse	Engineering P	hysics and Emb	edded Systems		9GP02	Semester 9
Supervisors: Rémi DUSSART ECTS: 16 Objectives On completing this teaching unit engineering students will be able to: (Specialization in Plasma engineering) Design a plasma reactor for the treatment of materials Use and control the lasers and optical systems for the treatment of materials or for the optoelectronics Diagnose the plasmas/lasers and characterize the mateirlas after treatment of materials or for the optoelectronics Diagnose the plasmas/lasers and characterize the mateirlas after treatment of materials or for the optoelectronics Diagnose the plasmas/lasers and characterize the mateirlas after treatment Specialization in Embedded Systems) Develop some Smartphone and IoT applications Use Linux in the programming of connected objects Design systems IHM (Interaction Human Machine) Pasma engineering General properties of plasmas Electric Discharges (DC, RF and microwaves) Electrical and Optical diagnosis Laser Yag, doubing of frequencies and intensity modulation Optical sensors Optoelectronics : guidance in integrated photonics and telecommunications Guided projects: choice among 4 projects etrag modified filtereaution Embedded Linux Multithreading <ll>Ergonomics IHM Design software Project Assessment Mode Labs Individual work</ll>	Guide	ed Experir	nents and	Low pres	ssure plas	sma or
Supervisors: Rémi DUSSART ECTS: 16 Objectives On completing this teaching unit engineering students will be able to: (Specialization in Plasma engineering) Design a plasma reactor for the treatment of materials Use and control the lasers and optical systems for the treatment of materials or for the optoelectronics Diagnose the plasmas/lasers and characterize the mateirlas after treatment Opticatization in Embedded Systems) Develop some Smartphone and IoT applications Develop some Smartphone and IoT applications Use Linux in the programming of connected objects Design systems IHM (Interaction Human Machine) Develop some Smartphone and IoT applications Plasma engineering General properties of plasmas Electric Discharges (DC, RF and microwaves) Electric Discharges (DC, RF and microwaves) Electrical and Optical diagnosis Electrical sensors Optical sensors Optoelectronics : guidance in integrated photonics and telecommunications Guided projects: choice among 4 projects or Embedded Linux Smartphone as an IoT Embedded Linux Ergonomics IHM Design software Project Project Classes Labs Individual work Project work STUDENT WORKLOAD 150h		-		-	-	
Objectives Description On completing this teaching unit engineering students will be able to: (Specialization in Plasma engineering) Design a plasma reactor for the treatment of materials Use and control the lasers and optical systems for the treatment of materials or for the opticelectronics Diagnose the plasmas/lasers and characterize the mateirlas after treatment (Specialization in Embedded Systems) Develop some Smartphone and IoT applications Use Linux in the programming of connected objects Design systems IHM (Interaction Human Machine) Plasma engineering General properties of plasmas Electric Discharges (DC, RF and microwaves) Electrical and Optical diagnosis Laser Yag, doubing of frequencies and intensity modulation Optical sensors Optoelectronics : guidance in integrated photonics and telecommunications Guided projects: choice among 4 projects Smartphone as an IoT Embedded Systems Smartphone as an IoT Ergonomics IHM Design software Project Kasessment Mode Report and oral defense Workload Lectures Classes Labs Individual work Project work STUDENT WORKLOAD 150h Stoh<th></th><th>Comp</th><th>buter visio</th><th>on Engine</th><th>ering</th><th></th>		Comp	buter visio	on Engine	ering	
On completing this teaching unit engineering students will be able to: (Specialization in Plasma engineering) • Design a plasma reactor for the treatment of materials • Use and control the lasers and optical systems for the treatment of materials or for the optoelectronics • Diagnose the plasmas/lasers and characterize the materilas after treatment (Specialization in Embedded Systems) • Develop some Smartphone and IoT applications • Use Linux in the programming of connected objects • Design systems IHM (Interaction Human Machine) Teaching Process (syllabus) Plasma engineering • General properties of plasmas • Electric Discharges (DC, RF and microwaves) • Electrical and Optical diagnosis • Laser Yag, doubing of frequencies and intensity modulation • Optical sensors • Optoelectronics : guidance in integrated photonics and telecommunications • Guided projects: choice among 4 projects or Embedded Systems • Smartphone as an IoT • Embedded Linux • Multithreading • Ergonomics IHM • Design software • Project Morkload Lectures Classes Labs Individual work Project work STUDENT WorkLoAD 150h	Supervisors:	Rémi DUSS/	ART			ECTS: 16
(Specialization in Plasma engineering)	Objectives					
• Design systems IHM (Interaction Human Machine) Teaching Process (syllabus) Plasma engineering • General properties of plasmas • Electric Discharges (DC, RF and microwaves) • Electrical and Optical diagnosis • Laser Yag, doubing of frequencies and intensity modulation • Optical sensors • Optoelectronics : guidance in integrated photonics and telecommunications • Guided projects: choice among 4 projects or Embedded Systems • Smartphone as an IoT • Engonomics IHM • Design software • Project Assessment Mode Report and oral defense Workload	(Specialization in Design Use an optoel Diagno (Specialization in Develo	a Plasma engineerin a plasma reactor f nd control the las ectronics use the plasmas/las Embedded Syster op some Smartphol	ng) for the treatment of sers and optical sers and characteri ns) <i>ne</i> and <i>loT</i> applicat	of materials systems for the t ze the mateirlas af ions		erials or for the
Teaching Process (syllabus) Plasma engineering • General properties of plasmas • Electric Discharges (DC, RF and microwaves) • Electrical and Optical diagnosis • Laser Yag, doubing of frequencies and intensity modulation • Optical sensors • Optoelectronics : guidance in integrated photonics and telecommunications • Guided projects: choice among 4 projects or Embedded Systems • Smartphone as an IoT • Embedded Linux • Multithreading • Ergonomics IHM • Design software • Project Assessment Mode Report and oral defense Workload Labs Individual work Project work STUDENT WORKLOAD			-	-		
Plasma engineering General properties of plasmas Electric Discharges (DC, RF and microwaves) Electrical and Optical diagnosis Laser Yag, doubing of frequencies and intensity modulation Optical sensors Optoelectronics : guidance in integrated photonics and telecommunications Guided projects: choice among 4 projects or Embedded Systems Smartphone as an IoT Embedded Linux Multithreading Ergonomics IHM Design software Project Assessment Mode Report and oral defense Workload Lectures Classes Labs Individual work Project work STUDENT WORKLOAD 150h		• ·		,		
 General properties of plasmas Electric Discharges (DC, RF and microwaves) Electrical and Optical diagnosis Laser Yag, doubing of frequencies and intensity modulation Optical sensors Optoelectronics : guidance in integrated photonics and telecommunications Guided projects: choice among 4 projects or Embedded Systems Smartphone as an IoT Embedded Linux Multithreading Ergonomics IHM Design software Project Assessment Mode Report and oral defense Workload Lectures Classes Labs Individual work Project work STUDENT WORKLOAD 150h	-	-				
Embedded Systems • Smartphone as an IoT • Embedded Linux • Multithreading • Ergonomics IHM • Design software • Project Assessment Mode Report and oral defense Workload Lectures Classes Labs Individual work Project work STUDENT WORKLOAD 150h	 Electric Electric Laser Y Optica Optoel 	c Discharges (DC, R cal and Optical diag 'ag, doubing of free I sensors lectronics : guidanc	F and microwaves gnosis quencies and inter ce in integrated ph	sity modulation	mmunications	
 Smartphone as an IoT Embedded Linux Multithreading Ergonomics IHM Design software Project Assessment Mode Report and oral defense Workload Lectures Classes Classes Labs Individual work Project work STUDENT WORKLOAD 150h 150h	-					
Report and oral defense Workload Lectures Classes Labs Individual work Project work STUDENT WORKLOAD Lectures Classes Labs Individual work Project work STUDENT WORKLOAD 150h 150h 150h 150h 150h	 Smartg Embed Multitl Ergond Design 	phone as an IoT Ided Linux nreading omics IHM software				
Workload Lectures Classes Labs Individual work Project work STUDENT WORKLOAD 150h 150h 150h	Assessment Mo	de				
Lectures Classes Labs Individual work Project work STUDENT WORKLOAD 150h 150h	Report and oral	defense				
Proportion of the TU in English: 원원원		Classes	Labs	Individual work		WORKLOAD
	Proportion of th	ne TU in English:	444	1	1	I

Exchange stud	lent			UP15	Semester 9		
	Project for exchange student:						
	Ν	1ini resea	rch projec	:t			
Supervisors:					ECTS: 15		
Objectives							
Teaching Proce	ss (syllabus)						
Plasma enginee	ering						
-		• •	o work on a dedica stics, microplasma		plasma etching		
or							
Computer visio	n and Embedded S	Systems					
processing, com		bedded systems. I	ME to work on a d Learning by practic				
Assessment Mo	de						
Report and oral	defense						
Workload							
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD		
				150h	150h		
Proportion of th	e TU in English:	$\mathcal{P}\mathcal{P}\mathcal{P}$					

Engineering Physics and Embedded Systems	Α	GP01	Semester 10				
Project							
Supervisors:			ECTS: 10				
Learning Outcomes On completing this teaching unit engineering students w Write a product specification based on a requi Establish the functional and technological spec Establish milestones and provide project delive Manage a project	rements analysis cifications of a pro	ject					
Organization: During this teaching unit, students work on a technical pris "full time" from early January to mid-March. It ends we an oral exam Scientific content: • The subjects of projects proposed to the stufe feasibility study of a new concept, design a theoretical knowledge, realize an industrial stufe. • In any case, the student engineer must show here	ith a written activ ident engineers a process for a d idy, etc is ability to mana	ity report, a pos are very varied. edicated applic ge a project, to	We can make a ation, improve a take initiatives, to				
be able to share tasks (working in pairs), to car Assessment Mode Written activity report, oral defense	ry out a technical	study in a giver	n time.				
Workload							
Lectures Classes Labs	Individual work	Project work 170h	STUDENT WORKLOAD 170h				
Proportion of the TU in English: 원원원			1				

PROSPECTUS 2018/19 | 27

Innovations in Design and Materials

(ICM) **Total Hours** Course ECTS **Course Unit Title** without ind. Unit Code Credits work Fall Semester (September – December) 9IC01 Business Conferences 10 1 Materials and structures (MS) 9MS01 Metallic Materials – Matériaux métalliques 55 5 Glasses and Simulation of transfers at high temperature – Verres 9MS02 55 5 et simulation hautes températures Thematic Scientific Conferences – Conférences scientifiques 9MS03 10 1 thématiques Advanced materials and properties/structures/ 9MS04 40 4 processes relation – Matériaux avancés, couplages et procédés 9MS05 Ceramics - Céramiques 50 4 9MS06 Industrial cases study – Etude de cas industriels 55 4 Mechatronic system modelling (EcoSyM) 9EC01 Mechatronic systems – Systèmes mécatroniques 65 6 Analysis and sizing of mechanical systems – Analyse et 9EC02 55 5 dimensionnement de systèmes mécaniques Thematic scientific conferences – Conférences scientifiques 9EC03 10 1 mécaniques 9EC04 Control strategies and Robotics – Automatique et robotique 80 7 9EC05 Collaborative Projects – Projets transversaux 55 4 Multiphysics modelling and simulation (MSP) 9MP01 Nonlinear mechanics – Mécanique non linéaire 70 6 9MP02 Composites and processes – Composites et procédés 40 4 9MP03 Multiphysics couplings – Couplages multiphysiques 4 40 9MP04 Thematic scientific conferences – *Conférences scientifiques* 10 1 thématiques 9MP05 Advanced simulations – Simulation avancée 50 4 **9MP06** Industrial applications – *Applications industrielles* 55 4 Spring Semester (January – March) AIC01 Project – Projet d'entreprise 170 10

Students have to choose one option and then only pick up courses in this option.

PROSPECTUS 2018/19 | 29

Innovations in Design and Materials				9IC01	Semester 9			
	Business Conferences							
Supervisors:	Jacques FAN	NTINI			ECTS: 1			
Learning Outco	mes							
Have aReinfoBetter	clearer vision of the clearer vision of the clearer vision of the clearer profession of the clearer vision of	ngineering student he different jobs to nal and personal p ustrial application	o which the ICM sp roject		al content of the			
Teaching Proce Conferences by ex Program: to be c	operts from the indu	strial world						
Assessment Mo written tests	de							
Workload								
Lectures 10h	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD 10h			
Proportion of th	e TU in English:	þ						

This course is available for the 3 options: Materials and structures, Mechatronic system modelling, or Multiphysics modelling and simulation.

Innovations in Design and Materials

9MS01

Semester 9

Metallic Materials

Supervisors: Jacques Poirier

ECTS: 5

Learning Outcomes

After this training, the students will be able to:

- Understand the metallurgical concepts necessary for the elaboration, the processing, the properties, the limitations of use of advanced alloys;
- Become familiar with the choice, corrosion and life cycle problems of metallic materials;
- To treat practical applications (energy, automobile, aeronautics, mechanical constructions, civil engineering, ...)

Advanced metal materials play a key role in the design, elaboration and use of manufactured products and structural parts. The acquired skills will enable:

- To understand how a component or metallic piece of structure is made, with what metallic materials
- How the engineers choose and master metallic materials.

Teaching Process (syllabus)

1. Lectures

- Metallurgical concepts (structure, microstructure, defects)
- Introduction to alloys
- Metallic alloys under extreme conditions (low temperature / high temperature, high mechanical strength, large deformations, corrosion resistance, etc.,

2. Industrial case studies: development, characteristics, properties in use

- Precious alloys (Au, Ag, Cu)
- Cryogenic alloys
- Fe, Ni and Fe alloys, Ni, Cr (stainless steels)
- Advanced alloys for nuclear power and energy: zircaloy (cladding of fuel rods in nuclear reactors), Ni base alloys
- Advanced steels for automotive: IFS, DWI, HLE, TRIP, Steel cord
- Alloys for aeronautics and energy: Super alloys, refractory metals, Cermet

3. Industrial case studies: corrosion

Assessment Mode

exams, written tests, oral presentations

Workload

Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD
37.5h	17.5h				55h
Proportion of th	ne TU in English:	서녀녀			

Innovations in	Design and Ma	terials		9MS02	Semester 9		
Gla	Glasses and Simulation of transfers at high						
		tempe	rature				
Supervisors:	Mohammed	IMALKI			ECTS:5		
Have a Simulat	iis teaching unit er clear image on dif	ferent families of g ses involving ther	s will be able to: glasses and glass co mal transfer and th		f materials where		
Teaching Proces	ss (syllabus)						
1. Glasses and a	oplications						
fibers, metallic gl	asses, glass indust	ry in France and a	cesses of flat glass round the world, g hanical properties	lass ceramics, vitri	ification of		
2. Simulation of	transfers at high t	temperature					
Importance of ra	solid-liquid transfo	t phenomena at h	ebugging igh temperature, r on of some indust	-			
Assessment Mod written tests	de						
Workload							
Lectures 35h	Classes 20h	Labs	Individual work	Project work	STUDENT WORKLOAD 55h		
Proportion of th	-	β	1	1			

Innovations in Design and Materials

9MS03

Semestre 9

33

Thematic Scientific Conferences

Supervisors: Jacques POIRIER

ECTS: 1

Learning Outcomes

The confrontation with professionals, working in the field of materials, in terms of knowledge, know-how and life skills is essential to the training of students.

The characteristics on which the engineering profession is based: creativity, curiosity, dynamism, scientific and technical competence, teamwork will be presented during these conferences.

After this cycle of conferences, the student will be able to:

- Better know the engineering professions, in the field of material
- To define their future choices with discernment (internship and future activity)

Teaching Process (syllabus

10 lectures in the field of materials will be presented

For example: metals, alloys, ceramics, cement, composites, glasses, ...

Applications: energy, nuclear, aeronautics, automotive, civil engineering, health, electrical engineering, materials for instrumentation and measurement ...

Assessment Mode written tests						
Workload Lectures 10h	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD 10h	
Proportion of the TU in English:						

	Design and Ma	terials		9MS04	Semester 9		
	Ad	vanced r	naterials a	and			
properties/structures/processes relation							
Supervisors:	Domingos [DE SOUSA MEN	ESES		ECTS:4		
Learning Outcor	mes						
On completing th Choose anticipa Perforr Select a State a initial c Simulat	his teaching unit en e a suitable compo- ate the induced pr n numerical simula a thermal control of multiphysics pro- conditions. te coupled multiph et results and ider	site process for a operties. ations of draping device blem: identificat hysical phenomer	a given application, and injection of co	mposites. vative equation	timize this process to		
-	aterials and proce	esses					
1. Composite ma Manufacturing p application. Com Modelling and n element method injection step of	aterials and proce rocesses of structu posite forming and umerical simulati (CATIA and PAM I LCM processes (PA	ural composites f d link between fo ons of shaping FORM). Permeab AM RTM). Induce	rmability and mech processes using a ility of reinforceme d properties and re	anical propertion geometrical ap nts. Modeling a sidual stresses.	of process for a giver es of reinforcements oproach and a finite and simulation of the		
1. Composite ma Manufacturing p application. Com Modelling and n element method injection step of Optimization stra	aterials and proce rocesses of structu posite forming and umerical simulati (CATIA and PAM LCM processes (PA ategies of shaping	ural composites f d link between fo ons of shaping FORM). Permeab AM RTM). Induce	rmability and mech processes using a ility of reinforceme	anical propertion geometrical ap nts. Modeling a sidual stresses.	es of reinforcements oproach and a finite and simulation of the		
1. Composite ma Manufacturing pl application. Com Modelling and n element method injection step of Optimization stra 2. Thermal contri	aterials and proce rocesses of structo posite forming and numerical simulati (CATIA and PAM I LCM processes (PA ategies of shaping rol	ural composites f d link between fo ons of shaping FORM). Permeab AM RTM). Induce and injection thre	rmability and mech processes using a ility of reinforceme d properties and re	anical properti geometrical ap nts. Modeling a sidual stresses. e studies.	es of reinforcements oproach and a finite and simulation of the		
1. Composite ma Manufacturing p application. Com Modelling and n element method injection step of Optimization stra 2. Thermal contri International terr 3. Multiphysics s Heat transfer: hear coupling: Joule hear	aterials and proce rocesses of structu posite forming and numerical simulati (CATIA and PAM I LCM processes (PA ategies of shaping rol nperature scale. Co simulation t equation and Four	ural composites f d link between fo ons of shaping FORM). Permeab AM RTM). Induce and injection thro pontactless tempe ier's law. Charge tr ics: stress and stra	rmability and mech processes using a ility of reinforcement d properties and re ough industrial case rature measureme ransfer: continuity ec in. Electro-thermo-m	anical propertion geometrical app nts. Modeling a sidual stresses. e studies. ht. Control and quation and Ohm	es of reinforcements oproach and a finite and simulation of the diagnostic. n's law. Electro-therma		
1. Composite ma Manufacturing pl application. Com Modelling and n element method injection step of Optimization stra 2. Thermal contri International terr 3. Multiphysics s Heat transfer: hear coupling: Joule hear	aterials and proce rocesses of structu posite forming and numerical simulati (CATIA and PAM I LCM processes (PA ategies of shaping rol nperature scale. Co simulation t equation and Four ating. Solid mechan c's law. Porous med	ural composites f d link between fo ons of shaping FORM). Permeab AM RTM). Induce and injection thro pontactless tempe ier's law. Charge tr ics: stress and stra	rmability and mech processes using a ility of reinforcement d properties and re ough industrial case rature measureme ransfer: continuity ec in. Electro-thermo-m	anical propertion geometrical app nts. Modeling a sidual stresses. e studies. ht. Control and quation and Ohm	es of reinforcements oproach and a finite and simulation of the diagnostic. n's law. Electro-therma		
1. Composite ma Manufacturing p application. Com Modelling and n element method injection step of Optimization stra 2. Thermal contri International terr 3. Multiphysics s Heat transfer: hea coupling: Joule hea Mass transfer: Fick Assessment Mod tests, homework	aterials and proce rocesses of structu posite forming and numerical simulati (CATIA and PAM I LCM processes (PA ategies of shaping rol nperature scale. Co simulation t equation and Four ating. Solid mechan c's law. Porous med	ural composites f d link between fo ons of shaping FORM). Permeab AM RTM). Induce and injection thro pontactless tempe ier's law. Charge tr ics: stress and stra	rmability and mech processes using a ility of reinforcement d properties and re ough industrial case rature measureme ransfer: continuity ec in. Electro-thermo-m	anical propertion geometrical app nts. Modeling a sidual stresses. e studies. ht. Control and quation and Ohm	es of reinforcements oproach and a finite and simulation of the diagnostic. n's law. Electro-therma		
1. Composite ma Manufacturing p application. Com Modelling and n element method injection step of Optimization stra 2. Thermal contri International terr 3. Multiphysics s Heat transfer: hea coupling: Joule hea Mass transfer: Fick Assessment Mod tests, homework	aterials and proce rocesses of structu posite forming and numerical simulati (CATIA and PAM I LCM processes (PA ategies of shaping rol nperature scale. Co simulation t equation and Four ating. Solid mechan c's law. Porous med	ural composites f d link between fo ons of shaping FORM). Permeab AM RTM). Induce and injection thro pontactless tempe ier's law. Charge tr ics: stress and stra	rmability and mech processes using a ility of reinforceme d properties and re ough industrial case rature measureme ransfer: continuity ec in. Electro-thermo-m <i>i</i> ty and tortuosity.	anical propertion geometrical app nts. Modeling a sidual stresses. e studies. ht. Control and quation and Ohm	es of reinforcements oproach and a finite and simulation of the diagnostic. n's law. Electro-therma ing: thermal expansion		
1. Composite ma Manufacturing pl application. Com Modelling and ne element method injection step of Optimization stra 2. Thermal contri International terr 3. Multiphysics s Heat transfer: heat coupling: Joule heat Mass transfer: Fick Assessment Mod tests, homework, Workload	aterials and proce rocesses of structu posite forming and numerical simulati (CATIA and PAM I LCM processes (PA ategies of shaping rol nperature scale. Co simulation t equation and Four ating. Solid mechan c's law. Porous med de , reports	ural composites f d link between fo ons of shaping FORM). Permeab AM RTM). Induce and injection thro ontactless tempe ier's law. Charge tr ics: stress and stra ia. Effective diffusiv	rmability and mech processes using a ility of reinforceme d properties and re ough industrial case rature measureme ransfer: continuity ec in. Electro-thermo-m vity and tortuosity.	anical propertie geometrical ap nts. Modeling a sidual stresses. e studies. nt. Control and juation and Ohm echanical coupli	es of reinforcements oproach and a finite and simulation of the diagnostic. n's law. Electro-therma ing: thermal expansion		

Innovations ir	Design and Ma	terials		9MS05	Semester 9			
Ceramics								
Supervisors:	Marie-Laure	BOUCHETOU			ECTS: 4			
 Learning Outcomes On completing this teaching unit engineering students will be able to: Master the processes used to engineer ceramic materials Know the main properties of ceramic uses; Understand concepts necessary for engineering and forming ceramic materials, their properties and limitations of use; Tackle practical applications (energy, automotive and aeronautical engineering, mechanical construction, civil engineering, etc.) Know the main methods of characterization of advanced materials 								
Teaching Process (syllabus) Ceramics : production and high temperature applications								
 Recap of the fundamentals in ceramic Ternary phase diagrams Methods to produce ceramics, practical case study: silicate ceramics, refractory ceramics, techniques High-temperature heat treatment of ceramics. Sintering in ceramics Industrial case studies: engineering, characteristics, properties of use. Ceramics for energy, environment application 								
Method of characterization of advanced materials								
 Microstructure (optical microscope, SEM, TEM) Thermal analysis Raman spectroscopy Infrared spectroscopy NMR Pore size distribution, XRays tomography, BET 								
Assessment Mode written tests								
Workload								
Lectures 32.5h	Classes	Labs 17.5h	Individual work	Project work	STUDENT WORKLOAD 50h			
Proportion of the TU in English:								

Innovations in	Design and Ma	terials		9MS06	Semester 9
	Ir	dustrial	cases stud	dy	
Supervisors:	Marie-Laure	BOUCHETOU			ECTS: 4
Learning Outco	mes				
 Use the cases Develo Work in Write a 	nis teaching unit er e knowledge and a p a project and and ndependently in a a project report t the results acquir	analysis methods alysis methodolo multidisciplinary	s seen in the trainin gy.	ng, to deal with	concrete industrial
	· · ·	eu			
Teaching Proces	•	work on a tochni	cal project supervis	ad by a scientific	tutor (c)
-	ing unit, students	work on a techni	cal project supervis	eu by a scientific	tutor (s).
Weekly meetings	are planned to m	anage the progre	ect team is the mai iss of projects. ith a summary in Er		
Scientific conter	nt:				
refractory, ceran Problems dealt v corrosion of mat study of aging, re etc. The work of eacl within each proje This Teaching Un	nics, glass, compos with in this projec erials, establishme elationship betwee h student varies ac ect team.	ites, etc.) and / o t framework: Ma ent of basic know n material and st ccording to the p ess of individualiz	aterials and structure ledge of materials, irructure, relation proportion of the training ation of the training	res characterizat study of physico rocess / material, will be involved,	ion, durability and -chemical stability, / properties of use, as well as his role
Technical conte					
		tion of the temp	oral or event function	on of the systems	
			le of the project in a	3mn. 1 final defe	nse before a jury of
Workload					
Lectures	Classes	Labs	Individual work	Project work	STUDENT
27.5h	27.5h		16.25h		WORKLOAD 50h
27.5h Proportion of th		888	16.25h		

9EC01

Mechatronic systems

Supervisors: Emmanuel BEURUAY

ECTS: 6

Semester 9

Learning Outcomes

On completing this teaching unit engineering students will be able to:

- Analyze, model and configure mechatronic systems.
- Study, model and analyze the dynamic, geometric and kinematics behaviors of mechatronic mechanisms.
- Measure the needed signals then model and configure a control law of concrete mechatronic systems.
- Analyze the performance of a system from measurements as well as the limitations of modeling.
- Set a speed control from the industrial documentation

Teaching Process (syllabus)

This teaching unit aims to illustrate the last course in mechatronics context stress environmental sustainability.

This results in the use of components and / or systems, as close as possible of industrial applications, with the desire to model, analyze and control them. Teaching will be mainly taught through practical work on mechatronic systems.

Electromagnetic compatibility (EMC) and the low-frequency disturbances produced. Principle of piezoelectric motors. Solar energy, photovoltaic panels, principles of design and sizing of a photovoltaic system.

Pratical work

DC motors and speed control; automated lifting; photovoltaic system; identification on Brushless motorization; speed variation on asynchronous motorization; electromagnetic disturbances; energy reversibility on continuous and synchronous motorization.

Steward platform (modeling and experimentation); Renault welding gun robot, screwed assembly; parametric optimization of part geometry; Study of a tripod joint; Torsen differential.

Exhaust gas recirculation valve in internal combustion engines; throttle butterfly valve of gasoline engines; catenary train.

Assessment Mode

Several exams, lab reports and homework assignments

Workload							
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD		
7.5h	2.5h	55h	7.5h		65h		
Proportion of the TU in English:							

37

9EC02

Semester 9

Analysis and sizing of mechanical systems

Supervisors: Jean-Marc AUFRERE

ECTS: 5

Learning Outcomes

On completing this teaching unit engineering students will be able to:

- Apply hydrostatic laws and study the functioning and design of the hydrostatic power transmission
- Identify the parameters needed to select a pneumatic components for the design of a circuit
- Establish strategies for optimizing and sizing of a cylindrical gear of industrial gearboxes.

Teaching Process (syllabus)

1. Dimensioning component

Material fatigue (Whöler, Goodman, Haigh). Sizing bearing and shaft. Using Kiss-Soft and Kiss-sys software

2. Power transmissions by fluids

Application of the law of hydrostatics; hydraulic components; open and closed circuit; Hydraulic circuit diagram; sizing and performance, electrohydraulic servo valve technology; Criteria for sizing and components choice; Pressure drops (location and effect); Overall assessment and sizing approach of a circuit; functions, characteristics and choice of hydraulic fluids. Specificities of pneumatic power transmission. Production: compressor, dryers, pressure regulator, etc. Uses: order of magnitude of forces, velocities, sequential automation, particular (explosive) atmosphere, "proportional pneumatic"

3. Invited lectures

Technology of electrohydraulic servo valves; static and dynamic characteristics. Equations of motion and stability of servomechanisms. Half-day visit of a servo valves production unit (Zodiac hydraulics).

4. Gear power transmissions

Kinematics; interference; geometrical dimensioning in preliminary design. Operating laws, achievable ratios, energy transit, efficiency and irreversibility of single gear planetary gears. Operating conditions; Teeth degradation; Resistance criteria; Simplified sizing methods; Verification of the load capacity of a component according to ISO6336; Optimizing the design of a component (Specific sliding, scuffing extreme factors, etc.). Dimensioning of a gear in preliminary design, minimum needed data of the technical specifications, iteration process, Using Kiss-Soft and Kiss-sys software

5. Functional tolerancing as a tool increasing energy gain

Functional tolerancing as a tool guaranteeing the performances listed in the bill of specifications (reliability, life span); converting the geometric criteria of the specifications into tolerancing conditions.

6. Lubrication

Different lubrication modes (hydrodynamic, hydrostatic, elastohydrodynamic); permanent, critical and lubricating regimes; lubrication dimensioning and performances

Assessment Mo written tests	de					
Workload						
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD	
36.25h	18.75h		3.75h		55h	
Proportion of the TU in English: [▷] ▷						

Innovations in	Design and Materi		9EC03	Semester 9						
Thematic scientific conferences										
Supervisors:	Jacques FANTI	NI			ECTS: 1					
Learning Outcomes On completing this teaching unit engineering students will be able to: Understand industrial issues Understand how they were treated and resolved Know the means implemented										
Manufacturers v	Teaching Process (syllabus) Manufacturers will expose the problems encountered in their company. They will explain how they were treated and resolved. The experimental and numerical tools implemented will be described and analyzed									
Assessment Mo written tests	Assessment Mode written tests									
Workload Lectures 10h	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD 10h					
Proportion of th	e TU in English:	Ð								

	Design and Ma	terials		9EC04	Semester 9
	Contro	ol strategi	es and R	obotics	
Supervisors:	Estelle COUI	RTIAL			ECTS: 7
ModelDesignSyntheImplen	nis teaching unit, e and identify a proo state feedback cou size state observer nent different cont	ngineering student cess in the state sp ntrol laws (pole pla rs (software sensor crol laws (optimal c t o simulate, plan a	ace; icement, decoup s); ontrol law, predi	ling); ctive control, visu	0,,
Study ofDesign	of system propertie of state feedback	ate space represen es (controllability, c control laws (pole	observability, stal placement, deco		earizing control).
 Model Introduce Advance robust Identif Various applicati 	ness of a linear qua ication (nonlinear p ons will be studied	hods (Shur, Padé) /stem modeling predictive contro adratic regulator (L	il, optimal contr QR), visual servo collowing tools: N	ing. 1atlab, Simulink a	
 Model Introduce Advance robust Identif Various applicati 	simplification met uction to robotic sy ced control laws: ness of a linear qua ication (nonlinear p ons will be studied tical applications o	hods (Shur, Padé) /stem modeling predictive contro adratic regulator (L programming)	il, optimal contr QR), visual servo collowing tools: N	ing. 1atlab, Simulink a	

9EC05

Collaborative Projects

Supervisors: Benoit LE ROUX

ECTS: 4

Semester 9

Learning Outcomes

On completing this teaching unit engineering students will be able to:

- Use the knowledge and analysis methods seen in the training, to deal with concrete industrial cases
- Develop a project and analysis methodology.
- Work independently in a multidisciplinary group.
- Write a project report
- Present the results acquired

Teaching Process (syllabus)

During this teaching unit, students work on a technical project supervised by a scientific tutor (s).

Organization:

The autonomy of the student associated with a project team is the main rule that prevails in this UE. Weekly meetings are planned to manage the progress of projects.

The project will be the subject of a written report with a summary in English, and an oral presentation.

Scientific content:

Project management and design of mechatronics and robotics systems: project team management, risk analysis, sizing and selection of mechanical components, study of control laws and correctors in servo control, programming of robots, etc.

The work of each student varies according to the project in which he will be involved, as well as his role within each project team.

This teaching Unit is part of a process of individualization of the training of students to allow them different learning paths according to their professional and personal projects.

Technical content:

SysML tool to integrate the description of the temporal or event function of the systems

Assessment Mode :

Intermediate step by oral defense in English / Triangle of the project in 3mn. Final defense before a jury of professionals. Report and final summary note.

Workload					
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD
27.5h	27.5h				55h
Proportion of th	e TU in English:	여녀녀			

Innovations in	Design and Mat	terials		9MP01	Semester 9				
Nonlinear mechanics									
Supervisors:	Alain GASSE	R			ECTS: 6				
Learning Outcomes On completing this teaching unit engineering students will be able to: • Study the nonlinear aspects of mechanics of structures • Recognize the type of material nonlinear behavior and choose an associated law • Identify the parameters of material nonlinear behavior laws • Use the most common nonlinear behavior laws • Solve a problem of large displacements (geometrical nonlinearities) • Use contact processing techniques									
Teaching Proces	s (syllabus)								
Nonlinear behav	vior of materials								
Study oIdentified	odynamical approa f different nonline cation of the parar es of use of these l	ar behaviors: plast neters of these no	ticity, damage, fail Inlinear laws.	ure, viscoelasticity	, hyperelasticity.				
Contact, geomet	trical nonlinearitie	25							
Origin cMecharTaking i	putation of structu of nonlinearities nics with geometric nto account the be treatment	cal nonlinearities		trical and contact)	:				
Finite element m	nethod applicatio	ns							
Finite element method applications Analysis and calculation (using a finite element software) of structures with nonlinear behavior: material (plasticity, visco-elasticity, hyperelasticity), geometrical and contact non-linearities. Beams. Rigid bodies. Buckling. Remeshing. Topology optimization.									
Assessment Mod	le								
Written tests									
Workload									
Lectures 20h	Classes 50h	Labs	Individual work	Project work	STUDENT WORKLOAD 70h				
Proportion of the		bb			,,,,,				

9MP02

Composites and processes

Supervisors: Jean-Luc DANIEL

ECTS: 4

Semester 9

Learning Outcomes

On completing this teaching unit engineering students will be able to:

- Choose a suitable composite process for a given application, design and optimize this process to anticipate the induced properties.
- Perform numerical simulations of draping and injection of composites.
- Implement advanced characterization techniques in the field of composites materials processes.

Teaching Process (syllabus)

- Manufacturing processes of structural composites for industrial applications.
- Choice of process for a given application.
- Composite forming and link between formability and mechanical properties of reinforcements.
- Modelling and numerical simulations of shaping processes using a geometrical approach and a finite element method (CATIA and PAM FORM).
- Permeability of reinforcements. Modeling and simulation of the injection step of LCM processes (PAM RTM).
- Induced properties and residual stresses.
- Optimization strategies of shaping and injection through examples.
- Approach and rules of design of a composite structure.
- Application to industrial case studies.

Assessment Mode

Several exams, lab reports and homework assignments

Workload					
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD
15h	25h				40h
Proportion of the TU in English:		여녀녀			

Innovations in	Design and Ma	terials		9MP03	Semester 9					
	Multiphysics couplings									
Supervisors:	Alain GASSE	R			ECTS:4					
Write pUse a c	nis teaching unit er properly a multiphy ommercial finite e	ngineering student /sics problem lement code to so he results of multi	lve a multiphysics							
 Lesson Advance Thermo Numer Basics e Methods a Heat an Thermo 	 Advanced thermomechanics Thermo-porormechanic Numerical treatment of transport equation, coupling between time and space integration Basics of the thermodynamics for irreversible processes 									
Therm Assessment Mod	 Thermo-electro-mechanic coupling Thermoporoelasticity : transient effects. Assessment Mode									
vvritten tests	Written tests									
Workload					CTUDENT					
Lectures 12.5h	Classes	Labs 27.5h	Individual work	Project work	STUDENT WORKLOAD 40h					
Proportion of th	Proportion of the TU in English: 한문									

Innovations in	n Design and M	aterials		9MP04	Semester 9
	Them	atic scie	ntific conf	ferences	
Supervisors:	Alain GASS	ER			ECTS: 1
Learning Outco	omes				
	0	0 0	lents will be able to	D :	
	stand industrial p				
	stand how they w the used means	vere treated and	solved		
• KIIOW	the used means				
explain how the analyzed.	y were treated an	•	•		y has met. They will vill be described and
Assessment Mo	ode				
Written tests					
Workload					
	Classes	Labs	Individual	Project work	1
Lectures			work	-	STUDENT WORKLOAD
Lectures 10h			work		

Innovations in	Design and Ma	terials		9MP05	Semester 9
	A	dvanced	simulatio	ns	
Supervisors:	Jean-Luc DA	NIEL			ECTS: 4
Learning Outco	nes				
To knKnowDefin	ow the different h the main finite el e the framework f	ements based on t or their use.	uting models of be hese models.	eams, plates and sl tion of formatting	
Case ofFinisheCase of	of simplified mode thin elastic shells d elements of plat finite transforma	es and shells.			
Assessment Mo	de				
Written test					
Workload					
Lectures 20h	Classes 30h	Labs	Individual work	Project work	STUDENT WORKLOAD 50h
Proportion of th	e TU in English:	۲.	1	1	1

9MP06

Semester 9

47

Industrial applications

Supervisors: Jean-Luc DANIEL

ECTS: 4

Learning Outcomes

On completing this teaching unit engineering students will be able to:

- Use the knowledge and analysis methods seen in the training, to deal with concrete industrial cases
- Develop a project and analysis methodology.
- Work independently in a multidisciplinary group.
- Write a project report
- Present the results acquired

Teaching Process (syllabus)

During this teaching unit, students work on a technical project supervised by a scientific tutor (s).

Organization:

The autonomy of the student associated with a project team is the main rule that prevails in this UE. Weekly meetings are planned to manage the progress of projects.

The project will be the subject of a written report with a summary in English, and an oral presentation.

Scientific content:

The content will focus on real case studies, from our industrial partners, focusing on material, structure and process simulation issues.

Problems dealt with in this project framework: shaping of metal parts or composites, modeling and simulation of multi-physical behaviors, (thermal, mechanical, chemical, hygrometric, etc.), impact simulation, multi-scale modeling and simulation, design and calculation of composite parts, topological optimization, modeling of living materials, etc.

The work of each student varies according to the project in which he will be involved, as well as his role within each project team. This Teaching Unit is part of a process of individualization of the training of students to allow them different learning paths according to their professional and personal projects.

Technical content:

SysML tool to integrate the description of the temporal or event function of the systems. (idem pour les logiciels métiers)

Assessment Mode :

Intermediate step by oral defense in English / Triangle of the project in 3mn. Final defense before a jury of professionals. Report and final summary note.

Workload

WORKIOAU					
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD
27.5h	27.5h				55h
Proportion of th	e TU in English:	$\mathcal{F}\mathcal{F}$			

Innovations in Design and Materials		AIC01	Semester 10
Proj	ect		
Supervisors: Jacques FANTINI			ECTS: 10
Learning Outcomes			
 On completing this teaching unit engineering students Write a product specification based on a req Establish the functional and technological sp Establish milestones and provide project del Manage a project 	uirements analysis ecifications of a pr		
Teaching Process (syllabus)			
Organization: During this teaching unit, students work on a technica is "full time" from early January to mid-March. It ends an oral exam Scientific content: • The subjects of projects proposed to the s	with a written acti	vity report, a pos	ter in English and
 feasibility study of a new concept, design theoretical knowledge, realize an industrial s In any case, the student engineer must show be able to share tasks (working in pairs), to c 	tudy, etc his ability to mana	age a project, to t	ake initiatives, to
Assessment Mode			
Written activity report, oral defense			
Written activity report, oral defense Workload			
	Individual work	Project work 170h	STUDENT WORKLOAD 170h

PROSPECTUS 2018/19 | 40

50 | **PROSPECTUS**2018/19

Technologies for Energy, Aerospace Engineering and Motorization (TEAM)

Course Unit Code	Course Unit Title	Total Hours without ind. work	ECTS Credits
Fall Semest	er (September – December)		
9TE01	Professional Lectures – Conférences métier	20	3
3 courses to	o choose below		
9TE02	Turbulence and Advanced CFD – Turbulence et CFD avancée	70	7
9TE03	Combustion and Applications – Combustion et applications	70	7
9TE04	Gas Dynamics – Dynamique des gaz	70	7
9TE05	Engines – Moteurs	70	7
9TE06	Engine and Hybrid Vehicle Control – Contrôle moteur et véhicule hybride	70	7
9TE07	Building Energy – Energie des bâtiments	70	7
9TE08	Energetic Systems – Systèmes énergétiques	70	7
9TE09	Aeroacoustics and Elasticity – Aéroacoustique et aéroélasticité	70	7
Spring Sem	ester (January – March)		
ATE01	Project – Projet d'entreprise	170	10

PROSPECTU5 2018/19 | 51

Technologies for Energy, Aerospace Engineering and Motorization				91	reo2	Semester 9			
		Pr	ofessiona	al I	ectures				
Supervisor:	lvan FE	DIOL	JN				ECTS: 3		
Learning Outcom	Learning Outcomes								
 To have 	 On completing this teaching unit engineering students will be able to: To have a more precise vision of the different professions to which TEAM can lead Better know the industrial applications of the academic courses given during the training 								
Teaching Process 8 lectures of 2h30 Program for 2017-	given by prof	essior	nals experts in the	ir fie	lds of compete	nce			
Lectur			Company			Subject			
DUBOIS Thomas		Tota			Energy mix, renewable energy		/		
KETFI-CHERIF Ah	med	Ren	ault		Hybrid and Electric Powertrain control		n control		
SLANEY David		GRD	F		Energy systems				
MATHEDARRE C	hristophe	Safr	an Aircraft Engine	S	Thermal management				
MORSILI Salah-E	ddine	EDF			Energetics				
BOQUEL Pierre		ASN			Nuclear safety - Radioprotection		on		
BRULEFERT Fréd	éric	LOR	IAS Lab'O		Aeronautics,	military aviation			
BLOT Yves		Safr	an Aircraft Engine	S	Safety/aerona	autical regulation	ıs		
Assessment Mod Compulsory atten									
Workload									
Lectures 20h	Classes		Labs	In	dividual work	Project work	STUDENT WORKLOAD 20h		
Proportion of the	TU in Englisł	1 :	94 4	L					

Technologies for Energy, Aerospace Engineering9TE02and Motorization9TE02

Turbulence and Advanced CFD

Supervisor: Ivan FEDIOUN

ECTS: 7

Semester 9

Learning Outcomes

On completing this teaching unit engineering students will be able to:

- Describe, understand and analyze the physical phenomena occurring in turbulent flows;
- Use tools to process and analyze experimental and numerical results;
- Choose the correct level of description/modeling for digital simulation (MILES, LES, DES, RANS) depending on needs and available resources;
- Use the CFD ANSYS Fluent[®] software for RANS simulation in turbulent flows.

Teaching Process (syllabus)

1. Physical description and statistical analysis of turbulence

- Statistical tools: random variables, statistical moments and 1 or 2-point correlations, stochastic averaging, general theorems
- Physics of turbulence: Eulerian scales in space and time, Kolomogrov scales, Taylor's hypothesis, homogeneous and isotropic turbulence, spectra, double-correlation dynamics, inertial law
- Experimental approach : practical demonstration of measurement techniques in non-reactive flow (hot-wire, LDV, PIV)
- Signal and image processing: time and space averages, Fourier transform, time and space correlations, power of spectral densities. Implementation: LVD signal processing, hot-wire

2. Operational modeling: 1-point closures (RANS)

- Recap and complements: Reynolds' formalism, statistical equations in incompressible flow, closure issues
- RANS formalism in compressible flow: Favre averaging, Morkovin hypothesis
- Newtonian closure: 1-equation (Spalart-Allmaras) and 2-equation (k- ϵ , k- ω ,...) models, wall laws

3. Large Eddy Simulation

- Explicit subgrid filtering and modeling: physical and spectral space, generalized central moments, eddy viscosity models (Smagorinsky, Structure-Function model), scale similarity model (Bardina), Germano identity, dynamic models (Germano-Lilly)
- Implicit large-scale simulation: implicit filtering of a digital scheme, transfer function, dissipative and dispersive schemes, applications

4. CFD applications with ANSYS Fluent® 15.0

5. Conferences given by invited lecturers

Assessment Mode

2 short written tests, homework assignment, lab reports in CDF and experimental lab reports

Workload

monaoaa					
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD
5h	25h	30h	20h	10h	70h
Droportion of th	o Tillin English				

Proportion of the TU in English: 비바바

53

Technolo and Moto		yy, Aeros	pace Engineer	ing	9TE03	Semester 9
	C	omb	ustion ar	nd Appli	cations	
Superviso	or: Fabi	en HALTE	R			ECTS:7
Learning C	utcomes					
 A C K Ic Ic fc a U 	cquire the req ombustion phe now the basic r lentify paramet or applications nd turbine engi se CFD softwar	uisite known nomena co nechanism ers influen such as inf nes. Know e to simula	oming into play in is determining th acing heat release ternal combustio how to vary para ate a complex sys	ibe, understand industrial appl e formation and and the forma n engines, ther meters to optir tem;	d and analyze lam ications; d reduction of pollu tion of the main pol mal power plants (lutants (soot, NOx) coal, gas, biofuels) the energy system;
	Process (syllabi					
 S P V C F F N II Ir Ir Ir Ir Ir Use of CHE 3. Autonor Students w combustion 	elf-ignition (the remixed flame elocity, flame the ombustion high ormation of po lame/turbulend lodels of turbu lustration of the throduction to the nage procession MKIN software nous supervise ill work by group on phenomenom	ory, measu s (flamma nickness, I-energy m lutants an e interacti ent combu ools allowi g (digital to Applicatio ed project o on a proj . A guideo	urement method bility limit, flam aterials and expl d post-processing ons ustion for premix ena of combustio ing to characteriz pol Matlab) on of notions tack	s, examples of e stabilization, es osives g systems ed and diffusion n and pollutant e a reactive or cled through 3D	stry, chemical kineti detailed modeling) extinction param n flames formation with rec non-reactive turbul calculation codes (and the understand acterization of acou	eters, propagation eent technologies ent eddy flow (lab) FLUENT) ing of an accidental
Four confe	ences given by	industrial	stakeholders and	l researchers w	ill be planned on di	fferent topics.
Assessmer			rocontotiono in a			
Workload	miten tests or	exams. 3 p	resentations in g	roup.		
Lecture	s Clas	ses	Labs	Individual work	Project work	STUDENT WORKLOAD
30h	10	h	30h	3.75h		70h
Proportion	of the TU in E	nglish:	444			

Technologies for Energy, Aerospace Engineering 9TE04 Semester 9									
and Motorization									
	Gas Dynamics								
Supervisor:	Azeddine K	OURTA			ECTS: 7				
Learning Outcomes									
Acquire presen	 On completing this teaching unit engineering students will be able to: Acquire the knowledge require to calculate, analyze and characterize the physical phenomena present in flows at speeds ranging from high subsonic to hypersonic; Master digital tools to predict these flows and understand the role of the mathematical properties 								
of Eule	er's equations (hy	perbolicity, charac schemes. Initiation	teristics) in nume	rical shock-captur					
Tooching Proco	ss (syllabus)								
Teaching Proces	-								
•	high speed flows		ensies the Fuler e						
•		Irse on thermodyn			CKS				
		cteristics, Riemanr							
		shocks, interaction		disc. Expansion fai	n, Prandti-ivleyer				
		y, characteristics, C		-::l: ! :					
		s: entropy layer, vis	scous interaction, s	similarity					
	ethods to solve Eu	-							
		vation equations: c		nann problem. We	eak solutions and				
	-	ion. Entropy soluti							
		m: conservative, p	rimitives and char	acteristic variables	, transformation				
	es, Riemann invari								
		rst-order 'upwind'	finite-volume sch	emes based on flu	ux splitting (FVS)				
	proximate Rieman								
		MUSCL approach,	TVD schemes and	flow limiters					
	ications with FOR								
		imming, managem							
 Burger 	s' equation: Riema	nn problem with c	ompressive or exp	ansive initial condi	itions				
-	-	chs and CIR scheme							
 Applica 	ation to the Sod s	shock tube proble	m with fixed bou	ndary conditions.	Management of				
bounda	ary conditions: free	e non-reflective ou	tput, reflective clo	sed boundaries, m	ixed conditions				
 Program 	mming the Roe sch	eme with Harten's	entropy fix, adapt	ive time-step with	constant CFL and				
	ry boundary condit								
4. Autonomous	supervised proje	ct							
Assessment Mo									
3 short written to	ests, exams, home	work assignments							
Workload	1	1		I					
Lectures	Classes	Labs	Individual	Project work	STUDENT				
			work		WORKLOAD				
25h	25h	20h	12.5h		70h				
Proportion of th	e TU in English:	bbb							

•	•••	ospace Engineer	ing	9TE05	Semester 9				
and Motorizat	ion								
Engines									
Supervisor:	Pascal HIGE	LIN			ECTS: 7				
Learning Outco	mes								
 Unders injection engine Construction 	tand the physical on in internal com to a change in one uct a model of an i under various cor	bustion engines. It of its parameters nternal combustio	esses taking place Jse modeling to ; n engine. Optimiz	e during combustio understand the re e the dimensioning pollutant emissions	action of a given g and tuning of an				
Teaching Proces	ss (syllabus)								
flamma flames mixtur initiatio Definit Therme multizo Combu Extensi Models and dif Fuel ir Bounds losses Turboo speed respon Specific librarie	ability limit, flame . Two-phase comb e, definition of the ion of user drivabile odynamic models: one models. Mode istion models: sen ion of the model the s for compression fusion phase comb ary conditions: op- due to wall friction harging: static and maps. Turbine/co se time totols: Matlab/Siries, using the detaile	stabilization, extine bustion. Internal en per requirements in classification inter- lity requirements in classification inter- lis of combustion cla- ni-empirical model o compression ign ignition engines (bustion models) filling/emptying m en, closed, and pa the Reconstruction o d dynamic models impressor adaptat	ction parameters ingine aerodynam for spark ignition the basic combust in terms of fundam o air models, sing hamber wall losse of Vibé, applicat ition engines. Mo jet, vaporization, nodel and 1D int rtly open intake in f the filling curves of the turbochar ion. Pumping lin Chemkin. Assembl	gle-zone models, to s. Limits of validity ion to a controlled idels for controlled self-ignition delay, cake/exhaust gas manifold, junctions ger. Turbocharger hit. Dynamics of t	bustion. Diffusion reparation of the tion, combustion lutant formation. wo-zone models, d ignition engines. ignition engines. premixed phase dynamics model. . Heat losses and performance and he turbocharger,				
Assessment Mo	de								
3 reports Workload									
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD				
22.5h	42.5h			5h	70h				
Proportion of th	e TU in English:	정상사							

Technologies for Energy, Aerospace Engineering

9TE06

Semester 9

and Motorization

Engine and Hybrid Vehicle Control

Guillaume COLIN Supervisor:

ECTS: 7

Learning Outcomes

On completing this teaching unit engineering students will be able to:

- Master engine control systems, control strategies and the associated control devices;
- Implement control strategies for internal combustion engines;
- Apply the knowledge acquired in class to the tuning and control of internal combustion engines on a test bench, an actuator bench or via simulation;
- Perform energy balance on a hybrid vehicle and generate an energy management strategy.

Teaching Process (syllabus)

1. Theory

- History of engine control: carburetor, mechanical injection
- State of the art: sensors, actuators, hardware and software implementation of the controller, strategies
- Spark ignition engine control: basic strategies (fuel enrichment, ignition advance), pollution control (fuel enrichment adjustment, catalyst, light-off, EGR), detecting knock, anti-knock strategies, idle, start, cold start, drivability
- Diesel engine control: basic strategies (quantity of injected fuel, smoke limit), multiple injection, homogeneous charge engines, idle, start, cold start, drivability
- Development methods
- Embedded networks
- Embedded models: intake manifold dynamics, turbochargers, fuel, friction
- Automatic control: PID control and advanced control
- Control based on physical or heuristic models, torque control
- Hybrid vehicles: definitions, issues, energy management (heuristic, optimal, Equivalent Consumption Minimization Strategy)

2. Practice

- Tuning an internal combustion engine; Engine control; Energy management of an hybrid vehicle
- Labs will be conducted on a real engine test bench, on an actuator bench system, and on a roller bench. 2 labs will be conducted at John Deere in Saran for a limited number of students.

This teaching unit also aims at raising awareness among engineering students regarding engine control and its tuning (engine mapping, PID control, advanced control).

3. Mini-project

Project on Engine and Hybrid Vehicle Control, e.g. in 2017/2018 the pre-sizing of the technical elements of an HEV and designing the energy management with the softwares Amesim and Simulink.

Assessment Mode

Lab reports, oral defense, homework assignments, mini-project report and defense

Workload					
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD
20h		50h	30h		70h
Proportion of th	ne TU in English:	bbb			

Technologies and Motorizat	for Energy, Aero ion	space Engineer	ing	9TE07	Semester 9				
Building Energy									
Supervisor:	Jean-Michel	FAVIÉ			ECTS: 7				
Learning Outco		ngineering student	s will be able to:						
 On completing this teaching unit engineering students will be able to: Identify professional elements in different technical and human fields related to "chargé d'affaires" engineers specialized in building and sustainable energies; Master different standards, classic and sustainable production means and production modes coordination. Suggest economical and innovative solutions respectful of the environment. 									
Teaching Proces	ss (syllabus)								
1. Environmenta	al standards, regu	lations and requi	rements						
conduct with de		wn halls, promot		ara-public labels, Ag apanies). Environ					
Environmental a		erformance Diagn		l balance. Needs ide nent models for su					
3. Passive energen Conventional and	Jetics d bio-sourced mate	erials. Architecture	, header captors	, solar walls, etc.					
-	theory, transitory ach and use plan n	-		ors) nd consumption gr	ouping to achieve				
	rimary and second			mal energy, wind p uction modes as a f					
6. Heat exchang Heat pumps, fin	Jers heat exchangers. V	Vood burners and	forests sustainab	le management					
Assessment Mo	de								
1 project conduc	t, 1 homework ass	ignment: modeling	g and energies in	tegration, written to	ests				
Workload									
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD				
45h	18.75h	6.25h	21.25		70h				
Proportion of th	e TU in English:	14 14							

Technologies and Motorizat	for Energy, Aero ion	ing	9TE08	Semester 9					
	Energetic Systems								
Supervisor:	Camille HES	PEL			ECTS: 7				
Learning Outco	mes								
Dimens		duction system (co	ombined cycle, ste	am power plants a	nd boilers);				
Apply r	notions of security	and nuclear safety	<i>'</i> .						
Teaching Proces	ss (syllabus)								
Nuclea Therma	 Energy production on the industrial scale Nuclear power plants (principle, primary and secondary cycles, safety) Thermal power plants (functioning of a facility) District heating systems 								
SteamSteam	 The different components in energy production Steam generators Steam turbines Boilers (water circulation, furnace design) 								
Enthal	of water/steam cyc by and Mollier diag	rams	ctioning, principle:	s and applications)					
System optimiz Main c Cogene	ontrols (power, te	mperature, level)							
NationAlternaShort a	 Geopolitics of energy National, European and international regulation Alternative energies 								
Assessment Mo	de								
3 exams and a w	3 exams and a written report								
Workload									
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD				
43.75h	20h	6.25h	30h		70h				
Proportion of the TU in English:									

Technologies for Energy, Aerospace Engineering and Motorization

Aeroacoustics and Elasticity

9TE09

Supervisor: Philippe DEVINANT

ECTS: 7

Semester 9

Learning Outcomes

On completing this teaching unit engineering students will be able to:

- understand and describe the main physical phenomena associated with aeroacoustic (aerodynamically generated noise) and aeroelastic (coupling between aerodynamics and elastic deformations) aspects and their effects, in particular those associated with the unsteadiness of fluid flows
- carry out some simple modeling.

Teaching Process (syllabus)

1. Aeroacoustics

General notions about aerodynamic noise, fields of application, sound propagation in flows in homogeneous media, calculation of the radiated noise, noise sources, interaction between flows and acoustics. Concrete examples of noise nuisances. Unsteady wave motion. Representative parameters of local noise motion. Intensity, noise level, noise sources. Propagation equation with and without flow. Theory to calculate aerodynamic noise (Lighthill's analogy)

2. Aeroelasticity

On the basis of the classic tools for steady and unsteady aerodynamics and for the mechanics of deformable solids, describe, analyze and model the main characteristics of the steady and dynamic behavior of deformable objects (airfoils, wings, rotors, etc.) subjected to the interaction between elastic, inertial and aerodynamic forces, which may lead to stationary aeroelastic divergence or unsteady flutter. Introduction to fluid-structure coupling. Recap on elasticity - strength of materials and aerodynamics. Steady aeroelasticity: formulation of the problem, analysis of the divergence of a large aspect ratio wing and of the control surface reversal phenomena. Dynamic aeroelasticity: formulation of the problem; difference between the different modes of aeroelastic coupling (resonance, flutter). Flutter in steady aerodynamics and application to a wing much more flexible in flexion than in torsion: aeroelastic stability and dynamic response using the model cross-section. Unsteady aerodynamic modeling of an airfoil and its effects on the previous results

Assessment Mode

Several written tests, exams and homework assignments in the course of the TU

Workload					
Lectures	Classes	Labs	Individual work	Project work	STUDENT WORKLOAD
37.5h	32.5h		12.5h		70h
Proportion of th	ne TU in English:	hhh			

Technologies and Motorizat	for Energy, Aero ion	ospace Engineer	ing	ATE01	Semester 10			
		Pro	ject					
Supervisor:	Pierre BREQ	UIGNY			ECTS: 10			
Learning Outco	mes							
 Condu Develo Set a b Perform Work a 	p and consolidate ill of specifications m regular follow-u autonomously;	an industrial or res disciplinary skills a and schedule task p with the actors o	earch issue using cquired during the s; f the project, plan	an engineering ap e three-year trainir I follow-up meeting report and oral pre	ng; gs;			
 Teaching Process (syllabus) Project and format selection (solo, duo or group work) Establishment of contact with the limited partner of the study (company or laboratory) Writing of the bill of specifications submitted to the limited partner for approval Task scheduling and follow-up meetings Identification of the tools and resources necessary to the project conduct Risk analysis and fallback solutions Technical realization of the study Update of the project follow-up and implementation of fallback solutions if required Delivery of a synthesis report Oral presentation of the results of the study 								
Assessment Mo Report and oral o								
Workload	Classes	Laba	ا مراز دامر	Drojoct				
Lectures	Classes	Labs	Individual work	Project work 170h	STUDENT WORKLOAD 170h			
Proportion of th	Proportion of the TU in English: ^{▷·▷·▷·}							

All trainings – Classics teaching units

Course Unit Code	Unit Code					
Fall Semester (September – December)						
9Hx01 [*]	Operationnal Management – Management opérationnel	36.25	4			
9Hx03 [*]	Intercultural communication - start up project	10	2			

* x = C for Civil and Geo-environmental Engineering training

- P for Engineering Physics and Embedded Systems training
- M for Innovations in Design and Materials training
- T for Technologies for Energy, Aerospace Engineering and Motorization training

FROEFECTU52018/19 | 63

Humanities				9Hx01	Semester 9		
Operational Management							
Supervisor:	Jean-Jacque	es YVERNAULT			ECTS: 4		
Learning Outco	mes						
 Apply m Underst Use qua Determ Include Underst Perform 	nethods of group le cand the factors th ality control tools in ine the occupation work ethic to thein cand the different so a efficient industria	ngineering student eadership and nego at drive motivation n problem-solving; ial hazards of a wo r trade; steps of industrial patent search an erview skills so as t	otiation; n; rkstation and anal patent design, wri d reading;	ting and registration			
Teaching Proce	ss (syllabus)						
Giving a debrief management cas responsibilities conducting inter 2. Quality and Methodical prot management; pr order to control	ses (Personal Evolu of an engineer ir views and run mee d safety managen blem-solving; using reventing and tack them.	g tools proper to l ling psychosocial ri	bility of the UNIT p gement; handling purchases and sal ean management	oroject); understar complicated cas es methodically. approach ; includ	nding the role and es and conflicts; ling work ethic in		
Understanding t criteria; being at	ole to localize the c	Istrial property etween innovation lifferent sections o to find relevant inf	of a patent of inver		-		
•	l cover letters that e next work placer	include the work e nent; introducing a					
Assessment Mo	de						
		agement case (in nd invention paten					
Workload							
Lectures	Classes 32.5h	Labs 3.75h	Individual work	Project work	STUDENT WORKLOAD 36.25h		
Proportion of th		5.750 股股			50.2311		
		1010					

Humanities				9Hx03	Semester 9
Intercultural Communication – Start up project					
Supervisor:	Adèle BRIER	LEY-LOUETTE			ECTS: 2
Learning Outco	mes				
Get orgin a forDo the	ganized in a team t reign country research and the p	necessary steps to	e a virtual « Start-I the creation of thi	s virtual compar	hich will be located ny abroad t of an exam board.
AutonoRegula	•	0	to set up abroad		
Assessment Mo		ntation, 1 professio	onal interview, inte	ercultural fair pa	rticipation
Workload					
Lectures	Classes	Labs 10h	Individual work 12.5h	Project work	STUDENT WORKLOAD 10h
Proportion of th	e TU in English:	영영상		1	1

Personal Projects

PROSPECTU52018/19 | 67

FROEPECTU52018/19

Available during the Fall and the Spring Semesters, students can work on a project with a Polytech Orléans teacher in English.

The subject of the Project must be defined in advance on a Learning Agreement, between the student and his academic coordinators from his home institution and his host institution.

Projects can be done in the following departments:

- Civil and Geo-environmental Engineering,
- Engineering Physics and Embedded Systems,
- Innovations in Design and Materials,
- Technologies for Energy, Aerospace Engineering and Motorization,
- Industrial Engineering applied to Cosmetics, Pharmacy and food-processing Industry.

Course Unit Code	Course Unit Title	Total Hours without ind. work	ECTS Credits
UP05	Project for exchange student – Projet pour étudiant en échange	~ 2 weeks	5
UP10	Project for exchange student – Projet pour étudiant en échange	~ 1 month	10
UP15	Project for exchange student – Projet pour étudiant en échange	~ 6 weeks	15
UP20	Project for exchange student – Projet pour étudiant en échange	~ 2 months	20
UP30	Project for exchange student – Projet pour étudiant en échange	> 3 months	30

PROSPECTU52018/19 69

French Courses

POLYTECHCRLEANS

PROSPECTU52018/19 | 71

International students can attend French courses at the French Institute of the University of Orléans. These courses take place on late afternoons, during the week, and cost **50€/semester**.

At the beginning of each semester, students must take an exam to determine their level in French.

There are 4 different levels: Beginners, Intermediate, Advanced and Superior.

Each course is equivalent to 2 ECTS credits.

Different courses:

Fall semester		Spring semester		
Courses	Code	Courses	Code	
Beginner		Beginner		
Written	FA101FRE	Written	FA1O2FRE	
Oral	FA101FRO	Oral	FA1O2FRO	
Intermediate		Intermediate		
Written	FA2O1FRE	Written	FA2O2FRE	
Oral	FA2O1FRO	Oral	FA2O2FRO	
Advanced		Advanced		
Written	FB1O1FRE	Written	FB1O2FRE	
Oral	FB1O1FRO	Oral	FB1O2FRO	
Grammar	FB1O1GRA	Grammar	FB1O2GRA	
University methodology	FB101FOU	University methodology	FB1O2FOU	
Superior		Superior		
Written	FB2O1FRE	Written	FB2O2FRE	
Oral	FB2O1FRO	Oral	FB2O2FRO	
Grammar	FB2O1GRA	Grammar	FB2O2GRA	
University methodology	FB2O1FOU	University methodology	FB2O2FOU	

FOLYTECHORLEANS

Polytech Orléans School of Engineering of the University of Orléans 8 rue Léonard de Vinci, 45072 Orléans cedex 2, FRANCE

www.polytech-orleans.fi