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To my office mates, who kindly let me make the coffee every morning...
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Over the past few months, I’ve learned how to write decent code, changed
my OS, read a bunch of theory and attended my first Nobel Lecture. Had I
been a bit quicker on my feet and a lot better dressed, I might have squeezed
a second one into the same day. With a little luck, I’ll catch Joseph Stiglitz
some other time.

Complex systems, finance, economics, physics and even some math. The
research areas approached in the team are pretty broad. I’ve spread my
attention and time a bit wide, but that was the whole point. A large part
of what I’ve learned doesn’t fit into this report.

The following pages are in no way an exhaustive review of portfolio
theory. There are no proofs or theorems, no great results. This is just a
summary of most of what I’ve done and what I would do if I had more time.
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Abstract

Modern Portfolio Theory is based on Harry Markowitz’s 1952 work on mean-
variance portfolios. He stated that a rational investor should either maxi-
mize his expected return for a given level of risk, or minimize his risk for a
given expected return. These two principles lead to an efficient frontier of
portfolios, among which the investor is free to choose.

Fifty years on, there are no widely accepted practical implementations of
mean-variance portfolio theory. The mean-variance approach puts excessive
weights on assets with large excess returns, regardless of possible estimation
errors. It yields unstable portfolios and extra gains don’t make up for the
excess transaction costs.

The goal of this Master’s Thesis is to develop robust portfolio optimiza-
tion methods. We design a multi-factor objective function reflecting our
investment preferences and solve the subsequent optimization problem us-
ing a genetic algorithm.
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Résumé

La théorie du portefeuille est fondée sur la description de portefeuilles moyenne-
variance, donnée par Harry Markowitz en 1952. Il propose qu’un investis-
seur rationnel doit maximiser son rendement espéré pour un niveau de risque
donné, ou minimiser son niveau de risque pour un rendement espéré donné.
Ces deux principes permettent de générer une frontière de portefeuilles effi-
cients, parmi lesquels l’investisseur peut choisir.

Cinquante ans plus tard, la théorie n’a toujours pas été mise en pra-
tique de manière fiable et reconnue. L’approche moyenne-variance génère
des portefeuilles déséquilibrés, surinvestis dans les titres à forte espérance en
rendement. On ne prend pas en compte l’incertitude des données. Les porte-
feuilles construits sont instables et les frais de transaction supplémentaires
ne sont pas compensés par des gains.

Le but de ce projet est de développer des méthodes d’optimisation ro-
buste de portefeuilles. Nous définissons une fonction objective de plusieurs
facteurs, que nous optimisons à l’aide d’un algorithme génétique.
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Chapter 1

Introduction

A man walks into a grocery store and buys a dozen eggs. On the
way home he trips, drops his bag and breaks all the eggs. He
goes back to the store and explains what happened.

The shop owner answers: “Never put all your eggs in the same
basket. Why don’t you buy some of these extra-strong bags.
They’re really cheap.”

The man buys a couple of bags and a dozen more eggs. He splits
them between the two bags and walks home, where he finds the
eggs are bad.

You can try getting rich by splitting up your eggs. You can also
try selling bags.

It’s 1976 and your neighbour Steve asks you if you want to help him build
“computers” in his garage. Would you willingly have done it? Probably not.
Of course, few people knew what a “computer” was at the time. Then
again, most people who bought WorldCom stock didn’t know much about
telecommunications either... We choose our investments in mysterious ways.
It all depends on what you expect from them. Are you ready to risk losing
your money? Some of it? All of it? How long do you plan to keep it invested?
A few weeks? A few years? How steady are those plans? Is there a chance
you might have to use that money beforehand? How big of a chance?

Asset allocation is a decision problem. We must choose among differ-
ent investment opportunities. This implies we should be able to compare
investments, rank them according to preference. Portfolio theory describes
how investors should allocate their wealth and manage their liabilites.

The standard approach to this problem was developped by Harry Markowitz
in 1952 [1] [2]. He derived mean-variance portfolio theory, stating that a ra-
tional investor should either maximize his expected return for a given level
of risk, or minimize his risk for a given expected return. These two principles
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CHAPTER 1. INTRODUCTION 2

lead to an efficient frontier of portfolios, among which the investor is free to
choose according to his risk preference. In this framework, variance serves
as a measure of risk.

Fifty years on, mean-variance is still the standard approach to portfolio
theory. Nevertheless, mean-variance optimized portfolios have been shown
not to perform well. The approach puts excessive weights on assets with
large excess returns, regardless of possible estimation errors in the input
data [3] [4]. The portfolios it yields are very unstable and extra gains don’t
make up for the excess transaction costs due to excessive reallocation.

We consider a 2-step approach to portfolio management. We start by
choosing a broad spectrum of stocks. This is our underlying portfolio. We
then overweight or underweight certain stocks according to different criteria
(tips, hunches and other good ideas). An example of this type of portfolio
management would be to buy the index, then overweight certain stocks or
subindices according to preferences and beliefs about the future.

The goal of this thesis is to develop robust portfolio optimization meth-
ods to choose the underlying portfolio. By robust, we mean that portfolios
should be stable over time and have low sensitivity to estimation errors in
the inputs. We design an objective function f taking different factors into
account: performance, risk, diversification, turnover costs and eventually
more. f reflects our investment preferences.

Our underlying portfolio is the solution to the following optimization
problem:

max f(x), x ∈ Ω

where Ω is the space of possible portfolios.

Typical optimizers rely on quadratic programming and deterministic al-
gorithms to find “optimal” portfolios. We will be using a genetic algorithm,
which allows for much more freedom in the functional form we wish to solve.
Genetic algorithms are heuristic and stochastic search methods. We don’t
determine in advance how the algorithm should act at each step and part of
the search is random. Genetic algorithms are often well suited to find good
solutions to optimization problems where the search space has many lo-
cal minima and/or there are no known well-performing deterministic search
methods.

In the mean-variance framework, the quality of input data is very impor-
tant. As one author puts it, “mean-variance optimization is too powerful a
tool for the quality of our data” [5]. We optimize over noise rather than in-
formation. To lessen the effect of noise, we apply re-sampling methods. We
consider stock prices to be one realized outcome among many different pos-
sible ones. Using this historical data, we generate new data sets from which
we hope to gather better information about asset returns and correlations.



Chapter 2

Foundations of Portfolio
Theory

2.1 Asset prices and returns

There are many ways to make money and even more ways to lose it. You can
bet on dog races and play roulette, you can crash expensive cars... We’ll be
concentrating on making money in financial markets, which is kind of like
betting, except nobody will break your legs if you bring the house down,
quite the contrary. Chances are that if you win big, the house will probably
give you more money to play with.

“Financial markets” is a very broad term. There are markets for stocks,
for bonds, for money, oil, pork bellies, wheat, insurance, the weather, and
just about anything legal. If you have enough money, you will always find
a financial institution willing to take the other side of your bet. We’ll be
dealing with portfolios of stocks, so we should quickly look at what a stock
is.

2.1.1 Stocks

When you buy a stock, you buy a small part of the company which emitted
the stock. If the small burger restaurant next door emitted 1000 shares and
you bought 10 of those for 1000 dollars, you would be the rightful owner
of 1% of Joe’s Burgers. Depending on the type of stock, you now have
a 1% stake in the voting rights and are entitled to 1% of future profits.
Congratulations!

Was it a good investment? Joe’s Burgers might expand wildly, change
it’s name, get a golden arches logo and make you rich. Or maybe people
will stop eating burgers and take up tofu instead (a crazy idea, but who
knows), in which case you might as well have bought 1000 burgers. More
likely, the outcome will be somewhere in between. If the restaurant runs

3



CHAPTER 2. FOUNDATIONS OF PORTFOLIO THEORY 4

well, and your share of the profits for the year is 100 dollars, you made a
10% return on your investment. Was it worth the trouble? You took the
risk of seeing Joe’s Burgers go bankrupt and lose all your money. You could
also have become a burger king... And both scenarios might still come true
in future years. So the value of your investment depends on your perception
of the future, the burger market and your take on tofu.

Now if you want to sell your stock, you have to find a buyer who agrees
to your price. This might not always be easy. Others might have a different
take on burgers and tofu. You might not find a buyer, or you might find a
buyer who agrees to a lower price. If you really have to sell and there’s only
one buyer, you’ll have to agree and will probably lose money. This is called
liquidity risk. Financial markets decrease this risk, by bringing buyers and
sellers together, with hopes of increasing the amount of trading done and
making it cheaper to do so.

2.1.2 Prices and returns

While Joe’s Burgers isn’t quoted on any major exchanges that we know of,
Starbucks is. Let’s use Starbucks (SBUX) stock to define the terms we will
be using throughout this paper.

Prices We refer to the price of an asset at time t as Pt. We always take
the closing price, either at the end of the day, the end of the week or the
end of the month. We will sometimes refer to logprices, which we define as:

log pt = log(Pt).

Figure 2.1 shows the price of SBUX at different time scales. Asset prices
tend to vary a lot on a daily basis, less on a weekly basis. The less often you
sample prices, the smoother your price curve gets. One way of saying this is
that there is a lot of noise in the market and that you can smooth this out
by taking wider time frames.
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Returns We define the return on a stock from time t− 1 to time t as:

Rt =
Pt − Pt−1

Pt−1

log-Returns For small variations of Pt, we have Pt ' Pt−1 and the return
at time t is very small:

Rt =
Pt − Pt−1

Pt−1
=

Pt
Pt−1

− 1 ' 0

For a small x, we can write the following first order approximation:

log(1 + x) ' x

In the same way, for small price variations, we can also write:

log(
Pt
Pt−1

) = log(1 +
Pt
Pt−1

− 1) ' Pt
Pt−1

− 1 = Rt

So for small price variations, log-returns are first-order equivalents of
returns.

2.2 Mean-Variance Optimization

Asset prices vary over time. Some move up when others go down, some
move together. Some have very small price variations.

Suppose you can invest your money in two different businesses: an ice
cream factory and an umbrella factory. If you invest it all in the ice cream
factory, you will earn big if it’s a sunny year, and lose big if it’s a rainy year.
If you invest everything in the umbrella factory it’s the other way around.
If you invest half in both, the fluctuations in your income will be somewhat
dampened. You won’t win big, but you won’t lose big either.

This investment strategy makes sense. It is a way of diversifying your
investments. At the same time, it’s a subjective process and can’t be applied
to a large universe of stocks. How do you guess the relative behaviours of
General Electric (GE) and Starbucks (SBUX)? Portfolio Theory tries to
define a systematic approach to choosing assets.

The standard approach to Modern Portfolio Theory was developped by
Harry Markowitz [1] [2]. He derived mean-variance portfolio theory, stating
that a rational investor should either maximize his expected return for a
given level of risk, or minimize his risk for a given expected return. This
framework allows us to compare different portfolios on a risk/return basis.
It gives us the riskwise cost of a given level of expected return and tells us
how to choose the fractions ω1, ..., ωn of our portfolio we invest in each asset
to best suit our risk/return expectations.

In the rest of this paper, we assume our investment universe is made up
of n assets with returns r1, ..., rn, where ∀i, ri is a random variable.
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Fig. 2.1: From top to bottom: daily, weekly and monthly prices of Starbucks
stock (SBUX) from 1st of January 2002 to 1st of January 2007.
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Fig. 2.2: From top to bottom: daily, weekly and monthly returns of Star-
bucks stock (SBUX) from 1st of January 2002 to 1st of January 2007.
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2.2.1 Risk and Return

Return

We need an estimation of the expected returns for each asset. To start out,
we simply take the historical mean. The expected returns of the individual
assets are:

E[ri] = µi. (2.1)

Thus the total expected return of portfolio P can be written as:

µP = E[rP ] =
n∑
i=1

ωiE[ri] =
n∑
i=1

ωiµi (2.2)

Risk

In this framework, the measure of risk is the variance of returns. For a given
asset i:

σ2
i = V ar(ri) = E[(ri − E[ri])2] = E[(ri − µi)2] (2.3)

The covariance of assets i and j is defined as:

σij = Covar(ri, rj) = E[(ri−E[ri])(rj−E[rj ])] = E[(ri−µi)(rj−µj)] (2.4)

The correlation of assets i and j is defined as:

ρij =
σij
σiσj

(2.5)

So we can write the variance of portfolio P as:

σ2
P = E[(rP −µP )2] = E[(

n∑
i=1

ωiri−
n∑
i=1

ωiµi)2] = E[(
n∑
i=1

ωi(ri−µi))2] (2.6)

σ2
P = E[

n∑
i=1

ω2
i (ri − µi)2 + 2

n−1∑
i=1

n∑
j=i+1

ωiωj(ri − µi)(rj − µj)] (2.7)

σ2
P =

n∑
i=1

(σiωi)2 + 2
n−1∑
i=1

n∑
j=i+1

ωiωjσij (2.8)
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2.2.2 The virtues of diversification

Equation 2.8 shows us the effect of diversification. The variance of the
portfolio can be lower than the weighted sums of individual variances. If we
have an equally weighted portfolio of n assets, we get:

σ2
P =

1
n
σi

2 +
n− 1
n

σij (2.9)

The first term of this equation is the risk associated with indiviual assets. If
n is large, we can diversify this risk away and only the market risk remains:

σ2
P −→ σij (2.10)

If we want to lower the risk of our portfolio even more, we have to invest
in anti-correlated assets or assets with low correlations. In this manner, the
average correlation factor σij will go down.

2.2.3 Efficient frontiers and portfolio selection

For simplicity reasons, we consider a portfolio of 2 assets. We write the
expected return µP and variance σ2

P of our portfolio as a function of our
choice of weights (ω1, ω2)

σ2
P = (σ1ω1)2 + (σ2ω2)2 + 2ω1ω2ρ12σ1σ2 (2.11)

µP = ω1µ1 + ω2µ2 (2.12)

(ω1, ω2) have to verify some constraints:

• ω1 + ω2 = 1

• ∀i, ωi ≥ 0

We replace ω2 by (1− ω1), giving us the following expression of σP :

σ2
P = (σ1ω1)2 + (σ2(1− ω1))2 + 2ω1(1− ω1)ρ12σ1σ2 (2.13)

We then plot possible portfolios in a (σ, µ) plane for different values of
ρ12, asshowninfigure2.3.

Perfect correlation between assets (ρ12 = 1)

σ2
P = (σ1ω1)2 + (σ2(1− ω1))2 + 2ω1(1− ω1)σ1σ2 (2.14)

Which factorizes into:

σ2
P = (σ1ω1 + σ2(1− ω1))2 (2.15)
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And:
µP = ω1µ1 + ω2µ2 (2.16)

So:
µP = µ1 +

µ2 − µ1

σ2 − σ1
(σP − σ1) (2.17)

The different portfolios available to an investor changing his asset allocation
are on a straight line between a 100% investment in asset 1 and a 100%
investment in asset 2, as shown in figure 2.3.

No correlation between assets (ρ12 = 0)

σ2
P = (σ1ω1)2 + (σ2(1− ω1))2 (2.18)

We find the minimum-variance portfolio by solving ∂σP
∂ω1

= 0, which gives:

ω1∗ =
σ2

2

σ2
1 + σ2

2

(2.19)

This gives us a return of:

µP∗ =
σ2

2µ1 + σ2
1µ2

σ2
1 + σ2

2

(2.20)

The possible portfolios are on the curve described by the following equations:

ω1 =
σ2

2 −
√
σ4

2 − (σ2
1 + σ2

2)(σ2
2 − σ2

P )

σ2
1 + σ2

2

(2.21)

And:
µP = ω1µ1 + (1− ω1)µ2 (2.22)

Perfect anti-correlation between assets (ρ12 = −1)

σ2
P = (σ1ω1)2 + (σ2(1− ω1))2 − 2ω1(1− ω1)σ1σ2 (2.23)

Which factorizes into:

σ2
P = (σ1ω1 − σ2(1− ω1))2 (2.24)

And we get 2 distinct expressions for σP :

σP = σ1ω1 − σ2(1− ω1) or: σP = σ2(1− ω1)− σ1ω1

We can choose ω1 such that σP = 0:

ω1∗ =
σ2

σ2 + σ1
(2.25)

This gives us a return of:
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µP∗ =
σ2µ1 + σ1µ2

σ1 + σ2
(2.26)

As well as 2 distinct expressions for µP :

µP = µP∗ + σP
σ2

(µ2 − µP∗) or: µP = µP∗ + σP
σ1

(µ1 − µP∗)

The possible portfolios are on 2 segments, as shown below.
Because of correlations between assets, it is possible to build a portfolio

less risky than all individual assets, but with a higer expected return than
the lowest expected return among these assets. For a given level of expected
return (µ = r0), we can find the portfolio with the minimum expected vari-
ance. By changing r0, we find a frontier of so-called efficient portfolios,
which all minimize variance for a level of expected return.

2.2.4 Closed-form solution of the Mean Variance Portfolio
Problem

We write the problem described above in the following way:

minimize ~ωTV ~ω

st:
~ωT ~µ = r0 (2.27)

∀i, ωi ≥ 0 (2.28)

~ωT~e = 1 (2.29)

Where ~e = (1, 1, .., 1)T , V is the covariance matrix of the assets, ~µ is the
vector of expected returns and r0 the desired level of expected return of the
portfolio. The solution for ~ω is:

~ω = ~V −1
(
~µ ~1

)
~A−1

(
ro
1

)
(2.30)

Where A is defined by:

A =
(
a

′
b

′

b
′
c

′

)
=
(
~µTV−1~µ ~µTV−1~1
~µTV−1~1 ~1TV−1~1

)
(2.31)

A complete derivation of the closed form solution to the mean-variance
problem can be found in Elton and Gruber (1995) [6] or Merton (1972) [7].

2.2.5 Tracing the mean-variance efficient frontier

We compute the efficient frontier for a set of 15 assets. The portfolios on
the frontier have the lowest possible variance for their expected of return, or
highest expected return for their variance. Individual assets are plotted in
the same mean/variance plane. All except the asset with highest expected
return are inside the frontier plotted in figure 2.4.
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Fig. 2.3: Efficient frontier for different values of ρ
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Fig. 2.4: Efficient frontier for a 15-asset universe. Each dot represents an
asset in the mean/standard deviation plane. The resulting frontier stretches
from a diversified low risk/low return portfolio to the maximum return port-
folio (one asset portfolio)
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2.2.6 Limits and problems

The mean-variance approach has been widely accepted by professionals. It is
easy to understand and presents the concept of risk and return in a staight-
forward manner. However, this approach has yet to be proved efficient out
of sample. Mean-variance optimization has limits, a few of which we want
to show here.

Concentration MV-optimized portfolios are highly concentrated on a few
assets with the “best” characteristics. Assets with high expected returns will
be overweighted and we lose the benefit of diversification which optimization
is supposed to provide.

Instability Because we don’t take into account estimation inaccuracy and
because MV-optimization concentrates on assets with “good” input charac-
teristics, optimized portfolios are prone to instability. If asset characteristics
change slightly, the process will re-allocate ressources on the “new” best as-
sets, regardless of transaction costs and data inaccuracy. We can measure
the concentration of a given portfolio by using the diversification index de-
fined in the appendix. Figure 2.5 shows asset allocation and concentration
over time, as given by an MV-optimization strategy. Concentration is rep-
resented by the Hehrfindal index. The curves exhibit jumps and we see that
the process only invests in a small portion of the 15 possible assets. The
optimal portfolio is highly concentrated on a few stocks. At the beginning
of the period, 6 stocks account for portfolio variance. At the end of the
period, 3 stocks suffice. One stock alone has a weight of 0.4. This goes
against the whole idea of diversification, and points to one of the flaws of
MV-optimization.

Sensitivity to input errors Because the MV-approach gives excessive
weight to assets with larger expected returns, the resulting portfolios are
highly sensitive to errors in the input data. In the optimization process,
we consider the input factors ~µ and V to be exact. No uncertainty in the
data is allowed for, which goes against what we know about the accuracy of
estimating asset returns and variance.

Examples We consider an investment universe of 15 stocks from the S&P500
and consider three problems. We plot the results in figures 2.5 and 2.6.

1. We solve for the minimum variance portfolio over time. We plot asset
weights and the volatility adjusted number of assets in the minimum
variance portfolio. This shows how diversified the portfolio is. As we
can see, the optimal portfolio is concentrated on a few assets, with
one asset weighing as much as 40% of the portfolio at one point. The



CHAPTER 2. FOUNDATIONS OF PORTFOLIO THEORY 15

advantages of diversification are cancelled out by the optimization pro-
cedure.

2. An efficient frontier is a static representation of possible portfolios at
a given moment. We plot the efficient frontier over time, using a one
year rolling window, which we shift forward every day for one year.
As we can see, the frontier changes over time. Portfolios have to be
re-adjusted to remain efficient.

3. We choose a portfolio on the frontier and see how it evolves in the
mean/variance plane over time: we don’t readjust it, we just plot the
current efficient frontier and see how the original portfolio compares.

2.2.7 Conclusion

Mean-Variance portfolio theory is easy to understand and easy to implement.
Practitioners and academics alike use it as a reference point. However, it
still hasn’t been proved to have good investment value. It yields unstable
portfolios, sensitive to slight changes in estimated returns and highly concen-
trated on a few assets. This goes against the stated goals of diversification
and robustness.

The wild behaviour of optimal weights makes for excess transaction costs
and offset any potential gains. The framework allows no room for uncer-
tainty, even though the data we provide is very noisy and our estimations far
from accurate. We can’t set up the procedure so that it fits our perception
of the market.

Most attempts to make MV optimization work consist in structuring
constraints, setting bracket limits to asset weights. This doesn’t address the
fundamental flaws of the method.

We would like to test two different approaches to improve portfolio se-
lection:

1. We use alternative risk/return frameworks.

2. We use data resampling to reduce the influence of noise on the opti-
mization process.

Hopefully, the combination of these methods will yield better results.

2.3 Risk measures for an efficient frontier

Mean-variance portfolio theory defines a risk-return framework for compar-
ing portfolios. In this framework, risk is defined as the variance of returns.

We quickly go over different risk measures, starting with variance, and
explain what each has to offer and why it should or shouldn’t be used. These



CHAPTER 2. FOUNDATIONS OF PORTFOLIO THEORY 16

Fig. 2.5: Top: asset weights of the minimum variance portfolio over time in
a 15-asset universe. Bottom: variance-adjusted equivalent number of assets
in the minimum variance portfolio over time in the same 15-asset universe.
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Fig. 2.6: Top: evolution of the efficient frontier for a 15-asset universe over
50 days, based on a 1 year rolling window. The shape of the frontier changes
over time. Bottom: we choose a portfolio on the frontier and let it evolve
over time in the mean/variance plane. Without readjustment, it drifts away
from the frontier and is no longer optimal. The frontiers are drawn at one-
month intervals, starting with the bottom curve at time 1.
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are in no way rigorous mathematical definitions. The idea is just to get a
feel for what these risk measures actually take into account, and what they
don’t. For a rigorous and complete overview of risk measures, we recommend
Embrechts and McNeil (2005) [8].

2.3.1 Variance

Variance is defined as the second centered moment of returns around the
mean. Simply put, it gives a measure of “how fat” a distribution is. In the
case of normally distributed returns, it does a good job of describing the
distribution.

Let ri be a random variable, we define the variance σ2
i and standard

deviation σi of ri as:

V ar(ri) = σ2
i = E[(ri − E[ri])2] = E[(ri − µi)2] (2.32)

If asset returns were normally distributed, they could then be fully de-
scribed by their mean and variance. However, asset returns are most likely
not normally distributed. Figure 2.7 shows the distribution of daily returns
for starbucks stock (SBUX) over a period of five years, from january 2002
to january 2007, and a distribution of returns drawn from a normal distri-
bution with mean and variance equal to the sample mean and variance of
our starbucks data.

We see that the distributions don’t have the same characteristics. Whereas
the realized return distribution has a number of absolute returns over 0.08,
the resampled normal distribution has no returns over 0.07, despite a greater
amount of draws. Simply put: the realized return distribution exhibits heavy
tails and a slim waist, while the resampled distribution has no tails and a
heavy middle. A rigorous demonstration would have us give kurtosis for
both distributions and compare the tails in a log-lin plot.

Variance doesn’t put much more emphasis on extreme returns than on
small returns. This doesn’t describe most investors’ risk-aversion: people
don’t like suffering large losses.

Another characteristic of variance is its symetry. It penalizes negative
returns as much as positive ones. This once again doesn’t reflect investor
preference: people most likely don’t mind positive returns, but want to avoid
losses.

2.3.2 Semi-Variance

Semi-variance is defined in the same way as variance, but only takes into
account returns under the average return. This is an improvement on vari-
ance, because we don’t consider positive returns as risks, quite the contrary.
While we don’t want to be exposed to negative returns, we happily accept the
risk of large positive returns. If the distribution of returns is gaussian, then
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Fig. 2.7: Top: distribution of daily returns for Starbucks stock (SBUX)
from January 1st 2002 to January 1st 2007. Bottom: Resampled normal
distribution of returns drawn from a gaussian of same mean and variance.
We see that the assumption of normality doesn’t fit the data we have: the
realized return distribution exhibits heavy tails and a slim waist, while the
resampled distribution has no tails and a heavy middle.
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variance and semi-variance are equivalent measures of risk. We can calcu-
late and plot mean/semi-variance efficient frontiers as defined by Markowitz.
Mean semi-variance portfolios are presented in Konno and Yamazaki (1991)
[9].

2.3.3 Higher-order moments

The concept of variance is easy to grasp, but is ill-adapted for the real world.
It doesn’t put sufficient emphasis on the risk of large returns. In a gaussian
world, there are no extreme events, so it doesn’t matter that they aren’t
taken into account. The real world, however, isn’t gaussian. In order to
capture the risk of extreme returns, we can extend the concept of variance
to the nth-order centered moment around the mean. This puts more weight
on large returns. This measure“squashes”small fluctuations and emphasizes
large returns.

Mn = E[(ri − E[ri])n] = E[(ri − µi)n] (2.33)

Using the same framework defined by Markowitz, we can now trace gen-
eralized efficient frontiers for given levels of returns, as proposed in Sornette
and Malevergne (2005) [10].

2.3.4 Value at Risk

An alternative risk measure to variance is Value at Risk (VaR), which is
quite popular in the financial community. VaR is the maximum amount you
stand to lose over a given period of time and for a given confidence level. For
example, we can compute the value at risk for a given portfolio with a level of
certainty of 95%. We get an amount x, of which we can say: “there’s a 95%
chance of not losing more than x over the next period”. Typical confidence
levels are 95% or 99%. We thus know that 95% of potential losses over the
next period will be under x. But what can we say about the remaining 5%?

2.3.5 Expected Shortfall

Expected Shortfall is a measure of large risks. Given a 95% confidence
interval for VaR, expected shortfall is what we stand to lose if we happen
to fall into the unlucky 5%.

2.3.6 Drawdown measures

For some investors, fluctuations in portfolio value aren’t very important,
just as long as negative returns are followed by gains. Drawdown measures
consider the risk of sustaining sequential losses. What is the worst that could
happen to an investor buying at a peak and selling at a subsequent low over
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a certain period? We consider maximum and average drawdown. Maximum
drawdown over a given period is the maximum amount an investor can lose
over a period in the worst case scenario: buying at peak value and selling
at the lowest subsequent value. Average drawdown is the mean drawdown
over the considered period.

In the same way we defined Value at Risk, we can define Drawdown at
Risk. We can compute drawdown at risk x for a given level of confidence,
say 95%. With 95% probability, there will be no drawdowns over x.

2.4 Historical data and resampling methods

We work with historical data. For every asset, we have the time series of
prices and returns. Chances are, if we could go back in time and let prices
evolve freely a second time from some given point, the outcome would not
be exactly the same. One way of seeing this is that the prices we observe are
one realized path of a stochastic process. This process is somewhat random
and noisy, so using this single path to characterize an asset might yield bad
results.

We would like to use this realized outcome to gather information about
the underlying process: how are the returns distributed, how are assets
correlated?

We consider three different methods for using data to estimate parame-
ters. In our framework, we need estimates of the expected returns, variances
and drawdowns for each asset in our investment universe. To illustrate how
each method works, we once again consider (SBUX) stock, for which we get
data over five years.

2.4.1 Historical approach

We can simply use historical data as estimates of the expected values of the
parameters we want to characterize. We take the average return over our
calibration window as an estimate of the expected return, and the covariance
matrix of assets over our calibration window as an estimate of the expected
covariances between assets. This is a naive approach, which we can improve
by applying some kind of weighting to the data. We might want past data
to play a smaller part in the estimation, and weight old data less than recent
data.

2.4.2 Fitting distributions

Another approach is to fit a distribution to the data we observe, just as
we did for starbucks stock (SBUX). Suppose we consider that returns are
normally distributed. We want an estimate of the expected return E(ri).
We observe the mean (µ) and standard deviation of historical returns (σ).
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We then generate p alternative price paths for the asset by drawing returns
from a normal distribution N(µ, σ2). We do this p times and average the
mean return over the n realizations.

2.4.3 Resampling methods

We can also do the same thing without making any assumptions about the
form of the distribution function. We generate paths by drawing returns
from the historical distribution. This has the advantage of not having to
make any assumptions about the form of the distribution.

Correlation in time It’s been shown that returns aren’t always inde-
pendant from one another. Large (absolute) returns tend to follow large
(absolute) returns. There is a certain amount of persistance in the market.

If we draw returns from the whole historical distribution, we lose the
correlation structure between returns. To preserve this structure, we cut
our return series into smaller subsets, shuffle and re-assemble them. Think
of it as a shotgun approach to data generation.

If we want to preserve n-day correlation, we consider strings of n-day
returns. We place these return segments in a virtual bag from which we
draw. By randomly cutting our return series, we generate return segments
of different lengths. This might be the best way to replicate data. We will
be keeping structure on different time scales.

2.5 Conclusion

In this chapter, we have explained the foundations of mean-variance portfolio
theory. Its simplicity appeals to academics and practitioners alike. We have
also seen that it still isn’t possible to use these “optimal” portfolios directly.

To make theory more robust and draw investment-grade information
from the mean-variance framework, we would like to add factors to our
objective function and go beyond the simple expected mean and historical
variance.

To solve these new problems, we will use a genetic algorithm. We de-
scribe genetic algorithms and there applications in the following chapter.



Chapter 3

Genetic Algorithms

3.1 General information

Fishes are generally streamlined with a pointed snout and pointed
posterior and a broad propulsive tail. Unlike the shape of a hu-
man body, a fish’s body shape is ideal for speeding through the
water without creating excess resistance. MSN Encarta

Nature often finds very good solutions to complicated and diverse prob-
lems. Humans aren’t bad at designing aerodynamic or hydrodynamic shapes,
especially when nature gives us examples of what is efficient. But whereas
it takes a team of engineers to determine what shape a torpedo should have,
fish have evolved from scratch.

Genetic algorithms are heuristic search methods inspired by nature.
They can be used to find solutions to optimization problems where there
are no “good” deterministic search methods. Principles of evolutionary biol-
ogy, such as natural selection and reproduction serve as guidelines to evolve
a population of solutions to a given problem.

3.1.1 Principles of GAs

The big advantage of genetic algorithms is that you don’t have to specify all
the details of a problem in advance. In fact, you don’t even have to know
all of the details. Potential solutions are evaluated by a fitness function
representing the problem we want to solve. We then define an evolution
procedure to produce new candidate solutions. The idea is that combining
good solutions (solutions that score high on the fitness scale) should lead to
better solutions. By adding some noise (mutating the candidate), we hope
to find better solutions. Part of the evolution process consists in choosing
the members which will form the next generation of solutions. There are
many different methods.

23
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Hopefully, this“oriented”random search will lead us to a“good”solution.
It isn’t necessarily the best solution, but since GAs are usually employed in
cases where there are no easily found optimal solutions, a good solution is
still better than nothing.

There are two main steps in genetic algorithms.

1. Write your problem in a way that solutions can easily be coded and
changed automatically. This is the “mutate and reproduce” part of
evolution.

2. Specify a fitness function f . We will use this function to compare and
rank solutions. This is the “survival of the fittest” part of evoution.

3.1.2 Pseudo-code

1. Draw a random population of n candidates. This is the old population.

2. Generate an intermediate population of n candidates.

3. Compare and rank the 2n candidates

4. Choose the n highest scoring candidates as the new population.

5. Go to step 2.

We stop when certain criteria are met: number of cycles, time passed,
good score...

3.1.3 Constraints

Optimization problems often have constraints, which we have to include in
our algorithm. We describe two methods for doing this:

First method Add a penalty to the fitness function, so that candidates
violating the constraint score less. Suppose we would like to solve the fol-
lowing problem:

maximize f(x, y)

st x+ y = 1

We can include the constraints by building another fitness function g,
such that:

g(x, y) = f(x, y)− p(x, y)
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Where p(x, y) is a penalty function which increases when the constraints
are violated. For example, if K is some positive constant.

p(x, y) = K ∗ |x+ y − 1|

The bigger K is, the stronger the constraint. This keeps vectors which
violate constraints on the sidelines of the selection process. At the same
time, if the constraints are too harshly enforced, especially in the beginning,
we might narrow down the population too much. The GA might converge
to a sub-optimal solution or run very slowly. It might not even converge.

We might just be solving the constraint conditions. The reason for this
is that our constraints define a subset of the whole search space. If this
subset is too small and if we can’t violate conditions temporarily, we might
not find a solution.

The following problem is defined over the whole plane of pairs of real
numbers.

maximize f(x, y)

st (x, y) ∈ R2

The problem below is defined over a straight line.

maximize f(x, y)

st x+ y = 1

Suppose our genetic algorithm randomly draws pairs of real numbers,
then ranks these solutions, generates new ones and so on... The probability
of randomly drawing points on a straight line in a plane universe is quite
small (smaller than that actually...). Then, when you randomly mutate the
points you have got, you will probably not move in the direction of the line,
and keep “falling off” the line. So this method takes computer power, time,
and lots of hope...

Second method Try to write the constraints into the algorithm. For
example, if we want the coordinates of each candidate to sum up to one, we
should normalize the intermediate population before ranking the different
solutions.

x←− x

sum(x)

Another way of thinking about these two methods is to say that the sec-
ond method randomly chooses points, projects them ALL into the admissible
search space and then optimizes over them, whereas the first method ran-
domly draws points, forgets the constraints, optimizes all the same, then
throws out all the points which weren’t in the admissible search space to
begin with.
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3.1.4 Stringing beads

We are given a bag of black and white beads from which we make 20-bead
bracelets. A friend randomly makes a bracelet and we want to make the
exact same one. We can’t look at the bracelet, but our friend can tell us
how many beads match. If 10 beads match, we get 10 points, for 5 beads
we get 5 points... We want to find the bracelet in as few trys as possible.
If we were to make all the possible bracelets successively and compare each
of them, we’d have to compare 220 = 1048576 bracelets. That’s a lot of
bracelets.

Set up

1. Each time we compare bracelets we increment our count.

2. Two symetrical bracelets are considered to be two different bracelets.

3. We lose no generalization by supposing that the random bracelet is all
black beads.

GA representation First we have to choose how to represent our solution
bracelet. We set black beads to be ones and whites beads to be zeroes. Each
bracelet can be represented as a string of ones and zeroes.

10101010101000110101

We consider candidate vector x, where ∀i, xi is 0 or 1:

x = x1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20

GA scoring Now we need to define a fitness function. We just sum up
the string.

f(x) = Σxi, for i = 1..20

We draw an initial random population of 10 black and white bead bracelets.

10101010100101001101 10101010100110100101
00101110101011010010 10001010101101011001
10010000101011011110 10100000110101000001
00110100000010101010 10001010101101011001
10111100100101011000 00000000101101000101

We define the way our population evolves. At each generation, 2 things
happen to all the vectors/bracelets:
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1. Each bead will mutate with some small probability pm, in which case
we get:

10101010100 1 01001101 −→ 10101010100 0 01001101

2. With some small probability pc, some bracelets will exchange whole
parts of their sequence randomly. This is called a crossover.

10101010100 101001101 −→ 10101010100010101010
00110100000010101010 −→ 00110100000 101001101

Running the GA We run through this sequence of mutations and crossovers,
getting a new population at each loop. Each time we compare a bracelet to
the target one, we increment our counter.

Results On average, it takes the algorithm 70 comparisons with the target
bracelet to find the exact solution. For one of these trys, we plot the average
and best scores inside the population for each generation. The results are
plotted in figure 3.1.
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Fig. 3.1: Top: We plot the average (red line) and best (blue line) scores
inside the population for every generation. Bottom: We plot the individual
score of all the population members over generations. Each color is the
evolution of one vector in the population. Score is plotted along the y-axis,
generation number is on the x-axis.
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3.1.5 Another example

We would like to solve the following problem:

minimize f(x1, x2) = |x1 − 0.5|+ |x2 − 0.5|

st (x1, x2) ∈ R2

Results We know the exact solution is (x1, x2) = (0.5, 0.5). We plot the
convergence of the algorithm towards the optimal solution in graphical form
in figure 3.2.

Fig. 3.2: We plot the pairs of solutions (x1, x2) for different generations.
We see that each generation comes closer to the exact solution. We start
out with a widespread cloud of points. Over time, this cloud gets more and
more concentrated. At generation 50, all the pairs are very near the exact
solution.

3.2 Defining our problem

We first have to write our problem in a GA-friendly way. We want to
find optimal portfolios of assets, meaning portfolios which score high on our
fitness scale.
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We also have to define a set of constraints which each portfolio must
verify.

Representing solutions We we can choose among n assets to build our
portfolio. Asset i has weight ωi in the whole portfolio, so we will represent
a candidate portfolio x by the vector of it’s asset weights:

x = (ω1, ω2, . . . , ωn).

Constraints We will consider 2 constraints:

1. No short-selling. So we must have ∀i, ωi ≥ 0

2. We invest all our money, but no more. So we must have Σωi = 1

3.2.1 Algorithm design and principles

The genetic algorithm we are using is based on the differential evolution
code developped by Rainer Storn and Ken Price [11].

Pseudo-code

1. Draw a random population of n candidates. This is the old population.

2. While iter < itermax

Evaluate each member’s fitness. Find the best member.

3. Generate an intermediate population of n candidates:

iter = 1

for i = 1 to NP

for each candidate i, randomly choose 2 different members from the
population. Substract one from the other and add F times the differ-
ence to candidate i.

for j = 1 to D

randomly choose ωj from either the best member (with probability
CR) or the modified version of candidate i (with probability 1−CR).
This is intermediate candidate i

4. for i = 1 to n

compare candidate i to intermediate candidate i. The fittest member
goes into the next generation and we now have the new population.

5. iter = iter + 1

Go to step 2.
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Parameters

• n number of individuals in the population

• D number of assets

• CR crossover ratio

• F mutation factor

• itermax maximum number of generations in a run

Designing constraints

As we saw before, we can enforce the constraints either by including a
penalty in the objective function, or by writing the algorithm so that the
constraints aren’t violated. We try both methods for our problem:

maximize f(x)

st x = (ω1, ω2, . . . , ωn).
∀i, ωi ≥ 0
Σωi = 1

First method We include a penalty function in the objective function so
that out-of-bounds candidates will score less, and get the following objective
function:

g(x) = f(x)− α (|mini (ωi) | −mini (ωi))− β(|Σωi − 1|)

where α is a penalty factor for the first constraint and β for the second
constraint.

Second method For both constraints, we choose to normalize and rectify
the population at each generation, just before ranking.

As it turns out, the second method is much faster, so we stick to it.

Definitions

• generation: All members of an initial population are evaluated and
the best member found. From this, we generate a new intermediate
population. Each intermediate member i is compared to to initial
member i. The best of the two is kept in the population.

• run: Starting with an initial random draw over the search space, we
let the population evolve over generations, until a certain criterium is
met. This series of generations is a run.
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3.3 Calibrating the algorithm

The goal of this work is to develop a multi-objective fitness function and
have the genetic algorithm find stable solutions to the problem thus defined.

3.3.1 Objective function

Our function is the sum of different functions:

f = f1 + f2 + f3 + f4

Where:
f1 is a performance factor in terms of annualized returns.
f2 is a risk cost.
f3 is a transaction cost due to potential reallocation of the initial port-

folio.
f4 is a concentration cost.

3.3.2 Minimum-Variance portfolio

GAs are useful in cases where there are no analytical solutions or no good
deterministic search methods. However, we would like to set the search
parameters to make our GA efficient. We want to compare GA results to
the analytical solution of a given problem.

In this case, we choose to find the minimum variance portfolio, for which
we have an exact solution. It is actually a subfunction of our objective
function, with f1, f3 and f4 set to 0, and using variance as a risk measure.

Set up To see if our settings lead to good solutions, we measure the error
between our search method and the exact result. So the problem we want
to solve now is:

minimize f(x) = xV x′

st x = (ω1, ω2, . . . , ωn).
∀i, ωi ≥ 0
Σωi = 1

Where V is the covariance matrix of asset returns

3.3.3 Computing-time and convergence

Convergence

There is no proof of convergence for the DE algorithm, so we can’t be sure
that every run will converge. And when a run converges, we have no idea
how good the output portfolio is.
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We would like to know how fast the population converges towards the
best solution during one run. This way we should know how many gener-
ations we should let the GA go through at each run. Figure 3.3 shows the
global convergence of the population.

Computing-time and the dimension of the problem

We would like to know how computing time increases with the number of
assets. We define performance criteria for the algorithm to reach and see
how time to completion increases with the number of assets.

We count the number of times the objective function has to be evaluated
for the algorithm to find 5 portfolios within 1% variance of the minimum
variance portfolio, for which we know the exact solution.

The idea is to calibrate the algorithm on a model for which we know the
solution and use the settings to solve bigger problems.

We set the algorithm so that one run ends:

• after the convergence of the population, which we define by checking
when the average population score reaches 90% of the best scoring
individual.

• after finding a vector within the target range.

We then plot computing time in a (D,nfeval(D)) plane, as showed in
figure 3.3.3, to get a rough idea of how the algorithm scales with respect to
the dimension D of the problem.

Tracing the mean-variance efficient frontier

We now want to compute and plot the MV-efficient frontier using the GA
algorithm. Since we have an exact solution, we can compare the results to
see how good the algorithm is. We trace the exact efficient frontier and plot
10 points on the frontier using the GA.

We compute the frontier by maximizing a set of objective functions fλ
over our search space.

fλ(x) = λr′x− (1− λ)xV x′

Parameters

• λ amount of risk, 0 6 λ 6 1

• x candidate portfolio

• r vector of historical mean returns

By varying λ from 0 to 1, we move along the frontier, from the minimum-
variance portfolio to the maximum-risk/maximum-return portfolio, as shown
in figure 3.5.
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results We successfully compute and plot the frontier using the GA. In
some cases, the GA actually performs better than the built-in closed form
solution by matlab.

Even with small sample sizes, approximation errors keep matlab from
inverting the covariance matrix correctly and the frontier can’t be computed.
The GA has no such problems, because we don’t invert any matrices...

3.4 Practical measures for implementing the GA
in our framework

3.4.1 Generations and runs

As we’ve explained before, we need to define stop criteria for the algorithm.
If we don’t it will continue searching for improvements in the population.
However, when the population has converged, any improvements will be the
result of a random search, and very slow.

We define different criteria:

1. When the average score in the population is less than 1% from the
best score, we consider that the populatio has converged and end our
search.

2. After a number x of runs without improvement in the best member,
we stop our search.

3.4.2 Convergence problems

One of our main priorities is to find robust results. If we run the GA
several times on the same problem, we want the find the same solution
each time. GAs are good at finding “pockets” of extreme points in a search
space, meaning they won’t get stuck in a local extreme point. However, once
they’re in a convex subspace of the search space, they perform rather poorly
compared to deterministic search methods. Another way of saying this is
that GAs don’t crawl over flat surfaces very well. There are 2 ways to solve
this problem.

1. Run a deterministic solver after a number of runs to find the exact
optimal portfolio. This would be time consuming, both in running
time and programming time. At the same time, it goes against one
of the stated goals of this paper. We aren’t interested in finding the
perfect portfolio at a given time. We want a portfolio which does well
most of the time. Considering the imprecisions in data, there is no
point in optimizing a portfolio to the extreme over one period.
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2. Force convergence by defining a minimal allocation step. This goes
well with practical applications: a fund manager will buy 1% or 5% of
an asset, not 0.01%. In our case, we set a minimal investment levl of
1%.

3.4.3 Dynamic optimization

MV optimization was developped as a static view of possible investments.
Our goal here is to develop a dynamic method. The framework we use
calls the genetic algorithm repeatedly to find optimal portfolios. At each
reallocation time, we need to re-run the algorithm. As stated before, we
hope to find stable portfolios with small reallocation costs.

In keeping with this idea, we seed our population of random portfolios
at time t with the best portfolio at time t − 1. This way, we have at least
one good starting point for our new function.

3.5 Conclusions

We chose to use a genetic algorithm for different reasons. They perform well
in many cases where deterministic algorithms don’t, such as non-convex
problems. This allows us the possibility of using objective functions with
non convex parts. The GA will simply crawl over the space and find good
solutions. Local convergence problems were then solved by setting minimum
increments in reallocation possibilites.

As it turns out, our objective functions were convex, and could have been
solved using deterministic algorithms. However, this would have required a
certain amount of programming to set up the algorithm for each function.

The GA approach simply required a few lines of simple code, defining
the objective function. The basic framework didn’t depend on the function
we used and didn’t have to be changed at each new trial.
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Fig. 3.3: Top: Fitness of every member of the population over time. Bottom:
Best and average scores in the population over time. At one point in time,
the population has completely converged and we can stop the algorithm.
Beyond this time step, we are just randomly searching the space around one
point. Fitness is plotted along the y-axis, generation along the x-axis.
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Fig. 3.4: Computing-time (y axis) as a function of the number of assets D
(x axis), in a lin-lin (top plot) and log-lin (lower plot).
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Fig. 3.5: Efficient frontier as computed with the closed form solution (con-
tinuous line) and with the GA (green points)



Chapter 4

Tests, framework and results

Mean-Variance as we have described it is a static process: at one point in
time, we look at past data and decide which portfolio is optimal for our
mean/variance preferences. The goal of this project is to develop dynamic
portfolio optimization methods. We want to choose a portfolio and then re-
allocate assets so that the current portfolio is always optimal by our fitness
standards.

Nothing keeps us from simply using MV-optimization over time. How-
ever, this method has been proved to be ineffective, due to excessive real-
location costs. We want to develop and then compare different strategies
against a number of standard techniques, some of which are very simple and
surprisingly effective.

4.1 Framework

We define the framework in which we compare existing methods as well as
the ones we have developped.

4.1.1 Data

We consider three different times periods, corresponfing to different regimes.
From January 1st 1995 to January 1st 1999, January 1st 1999 to January
1st 2003, and January 1st 2003 to January 1st 2007. This way we make sure
that the results we get are robust over time.

4.1.2 Investment universe

We consider assets from the S&P500. We usually take subsets of 8 to 15
assets, sometimes more. Our algorithm is very computationally intensive
and we have to limit ourselves to small data sets.

39
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4.1.3 Backtesting procedure

At time t we choose a window of past returns of length T weeks. At a given
time t, we consider a window stretching from t − T to t. We denote this
window Wt. It is a T x m matrix of weekly returns for the m assets in our
investment universe.

We consider weekly re-allocation of assets. Daily re-allocation would
result in excessive transaction costs. Many funds reallocate on a monthly
basis. Ultimately we would like the algorithm to choose to reallocate when
it seems right and not have to discretize the procedure.

Procedure

1. Get Wt.

2. Run the GA over Wt. Choose the optimal portfolio for time t, which
we note Pt.

3. Reallocate assets from Pt−1 to Pt.

4. Compute the realized return on our portfolio at time t using the real-
ized returns at time t of all the assets in our universe and transaction
costs.

5. Shift window Wt by removing the oldest return and adding asset re-
turns at time t.

6. start over

Outputs

At the end of one period, we compute and plot networth over time. We
compute different performance measures to compare portfolios.

4.2 Performance measures

How should we rank different strategies? One technique might yield a large
return one year, and large losses the next. Another might have smaller
returns, but less variations. In order to compare different strategies, we
define performance metrics usually used in the financial community.

4.2.1 Sharpe Ratio

The Sharpe Ratio is the ratio of excess annualized returns over annualized
standard deviation of returns σ. By excess returns, we mean returns over
the riskless rate r0. The Sharpe Ratio gives a measure of how much portfolio
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returns fluctuate over a given period.

SR =
r − r0
σ

If a portfolio has a r = 9% yearly return and σ2 = 16% variance over
one year, and the riskless rate r0 was 5%, then our portfolio has a Sharpe
Ratio SR:

SR = 1

4.2.2 Calmar Ratio

For investors less interested in small fluctuations of their portfolio than in
large risks, the Calmar Ratio is more appropriate. It is defined as the ratio
of excess annualized returns over the maximum drawdown in a given period.

CR =
r − r0
d

If a portfolio has a r = 10% yearly return and a maximum drawdown
d = 10% over one year, and the riskless rate r0was 5%, then our portfolio
has a Calmar Ratio CR:

CR = 0.5

4.3 Objective functions

We develop different objective functions, which we use as inputs to the
optimization problem we solve at each time step:

maximize f(x)

st x = (ω1, ω2, . . . , ωn).
∀i, ωi ≥ 0
Σωi = 1

4.3.1 Benchmarks

In order to compare strategies, we need to set a banchmark performance.
Surprisingly, very simple techniques perform very well. We choose variations
on the market portfolio as a benchmark to beat. This strategy is actually
very good. In practice, it’s very hard to “beat the market”. An in-depth
comparison of different strategies can be found in DeMiguel et al. (2005)
[12].

Equally weighted approach

We simply buy equal shares in every asset available to us. This is diversifi-
cation pushed to its extreme. As we will see, this technique is very efficient
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and very hard to beat. Consequently, we use it as a reference portfolio. In

this case, we readjust portfolio weights so that we stay on a
1
n

weighting
over time. This has consequences if transaction costs are high.

Equally weighted approach, then free

We buy into the market with equal shares in every asset and then let the
weights drift away depending on each asset’s returns. This is also a zero
turnover strategy.

Value-weighted portfolio

In this case, we simply buy into the market proportionally to each asset’s
market weight. In a CAPM world, this is the optimal strategy. This is also
a zero turnover strategy.

4.3.2 Standard functions

Minimum variance portfolio

We simply choose the portfolio with minimum variance over our calibrating
window.

Minimum semi-variance portfolio

As explained before, variance is a symetric risk measure. We are only loss-
averse, so choosing the portfolio with minimum historical semi-variance suits
our risk aversion better.

Minimizing higher order moments

Variance is a bad measure of the risk of large returns. Using higher order
moments, we emphasize large returns over small ones. It means that we are
willing to stand small fluctuations in our networth in order to miss large
drops. We test the fourth and eigth order centered moments around the
mean.

4.3.3 Multi-factor objective functions

We design an objective function f as a sum of different functions:

f = f1 + f2 + f3 + f4

Where:
f1 is a performance factor in terms of annualized returns.
f2 is a risk cost.
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f3 is a transaction cost due to potential reallocation of the initial port-
folio.

f4 is a concentration cost.
We are developping a one-period model. At each time-step, we consider

the optimal portfolio over the next period.

Performance f1 We compute the mean historical return vector over our
calibrating window and use it as an estimate of the expected return over the
next period. This is a näıve approach.

Risk f2 We start out using variance as a risk measure. For a given test
portfolio, we compute the variance of returns over the calibrating window,
and use it as an estimate of the variance of returns over the next period

Taking costs into account f3 Reallocating assets has a cost. Each time
we buy/sell assets, we pay a (not so small) transaction fee. This fee depends
on the type of asset we want to buy (stocks, bonds, funds), how much of it we
want to buy, who we are (an individual, a hedge-fund, a very big client...)
and where we want to buy it (banks charge more for stocks in emerging
markets for instance).

For our tests, we consider that we pay 0.1% on assets we buy and sell.

Imposing diversification f4 Mean-variance portfolio theory is supposed
to yield diversified portfolios. We’ve seen this isn’t the case. We consider
a function which penalizes highly concentrated portfolios. Asset managers
sometimes recommend investing so that you risk the same amount of money
on each asset. This is a risk-adjusted equally-weighted portfolio similar to
the index function, but takes into account the fact that different assets have
different risks. For example, if asset A is twice as risky as asset B, we invest
twice as much in B as in A.

We use the diversification index H defined in the appendix. For an n

asset investment universe, perfect diversification would occur if
1
H

= n. If
1
H

is smaller, then it mean that some assets are overweighted.
We define f4 as:

• f4 = −Cconcentration(Nconcentration − 1
H ), if 1

H < Nconcentration

• f4 = 0 otherwise

• Cconcentration is an adjustable parameter.

• H is calculated with equation A.1 of the diversification index.

• Nconcentration is an adjustable parameter.
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The portfolio manager chooses the minimum number Nconcentration of
volatility-adjusted diversified funds that he requires within the portfolio and
the cost Cconcentration that he attributes to the fitness function for each
incremental concentration point.

Combining factors

We want the sum of factors to make some kind of investment sense, so that
we optimize some tangible function. We choose all our factors so that their
dimension is a cost in terms of networth. The trick will be to find weights
on each factor.

f1(t)=NW (t)(1 +E(rt+1)) Where NW (t) is networth at time t. f1 is the
expected networth at the end of the next period.

f2(t)=−λNW (t)σ(t) f2 is a risk cost. We take off λ standard deviations
from our expected return. The higher the risk aversion λ, the lower the
quantile we are maximizing.

f3(t)=−pNW (t)TC(t) Where p is a penalty factor and TC(t) is the turnover
caused by reallocating from t − 1 to t. f3 is a transaction cost. We set p
to different levels for testing purposes. We optimize over Ω using a given p
and then use our real transaction costs to calculate networth.

p is a quenching factor. Imposing a higher p will limit the amount of
trading done. This reflects our confidence in the estimation procedure: if it
were perfect, we wouldn’t have to restrain trading.

f4(t) = −Cconcentration(Nconcentration − 1
H ) if 1

H < Nconcentration and 0
otherwise. f4 is a concentration cost.

3-factor function

We start by designing a 3-factor function, using the performance, cost and
variance indicators:

f(t) = NW (t)(1 + E(rt+1)− λσ(t)− pTC(t))

λ Increasing λ translates into increasing investor risk aversion.

p Increasing p means setting stronger transaction costs. Portfolios will be
re-allocated less often.

We scan a variety of (λ, p) values. To avoid data snooping, we do this
over three distinct periods. Only if a pair of values (λ, p) emerges as domi-
nant over the three periods can we suppose that there is an optimal search
function.
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4-factor function

We add the diversification indicator to our function

f(t) = NW (t)(1 + E(rt+1)− λσ(t)− pTC(t)− C(N − 1
H )) if 1

H < N

f(t) = NW (t)(1 + E(rt+1)− λσ(t)− pTC(t)) if not

Increasing C means that we force the portfolio towards the variance ad-
justed equally weighted portfolio.

4.4 Procedure

We define the periods over which we carry out testing:

• Period 1: January 1st 1995 to January 1st 1999

• Period 2: January 1st 1999 to January 1st 2003

• Period 3: January 1st 2003 to January 1st 2007

We test every function over all three periods and compute the Sharpe
and Calmar Ratios. We compile the results in table 4.1.

For the 3-factor function, there is no single best score. We plot surfaces
of Sharpe Ratio and Calmar Ratio as a function of (λ, p). Figures 4.1, 4.2
and 4.3 show these surfaces.

4.5 Results

The equally weighted portfolio dominates all the other portfolios in every
period in terms of Sharpe ratio. In terms of Calmar ratio, higher order
moment methods perform better in some periods. There is no best strategy
overall.

If we look at the SR and CR surfaces, we see large flat planes of (λ, p)
settings. In these subspaces, little or no trading was done beyond the initial
allocation. Overly risk-averse investors don’t trade. The same goes for
applying too high a penalty constraint.
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Sharpe Ratio
Strategy Period 1 Period 2 Period 3

Equally weighted 1.33 -0.26 0.84
Equally weighted, then free 1.27 -0.30 0.80

Value-weighted portfolio 1.19 -0.30 0.80
Minimum variance 1.12 -0.38 0.59

Minimum semi-variance 1.19 -0.42 0.57
Minimum fourth centered moment 0.87 -0.35 0.76
Minimum eighth centered moment 0.78 -0.32 0.73

Calmar Ratio
Strategy Period 1 Period 2 Period 3

Equally weighted 0.75 -0.17 0.79
Equally weighted, then free 0.69 -0.20 0.71

Value-weighted portfolio 0.63 -0.20 0.71
Minimum variance 0.50 -0.21 0.56

Minimum semi-variance 0.57 -0.19 0.51
Minimum fourth centered moment 0.41 -0.19 0.89
Minimum eighth centered moment 0.39 -0.18 0.86

Table 4.1: Sharpe and Calmar Ratio for each strategy over each period



CHAPTER 4. TESTS, FRAMEWORK AND RESULTS 47

Fig. 4.1: Period 1: Sharpe and Calmar Ratio as a function of (λ, p)
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Fig. 4.2: Period 2: Sharpe and Calmar Ratio as a function of (λ, p)
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Fig. 4.3: Period 3: Sharpe and Calmar Ratio as a function of (λ, p)



Chapter 5

The illusion of control

5.1 How good ideas sometimes fail

For all its flaws, mean-variance has one great advantage: it is intuitive and
easy to use, even with no technical baggage. The framework is easy to
explain and it makes investment sense. Investors can choose between two
factors they wish to emphasize: more risk (in the form of variance) or more
expected return. It’s a tradeoff. For this given level of expected risk, you
get this level of expected return.

We set out to build upon this framework and develop a more complete
function. To our performance and risk factors, we added a cost factor and a
new palette of risk factors, as well as a concentration factor. For each factor,
we provided different settings, hoping to find the best functional form.

- More risk?
- Yes please.
- Would that be variance or drawdown risk, sir?
- A bit of both please.
- And would you like turnover costs with that as well?
- Why of course. I don’t mind if I do.

This was to lead us to better portfolio control. It made investment sense
and each factor had a purpose. A few tests later, we come to the same
conclusion others have reached before us. All of our strategies are beaten
by the simple equally weighted approach. Over different time periods, no
strategy outperforms the market portfolio. We might as well invest in the
whole market indifferently. We would get better results and explanations
are much easier.

5.1.1 Simplicity ueber alles

How would we go about presenting our investment strategies to a potential
client?

50
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In the equally weighted case, we’d simply say: “spread out your risk”
and buy into the whole market. Simple.

Our functional form is more complicated. By changing the associated
weightings (λ1, λ2, λ3, λ4), we change f :

f = λ1f1 + λ2f2 + λ3f3 + λ4f4

With our approach, it is very hard to explain how each factor affects the
global outcome. Individually, they all make sense. Taking one performance
factor and one risk factor, we can define a tradeoff between them. But how
do you explain anything beyond that?

What does the (λ1, λ2, λ3, λ4) weighting represent? While a 1% change
makes sense for our optimizer, can we really say we’d rather have a (11, 9, 8, 72)
rather than a (10, 10, 10, 70) weighting in f?

The SR and CR surfaces show that such slight changes make a differ-
ence. How should we explain such large shifts in performance other than by
overfitting and random luck?

More importantly, how do you convince an investor that your more com-
plicated and under-performing strategy is actually the better choice?

5.2 Starting from scratch: a simple test for an easy
problem

Our risk factors and performance measures are quite good for describing
portfolios ex-post. Once we have realized returns, or when we are working
in-sample, they find very good portfolios. They just don’t work out of
sample.

To illustrate our problem, we run a simple test, which we could/should
have run at the beginning of our study. Up until now, we have made no
simplifying assumptions about our return series. We have worked only with
real data and said nothing about the underlying processes. If we knew the
underlying process governing the returns, then we should be able to build
portfolios with our eyes closed, right?

We suppose that returns follow a multivariate normal distribution. We
generate synthetic data with known mean vector of returns r and covariance
matrix V . We run a simple minimum variance portfolio optimizer and look
at the weights we get over time with different settings.

• We consider a fixed-length rolling window spanning six months.

• We consider a fixed-length rolling window spanning five years.

• We consider a window of increasing length. Starting with a six-month
window, at each time-step, we add a data point, therebye increasing
our sample size and the precision of our estimator.
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Figure 5.1 shows the optimal weights over period 1 for the minimum
variance portfolio in the first two cases, with fixed length rolling windows.

Results In the first case, the optimal weights don’t converge. They seem
to randomly change over time. In the second case, the weights seem to
fluctuate around some value. We could say that a six month sample is too
small an estimation. Five years is a lot larger and yet we see that asset
weights still fluctuate very strongly.

The third setting, shown in figure 5.2, gives us an idea of how the pro-
cedure behaves over time. At the end of the test, our estimation is done
over 1000 data points, roughly 20 years of synthetic data. The weights still
haven’t converged to a unique portfolio.

What if ? If we used an f -like function, would we get better results? We
based f on the assumption that our input parameters were correct. Keeping
the same estimators, we expect our portfolio to fluctuate with the estimation.
Imposing a strong p constraint, we could probably quench these fluctuations
but would have no idea whether we chose the true best portfolio or not. We
could just as well fix ourselves on a bad portfolio and not re-allocate because
of costs.

What now ? If the procedure doesn’t work with an easy function and
synthetic data which we control, why should it work for a more complicated
function and real data, the underlying process of which we don’t know?

Our estimators are simply too naive. Supposing our data was governed
by a multivariate normal distribution, how large a time-window would we
need to get good estimates? This depends what we mean by good. It’s
easy to get confidence intervals for our estimators of returns and covariance
matrix. What isn’t easy is to quantify the sensitivity of the optimization
process to the uncertainty in the estimators.

More precisely, if we have a confidence interval for our estimators, can
we get a confidence interval for the resulting weights?

5.3 Room for improvement

We look at possible solutions to our problems, suggested by the litterature
and our experience.

5.3.1 Estimating returns

We have used historical returns as estimators for future returns. As we’ve
seen, this is a bad estimator. Papers in the litterature have shown as much.
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Jorion (1986) [13] proposes other classes of estimators which do a better
job.

Other methods include shrinking the vector of expected returns towards
an empirical value, following asset managers’ beliefs. Some propose ignoring
returns all together.

5.3.2 Estimating the covariance matrix

We have only used naive estimators of V. We take the historical covari-
ance matrix, which is a bad estimator and very unstable. There is a whole
field which deals with developing better, more stable estimators of V. Good
references include Jorion (1986) and Ledoit (2003) [14].

The idea here is to shrink V towards some specific, stable matrix. In most
cases, the sample V can be projected into a smaller subspace of admissible
(positive definite) matrices. This is a field in itself. More applied methods
include reducing the number of correlation parameters we have to estimate,
by considering subspaces of assets (industry groups for instance) instead of
individual stocks.

In a perfect world, we would have developed suitable estimators, then
run our procedure.

5.3.3 Resampling methods

Richard Michaud is the pioneer and leader in the domain of portfolio
resampling [15]. The idea behind his method is that realized returns are
very noisy. Since the optimization procedure is very unstable with respect
to small variations in input parameters, we should optimize our portfolio
over sets of similar return series. On average, noise should be evened out.

Starting with our original return series, we generate new series adding
small amounts of noise to the original series. We then run the procedure
over all series. This gives us a set of different optimal portfolios for a same
level of expected returns. We take the average over all optimal portfolios,
which should be more stable with respect to errors in the input data.

5.3.4 Problems in the GA

In our selection process, we put convergence before diversification. We use
the best member to generate new members, which means we are generating
preferentially in a neighbourhood of the currrent best member. In doing so,
we might be missing good solutions elsewhere.

At the same time, this is the only way to get convergence of the popula-
tion. If we use a random member to generate new members, we will have to
define some other criteria for stopping the GA. For instance, we can count
the time since the last fitness gain. If this time is too long, then we stop the
run.
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We would have liked a procedure where each individual is switched only
if it’s better than it’s predecessor and if it isn’t too close to any other pop-
ulation member. For this we need a measure of distance and some sort of
diversity preference.

5.4 Le mot de la fin

Despite our efforts, we haven’t come up with a ground-breaking method
for building portfolios. We have, however, grasped the importance of un-
certainty in the whole process. Whatever method is applied, we stress the
importance of confidence intervals and sensitivity tests. Portfolio optimiza-
tion methods should come with clearly defined limits. We’ve seen that even
in straightforward cases, using synthetic data and simple functions, results
still aren’t what we expect.

Part of this underperformance we’ve attributed to noise. It’s hard to
say how much information and noise we find in our data series. Using raw
data doesn’t work. To palliate this, a whole field has developed, dedicated
to sifting through noise and finding true information. Doing this requires
developing models and making simplifying assumptions. How much infor-
mation do we truly find and how much is just enhanced noise or fabrication?
It is always a trade-off between model simplicity and real-world constraints.
By shrinking covariance matrices, we move away from real data. At the
same time, we get cleaner results, more stable input parameters and better
theory.

For practitioners, the main issue will be back-testing: a method produces
superior returns or it doesn’t. If it works, then little else matters.
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Fig. 5.1: Asset weights over time, as given by the minimum variance solver.
Top: six-month sample window. Bottom: five-year sample window
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Fig. 5.2: Asset weights over time, as given by the minimum variance solver.
The sample window increases in size at each time-step, reaching twenty years
at the end of the test.



Appendix A

Diversification Index

We use a diversification index as a factor in our objective function. Consid-
ering a portfolio x = (ω1, ω2, . . . , ωn) and the following notations:

• Weight of asset i = ωi

• Variance of returns of asset i = σ
2

i

• ∀i, ωi ≥ 0

• Σωi = 1

We define the “variance adjusted weight” of asset i:

pi =
ω2
i σ

2

i

Σω2
jσ

2

i

So the sum of variance adjusted weights over all assets is one:

Σi=1..npi = 1

We define the diversification index H in the following manner:

H = Σi=1..np
2
i (A.1)

If all funds have the same variance σ2
i and a similar allocation

1
n

then

H =
1
n

If our portfolio is made up of one asset, then H = 1. In the same way, if
one asset is responsible for all the variations in portfolio returns (a portfolio
made of one riskless treaury note and one stock), then H = 1.

H captures the notion of “volatility adjusted diversification”, and
1
H

can
be interpreted as the number of “diversified” funds in the portfolio.
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