Pooled Variance

t Test

- Tests means of 2 independent populations having equal variances
- Parametric test procedure
- Assumptions
- Both populations are normally distributed
- If not normal, can be approximated by normal distribution ($n_{1} \geq 30 \& n_{2} \geq 30$)
- Population variances are unknown but assumed equal

Two Independent Populations Examples

- An economist wishes to determine whether there is a difference in mean family income for households in 2 socioeconomic groups.
- An admissions officer of a small liberal arts college wants to compare the mean SAT scores of applicants educated in rural high schools \& in urban high schools.

Pooled Variance t Test Example

You're a financial analyst for Charles Schwab. You want to see if there a difference in dividend yield between stocks listed on the NYSE \& NASDAQ. NYSE NASDAQ
Number 2125

Mean 3.27
2.53

Std Dev 1.30
1.16

Assuming equal variances, is there a difference in average yield ($\alpha=.05$)?

Pooled Variance t Test Solution

```
Ho: \(\mu_{1}-\mu_{2}=0\left(\mu_{1}=\mu_{2}\right) \quad\) Test Statistic:
\(H_{1}: \mu_{1}-\mu_{2} \neq 0\left(\mu_{1} \neq \mu_{2}\right)\)
\(\alpha=.05\)
\(\mathrm{df}=21+25-2=44\)
Critical Value(s):
\(\underbrace{\substack{\text { Reject } H_{0} \\ .025}}_{-2.0154} \underset{2.0154 \mathrm{t}}{\text { Reject } \mathrm{H}_{0}}\)
Decision: Reject at \(\alpha=.05\)
Conclusion:
There is evidence of a difference in means
```

> Test Statistic Solution

$$
\begin{aligned}
& s_{p}^{2}=\frac{a_{1}-1 f \cdot s_{1}^{2}+a_{2}-1 f \cdot s_{2}^{2}}{a_{1}-1 f_{+}+a_{2}-1} \\
& =\frac{\partial_{1}-1 f \cdot \partial_{30} f^{2}+\partial_{5-1} f \cdot \partial_{16} f^{2}}{\partial_{1-1} f^{2}+\sigma_{5-1}}=1.510
\end{aligned}
$$

Pooled Variance t Test Thinking Challenge

You're a research analyst for General Motors. Assuming equal variances, is there a difference in the average miles per gallon (mpg) of two car models $(\alpha=.05)$? You collect the following:

Sedan
Number
Mean
Std Dev

15	11
22.00	20.27
4.77	3.64

> Test Statistic Solution*

$$
\begin{aligned}
& s_{p}{ }^{2}=\frac{a_{4}-1 f \cdot s_{1}^{2}+a_{2}-1 f . s_{2}{ }^{2}}{a_{1}-1 f_{+} a_{2}-1}
\end{aligned}
$$

One-Way ANOVA F-Test

2 \& c-Sample Tests with Numerical Data

Experiment

- Investigator controls one or more independent variables
- Called treatment variables or factors
- Contain two or more levels (subcategories)
- Observes effect on dependent variable
- Response to levels of independent variable
- Experimental design: Plan used to test hypotheses

Completely Randomized Design

- Experimental units (subjects) are assigned randomly to treatments
- Subjects are assumed homogeneous
- One factor or independent variable
- 2 or more treatment levels or classifications
- Analyzed by:
- One-Way ANOVA
- Kruskal-Wallis rank test

Randomized Design Example

	Factor (Training Method)		
Factor levels (Treatments)	$\text { Level } 1$	$\begin{aligned} & \text { Level } 2 \\ & \text { eqé } \end{aligned}$	Level 3
$\begin{gathered} \text { Experimental } \\ \text { units } \end{gathered}$	() ;) :	() ;) :	() $)^{(,)}$
Dependent variable (Response)	21 hrs .	17 hrs .	31 hrs.
	27 hrs.	25 hrs.	28 hrs.
	29 hrs.	20 hrs.	22 hrs.

One-Way ANOVA F-Test

- Tests the equality of 2 or more (c) population means
- Variables
- One nominal scaled independent variable
- 2 or more (c) treatment levels or classifications
- One interval or ratio scaled dependent variable
- Used to analyze completely randomized experimental designs

$$
\begin{aligned}
& \text { One-Way ANOVA } \\
& \text { F-Test Assumptions }
\end{aligned}
$$

- Randomness \& independence of errors
- Independent random samples are drawn
- Normality
- Populations are normally distributed
- Homogeneity of variance
- Populations have equal variances

One-Way ANOVA F-Test Hypotheses

- $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\ldots=\mu_{c}$
- All population means are equal
- No treatment effect
- H_{1} : Not all μ_{j} are equal

- At least 1 population mean is different
- Treatment effect
$\square \mu_{1} \neq \mu_{2} \neq \ldots \neq \mu_{\mathrm{c}}$ is wrong

One-Way ANOVA Basic Idea

- Compares 2 types of variation to test equality of means
- Ratio of variances is comparison basis
- If treatment variation is significantly greater than random variation then means are not equal
- Variation measures are obtained by 'partitioning' total variation

ANOVA Partitions Total Variation

\square Sum of squares among
\square Sum of squares between
\square Sum of squares model
\square Among groups variation
\square Sum of squares within
\square Sum of squares error
\square Within groups variation

Total Variation

SST $=\boldsymbol{E}_{11}-\overline{\bar{X}} \boldsymbol{J}^{2}+\boldsymbol{E}_{21}-\overline{\bar{X}} \mathbf{j}^{2}+\ldots+\boldsymbol{E}_{n_{c} c}-\overline{\bar{X}} \mathbf{J}^{2}$
Response, X

Group 1 Group 2 Group 3

Among-Groups Variation

$\left.\left.S S A=n_{1} \bar{E}_{1}-\overline{\bar{X}}\right]^{2}+n_{2} \bar{E}_{2}-\overline{\bar{X}} \bar{J}^{2}+\ldots+n_{c} \epsilon_{c}-\overline{\bar{X}}\right]^{2}$
Response, X

Group 1 Group 2 Group 3

Within-Groups Variation

$s s w=\alpha_{11}-\bar{X}_{1} \hat{h}_{+} \alpha_{21}-\bar{X}_{1} \hat{h}_{+\ldots+} \boldsymbol{\alpha}_{n_{c} c}-\bar{X}_{c} h^{h}$ Response, X

Group 1 Group 2 Group 3

One-Way ANOVA Test Statistic

- Test statistic
- $F=$ MSA / MSW
- MSA is Mean Square Among
- MSW is Mean Square Within
- Degrees of freedom
$-d f_{1}=c-1$
$-d f_{2}=n-c$
- $c=$ \# Columns (populations, groups, or levels)
- $n=$ Total sample size

One-Way ANOVA Summary Table

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square (Variance)	F
Among (Factor)	c-1	SSA	MSA = SSA/(c - 1)	$\frac{\text { MSA }}{\text { MSW }}$
Within (Error)	n-c	SSW	MSW = SSW/($-\mathbf{c})$	
Total	n-1	SST = SSA+SSW		

One-Way ANOVA Critical Value

If means are equal, $F=$ MSA / MSW ≈ 1. Only reject large F!

One-Way ANOVA

 F-Test ExampleAs production manager, you want to see if 3 filling machines have different mean filling times. You assign 15 similarly trained \& experienced workers, 5 per machine, to the machines. At the .05 level, is there a difference in mean filling times?

Mach1Mach2Mach3
$25.40 \quad 23.40 \quad 20.00$
$26.31 \quad 21.80 \quad 22.20$
$24.10 \quad 23.5019 .75$
$23.74 \quad 22.75 \quad 20.60$
$25.10 \quad 21.60 \quad 20.40$

One-Way ANOVA F-Test Solution

Ho: $\mu_{1}=\mu_{2}=\mu_{3}$
H_{1} : Not all equal
$\alpha=.05$
$d f_{1}=2 d f_{2}=12$
Critical Value(s):

Test Statistic:

$$
F=\frac{M S A}{M S W}=\frac{23.5820}{.9211}=25.6
$$

Summary Table Solution

| Source of |
| :--- | :---: | :---: | :---: | :---: |
| Variation | | Degrees of |
| :---: |
| Freedom |\quad| Sum of |
| :---: |
| Squares | | Mean |
| :---: |
| Square |
| (Variance) |$\quad \mathrm{F}$

Summary Table

Evno1 Dutnut

AR Mricrosof Excel: Book

53) Eile Edit View Insert Format Iools Data Window Help

	A	B	C	D	E	F	G	-
9								
10	ANOVA							
11	Source of Variation	Ss	cif	AS	F	P-value	F crit	
12	Between Groups	47.1640	2	23.5820	25.60	0.000047	3.89	
13	Within Groups	11.0532	12	0.9211				
14								
15	Total	58.2172	14					
16								
17								
18								
19								
20								
21								
Rea				Sum=0			NUM	

One-Way ANOVA Thinking Challenge

You're a trainer for Microsoft Corp. Is there a difference in mean learning times of
12 people using 4 different training methods ($\alpha=.05$)?

$$
\begin{array}{rrrr}
\begin{aligned}
\text { M1 } & & \text { M2 } & \frac{\text { M3 }}{}
\end{aligned} \frac{\text { M4 }}{10} & 11 & 13 & 18 \\
9 & 16 & 8 & 23 \\
5 & 9 & 9 & 25
\end{array}
$$

One-Way ANOVA Solution*

Ho: $\mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$
H_{1} : Not all equal
$\alpha=.05$
$d f_{1}=3 \quad d f f_{2}=8$
Critical Value(s):

Test Statistic:
$F=\frac{M S A}{M S W}=\frac{116}{10}=11.6$

Decision:
Reject at $\alpha=.05$
Conclusion:
There is evidence pop. means are different

Summary Table Solution*

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square (Variance)	F
Among (Methods)	$4-1=3$	348	116	11.6
Within (Error)	$12-4=8$	80	10	
Total	$12-1=11$	428		

