Population Ecology and the Distribution of Organisms **Essential Knowledge Objectives** 2.D.1 (a-c), 4.A.5 (c), 4.A.6 (e)

Ecology

- The scientific study of the interactions between organisms and the environment
- Ecological hierarchy from global ecology to organismal ecology
- Why is it important to study ecology?

Ecological Hierarchy

- Organism
- Population
- Community
- Ecosystem
- Biome
- Biosphere

Population

 A group of individuals of the same species living in an area

Community

 A group of populations of different species in an area

Ecosystem

 A community of organisms (biotic) in an area and the physical factors (abiotic) with which those organisms interact

Biome

 Major life zones characterized by vegetation type (terrestrial) or by the physical environment (aquatic biomes)

Terrestrial Biomes

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Aquatic Biomes

Biosphere

The global ecosystem – the sum of all the planet's ecosystems and landscapes

Distribution of Organisms

Distribution of Organisms

- Abiotic and biotic factors influence the distribution of organisms on Earth
- Climate is a significant factor affecting organism distribution (temperature, precipitation, sunlight, wind)
- Climate is moderated by large bodies of water and mountains, seasonal variations in climate

Seasonal Variation in Sunlight Intensity

Ocean Moderates Climate

Mountains: Rain Shadow Effect

Abiotic Factors

 Non-living physical and chemical factors that affect an organisms ability to survive and reproduce

Look at the coral reef ecosystem on the next slide. Provide a few examples of abiotic factors that affect the organisms of this ecosystem.

Biotic Factors

 Living things or their materials that directly or indirectly affect an organism in its environment

Look at the forest ecosystem on the next slide. Provide a few examples of biotic factors that affect the organisms of this ecosystem.

Abiotic and Biotic Factors

- Cellular activities are affected by interactions with biotic and abiotic factors
- Organism activities are affected by interactions with biotic and abiotic factors

Abiotic Factors Affect Cellular Activities

Biofilm

- Communities of surface-associated microorganisms encased in a self-produced extracellular matrix
- Found on almost all natural and artificial surfaces
- Dental plaque and slime on watery surfaces

Abiotic and Biotic Factors Affect Organism Activities

Abiotic and Biotic Factors Affect Stability

- The stability of populations, communities and ecosystems is affected by interactions with abiotic and biotic factors
- Examples: food chains and food webs, algal blooms, species diversity, population density

Global Distribution of Apes

Distribution of Species

 Interactions between populations affect the geographic distributions and abundance of populations

Example: Flowers and pollinators, parasites and their hosts

Properties of Populations

Population Dynamics

 Population dynamics is the branch of life sciences that studies the size and age composition of populations as dynamic systems, and the biological and environmental processes driving them

Properties of Populations

- Population Size
- Population Density
- Births, Deaths, Immigration and Emigration
- Distribution and Dispersion
- Survivorship Curves
- Age Structure Diagrams

Population Density

- **Density:** Number of individuals per unit area or volume
- How do we determine population density?

Factors Affecting Population Density

- Density changes as individuals are added or removed from a population
- Births, deaths, immigration and emigration

Population Density of the US

Dispersion Patterns

• Interactions between populations affect their distribution within a geographic area

(a) Clumped

(b) Uniform

Survivorship Curves

 Graph showing the number or proportion of individuals surviving to each age for a given

species

Survivorship Curves

- Type I low death rate early in life, death rates increase rapidly in old age (humans, large mammals)
- Type II constant death rate over the organism's life span (birds)
- Type III high death rate early, produce large numbers of offspring but provide little or no care (fish, plants)

Age Structure Diagrams

- Diagrams that show the relative numbers of individuals at each age and fecundity (ability to produce abundant healthy offspring)
- Used to predict human population changes

© 2011 Pearson Education, Inc.

Population Growth

Population Growth Patterns

 Mathematical models and graphical representations are used to illustrate population growth patterns and interactions

• What are two population growth patterns?

Birth Rate and Death Rate

• **Birth rate (B):** number of offspring produced per unit time

34/1000 = 0.034 (per capita birth rate)

 Death rate (D): number of individuals that die per unit time

16/1000 = 0.016 (per capita death rate)

Used to estimate population growth

Exponential Growth

- Reproduction without constraints (such as?)
- Rapid, unrestricted growth

- r_{max} = max per capita growth
- N = population size

Exponential Growth

$$\frac{dN}{dt} = r_{\max}N$$

Logistic Growth

- Growth is limited due to density-dependent and density-independent factors
- Rate of population growth slows as the population size (N) approaches the carrying capacity (K)

Logistic Growth

 r_{max} = maximum growth rate of a population under ideal conditions

 K-N = number of individuals the environment can support

• (K-N)/K = fraction of the carrying capacity that is still available for population growth

Carrying Capacity (K)

• The maximum number of individuals that a given environment can support

Limiting Factors

 Factors that prevent a population from growing any larger or cause a population to decrease

What are the two categories of limiting factors?

Density-Dependent Factors

- Factors that are dependent on the number of individuals in a given area (population size)
- Often biotic factors

Examples: competition for resources, disease, predation

Density-Independent Factors

- Factors that affect all populations in similar ways regardless of population size (density)
- Often abiotic factors

Examples: drought, extreme temperatures, natural disasters

Trade Offs and Life Histories

- Traits that affect an organism's schedule of reproduction and survival make up its life history
- Trade off between quantity (reproduction) and quality of offspring (survival)
- Natural selection decides

K-selection r-selection

r and K Selected Species

K-selected

- **K** for carrying capacity
- Population lives at a density near the carrying capacity, stronger competition
- Produce few "expensive" offspring and live in stable environments

r-selected

- r for reproduction, maximize reproductive success
- Density of population is well below the carrying capacity, minimal competition
- Produce many "cheap" offspring and live in unstable environments

Life Histories

r	K
Unstable environment, density independent	Stable environment, density dependent interactions
small size of organism	large size of organism
energy used to make each individual is low	energy used to make each individual is high
many offspring are produced	few offspring are produced
early maturity	late maturity, often after a prolonged period of parental care
short life expectancy	long life expectancy
each individual reproduces only once	individuals can reproduce more than once in their lifetime
type III survivorship pattern in which most of the individuals die within a short time but a few live much longer	type I or II survivorship pattern in which most individuals live to near the maximum life span