
Portfolio Management using Reinforcement Learning

Olivier Jin
Stanford University
ojin@stanford.edu

Hamza El-Saawy
Stanford University

helsaawy@stanford.edu

Abstract

In this project, we use deep Q-learning to train a neural
network to manage a stock portfolio of two stocks. In most
cases the neural networks performed on par with bench-
marks, although some models did significantly better ac-
cording in terms of raw returns.

1. Introduction

Accurate stock market predictions can lead to lucra-
tive results, which is no wonder why investors are turn-
ing toward machine learning applications to analyze finan-
cial markets. However, one of the inherent difficulties with
this approach is producing an accurate model of the current
market and predicting future stock behaviors. In fact, one
school of thought argues that, given the efficient market hy-
pothesis (EMH), it is impossible for any agent to truly ’beat
the market’ by exceeding benchmark predictions.

We attempt to evaluate this challenge by utilizing artifi-
cial neural networks (ANN), due to their ability to model
nonlinear relationships between variables, as well as their
lower need for formal statistical training. In addition, we
use Q-learning since it is a model-free algorithm relying
only on Q-factors without attempting to model the environ-
ment (which, in the case of the stock market, would be en-
tirely unfeasible). Q-learning provides the added benefit of
balancing between ’exploration’ and ’exploitation’ in order
to provide the most optimal outcome.

The input to our system is a portfolio containing one
high-volatility stock and one low-volatility stock. Since
most stock portfolios consist of any combination of high-
volatility and low-volatility stocks, these two-stock portfo-
lios would represent a reduced model of an actual portfolio.
We then feed the input portfolio to our neural network to
produce a recommended action: either buying more low-
volatility stocks and selling more high-volatility stocks, or
vice versa. Our states and action space will be discussed
more in-depth in a later section. Finally, we compared re-
sults to two benchmarks to evaluate results.

2. Related Work

The use of neural networks to manage stock portfolios
is not a novel concept, although we were unable to find
any related works which also used Q-learning as a train-
ing method. Indeed, backpropagation was by far the dom-
inant method as evidenced by Zimmermann et al[22] and
Costantino et al[9], given its simplicity, efficiency, and com-
patability with stochastic gradient descent.

However, beyond any similarities in training methods,
each paper adopts a different approach when construct-
ing the algorithm. For example, Fernandez et al adopt
the Markowitz mean-variance model when selecting their
portfolio[10], whereas Toulson et al pursue an orthogonal
approach by using neural network ’ensembles’, essentially
multiple independently-trained neural networks which work
together to estimate future returns and risks[20]. Each ap-
proach had its strengths and weaknesses, and we carefully
considered each aspect when deciding upon our own algo-
rithm.

Since the results produced by Fernandez did not result
in noticeable improvements over preset benchmarks, we
decided against adopting this heavily-mathematical model.
On the other hand, while the technique proposed by Toul-
son produced returns which were greater than or equal to
the FTSE-100, we felt that implementing and training mul-
tiple neural networks would exceed the timeframe of this
course.

As a result, our approach was most similar to the meth-
ods adopted by Franke and Klein[11]. Although they pop-
ulate their portfolio using currencies rather than stocks, we
follow their experimental approach while implementing our
own methods. For example, we use tau to model weight
delay to prevent overfitting, and rely on the Sharpe return
ratio to calculate risk premiums. We felt that this approach
provided a good overall balance between performance and
complexity.

3. Dataset and Features

We trained our neural network using historical stock data
gathered from Google Finance’s API using the Python li-

1

brary Pandas.DataReader to automatically download
the stock histories [6]. Our data was the daily closing price
of 20 stocks ranging from July 2001 to July 2016. Notably,
the data include the 2008 stock market crash in order to train
our model on real world data fluctuations.

Stock riskiness was quantified using the ’beta’ index, or
a security’s tendency to respond to market swings. Beta> 1
indicates a stock is more volatile than the market; whereas
less-volatile stocks have a beta< 1 [1]. We chose ten stocks
from S&P 500’s high-beta index fund [7], and ten low-beta
stocks from two online editorial recommendations [21, 8].
(See Figure 1 for stock histories; beta values in parentheses
[2]).

From our stock choices, we generated all 100 possible
combinations of low and high beta stocks, and trained
our model on 80 randomly chosen combinations (using
sklearn.model selection.train test split),
while leaving the remaining 20 for testing.

No datat pre-processing was performed, although some
pricing data did require date alignment (since some stocks
did not have prices listed for all the days the stock markets
were open). The Pandas library allowed us to join price
histories using the date as an index and drop any days where
stocks were missing values.

4. Methods
We used Deep Q-learning when training our ANN. In

this section, we will discuss further details of the algorithm
including the design constraints, reward functions, and per-
formance benchmarks.

4.1. Design Environment

Rather than starting from scratch, we used the Python
library Keras to build and train our models. The
Keras library builds on top of either Theano or
TensorFlow, which are mathematics libraries for ef-
ficient multi-dimensional calculations [4]. We chose
Theano because it was easier to install on a Windows ma-
chine [3].

Besides Keras, Pandas was used to efficiently store our
stock data and the resulting portfolios as DataFrames,
which greatly simplified saving, comparing, and plotting
the data.

4.2. Design Constraints

Our initial design constraint was to use reinforcement
learning to build an agent that controls a portfolio of only
two stocks, with one stock being significantly more volatile
than the other. For each state, our neural networks received
the stock histories for both stocks over a set number of days
(either 2, 7, or 30), the number of shared owned in each
stock, the total portfolio value, and the left-over cash (usu-
ally less than the cost of the cheapest of the two stocks at

time t). Given the need to track portfolio history to calculate
reward (Section 4.3) and compare performance (Section 5),
portfolios were modeled as a pandas.DataFrame, with
each row, indexed at time t, containing the cost of the two
stocks, the number of shares owned in each, the total value,
and the left over cash.

Instead of a continuous action space, where the agent
chooses what percentage of the portfolio each stock should
constitute (e.g. stock A should constitute 35% of the port-
folio’s total value), the agent was given 7 actions: at ∈
[−0.25,−0.1, 0.05, 0, 0.05, 0.1, 0.25]. For each action, at,
the portfolio sells at×totalt of the low-beta stock and buys
the corresponding amount of the high-beta stock (and vice-
versa for at < 0). This discrete action-space, alongside the
simplified state-space, helps make the problem tractable.

In addition, a small transaction cost per transaction
($0.001) was used to encapsulate the various trading fees
[5]. Finally, to avoid issues when stock prices where too
large to allow an action to achieve its desired result (e.g.
a stock costs 10% of the portfolio value, so selling 5%
is impossible), all portfolios and benchmarks started with
$1, 000, 000 initial cash.

4.3. Deep Q-Learning Algorithm

Previous work used a neural network to trade between
T-bills and the S&P-500 stock index, or currency markets,
choose actions using softmax (and a time-dependent Boltz-
man temperature), and gradually increased the discount fac-
tor γ [15, 16, 12]. Furthermore, they compared the per-
formance of two difference reward functions: the current
portfolio return, Rt = vt − vt−1, where vt is the portfo-
lio’s current value at time; and the Sharpe Ratio: ST =
mean(Rt)/std(Rt); ∀t ∈ [1, T] [15].

Building on their work, we also trained neural networks
to approximate the Q value of portfolio states. However,
we modified the portfolio return reward to include a penalty
for volatility: PT = RT − λ std(Rt); ∀t ∈ [1, T]. Fur-
thermore, we based our system off of more recent archi-
tectures, such as the AlphaGo architecture [17]. Namely,
we use an ε-greedy exploration strategy, where the agent
chooses a random action with probability 1 − ε. However,
since the state was a tuple with 8, 18, or 64 (if the state
contained 2, 7, or 30 days of stock history, respectively,
see Section 4.2) and neither highly dimensional nor very
large (like an image or Go Board would be), we used sim-
ple fully-connected, feed-forward layers instead of convolu-
tion and pooling layers. To remove the correlation between
successive samples, we used an experience replay, where,
for each iteration, the network approximates the Q-values
for a randomly-selected minibatch (of size 8) of portfolios,
the maximizing actions (with probability 1 − ε) are taken,
the reward is observed, and the network is trained on the
desired output Q(s, a) = rt + γmaxa′ Q(s′, a′) for using

2

Figure 1. Stock histories for the low and high volatility stocks. Beta values, an indicator of volatility, are in parentheses.

only those 8 Q values [18, 14].
However, Q(s′, a′) was approximated with a target net-

work instead of the network currently being trained. Af-
ter updating the main network’s weights (θM) with stochas-
tic gradient descent, the target network’s weights (θT) are
updated gradually with θT = (1 − τ)θT + τθM ; τ � 1
[18, 13].

4.4. Benchmarks

The model’s test data performance was compared against
two benchmarks: The first, the do-nothing benchmark, al-
locates half of its starting value to each stock and then does
nothing. This benchmark acted as a very crude approxima-
tion of the market since it represents the raw performance
of the two stocks.

The second, the rebalance benchmark, reevaluates its
holdings every so many market days (30 in our simulations)
and buys or sells stock to ensure the total portfolio value
is split 50-50 between the two stocks. It is important to
note that it maintains a proportion of stock values, not stock
shares.

5. Results and Discussion
The performance of our models varied greatly across

multiple reward functions and history lengths.1 (See Figure
2 and Figures 3–9.) All models trained using a penalized
reward with λ = 0.5 — and not the Sharpe ratio reward
— consistently had the highest average Sharpe ratio. More-
over, except for the two models trained using 7 days of in-
put and either penalized reward with λ = 0.5 or the Sharpe
ratio, the models displayed much less variance is portfolio
value. Finally, the models trained with 30 days of data had
more variance than the other models. This was especially

1Our results differ greatly from the poster session because of an off-by-
one bug in our performance evaluation code.

Figure 2. Model performance across trained models and bench-
marks).

apparent for the model trained with 30 days of input and the
Sharpe ratio reward, which had one of the lowest Sharpe
ratios of all the models.

In terms of returns, the two benchmarks outperformed
all but the two previously mentioned models. However, the
cost of higher returns was greater variance in the portfo-
lio’s value, which could make them more volatile. Figure 5
shows a particularly bad portfolio result.

In our investigations, we found that evaluating portfolio

3

Figure 3. Model performance on the stocks AVA and FCK, using
two days of data and a penalized reward (λ = 0).

Figure 4. Model performance on stocks CPB and WDC, using 7
days of data and the Sharpe ratio reward.

Figure 5. Model performance on stocks DGX and MS, using 7
days of data and the Sharpe ratio reward.

performance is more complicated than simply looking at the
metrics used in Figure 2. Figure 3 shows an example where
the model’s portfolio was significantly less volatile, but still
ended at approxiamtly the same value as the two bench-
marks. Moreover, in Figures 3 and 7, the do nothing bench-
mark results in higher net portfolio value over time, but as
Figure 2 shows, the rebalance benchmark consistently dis-
played higher returns and less variance.

Figure 6. Model performance on stocks AVA and ETFC, using 30
days of data and a penalized reward (λ = 0).

Figure 7. Model performance on stocks CPK and CHK, using 30
days of data and a penalized reward (λ = 0.5).

Figure 8. Model performance on stocks CPB and ETFC, using 30
days of data and the Sharpe ratio reward.

Overall, our models had a much higher Sharpe ratio
and significantly less variance (standard deviation) than the
benchmarks. While these results are significant, they are
average values and not consistent across portfolios. How-
ever, the models’ results demonstrate that training a neural
network to manage a portfolio is feasible, and the network
does not resort to taking random actions.

4

Figure 9. Model performance on stocks FTI and HES, using 30
days of data and the Sharpe ratio reward.

5.1. Future Work

Our work was successful as a proof of concept, and
future work could result in stronger and more consistent
model performance, possibly on par with modern actively-
managed funds. Specifically, our efforts focused on proto-
typing models with different state spaces and reward func-
tions, but we were unable to explore the effect of differ-
ent hyperparameters on model training and performance.
We chose four hidden layers with 100 neurons per layer
as our model architecture, with the reasoning that it would
be small enough to train quickly yet robust enough to ad-
equately approximate the Q-function However, it is likely
that this architecture was not flexible enough, and that con-
volution layers tailored to looking at differences between
successive stock prices could perform significantly better.

Furthermore, we chose ε = 0.15 for our ε-greedy ex-
ploration strategy using the values from previous works[14,
13]. However, other papers had ε values which were half of
ours[19], and it is likely that too much exploration may have
interfered with the training processes. This is compounded
by the fact that our action space is significantly smaller than
those in the works which we based our values on.

Another avenue could be investigating the effect of us-
ing the weekly average stock price, or some other pre-
processing technique to reduce the resolution and there-
fore variance in stock prices. A downside is that, by pre-
processing input data, we run the risk of losing any sense
of real market behavior. For example, if our sample interval
is too long, we lose the ability to accurately predict future
behavior by making too many ’coarse’ assumptions. Never-
theless, data pre-processing would be a valuable tool when
training the initial behavior of the ANN.

Finally, our states only relied on historical stock data as
well as total value and various other auxiliary parameters.
This is a rather simplified assumption, since the stock mar-
ket would behave rather independently of past performance.
Indeed, actual stocks would rely more on the economy and

the companies themselves, which we could capture by pars-
ing through headlines or qualitative economic forecasts. By
making our states more complex, we could potentially in-
crease the accuracy of simulating the stock market environ-
ment.

6. Conclusion

In this project, we utilized ANNs to manage a two-stock
portfolio with the goal of maximizing returns while min-
imizing risk. By investigating various reward functions
and hyperparameters, we successfully implemented an al-
gorithm which performed on-par if not better than preset
performance benchmarks, according to the different met-
rics. If given more time, we would like to increase the com-
plexity of our model while fine-tuning our hyperparameters
to further optimize performance.

References
[1] Beta Index. Accessed: 2016-12-14.
[2] Google Finance. Accessed: 2016-12-14.
[3] How to install Theano on Anaconda Python 2.7 x64 on Win-

dows? Accessed: 2016-12-14.
[4] Keras: Deep Learning Library for Theano and TensorFlow.

Accessed: 2016-12-14.
[5] NYSE Trading Fees. Accessed: 2016-12-14.
[6] pandas-datareader. Accessed: 2016-12-14.
[7] S&P 500 High Beta Index Fund. Accessed: 2016-12-14.
[8] S. Bajaj. Add These Low-Beta Names to Your Portfolio to

Escape Market Volatility, Jan 2016. Accessed: 2016-12-14.
[9] F. Costantino, G. D. Gravio, and F. Nonino. Project selec-

tion in project portfolio management: An artificial neural
network model based on critical success factors. Interna-
tional Journal of Project Management, 33(8):1744 – 1754,
2015.

[10] A. Fernndez and S. Gmez. Portfolio selection using neural
networks. Computers and Operations Research, 34(4):1177
– 1191, 2007.

[11] J. Franke and M. Klein. Optimal portfolio management using
neural networks - a case study. 1999.

[12] X. Gao and L. Chan. An Algorithm for Trading and Portfolio
Management using Q-Learning and Sharpe Ratio Maximiza-
tion. Proceedings of the International Conference on Neural
Information Processing, 2000.

[13] B. Lau. Using Keras and Deep Deterministic Policy Gradient
to play TORCS, Oct 2106. Accessed: 2016-12-14.

[14] B. Lau. Using Keras and Deep Q-Network to Play Flappy-
Bird, Jul 2106. Accessed: 2016-12-14.

[15] J. Moody and M. Saffell. Reinforcement Learning for Trad-
ing Systems and Portfolios. Advances in Computational
Management Science, 2:129–140, 1998.

[16] J. Moody and M. Saffell. Learning to trade via direct
reinforcement. IEEE Transactions on Neural Networks,
12(4):875–889, 2001.

5

[17] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the Game of Go with Deep Neural Networks and
Tree Search.

[18] Silver, David. Deep Reinforcement Learning. Accessed:
2016-12-14.

[19] M. Tokic. Adaptive epsilon-greedy exploration in reinforce-
ment learning based on value differences. In Proceedings of
the 33rd Annual German Conference on Advances in Artifi-
cial Intelligence, KI’10, pages 203–210, Berlin, Heidelberg,
2010. Springer-Verlag.

[20] S. Toulson. Use of neural network ensembles for portfolio
selection and risk management, 1996.

[21] Zacks Equity Research. 5 Low Beta Stocks to Withstand
Market Volatility, July 2016. Accessed: 2016-12-14.

[22] H. G. Zimmermann, R. Neuneier, and R. Grothmann. Ac-
tive portfolio-management based on error correction neural
networks. In in: Advances in Neural Information Processing
Systems (NIPS 2001, page forthcoming., 2001.

6

