Journal of Artificial Intelligence Research 11 (1999) 169-198 Submitted 1/99; published 8/99

Popular Ensemble Methods: An Empirical Study

David Opitz OPITZ@CS.UMT.EDU
Department of Computer Science
University of Montana

Missoula, MT 59812 USA

Richard Maclin RMACLIN@D.UMN.EDU
Computer Science Department

University of Minnesota
Duluth, MN 55812 USA

Abstract

An ensemble consists of a set of individually trained classifiers (such as neural networks
or decision trees) whose predictions are combined when classifying novel instances. Pre-
vious research has shown that an ensemble is often more accurate than any of the single
classifiers in the ensemble. Bagging (Breiman, 1996¢) and Boosting (Freund & Schapire,
1996; Schapire, 1990) are two relatively new but popular methods for producing ensem-
bles. In this paper we evaluate these methods on 23 data sets using both neural networks
and decision trees as our classification algorithm. Our results clearly indicate a number of
conclusions. First, while Bagging is almost always more accurate than a single classifier,
it is sometimes much less accurate than Boosting. On the other hand, Boosting can cre-
ate ensembles that are less accurate than a single classifier — especially when using neural
networks. Analysis indicates that the performance of the Boosting methods is dependent
on the characteristics of the data set being examined. In fact, further results show that
Boosting ensembles may overfit noisy data sets, thus decreasing its performance. Finally,
consistent with previous studies, our work suggests that most of the gain in an ensemble’s
performance comes in the first few classifiers combined; however, relatively large gains can
be seen up to 25 classifiers when Boosting decision trees.

1. Introduction

Many researchers have investigated the technique of combining the predictions of multi-
ple classifiers to produce a single classifier (Breiman, 1996¢; Clemen, 1989; Perrone, 1993;
Wolpert, 1992). The resulting classifier (hereafter referred to as an ensemble) is generally
more accurate than any of the individual classifiers making up the ensemble. Both theo-
retical (Hansen & Salamon, 1990; Krogh & Vedelsby, 1995) and empirical (Hashem, 1997;
Opitz & Shavlik, 1996a, 1996b) research has demonstrated that a good ensemble is one
where the individual classifiers in the ensemble are both accurate and make their errors on
different parts of the input space. Two popular methods for creating accurate ensembles
are Bagging (Breiman, 1996¢) and Boosting (Freund & Schapire, 1996; Schapire, 1990).
These methods rely on “resampling” techniques to obtain different training sets for each of
the classifiers. In this paper we present a comprehensive evaluation of both Bagging and
Boosting on 23 data sets using two basic classification methods: decision trees and neural
networks.

©1999 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

OprI1TZ & MACLIN

Previous work has demonstrated that Bagging and Boosting are very effective for deci-
sion trees (Bauer & Kohavi, 1999; Drucker & Cortes, 1996; Breiman, 1996¢c, 1996b; Freund
& Schapire, 1996; Quinlan, 1996); however, there has been little empirical testing with
neural networks (especially with the new Boosting algorithm). Discussions with previous
researchers reveal that many authors concentrated on decision trees due to their fast training
speed and well-established default parameter settings. Neural networks present difficulties
for testing both in terms of the significant processing time required and in selecting train-
ing parameters; however, we feel there are distinct advantages to including neural networks
in our study. First, previous empirical studies have demonstrated that individual neural
networks produce highly accurate classifiers that are sometimes more accurate than corre-
sponding decision trees (Fisher & McKusick, 1989; Mooney, Shavlik, Towell, & Gove, 1989).
Second, neural networks have been extensively applied across numerous domains (Arbib,
1995). Finally, by studying neural networks in addition to decision trees we can examine
how Bagging and Boosting are influenced by the learning algorithm, giving further insight
into the general characteristics of these approaches. Bauer and Kohavi (1999) also study
Bagging and Boosting applied to two learning methods, in their case decision trees using
a variant of C4.5 and naive-Bayes classifiers, but their study mainly concentrated on the
decision tree results.

Our neural network and decision tree results led us to a number of interesting conclu-
sions. The first is that a Bagging ensemble generally produces a classifier that is more
accurate than a standard classifier. Thus one should feel comfortable always Bagging their
decision trees or neural networks. For Boosting, however, we note more widely varying re-
sults. For a few data sets Boosting produced dramatic reductions in error (even compared
to Bagging), but for other data sets it actually increases in error over a single classifier
(particularly with neural networks). In further tests we examined the effects of noise and
support Freund and Schapire’s (1996) conjecture that Boosting’s sensitivity to noise may
be partly responsible for its occasional increase in error.

An alternate baseline approach we investigated was the creation of a simple neural net-
work ensemble where each network used the full training set and differed only in its random
initial weight settings. Owur results indicate that this ensemble technique is surprisingly
effective, often producing results as good as Bagging. Research by Ali and Pazzani (1996)
demonstrated similar results using randomized decision tree algorithms.

Our results also show that the ensemble methods are generally consistent (in terms of
their effect on accuracy) when applied either to neural networks or to decision trees; however,
there is little inter-correlation between neural networks and decision trees except for the
Boosting methods. This suggests that some of the increases produced by Boosting are
dependent on the particular characteristics of the data set rather than on the component
classifier. In further tests we demonstrate that Bagging is more resilient to noise than
Boosting.

Finally, we investigated the question of how many component classifiers should be used
in an ensemble. Consistent with previous research (Freund & Schapire, 1996; Quinlan,
1996), our results show that most of the reduction in error for ensemble methods occurs
with the first few additional classifiers. With Boosting decision trees, however, relatively
large gains may be seen up until about 25 classifiers.

170

PorPULAR ENSEMBLE METHODS

This paper is organized as follows. In the next section we present an overview of clas-
sifier ensembles and discuss Bagging and Boosting in detail. Next we present an extensive
empirical analysis of Bagging and Boosting. Following that we present future research and
additional related work before concluding.

2. Classifier Ensembles

Figure 1 illustrates the basic framework for a classifier ensemble. In this example, neural
networks are the basic classification method, though conceptually any classification method
(e.g., decision trees) can be substituted in place of the networks. Each network in Figure 1’s
ensemble (network 1 through network N in this case) is trained using the training instances
for that network. Then, for each example, the predicted output of each of these networks
(0; in Figure 1) is combined to produce the output of the ensemble (6 in Figure 1). Many
researchers (Alpaydin, 1993; Breiman, 1996¢; Krogh & Vedelsby, 1995; Lincoln & Skrzypek,
1989) have demonstrated that an effective combining scheme is to simply average the pre-
dictions of the network.

Combining the output of several classifiers is useful only if there is disagreement among
them. Obviously, combining several identical classifiers produces no gain. Hansen and
Salamon (1990) proved that if the average error rate for an example is less than 50% and
the component classifiers in the ensemble are independent in the production of their errors,
the expected error for that example can be reduced to zero as the number of classifiers
combined goes to infinity; however, such assumptions rarely hold in practice. Krogh and
Vedelsby (1995) later proved that the ensemble error can be divided into a term measuring
the average generalization error of each individual classifier and a term measuring the
disagreement among the classifiers. What they formally showed was that an ideal ensemble
consists of highly correct classifiers that disagree as much as possible. Opitz and Shavlik
(1996a, 1996b) empirically verified that such ensembles generalize well.

As a result, methods for creating ensembles center around producing classifiers that dis-
agree on their predictions. Generally, these methods focus on altering the training process in

0
eo ensemble output

[combine network outputs

|
/T o, 0. ﬁ O

networ networ « [network N
NIAIAXK L/ NIALAK L/ NIALXK L/
| .
e e o |nhput

Figure 1: A classifier ensemble of neural networks.

171

OprI1TZ & MACLIN

the hope that the resulting classifiers will produce different predictions. For example, neu-
ral network techniques that have been employed include methods for training with different
topologies, different initial weights, different parameters, and training only on a portion of
the training set (Alpaydin, 1993; Drucker, Cortes, Jackel, LeCun, & Vapnik, 1994; Hansen
& Salamon, 1990; Maclin & Shavlik, 1995). In this paper we concentrate on two popular
methods (Bagging and Boosting) that try to generate disagreement among the classifiers
by altering the training set each classifier sees.

2.1 Bagging Classifiers

Bagging (Breiman, 1996¢) is a “bootstrap” (Efron & Tibshirani, 1993) ensemble method
that creates individuals for its ensemble by training each classifier on a random redistri-
bution of the training set. Each classifier’s training set is generated by randomly drawing,
with replacement, N examples — where N is the size of the original training set; many of
the original examples may be repeated in the resulting training set while others may be
left out. Each individual classifier in the ensemble is generated with a different random
sampling of the training set.

Figure 2 gives a sample of how Bagging might work on a imaginary set of data. Since
Bagging resamples the training set with replacement, some instance are represented multiple
times while others are left out. So Bagging’s training-set-1 might contain examples 3 and
7 twice, but does not contain either example 4 or 5. As a result, the classifier trained on
training-set-1 might obtain a higher test-set error than the classifier using all of the data. In
fact, all four of Bagging’s component classifiers could result in higher test-set error; however,
when combined, these four classifiers can (and often do) produce test-set error lower than
that of the single classifier (the diversity among these classifiers generally compensates for
the increase in error rate of any individual classifier).

Breiman (1996¢) showed that Bagging is effective on “unstable” learning algorithms
where small changes in the training set result in large changes in predictions. Breiman
(1996¢) claimed that neural networks and decision trees are examples of unstable learning
algorithms. We study the effectiveness of Bagging on both these learning methods in this
article.

2.2 Boosting Classifiers

Boosting (Freund & Schapire, 1996; Schapire, 1990) encompasses a family of methods. The
focus of these methods is to produce a series of classifiers. The training set used for each
member of the series is chosen based on the performance of the earlier classifier(s) in the
series. In Boosting, examples that are incorrectly predicted by previous classifiers in the
series are chosen more often than examples that were correctly predicted. Thus Boosting
attempts to produce new classifiers that are better able to predict examples for which the
current ensemble’s performance is poor. (Note that in Bagging, the resampling of the
training set is not dependent on the performance of the earlier classifiers.)

In this work we examine two new and powerful forms of Boosting: Arcing (Breiman,
1996b) and Ada-Boosting (Freund & Schapire, 1996). Like Bagging, Arcing chooses a
training set of size N for classifier K + 1 by probabilistically selecting (with replacement)
examples from the original N training examples. Unlike Bagging, however, the probability

172

PorPULAR ENSEMBLE METHODS

A sample of a single classifier on an imaginary set of data.
(Original) Training Set
Training-set-1: 1,2,3,4,5,6,7,8

A sample of Bagging on the same data.
(Resampled) Training Set
Training-set-1: 2,7,8,3,7,6,3,1

Training-set-2: 7,8,95,6,4,2, 7,1
Training-set-3: 3,6,2,7,5,6,2,2
Training-set-4: 4,5,1,4,6,4, 3,8

A sample of Boosting on the same data.
(Resampled) Training Set

Training-set-1: 2,7,8,3,7,6,3, 1
Training-set-2: 1,4,5,4,1,5,6,4
Training-set-3: 7,1,5,8 1,8, 1,4
Training-set-4: 1,1,6,1,1,3,1,5

Figure 2: Hypothetical runs of Bagging and Boosting. Assume there are eight training
examples. Assume example 1 is an “outlier” and is hard for the component
learning algorithm to classify correctly. With Bagging, each training set is an
independent sample of the data; thus, some examples are missing and others
occur multiple times. The Boosting training sets are also samples of the original
data set, but the “hard” example (example 1) occurs more in later training sets
since Boosting concentrates on correctly predicting it.

of selecting an example is not equal across the training set. This probability depends on how
often that example was misclassified by the previous K classifiers. Ada-Boosting can use
the approach of (a) selecting a set of examples based on the probabilities of the examples, or
(b) simply using all of the examples and weight the error of each example by the probability
for that example (i.e., examples with higher probabilities have more effect on the error).
This latter approach has the clear advantage that each example is incorporated (at least in
part) in the training set. Furthermore, Friedman et al. (1998) have demonstrated that this
form of Ada-Boosting can be viewed as a form of additive modeling for optimizing a logistic
loss function. In this work, however, we have chosen to use the approach of subsampling the

data to ensure a fair empirical comparison (in part due to the restarting reason discussed
below).

Both Arcing and Ada-Boosting initially set the probability of picking each example to
be 1/N. These methods then recalculate these probabilities after each trained classifier is
added to the ensemble. For Ada-Boosting, let €; be the sum of the probabilities of the

173

OprI1TZ & MACLIN

misclassified instances for the currently trained classifier Cx. The probabilities for the next
trial are generated by multiplying the probabilities of C}’s incorrectly classified instances
by the factor B = (1 — €)/€er and then renormalizing all probabilities so that their sum
equals 1. Ada-Boosting combines the classifiers C1, ..., Cy using weighted voting where
C has weight log(8;). These weights allow Ada-Boosting to discount the predictions of
classifiers that are not very accurate on the overall problem. Friedman et al (1998) have
also suggested an alternative mechanism that fits together the predictions of the classifiers
as an additive model using a maximum likelihood criterion.

In this work, we use the revision described by Breiman (1996b) where we reset all
the weights to be equal and restart if either € is not less than 0.5 or € becomes 0.!
By resetting the weights we do not disadvantage the Ada-Boosting learner in those cases
where it reaches these values of ¢;; the Ada-Boosting learner always incorporates the same
number of classifiers as other methods we tested. To make this feasible, we are forced to use
the approach of selecting a data set probabilistically rather than weighting the examples,
otherwise a deterministic method such as C4.5 would cycle and generate duplicate members
of the ensemble. That is, resetting the weights to 1/N would cause the learner to repeat
the decision tree learned as the first member of the ensemble, and this would lead to
reweighting the data set the same as for the second member of the ensemble, and so on.
Randomly selecting examples for the data set based on the example probabilities alleviates
this problem.

Arcing-x4 (Breiman, 1996b) (which we will refer to simply as Arcing) started out as a
simple mechanism for evaluating the effect of Boosting methods where the resulting clas-
sifiers were combined without weighting the votes. Arcing uses a simple mechanism for
determining the probabilities of including examples in the training set. For the ith example
in the training set, the value m; refers to the number of times that example was misclassi-
fied by the previous K classifiers. The probability p; for selecting example i to be part of
classifier K + 1’s training set is defined as

1+m*
e B R 1
b N (1 +myh) @

Breiman chose the value of the power (4) empirically after trying several different values
(Breiman, 1996b). Although this mechanism does not have the weighted voting of Ada-
Boosting it still produces accurate ensembles and is simple to implement; thus we include
this method (along with Ada-Boosting) in our empirical evaluation.

Figure 2 shows a hypothetical run of Boosting. Note that the first training set would
be the same as Bagging; however, later training sets accentuate examples that were mis-
classified by the earlier member of the ensembles. In this figure, example 1 is a “hard”
example that previous classifiers tend to misclassify. With the second training set, example
1 occurs multiple times, as do examples 4 and 5 since they were left out of the first training
set and, in this case, misclassified by the first learner. For the final training set, example 1

1. For those few cases where €5 becomes 0 (less that 0.12% of our results) we simply use a large positive
value, log(Bk) = 3.0, to weight these networks. For the more likely cases where ¢ is larger than 0.5
(approximately 5% of our results) we chose to weight the predictions by a very small positive value
(0.001) rather than using a negative or 0 weight factor (this produced slightly better results than the
alternate approaches in pilot studies).

174

PorPULAR ENSEMBLE METHODS

becomes the predominant example chosen (whereas no single example is accentuated with
Bagging); thus, the overall test-set error for this classifier might become very high. Despite
this, however, Boosting will probably obtain a lower error rate when it combines the out-
put of these four classifiers since it focuses on correctly predicting previously misclassified
examples and weights the predictions of the different classifiers based on their accuracy for
the training set. But Boosting can also overfit in the presence of noise (as we empirically
show in Section 3).

2.3 The Bias plus Variance Decomposition

Recently, several authors (Breiman, 1996b; Friedman, 1996; Kohavi & Wolpert, 1996; Kong
& Dietterich, 1995) have proposed theories for the effectiveness of Bagging and Boosting
based on Geman et al.’s (1992) bias plus variance decomposition of classification error. In
this decomposition we can view the expected error of a learning algorithm on a particular
target function and training set size as having three components:

1. A bias term measuring how close the average classifier produced by the learning algo-
rithm will be to the target function;

2. A wariance term measuring how much each of the learning algorithm’s guesses will
vary with respect to each other (how often they disagree); and

3. A term measuring the minimum classification error associated with the Bayes optimal
classifier for the target function (this term is sometimes referred to as the intrinsic
target noise).

Using this framework it has been suggested (Breiman, 1996b) that both Bagging and Boost-
ing reduce error by reducing the variance term. Freund and Schapire (1996) argue that
Boosting also attempts to reduce the error in the bias term since it focuses on misclassified
examples. Such a focus may cause the learner to produce an ensemble function that differs
significantly from the single learning algorithm. In fact, Boosting may construct a func-
tion that is not even producible by its component learning algorithm (e.g., changing linear
predictions into a classifier that contains non-linear predictions). It is this capability that
makes Boosting an appropriate algorithm for combining the predictions of “weak” learning
algorithms (i.e., algorithms that have a simple learning bias). In their recent paper, Bauer
and Kohavi (1999) demonstrated that Boosting does indeed seem to reduce bias for certain
real world problems. More surprisingly, they also showed that Bagging can also reduce the
bias portion of the error, often for the same data sets for which Boosting reduces the bias.

Though the bias-variance decomposition is interesting, there are certain limitations to
applying it to real-world data sets. To be able to estimate the bias, variance, and target
noise for a particular problem, we need to know the actual function being learned. This is
unavailable for most real-world problems. To deal with this problem Kohavi and Wolpert
(1996) suggest holding out some of the data, the approach used by Bauer and Kohavi
(1999) in their study. The main problem with this technique is that the training set size
is greatly reduced in order to get good estimates of the bias and variance terms. We have
chosen to strictly focus on generalization accuracy in our study, in part because Bauer and
Kohavi’s work has answered the question about whether Boosting and Bagging reduce the

175

OprI1TZ & MACLIN

bias for real world problems (they both do), and because their experiments demonstrate
that while this decomposition gives some insight into ensemble methods, it is only a small
part of the equation. For different data sets they observe cases where Boosting and Bagging
both decrease mostly the variance portion of the error, and other cases where Boosting and
Bagging both reduce the bias and variance of the error. Their tests also seem to indicate
that Boosting’s generalization error increases on the domains where Boosting increases the
variance portion of the error; but, it is difficult to determine what aspects of the data sets
led to these results.

3. Results

This section describes our empirical study of Bagging, Ada-Boosting, and Arcing. Each of
these three methods was tested with both decision trees and neural networks.

3.1 Data Sets

To evaluate the performance of Bagging and Boosting, we obtained a number of data sets
from the University of Wisconsin Machine Learning repository as well as the UCI data
set repository (Murphy & Aha, 1994). These data sets were hand selected such that they
(a) came from real-world problems, (b) varied in characteristics, and (c) were deemed useful
by previous researchers. Table 1 gives the characteristics of our data sets. The data sets
chosen vary across a number of dimensions including: the type of the features in the data
set (i.e., continuous, discrete, or a mix of the two); the number of output classes; and
the number of examples in the data set. Table 1 also shows the architecture and training
parameters used in our neural networks experiments.

3.2 Methodology

Results, unless otherwise noted, are averaged over five standard 10-fold cross validation
experiments. For each 10-fold cross validation the data set is first partitioned into 10 equal-
sized sets, then each set is in turn used as the test set while the classifier trains on the
other nine sets. For each fold an ensemble of 25 classifiers is created. Cross validation folds
were performed independently for each algorithm. We trained the neural networks using
standard backpropagation learning (Rumelhart, Hinton, & Williams, 1986). Parameter
settings for the neural networks include a learning rate of 0.15, a momentum term of 0.9,
and weights are initialized randomly to be between -0.5 and 0.5. The number of hidden
units and epochs used for training are given in the next section. We chose the number of
hidden units based on the number of input and output units. This choice was based on the
criteria of having at least one hidden unit per output, at least one hidden unit for every
ten inputs, and five hidden units being a minimum. The number of epochs was based both
on the number of examples and the number of parameters (i.e., topology) of the network.
Specifically, we used 60 to 80 epochs for small problems involving fewer than 250 examples;
40 epochs for the mid-sized problems containing between 250 to 500 examples; and 20 to
40 epochs for larger problems. For the decision trees we used the C4.5 tool (Quinlan, 1993)
and pruned trees (which empirically produce better performance) as suggested in Quinlan’s
work.

176

PorPULAR ENSEMBLE METHODS

Features Neural Network
Data Set Cases Class | Cont Disc | Inputs Outputs Hiddens Epochs
breast-cancer-w 699 2 9 - 9 1 b) 20
credit-a 690 2 6 9 47 1 10 35
credit-g 1000 2 7 13 63 1 10 30
diabetes 768 2 9 - 8 1 5 30
glass 214 6 9 - 9 6 10 80
heart-cleveland 303 2 8 b) 13 1 b) 40
hepatitis 155 2 6 13 32 1 10 60
house-votes-84 435 2 - 16 16 1 b) 40
hypo 3772 5 7 22 55 5 15 40
ionosphere 351 2 34 - 34 1 10 40
iris 159 3 4 - 4 3 5 80
kr-vs-kp 3196 2 - 36 74 1 15 20
labor 57 2 8 8 29 1 10 80
letter 20000 26 16 - 16 26 40 30
promoters-936 936 2 - Y 228 1 20 30
ribosome-bind 1877 2 - 49 196 1 20 35
satellite 6435 6 36 - 36 6 15 30
segmentation 2310 7 19 - 19 7 15 20
sick 3772 2 7 22 55 1 10 40
sonar 208 2 60 - 60 1 10 60
soybean 683 19 - 35 134 19 25 40
splice 3190 3 - 60 240 2 25 30
vehicle 846 4 18 - 18 4 10 40

Table 1: Summary of the data sets used in this paper. Shown are the number of examples in
the data set; the number of output classes; the number of continuous and discrete
input features; the number of input, output, and hidden units used in the neural
networks tested; and how many epochs each neural network was trained.

3.3 Data Set Error Rates

Table 2 shows test-set error rates for the data sets described in Table 1 for five neural network
methods and four decision tree methods. (In Tables 4 and 5 we show these error rates as
well as the standard deviation for each of these values.) Along with the test-set errors for
Bagging, Arcing, and Ada-boosting, we include the test-set error rate for a single neural-
network and a single decision-tree classifier. We also report results for a simple (baseline)
neural-network ensemble approach — creating an ensemble of networks where each network
varies only by randomly initializing the weights of the network. We include these results
in certain comparisons to demonstrate their similarity to Bagging. One obvious conclusion
drawn from the results is that each ensemble method appears to reduce the error rate for
almost all of the data sets, and in many cases this reduction is large. In fact, the two-
tailed sign test indicates that every ensemble method is significantly better than its single

177

OprI1TZ & MACLIN

Neural Network C4.5
Boosting Boosting
Data Set Stan Simp Bag Arc Ada| Stan Bag Arc Ada
breast-cancer-w 3.4 3.5 3.4 3.8 4.0 5.0 3.7 3.5 3.5
credit-a 14.8 13.7 13.8 158 15.7 14.9 13.4 14.0 13.7
credit-g 27.9 24.7 24.2 252 253 29.6 25.2 259 26.7
diabetes 23.9 23.0 22.8 244 233 27.8 244 26.0 25.7
glass 38.6 35.2 33.1 320 31.1 31.3 25.8 25,5 233
heart-cleveland 18.6 17.4 17.0 20.7 21.1 24.3 19.5 21,5 208
hepatitis 20.1 19.5 178 19.0 19.7 | 21.2 173 169 17.2
house-votes-84 4.9 4.8 4.1 5.1 5.3 3.6 3.6 5.0 4.8
hypo 6.4 6.2 6.2 6.2 6.2 0.5 0.4 0.4 0.4
ionosphere 9.7 7.5 9.2 7.6 8.3 8.1 6.4 6.0 6.1
iris 4.3 3.9 4.0 3.7 3.9 5.2 4.9 5.1 5.6
kr-vs-kp 2.3 0.8 0.8 0.4 0.3 0.6 0.6 0.3 0.4
labor 6.1 3.2 4.2 3.2 3.2 16.5 13.7 13.0 11.6
letter 18.0 12.8 10.5 5.7 4.6 14.0 7.0 4.1 3.9
promoters-936 5.3 4.8 4.0 4.5 4.6 12.8 10.6 6.8 6.4
ribosome-bind 9.3 8.5 8.4 8.1 8.2 11.2 10.2 9.3 9.6
satellite 13.0 10.9 10.6 9.9 10.0 13.8 9.9 8.6 8.4
segmentation 6.6 5.3 5.4 3.5 3.3 3.7 3.0 1.7 1.5
sick 5.9 5.7 5.7 4.7 4.5 1.3 1.2 1.1 1.0
sonar 16.6 15.9 16.8 129 13.0 29.7 253 215 21.7
soybean 9.2 6.7 6.9 6.7 6.3 8.0 7.9 7.2 6.7
splice 4.7 4.0 3.9 4.0 4.2 5.9 5.4 5.1 5.3
vehicle 24.9 21.2 207 19.1 19.7 | 294 27.1 225 229

Table 2: Test set error rates for the data sets using (1) a single neural network classifier; (2)
an ensemble where each individual network is trained using the original training
set and thus only differs from the other networks in the ensemble by its random
initial weights; (3) an ensemble where the networks are trained using randomly
resampled training sets (Bagging); an ensemble where the networks are trained
using weighted resampled training sets (Boosting) where the resampling is based
on the (4) Arcing method and (5) Ada method; (6) a single decision tree classifier;
(7) a Bagging ensemble of decision trees; and (8) Arcing and (9) Ada Boosting

ensembles of decision trees.

component classifier at the 95% confidence level; however, none of the ensemble methods
are significantly better than any other ensemble approach at the 95% confidence level.

To better analyze Table 2’s results, Figures 3 and 4 plot the percentage reduction in
error for the Ada-Boosting, Arcing, and Bagging method as a function of the original error

rate.

Examining these figures we note that many of the gains produced by the ensemble

methods are much larger than the standard deviation values. In terms of comparisons

of different methods, it is apparent from both figures that the Boosting methods (Ada-

178

PorPULAR ENSEMBLE METHODS

kr-vs-kp —

:Ef
—_—

segmentation —

labor |

EE

soybean -
satellite o
sick—
sonar—{
vehicle -
glass—
ionosphere
promoters-936 —
ribosome-bind

=

f—

iris

spliceH

credit-g—

diabetes — =

Ada-Boosting

MPe] . Arcing
hepatitis . Bagging
credit-a—
house-votes-84 |
heart-cleveland -
'ﬁ:‘

breast-cancer-w -

1 T T T T 1
-40 -20 0 20 40 60 80 100

Percent Reduction in Error

Figure 3: Reduction in error for Ada-Boosting, Arcing, and Bagging neural network en-
sembles as a percentage of the original error rate (i.e., a reduction from an error
rate of 2.5% to 1.25% would be a 50% reduction in error rate, just as a reduction
from 10.0% to 5.0% would also be a 50% reduction). Also shown (white portion
of each bar) is one standard deviation for these results. The standard deviation
is shown as an addition to the error reduction.

179

OprI1TZ & MACLIN

segmentation ?‘
promoters-936 - F—‘
kr-vs-kp ?.
satellite - E“
labor %‘
breast-cancer-w—| E
o =

sonar- —
—
glass =T
-
ionosphere — —
vehicle -
=
sick | T
——
hepatitis -] S —
soybean -
heart-cleveland -] —
=
ribosome-bind -] =
— Ada-Boosting
splice— -
— . Arcing
dit-g— — i
credit-g =1 . Bagging
credit-a—| —
diabetes =1

iris— ———

house-votes-84 .i

T | T
-80 -60 -40 -20 0 20 40 60 80

Percent Reduction in Error
Figure 4: Reduction in error for Ada-Boosting, Arcing, and Bagging decision tree ensembles

as a percentage of the original error rate. Also shown (white portion of each bar)
is one standard deviation for these results.

180

PorPULAR ENSEMBLE METHODS

Boosting and Arcing) are similar in their results, both for neural networks and decision
trees. Furthermore, the Ada-Boosting and Arcing methods produce some of the largest
reductions in error. On the other hand, while the Bagging method consistently produces
reductions in error for almost all of the cases, with neural networks the Boosting methods
can sometimes result in an increase in error.

Looking at the ordering of the data sets in the two figures (the results are sorted by
the percentage of reduction using the Ada-Boosting method), we note that the data sets
for which the ensemble methods seem to work well are somewhat consistent across both
neural networks and decision trees. For the few domains which see increases in error, it is
difficult to reach strong conclusions since the ensemble methods seem to do well for a large
number of domains. One domain on which the Boosting methods do uniformly poorly is
the house-votes-84 domain. As we discuss later, there may noise in this domain’s examples
that causes the Boosting methods significant problems.

3.4 Ensemble Size

Early work (Hansen & Salamon, 1990) on ensembles suggested that ensembles with as few
as ten members were adequate to sufficiently reduce test-set error. While this claim may be
true for the earlier proposed ensembles, the Boosting literature (Schapire, Freund, Bartlett,
& Lee, 1997) has recently suggested (based on a few data sets with decision trees) that
it is possible to further reduce test-set error even after ten members have been added to
an ensemble (and they note that this result also applies to Bagging). In this section, we
perform additional experiments to further investigate the appropriate size of an ensemble.
Figure 5 shows the composite error rate over all of our data sets for neural network and
decision tree ensembles using up to 100 classifiers. Our experiments indicate that most of
the methods produce similarly shaped curves. As expected, much of the reduction in error
due to adding classifiers to an ensemble comes with the first few classifiers; however, there
is some variation with respect to where the error reduction finally asymptotes.

For both Bagging and Boosting applied to neural networks, much of the reduction in
error appears to have occurred after ten to fifteen classifiers. A similar conclusion can be
reached for Bagging and decision trees, which is consistent with Breiman (1996a). But Ada-
boosting and Arcing continue to measurably improve their test-set error until around 25
classifiers for decision trees. At 25 classifiers the error reduction for both methods appears
to have nearly asymptoted to a plateau. Therefore, the results reported in this paper are of
an ensemble size of 25 (i.e., a sufficient yet manageable size for qualitative analysis). It was
traditionally believed (Freund & Schapire, 1996) that small reductions in test-set error may
continue indefinitely for boosting; however, Grove and Schuurmans (1998) demonstrate that
Ada-boosting can indeed begin to overfit with very large ensemble sizes (10,000 or more
members).

3.5 Correlation Among Methods

As suggested above, it appears that the performance of many of the ensemble methods are
highly correlated with one another. To help identify these consistencies, Table 3 presents
the correlation coefficients of the performance of all seven ensemble methods. For each data
set, performance is measured as the ensemble error rate divided by the single-classifier error

181

OprI1TZ & MACLIN

0.184
owed | DT-Ada
DT-Arc

g — DT-Bag
&S \: EEEEEEEEEEEN NN_Ada
o M "‘ NN-Arc
Ldu) 0.14 - | — - NN-Bag
7
o
o
S
o
@)

0.124
19 | ' J T T T T T T

0 10 20 30 40 50 60 70 80 90 1(|)0

Number of Networks in Ensemble

Figure 5: Average test-set error over all 23 data sets used in our studies for ensembles
incorporating from one to 100 decision trees or neural networks. The error rate
graphed is simply the average of the error rates of the 23 data sets. The alternative
of averaging the error over all data points (i.e., weighting a data set’s error rate
by its sample size) produces similarly shaped curves.

rate. Thus a high correlation (i.e., one near 1.0) suggests that two methods are consistent
in the domains in which they have the greatest impact on test-set error reduction.

Table 3 provides numerous interesting insights. The first is that the neural-network
ensemble methods are strongly correlated with one another and the decision-tree ensemble
methods are strongly correlated with one another; however, there is less correlation be-
tween any neural-network ensemble method and any decision-tree ensemble method. Not
surprisingly, Ada-boosting and Arcing are strongly correlated, even across different compo-
nent learning algorithms. This suggests that Boosting’s effectiveness depends more on the
data set than whether the component learning algorithm is a neural network or decision
tree. Bagging on the other hand, is not correlated across component learning algorithms.
These results are consistent with our later claim that while Boosting is a powerful ensemble
method, it is more susceptible to a noisy data set than Bagging.

182

PorPULAR ENSEMBLE METHODS

Neural Network Decision Tree

Simple Bagging Arcing Ada Bagging Arcing Ada
Simple-NN 1.00 0.88 0.87 0.85 -0.10 0.38 0.37
Bagging-NN 0.88 1.00 0.78 0.78 -0.11 0.35 0.35
Arcing-NN 0.87 0.78 1.00 0.99 0.14 0.61 0.60
Ada-NN 0.85 0.78 0.99 1.00 0.17 0.62 0.63
Bagging-DT -0.10 -0.11 0.14 0.17 1.00 0.68 0.69
Arcing-DT 0.38 0.35 0.61 0.62 0.68 1.00 0.96
Ada-DT 0.37 0.35 0.60 0.63 0.69 0.96 1.00

Table 3: Performance correlation coefficients across ensemble learning methods. Perfor-
mance is measured by the ratio of the ensemble method’s test-set error divided by
the single component classifier’s test-set error.

3.6 Bagging versus Simple network ensembles

Figure 6 shows the Bagging and Simple network ensemble results from Table 2. These
results indicate that often a Simple Ensemble approach will produce results that are as
accurate as Bagging (correlation results from Table 3 also support this statement). This
suggests that any mechanism which causes a learning method to produce some randomness
in the formation of its classifiers can be used to form accurate ensembles, and indeed, Ali
and Pazzani (1996) have demonstrated similar results for randomized decision trees.

3.7 Neural Networks versus Decision Trees

Another interesting question is how effective the different methods are for neural networks
and decision trees. Figures 7, 8, and 9 compare the error rates and reduction in error values
for Ada-Boosting, Arcing, and Bagging respectively. Note that we graph error rate rather
than percent reduction in error rate because the baseline for each method (decision trees for
Ada-Boosting on decision trees versus neural networks for Ada-Boosting on neural networks)
may partially explain the differences in percent reduction. For example, in the promoters-
936 problem using Ada-Boosting, the much larger reduction in error for the decision tree
approach may be due to the fact that decision trees do not seem to be as effective for this
problem, and Ada-Boosting therefore produces a larger percent reduction in the error for
decision trees.

The results show that in many cases if a single decision tree had lower (or higher)
error than a single neural network on a data set, then the decision-tree ensemble methods
also had lower (or higher) error than their neural network counterpart. The exceptions to
this rule generally happened on the same data set for all three ensemble methods (e.g.,
hepatitis, soybean, satellite, credit-a, and heart-cleveland). These results suggest that (a)
the performance of the ensemble methods is dependent on both the data set and classifier
method, and (b) ensembles can, at least in some cases, overcome the inductive bias of its
component learning algorithm.

183

kr-vs-kp—

letter -

labor —{

soybean -

promoters-936 —

segmentation —

satellite -

splice -

vehicle

house-votes-84 |

glass—

credit-g—

hepatitis

ribosome-bind -

heart-cleveland -

iris

credit-a—

ionosphere

diabetes —

hypo—

sick—

breast-cancer-w—

sonar—

OprI1TZ & MACLIN

Bagging

. Simple

-20

0 20 40 60 80

Percent Reduction in Error

Figure 6: Reduction in error for Bagging and Simple neural network ensembles as a per-
centage of the original error rate. Also shown (white portion of each bar) is one
standard deviation for these results.

184

PorPULAR ENSEMBLE METHODS

kr-vs-kp F

letter I 1

segmentation

labor

soybeanAI

satellite

sick

sonar

vehicle

Aﬁ:
ﬂi

glass] . .
ﬂﬁu

ionosphere

promoters-936

ribosome-bind

iris

splice

credit-g

diabetes

Neural Network
hypo

hepatitisAI iu

credit-a

. Decision Tree

house-votes-84

heart-cleveland

breast-cancer-w

I T T T 1
0 10 20 30 40

Error (%)
Figure 7: Error rates for Ada-Boosting ensembles. The white portion shows the reduction
in error of Ada-Boosting compared to a single classifier while increases in error

are shown in black. The data sets are sorted by the ratio of reduction in ensemble
error to overall error for neural networks.

185

OprI1TZ & MACLIN

kr-vs-kp—41——
]

letter - I 1

labor

segmentation

soybeanAI
satelliteAI
vehicIeAI
sonarAI

ionosphere

sick

glass T]

promoters-936

iris

splice

ribosome-bind

credit-g<|

hepatitis
Neural Network
hypo
. Decision Tree
diabetes

house-votes-84

credit-aAI]-

heart-cleveland

breast-cancer-w

T T 1
0 10 20 30 40

Error (%)
Figure 8: Error rates for Arcing ensembles. The white portion shows the reduction in error
of Arcing compared to a single classifier while increases in error are shown in

black. The data sets are sorted by the ratio of reduction in ensemble error to
overall error for neural networks.

186

PorPULAR ENSEMBLE METHODS

kr-vs-kp ~F|:|

letter T 1

labor

soybean

promoters-936

segmentation

satellite

splice

vehicle

house-votes-84

glass T]

credit-g<|
hepatitisAI
ribosome-bindAI

heart-cleveland

iris

credit-a
. Neural Network
ionosphere
. Decision Tree

diabetes

hypo
sick

breast-cancer-w

sonar—l =

I T T T 1
0 10 20 30 40

Error (%)

Figure 9: Error rates for Bagging ensembles. The white portion shows the reduction in
error of Bagging compared to a single classifier while increases in error are shown
in black. The data sets are sorted by the ratio of reduction in ensemble error to
overall error for neural networks.

187

OprI1TZ & MACLIN

3.8 Boosting and Noise

Freund and Shapire (1996) suggested that the sometimes poor performance of Boosting
results from overfitting the training set since later training sets may be over-emphasizing
examples that are noise (thus creating extremely poor classifiers). This argument seems
especially pertinent to Boosting for two reasons. The first and most obvious reason is
that their method for updating the probabilities may be over-emphasizing noisy examples.
The second reason is that the classifiers are combined using weighted voting. Previous
work (Sollich & Krogh, 1996) has shown that optimizing the combining weights can lead to
overfitting while an unweighted voting scheme is generally resilient to overfitting. Friedman
et al. (1998) hypothesize that Boosting methods, as additive models, may see increases in
error in those situations where the bias of the base classifier is appropriate for the problem
being learned. We test this hypothesis in our second set of results presented in this section.

To evaluate the hypothesis that Boosting may be prone to overfitting we performed a set
of experiments using the four ensemble neural network methods. We introduced 5%, 10%,
20%, and 30% noise? into four different data sets. At each level we created five different
noisy data sets, performed a 10-fold cross validation on each, then averaged over the five
results. In Figure 10 we show the reduction in error rate for each of the ensemble methods
compared to using a single neural network classifier. These results demonstrate that as
the noise level grows, the efficacy of the Simple and Bagging ensembles generally increases
while the Arcing and Ada-Boosting ensembles gains in performance are much smaller (or
may actually decrease). Note that this effect is more extreme for Ada-Boosting which
supports our hypothesis that Ada-Boosting is more affected by noise. This suggests that
Boosting’s poor performance for certain data sets may be partially explained by overfitting
noise.

To further demonstrate the effect of noise on Boosting we created several sets of artificial
data specifically designed to mislead Boosting methods. For each data set we created a
simple hyperplane concept based on a set of the features (and also included some irrelevant
features). A set of random points were then generated and labeled based on which side
of the hyperplane they fell. Then a certain percentage of the points on one side of the
hyperplane were mislabeled as being part of the other class. For the experiments shown
below we generated five data sets where the concept was based on two linear features, had
four irrelevant features, and 20% of the data was mislabeled. We trained five ensembles of
neural networks (perceptrons) for each data set and averaged the ensembles’ predictions.
Thus these experiments involve learning in situations where the original bias of the learner
(a single hyperplane produced by a perceptron) is appropriate for the problem, and as
Friedman et al. (1998) suggest, using an additive model may harm performance. Figure 11
shows the resulting error rates for Ada-Boosting, Arcing, and Bagging by the number of
networks being combined in the ensemble. These results indicate clearly that in cases where
there is noise Bagging’s error rate will not increase as the ensemble size increases whereas
the error rate of the Boosting methods may indeed increase as ensemble size increases.

2. X% noise indicates that each feature of the training examples, both input and output features, had X%
chance of being randomly perturbed to another feature value for that feature (for continuous features,
the set of possible other values was chosen by examining all of the training examples).

188

PorPULAR ENSEMBLE METHODS

4 diabetes 9— soybean-large

~

- / -
= ;—:¢~ —
—O—9%—— Bagging Ensemble

Reduction in error rate (% pts)

— O— - —0-— Boosting (Arcing) Ensemble
— vV — — ~V¥ — Boosting (Ada) Ensemble
0 T T T T T 1
0 5 10 15 20 25 30
4 segmentation

Reduction in error rate (% pts)

T I 1 I
0 5 \10_ 15 20 25 30 0 5 10 15 20 25 30
4

Noise rate (%) Noise rate (%)

Figure 10: Simple, Bagging, and Boosting (Arcing and Ada) neural network ensemble re-
duction in error as compared to using a single neural network. Graphed is the
percentage point reduction in error (e.g., for 5% noise in the segmentation data
set, if the single network method had an error rate of 15.9% and the Bagging
method had an error rate of 14.7%, then this is graphed as a 1.2 percentage
point reduction in the error rate).

Additional tests (not shown here) show that Ada-Boosting’s error rate becomes worse when
restarting is not employed.

This conclusion dovetails nicely with Schapire et al.’s (1997) recent discussion where
they note that the effectiveness of a voting method can be measured by examining the
margins of the examples. (The margin is the difference between the number of correct and
incorrect votes for an example.) In a simple resampling method such as Bagging, each
resulting classifier focuses on increasing the margin for as many of the examples as possible.
But in a Boosting method, later classifiers focus on increasing the margins for examples
with poor current margins. As Schapire et al. (1997) note, this is a very effective strategy
if the overall accuracy of the resulting classifier does not drop significantly. For a problem
with noise, focusing on misclassified examples may cause a classifier to focus on boosting
the margins of (noisy) examples that would in fact be misleading in overall classification.

189

Or1TZ & MACLIN

20
18
[
& 16
S
: 14
.\-*'_'—'Q'—'—'_'—'—'—‘—'—'—'“'—'—'—"_'_'—Bag
124
10 T T T T T 1
0 5 10 15 20 25 30
20
18
Q
& 16
S
2 14
w
124
10
0
20
18
[
& 16
S
2 14
w
12
e e e e e ——— e e e
Bag
10 T T T T T 1
0 5 10 15 20 25 30
20
18
[
& 16
S
2 14
w
12
10
0
20
18
Q
& 16
S
2 14
w
12
10 T T T T T 1

Networks in Ensemble

Figure 11: Error rates by the size of ensemble for Ada-Boosting, Arcing, and Bagging en-
sembles for five different artificial data sets containing one-sided noise (see text
for description).

190

PorPULAR ENSEMBLE METHODS

4. Future Work

One interesting question we plan to investigate is how effective a single classifier approach
might be if it was allowed to use the time it takes the ensemble method to train multiple
classifiers to explore its concept space. For example, a neural network approach could
perform pilot studies using the training set to select appropriate values of parameters such
as hidden units, learning rate, etc.

We plan to compare Bagging and Boosting methods to other methods introduced re-
cently. In particular we intend to examine the use of Stacking (Wolpert, 1992) as a method
of training a combining function, so as to avoid the effect of having to weight classifiers.
We also plan to compare Bagging and Boosting to other methods such as Opitz and Shav-
lik’s (1996b) approach to creating an ensemble. This approach uses genetic search to find
classifiers that are accurate and differ in their predictions.

Finally, since the Boosting methods are extremely successful in many domains, we plan
to investigate novel approaches that will retain the benefits of Boosting. The goal will
be to create a learner where you can essentially push a start button and let it run. To
do this we would try to preserve the benefits of Boosting while preventing overfitting on
noisy data sets. One possible approach would be to use a holdout training set (a tuning
set) to evaluate the performance of the Boosting ensemble to determine when the accuracy
is no longer increasing. Another approach would be to use pilot studies to determine an
“optimal” number of classifiers to use in an ensemble.

5. Additional Related Work

As mentioned before, the idea of using an ensemble of classifiers rather than the single best
classifier has been proposed by several people. In Section 2, we present a framework for these
systems, some theories of what makes an effective ensemble, an extensive covering of the
Bagging and Boosting algorithms, and a discussion on the bias plus variance decomposition.
Section 3 referred to empirical studies similar to ours; these methods differ from ours in
that they were limited to decision trees, generally with fewer data sets. We cover additional
related work in this section.

Lincoln and Skrzypek (1989), Mani (1991) and the forecasting literature (Clemen, 1989;
Granger, 1989) indicate that a simple averaging of the predictors generates a very good
composite model; however, many later researchers (Alpaydin, 1993; Asker & Maclin, 1997a,
1997b; Breiman, 1996¢; Hashem, 1997; Maclin, 1998; Perrone, 1992; Wolpert, 1992; Zhang,
Mesirov, & Waltz, 1992) have further improved generalization with voting schemes that are
complex combinations of each predictor’s output. One must be careful in this case, since
optimizing the combining weights can easily lead to the problem of overfitting which simple
averaging seems to avoid (Sollich & Krogh, 1996).

Most approaches only indirectly try to generate highly correct classifiers that disagree as
much as possible. These methods try to create diverse classifiers by training classifiers with
dissimilar learning parameters (Alpaydin, 1993), different classifier architectures (Hashem,
1997), various initial neural-network weight settings (Maclin & Opitz, 1997; Maclin & Shav-
lik, 1995), or separate partitions of the training set (Breiman, 1996a; Krogh & Vedelsby,
1995). Boosting on the other hand is active in trying to generate highly correct networks

191

OprI1TZ & MACLIN

since it accentuates examples currently classified incorrectly by previous members of the
ensemble.

ADDEMUP (Opitz & Shavlik, 1996a, 1996b) is another example of an approach that
directly tries to create a diverse ensemble. ADDEMUP uses genetic algorithms to search
explicitly for a highly diverse set of accurate trained networks. ADDEMUP works by first
creating an initial population, then uses genetic operators to create new networks con-
tinually, keeping the set of networks that are highly accurate while disagreeing with each
other as much as possible. ADDEMUP is also effective at incorporating prior knowledge, if
available, to improve the quality of its ensemble.

An alternate approach to the ensemble framework is to train individual networks on
a subtask, and to then combine these predictions with a “gating” function that depends
on the input. Jacobs et al’s (1991) adaptive mixtures of local experts, Baxt’s (1992)
method for identifying myocardial infarction, and Nowlan and Sejnowski’s (1992) visual
model all train networks to learn specific subtasks. The key idea of these techniques is
that a decomposition of the problem into specific subtasks might lead to more efficient
representations and training (Hampshire & Waibel, 1989).

Once a problem is broken into subtasks, the resulting solutions need to be combined.
Jacobs et al. (1991) propose having the gating function be a network that learns how to
allocate examples to the experts. Thus the gating network allocates each example to one
or more experts, and the backpropagated errors and resulting weight changes are then
restricted to these networks (and the gating function). Tresp and Taniguchi (1995) propose
a method for determining the gating function after the problem has been decomposed and
the experts trained. Their gating function is an input-dependent, linear-weighting function
that is determined by a combination of the networks’ diversity on the current input with
the likelihood that these networks have seen data “near” that input.

Although the mixtures of experts and ensemble paradigms seem very similar, they are in
fact quite distinct from a statistical point of view. The mixtures-of-experts model makes the
assumption that a single expert is responsible for each example. In this case, each expert is
a model of a region of the input space, and the job of the gating function is to decide from
which model the data point originates. Since each network in the ensemble approach learns
the whole task rather than just some subtask and thus makes no such mutual exclusivity
assumption, ensembles are appropriate when no one model is highly likely to be correct for
any one point in the input space.

6. Conclusions

This paper presents a comprehensive empirical evaluation of Bagging and Boosting for
neural networks and decision trees. Our results demonstrate that a Bagging ensemble
nearly always outperforms a single classifier. Our results also show that a Boosting ensemble
can greatly outperform both Bagging and a single classifier. However, for some data sets
Boosting may show zero gain or even a decrease in performance from a single classifier.
Further tests indicate that Boosting may suffer from overfitting in the presence of noise
which may explain some of the decreases in performance for Boosting. We also found that
a simple ensemble approach of using neural networks that differ only in their random initial
weight settings performed surprisingly well, often doing as well as the Bagging.

192

PorPULAR ENSEMBLE METHODS

Analysis of our results suggests that the performance of both Boosting methods (Ada-
Boosting and Arcing) is at least partly dependent on the data set being examined, where
Bagging shows much less correlation. The strong correlations for Boosting may be partially
explained by its sensitivity to noise, a claim supported by additional tests. Finally, we
show that much of the performance enhancement for an ensemble comes with the first few
classifiers combined, but that Boosting decision trees may continue to further improve with
larger ensemble sizes.

In conclusion, as a general technique for decision trees and neural networks, Bagging is
probably appropriate for most problems, but when appropriate, Boosting (either Arcing or
Ada) may produce larger gains in accuracy.

Acknowledgments

This research was partially supported by University of Minnesota Grants-in-Aid to both au-
thors. Dave Opitz was also supported by National Science Foundation grant IRI-9734419,
the Montana DOE/EPSCoR Petroleum Reservoir Characterization Project, a MONTS
grant supported by the University of Montana, and a Montana Science Technology Al-
liance grant. This is an extended version of a paper published in the Fourteenth National
Conference on Artificial Intelligence.

References

Ali, K., & Pazzani, M. (1996). Error reduction through learning multiple descriptions.
Machine Learning, 24, 173—-202.

Alpaydin, E. (1993). Multiple networks for function learning. In Proceedings of the 1993
IEEFE International Conference on Neural Networks, Vol. I, pp. 27-32 San Francisco.

Arbib, M. (Ed.). (1995). The Handbook of Brain Theory and Neural Networks. MIT Press.

Asker, L., & Maclin, R. (1997a). Ensembles as a sequence of classifiers. In Proceedings
of the Fifteenth International Joint Conference on Artificial Intelligence, pp. 860-865
Nagoya, Japan.

Asker, L., & Maclin, R. (1997b). Feature engineering and classifier selection: A case study in
Venusian volcano detection. In Proceedings of the Fourteenth International Conference
on Machine Learning, pp. 3—11 Nashville, TN.

Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning, 36, 105-139.

Baxt, W. (1992). Improving the accuracy of an artificial neural network using multiple
differently trained networks. Neural Computation, 4, 772—780.

Breiman, L. (1996a). Bagging predictors. Machine Learning, 24(2), 123-140.

Breiman, L. (1996b). Bias, variance, and arcing classifiers. Tech. rep. 460, UC-Berkeley,
Berkeley, CA.

193

OprI1TZ & MACLIN

Breiman, L. (1996¢). Stacked regressions. Machine Learning, 24 (1), 49-64.

Clemen, R. (1989). Combining forecasts: A review and annotated bibliography. Journal of
Forecasting, 5, 559-583.

Drucker, H., & Cortes, C. (1996). Boosting decision trees. In Touretsky, D., Mozer, M., &
Hasselmo, M. (Eds.), Advances in Neural Information Processing Systems, Vol. 8, pp.
479-485 Cambridge, MA. MIT Press.

Drucker, H., Cortes, C., Jackel, L., LeCun, Y., & Vapnik, V. (1994). Boosting and other
machine learning algorithms. In Proceedings of the Eleventh International Conference
on Machine Learning, pp. 53—61 New Brunswick, NJ.

Efron, B., & Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman and Hall,
New York.

Fisher, D., & McKusick, K. (1989). An empirical comparison of ID3 and back-propagation.
In Proceedings of the Eleventh International Joint Conference on Artificial Intelli-
gence, pp. 788793 Detroit, MI.

Freund, Y., & Schapire, R. (1996). Experiments with a new boosting algorithm. In Pro-
ceedings of the Thirteenth International Conference on Machine Learning, pp. 148-156
Bari, Italy.

Friedman, J. (1996). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Journal
of Data Mining and Knowledge Discovery, 1.

Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: A statistical
view of boosting. (http://www-stat.stanford.edu/"jhf).

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance
dilemma. Neural Computation, 4, 1-58.

Granger, C. (1989). Combining forecasts: Twenty years later. Journal of Forecasting, 8,
167-173.

Grove, A., & Schuurmans, D. (1998). Boosting in the limit: Maximizing the margin of
learned ensembles. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence, pp. 692699 Madison, WI.

Hampshire, J., & Waibel, A. (1989). The meta-pi network: Building distributed knowledge
representations for robust pattern recognition. Tech. rep. CMU-CS-89-166, CMU,
Pittsburgh, PA.

Hansen, L., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12, 993-1001.

Hashem, S. (1997). Optimal linear combinations of neural networks. Neural Networks,
10(4), 599-614.

194

PorPULAR ENSEMBLE METHODS

Jacobs, R., Jordan, M., Nowlan, S., & Hinton, G. (1991). Adaptive mixtures of local
experts. Neural Computation, 3, 79-87.

Kohavi, R., & Wolpert, D. (1996). Bias plus variance decomposition for zero-one loss
functions. In Proceedings of the Thirteenth International Conference on Machine
Learning, pp. 275-283 Bari, Italy.

Kong, E., & Dietterich, T. (1995). Error-correcting output coding corrects bias and variance.
In Proceedings of the Twelfth International Conference on Machine Learning, pp. 313—
321 Tahoe City, CA.

Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active
learning. In Tesauro, G., Touretzky, D., & Leen, T. (Eds.), Advances in Neural
Information Processing Systems, Vol. 7, pp. 231-238 Cambridge, MA. MIT Press.

Lincoln, W., & Skrzypek, J. (1989). Synergy of clustering multiple back propagation net-
works. In Touretzky, D. (Ed.), Advances in Neural Information Processing Systems,
Vol. 2, pp. 6560-659 San Mateo, CA. Morgan Kaufmann.

Maclin, R. (1998). Boosting classifiers regionally. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, pp. 700-705 Madison, WI.

Maclin, R., & Opitz, D. (1997). An empirical evaluation of bagging and boosting. In
Proceedings of the Fourteenth National Conference on Artificial Intelligence, pp. 546—
551 Providence, RI.

Maclin, R., & Shavlik, J. (1995). Combining the predictions of multiple classifiers: Using
competitive learning to initialize neural networks. In Proceedings of the Fourteenth In-
ternational Joint Conference on Artificial Intelligence, pp. 524-530 Montreal, Canada.

Mani, G. (1991). Lowering variance of decisions by using artificial neural network portfolios.
Neural Computation, 3, 484—486.

Mooney, R., Shavlik, J., Towell, G., & Gove, A. (1989). An experimental comparison
of symbolic and connectionist learning algorithms. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence, pp. 775—780 Detroit, MI.

Murphy, P. M., & Aha, D. W. (1994). UCI repository of machine learning databases
(machine-readable data repository). University of California-Irvine, Department of
Information and Computer Science.

Nowlan, S., & Sejnowski, T. (1992). Filter selection model for generating visual motion
signals. In Hanson, S., Cowan, J., & Giles, C. (Eds.), Advances in Neural Information
Processing Systems, Vol. 5, pp. 369-376 San Mateo, CA. Morgan Kaufmann.

Opitz, D., & Shavlik, J. (1996a). Actively searching for an effective neural-network ensemble.
Connection Science, 8(3/4), 337-353.

195

OprI1TZ & MACLIN

Opitz, D., & Shavlik, J. (1996b). Generating accurate and diverse members of a neural-
network ensemble. In Touretsky, D., Mozer, M., & Hasselmo, M. (Eds.), Advances
in Neural Information Processing Systems, Vol. 8, pp. 535-541 Cambridge, MA. MIT
Press.

Perrone, M. (1992). A soft-competitive splitting rule for adaptive tree-structured neural
networks. In Proceedings of the International Joint Conference on Neural Networks,
pp- 689-693 Baltimore, MD.

Perrone, M. (1993). Improving Regression Estimation: Averaging Methods for Variance
Reduction with Extension to General Convexr Measure Optimization. Ph.D. thesis,
Brown University, Providence, RI.

Quinlan, J. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,
CA.

Quinlan, J. R. (1996). Bagging, boosting, and c4.5. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pp. 725-730. Portland, OR.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal representations by
error propagation. In Rumelhart, D., & McClelland, J. (Eds.), Parallel Distributed
Processing: Explorations in the microstructure of cognition. Volume 1: Foundations,
pp- 318-363. MIT Press, Cambridge, MA.

Schapire, R. (1990). The strength of weak learnability. Machine Learning, 5(2), 197-227.

Schapire, R., Freund, Y., Bartlett, P., & Lee, W. (1997). Boosting the margin: A new
explanation for the effectiveness of voting methods. In Proceedings of the Fourteenth
International Conference on Machine Learning, pp. 322-330 Nashville, TN.

Sollich, P., & Krogh, A. (1996). Learning with ensembles: How over-fitting can be useful.
In Touretsky, D., Mozer, M., & Hasselmo, M. (Eds.), Advances in Neural Information
Processing Systems, Vol. 8, pp. 190-196 Cambridge, MA. MIT Press.

Tresp, V., & Taniguchi, M. (1995). Combining estimators using non-constant weighting
functions. In Tesauro, G., Touretzky, D., & Leen, T. (Eds.), Advances in Neural
Information Processing Systems, Vol. 7, pp. 419-426 Cambridge, MA. MIT Press.

Wolpert, D. (1992). Stacked generalization. Neural Networks, 5, 241-259.

Zhang, X., Mesirov, J., & Waltz, D. (1992). Hybrid system for protein secondary structure
prediction. Journal of Molecular Biology, 225, 1049-1063.

196

PorPULAR ENSEMBLE METHODS

Appendix

Tables 4 and 5 show the complete results for the first set of experiments used in this paper.

Single Simple Bagging Arcing Boosting
Data Set Exr SD Best| Err SD| Err SD | Err SD | Err SD
breast-cancer-w | 3.4 0.3 2.9 35 02| 34 02| 38 04| 40 04
credit-a 148 0.7 13.6 | 13.7 05| 13.8 0.6 | 158 0.6 | 157 0.6
credit-g 279 08 262 | 247 02| 242 05| 252 0.8 253 0.1
diabetes 239 09 226|230 051|228 04| 244 02| 233 1.2
glass 386 15 369 | 352 111|331 19| 320 24| 31.1 0.9
heart-cleveland | 186 1.0 168 | 174 1.1 | 170 0.6 | 20.7 1.6 | 21.1 0.9
hepatitis 201 16 191 | 195 1.7 | 178 0.7] 19.0 13| 197 0.9
house-votes-84 49 0.6 4.1 48 02 41 02| 51 05| 53 0.5
hypo 6.4 02 6.2 62 01] 62 01| 62 01| 62 0.1
ionosphere 9.7 13 74 75 05] 92 12| 76 06| 83 0.5
iris 43 1.7 20 39 03| 40 05| 3.7 06| 39 1.0
kr-vs-kp 23 07 1.5 08 01 08 02| 04 01| 03 0.1
labor 6.1 15 3.5 32 08| 42 10| 32 08| 32 08
letter 180 03 176 | 128 0.2 | 105 03| 57 04| 46 0.1
promoters-936 5.3 06 4.5 48 03] 40 03| 45 02| 46 0.3
ribosome-bind 93 04 89 85 03| 84 04| 81 02| 82 0.3
satellite 13.0 03 126 | 109 0.2 106 03] 99 02| 10.0 0.3
segmentation 6.6 07 5.7 53 03| 54 02| 35 02| 33 02
sick 59 05 5.2 57 02| 57 01| 47 02| 45 03
sonar 16,6 15 149 | 159 12| 168 1.1] 129 15| 13.0 1.5
soybean 92 11 7.0 6.7 05| 69 04| 67 05| 63 0.6
splice 4.7 02 4.5 40 02| 39 01| 40 01| 42 0.1
vehicle 249 12 229|212 08 207 06| 19.1 1.0| 197 1.0

Table 4: Neural network test set error rates and standard deviation values for those error
rates for (1) a single neural network classifier; (2) a simple neural network ensem-
ble; (3) a Bagging ensemble; (4) an Arcing ensemble; and (5) and Ada-Boosting
ensemble. Also shown (results column 3) is the “best” result produced from all of
the single network results run using all of the training data.

197

OprI1TZ & MACLIN

Single Bagging Arcing Boosting
Data Set Err SD Best Err SD Err SD Err SD
breast-cancer-w 5.0 0.7 4.0 3.7 0.5 3.5 0.6 3.5 0.3
credit-a, 14.9 0.8 14.2 13.4 0.5 14.0 0.9 13.7 0.5
credit-g 29.6 1.0 28.7 25.2 0.7 25.9 1.0 26.7 0.4
diabetes 27.8 1.0 26.7 24.4 0.8 26.0 0.6 25.7 0.6
glass 31.3 2.1 28.5 25.8 0.7 25.5 14 23.3 1.3
heart-cleveland 24.3 1.3 22.7 19.5 0.7 21.5 1.6 20.8 1.0
hepatitis 21.2 1.2 20.0 17.3 2.0 16.9 1.1 17.2 1.3
house-votes-84 3.6 0.3 3.2 3.6 0.2 5.0 1.1 4.8 1.0
hypo 0.5 0.1 0.4 0.4 0.0 0.4 0.1 0.4 0.0
ionosphere 8.1 0.7 7.1 6.4 0.6 6.0 0.5 6.1 0.5
iris 5.2 0.7 5.3 4.9 0.8 5.1 0.6 5.6 1.1
kr-vs-kp 0.6 0.1 0.5 0.6 0.1 0.3 0.1 0.4 0.0
labor 16.5 3.4 12.7 13.7 0.8 13.0 2.9 11.6 2.0
letter 14.0 0.8 12.2 7.0 0.1 4.1 0.1 3.9 0.1
promoters-936 12.8 0.4 12.5 10.6 0.6 6.8 0.5 6.4 0.3
ribosome-bind 11.2 0.6 10.8 10.2 0.1 9.3 0.2 9.6 0.5
satellite 13.8 04 13.5 9.9 0.2 8.6 0.1 8.4 0.2
segmentation 3.7 0.2 3.4 3.0 0.2 1.7 0.2 1.5 0.2
sick 1.3 0.9 1.1 1.2 0.1 1.1 0.1 1.0 0.1
sonar 29.7 1.9 26.9 25.3 1.3 21.5 3.0 21.7 2.8
soybean 8.0 0.5 7.5 7.9 0.5 7.2 0.2 6.7 0.9
splice 5.9 0.3 5.7 5.4 0.2 5.1 0.1 5.3 0.2
vehicle 29.4 0.7 28.6 27.1 0.9 22.5 0.8 22.9 1.9

Table 5: Decision tree test set error rates and standard deviation values for those error
rates for (1) a single decision tree classifier; (2) a Bagging ensemble; (3) an Arcing
ensemble; and (4) and Ada-Boosting ensemble. Also shown (results column 3) is
the “best” result produced from all of the single tree results run using all of the
training data.

198

