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Population Dynamics of Stochastic Lattice Lotka–Volterra Models

Sheng Chen

(ABSTRACT)

In a stochastic Lotka–Volterra model on a two-dimensional square lattice with periodic
boundary conditions and subject to occupation restrictions, there exists an extinction thresh-
old for the predator population that separates a stable active two-species coexistence phase
from an inactive state wherein only prey survive. When investigating the non-equilibrium
relaxation of the predator density in the vicinity of the phase transition point, we observe
critical slowing-down and algebraic decay of the predator density at the extinction critical
point. The numerically determined critical exponents are in accord with the established val-
ues of the directed percolation universality class. Following a sudden predation rate change
to its critical value, one finds critical aging for the predator density autocorrelation function
that is also governed by universal scaling exponents. This aging scaling signature of the
active-to-absorbing state phase transition emerges at significantly earlier times than the sta-
tionary critical power laws, and could thus serve as an advanced indicator of the (predator)
population’s proximity to its extinction threshold.

In order to study boundary effects, we split the system into two patches: Upon setting the
predation rates at two distinct values, one half of the system resides in an absorbing state
where only the prey survives, while the other half attains a stable coexistence state wherein
both species remain active. At the domain boundary, we observe a marked enhancement
of the predator population density, the minimum value of the correlation length, and the
maximum attenuation rate. Boundary effects become less prominent as the system is succes-
sively divided into subdomains in a checkerboard pattern, with two different reaction rates
assigned to neighboring patches.

We furthermore add another predator species into the system with the purpose of studying
possible origins of biodiversity. Predators are characterized with individual predation effi-
ciencies and death rates, to which “Darwinian” evolutionary adaptation is introduced. We
find that direct competition between predator species and character displacement together
play an important role in yielding stable communities.

We develop another variant of the lattice predator-prey model to help understand the killer-
prey relationship of two different types of E. coli in a biological experiment, wherein the
prey colonies disperse all over the plate while the killer cell population resides at the center,
and a “kill zone” of prey forms immediately surrounding the killer, beyond which the prey
population gradually increases outward.



(GENERAL ABSTRACT)

We utilize Monte-Carlo simulations to study population dynamics of Lotka–Volterra model
and its variants. Our research topics include the non-equilibrium phase transition from a
predator-prey coexistence state to an absorbing state wherein only prey survive, boundary
effects in a spatially inhomogeneous system, the stabilization of a three species system with
direct competition and “Darwinian” evolutionary adaption introduced, and the formation of
spatial patterns in a biological experiment of two killer and prey E. coli species.

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering, under Grant No. DE-FG02-09ER46613,
and the US Army Research Office, under Grant Number W911NF-17-1-0156. The views and
conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of the Army Research Office
or the US Government. The US Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation herein.
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Chapter 1

Introduction and background

1.1 Deterministic Lotka–Volterra model

This thesis mainly focuses on the Lotka–Volterra (LV) model and its variants. In the 1920s,
Lotka and Volterra proposed the original deterministic LV model in order to study fish
populations [1] and chemical oscillations [2] respectively. The model was then implemented
in ecology to understand the emerging coexistence of one predator species and one prey
species, as a first step to investigate the coexistence of multiple species as commonly observed
in natural ecosystems. The LV model assumes only two species, predator and prey, present
in the system. They interact by following three kinds of reactions: a predator may remove
a prey from the system and simultaneously generate a new predator particle with predation
rate λ, a predator particle may spontaneously die out with death rate µ, and a prey particle
may reproduce a new prey particle with reproduction rate σ. If using a(t) and b(t) to
represent population densities of predators and prey, we write down two coupled mean-field
rate equations:

da(t)

dt
= λa(t)b(t)− µa(t) ,

db(t)

dt
= −λa(t)b(t) + σb(t) .

(1.1)

The predator population grows in the predation process, which introduces a positive term
λa(t)b(t), and loses particles in the death process, rendering a negative term −µa(t); the
prey population decreases in the predation process as shown by −λa(t)b(t), and increases in
the reproduction process with a positive term σb(t).

By setting the left sides of eqs. (1.1) to 0 and then solving the equations, we obtain two
absorbing stationary states: (1) â = 0, b̂ = 0; (2) â = 0, b̂→∞; and one non-zero stationary
state (3) a∗ = σ

λ
, b∗ = µ

λ
, i.e., when the initial values of a(0) and b(0) happen to be one of

these three sets, they would maintain their values unchanged. For non-zero initial population
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Figure 1.1: Numerical solution of mean-field rate equations (1.1) with reaction
rates λ = 1.0, µ = 0.5, and σ = 0.4. Its non-zero solution is (a∗, b∗) = (0.4, 0.5)
represented by a black dot. The other three curves display the neutral circle so-
lutions when initial densities are (0.4, 0.53) (red solid), (0.5, 0.5) (blue dash), and
(0.7, 0.7) (green dot).

densities other than (a∗, b∗), a(t) and b(t) would form neutral circles as demonstrated by the
following calculation. First calculate the ratio of the two equations in eqs. (1.1)

da

db
=

λab− µa
−λab+ σb

.

This equation can be rewritten as

−λda+ σ
da

a
− λdb+ µ

db

b
= 0 .

The first integral of the above equation gives a conserved quantity

K(t) = −λ(a(t) + b(t)) + σ ln a(t) + µ ln b(t) = K(0) .

The conservation of K(t) indicates that the solutions of the deterministic Lotka–Volterra rate
equations form closed orbits, i.e., a(t) and b(t) oscillate periodically and return to their initial
values after each period. Fig. 1.1 shows the numerical solutions of eqs. (1.1) when setting
λ = 1.0, µ = 0.5, and σ = 0.4. Its only non-zero stationary solution is (0.4, 0.5) indicated
by a black dot in the graph. Closed orbits form when we try three different non-zero initial
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states here: (0.4, 0.53) (red solid curve), (0.5, 0.5) (blue dashed curve), and (0.7, 0.7) (green
dotted curve). Thus the temporal evolution of the population densities is only determined by
the initial conditions. There is an analytical solution for the oscillation frequency when the
oscillation orbit is close to the non-zero stationary state: a(t) = δa+ a∗, and b(t) = δb+ b∗,
where δa, δb are small compared with a∗ and b∗. Eqs. (1.1) can be rewritten as:

δȧ = λ(a∗ + δa)(b∗ + δb)− µ(a∗ + δa) ,

δḃ = −λ(a∗ + δa)(b∗ + δb) + σ(b∗ + δb) .

To linear order in δa, δb, these can be further simplified as

δȧ = λa∗δb ,

δḃ = −λb∗δa .

The combination of these two equations returns second-order derivatives of δa and δb:

δä = −σµδa ,
δb̈ = −σµδb .

The oscillation frequency of both a(t) and b(t) is
√
σµ.

The deterministic Lotka–Volterra model makes a lot of assumptions or simplifications about
the ecosystem: Only two species are present in the model. All particles are well mixed in
an infinite-dimensional system without spatial or temporal correlations. The prey maintains
a constant reproduction rate, without considering the availability of food, water, habitat,
etc. Only one individual is involved in the reproduction process. One new predator particle
is generated whenever a prey is consumed. There is no limit on the total number of prey
consumed by the predators. Temporal and environmental variation of the system is totally
ignored. Particles from the same species are homogeneous in sharing the same reaction
rates, and newly generated individuals are just cloned from their parent particles. These
simplifications are ecologically unrealistic, thus attracting many criticisms.

1.2 Non-equilibrium statistical physics and ecological

background

The motivation of solving problems in both ecology and non-equilibrium statistical physics
drives us to study the LV model and its variants. Our research is partially motivated by
the goal of solving ecological problems such as understanding the emergence and stability of
biodiversity in ecology [3, 4]. To make it easy to understand the problems, one can imagine
an isolated system of all kinds of animals interacting with each other. Herbivorous species,
like sheep, do not directly rely on other animals for food resources. Instead they could
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survive and reproduce under suitable environmental conditions, including water, heat, living
habitat, etc. Carnivores, like wolf, prey on other species as the only method of food supply.
Interactions between herbivores and carnivores represent a predator-prey relationship which
is very important in maintaining the balance of ecosystems. Wolves prevent sheep from
diverging in population or exceeding the environmental capacity; sheep provide wolves with
food. If the wolf species accidentally goes extinct, there is no way for it to reappear. If
wolves eat up all sheep, they would die out as well owing to lack of food. In natural
ecosystems, wolves of course do not understand the art of eating only a ‘right’ amount
of sheep and saving the remaining for the future. We study simple mathematical models
computationally and analytically in hope of capturing the underlying mechanism which help
maintain a balance between sheep and wolves so that both species coexist stably. In our
simulations, the coexistence regions are measured by carefully tuning the reaction rates.
To account for the spatial degree of freedom of ecological systems, we implement the LV
model on a two-dimensional square lattice as a relatively simple method [5–18]. A recent
review of stochastic population dynamics in spatially extended predator-prey systems can
be found in reference [19]. Fig.1.2 shows the distribution of particles located on square
lattice sites, with their colors indicating different species. Spatial correlation is introduced
by the restriction that particles are only allowed to react with their neighbors to account for
the finite range of movement or territories of real animals. Since the sequence of the three
reactions and the participating particles are totally random, temporal stochasticity also
exists and dramatically influences the dynamical properties of the system. These spatial
and temporal correlations drive the system’s behavior away from the deterministic model.
Once either the predator or the prey species vanishes, their recovery from it is impossible
according to the stochastic reaction process, thus breaking time reversal symmetry. Detailed
balance [21], which is necessarily required for a system to reside in thermal equilibrium states,
is broken as well because the reactions are irreversible. For example, a predator particle is
replaced by an empty lattice site in its death process; however, an empty lattice site does
not spontaneously change back to a predator particle. As a result, the two absorbing states
described in chapter 1.1 are the only stationary states of the system if it is finite. Non-
equilibrium statistical physicists study population dynamics for two reasons: First, it is
comparatively easy to utilize Monte Carlo simulations to study the corresponding lattice
models, especially when powerful computational resources are available; second, there are a
lot of interesting far-from-equilibrium phenomena to be better understood in these systems.
This thesis is going to cover some of the major topics of non-equilibrium statistical physics we
have studied such as temporal evolution of order parameters, an active-to-absorbing phase
transition, universality, boundary effects, and noise-induced pattern formation.

In part 2, we find the predator population density follows an exponential decay from its initial
value when the system resides in the two-species stable state, but a power-law decay in the
critical region of the phase transition point. By making microscopic changes in the model,
i.e., tuning the reaction rates, we observe a macroscopic change that a two-species coexistence
state with the densities of both species positive and constant is replaced by an absorbing state
wherein the predator species goes extinct. Part 2 mainly focuses on the critical properties
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Figure 1.2: Copied from paper [20] Fig.1. Snapshots of the spatial particle dis-
tribution for a single Monte Carlo simulation run of a stochastic Lotka–Volterra
model on a 256 × 256 square lattice with periodic boundary conditions, succes-
sively from left to right at t = 500 Monte Carlo steps (MCS), t = 1000 MCS, and
t = 2000 MCS, with reaction probabilities (see text) µ = 0.025, λ = 0.25, and
σ = 1.0; only at most one particle per lattice site is allowed: sites occupied by
predators are indicated in red, prey in green, while empty sites are shown white.

including: critical slowing-down, breaking of time-translation invariance, dynamic scaling,
and critical aging. Despite their difference in details, some models may belong to a single
universality class that share the same critical exponents. Continuous active-to-absorbing
state transitions are usually governed by the universal scaling properties of the directed
percolation (DP) universality class [21–23]. We measured the critical exponents of the lattice
LV model and found them close to the DP values within the error bars. One valuable
technique of protecting endangered ecosystems is to find effective ways to provide warnings
before a species vanishes. Part 2 describes our effort in demonstrating dynamic critical
properties such as aging as warning signals of predator extinction.

One expects the population dynamics to be dramatically changed by spatial variation, for
example at the boundary between a river and land. In chapter 3, we introduce a spatially
inhomogeneous system and then study its boundary effects. We study population densities,
relaxation time, and correlation length at the boundary between two domains in this spatially
inhomogeneous system.

An ecosystem is very unlikely to stay temporally unchanged due to several reasons: first, most
weather elements such as temperature and moisture change seasonally with some stochas-
ticity; second, animals evolve with time and some noticeable changes occur within as fast as
tens of generations; third, outer species could invade a system and bring qualitative changes.
In chapter 4, inspired by Darwinian evolution, we allow particles to evolve their predation
efficiency, death rate, and reproduction rate so that a newly generated particle is never ex-
actly cloned from its parent particle. To understand the stability of a system undergoing
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the ‘invasion’ of an outcomer, we add in a new predator species and try various reaction
rules that help make three-species coexistence possible. Environmental oscillations are also
simulated by periodically switching the parameters.

Even though this thesis mainly focuses on computational methods, it is necessary to mention
important experimental efforts in ecology since our research originates in these experiments
more or less. There were few choices of experimental techniques besides long-time observation
in the very early stage of studying population dynamics [25]. Ecologists have some controls
over the system by finding an almost isolated environment, for example an island, and doing
some simple experiments such as introducing new species [26]. Our work of studying the
competition of two relative predator species in chapter 4 is inspired by these experiments.
Recently, genetic engineering techniques make it possible to make an ecosystem of species
interacting with desired rules [27]. In chapter 5, E. coli is engineered to be a predator species
and a prey species, which are then put in a single system for the purpose of observing their
competition.

Due to spatio-temporal correlations, particles behave in a collective way, and thus form
dynamical spatial patterns such as clusters, waves, activity fronts, spirals, etc. Chapter 5
explains a biological experiment of two competing E. coli species, wherein a ‘kill’ zone of
the prey E. coli forms and several large prey colonies grow inside the zone compared with
the other prey colonies. We design a LV-like model to help understand the formation of
this special pattern. Another very important research field not covered in this thesis is
using bosonic creation and annihilation operators to map the master equations to Liouville
operator formulations, and then borrowing mathematical tools from quantum field theory
to analytically study the stochastic lattice models. For example, one can map the Lotka–
Volterra model in the vicinity of the predator extinction threshold to Reggeon field theory,
which explains the reason why the LV model at the active-to-absorbing phase transition
point belongs to the DP universality class [18,24].

1.3 Models studied in this thesis

Table 1.1 lists the models studied in each of the following parts of this thesis and their
corresponding research foci. The second part of this thesis studies the non-equilibrium
relaxation in a stochastic two-species Lotka–Volterra model on a two-dimensional square
lattice with periodic boundary conditions. Setting the prey carrying capacity finite casts
a phase transition from an active state with both species coexisting to an absorbing state
with only prey remaining. We are mostly interested in the non-equilibrium relaxation of
the system in the vicinity of the phase transition point. The following critical behaviors are
observed: a power law dependence of the relaxation time on the predation rate, algebraic
decay of the predator density at the extinction critical point, and dynamic scaling of the two-
time autocorrelation functions at the phase transition point. Within the statistical errors, the
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Chapter 2 [20]
a stochastic lattice LV model, critical slowing-down,
aging, early warning signals of predator extinction

Chapter 3 [28] a spatially inhomogeneous lattice LV model, boundary effects

Chapter 4 [29]
a three-species predator-prey model,

coexistence, ‘Darwinian’ evolution, direct competition

Chapter 5 [30]
a biological experiment with two E. coli strains,

and a corresponding lattice simulation model

Table 1.1: This table summarizes the main contents of this thesis: models studied
in each part and their corresponding research foci.

numerically measured critical experiments agree with the established values of the directed
percolation (DP) universality class, which demonstrates that the stochastic lattice LV model
at the phase transition point belongs to the DP class. This part of our work is already
published as reference [20].

Real ecological environments spatially consist of different domains including forest, desert,
river, ocean, etc. The local ecology is roughly homogeneous within these domains, compared
with the big changes on their boundaries. Interfaces are formed between neighboring patches.
In order to investigate boundary effects, the third part of this dissertation studies a spatially
inhomogeneous version of the lattice Lotka—Volterra model. We first split the system into
two patches: One half of the system attains an absorbing state wherein only the prey survives,
while the other half resides in a stable coexistence state where both species remain active.
The predator population density displays a marked enhancement at the boundary domain
because there is abundant prey available on the absorbing side. There is a net predator flow
from the active side to the absorbing side, resulting in the minimum of predator correlation
length at the boundary. We do not see prominent influence of the existence of two distinct
domains on the frequency of the population oscillations. When we successively divide the
system into subdomains in a checkerboard pattern and assign two different reaction rates
to neighboring patches, the boundary effects become less prominent. When the size of
the subdomains gets decreased to the scale of the correlation length, the mean population
densities of the whole system attain values close to those in a disordered system wherein
reaction rates are randomly drawn from a bimodal distribution. This part of our work is
already published as reference [28].

The two-species model is still too simplified compared with natural ecosystems where multi-
ple species coexist in a single system. With the purpose of rendering the model closer to the
real world and studying the problem of two relative species competing for the same food, the
fourth part of this thesis performs computational experiments on a predator-prey community
consisting of two predator species and one prey species. Each predator individual is assigned
reaction rates to which evolution is introduced. Competing for limited source (prey) drives
the predators’ efficiency optimized to high values. This natural selection strongly impacts
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the population dynamics and evolutionary dynamics. We find it necessary to include both
evolution and direct competition to stabilize a three-species coexistence state. This part of
our work is submitted for application as reference [29].

In the last part, we collaborate with an experimental biological team who studies the evo-
lution of a microecology from a killer-prey relationship to coexistence using two different
non-motile Escherichia coli strains with one species being the killer and the other one the
prey. Spatiotemporal patterns of the cells’ distribution are observed: The killers are located
at the center of the disk; a ‘kill zone’ of prey forms immediately surrounding the killer, be-
yond which the prey population gradually increases outward; several prey colonies grow in
the ‘kill zone’ and their sizes are larger than the ones further away from the center. We de-
sign a lattice killer-prey competition model with an absolute circular boundary. This model
qualitatively reproduces the spatiotemporal patterns observed in the actual experiment, thus
helping us understand the underlying dynamics of the E. coli system. This work is already
accepted for publication as a part of reference [30].
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Chapter 2

Non-equilibrium relaxation in a
stochastic lattice Lotka–Volterra
model

This chapter was essentially copied from our publication:

Chen S, Täuber U C, 2016, “Non-equilibrium relaxation in a stochastic lattice Lotka–Volterra
model,” Physical Biology, 13, 025005, “Copyright (2016) by IOP Publishing Ltd ”

I contributed all the contents of this paper under Prof. Täuber’s supervision.
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2.1 Introduction

There is growing interest in quantitatively understanding biodiversity in ecology [3, 4] and
population dynamics [26,31,32]. The motivations for this very active research field range from
seeking a fundamental and comprehensive understanding of noise-induced pattern formation
and phase transitions in far-from-equilibrium systems to potential practical applications in
protecting endangered species in threatened ecosystems.

Unfortunately, the full complexity of interacting species in coupled ecosystems in nature
cannot yet be reliably modeled with the required faithful incorporation of demographic
fluctuations and internal stochasticity induced by the involved reproduction and predation
reactions. One therefore typically resorts to detailed investigations of idealized, simplified
models that however are intended to capture the important system ingredients and ensuing
characteristic properties. The Lotka–Volterra predator-prey model [1, 2] has served as such
a simple but intriguing and powerful paradigm to study the emerging coexistence of just two
species, predators and prey, as a first step to grasp the initially counter-intuitive appearance
of biodiversity among competing species. In the model’s original formulation, the authors
just analyzed the associated coupled mean-field rate equations, whose solution remarkably
entails a stable active coexistence state in the form of a neutral cycle: the densities of both
populations hence display periodic non-linear oscillations.

Yet this classical deterministic Lotka–Volterra model has been aptly criticized for its non-
realistic feature of the oscillations being fully determined by the system’s initial state, and
for the lack of robustness of the marginally stable neutral cycle against model perturba-
tions [26]. The importance of stochasticity as well as spatio-temporal correlations, both
entirely neglected in the mean-field approximation, was subsequently recognized in a series
of numerical simulation studies of several stochastic spatially extended lattice Lotka–Volterra
model variants [5–18, 33, 34]. Even in the absence of spatial degrees of freedom, stochastic
Lotka–Volterra models display long-lived but ultimately decaying random population oscilla-
tions rather than strictly periodic temporal evolution; these can be understood as resonantly
amplified demographic fluctuations [17]. Sufficiently large spatially extended predator-prey
systems with efficient predation are similarly characterized by large initial erratic popula-
tion oscillations. Ultimately, a quasi-stationary state (in the limit of large particle numbers)
is reached, where both population densities remain non-zero [7–16, 18]. The exceedingly
long transients towards this asymptotic predator-prey coexistence state are characterized by
strong spatio-temporal correlations associated with the spontaneous formation of spreading
activity fronts, depicted in Fig. 1.2, which induce marked renormalizations of the oscillation
parameters as compared to the mean-field predictions [16,18,24].

To model finite population carrying capacities caused by limited resources, one may restrict
the local particle density or lattice site occupation number [9, 10, 15, 16, 18]. For the Lotka–
Volterra model, this in turn introduces a new absorbing state, where the predator population
goes extinct, while the prey proliferate through the entire system. By tuning the reaction
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rates as control parameters, one thus encounters a continuous active-to-absorbing state non-
equilibrium phase transition [5, 10–12, 15, 18, 34]. In addition, near the predator extinction
threshold, population oscillations cease, and both predator and prey concentrations directly
relax exponentially to their quasi-stationary values [18]; c.f. Fig. 2.1.

Note that the existence of an absorbing state for the predator population, which cannot
ever recover from extinction under the system’s stochastic dynamics, explicitly breaks the
detailed balance conditions required for systems to effectively reside in a thermal equilibrium
state. Generically, one expects continuous active-to-absorbing state transitions to be gov-
erned by the universal scaling properties of the directed percolation universality class (see,
e.g., the overviews in Refs. [21–23]). This is in accord with the numerical data obtained in lat-
tice Lotka–Volterra models; moreover, via representing the corresponding stochastic master
equation through an equivalent Doi-Peliti pseudo-Hamiltonian and associated coherent-state
functional integral, one can explicitly map the Lotka–Volterra model near the predator ex-
tinction threshold to Reggeon field theory that describes the directed percolation universality
class [18, 24].

Induced by severe environmental changes in nature, certain ecosystems may collapse and
at least some of its species face the danger of extinction. In order to monitor viability of
populations and maintain ecological diversity, it is of great importance to identify appropriate
statistical indicators that signify impending population collapse and may thus serve as early
warning signals. In our simulations, we simply perform sudden predation rate switches to
mimic fast environmental changes. If such a rate quench leads near the predator species
extinction threshold, we observe the characteristic critical slowing-down and aging features
expected at continuous phase transitions [21–23]. We demonstrate how either of these two
characteristic dynamical signatures, but specifically the emergence of aging scaling, might
be utilized as advanced warning signals for species extinction [35].

2.2 Model description and simulation protocol

We study a spatially extended stochastic Lotka–Volterra model by means of Monte Carlo
simulations performed on a two-dimensional square lattice with 1024 × 1024 sites, subject
to periodic boundary conditions; we largely follow the procedures described in Refs. [15,
16, 18]. In this work, we impose locally limited carrying capacities for each species through
implementing lattice site occupation restrictions: The number of particles per lattice site
can only be either 0 or 1; i.e., each lattice site can either be empty, occupied by a ‘predator’
A, or occupied by a ‘prey’ B particle. The individual particles in the system undergo the
following stochastic reaction processes:

A
µ̃→ ∅ , A+B

λ̃→ A+ A , B
σ̃→ B +B . (2.1)

The predators A thus spontaneously die with decay rate µ̃ > 0. Upon encounter, they may
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Figure 2.1: Adapted from paper [20] Fig.2. Monte Carlo simulation trajectories
for a stochastic Lotka–Volterra model on a 1024×1024 square lattice with periodic
boundary conditions and restricted site occupancy (at most one particle allowed on
each lattice site) shown in the predator ρA(t) versus prey density ρB(t) phase plane
(ρA + ρB ≤ 1) with initial values ρA(0) = 0.3 = ρB(0), fixed reaction probabilities
µ = 0.025, σ = 1.0, and different predation efficiencies: (i) λ = 0.035 (yellow dot):
predator extinction phase; (ii) λ = 0.049 (green dash): direct exponential relaxation
to the quasi-stationary state just above the extinction threshold in the predator-
prey coexistence phase; (iii) λ = 0.250 (black solid): the trajectories spiral into a
stable fixed point, signifying damped oscillations deep in the coexistence phase.

also consume a prey particle B located on a lattice site adjacent to theirs, and simultaneously
reproduce with ‘predation’ rate λ̃ > 0. Hence the B particle on the nearest-neighbor site
to the predator becomes replaced by another A particle. We remark that in a more realis-
tic description, predation and predator offspring production should naturally be treated as
separate stochastic processes. While such an explicit separation induces very different dy-
namical behavior on a mean-field rate equation level, it turns out that in dimensions d < 4
the corresponding stochastic spatially extended system displays qualitatively the very same
features as the simplified reaction scheme (2.1) [15].

Prey in turn may reproduce with birth rate σ̃ > 0, with the offspring particles placed on
one of their parent’s nearest-neighbor sites. Note that we do not include nearest-neighbor
hopping processes here. Instead, diffusive particle spreading is effectively generated through
the reproduction processes that involve placement of the offspring onto adjacent lattice sites;
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earlier work has ascertained that incorporating hopping processes (with rate D̃) independent
of particle production yields no qualitative changes [18], except for extremely fast diffusion

D̃ � µ̃, λ̃, σ̃, which leads to effective homogenization and consequent suppression of spatial
correlations. In our present study, we will hold the rates µ̃ and σ̃ fixed while varying λ̃ as
our control parameter.

In general, the detailed Monte Carlo algorithm for the stochastic lattice Lotka–Volterra
model proceeds as follows [18]:

• Select an occupied lattice site at random and generate a random number r uniformly
distributed in the range [0, 1] to perform either of the following four possible reactions
(with probabilities D, µ, λ, and σ in the range [0, 1]):

• If r < 1/4, select one of the four sites adjacent to this occupant, and move the occupant
there with probability D, provided the selected neighboring site is empty (nearest-
neighbor hopping).

• If 1/4 ≤ r < 1/2 and if the occupant is an A particle, then with probability µ the site
will become empty (predator death, A→ ∅).

• If 1/2 ≤ r < 3/4 and if the occupant is an A particle, choose a neighboring site at
random; if that selected neighboring site holds a B particle, then with probability λ it
becomes replaced with an A particle (predation reaction, A+B → A+ A).

• If 3/4 ≤ r < 1 and if the occupant is a B particle, randomly select a neighboring
site; if that site is empty, then with probability σ a new B particle is placed on this
neighboring site (prey offspring production, B → B +B).

We use a float number t to represent the ‘time’ of the simulation process. Its initial value is 0
and it is added by the inverse of the total number of the particles present in the system when
the above simulation process is performed once. One Monte Carlo Step (MCS) is considered
completed when the integer part of time t increases by 1. To clarify our algorithm, we
discuss a simple example: If r is generated to be 0.1, the first case applies, whence we
need to perform nearest-neighbor hopping with probability D. Since for simplicity we set
D = 0 in our simulation, we just skip this step and proceed to generate a new random
number r. We remark that different versions of similar simulation algorithms can naturally
be implemented wherein the microscopic reaction processes and their ordering are varied.
However, macroscopic long-time simulation results should not qualitatively differ for such
variations, only the effective reaction rates µ̃, λ̃, σ̃ in (2.1), and the diffusivity D̃ that result
from the microscopic probabilities µ, λ, σ, and D, and the overall time scale will need to be
rescaled accordingly.

Figures 1.2 and 2.1 show the results of typical Monte Carlo simulation runs in two-dimensional
stochastic lattice Lotka–Volterra models with periodic boundary conditions and site occupa-
tions restricted to at most a single predator (A) or prey (B) particle; thus both their local

13



and mean densities are restricted to the range ρA + ρB ≤ 1. Here, ρA/B(t) is defined as
the total predator (prey) number at time t divided by the number of lattice sites (1024)2.
The snapshots at various simulation times in Fig. 1.2 visualize the early spreading activity
fronts in the two-species coexistence phase, i.e., prey (green) invading empty (white) regions
followed by predators (red), which induce the initial large-amplitude population oscillations.
At longer run times, the prey here localize into fluctuating clusters, and the net population
densities reach their quasi-stationary values. In the prey vs. predator density phase plot
depicted in Fig. 2.1, the associated trajectory (iii) is a spiral converging to the asymptotic
density values. Upon approaching the predator extinction threshold (holding µ and σ fixed,
at lower values of λ), the population oscillations cease and the trajectory (ii) relaxes directly
to the quasi-stationary coexistence state. Finally, below the extinction threshold (i), the
predator population dies out, and the prey particles eventually fill the entire lattice.

2.3 Results

2.3.1 Relaxation dynamics within the coexistence phase

To set the stage, we first consider the time evolution of our stochastic Lotka–Volterra sys-
tem on a two-dimensional lattice starting from a random initial configuration with the rate
parameters set such that the model resides within the active coexistence state: the mean
densities for both predator and prey species will thus remain positive and asymptotically
reach constant values. Fig. 2.2(a) shows the time evolution of the mean population densities
ρA(t) and ρB(t), averaged over the entire lattice. Fig. 2.2(a) shows the mean densities both
for single simulation as well as data that result from averaging over 200 independent Monte
Carlo runs. As is apparent in Fig. 1.2, already in moderately large lattices there emerge
almost independent spatially separated population patches. The system is thus effectively
self-averaging; as a consequence, the mean data from multiple runs essentially coincide with
those from single ones. The reaction rates in the scheme (2.1) constitute the only control
parameters in our system. Thus, if we fix the probabilities σ and µ, the predation probabil-
ity λ fully determines the final state. For generating the data in Fig. 2.2, we used constant
reaction probabilities µ = 0.025, λ = 0.25, and σ = 1.0. The particles of both species are
initially distributed randomly on the lattice with equal densities ρA(0) = 0.3 = ρB(0).

In the early-time regime, the population densities are non-stationary and oscillate with an
exponentially decreasing amplitude ∼ e−ζt = e−t/tc . We may utilize the damping rate ζ
or decay time tc = 1/ζ to quantitatively describe the relaxation process towards the quasi-
steady state. Since ζ is identical for both species, we just obtain this relaxation rate from the
predator density decay via measuring the half-peak width of the absolute value of the Fourier
transform of the time signal, fA(ω) =

∣∣∫ ρA(t) eiωt dt
∣∣. Alternatively, one might employ a

direct fit in the time domain to damped oscillations. However, such a procedure is usually less
accurate, as the early-time regime tends to be assigned too much weight in determining the
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Figure 2.2: Adapted from paper [20] Fig.3. Monte Carlo simulation data for
a stochastic Lotka–Volterra model on a 1024 × 1024 square lattice with periodic
boundary conditions (single runs shown in triangles and squares; the solid and
dashed curves are from data averaged over 200 independent simulation runs): (a)
Temporal evolution of the mean predator density ρA(t) (full black lines and green
triangles) and the mean prey density ρB(t) (dashed red line and blue squares) for
fixed reaction probabilities µ = 0.025, λ = 0.25, and σ = 1.0, with initial densities
ρA(0) = 0.3 = ρB(0). The inset shows the absolute value of the Fourier transform
fA(ω) of ρA(t) (full black curve). (b) Measured damping rate ζ in MCS−1, as
obtained from the peak half-width of fA(ω), as function of the predation rate λ,
when respectively ∆t = 0, 100, 200, 400, and 800 (top to bottom) initial MCS are
skipped in the time series ρA(t) as the Fourier transform is performed.

fit parameters. Using the temporal Fourier transform and deducing the damping rate from
the peak width in frequency space constitutes a numerically superior method. For example,
for the predator density ρA(t) shown in Fig. 2.2(a), the Fourier transform displayed in the
inset yields tc ≈ 650 MCS. Indeed, by t = 3000 MCS ≈ 5 tc, the system has clearly reached
its quasi-stationary state.

In the following, we aim to ascertain that the stochastic lattice Lotka–Volterra model loses
any memory of its initial configuration once it has evolved for a duration t > tc. We set the
initial configuration at t = 0 to be a random spatial distribution of particles with densities
ρA(0) = 0.3 = ρB(0), and hold µ = 0.025 and σ = 1.0 fixed. We then record the relaxation
kinetics for various values of λ, all in the interval [0.175, 0.325] to ensure that the final states
reside deep within the species coexistence region, and measure the associated damping rates
ζ. The black dotted line in Fig. 2.2(b) plots the resulting function ζ(λ); the relaxation
rate is indeed predominantly determined just by the reaction rates, but also influenced by
the system’s initial state. The initial configuration effects can however be removed in a
straightforward manner as follows: In the evaluation of the Fourier transform fA(ω), we skip
a certain initial MCS interval ∆t and just use the remaining data for ρA(t) rather than the
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Figure 2.3: Adapted from paper [20] Fig.4. Monte Carlo simulation data for the
predation rate quench scenario within the predator-prey coexistence phase on a
1024 × 1024 square lattice with periodic boundary conditions (data averaged over
200 independent simulation runs): (a) The main plot shows the temporal evolution
of the mean predator density ρA(t) for µ = 0.025, σ = 1.0, ρA/B(0) = 0.3. At
t1 = 8000 MCS, the predation probability is suddenly switched from λ1 = 0.125 to
λ2 = 0.275. The inset displays the absolute value of the Fourier transform fA(ω)
of the time series after the quench (t > t1). (b) Measured damping rate ζ(λ) when
the system starts from a random initial condition with skipped initial time interval
duration ∆t = 0 (black dots) or 400 MCS (red stars; same data as in Fig. 2.2(b)),
and following a quench from a quasi-steady state, where ∆t = 0 (green triangles)
and ∆t = 400 MCS (blue squares).

entire time sequence. If in fact the initial configuration only affects the system up to time
t ≈ tc, the thereby obtained values of the function ζ(λ) should become independent of the
length of the discarded initial time interval ∆t once ∆t > tc(λ).

In Fig. 2.2(b), we display the functions ζ(λ) obtained for various skipped initial time interval
lengths ∆t, ranging from 0 to 800 MCS. For large values of the predation probability λ, and
ensuing long relaxation times tc(λ) = 1/ζ(λ), a marked dependence on ∆t is apparent.
Yet for the entire λ range under investigation, the two curves for ∆t = 400 MCS and 800
MCS overlap (and we have checked this holds also for other values of ∆t > 400 MCS).
Consequently, any dependencies on the initial configurations in the function ζ(λ) have been
removed once ∆t > 400 MCS. This already gives a rough estimate for the typical relaxation
rate, ζ ≈ 0.0025 MCS−1, which indeed nicely matches the actual values seen in Fig. 2.2(b).

Next we check and confirm the above conclusions by considering a set of completely different
initial configurations: Starting again from a random particle distribution with initial parti-
cle densities ρA(0) = 0.3 = ρB(0), we first let the system relax to its quasi-steady state at
prescribed reaction probabilities µ = 0.025, σ = 1.0, and λ1 = 0.125. Then we suddenly
switch the predation probability to a new value λ2. As a consequence, the system is driven
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away from the close to stationary, spatially highly correlated configurations that are char-
acterized by well-formed domains of predators and prey, and relaxes towards a new stable
quasi-steady state. Fig. 2.3(a) illustrates such a ‘quench’ scenario: At t1 = 8000 MCS,
the predation probability is instantaneously changed from the initial value λ1 = 0.125 to
λ2 = 0.275; it is apparent that the predation rate switch once again induces large transient
population oscillations. We measure the ensuing relaxation rate ζ(λ) as function of the
post-quench predation probability λ = λ2 following the procedures outlined above, and with
λ2 in the interval [0.175, 0.325]. In Fig. 2.3(b) we plot the result, if in the computation of
the Fourier transform fA(ω) an initial time interval of duration ∆t = 400 MCS is skipped
(blue squares). For comparison, we also show the data for ∆t = 0 (green triangles) and
replot the corresponding graphs for ∆t = 0 (black dots) and ∆t = 400 MCS (red stars)
obtained for spatially random initial configurations. Both functions ζ(λ) with ∆t = 400
MCS overlap with the one for ∆t = 0 initiated in the quasi-steady state: Once ∆t > tc(λ),
the system’s initial states (here, spatially random or correlated) have no noticeable influence
on the functional dependence of the relaxation rate on λ.

2.3.2 Relaxation kinetics following critical quenches

In the stochastic lattice Lotka–Volterra model with limited local carrying capacity, there
exists an active-to-absorbing phase transition, namely an extinction threshold for the preda-
tor population, as illustrated in Fig. 2.1 and Fig. 2.4. Here, our Monte Carlo simula-
tion runs were initiated with randomly placed predator and prey particles with densities
ρA(0) = 0.3 = ρB(0) and reaction probabilities µ = 0.025, σ = 1.0, and λ1 = 0.250. After
t1 = 8000 MCS, when the system has clearly reached its quasi-steady state, we suddenly
switch the predation probability from λ1 to much lower values λ2 in the range [0.03, 0.05],
which reside in the vicinity of the extinction critical point. The curves in Fig. 2.4 show
the ensuing time evolution for the mean predator density ρA(t). For small λ2, all preda-
tor particles disappear, and eventually only the prey species survives, in contrast to the
active two-species coexistence phase at larger λ2 values, where both species persist with
finite, stable mean population densities. In this subsection, we investigate in detail the non-
equilibrium relaxation properties and ensuing dynamic scaling behavior following the quench
from a quasi-steady coexistence state to the critical point.

Near the active-to-absorbing phase transition, in our two-dimensional stochastic Lotka–
Volterra model located at λc = 0.0416 ± 0.0001 for fixed µ = 0.025 and σ = 1.0, one
should anticipate the standard critical dynamics phenomenology for continuous phase tran-
sitions [21, 22]: Fluctuations become prominent, and increasingly large spatial regions be-
have cooperatively, as indicated by a diverging correlation length ξ(τ) ∼ |τ |−ν , where
τ = (λ/λc)− 1. Consequently, the characteristic relaxation time should scale as

tc(τ) ∼ ξ(τ)z ∼ |τ |−z ν , (2.2)

implying a drastic critical slowing-down of the associated dynamical processes. Thus, expo-
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Figure 2.4: Adapted from paper [20] Fig.5. Monte Carlo simulation data (single
runs) for the mean predator density ρA(t) with ρA/B(0) = 0.3 on a 1024 × 1024
square lattice with periodic boundary conditions: The initial reaction probabilities
are set to µ = 0.025, σ = 1.0, and λ1 = 0.250; at t1 = 8000 MCS the system is
quenched into the vicinity of the critical predator extinction point via switching
the predation probability to λ2 = 0.050, 0.045, 0.040, 0.035, and 0.030 (top to
bottom). The inset shows the absolute value fA(ω) of the Fourier transform of
ρA(t) for λ2 = 0.040 after the quench.

nential relaxation with time becomes replaced by much slower algebraic decay of the predator
population density precisely at its extinction threshold λc,

τ = 0 : ρA(t) ∼ t−α . (2.3)

The values of the three independent critical scaling exponents ν, z, and α characterize certain
dynamical universality classes. Generically, one expects active-to-absorbing phase transitions
to be governed by the critical exponents of directed percolation (DP) [21, 22]; the middle
column in Table 2.1 lists the established numerical literature values (from Refs. [36,37]) for
α and the product z ν in two dimensions. Indeed, standard field-theoretic procedures allow a
mapping of the near-critical stochastic spatial Lotka–Volterra system to Reggeon field theory
[18,24], which represents the effective field theory for critical directed percolation [21,38].

In order to analyze the dynamic critical scaling behavior at the predator population extinc-
tion threshold, we follow the protocol outlined above and shown in Fig. 2.4, and first let
the system relax to its quasi-steady state with a large predation probability λ1 = 0.250.
After 8000 MCS, we quench the system to its critical point by switching this probability
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Figure 2.5: Adapted from paper [20] Fig.6. Double-logarithmic plot of the mean
predator density decay ρA(t) at the critical extinction threshold λc = 0.0416 for
fixed µ = 0.025 and σ = 1.0, for both quasi-stationary (red stars) and random
(green triangles) initial configurations (data averaged over 2000 independent sim-
ulation runs). For comparison, the predator density decay data are shown also for
λ = 0.0417 (black dots, active coexistence phase) and λ = 0.0415 (blue squares,
absorbing predator extinction phase). The graphs in the inset show the local neg-
ative slopes of the curves in the main panel (using intervals of size 0.05), i.e., the
time-dependent effective critical decay exponent αeff(t).
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d = 2 SLLVM DP sim. DP exp.
α 0.540(7) 0.4505(10) [36] 0.48(5) [39]
z ν 1.208(167) 1.2950(60) [37] 1.29(11) [39]

Λc/z 2.37(19) 2.8(3) [41] 2.5(1) [39]
b 0.879(5) 0.901(2) [41] 0.9(1) [39]

Table 2.1: Monte Carlo simulation results for the critical exponents near
the predator extinction threshold in the stochastic lattice Lotka–Volterra model
(SLLVM) on a square lattice. For comparison, the table also lists the accepted lit-
erature scaling exponents for the directed percolation (DP) universality class [36,37]
as well as experimental values measured in turbulent liquid crystals (MBBA) [39].
The critical aging scaling exponents as obtained in our simulations along with ear-
lier numerical results for the contact process [41] and experimental data [39] are
included as well. The numbers in brackets indicate the estimated uncertainty in
the last digits.

instantaneously to λc = 0.0416. In order to acquire decent statistics, we perform 2000
independent Monte Carlo simulation runs and then average our results. Fig. 2.5 shows a
double-logarithmic plot of the decay of the mean predator density ρA(t) following the quench
(red stars); the inset displays the measured local slope of this graph (taken with intervals
of size 0.05), which can be interpreted as a time-dependent effective critical decay exponent
αeff(t) = −d log ρA(t)/d log t. A clean power law decay is thus reached when the slope stays
constant, which in our data happens only quite late, at t > 105 MCS. An asymptotically
constant slope is observed as long as the value of λ2 is sufficiently close to the critical point
λc. Our simulation data (in the rather short time interval with constant αeff) yield the
critical decay exponent value α = 0.54± 0.007; we note that the accepted directed percola-
tion universality class value is α ≈ 0.4505, which has been obtained by performing activity
spreading simulations [36], see also Ref. [18]. For comparison, we also display the data for
quenches to λ = 0.0417 (black dots ) and λ = 0.0415 (blue squares): In the former case,
the predator density approaches a finite value as the system is still, albeit barely, in the
active two-species coexistence phase, while for the lower predation rate the absorbing state
is reached, with the predator population going extinct.

We wish to ascertain the independence of the asymptotic critical exponent α = αeff(t→∞)
from the starting configurations in our simulations. To this end, we directly initialize our
stochastic lattice Lotka–Volterra system with reaction probabilities µ = 0.025, σ = 1.0, and
λ = λc = 0.0416. The resulting Monte Carlo data, averaged over again 2000 independent
runs, are also shown in Fig. 2.5 (green triangles). It is apparent that for the selected pa-
rameter values, the initial conditions become irrelevant for t > 1000 MCS, whereafter our
results for random and correlated quasi-steady state initial conditions perfectly overlap.

As visible in Fig. 2.4, the stochastic spatial Lotka–Volterra system immediately senses the
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predation rate change and the predator density decreases rapidly after the quench; for a very
brief time period (about 200 MCS), this decay is in fact independent of the new predation
probability λ2. Subsequently, the relaxation curves are quite sensitive to the selected value of
λ2. We measure the ensuing relaxation times tc(λ2) through evaluating the temporal Fourier
transform, while skipping an initial time interval of duration ∆t = 200 MCS right after the
quench in accord with the previous observation, averaging over 500 independent Monte Carlo
simulation runs. Fig. 2.6 depicts our numerically determined relaxation time data for tc as
a function of λ2 in the vicinity of the critical predator extinction threshold λc. Note in the
left inset that since we only consider a finite time interval (at most 128000 MCS) after the
quench for the computation of fA(ω), our thus measured relaxation times do not diverge,
but display a peak as function of λ2 that becomes both more pronounced and sharper as the
duration of the Monte Carlo simulation is increased. Indeed, we can estimate the critical
value λc from the peak position of the data curve for the longest simulations runs.

Since the left part of the graph turns out considerably smoother than the right part, we
perform a power law fit only to the corresponding data subset (τ < 0). As shown in the
main panel of Fig. 2.6, this yields the critical exponent product z ν = 1.208± 0.167; within
our statistical error bars this is in reasonable agreement with the two-dimensional directed
percolation literature values ν ≈ 0.7333 and z = 1.7660 [22], i.e., z ν ≈ 1.295 [37]. The right
inset displays the local time-dependent effective exponent (z ν)eff(t) = −d log tc(τ)/d log |τ |
for the longest simulation runs; the data appear not settled at a constant value yet, but
indeed rather tend towards the slightly larger asymptotic DP value. Even with our longest
Monte Carlo simulation runs, we have at best just barely reached the asymptotic scaling
regime, and thus cannot very precisely determine the associated critical exponents for quasi-
stationary observables.

A remarkable experiment with yeast cells has recently demonstrated a drastic increase in
the relaxation time of the dynamics for a biological system near its population extinction
threshold [35]. The authors therefore propose to utilize critical slowing-down as an indicator
to provide advanced warning of an impending catastrophic population collapse. However,
as we have demonstrated in our simulations, c.f. Figs. 2.5 and 2.6, the unique and universal
power law features in the population density decay and divergence of the relaxation time
are asymptotic phenomena and emerge only rather late, in our system after t ≈ 105 MCS.
Such a long required time period to unambiguously confirm an ecological system’s proximity
to an irreversible tipping point may preclude timely interventions to save the endangered
ecosystem. As we shall see in the following, the appearance of physical aging features in
appropriate two-time observables may serve as more advantageous warning signals for pop-
ulation collapse, as they provide both earlier and often more accurate indications for critical
behavior (see, e.g., Ref. [40]).

As a consequence of the drastic slowing-down of relaxation processes, near-critical systems
hardly ever reach stationarity. During an extended transient period, time translation in-
variance is broken, and the initial configuration strongly influences the system: both these
features characterize the phenomenon of physical aging [23]. In the vicinity of critical points
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Figure 2.6: Adapted from paper [20] Fig.7. Characteristic relaxation time tc
for the near-critical stochastic Lotka–Volterra model on a 1024 × 1024 square lat-
tice. The left inset shows the relaxation time tc(λ2) when the system is quenched
from a quasi-stationary state at λ1 = 0.25 to smaller values λ2 in the vicinity of
the predator extinction threshold λc = 0.0416. The different curves indicate the
resulting relaxation time estimates when respectively 128000, 64000, 32000, and
16000 MCS (top to bottom) were performed after the quench (all data averaged
over 500 independent simulation runs). The main panel displays the same data in
double-logarithmic form. For |τ | = |(λ2/λc)−1| > 0.1, the different graphs overlap,
collapsing onto a straight line with slope −z ν = −1.208 ± 0.167. The right inset
shows the associated local slope or effective exponent (z ν)eff(t).
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as well as in a variety of other instances where algebraic growth and decay laws are prominent,
the non-equilibrium aging kinetics is moreover governed by dynamical scaling laws. In our
context, aging scaling is conveniently probed in the two-time particle density autocorrelation
function

C(t, s) = 〈ni(t)ni(s)〉 − 〈ni(t)〉 〈ni(s)〉 , (2.4)

where ni(t) = 0 or 1 indicates the occupation number (here, for the predators A) on lattice
site i at time t. The cumulant (2.4) thus measures local temporal correlations as function of
the two time instants s and t > s; we shall refer to t and s as the observation and waiting
time, respectively.

In a stationary dynamical regime, reached for both t, s > tc, time translation invariance
should hold, implying that C(t, s) becomes a function of the evolved time difference t − s
only. In the transient aging window, characterized by double time scale separation tc �
t, s, t− s� tmic, where tmic represents typical microscopic time scales, one often encounters
a simple aging scenario described by the dynamical scaling form

C(t, s) = s−b fc(t/s) , fc(y) ∼ y−Λc/z (2.5)

with the aging scaling exponent b, and a scaling function fc that asymptotic obeys a power
law decay in the long-time limit, governed by the ratio of the autocorrelation exponent Λc

and dynamic critical exponent z [23]. Near continuous phase transitions both in and far from
thermal equilibrium, the simple aging dynamical scaling form (2.5) can be derived by means
of renormalization group methods [21,38]. For directed percolation, the aging exponents are
related to the quasi-stationary critical exponents through the scaling relations (in d space
dimensions) [23]

b = 2α , Λc/z = 1 + α + d/z . (2.6)

In perhaps the simplest lattice realization of the directed percolation universality class, the
contact process, numerical simulations have confirmed the simple aging scaling form (2.5),
with scaling exponents b = 0.901 ± 0.002 and Λc/z = 2.8 ± 0.3 in two dimensions, see
Table 2.1 [41]. If universality holds near active-to-absorbing phase transitions, we should
observe the same scaling properties at the predator extinction threshold in our stochastic
lattice Lotka–Volterra model.

In our Monte Carlo simulations, the predator density autocorrelation function C(t, s) is
obtained in a straightforward manner by monitoring the occupations of the lattice sites with
A particles following the previously discussed predation probability quench scenario to its
critical value λc after the system had first reached a quasi-stationary state. If time translation
invariance applies, the ensuing curves of C(t, s) plotted against t − s should overlap for
different values of the waiting time s. Indeed, this is clearly seen in the inset of Fig. 2.7(a)
for the expected exponentially fast relaxation of the predator density autocorrelation function
following a sudden quench from λ1 = 0.250 to λ2 = 0.125, whence the system remains within
the two-species coexistence phase. In stark contrast, as becomes apparent in Fig. 2.7(a),
time translation invariance is manifestly broken at the critical point.
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Figure 2.7: Adapted from paper [20] Fig.8. (a) Double-logarithmic plot of the
predator density autocorrelation function C(t, s) as a function of the time difference
t − s for various waiting times s = 50, 500, 1500, 5000 MCS (left to right) at the
predator extinction critical point λc = 0.0416; the data are averaged over 100
independent simulation runs for each value of s. The inset shows that in contrast
C(t, s) decays exponentially fast for λ2 = 0.125, i.e., a quench within the coexistence
phase, and demonstrates that time translation invariance holds in this situation
(data averaged over 400 simulation runs for the waiting times s = 5000, 2000, 1000,
and 200 (top to bottom). (b) Simple aging dynamical scaling analysis: sbC(t, s)
is graphed versus the time ratio t/s, for 1000 independent simulation runs for
each waiting time s. The straight-slope section of the curves with large waiting
times s ≥ 1000 MCS yields Λc/z = 2.37 ± 0.19, and the aging scaling exponent is
determined to be b = 0.879± 0.005. The inset displays the local effective exponent
−(Λc/z)eff(t).

24



In Fig. 2.7(b), we plot our data for the critical density autocorrelations, now averaged over
1000 simulation runs, in the form of sbC(t, s) versus the time ratio t/s, for a set of waiting
times 100 MCS ≤ s ≤ 2000 MCS, in order to test for the simple aging dynamical scaling
scenario (2.5). The aging exponent b is determined by attempting to collapse the data for
the three large waiting times s ≥ 1000 MCS onto a single master curve. With the choice
b = 0.879±0.005, the predator density autocorrelation function displays simple aging scaling
for s = 1000, 1500, and 2000 MCS. However, for small s ≤ 500 MCS, the curves cannot be
properly rescaled and collapsed. Depending on how many data points in the t/s plot are
used, one obtains slightly different values for b; their standard deviation gives our estimated
errors. Within these error bars, the directed percolation scaling relation b = 2α is just
marginally fulfilled. We also remark that since our estimate for the location of the critical
point λc is inevitably measured only with limited accuracy, and we cannot meaningfully
extend our finite-system simulation runs for arbitrarily long time periods, we also do not
observe aging scaling anymore for s � 2000 MCS; to extend the aging analysis to larger
waiting times would require both a more accurate measurement of λc and larger simulation
domains.

Finally, the exponent ratio Λc/z may be estimated from the slope of the master curve in
Fig. 2.7(b) resulting from the data collapse at large waiting times; see also the inset that
shows the associated effective exponent. We find Λc/z = 2.37± 0.19, which within the esti-
mated error bars is in fair agreement with the value 2.8±0.3 measured for the contact process
in d = 2 dimensions [41], and in accord with the scaling relation (2.6). To ascertain that the
critical aging exponents do not depend on the initial configurations, we have repeated the
above procedures for Monte Carlo simulations initiated with randomly distributed particles
at the critical predation probability λc rather than starting with the spatially correlated
initial configurations prepared in quasi-steady states. We have confirmed that we thereby
obtain identical values for b and Λc/z, as listed in the first column of Table 2.1. Within
our error bars these are in accord with the two-dimensional values obtained for the contact
process [41] and in experiments on turbulent liquid crystals [39].

Fig. 2.7(b) demonstrates that convincing critical aging scaling collapse is achieved for t/s ≥ 5,
or t ≈ 104 MCS even for the longest waiting time s = 2000 MCS under consideration here.
Note that aging scaling thus appears by about a factor of 10 earlier in the system’s temporal
evolution than the critical power laws describing the quasi-stationary predator density decay
and the divergence of the characteristic relaxation time. Just as critical slowing-down, the
emergence of physical aging and certainly the associated dynamical scaling is an indicator of
the ecosystem’s proximity to population extinction. Critical aging scaling hence provides a
complementary warning signal for impending collapse, yet becomes visible markedly earlier
in the system’s time evolution.

We end our discussion of non-equilibrium relaxation processes in spatially extended stochas-
tic Lotka–Volterra models by briefly addressing the sole remaining quench scenario, which
takes the system from the active two-species coexistence state to the absorbing phase wherein
the predator population goes extinct. Outside the critical parameter region, the characteris-
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tic relaxation time tc is finite; i.e., the mean predator density will decay to zero exponentially
fast, as local predator clusters become increasingly dilute, while the prey gradually fill the en-
tire system. In the absorbing state, population density fluctuations eventually cease, whence
no interesting dynamical features remain.

2.4 Conclusions

To conclude this part, we have investigated non-equilibrium relaxation features in a stochastic
Lotka–Volterra Model on a two-dimensional lattice via detailed Monte Carlo simulations.
If the prey carrying capacity is limited, i.e., in the presence of site restrictions (and for
sufficiently large system size), there appears a predator extinction threshold that separates
an inactive phase wherein the prey proliferate and the predators die out, from an active
phase where both species coexist and compete. In a first set of numerical experiments,
we observe the system’s relaxation either from a random initial configuration or between
two quasi-stationary states within the active coexistence phase via suddenly changing the
predation rate. As expected, we find that the initial state generically only influences the
subsequent oscillatory dynamics for the duration of about one characteristic relaxation time,
implying that the system exponentially quickly loses any memory of the initial configuration.

Our main focus has thus been the analysis of critical quenches and the ensuing dynamical
scaling behavior. Following a quench of the predation rate to its critical value for the
predator species extinction threshold, we have measured the dynamic scaling exponents for
the diverging relaxation time and the algebraic decay of the predator density. Within our
systematic and statistical errors, we obtained the expected values for the directed percolation
universality class that generically characterizes active-to-absorbing phase transitions. In
addition, we have studied the critical aging properties of this system: Reflecting critical
slowing-down, the characteristic relaxation time diverges at the extinction threshold; as a
consequence, time translation invariance is broken, and physical aging governed by universal
scaling features emerges. Our measured aging scaling exponents are close to those found
previously for the contact process, which is perhaps the simplest lattice realization of the
directed percolation universality class. We remark that at least to our knowledge, this present
study constitutes only the second investigation of aging scaling at an active-to-absorbing
phase transition, and hence provides a crucial test of universality for non-equilibrium critical
phenomena.

We also emphasize that universal aging scaling sets in considerably earlier during the system’s
time evolution than asymptotic quasi-stationary power laws emerge, and in addition often
yields more accurate exponent estimates [40]. In comparison with detecting critical slowing-
down, this critical aging effect might thus serve as a preferable and more reliable early
warning signal for impending population collapse.
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Chapter 3

Boundary effects on population
dynamics in stochastic lattice
Lotka–Volterra models

This chapter was essentially copied from our publication:

Heiba B, Chen S, Täuber U C, 2018, “Boundary effects on population dynamics in stochas-
tic lattice Lotka–Volterra models,” Physica A, 491, 582-590, “Copyright (2017) by Elsevier
B.V.”

Bassel Heiba was an undergraduate student working under my guidance. He collected the
original data by doing Monte Carlo simulations. I analyzed his data, and then drew all the
graphs. We worked together to finish this paper under Prof. Täuber’s supervision.
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3.1 Introduction

Due to its wide range of applications and relative simplicity, variants of the Lotka–Volterra
predator-prey competition model represent paradigmatic systems to study the emergence of
biodiversity in ecology, noise-induced pattern formation in population dynamics and (bio-)
chemical reactions, and phase transitions in far-from-equilibrium systems. In the classical
deterministic Lotka–Volterra model [1,2], two coupled mean-field rate equations describe the
population dynamics of a two-species predator-prey system, whose solutions display periodic
non-linear oscillations fully determined by the system’s initial state. Yet the original mean-
field Lotka–Volterra rate equations do not incorporate demographic fluctuations and internal
noise induced by the stochastic reproduction and predation reactions in coupled ecosystems
encountered in nature.

In a series of numerical simulation studies [5–16, 18, 20, 33, 34], the population dynamics
of several stochastic spatially extended lattice Lotka–Volterra model variants was found to
substantially differ from the mean-field rate equation predictions due to stochasticity and
the emergence of strong spatio-temporal correlations: Both predator and prey populations
oscillate erraticly, and do not return to their initial densities; the oscillations are moreover
damped and asymptotically reach a quasi-stationary state with both population densities
finite and constant [7]– [20]. In a non-spatial setting, these persistent non-linear oscillations
can be understood through resonantly amplified demographic fluctuations [17].

Local carrying capacity restrictions, representing limited resources in nature, can be im-
plemented in lattice simulations by constraining the number of particles on each site [9,
10, 15, 16, 18]. These local occupation number restrictions cause the emergence of a preda-
tor extinction threshold and an absorbing phase, wherein the predator species ultimately
disappears while the prey proliferate through the entire system. Upon tuning the reac-
tion rates, one thus encounters a continuous active-to-absorbing state non-equilibrium phase
transition whose universal features are governed by the directed percolation universality
class [5, 10–12,15,18,20,34].

Biologically more relevant models should include spatial rate variability to account for envi-
ronmental disorder. The population dynamics in a patch surrounded by a hostile foe [42–44]
is well represented by Fisher’s model [45], which includes diffusive spreading as well as a
reaction term capturing interactions between individuals and with the environment. For
the stochastic Lotka–Volterra model, the influence of environmental rate variability on the
population densities, transient oscillations, spatial correlations, and invasion fronts was inves-
tigated by assigning random reaction rates to different lattice sites [46,47]. Spatial variability
in the predation rate results in more localized activity patches, a remarkable increase in the
asymptotic population densities, and accelerated front propagation. These studies assumed
full environmental disorder, as there was no correlation at all between the reaction rates on
neighboring sites.
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In a more realistic setting, the system should consist of several domains with the environment
fairly uniform within each patch, but differing markedly between the domains, e.g., repre-
senting different topographies or vegetation states. In our simulations, we split the system
into several patches and assign different reaction rates to neighboring regions. By tuning the
rate parameters, we can force some domains to be in an absorbing state, where the preda-
tors go extinct, or alternatively in an active state for which both species coexist at non-zero
densities. One would expect the influence of the boundary between the active and absorbing
regions to only extend over a distance on the scale of the characteristic correlation length
in the system. In this work, we study the local population densities, correlation length, as
well as the local oscillation frequency and attenuation, as functions of the distance from the
domain boundary. As we successively divide the system further in a checkerboard pattern
so that each patch decreases in size, the population dynamics features quantitatively tend
towards those of a randomly disordered model with reaction rates assigned to the lattice
sites from a bimodal distribution.

3.2 Model description and background

We use Monte Carlo simulations for the stochastic Lotka–Volterra model based on the reac-
tions (2.1) performed on a two-dimensional square lattice with 512× 512 sites and periodic
boundary conditions to fully account for emerging spatial structures and internal reaction
noise. We note that we have also performed simulations on twodimensional square lattices
with 256× 256 and 128× 128 sites; aside from overall noisier data, as one would expect, we
obtain no noticeable quantitative differences. Given that the correlation lengths ξ measured
below are much smaller than these system sizes, this is not surprising. Due to our limited
computational resources, we have not attempted runs on even larger systems. In the follow-
ing, all listed Monte Carlo data and extracted quantitative results refer to 512× 512 square
lattices. Also, for the reaction processes, we only consider the four nearest-neighbor sites,
and have not extended interactions to larger distances. In our model, we implement occupa-
tion number limitations or finite local carrying capacities; i.e., the number of particles on any
lattice site is restricted to be either 0, if the site is empty, or 1, if it is occupied by a preda-
tor or a prey individual. We shall examine the population densities of each species, given
by their total particle number divided by the number of lattice sites, and aim to quantify
the ensuing oscillations and through characteristic observables that include their frequency
and attenuation, as well as typical population cluster sizes as determined by their spatial
correlation length.

The simulation algorithm, which is slightly different from that in section 2.2, proceeds as
follows: For each iteration, an occupied site is randomly selected and then one of its four
adjacent sites is picked at random. If the two selected sites contain a predator and a prey
particle, a random number x1 ∈ [0, 1] is generated; if x1 < λ, the prey individual is removed
and a newly generated predator takes its place. Similarly, if the occupant is a predator, a
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random number x2 ∈ [0, 1] is generated, and the particle is removed if x2 < µ. Yet if the
initially selected occupant is a prey particle and the chosen neighbor site empty, a random
number x3 ∈ [0, 1] is generated; if x3 < σ a new prey individual is added to this site.

The variables that can be tuned in our simulations are: the system size L, the initial predator
density ρA(0), the initial prey density ρB(0), the predator death rate µ, the prey reproduction
rate σ, the predation rate λ, and the number of Monte Carlo steps. We chose the linear
system size L = 512. Naturally one must avoid starting the simulations from one of the
absorbing states. For any non-zero initial predator and prey density, the population numbers
and particle distribution at the outset of the simulation runs influence the system merely
for a limited time, and the final (quasi-)stationary state of the system is only determined
by the three reaction rates [20]. In our simulations, the rates µ and σ are kept constant for
simplicity, while λ is considered to be the only relevant control parameter. The dynamical
properties are generically determined by the ratio of the reaction rates; the subsequent results
apply also for different sets of µ and σ with appropriately altered predation rate λ. Since
we only have two species, predators and prey, 0 ≤ ρA + ρB ≤ 1 due to the site occupation
restrictions. For each parameter set we perform 1000 independent simulation runs and use
the average of these repeats in the data analysis to reduce statistical errors.

In the case of very low predation rates λ, the predators will gradually starve to death, and
the remaining prey will finally occupy the whole system. On the other hand, when λ is
large, there is a finite probability (in any finite lattice) that all prey individuals would be
devoured; subsequently the predators would die out as well because of starvation. In fact,
the absorbing extinction state is the only truly stable state in a finite population with the
stochastic dynamics (2.1). However, in sufficiently large systems, quasi-stable states in which
both species survive with relatively constant population densities during the entire simulation
duration are indeed observed in certain regions of parameter space. In the simulations, we
select the non-linear predation reaction rate λ as the only control parameter with the reaction
probabilities µ = 0.125 and σ = 1.0 held fixed. We chose the initial population densities
as ρA(0) = 0.3 = ρB(0) with the particles randomly distributed among the lattice sites.
The trajectories of the prey population density ρB(t) versus that of the predators ρA(t) for
different values of λ are very similar to those in Fig. 2.1: With λ = 0.1, the predators
have low predation efficiency and thus gradually go extinct; the system then reaches an
absorbing state with only prey particles remaining and ultimately filling the entire lattice
(ρB → 1). If we increase the value of λ to 0.18, just above the predator extinction threshold,
the system relaxes exponentially to a quasi-stationary state with non-zero densities for both
species. For λ = 0.4, the system resides deep in this coexistence phase and the simulation
trajectory spirals into a stable fixed point, indicating damped oscillatory kinetics. According
to our investigations, we estimate the critical predation rate of the predator extinction phase
transition point at λc = 0.12± 0.01.
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(a) (b) (c)

Figure 3.1: Adapted from paper [28] Fig.2. Snapshots of the spatial particle
distribution on a 512× 512 lattice (with periodic boundary conditions) that is split
into equally large predator extinction (left) and species coexistence (right) regions:
prey are indicated in green, predators in red, white spaces in white. (a) Random
initial distribution with densities ρA = 0.3 = ρB; (b) state of the system after 1000
MCS, when it has reached a quasi-stationary state with uniform rates µ = 0.125
and σ = 1.0, while λl = 0.1 on columns [0, 255], λr = 0.8 on columns [256, 511].

3.3 Boundary effects at a coexistence / predator ex-

tinction interface

Natural environments vary in space and boundaries are formed between different regions,
yielding often quite sharp interfaces, e.g., between river and land, desert and forest, etc.
At the boundaries of such spatially inhomogeneous systems, interesting phenomena may
arise. In order to study boundary effects on simple predator-prey population dynamics,
we split our simulation domain into two equally large pieces with one half residing in the
predator extinction state, and the other half in the two-species coexistence phase. We use a
two-dimensional lattice with 512 × 512 sites with periodic boundary conditions, and index
the columns with integers in the interval [0, 511]. Whereas the predator death and prey
reproduction rates are uniformly set as µ = 0.125 and σ = 1.0 on all sites, we assign
λl = 0.1 < λc on columns [0, 255] to enforce predator extinction on the “left” side, and
λr = 0.8 > λc for the columns on the “right” half with indices [256, 511], which is thus
held in the predator-prey coexistence state. Fig. 3.1(a) depicts the initial random particle
distribution with equal population densities ρA = 0.3 = ρB. After the system has evolved
for 1000 MCS, a quasi-steady state is obtained as shown in Fig. 3.1(b). The predators are
able to penetrate into the “left” absorbing region by less than 10 columns, and no predator
individuals are encountered far away from the active-absorbing interface. On the right
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half, we observe a predator-prey coexistence state with the prey particles forming clusters
surrounded by predators and predation reactions occurring at their perimeters.

Since only the predator species is subject to the extinction transition into an absorbing
state, while the prey can survive throughout the entire simulation domain, we concentrate
on boundary effects affecting the predator population. We measure the column densities of
predators ρA(n), defined as the number of predators on column n divided by L = 512, and
record their averages from 1000 independent simulation runs as a function of column index
n. As shown in the inset of Fig. 3.2(a), ρA(n) decreases to 0 deep inside the absorbing half of
the system, and reaches a positive constant 0.195±0.001 within the active region. The main
graph focuses on the boundary region, where we observe a marked predator density peak
right at the interface (column 256). The predator density enhancement at the boundary is
obviously due to the net intrusion flow of species A from the active subdomain with high
predation rate into the predator extinction region with abundant food in the form of the
near uniformly spread prey population. We also ran simulations for other predation rate
pairs such as λl = 0.1 and λr = 0.2 (still in the coexistence phase), and observed very similar
behavior (except that the peak of ρA appeared on column 257 in that situation instead of at
n = 256).

Fig. 3.2(b) shows the exponential decay of the predator column density ρA(n) as function of
the distance |255−n| from the boundary (located at n = 255) towards the “left”, absorbing
side. A simple linear regression gives the inverse characteristic decay length |k| = 0.286.
However, on the “right” active half of the system, ρA(n) neither fits exponential nor algebraic
decay. Instead, ρA reaches the asymptotic constant value 0.195±0.001 deep in the coexistence
region through an apparent stretched exponential form ρA(n) ∼ e−c(n−256)l + 0.195 with
stretching exponent l ≈ 0.348, as demonstrated in Fig. 3.2(c).

On the “right” semidomain set in the predator-prey coexistence phase, the particle repro-
duction processes induce clustering of individuals from each species. The cluster size may
vary with the distance from the boundary. We utilize the correlation length ξ, obtained
from the equal-time correlation function C(x), to characterize the spatial extent of these
clusters. For species α, β = A,B, the (connected) correlation functions are defined as
Cαβ(x) = 〈nα(x)nβ(0)〉 − 〈nα(x)〉 〈nβ(0)〉, where nα(x) = 0, 1 denotes the local occupation
number of species α at site x [16]. For x = 0 and α = β, in a spatially homogeneous system
it is simply given by the density 〈nA〉: Cαα(0) = 〈nA〉(1−〈nA〉). For |x| > 0, 〈nα(x)nβ(0)〉 is
computed as follows: First choose a site, and then a second site at distance x away from the
first one. nα(x)nβ(0) equals 1 only if the first site is occupied by an individual of species β,
and the second one by an particle of species α, otherwise the result is 0. One then averages
over all sites.

Here, we compute the predator correlations CAA(x, n) on a given column n, i.e., we only take
the mean in the above procedure over the L = 512 sites on that column. The main panel
in Fig. 3.3(a) shows the predator correlation function CAA(x, n) on column n = 274 with
x ∈ [0, 9], where the correlations CAA(x) gradually decrease to zero. The inset presents the
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Figure 3.2: Adapted from paper [28] Fig.3. After the split system with rates
µ = 0.125, σ = 1.0 and λl = 0.1 on columns [0, 255], λr = 0.8 on columns [256, 511]
evolves for 1000 MCS, it arrives at a quasi-stationary state: (a) the main plot shows
the column densities of the predator population ρA(n) as function of column index
n ∈ [251, 270], and the inset on all L = 512 columns (data averaged over 1000
independent runs); (b) exponential decay of ρA(n) from the boundary (located at
n = 255) into the absorbing region with n ∈ [235, 255]: The red stars depict our
simulation results, while the black straight line represents a linear regression of
the data with slope k = −0.286; (c) the column density ρA decays to a positive
constant value 0.195± 0.001 deep in the right coexistence region. The blue squares
display log10(− ln(ρA − 0.195)) versus log10(n − 256), while the black straight line
with slope l = 0.348 is obtained from linear data regression.

same data in a logarithmic scale, demonstrating exponential decay according to C(x, n) ∼
e−x/ξ(n). Since the statistical errors grow at large distances x, we only use the initial data
points up to x = 6 for the analysis. Linear regression of ln(CAA(x, n = 274)) over x ∈ [1, 6]
gives ξ(n = 274) ≈ 3.2, indicated as red square in Fig. 3.3(b). In the same manner, we
obtain the characteristic correlation lengths ξ(n) for each column n as shown in Fig. 3.3(b),
starting at the interface at n = 256. We observe ξ(n) to increase by about a factor of four
within the first ten columns away from the boundary, and then saturate at the bulk value
ξ ≈ 3.2. Near the absorbing region, the predator clusters are thus much smaller, owing to the
net flux of predators across the boundary into the extinction domain. These values of ξ are
measured after the entire system has reached its (quasi-)steady state after 1000 MCS, and
would not change for longer simulations run times. We note that the relationship between
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Figure 3.3: Adapted from paper [28] Fig.4. (a) Main panel: the predator correla-
tion function CAA(x, n) on column n = 274 (data averaged over 1000 independent
simulation runs). Inset: ln(CAA(x, n)); the red straight line indicates a simple lin-
ear regression of the data points with x ∈ [1, 6], and yields the characteristic decay
length ξ(n = 274) ≈ 3.2. (b) Correlation length ξ(n) versus column number n,
with ξ(n) defined as the negative reciprocal of the slope of ln(CAA(x, n)).

the correlation length ξ and the predation rate λ is manifestly not linear, i.e., a very large
value of λ does not imply huge predator clusters. We surmise that the cluster size remains
finite even in that scenario, and the predators would penetrate into the “left” absorbing
region for a finite number of columns only. For sufficiently large domain size, the system
should thus remain spatially inhomogeneous even for very high predation rates λ. Finally,
the dependence of the typical cluster size ξ(n) on column index n correlates inversely with
the column density plotted in Fig. 3.2: High local density corresponds to small cluster size
and vice versa. We note that the product ρA(n) ξ(n) is however not simply constant across
different columns; rather it is minimal near the boundary (at n = 256), then increases away
from the interface, and ultimately reaches a fixed value within 10 columns inside the active
region.

Spatially homogeneous stochastic Lotka–Volterra systems display damped population oscil-
lations in the predator-prey coexistence phase after being initialized with random species
distribution, see, for example, the (blue square) trajectory in Fig. 2.1. We next explore the
boundary effects on these population oscillations near the active-absorbing interface. We
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Figure 3.4: Adapted from paper [28] Fig.5. The temporal evolution of the aver-
age predator column densities ρA(t, n) (averaged over 1000 independent runs) on
columns n = 256 (black stars) and n = 274 (blue triangles), with initial predator
density ρA(0) = 0.3 and rates µ = 0.125, σ = 1.0, λl = 0.1 on columns n ∈ [0, 255],
and λr = 0.8 for n ∈ [256, 511].

prepare the system with the same parameters as mentioned above so that its “left” half is in
the absorbing state while the “right” side sustains species coexistence. The initial population
densities are again set to ρA(0) = 0.3 = ρB(0), with the particles randomly distributed on the
lattice. We then measure the column predator densities as a function of time (MCS). Fig. 3.4
displays the temporal evolution of ρA(t, n) on columns n = 256 and n = 274. We observe
the oscillations on the column closest to the interface to be strongly damped, whereas deeper
inside the active region the population oscillations are more persistent and subject to much
weaker attenuation. Both column densities asymptotically reach the expected quasi-steady
state values.

In order to determine the dependence of the local oscillation frequencies on the distance
from the active-absorbing interface, we compute the Fourier transform amplitude fA(ω, n) =
|
∫
e−iωt ρA(t, n) dt| of the column density time series data by means of the fast Fourier

transform algorithm for n ∈ [256, 274], as shown in Fig. 3.5(a). Assuming the approximate
functional form ρA(t, n) ∼ e−t/tc(n) cos(2πt/T (n)), we may then identify the peak position
of fA(ω, n) with the characteristic oscillation frequency 2π/T (n), and the peak half-width
at half maximum with the attenuation rate or inverse relaxation time 1/tc(n). We find that
the oscillation frequencies are constant except for the column at the boundary (n = 256),
which shows a very slight reduction. We conclude that the presence of the extinction region
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Figure 3.5: Adapted from paper [28] Fig.6. (a) Fourier transform amplitude
fA(ω, n) of the predator column density time evolution on columns n = 256 (black
dots), 258 (green triangles up), 262 (red triangles down), 266 (cyan squares), 270
(magenta stars), and 274 (blue plus marks), with rates µ = 0.125, σ = 1.0, and
λl = 0.1 for n ∈ [0, 255], λr = 0.8 for n ∈ [256, 511]; (b) measured characteristic
decay time tc(n) on columns near the active-absorbing boundary, inferred from the
peak widths in (a).

does not markedly affect the frequency of the population oscillations in the active regime. In
contrast, the attenuation rate decreases by a factor of three within about 20 columns in the
vicinity of the interface, as demonstrated in Fig. 3.5(b). Beyond n ≈ 278 in the coexistence
region, the relaxation time assumes its constant bulk value.

3.4 Checkerboard division of the system

To further explore boundary (and finite-size) effects in spatially inhomogeneous Lotka–
Volterra systems, we proceed by successively dividing the simulation domain into subdomains
in a checkerboard pattern, setting the predation rate to two distinct values in neighboring
patches, and thus preparing them alternatingly in either the active coexistence or absorb-
ing predator extinction states. Fig. 3.6(a) shows a case when the system is split into four
subregions with σ = 1.0 and µ = 0.125, and with two distinct values for the predation rate
λ = 0.1 and 0.8 assigned to alternating patches of the 2 × 2 checkerboard structure. Note
that the low predation rate value posits the corresponding patches in the predator extinction
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Figure 3.6: Copied from paper [28] Fig.7. Snapshots of the distribution of preda-
tor (red) and prey (green) particles after the system has evolved for 1000 MCS
with rates µ = 0.125, σ = 1.0, and λ switched alternatingly between the values 0.1
(predator extinction) and 0.8 (species coexistence) on neighboring subdomains, as
the full 512 × 512 system is periodically divided into successively smaller square
patches with lengths 256 (a), 64 (b), and 16 (c), respectively. The square subdo-
mains dominantly colored in green reside in the extinction state (λ = 0.1), whereas
predator-prey coexistence pertains to the other patches (λ = 0.8).

state, whereas the subdomains with the high predation rate reside in the species coexistence
phase. Figures 3.6(b) and (c) depict the situations when the total simulation domain with
512× 512 sites is respectively split into 8× 8 and 32× 32 square patches: If for a given box
λ is set to 0.1, then the adjacent square subdomains above, below, to its right, and to its
left are given a value λ = 0.8.

1000 simulations were performed for each setting, and the averages over these independent
runs were used to analyze the data. We also generated and inspected simulation videos:
snapshots are depicted in Fig. 3.6. As we split the system into successively smaller and
more pieces in the checkerboard-patterned fashion with λ switching between 0.1 and 0.8 on
neighboring subregions, we find the boundaries to have less of an impact on the population
densities. We observe that in this sequence the prey density decreases on the patches with
lower predation rate 0.1, but stays roughly the same on the subdomains where λ = 0.8.
The predator density in contrast increases in both the active and absorbing regions as the
subdivision proceeds. We have also confirmed that these changes in the total population
densities naturally become less significant if the two different predation rate values are chosen
closer to each other.

In Fig. 3.7, we plot the total (summed over all subdomains) predator and prey popu-
lation densities ρ in the simulation domain split into N × N checkerboard patches, as
functions of log10N . Here, N = 1 corresponds to the situation studied in chapter 3.3,
where the system was divided into two rectangular subdomains. The other values of N =
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Figure 3.7: Adapted from paper [28] Fig.8. Total population densities for preda-
tors (black dots) and prey (blue stars) versus number of checkerboard-patterned
subdivisions N of the simulation domain, after the system has evolved for 1000
MCS and reached a quasi-stationary state, with reaction rates µ = 0.125, σ = 1.0,
and λ alternatingly switched between 0.1 and 0.8. For comparison, the graph also
shows the total quasi-steady state population densities for predators (red triangle
up) and prey (yellow triangle down) in a system with randomly assigned predation,
drawn with equal probability from a bimodal distribution with values λ = 0.1 and
0.8.

512, 256, 128, 64, 32, 16, 8, 2 refer to checkerboard square patches with lengths 512/N . The
mean population density ρ shown for each data point represents an average of 1000 inde-
pendent simulation runs; the associated statistical error was very small, with a standard
deviation of order 10−3. As apparent in the data, the overall population predator density ρA
monotonically increases with growing number N of subdivisions, while the prey density ρB
decreases.

We also performed the analogous sequence of measurements for other pairs of predation rate
values. For instance, with checkerboard subdomains with λ = 0.1 and 0.2 (also just within
the species coexistence range), the population density changes with increasing N are less
pronounced than in Fig. 3.7, and ρA, ρB acquire maximum and minimum values at N = 256
rather than 512. The origin of this slight shift can be traced to the fact that the predator
correlation length is of order one lattice constant at the boundary of the λ = 0.1/0.8 system,
but extends over about two sites for the 0.1/0.2 case.
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For comparison, we also measured the overall population predator and prey densities in a
Lotka–Volterra system with quenched spatial disorder in the predation rates, where either
of the two values λ = 0.1 and 0.8 are assigned at random to each lattice site with equal
probability. The resulting net population density values are also shown in Fig. 3.7; they
are close, but not identical to those obtained for the N = 512 system, for which these two
predation rates are alternatingly assigned to the lattice sites in a periodic regular manner.
We would expect the population densities in these two distinct systems to reach equal values
if the associated correlation lengths at the boundaries were large compared to the lattice
constant, which is however not the case here.

3.5 Conclusions

In this part, we have focused on studying boundary effects in a stochastic Lotka–Volterra
predator-prey competition model on a two-dimensional lattice, by means of detailed Monte
Carlo simulations. We first considered a system split into two equally large parts with distinct
non-linear predation rates, such that one domain is set to be in the predator extinction state,
while the other one resides in the two-species coexistence phase. We have primarily addressed
the influence of such an absorbing-active separation on both populations’ density oscillations
as function of the distance from the boundary.

We find a remarkable peak in the column density oscillation amplitude of the predator
population, as shown in Fig. 3.2(a), which reflects its net steady influx towards the absorbing
region. Correspondingly, the predator correlation length that characterizes the typical cluster
size reaches a minimum value at the boundary, see Fig. 3.3(b). The population oscillation
frequency there shows only small deviations from its bulk value, while the attenuation rate is
locally strongly enhanced, see Fig. 3.5(b), inducing overdamped relaxation kinetics. Overall,
the ecosystem remains stable.

Furthermore, upon splitting the system successively into more pieces in a checkerboard fash-
ion, the observed boundary effects become less significant, and as demonstrated in Fig. 3.7,
the overall population densities acquire values that are close to those in a disordered system
with randomly assigned predation rates drawn from a bimodal distribution.
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Chapter 4

Evolutionary dynamics and
competition stabilize three-species
predator-prey communities

This chapter was essentially copied from a preprint submitted to Ecol. Complex.:

Chen S, Dobramysl U, Täuber U C, 2017, “Evolutionary dynamics and competition stabilize
three-species predator-prey communities,” submitted to Ecological Complexity [arXiv:1711.05208]

Ulrich Dobramysl contributed Fig. 4.5(b) and Fig. 4.8, and I did all the other work under
Prof. Täuber’s supervision.
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4.1 Introduction

Ever since Darwin first introduced his theory that interspecific competition positively con-
tributes to ecological character displacement and adaptive divergence [48], debates abounded
about its importance in biodiversity. Character displacement is considered to occur when a
phenotypical feature of the animal [25], which could be morphological, ecological, behavioral,
or physiological, beak size for example, is shifted in a statistically significant manner due to
the introduction of a competitor [49, 50]. One example of ecological character displacement
is that the body size of an island lizard species becomes reduced on average upon the ar-
rival of a second, competing lizard kind [26]. Early observational and experimental studies
of wild animals provided support for Darwinian evolutionary theory [25, 51]. One famous
observation related to finches, whose beak size would change in generations because of com-
petition [51]. However, recent studies using modern genetic analysis techniques do not find
genetic changes to the same extent as the phenotypic break change, thereby casting doubt
on Darwin’s observational studies [52, 53]. Another concern with experiments on birds or
other animal species is that they may live for decades, rendering this sort of study too time-
consuming. Evolutionary theory is based on the assumption that interspecific competition
occurs mostly between closely related species because they share similar food resources, thus
characters exploiting new resources are preferred. Ecologists perform experiments with wild
animals by introducing a second competing species and recording their observable characters
including the body size, beak length, and others [26, 53]. Unfortunately, direct control over
natural ecosystems is usually quite limited; for example, ecological character displacement
with wild animals cannot be shut down at will in natural habitats. However, this is easily
doable in carefully designed computer simulations.

Game theory has a long history in the study of biological problems [54]. Among all the math-
ematical models of studying biodiversity in ecology, the Lotka–Volterra (LV) [1,2] predator-
prey model may rank as possibly the simplest one. Only one predator and one prey species
are assumed to exist in the system. Individuals from each species are regarded as simple
particles with their reaction rates set uniformly and spatially homogeneous. They display
three kinds of behaviors which are influenced by pre-determined reaction rates: prey particles
may reproduce, predator particles can spontaneously die, and predators may remove a prey
particle and simultaneously reproduce. This simple LV model kinetics may straightforwardly
be implemented on a regular lattice (usually square in two or cubic in three dimensions) to
simulate situations in nature, where stochasticity as well as spatio-temporal correlations play
an important role [5–16, 18, 20, 33, 34]. It is observed in such spatial stochastic LV model
systems that predator and prey species may coexist in a quasi-stable steady state where
both populations reach non-zero densities that remain constant in time; here, the popula-
tion density is defined as the particle number in one species divided by the total number
of lattice sites. Considering that the original LV model contains only two species, we here
aim to modify it to study a multi-species system. We note that there are other, distinct
well-studied three-species models, including the rock-paper-scissors model [19, 55], which is

41



designed to study cyclic competitions, and a food-chain-like three-species model [56], as well
as more general networks of competing species [19], all of which contain species that operate
both as a predator and a prey. In this paper we mainly focus on predator-prey competitions,
where any given species plays only one of those ecological roles.

Compared with the original LV model, we introduce one more predator into the system so
that there are two predator species competing for the same prey. We find that even in a
spatially extended and stochastic setting, the ‘weaker’ of the two predator species will die
out fast if all reaction rates are fixed. Afterwards the remaining two species form a standard
LV system and approach stable steady-state densities. Next we further modify the model
by introducing evolutionary adaptation [47]. We also add a positive lower bound to the
predator death rates in order to avoid ‘immortal’ particles. Finally, we incorporate additional
direct competition between predator individuals. Stable multiple-species coexistence states
are then observed in certain parameter regions, demonstrating that adaptive ‘evolution’
in combination with direct competition between the predator species facilitate ecosystem
stability. Our work thus yields insight into the interplay between evolutionary processes and
inter-species competition and their respective roles to maintain biodiversity.

4.2 Stochastic lattice Lotka–Volterra model with fixed

reaction rates

4.2.1 Model description

We spatially extend the LV model by implementing it on a two-dimensional square lattice
with linear system size L = 512. It is assumed that there are three species in the system:
two predator species A, B, and a single prey species C. Our model ignores the detailed
features and characters of real organisms, and instead uses simple ‘particles’ to represent the
individuals of each species. These particles are all located on lattice sites in a two-dimensional
space with periodic boundary conditions (i.e., on a torus) to minimize boundary effects. Site
exclusion is imposed to simulate the natural situation that the local population carrying
capacity is finite: Each lattice site can hold at most one particle, i.e., is either occupied
by one ‘predator’ A or B, occupied by one ‘prey’ C, or remains empty. This simple model
partly captures the population dynamics of a real ecological system because the particles
can predate, reproduce, and spontaneously die out; these processes represent the three main
reactions directly affecting population number changes. There is no specific hopping process
during the simulation so that a particle will never spontaneously migrate to other sites.
However, effective diffusion is brought in by locating the offspring particles on the neighbor
sites of the parent particles in the reproduction process [15,20]. The Monte Carlo simulation
algorithm in this chapter is similar to the one described in section 2.2. The stochastic
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reactions between neighboring particles are described as follows:

A
µA−→ ∅ , B

µB−→ ∅ ,

A+ C
λA−→ A+ A , B + C

λB−→ B +B ,

C
σ−→ C + C .

(4.1)

The ‘predator’ A (or B) may spontaneously die with with decay rate µA (µB) > 0. The
predators may consume a neighboring prey particle C, and simultaneously reproduce with
‘predation’ rate λA/B, which is to replace C with a new predator particle in the simulation.
In nature, predation and predator offspring production are separate processes. But such
an explicit separation would not introduce qualitative differences in a stochastic spatially
extended system in dimensions d < 4 [15]. When a prey particle has an empty neighboring
site, it can generate a new offspring prey individual there with birth rate σ > 0. Note
that a separate prey death process C → 0 can be trivially described by lowering the prey
reproduction rate and is therefore not included. We assume asexual reproduction for all
three species, i.e., only one parent particle is involved in the reproduction process. Each
species consists of homogeneous particles with identical reaction rates. Predator species
A and B may be considered as close relatives since they display similar behavior (decay,
predation and reproduction, effective diffusion) and most importantly share the same mobile
food source C. As for now we do not include evolution in the reproduction processes, all
offspring particles are exactly cloned from their parents. We are now going to show that
these two related predator species can never coexist.

4.2.2 Mean-field rate equations

The mean-field approximation ignores spatial and temporal correlations and fluctuations,
and instead assumes the system to be spatially well-mixed. We define a(t) and b(t) as
the predators’ population densities and c(t) as the prey density. Each predator population
decreases exponentially with death rate µ, but increases with the predation rate λ and prey
density c(t). The prey population c(t) increases exponentially with its reproduction rate
σ, but decreases as a function of the predator population densities. The mean-field rate
equations consequently read

da(t)

dt
= −µAa(t) + λAa(t)c(t) ,

db(t)

dt
= −µBb(t) + λBb(t)c(t) ,

dc(t)

dt
= σc(t)

[
1− a(t) + b(t) + c(t)

K

]
− λAa(t)c(t)− λBb(t)c(t) .

(4.2)

K > 0 represents the finite prey carrying capacity. In order to obtain stationary densities,
the left-side derivative terms are set to zero. The ensuing (trivial) extinction fixed points
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Figure 4.1: Adapted from paper [29] Fig.1. Snapshots of the spatial particle dis-
tribution for a single Monte Carlo simulation run of a stochastic predator-predator-
prey Lotka–Volterra model on a 512 × 512 square lattice with periodic boundary
conditions at (from left to right) t = 0 Monte Carlo Steps (MCS), t = 10, 000 MCS,
and t = 50, 000 MCS, with predation rates λA = 0.5, λB = 0.5, predator death
rates µA = 0.126, µB = 0.125, and prey reproduction rate σ = 1.0. Only at most
one particle per lattice site is allowed. Predator particles A are indicated in red,
predators B in yellow, and prey C in blue, while empty sites are shown in white.

are: (1) a = b = c = 0; (2) a = b = 0, c = K; (3) for µA < λAK: a = σ(λAK−µA)
λA(λAK+σ)

, b = 0,

c = µA/λA; (4) for µB < λBK: a = 0, b = σ(λBK−µB)
λB(λBK+σ)

, c = µB/λB. When µA/λA 6= µB/λB,

there exists no three-species coexistence state. Yet in the special situation µA/λA = µB/λB,
another line of fixed points emerges: ( σ

K
+λA)a+ ( σ

K
+λB)b+ σ

K
c = σ, c = µA/λA = µB/λB.

4.2.3 Lattice Monte Carlo simulation results

In the stochastic lattice simulations, population densities are defined as the particle numbers
for each species divided by the total number of lattice sites (512 × 512). We prepare the
system so that the starting population densities of all three species are the same, here set
to around 0.3, i.e., 78643 particles for each species, and the particles are initially randomly
distributed on the lattice. The system begins to leave this initial state as soon as the reactions
start and the ultimate stationary state is only determined by the reaction rates, independent
of the system’s initialization. We can test the simulation program by setting the parameters
as λA = λB = 0.5 and µA = µB = 0.125. Since species A and B are now exactly the same,
they coexist with an equal population density in the final stable state, as indeed observed
in the simulations. We increase the value of µA by 0.001 so that predator species A is more
likely to die than B. Fig. 4.1 shows the spatial distribution of the particles at 0, 10, 000, and
50, 000 Monte Carlo Steps (MCS, from left to right), indicating sites occupied by A particles
in red, B in yellow, C in blue, and empty sites in white. As a consequence of the reaction
scheme (4.1), specifically the clonal offspring production, surviving particles in effect remain
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Figure 4.2: Adapted from paper [29] Fig.2. The two predator species cannot
coexist in Monte Carlo simulations of the two-predator-one-prey model with fixed
reaction rates. (a) Time evolution of the population densities with fixed reaction
rates: predation rates λA = 0.5, λB = 0.5, predator death rates µA = 0.126,
µB = 0.125, and prey reproduction rate σ = 1.0; (b,c) temporal evolution of the
population densities ρA(t) and ρB(t) with fixed λA = 0.55, λB = 0.5, µB = 0.125,
and µA varying from 0.135, 0.136, to 0.137. The curves in (b) and (c) sharing the
same markers are from the same (single) simulation runs.

close to other individuals of the same species and thus form clusters. After initiating the
simulation runs, one typically observes these clusters to emerge quite quickly; as shown in
Fig. 4.1, due to the tiny difference between the death rates µA−µB > 0, the ‘weaker’ predator
species A gradually decreases its population number and ultimately goes extinct. Similar
behavior is commonly observed also with other sets of parameters: For populations with
equal predation rates, only the predator species endowed with a lower spontaneous death
rate will survive. Fig. 4.2(a) records the temporal evolution of the three species’ population
densities. After about 60, 000 MCS, predator species A has reached extinction, while the
other two populations eventually approach non-zero constant densities. With larger values
of µA such as 0.127 or 0.13, species A dies out within a shorter time interval; the extinction
time increases with diminishing death rate difference |µA − µB|.
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In Figs. 4.2(b) and (c), we set λA = 0.55, λB = 0.5, µB = 0.125, and various values of
µA > 0.13. The larger rate λA gives species A an advantage over B in the predation process,
while the bigger rate µA enhances the likelihood of death for A as compared to B. Upon
increasing µA from 0.135 to 0.137, we observe a phase transition from species B dying out to
A going extinct in this situation with competing predation and survival advantages. When
µA thus exceeds a certain critical value (in this example near 0.136), the disadvantages
of high death rates cannot balance the gains due to a more favorable predation efficiency;
hence predator species A goes extinct. In general, whenever the reaction rates for predator
species A and B are not exactly the same, either A or B will ultimately die out, while the
other species remains in the system, coexisting with the prey C. This corresponds to actual
biological systems where two kinds of animals share terrain and compete for the same food.
Since there is no character displacement occurring within one generation, the weaker species’
population will gradually decrease. This trend cannot be turned around unless the organisms
improve their capabilities or acquire new skills to gain access to other food sources; either
change tends to be accompanied by character displacements [57–60].

In order to quantitatively investigate the characteristic time for the weaker predator species
to vanish, we now analyze the relation between the relaxation time tc of the weaker predator
species (A here) and the difference of death rates |µA − µB| under the condition that λA =
λB. Fig. 4.2(a) indicates that prey density (green triangles) reaches its stationary value
much faster than the predator populations. When |µA − µB| becomes close to zero, the
system returns to a two-species model, wherein the relaxation time of the prey species C is
finite. However, the relaxation time of either predator species would diverge because it takes
longer for the stronger species to remove the weaker one when they become very similar
in their death probabilities. Upon rewriting eqs. (4.2) for λA = λB by replacing the prey
density c(t) with its stationary value µB/λB, we obtain a linearized equation for the weaker

predator density: da(t)
dt

= −|µA − µB|a(t), describing exponential relaxation with decay time
tc = 1/|µA − µB|.

We further explore the relation between the decay rate of the weak species population density
and the reaction rates through Monte Carlo simulations. Fig. 4.3(a) shows an example of the
weaker predator A population density decay for fixed reaction rates λA = 0.5, λB = 0.5, µA =
0.126, µB = 0.125, and σ = 1.0, and in the inset also the corresponding Fourier amplitude
f(ω) = |

∫
e−iωt ρA(t) dt| that is calculated by means of the fast Fourier transform algorithm.

Assuming an exponential decay of the population density according to ρA(t) ∼ e−t/tc , we
identify the peak half-width at half maximum with the inverse relaxation time 1/tc. For other
values of µA > 0.125, the measured relaxation times tc for the predator species A are plotted
in Fig. 4.3(b). We also ran simulations for various parameter values µA < 0.125, for which
the predator population B would decrease toward extinction instead of A, and measured the
corresponding relaxation time for ρB(t), plotted in Fig. 4.3(b) as well. The two curves overlap
in the main panel of Fig. 4.3(b), confirming that tc is indeed a function of |µA − µB| only.
The inset of Fig. 4.3(b) demonstrates a power law relationship tc ∼ |µA−µB|−zν between the
relaxation time and the reaction rate difference, with exponent zν ≈ 1.23± 0.01 as inferred
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Figure 4.3: Adapted from paper [29] Fig.3. Characteristic decay time of the
weaker predator species measured in Monte Carlo simulations of the two-predator-
one-prey model with fixed reaction rates. (a) Main panel: temporal evolution of the
predator population density ρA(t) with predation rates λA = 0.5, λB = 0.5, predator
death rates µA = 0.126, µB = 0.125, and prey reproduction rate σ = 1.0. Inset:
Fourier transform amplitude f(ω) of the predator density time series ρA(t). (b)
Main panel: characteristic decay time tc as obtained from the peak width of f(ω),
versus the death rate difference |µA − µB|, with all other reaction rates fixed as in
(a). Inset: the black triangles show the data points log10 tc versus log10(|µA−µB|),
while the red straight line with slope −1.23±0.01 is inferred from linear regression.

from the slope in the double-logarithmic graph via simple linear regression. This value is to
be compared with the corresponding exponent zν ≈ 1.295±0.006 for the directed percolation
(DP) universality class [37]. Directed percolation [61] represents a class of models that share
identical values of their critical exponents at their phase transition points, and is expected to
generically govern the critical properties at non-equilibrium phase transitions that separate
active from inactive, absorbing states [21,22]. Our result indicates that the critical properties
of the two-predator-one-prey model with fixed reaction rates at the extinction threshold of
one predator species appear to also be described by the DP universality class.

As already shown in Fig. 4.1, individuals from each species form clusters in the process
of the stochastically occurring reactions (4.2). The correlation lengths ξ, obtained from
equal-time correlation functions C(x), characterize the average sizes of these clusters. The
definition of the correlation functions between the different species α, β = A,B,C is Cαβ(x) =
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Figure 4.4: Adapted from paper [29] Fig.4. Time evolution for correlation lengths
during Monte Carlo simulations of the two-predator-one-prey model with fixed
reaction rates. (a) Main panel: correlation functions C(x) after the system has
evolved for one half of the relaxation time 0.5tc ≈ 2386 MCS, with reaction rates
λA = 0.5, λB = 0.5, µA = 0.128, µB = 0.125, and σ = 1.0. Inset: ln(CAA) with
a simple linear regression of the data points with x ∈ [4, 14] (red straight line)
that yields the characteristic correlation decay length ξAA ≈ 5.8. (b,c,d) Measured
correlation lengths ξAA, ξAB, and ξBB as function of the system evolution time t
relative to tc, with reaction rates as in (a) except µA = 0.128 (blue triangles left),
0.132 (green triangles right), 0.136 (red crosses), and 0.140 (cyan diamonds).
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〈nα(x)nβ(0)〉 − 〈nα(x)〉〈nβ(0)〉, where nα(x) = 0, 1 denotes the local occupation number of
species α at site x. First choosing a lattice site, and then a second site at distance x away,
we note that the product nα(x)nβ(0) = 1 only if a particle of species β is located on the
first site, and a particle of species α on the second site; otherwise the product equals 0. We
then average over all sites to obtain 〈nα(x)nβ(0)〉. 〈nα(x)〉 represents the average population
density of species α.

In our Monte Carlo simulations we find that although the system has not yet reached sta-
tionarity at 0.5 tc, its correlation functions do not vary appreciably during the subsequent
time evolution. This is demonstrated in Figs. 4.4(b-d) which show the measured correlation
lengths from 0.5 tc to 3.75 tc, during which time interval the system approaches its quasi-
stationary state. The main panel in Fig. 4.4(a) shows the measured correlation functions
after the system has evolved for 0.5 tc ≈ 2386 MCS, with predator A death rate µA = 0.128.
Individuals from the same species are evidently spatially correlated, as indicated by the
positive values of Cαα. Particles from different species, on the other hand, display anti-
correlations. The inset demonstrates exponential decay: CAA(x) ∼ e−|x|/ξAA , where ξAA is
obtained from linear regression of ln(CAA(x)). In the same manner, we calculate the correla-
tion length ξAA, ξBB, and ξAB for every 0.5 tc the system evolves, for different species A death
rates µA = 0.128, 0.132, 0.136, and 0.140, respectively. Fig. 4.4(b) shows that predator A
clusters increase in size by about two lattice constants within 1.5 tc after the reactions begin,
and then stay almost constant. In the meantime, the total population number of species A
decreases exponentially as displayed in Fig. 4.3, which indicates that the number of predator
A clusters decreases quite fast. Fig. 4.4(c) does not show prominent changes for the values
of ξAB(t) as the reaction time t increases, demonstrating that species A and B maintain
a roughly constant distance throughout the simulation. In contrast, Fig. 4.4(d) depicts a
significant temporal evolution of ξBB(t): the values of ξBB are initially close to those of ξAA,
because of the coevolution of both predator species A and B; after several decay times tc,
however, there are few predator A particles left in the system. The four curves for ξBB would
asymptotically converge after species A has gone fully extinct.

To summarize this chapter, the two indirectly competing predator species cannot coexist
in the lattice three-species model with fixed reaction rates. The characteristic time for the
weaker predator species to go extinct diverges as its reaction rates approach those of the
stronger species. We do not observe large fluctuations of the correlation lengths during the
system’s time evolution, indicating that spatial structures remain quite stable throughout
the Monte Carlo simulation.
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4.3 Introducing character displacement

4.3.1 Model description

The Lotka–Volterra model simply treats the individuals in each population as particles en-
dowed with uniform birth, death, and predation rates. This does not reflect a natural envi-
ronment where organisms from the same species may still vary in predation efficiency and
death or reproduction rates because of their size, strength, age, affliction with disease, etc.
In order to describe individually varying efficacies, we introduce a new character η ∈ [0, 1],
which plays the role of an effective trait that encapsulates the effects of phenotypic changes
and behavior on the predation / evasion capabilities, assigned to each individual particle [47].
When a predator Ai (or Bj) and a prey Ck occupy neighboring lattice sites, we set the prob-
ability (ηAi + ηCk)/2 [or (ηBj + ηCk)/2] for Ck to be replaced by an offspring predator Az (or
Bz). The indices i, j, k, and z here indicate specific particles from the predator populations
A or B, the prey population C, and the newly created predator offspring in either the A or B
population, respectively. In order to confine all reaction probabilities in the range [0, 1], the
efficiency ηAz (or ηBz) of this new particle is generated from a truncated Gaussian distribu-
tion that is centered at its parent particle efficiency ηAi (or ηBj) and restricted to the interval
[0, 1], with a certain prescribed distribution width (standard deviation) ωηA (or ωηB). When
a parent prey individual Ci gives birth to a new offspring particle Cz, the efficiency ηCz is
generated through a similar scheme with a given width ωηC . Thus any offspring’s efficiency
entails inheriting its parent’s efficacy but with some random mutational adaptation or dif-
ferentiation. The distribution width ω models the potential range of the evolutionary trait
change: for larger ω, an offspring’s efficiency is more likely to differ from its parent particle.
Note that the width parameters ω here are unique for particles from the same species, but
may certainly vary between different species. In previous work, we studied a two-species
system (one predator and one prey) with such demographic variability [47,62]. In that case,
the system arrived at a final steady state with stable stationary positive species abundances.
On a much faster time scale than the species density relaxation, their respective efficiency
η distributions optimized in this evolutionary dynamics, namely: the predators’ efficacies
rather quickly settled at a distribution centered at values near 1, while the prey efficiencies
tended to small values close to 0. This represents a coevolution process wherein the predator
population on average gains skill in predation, while simultaneously the prey become more
efficient in evasion so as to avoid being killed.

4.3.2 Quasi-species mean-field equations and numerical solution

We aim to construct a mean-field description in terms of quasi-subspecies that are charac-
terized by their predation efficacies η. To this end, we discretize the continuous interval of
possible efficiencies 0 ≤ η ≤ 1 into N bins, with the bin midpoint values ηi = (i + 1/2)/N ,
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i = 0, . . . , N − 1. We then consider a predator (or prey) particle with an efficacy value in
the range ηi − 1/2 ≤ η ≤ ηi + 1/2 to belong to the predator (or prey) subspecies i. The
probability that an individual of species A with predation efficiency η1 produces offspring
with efficiency η2 is assigned by means of a reproduction probability function f(η1, η2). In
the binned version, we may use the discretized form fij = f(ηi, ηj). Similarly, we have a
reproduction probability function gij for predator species B and hij for the prey C. Finally,
we assign the arithmetic mean λik = (ηi + ηk)/2 to set the effective predation interaction
rate of predator i with prey k [47, 62].

These prescriptions allow us to construct the following coupled mean-field rate equations for
the temporal evolution of the subspecies populations:

∂ai(t)

∂t
= −µai(t) +

∑
jk

λkjfkiak(t)cj(t) ,

∂bi(t)

∂t
= −µbi(t) +

∑
jk

λkjgkibk(t)cj(t) ,

∂ci(t)

∂t
= σ

∑
k

hkick(t)

(
1−

∑
z[az(t) + bz(t) + cz(t)]

K

)
−
∑
j

λjiaj(t)ci(t)−
∑
j

λjibj(t)ci(t) .

(4.3)

Steady-state solutions are determined by setting the time derivatives to zero, ∂ai(t)/∂t =
∂bi(t)/∂t = ∂ci(t)/∂t = 0. Therefore, the steady-state particle counts can always be found
by numerically solving the coupled implicit equations

µai =
∑
jk

λkjfkiakcj ,

µbi =
∑
jk

λkjgkibkcj ,

σ
∑
k

hkick(t)

(
1−

∑
z[az(t) + bz(t) + cz(t)]

K

)
=
∑
j

λjiajci +
∑
j

λjibjci .

(4.4)

In the special case of a uniform inheritance distribution for all three species, fij = gij =
hij = 1/N , the above equations can be rewritten as

µ(ai + bi) =
1

N

∑
jk

λkj(ak + bk)cj ,

1

N
σ
∑
k

ck

(
1−

∑
z[az(t) + bz(t) + cz(t)]

K

)
=
∑
j

λji(aj + bj)ci ,

(4.5)
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whose non-zero solutions are

(i) ai = 0,
bi∑
j bj

=
1

N
,

ci∑
j cj

=
2

N ln 3

1

1 + 2ηi
;

(ii) bi = 0,
ai∑
j aj

=
1

N
,

ci∑
j cj

=
2

N ln 3

1

1 + 2ηi
;

(iii)
ai + bi∑
j(aj + bj)

=
1

N
,

ci∑
j cj

=
2

N ln 3

1

1 + 2ηi
.

(4.6)

We could not obtain the full time-dependent solutions to the mean-field equations in closed
form. We therefore employed an explicit fourth-order Runge–Kutta scheme to numerically
solve eqs. (4.3), using a time step of ∆t = 0.1, the initial condition ai(t = 0) = bi(t = 0) =
ci(t = 0) = 1/(3N) for i = 1, ..., N , a number of subspecies N = 100, and the carrying
capacity K = 1. An example for the resulting time evolution of the predator B density is
shown in Fig. 4.5(b); its caption provides the remaining parameter values.

4.3.3 Lattice simulation

We now proceed to Monte Carlo simulations for this system on a two-dimensional square
lattice, and first study the case where trait evolution is solely introduced to the predation
efficiencies η. In these simulation, the values of µ and σ are held fixed, as is the nonzero
distribution width ω, so that an offspring’s efficiency usually differs from its parent particle.
In accord with the numerical solutions for the mean-field equations (4.3), we find that the
three-species system (predators A and B, prey C) is generically unstable and will evolve into
a final two-species steady state, where one of the predator species goes extinct, depending
only on the value of ω (given that µ and σ are fixed).

At the beginning of the simulation runs, the initial population densities, which are the
particle numbers of each species divided by the lattice site number, are assigned the same
value 0.3 for all the three species. The particles are randomly distributed on the lattice sites.
We have checked that the initial conditions do not influence the final state by varying the
initial population densities and efficiencies. We fix the predator death rate to µ = 0.125 for
both species A and B, and set the prey reproduction rate as σ = 1.0. The predation efficacies
for all particles are initialized at η = 0.5. We have varied the values of the distribution
width ω and observed the final (quasi-)steady states. For the purpose of simplification, we
fix ωηA = ωσC = 0.1, and compare the final states when various values of ωηB are assigned.

Fig. 4.5(a) shows the population density ρB(t) of predator species B with the listed values for
ωηB. Each curve depicts a single simulation run. When ωηB > 0.1, the ρB(t) quickly tends
to zero; following the extinction of the B species, the system reduces to a stable A-C two-
species predator-prey ecology. When ωηB = 0.1, there is no difference between species A and
B, so both populations survive with identical final population density; for ωηB = 0.01, 0.05,
predator species A finally dies out and the system is reduced to a B-C two-species system; we
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Figure 4.5: Copied from paper [29] Fig.5. (a) Stochastic lattice simulation of the
two-predator-one-prey model with “Darwinian” evolution only introduced to pre-
dation efficiency η. Population density ρB(t) with various values of efficiency distri-
bution width ωηB = 0.001 (red dot), 0.01 (green triangle up), 0.05 (blue square), 0.1
(pink plus), 0.15 (orange triangle down) while all the other reaction rates are fixed
as µ = 0.125, σ = 1.0 and ωηA = ωηC = 0.1. Time t is rescaled with the relaxation
time t0s = 1900 MCS of the blue-square curve (ωηB = 0.05). (b) Numerical solution
of the mean-field eqs. (4.3) with b(t) = 1

N

∑
i bi(t) denoting the average subspecies

density. The parameters are set at the same values as for the lattice simulations.
Time t is normalized with the relaxation time t0 = 204.32 of the ωηB = 0.05 curve.
Note that the limited carrying capacity in both lattice simulations and the mean-
field model introduces damping which suppresses the characteristic LV oscillations.

remark that the curve for ωηB = 0.01 (green triangles up) decreases first and then increases
again at very late time points which is only partially shown in the graph. For ωηB = 0.001
and even smaller, ρB(t) goes to zero quickly, ultimately leaving an A-C two-species system.
We tried another 100 independent runs and obtained the same results: for ωηB 6= ωηA, one
of the predator species will vanish and the remaining one coexists with the prey C. When
ωηB is smaller than ωηA but not too close to zero, predator species B prevails, while A goes
extinct. For ωηB = 0, there is of course no evolution for these predators at all, thus species
A will eventually outlast B. Thus there exists a critical value ωBc for the predation efficacy
distribution width ωηB, at which the probability of either predator species A or B to win the
‘survival game’ is 50%. When ωBc < ωηB < ωηA, B has an advantage over A, i.e., the survival
probability of B is larger than 50%; conversely, for ωBc > ωηB, species A outcompetes B.
This means that the evolutionary ‘speed’ is important in a finite system, and is determined
by the species plasticity ω.

Fig. 4.5(b) shows the numerical solution of the associated mean-field model defined by
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eqs. (4.3). In contrast to the lattice simulations, small ωηB do not yield extinction of species
B; this supports the notion that the reentrant phase transition from B to A survival at
very small values of ωηB is probably a finite-size effect, as discussed below. Because of
the non-zero carrying capacity, oscillations of population densities are largely suppressed in
both Monte Carlo simulations and the mean-field model. Spatio-temporal correlations in the
stochastic lattice system rescale the reaction rates, and induce a slight difference between
the steady-state population densities in Figs. 4.5(a) and (b) even though the microscopic
rate parameters are set to identical values. For example, for ωηB = 0.1, the quasi-stationary
population density of predator species B is ≈ 0.19 (pink plus symbols) in the lattice model,
but reaches 0.25 in the numerical solution of the mean-field rate equations. Time t is mea-
sured in units of Monte Carlo Steps (MCS) in the simulation; there is no method to directly
convert this (discrete) Monte Carlo time to the continuous time in the mean-field model.
For the purpose of comparing the decay of population densities, we therefore normalize time
t by the associated relaxation times t0s = 1900 MCS in the simulations and t0 = 204.32 in
the numerical mean-field solution; both are calculated by performing a Fourier transform of
the time-dependent prey densities ρB(t) and b(t) for ωηB = 0.05 (blue squares).

Our method to estimate ωBc was to scan the value space of ωηB ∈ [0, 1], and perform 1000
independent simulation runs for each value until we found the location in this interval where
the survival probability for either A or B predator species was 50%. With the simulations
on a 512 × 512 system and all the parameters set as mentioned above, ωBc was measured
to be close to 0.008. We repeated these measurements for various linear system sizes L
in the range [128, 2048]. Fig. 4.6(a) shows ωBc as a function of 1/L, indicating that ωBc
decreases with a divergent rate as the system is enlarged. Because of limited computational
resources, we were unable to extend these results to even larger systems. According to the
double-logarithmic analysis shown in Fig. 4.6(b), we presume that ωBc would fit a power
law ωBc ∼ L−θ with exponent θ = 0.2. This analysis suggests that ωBc = 0 in an infinitely
large system, and that the reentrant transition from B survival to A survival in the range
ωηB ∈ [0, ωηA] is likely a finite-size effect. We furthermore conclude that in the three-species
system (two predators and a single prey) the predator species with a smaller value of the
efficiency distribution width ω always outlives the other one. A smaller ω means that the
offspring’s efficiency is more centralized at its parent’s efficacy; mutations and adaptations
have smaller effects. Evolution may thus optimize the overall population efficiency to higher
values and render this predator species stronger than the other one with larger ω, which is
subject to more, probably deleterious, mutations. These results were all obtained from the
measurements with ωηA = 0.1. However, other values of ωηA including 0.2, 0.3, and 0.4 were
tested as well, and similar results observed.

Our numerical observation that two predator species cannot coexist raises the challenge to
explain multi-species coexistence in a system where two related predator species compete
for the same food resource. Notice that ‘Darwinian’ evolution was only applied to the
predation efficiency in our model. However, natural selection could also cause lower predator
death rates and increased prey reproduction rates so that their survival chances would be
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Figure 4.6: Adapted from paper [29] Fig.6. (a) Stochastic lattice simulation
of the two-predator-one-prey model with “Darwinian” evolution only introduced to
predation efficiency η: Critical distribution width ωBc as a function of 1/L, where L
is the linear system size, with predator death rate µ = 0.125, prey reproduction rate
σ = 1.0, and ωηA = 0.1. The data are obtained with L ∈ [128, 256, 512, 1024, 2048].
(b) Double-logarithmic plot of the critical width ωBc as a function of system size
L; the blue straight line is a simple linear regression of the 4 points with L ∈
[256, 512, 1024, 2048] and the slope is -0.2. The point with L = 128 does not fall on
the straight line because of additional finite-size effects.

enhanced in the natural selection competition. One ecological example are island lizards that
benefit from decreased body size because large individuals will attract attacks from their
competitors [26]. In the following, we adjust our model so that the other two reaction rates
µ and σ do not stay fixed anymore, but instead evolve by following the same mechanism as
previously implemented for the predation efficacies η. The death rate of an offspring predator
particle is hence generated from a truncated Gaussian distribution centered at its parent’s
value, with positive standard deviations ωµA and ωµB for species A and B, respectively. The
(truncated) Gaussian distribution width for the prey reproduction rate is likewise set to a
non-zero value ωσ.

In the simulations, the initial population densities for all three species are set at 0.3 with the
particles randomly distributed on the lattice. The reaction rates and efficiencies for these
first-generation individuals were chosen as ηA0 = ηB0 = ηC0 = 0.5, µA0 = µB0 = 0.125,
and σ0 = 1.0. With this same initial set, we ran simulations with different values of the
Gaussian distribution widths ω. Fig. 4.7 displays the temporal evolution of the three species’
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Figure 4.7: Adapted from paper [29] Fig.7. Population densities ρ(t) from Monte
Carlo simulations with “Darwinian” evolution introduced to both the predation
efficiency η and predator death rate µ, while the prey reproduction rate is fixed at
σ = 1.0. The species are indicated as blue dots for A, red squares for B and green
triangles for C. The final states are A dying out; coexistence; coexistence; and B
dying out from graph (a) to (d) with ωηA = 0.11, ωµA = 0.3, ωµB = 0.125 in (a),
ωηA = 0.08, ωµA = 0.1, ωµB = 0.09 in (b), ωηA = 0.08, ωµA = 0.4, ωµB = 0.39 in (c)
and ωηA = 0.08, ωµA = 0.4, ωµB = 0.09 in (d), while ωηB = 0.1, ωηC = 0.1, ωσC = 0
for all four plots.
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population densities with four sets of given widths ω: In Fig. 4.7(a), ωηA = 0.11, ωηB = 0.1,
ωηC = 0.1, ωµA = 0.3, ωµB = 0.125, and ωσC = 0. Since a smaller width ω gives advantages
to the corresponding species, ωηB < ωηA and ωµB < ωµA render predators B stronger than A
in general. As the graph shows, species A dies out quickly and finally only B and C remain
in the system. In all four cases, the prey C stay active and do not become extinct.

However, it is not common that a species is stronger than others in every aspect, so we next
set ω so that A has advantages over B in predation, i.e., ωηA < ωηB, but is disadvantaged
through broader-distributed death rates ωµA > ωµB. In Fig. 4.7(b), ωηA = 0.08, ωηB = 0.1,
ωηC = 0.1, ωµA = 0.1, ωµB = 0.09, and ωσC = 0; in Fig. 4.7(c), ωηA = 0.08, ωηB = 0.1, ωηC =
0.1, ωµA = 0.4, ωµB = 0.39, and ωσC = 0. In either case, none of the three species becomes
extinct, and three-species coexistence will persist at least for 10 000 MCS. Monitoring the
system’s activity, we see that the system remains in a dynamic state with a large amount
of reactions happening. When we repeat the measurements with other independent runs,
similar results are observed, and we find the slow decay of the population densities to be
rather insensitive to the specific values of the widths ω. As long as we implement a smaller
width ω for the A predation efficiency than for the B species, but a larger one for its death
rates, or vice versa, three-species coexistence emerges. Of course, when the values of the
standard deviations ω differ too much between the two predator species, one of them may still
approach extinction fast. One example is shown in Fig. 4.7(d), where ωηA = 0.08, ωηB = 0.1,
ωηC = 0.1, ωµA = 0.4, ωµB = 0.09, and ωσC = 0; since ωµA is about five times larger than
ωµB here, the predation advantage of species A cannot balance its death rate disadvantage,
and consequently species A is driven to extinction quickly. Yet the coexistence of all three
competing species in Figs. 4.7(b) and (c) does not persist forever, and at least one species will
die out eventually, after an extremely long time. Within an intermediate time period, which
still amounts to thousands of generations, they can be regarded as quasi-stable because the
decay is very slow. This may support the idea that in real ecosystems perhaps no truly stable
multiple-species coexistence exists, and instead the competing species are in fact under slow
decay which is not noticeable within much shorter time intervals. In Figs. 4.7(a) and (d),
the predator A population densities decay exponentially with relaxation times of order 100
MCS, while the corresponding curves in (b) and (c) approximately follow algebraic functions
(power law decay).

However, we note that in the above model implementation the range of predator death rates µ
was the entire interval [0, 1], which gives some individuals a very low chance to decay. Hence
these particles will stay in the system for a long time, which accounts for the long-lived
transient two-predator coexistence regime. To verify this assumption, we set a positive lower
bound on the predators’ death rates, preventing the presence of near-immortal individuals.
We chose the value of the lower bound to be 0.001, with the death rates µ for either predator
species generated in the predation and reproduction processes having to exceed this value.
Indeed, we observed no stable three-species coexistence state, i.e., one of the predator species
was invariably driven to extinction, independent of the values of the widths ω, provided they
were not exactly the same for the two predator species. To conclude, upon introducing
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a lower bound for their death rates, the two predator species cannot coexist despite their
dynamical evolutionary optimization.

4.4 Effects of direct competition between predator species

4.4.1 Inclusion of direct predator competition and mean-field anal-
ysis

We proceed to include explicit direct competition between both predator species in our
model. The efficiencies of predator particles are most likely to be different since they are
randomly generated from truncated Gaussian distributions. When a strong A individual
(i.e., with a large predation efficacy η) meets a weaker B particle on an adjacent lattice site,
or vice versa, we now allow predation between both predators to occur. Direct competition
is common within predator species in nature. For example, a strong lizard may attack
and even kill a small lizard to occupy its habitat. A lion may kill a wolf, but an adult
wolf might kill an infant lion. Even though cannibalism occurs in nature as well, we here
only consider direct competition and predation between different predator species. In our
model, direct competition between the predator species is implemented as follows: For a
pair of predators Ai and Bj located on neighboring lattice sites and endowed with respective
predation efficiencies ηAi and ηBj < ηAi, particle Bj is replaced by a new A particle Az with
probability ηAi − ηBj; conversely, if ηAi < ηBj, there is a probability ηBj − ηAi that Ai is
replaced by a new particle Bz.

We first write down and analyze the mean-field rate equations for the simpler case when
the predator species compete directly without evolution, i.e., all reaction rates are uniform
and constant. We assume that A is the stronger predator with λA > λB, hence only the
reaction A+B → A+A is allowed to take place with rate λA−λB, but not its complement,
supplementing the original reaction scheme listed in (4.1). The associated mean-field rate
equations read

da(t)

dt
= −µAa(t) + λAa(t)c(t) + (λA − λB)a(t)b(t) ,

db(t)

dt
= −µBb(t) + λBb(t)c(t)− (λA − λB)a(t)b(t) ,

dc(t)

dt
= σc(t)

[
1− a(t) + b(t) + c(t)

K

]
− λAa(t)c(t)− λBb(t)c(t) ,

(4.7)
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with the non-zero stationary solutions

(i) a = 0 , b =
σ(KλB − µB)

λB(σ +KλB)
, c =

µB
λB

,

(ii) a =
σ(KλA − µA)

λA(σ +KλA)
, b = 0 , c =

µA
λA

,

(iii) a+ b+ c =
µA − µB
λA − λB

, when a(0) + b(0) + c(0) =
µA − µB
λA − λB

.

(4.8)

Within this mean-field theory, three-species coexistence states exist only when the total
initial population density is set to a(0) + b(0) + c(0) = µA−µB

λA−λB
. In our lattice simulations,

however, we could not observe any three-species coexistence state even when we carefully
tuned one reaction rate with all others held fixed.

Next we reinstate ‘Darwinian’ evolution for this extended model with direct competition
between the predator species. We utilize the function λ̂ij = |ηi − ηj| to define the reaction
rate between predators A and B. For the case that the predator death rate µ is fixed for
both species A and B, the ensuing quasi-subspecies mean-field equations are

∂ai(t)

∂t
= −µai(t) +

∑
jk

λkjfkiak(t)cj(t) +
∑
j<k

λ̂kjfkiak(t)bj(t)

−
∑
j>i

λ̂ijai(t)bj(t) ,

∂bi(t)

∂t
= −µbi(t) +

∑
jk

λkjgkibk(t)cj(t) +
∑
j<k

λ̂kjgkibk(t)aj(t)

−
∑
j>i

λ̂jibi(t)aj(t)

∂ci(t)

∂t
= σ

∑
j

hjicj(t)

(
1−

∑
z[az(t) + bz(t) + cz(t)]

K

)
−
∑
j

λji[aj(t) + bj(t)]ci(t) .

(4.9)

Since a closed set of solutions for eqs. (4.9) is very difficult to obtain, we resort to numerical
integration. As before, we rely on an explicit fourth-order Runge–Kutta scheme with time
step ∆t = 0.1, initial conditions ai(t = 0) = bi(t = 0) = ci(t = 0) = 1/N , number of
subspecies N = 100, and carrying capacity K = 3. Four examples for such numerical
solutions of the quasi-subspecies mean-field equations are shown in Fig. 4.8, and will be
discussed in the following subsection.
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Figure 4.8: Copied from paper [29] Fig.8. Numerical solutions to eqs. (4.9) of
the two-predator subspecies densities a(t) = 1

N

∑
i ai(t) (dashed lines) and b(t) =

1
N

∑
i bi(t) (solid lines) for different ωη,B and the parameters ωη,A = 0.14, ωη,C =∞,

σ = 1, and µ = 0.5. (a) Population densities in the presence of predator-predator
competition and (b) in the absence of competition. Note that coexistence is only
possible in the presence of direct predator-predator competition.

4.4.2 The quasi-stable three-species coexistence region

For the three-species system with two predators A, B and prey C, we now introduce ‘Dar-
winian’ evolution to both the predator death rates µ and the predation efficiencies η. In
addition, we implement direct competition between the predators A and B. We set the
lower bound of the death rates µ to 0.001 for both predator species. The simulations are
performed on a 512 × 512 square lattice with periodic boundary conditions. Initially, indi-
viduals from all three species are randomly distributed in the system with equal densities
0.3. Their initial efficiencies are chosen as ηA = 0.5 = ηB and ηC = 0. Since there is no
evolution of the prey efficiency, ηC will stay zero throughout the simulation. The distribution
widths for the predation efficiencies are fixed to ωηA = 0.1 and ωηB = 0.15, giving species A
an advantage over B in the non-linear predation process. We select the width of the death
rate distribution of species B as ωµB = 0.1. If ωµA is also chosen to be 0.1, the B popu-
lation density would decay exponentially. ωµA > ωµB = 0.1 is required to balance species
A’s predation adaptation advantage so that stable coexistence is possible. Fig. 4.9 shows
the population densities resulting from our individual-based Monte Carlo simulations as a
function of time, for different values ωµA = 0.132, 0.140, and 0.160. These graphs indicate
the existence of phase transitions from species B extinction in Fig. 4.9(a) to predator A-B
coexistence in Fig. 4.9(b), and finally to A extinction in Fig. 4.9(c)). In Fig. 4.9(a), species
A is on average more efficient than B in predation, but has higher death rates. Predator
species B is in general the weaker one, and hence goes extinct after about 100 000 MCS.
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Figure 4.9: Adapted from paper [29] Fig.9. Data obtained from Monte Carlo
simulations with direct competition between predator species, as well as evolution-
ary dynamics introduced: Temporal record of population densities with ωηA = 0.1,
ωηB = 0.15, ωµB = 0.1 and ωµA = 0.132, 0.140, 0.160 from left to right with species
indicated as A in black dots, B in red triangles up, and C green triangles down.

Fig. 4.9(b) shows a (quasi-)stable coexistence state with neither predator species dying out
within our simulation time. In Fig. 4.9(c), ωµA is set so high that A particles die much faster
than B individuals, so that finally species A would vanish entirely.

Fig. 4.8(a) displays the time evolution for the solutions of the corresponding quasi-subspecies
mean-field model (4.9) for four different values of the species B efficiency width ωη,B. In
particular, it shows that there is a region of coexistence in which both predator species reach
a finite steady-state density, supporting the Monte Carlo results from the stochastic lattice
model. In contrast, numerical solutions of eqs. (4.9) with λ̂ij = 0, equivalent to eqs. (4.3),
exhibit no three-species coexistence region; see Fig. 4.8(b).

At an active-to-absorbing phase transition threshold, one should anticipate the standard
critical dynamics phenomenology for a continuous phase transition: exponential relaxation
with time becomes replaced by much slower algebraic decay of the population density [21,22].
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We determine the three-species coexistence range for our otherwise fixed parameter set to
be in the range ωµA ∈ [0.136, 0.159]. Fig. 4.10(a) shows an exponential decay of the predator
population A density with ωµA = 0.2, deep in the absorbing extinction phase. The system
would attain B-C two-species coexistence within of the order 104 MCS. We also ran the
Monte Carlo simulation with ωµA = 0.1, also inside an absorbing region, but now with
species B going extinct, and observed exponential decay of ρB(t). By changing the value of
ωµA to 0.136 as plotted in Fig. 4.10(b), ρB(t) ∼ t−αB fits a power law decay with critical
exponent αB = 1.22. Since it would take infinite time for ρB to reach zero while species
A and C densities remain finite during the entire simulation time, the system at this point
already resides at the threshold of three-species coexistence. Upon increasing ωµA further,
all three species densities would reach their asymptotic constant steady-state values within
a finite time and then remain essentially constant (with small statistical fluctuations). At
the other boundary of this three-species coexistence region, ωµA = 0.159, the decay of ρA(t)
also fits a power law as depicted in Fig. 4.10(c), and ρB(t) would asymptotically reach a
positive value. However, the critical power law exponent is in this case estimated to be
αA = 0.76. We do not currently have an explanation for the distinct values observed for the
decay exponents αA and αB, neither of which are in fact close to the corresponding directed-
percolation value α = 0.45 [36]. If we increase ωµA even more, species A would die out
quickly and the system subsequently reduce to a B-C two-species predator-prey coexistence
state. We remark that the critical slowing-down of the population density at either of the
two thresholds as well as the associated critical aging scaling may serve as a warning signal
of species extinction [20,35].

It is of interest to study the spatial properties of the particle distribution. We choose
ωµA = 0.147 so that the system resides deep in the three-species coexistence region according
to Fig. 4.10. The correlation functions are measured after the system has evolved for 10 000
MCS as shown in the main plot of Fig. 4.11. The results are similar to those in the previous
sections in the sense that particles are positively correlated with the ones from the same
species, but anti-correlated to individuals from other species. The correlation functions for
both predator species are very similar: CAA(x) and CBB(x) overlap each other for x ≥ 5, and
CAC and CBC coincide for x ≥ 2 lattice sites. The inset displays the measured characteristic
correlation length as functions of simulation time, each of which varies on the scale of ∼
0.1 during 70 000 MCS, indicating that the species clusters maintain nearly constant sizes
and keep their respective distances almost unchanged throughout the simulations. The
correlation lengths ξAA and ξBB are very close and differ only by less than 0.2 lattice sites.
These data help to us to visualize the spatial distribution of the predators: The individuals
of both A and B species arrange themselves in clusters with very similar sizes throughout the
simulation, and their distances to prey clusters are almost the same as well. Hence predator
species A and B are almost indistinguishable in their spatial distribution.
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Figure 4.10: Adapted from paper [29] Fig.10. Monte Carlo simulations with
direct predator competition: (a) Exponential decay of the population density ρA(t)
with ωµA = 0.2, ωηA = 0.1, ωηB = 0.15, and ωµB = 0.1, while the red straight
is obtained from a linear regression of the data points for x ≥ 2000, with slope
-0.00044. (b) Algebraic decay of the species density of B with ωµA = 0.136 and the
other parameters same as in (a); (c) Power-law decay of ρA(t) when ωµA = 0.159.
The blue squares are measured population densities from the simulations, while the
red straight lines indicate simple linear regressions of the simulation data.

4.4.3 Monte Carlo simulation results in a zero-dimensional system

The above simulations were performed on a two-dimensional system by locating the particles
on the sites of a square lattice. Randomly picked particles are allowed to react (predation,
reproduction) with their nearest neighbors. Spatial as well as temporal correlations are thus
incorporated in the reaction processes. In this subsection, we wish to compare our results
with a system for which spatial correlations are absent, yet which still displays manifest
temporal correlations. To simulate this situation, we remove the nearest-neighbor restriction
and instead posit all particles in a ‘zero-dimensional’ space. In the resulting ‘urn’ model,
the simulation algorithm entails to randomly pick two particles and let them react with a
probability determined by their individual character values. We find that if all the particles
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Figure 4.11: Adapted from paper [29] Fig.11. Monte Carlo simulations with
direct predator competition: Main panel: Quasi-stationary correlation functions
C(x) after the system has evolved for 10 000 MCS with ωµA = 0.147, ωηA = 0.1,
ωηB = 0.15, and ωµB = 0.1, when the system resides in the coexistence state. Inset:
temporal evolution of the correlation length ξ(t); all lengths are measured in units
of the square lattice spacing.

from a single species are endowed with homogeneous properties, i.e., the reaction rates
are fixed uniform as in section 4.2, no three-species coexistence state is ever observed. If
evolution is added without direct competition between predator species as in section 4.3, the
coexistence state does not exist neither. Our observation is again that coexistence occurs
only when both evolution and direct competition are introduced. Qualitatively, therefore,
we obtain the same scenarios as in the two-dimensional spatially extended system. The zero-
dimensional system however turns out even more robust than the one on a two-dimensional
lattice, in the sense that its three-species coexistence region is considerably more extended
in parameter space. Fig. 4.12 displays a series of population density time evolutions from
single zero-dimensional simulation runs with identical parameters as in Fig. 4.9. All graphs
in Fig. 4.12 reside deeply in the three-species coexistence region, while Fig. 4.9(a) and (c)
showed approaches to absorbing states with one of the predator species becoming extinct.
With ωηA = 0.1, ωηB = 0.15, and ωµB = 0.1 fixed, three-species coexistence states in the
zero-dimensional system are found in the region ωµA ∈ (0, 1), which is to be compared with
the much narrower interval (0.136, 0.159) in the two-dimensional system, indicating that
spatial extent tends to destabilize these systems.

This finding is in remarkable contrast to some already well-studied systems such as the three-
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species cyclic competition model, wherein spatial extension and disorder crucially help to
stabilize the system [46,63]. Even though we do not allow explicit nearest-neighbor ‘hopping’
of particles in the lattice simulation algorithm, there still emerges effective diffusion of prey
particles followed by predators. Since predator individuals only have access to adjacent prey
in the lattice model, the presence of one predator species would block their neighboring
predators from their prey. Imagining a cluster of predator particles surrounded by the
other predator species, they will be prevented from reaching their ‘food’ and consequently
gradually die out. However, this phenomenon cannot occur in the zero-dimensional system
where no spatial structure exists at all, and hence blockage is absent. In the previous
subsection we already observed that the cluster size of predator species remains almost
unchanged throughout the simulation process when the total population size of the weaker
predator species gradually decreases to zero, indicating that clusters vanish in a sequential
way. We also noticed that population densities reach their quasi-stationary values much
faster in the non-spatial model, see Fig. 4.12, than on the two-dimensional lattice, Fig. 4.9.
In the spatially extended system, particles form intra-species clusters, and reactions mainly
occur at the boundaries between neighboring such clusters of distinct species, thus effectively
reducing the total reaction speed. This limiting effect is absent in the zero-dimension model
where all particles have equal chances to meet each other.

4.4.4 Character displacements

Biologists rely on direct observation of animals’ characters such as beak size when studying
trait displacement or evolution [25, 51–53, 57–60]. Interspecific competition and natural
selection induces noticeable character changes within tens of generations so that the animals
may alter their phenotype, and thus look different to their ancestors. On isolated islands,
native lizards change the habitat use and move to elevated perches following invasion by
a second lizard kind with larger body size. In response, the native subspecies may evolve
bigger toepads [64]. When small lizards cannot compete against the larger ones, character
displacement aids them to exploit new living habitats by means of developing larger toepads
in this case, as a result of natural selection.

Interestingly, we arrive at similar observations in our model, where predation efficiencies η
and death rates µ are allowed to be evolving features of the individuals. In Fig. 4.13, the
predation efficiency η is initially uniformly set to 0.5 for all particles, and the death rate
µ = 0.5 for all predators (of either species). Subsequently, in the course of the simulations
the values of any offspring’s η and µ are selected from a truncated Gaussian distribution
centered at their parents’ characters with distribution width ωη and ωµ. When the system
arrives at a final steady state, the values of η and µ too reach stationary distributions that are
independent of the initial conditions. We already demonstrated above that smaller widths ω
afford the corresponding predator species advantages over the other, as revealed by a larger
and stable population density. In Fig. 4.13, we fix ωηA = 0.15, ωηB = 0.1, ωµB = 0.1, and
choose values for ωµA ∈ [0.144, 0.15, 0.156] (represented respectively by red squares, blue
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Figure 4.12: Adapted from paper [29] Fig.12. Data obtained from single Monte
Carlo simulation runs in a zero-dimensional system with direct competition, evolu-
tionary dynamics, and temporal correlations: Time record of population densities
with ωηA = 0.1, ωηB = 0.15, ωµB = 0.1 and ωµA = 0.132, 0.140, 0.160 from left to
right with species indicated as A in black dots, B in red triangles up, and C green
triangles down.

triangles up, and green triangles down), and measure the final distribution of η and µ when
the system reaches stationarity after 50 000 MCS. Figs. 4.13(a) and (c) show the resulting
distributions for predator species A, while (b) and (d) those for B. Since both µ and η are
in the range [0, 1], we divide this interval evenly into 1 000 bins, each of length 0.001. The
distribution frequency P is defined as the number of individuals whose character values fall
in each of these bins, divided by the total particle number of that species. In Fig. 4.13(a), the
eventual distribution of µA is seen to become slightly less optimized as ωµA is increased from
0.144 to 0.156 since there is a lower fraction of low µA values in the green curve as compared
with the red one. Since species A has a larger death rate, its final stable population density
decreases as µA increases. In parallel, the distribution of ηA becomes optimized as shown
in Fig. 4.13(c), as a result of natural selection: Species A has to become more efficient in
predation to make up for its disadvantages associated with its higher death rates. Predator
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Figure 4.13: Adapted from paper [29] Fig.13. Monte Carlo simulations with direct
predator competition: The final distribution of η and µ when the system becomes
stable after 50 000 Monte Carlo Steps with ωηA = 0.15, ωηB = 0.1, ωµB = 0.1 and
ωµA = [0.144, 0.15, 0.156] indicated in red black dots, blue triangles up, and green
triangles down. (a) and (c) depict the distribution of characters of predator species
A, while (b) and (d) that of B. The interval [0, 1] is divided evenly into 1 000
histograms bins; the quantity P represents the proportion of individuals with rates
in the corresponding bins.
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Figure 4.14: Adapted from paper [29] Fig.14. Monte Carlo simulations showing
the temporal record of both predator population densities when the distribution
widths ωηA and ωηB periodically exchange their values between 0.2 and 0.3. The
other parameters are set to µA = µB = 0.125, σ = 1.0, and ωC = ωµA = ωµB = 0.
The switch periods are T = 10 MCS in (a) and T = 400 MCS in (b).

species B is also influenced by the changes in species A. Since there is reduced competition
from A in the sense that its population number decreases, the B predators gain access to
more resources, thus lending its individuals with low predation efficiencies better chances to
reproduce, and consequently rendering the distribution of ηB less optimized, see Fig. 4.13(d).
This observation can be understood as predator species B needs no longer become as efficient
in predation because they enjoy more abundant food supply. In that situation, since species
B does not perform as well as before in predation, their death rate µB distribution in turn
tends to become better optimized towards smaller values, as is evident in Fig. 4.13(b).

4.4.5 Periodic environmental changes

Environmental factors also play an important role in population abundance. There already
exist detailed computational studies of the influence of spatial variability on the two-species
lattice LV model [46, 47, 62]. However, rainfall, temperature, and other weather conditions
that change in time greatly determine the amount of food supply. A specific environmental
condition may favor one species but not others. For example, individuals with larger body
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sizes may usually bear lower temperatures than small-sized ones. Since animals have various
characters favoring certain natural conditions, one may expect environmental changes to be
beneficial for advancing biodiversity.

We here assume a two-predator system with species A stronger than B so that the predator B
population will gradually decrease as discussed in section 4.3. Yet if the environment changes
and turns favorable to species B before it goes extinct, it may be protected from extinction.
According to thirty years of observation of two competing finch species on an isolated island
ecology [57], there were several instances when environmental changes saved one or both of
them when they faced acute danger of extinction. We take ωηA and ωηB as the sole control
parameters determining the final states of the system, holding all other rates fixed in our
model simulations. Even though the environmental factors cannot be simulated directly
here, we may effectively address environment-related population oscillations by changing the
predation efficiency distribution widths ω. We initially set ωηA = 0.2 and ωηB = 0.3, with the
other parameters held constant at µA = µB = 0.125, σ = 1.0, and ωC = ωµA = ωµB = 0. In
real situations the environment may alternate stochastically; in our idealized scenario, we just
exchange the values of ωηA and ωηB periodically for the purpose of simplicity. The population
average of the spontaneous death rate is around 0.02, therefore its inverse ≈ 50 MCS yields
a rough approximation for the individuals’ typical dwell time on the lattice. When the time
period T for the periodic switches is chosen as 10 MCS, which is shorter than one generation’s
life time, the population densities remain very close to their identical mean values, with small
oscillations; see Fig. 4.14(a). Naturally, neither species faces the danger of extinction when
the environmental change frequency is high. In Fig. 4.14(b), we study the case of a long
switching time T = 400 MCS, or about eight generations. As one would expect, the B
population abundance decreases quickly within the first period. Before the B predators
reach total extinction, the environment changes to in turn rescue this species B. This
example shows that when the environment stays unaltered for a very long time, the weaker
species that cannot effectively adapt to this environment would eventually vanish while only
the stronger species would survive and strive. When the time period T close matches the
characteristic decay time tc, see Fig. 4.14(b), one observes a resonant amplification effect
with large periodic population oscillations enforced by the external driving.

4.5 Conclusions

In this part we use detailed Monte Carlo simulations to study an ecological system with
two predator and one prey species on a two-dimensional square lattice. The two predator
species may be viewed as related families, in that their reactions are similar, including pre-
dation, spontaneous death, and reproduction. The most important feature in this model is
that there is only one mobile and reproducing food resource for all predators to compete
for. We design various model variants with the goal of finding the key properties that sta-
bilize a three-species coexistence state, and thus facilitate biodiversity in this simple model
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system. We find no means to obtain coexistence when all reaction rates are fixed or indi-
viduals from the same species are all homogeneous, which clearly indicates the importance
of demographic variability and evolutionary population adaptation. When dynamical op-
timization of the individuals in the reproduction process is introduced, they may develop
various characters related to their predation and reproduction efficiencies. However, this
evolutionary dynamics itself cannot stabilize coexistence for all three species, owing to the
fixed constraint that both predator kind compete for the same food resource. In our model,
direct competition between predator species is required to render a three-species coexistence
state accessible, demonstrating the crucial importance of combined mutation, competition,
and natural selection in stabilizing biodiversity.

We observe critical slowing-down of the population density decay near the predator extinction
threshold, which also serves as an indicator to locate the coexistence region in parameter
space. When the system attains its quasi-steady coexistence state, the spatial properties
of the particle distribution remain stable even as the system evolves further. Character
displacements hence occur as a result of inter-species competition and natural selection
in accord with biological experiments. Through comparison of the coexistence regions of
the full lattice model and its zero-dimensional representation, we find that spatial extent
may decrease the ecosystem’s stability, because the two predator species can effectively
block each other from reaching their prey. We also study the influence of environmental
changes by periodically switching the rate parameters of the two competing predator species.
The system may then maintain three-species coexistence if the period of the environmental
changes is smaller than the relaxation time of the population density decay. Matching the
switching period to the characteristic decay time can induce resonantly amplified population
oscillations.

Stable coexistence states with all three species surviving with corresponding constant densi-
ties are thus only achieved by introducing both direct predator competition and evolutionary
adaptation in our system. In sections 4.3 and 4.4, we have explored character displacement
without direct competition as well as competition without character displacement, yet a
stable three-species coexistence state could not be observed in either case. Therefore it is
necessary to include both direct competition and character displacement to render stable
coexistence states possible in our model. However, even both predator species A and B can
only coexist in a small parameter interval for their predation efficieny distribution widths ω,
because they represent quite similar species that compete for the same resources. In natural
ecosystems, of course other factors such as distinct food resources might also help to achieve
stable multi-species coexistence.
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Chapter 5

Spatial patterns formed by killer and
prey E. coli strains

The contents of this chapter constitute a section of the publication:

Datla U S, Mather W H, Chen S, Shoultz I W, Täuber U C, Jones C N, Butzin N C, 2017,
“The spatiotemporal system dynamics of acquired resistance in an engineered microecology”,
Scientific Reports, 7, 16071, “Copyright (2017) by Springer Nature”, a link to the Creative
Commons license: http://creativecommons.org/licenses/by/4.0/

This chapter only includes my contribution to the paper: writing the simulation codes,
performing Monte Carlo simulations, analyzing the data, and plotting graphs to visualize
the results. Dr. Mather and Udaya Sree Datla assisted in building the mathematical model.
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5.1 Introduction

Despite the simplicity of the reaction rules for each individual particle, their collective behav-
iors may display complex macroscopic patterns. For example, traveling waves and reaction
fronts are observed in the lattice LV model; and spirals exist in the three-species cyclic com-
petition models. Biologically more relevant problems include investigating the formation of
ecological structures, such as the shape of fish groups in the ocean and the patterns on an-
imals’ skin. In some instances, one idealized mathematical or computational model is good
enough to reproduce the characteristic properties of the structures, thus serving an efficient
way to study their formation. Synthetic biology, which combines biological and engineering
technologies, allows scientists to design a microecological system of species reacting with
desired rules in a well-controlled laboratory environment. Our collaborators, Udaya et al.,
applied these techniques to set up a killer-prey system and then observed complex spatio-
temporal patterns. We participated in this project by providing a Monte Carlo simulation
model that reproduced the distribution of cells as they observed in the experiment. The
contents of this computational simulation are publicated as a part of reference [30].

They utilized genetic engineering techniques to build an artificial biological system consisting
of the killer and prey E. coli strains, NB003 and DZ10 respectively, on a circular plate. The
killer strain was engineered to secrete molecules named AHL which may kill the prey upon
entering, and then release them into the environment constitutively. The prey was engineered
to have the ability to mutate to be resistant to AHL. With the two E. coli strains prepared,
the experiment followed these steps: initially the prey cells were uniformly distributed on
the plate; then a killer colony was placed at the center; neither of them had the ability to
move because the water on the plate was far from enough for the cells to ‘swim’ in, i.e., the
cells were fixed at the locations wherever they were generated.

The plate was scanned once per hour to make quantitative image analysis of the time-lapse.
We did not see any noticeable growth of the killer colony. There was a concentric ‘kill zone’
surrounding the killer colony. Around five prey colonies grew in the killing zone with their
sizes much larger than other ones further from the plate center. Other prey colonies dispersed
outside the kill zone, with both their count and population densities gradually increasing
outward.

5.2 Monte Carlo simulation model and results

The spatial structure observed in the experiment is believed to reveal the killer-prey reaction
process with acquired resistance of the mutant prey. At the beginning of the experiment, the
generated AHL molecules diffused freely into their surrounding areas, wherein most prey cells
were killed, thus generating a kill zone. Since the prey cells underwent constant mutation,
they then became resistant to AHL, thus there were several mutated prey cells finally growing
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into large colonies since they did not have competitors for nutrients in the kill zone. In order
to verify this assumption, as well as to have an overall picture of the dynamical process,
other than our collaborators’ experimental efforts, we designed an idealized computational
simulation model with several simple reactions corresponding to real cellular interactions. If
we denote the killer as K, food as F , AHL as A, prey as P , and mutant prey as M , their
reactions read:

K + F
µ−→ K + A ,

M + F
ν−→M +M ,

P
λ−→M ,

P + A
1−λ−→ A ,

P + F
ν−→ P + P .

(5.1)

The model is implemented on a two-dimensional square lattice with circular reflecting bound-
ary conditions. A reasonable radius of the system, 200 lattice sites, is chosen so as to be
large enough to reproduce the experimental pictures and computationally time-saving. Even
though the cells may grow several layers upward in the real system, we apply occupation
restrictions at each lattice site for the purpose of simplicity: each lattice site could be oc-
cupied by one cell, which could be a killer (K), prey (P), or mutated prey (M), or stays
empty. The cells are non-mobile to account for the experimental setup. Besides the three
cell species, there are two kinds of molecules present: food (F) and AHL (A). There is no
limit on the occupation of molecules since they are of much smaller sizes than the cells. They
diffuse randomly in the system. Note that there is no reproduction process for the killer.
The reason for that is we do not observe growth of the killer colony in the experiment, which
means the reproduction rate of the killer is low compared with the prey. For simplicity, we
do not include their reproduction process in the model. Therefore they do not die, but only
produce AHL by consuming food molecules. Both the normal and resistant prey, P and M ,
could reproduce with available food. The normal prey would either gain resistance to AHL
or be killed by them. Initially there is no AHL in the system, only 20 food molecules on
each site. The above reactions are incorporated in stochastic Monte Carlo simulations, with
the details of the algorithm presented bellow,

1. Randomly pick a cell (K, P, or M) and generate a random float number r in the range
[0, 1], for cases that

• There is a killer K on the cell. If the number of food molecules on this site
is positive and r < µ, this killer would consume one food molecule and then
produce an AHL, which is to reduce the food molecule number on this site by 1
and increase the AHL number by 1;

• There is a mutated prey M on the cell. If there are food molecules available,
r < ν, and there are empty sites on its four nearest neighbors, it will consume
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one food molecule and then generate a new M particle on a randomly selected
empty site;

• There is a normal prey P on the cell. If r < λ, this particle changes to a mutated
prey M . Otherwise, when there are AHL molecules on this site, this cell would
be removed from the system and then the state of the site becomes empty. When
there is no AHL on the site, there is a probability ν that this P cell reproduces a
new P particle on one of its empty neighbors by consuming one food molecule F .

2. After the above reactions are performed, the food or AHL molecules on the site would
diffuse to the neighbor sites with a probability D. In our simulation, D is fixed as 1.0,
thus all molecules would move to their neighbor sites at random.

3. If the total number of all cells including K, P , and M is currently N in the system,
the simulation time would be updated by 1.0/N after the above reactions. One Monte
Carlo step is considered finished when the integer part of the simulation time increases
by 1. And step (1) and (2) would be repeated until a pre-given number of MCS is
completed.

Figure 5.1: Adapted from paper [30] Fig.3. The distribution of the cells when the
simulation of the killer-prey system runs for 3000 MCS with reaction probabilities
µ = 0.1, ν = 0.02, and λ = 0.00001. The simulation is performed on a two-
dimensional lattice with a circular reflecting boundary. The radius of the system is
200 lattice sites. Killers are indicated with the blue color, mutated prey with red,
and normal prey with yellow.
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Fig. 5.1 shows the distribution of the cells after the simulation runs for 3000 MCS with the
reaction probabilities µ = 0.1, ν = 0.02, and λ = 0.00001. The blue killer cells are centered
at the plate surrounded by a kill zone where a few red mutated prey colonies grow to be large.
Hundreds of tiny red colonies are located outside the kill zone. In the areas far from the
killers, there are yellow normal prey surviving because AHL molecules have not yet diffused
there. This simulation qualitatively reproduces the spatial structures of the kill zone and
the distribution of cells as already observed in the experiments, thus demonstrating that the
killer-prey reactions together with acquired resistance of the prey are sufficient to generate
the spatial patterns observed in the experiment. The computational model could be further
investigated to provide insights about the future work of the experiments.
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Chapter 6

Summary

This thesis includes four research projects about non-equilibrium critical dynamics, boundary
and disorder effects, noise-induced pattern formation, and biodiversity in two- and three-
species predator-prey systems. We utilize the tool of Monte Carlo simulation to investigate
the stochastic lattice Lotka–Volterra model and its variants.

The first project, described in chapter 2, studies the critical dynamics near the active-to-
absorbing phase transition point which is introduced by the site occupation restriction in
the stochastic lattice LV model. The temporal evolution of the predator species population
density shows a transition from a fast exponential decay to a slow algebraic decay when the
system undergoes a phase transition from a two-species coexistence state to an absorbing
state with the predator species going extinct. Therefore, its relaxation time, i.e., the charac-
teristic time for the predator population density to reach its stationary value, diverges when
the control parameter approaches the critical value. The two-time autocorrelation functions,
measured at waiting times s and observation times t, do not overlap when plotted against
t − s, indicating that time translation invariance is broken. However, when they are scaled
by a factor sb, where b represents the scaling exponent, they collapse when plotted versus
t/s, demonstrating that simple aging dynamic scaling holds here. Indeed, critical aging is
considered to occur when there is critical slowing-down, breaking of time translation invari-
ance, and dynamic scaling. Since the critical and aging exponents measured in the system
agree with those of Directed Percolation (DP), the lattice LV model at the phase transition
point belongs to the DP class. These critical phenomena have a potential application in
providing warning signals when an endangered species is close to extinction in its natural
ecological habitat.

Aging is due to critical slowing-down in our system. In general, it can emerge whenever
a system’s relaxation kinetics is slow and time translation invariance is broken, say by a
quench from an initial state that is fundamentally different from the long-time asymptotic
stationary state the system tries to reach. For example, it is also observed in systems such as
the May-Leonard type six-species model with coarsening [65], Coulomb glass in disordered
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semiconductors [66], and Bose glass in type-II superconductors with defects [66], to list
but a few. There is also a case that the stochastic predator-prey model can recapitulate
the phenomenology of the laminar-turbulence transition even though they originate from
unrelated areas, as demonstrated in reference [67]. Therefore, it is reasonable to compare
the LV model and others in order to find their connections if they exist.

There are still some open questions arising from our research. In chapter 4, the measured
exponents at the critical points of one predator extinction transition do not agree with DP
values, which is contradicting our previous experience that active-absorbing phase transitions
usually belong to the DP class. This might be due to demographic variability, which needs
to be explored more in the future. Another possible research direction is to change the model
so that it switches between different universality classes, which is related to control theory.
Considering the relative simplicity of the LV model, it is an ideal system to work with in the
field of population dynamics and non-equilibrium statistical physics in the future.

Inspired by seeing the dramatic influences of spatial and temporal correlations on the dy-
namical properties of a system, as demonstrated by the difference between the lattice model
and the mean-field model, this thesis also explores the effects of a spatial boundary, periodic
fluctuations, and demographic variabilities.

Spatial inhomogeneity is very common in ecological systems since the natural environment
varies by location. In chapter 3 we construct such a system in which a straight border
evenly splits the system into two parts, with a two-species coexistence state on one side and
a predator extinction state on the other side. We measure the predator population density,
correlation length, and relaxation time in various parts of the system. Their values in the
boundary region largely differ from those deep inside the coexistence area, indicating the
enormous influence of spatial inhomogeneity. Since the boundary effects only persist for a
spatial distance of about one correlation length, we split the system into small pieces, like a
checkerboard, then observe the boundary effects to gradually vanish, as expected.

Temporal fluctuations, such as the irregular changes of the temperature, play an important
role in ecological systems as well. In chapter 4, we periodically switch the control parameters,
helping to stabilize the system which would otherwise fall into an absorbing state. All our
simulations incorporate temporal stochasticity since the reactions occur in a random way.

Considering that reproduction of identical offspring occurs rarely in nature, demographic
variability is added to our simulation model in order to render it closer to real ecological
systems. As in chapter 4, the particles from a single species vary in their predation efficiency,
death rates, and reproduction rates. This demographic variability is introduced to simulate
a ‘Darwinian evolution’ process that an offspring particle may be different from its parent,
and thus the species on average becomes stronger after several generations. Chapter 4
focuses on the interplay between evolution and interspecific competition in an idealized two-
predator-one-prey model. We find that evolution or direct competition between the two
predator species cannot stabilize a three-species coexistence state in a system where two
related predator species compete for the same food resource, but the combination of the two
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does. Hopefully, this part of our work will finally contribute to better understanding the
emergence and stability of biodiversity in ecology.

We have studied spatial inhomogeneity and temporal fluctuations separately here; it might
be interesting to study a system with mixed variabilities. We have not yet performed a
systematic study of the extent to which these perturbations drive the system away from
the mean-field model. Some future work could focus on this issue. For example, in order
to study how fast the diffusion of particles should be so as to render the system close to
mean-field predictions, we could introduce additional diffusion or jumping for the particles.
When the diffusion rate is 0, the particles are fixed on their sites, thus spatial structures
form. When the diffusion rate approaches infinity, each pair of particles have equal chance
to meet, much like an infinite-dimensional system. We can tune the diffusion rate between 0
and positive infinity to study how the system changes along the way. This method can also
explore finite-size effects, site restriction effects, and other perturbations introduced by the
simulation algorithm.

In chapter 5, we utilize a simplified computational simulation model to reproduce the spatio-
temporal patterns of the cell distribution in a biological experiment of two killer and prey
E. coli stains with acquired resistance of the prey strain. This model only contains reaction
rules relevant to the experiments. These include the killing of the normal prey by AHL
molecules secreted by the predator cells, the mutation of the normal prey so that they
gain resistance to AHL, and the reproduction of the cells. This idealized model shows the
formation of a kill zone around the killer colony and the growth of large mutant prey colonies
inside the kill zone in a similar way to the experiment. The model suffices to reproduce the
dynamical properties of the experiment. In the future, we might explore the model more in
hope of finding valuable insights that aid interpretations of experiments. The LV model and
its variants are sometimes criticized for being over-simplified and ecologically unrealistic.
This is partially due to the natural environment being too complex to be simulated, as
well as the data for wild animals being difficult to collect. Synthetic biology as addressed in
chapter 5 sheds some light on this problem. Genetic engineering technologies can help design
certain species reacting with desired rules. Experiments can be performed in well-controlled
laboratory environments, thus scientists can do accurate measurements. Therefore, synthetic
biology bridges the gap between simple mathematical models and real complex ecological
systems, which might gain more attention in the future.

In general, we study problems about critical dynamics at the phase transition point, noise-
induced pattern formation, and the effects of a spatial boundary, periodic fluctuations, and
demographic variabilities. They belong to a large area of non-equilibrium statistical physics
which is of interest to physicists. We hope to find more dynamical properties with the
models studied in population dynamics. We also want to further modify these models to
study ecological or biological problems in the real world with the help of modern experimental
technologies.
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