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Abstract

Most of the performance measures proposed in the �nancial and academic
literature are subject to be gamed in an active management framework (Goetzmann
et al., 2007). One of the main reasons of this drawback is due to an incomplete
characterization by these measures of studied return distributions. We introduce
a new �exible Generalized Utility-based N-moment measure of performance (GUN,
in short), characterizing the whole return distribution, and hardly gamable. More
precisely, it takes into account the �rst four moments of the return distribution and
the associated sensitivities of the studied agent, re�ecting his preferences and risk
pro�le. The new performance measure is also well adapted for analyzing performance
of hedge funds and more peculiarly in presence of derivative instruments associated
with non-Gaussian return distributions. (JEL C16, G11, G23, G24).

1 Introduction

Fund performance measurement is an important question for both academics
and practitioners, and a renewal of interest recently appeared in the literature (for
instance, see Cherny and Madan, 2008; Capocci, 2009; Darolles et al., 2009; Jha et
al., 2009; Jiang and Zhu, 2009; Zakamouline and Koekebakker, 2009; Darolles and
Gouriéroux, 2010; Glawischnig and Sommersguter-Reichmann, 2010; Jones, 2010;
Billio et al., 2012a; Billio et al., 2012b; Cremers et al., 2012). Funds are generally
ranked according to di¤erent criteria by investment banks and �nancial advisors.
Such published rankings can have a signi�cant impact on in�ows and out�ows (Cf.
Hendricks et al., 1993; Powell et al., 2002) and, �nally, on the allocation decisions of
fund managers. Numerous measures have been proposed to evaluate the performance
of active management since the introduction of the seminal one in 1966 by William
Sharpe. In the following decades, a large �nancial literature has been dedicated to
this subject.

But we can still wonder about which decision criteria will help an investor to
prefer a certain measure of performance. As mentioned in Caporin et al. (2013),
the choice between di¤erent performance measures, �rst, depends on the preferences
of investors, and secondly, on the characteristics of underlying return distributions.
Moreover, the wish to use a performance measure rather than another one is also
related to the dimension considered (the evaluation of manager�s abilities, the rele-
vancy of investment strategies, the deviation of funds from their benchmarks, etc.).

Our article aims to contribute in two ways to the literature on performance
measurement. First, we underline some weaknesses of the traditional performance
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measures in link with their structure. Secondly, it proposes a new �exible General-
ized Utility-based N-moment measure of performance as an extension of the Mean-
variance framework in order to better characterize the shape of return distributions
to be evaluated and the preferences of investors.

From a theoretical point of view, the Sharpe (1966) ratio is a meaningful port-
folio performance measure when risk can be adequately measured by standard devi-
ation. Although this ratio remains a reference indicator for assessing the accuracy of
investment strategies, its use is doubtful in presence of a non-null skewness or/and
an excess kurtosis. Consequently, this article proposes to extend the Mean-variance
analysis framework. We show that the new measure of performance can be de�ned
as a generalization of some main performance measures: the Sharpe (1966) ratio,
the Morningstar (2002) MRAR and the Goetzmann-Ingersoll-Spiegel-Welch (2007)
MPPM measures.

Let us �rst grasp the intuition of our approach by comparing two Funds, whose
portfolio managers compete in the same market (i.e., the US Equity Fund market),
and where the Dow Jones Index is considered as the benchmark. Fund A is a
portfolio managed by an informed agent, who continuously adapts the composition
of his portfolio according to his forecasts about market conditions and expected
future market returns. The second one, namely Fund B, is held by an uninformed
but aggressive investor with a very consistent strong market exposure. Indeed, his
portfolio returns are characterized by a (relative) high beta to the benchmark (1.10
in the long run versus .40 for Fund A).

Let us now assume in our preliminary illustration that over a one-year period,
two major events happened. A �rst shock hurted the stock market in March (as
the result of an earthquake as in March 2011) and the second turbulence was in
September (another terrorist attack, similar to the one in 2001). In both cases,
the manager of Fund A reacted, with some short delays, in a quite adequate way
(presumably by cutting some of his positions, adding cash and bonds when possible,
going defensive, �ying to quality, buying some protective assets, rotating styles and
sectors, diminishing exposure with options and futures. . . ); on the contrary, the
investor�s behavior of Fund B - very determined in being aggressive - was rather
inappropriate on these two occasions. Indeed, whilst the negative impact of these
two market shocks on the performance of the �rst manager�s portfolio was moderated
(essentially concentrated over the �rst few days for each crisis), the performance of
the second manager�s portfolio strongly su¤ered in March and September, mainly
due to his general driven investment strategy. This results in signi�cant losses for
each of these two risky sub-periods, with a high drawdown and a volatility of his
portfolio returns.

Furthermore, a few weeks after the second crisis (and in the last six weeks of
the year), the manager of Fund B - happy with the unexpected recent recovery of
his performance in October and November - decided to secure his performance and
�game�his Sharpe ratio (Cf. Goetzmann et al., 2004 ; Brown et al., 2005), putting
in place a �split-strike conversion strategy�(adding to his long stock position, a long
put and a short call - Cf. Bernard and Boyle, 2009) in order to almost neutralize
the market e¤ect for the rest of the year. He also proceeded, at the same time, to
some �window dressing�for the end of the year (buying some of the hottest stocks
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on a year-to-date basis �Cf. Lakonishok et al., 1991). These actions happened to
cost globally, ex post, a couple of points of performance (2.14% in total) since he
missed the �nal rebound in November-December, as a result of his �informationless�
strategy.

If we �rst look at the NAV and related over-performance of the two Funds in
the sample (see Figure 1 below), the �nal yearly performance of Fund B is slightly
above those of Fund A (at the end of the sample �100 basis points or so), and,
accordingly for greedy investors, the MPPM concludes with the dominance of Fund
B over Fund A.

Figure 1: Net Asset Values and Out-performance
of the Fund A and B compared to Benchmark
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Source: Illustration of Net Asset Values of Fund A (thin grey line) and Fund B (bold black line)
over a one-year period. Grey areas represent the market shocks. The x-axis corresponds to dates
whilst the y-axis shows the performance of the two funds. Computations by the authors.

However, the comparisons of volatilities, skewness, kurtosis, Maximum Draw-
downs (Peak-to-Valleys), Value-at-Risks at 95% and 99%, as well as Sharpe ratios
(Sharpe, 1966), Omega measures (Keating and Shadwick, 2002), Kappa ratios (Ka-
plan and Knowles, 2004), and Sortino ratios (Sortino and Meer, 1991), lead us all,
on the contrary, to prefer Fund A. Moreover, if we look at the return distributions
of both Funds (see Figure 2 below), we observe two �bumpy� densities with two
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modes: a bump on the right (a good skewness and a better kurtosis) for Fund A,
and a bump on the left for Fund B (bad skewness and kurtosis). In the sense of
Kimball (1990), a risk averse, prudent and/or temperate investor would thus prefer
Fund A, since they prefer �ceteris paribus - lower volatilities, higher skewness and
lower kurtosis.

Figure 2: "Bumpy" Probability Density Function Estimates
of Fund A and B Daily Returns
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Source: This �gure illustrates Kernel estimates of "bumpy" return distributions (using the cross-
validation principle - see Silvermann, 1986), corresponding to quotes over a one-year period as
represented in Figure 1 above: the return distribution of Fund A is characterized with a bump on
the right (thin grey line) and the distribution of Fund B with a bump on the left (bold black line).
The x-axis corresponds to daily returns and the y-axis represents the associated probabilities. Both
axes are expressed in percentage. Computations by the authors.

This simple realistic example illustrates that most of the main performance
measures contradicts the MPPM ranking, which indeed puts a lot of emphasis on
the performance, and does not fully take into account all the features of return
densities when considering several types of investors. In other words, we see here
that MPPM might be focusing too much on performance in some circumstances
as illustrated by the following �gures. Using the simulation scheme presented in
Goetzmann et al. (2007), we can distinguish, on the next Figure 3, two main areas
for each line, corresponding to a given risk aversion coe¢ cient considered in the
MPPM computation (from 2 to 10): the �rst main area (at the bottom-right of each
curve) implies that the ranking of MPPM concludes in the opposite direction to the
performance, and the second one (at the upper-left of each curve) when the opposite
is true, signaling an opposition between the performance and MPPM ranking.

For instance, when considering a risk aversion coe¢ cient equal to 3 (respectively
5), a 50 basis point extra performance may compensate a supplementary limit over-
volatility of .91% (respectively .45%), whilst (in a quasi-linear manner in this region)
a 100 basis point extra performance may o¤set a surplus of volatility as large as
1.80% (respectively .90%), which has to be compared to the one-to-one performance-
volatility relation with the Sharpe ratio. Moreover, as we can see in the following
illustration, the MPPM is quite rather insensitive to the third (skewness) and the
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fourth (kurtosis) moments of the studied return distributions (ceteris paribus).

Figure 3: Iso-MPPM Frontiers displaying the Quantity of Over-volatility
required for a Given Over-performance

for reversing the MPPM Ranking - in a Pure Simulation Case
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Source: Illustration of the over-performance (the y-axis) and over-volatility (the x-axis), both
expressed in %. Fund B, compared to Fund A, is symbolized by a blue point. Ranking frontiers
(solid lines) are computed from the Manipulation-Proof Performance Measure (see, Goetzmann et
al., 2007) when varying the risk aversion coe¢ cient from 2 to 10 (A is equal to 3 in the original
paper). They are realized by comparing 10,000 pairs of portfolios - each represented by 250 returns
generated by a Gaussian law of parameters 17% for the annualized mean and 20% for the annualized
standard deviation as in Goetzmann et al., (2007). For each pair, one positive over-performance
and the return series of the worst performer fund is distorted (by intensi�cation of the volatility
only) making equal both fund volatilities; then, volatility of the worst performer is once again
distorted until an inversion of the ranking is obtained. The dashed bold blue line is the Sharpe
(1966) ratio ranking frontier assuming that a unit of extra over-volatility - for a unit of a given
over-performance - is required to inverse the ranking between two funds. Computations by the
authors.

Actually, the MPPM is mainly related to the mean performance characteristics
of fund histories (at least for low risk aversion coe¢ cients), and not exactly in the
way the performance is built (with more or less related losses and drawdowns), as
mentioned by Brown et al. (2010) in their MPPM-corrected measure (called Doubt
Ratio). As a result, it may miss some other characteristics, speci�cally when fund
managers try to �game� their performance rankings with non-linear instruments,
that may entail strong non-Gaussian features of densities. It is also shown (see
below) that the MPPM ranking is linked to a speci�c preference setting (a particular
set of moment preferences), depending on the �nancial characteristics of the studied
return series (i.e. means and volatilities of funds compared). In other words, the
relevance of the MPPM might be too speci�c to a class of agents, and not general
enough for most investors.

All these results lead us to propose our Generalized Utility-based N-moment
measure of performance (GUN, in short), grounded on an agent-preference setting
and based on a more complete characterization of return distributions.

The new measure of performance presented in this article, and satisfying all the

5



conditions to be characterized as a �good�measure, can be written such as:

GUNn;i;p
[1�1]

= �0n;i
[1�n]

�Cn;p
[n�1]

; (1)

where the GUNn;i;p statistic, summarizing the performance of a portfolio p held by
an investor i, is expressed as a linear combination of the Conventional moments
(C-moments in short) of a return distribution; �n;i is a column vector composed of
the n� 1 sensitivities of an investor i to the n-th moment such as 0 � �n;i � 1 for
n = [1; : : : ; 4] and i = [1; : : : ; I]; Cn;p is a column vector composed of the �rst four
moments of the studied return distribution.

The rest of the article is structured as follows. Section 2 introduces our new
�exible Generalized Utility-based N-moment measure (GUN, in short). Section 3
compares some of the main performance measures to our measure when using some
realistic simulations. Section 4 proposes �nancial applications on Hedge Funds whilst
Section 5 concludes.

2 The Generalized Utility-based N-moment Mea-
sure of Performance

In this section, we present the new �exible GUN measure, characterizing the
whole return distribution. More precisely, this measure of performance takes into
account the �rst four moments of the return distribution and the associated sensi-
tivities of the studied agent, re�ecting his preferences and risk pro�le.

We �rst propose hereafter to express the expected utility of an investor from
the moments of a return distribution through a fourth-order Taylor expansion. Sec-
ondly, we introduce our measure that writes as a linear combination of the �rst four
adjusted moments of the investor�s return distribution.

2.1 Utility Functions with Higher-order Moments

In economics, agents�behavior is represented by utility functions which describe
their preferences and risk pro�les. The main objective of any agent (in the main-
stream theoretical approach) is supposed to be the maximization of their expected
utility, which can be represented by an indirect function that is strictly concave
and decreasing with even moments and strictly concave and increasing with odd
moments. Traditionally, only the �rst two moments, namely the mean and the vari-
ance, are considered to describe the preferences and the risk pro�les of an investor
in terms of asset allocation in a risky environment. We can establish, however, a
link between the expected utility of an agent and higher-order moments of a re-
turn distribution through an expansion of Taylor to an in�nite-order (Tsiang, 1972;
Loistl, 1976; Lhabitant, 1997; Dávila, 2010). The utility of an investor, denoted
U (�), can be formulated via a utility function that is arbitrarily continuously and
di¤erentiable in D with D � IR. It represents the n-th order Taylor expansion,
evaluated at the expected return on the investment, 8 ri 2 D, such as:
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Ui (r) =
1X
n=0

(n!)U (n) [E (r)]� [r � E (r)]n + e"n+1 (r) ; (2)

where E (r) are the expected returns, n! is the n-factorial, U (n) (�) is the n-th deriv-
ative of the utility function and e"n+1 (�) is the Lagrange remainder. The latter can
be decomposed as (with the previous notations):

e"n+1 (r) = U (n+1) (�)

(N + 1)!
[r � E (r)]n+1 ; (3)

where n 2 IN� and � 2 [r; E (r)] if r < E (r) otherwise � 2 ]r; E (r)[.
In this analysis framework, we use a Taylor expansion in order to de�ne the

expected utility of any agent (see Jondeau and Rockinger, 2006; Jurczenko and
Maillet, 2006), respecting accurate conditions (See Garlappi and Skoulakis, 2011)
for the development to be exact (or approximative). To be valid, this approach
requires that the Taylor approximation of the agent�s utility function U (�) at the
n-th order around E (�) absolutely converges towards U (�). Moreover, since the
summand and integral operators are commutative, we assume that conventional
moments for all orders exist and are unique to characterize the return distribution.
Then, we can take, under some regularity conditions, the limit of N towards in�nity
and the expected value on both sides in Equation (2), that lead us to (with the
previous notations):

E [Ui (r)] = E

(
Lim
n!1

(
NX
n=0

(n!)U (n) [E (r)]� [r � E (r)]n + e"n+1 (r))) : (4)

Through Equation (4), it is thus possible to express the expected utility of an
economic agent from the �rst four moments of a return distribution. Considering an
exact (or accurate approximate) Taylor expansion at the fourth-order of a general
utility function (see, for details, Jurzcenko and Maillet, 2006), we have (with the
previous notations):

E [Ui (r)] = m1 (r)� U (1) [m1 (r)] +
m2 (r)

2!
U (2) [m1 (r)]

+
m3 (r)

3!
U (3) [m1 (r)] +

m4 (r)

4!
U (4) [m1 (r)] +e�n+1 (r) ; (5)

where mn (:) corresponds the n-th moment with n = [1; : : : ; N ] that we can de�ne
more generally in the following way (with the previous notations, for n > 1):

mn (r) =

+1Z
�1

f (r) [r �m1 (r)]
n dr;
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with:

m1 (r) =

+1Z
�1

f (r) rdr;

where f (:) is the probability density function.

2.2 A Generalized Expression of Traditional Utility Func-
tions re�ecting Investor�s Preferences

The main characteristics of the previous development allow us to di¤erentiate
several investors according to their preferences and risk pro�les. It is indeed possible
to de�ne these characteristics, assimilated to sensitivities, by studying moments of
the return distribution, usually limited to the order four. The sensitivity of the
�rst moment governs the so-called �greediness�of the investor, the sensitivity of the
second moment represents his �risk aversion�, whilst the third1 and the fourth terms
characterize respectively the �prudence�(see Kimball, 1990; Lajeri-Chaherli, 2004)
and the �temperance�(see Kimball, 1992 and 1993; Eeckhoudt et al., 1995; Menezes
and Wang, 2005)2. We know that investor�s preference functions determine what is
the optimal combination between risky assets and the risk free rate an investor will
hold, and how much this investor will consume and invest. The main restrictions
existing on rational utility functions are: non satiation, risk aversion, absolute and
relative risk aversion, prudence and temperance. Caballé and Pomansky (1996)
analyze general utility functions exhibiting all derivatives of alternate signs and
then propose an additional restriction on such utility functions, namely the Mixed
Risk Aversion restriction. They formulate the property of Mixed Risk Aversion such
as (with the previous notations):

�U
(2) (ri)

U (1) (ri)
� U (3) (ri)

U (2) (ri)
� �U

(4) (ri)

U (3) (ri)
� : : : � �U

(n+2) (ri)

U (n+1) (ri)
; (6)

where U (n) (�), for n = [1; :::; N ], corresponds to the n-th derivative of the utility
function of an individual i with respect to its return denoted ri.

The concept of Mixed Risk Aversion can be linked to the other concepts in risk
theory, namely the Proper Risk Aversion, the Standard Risk Aversion, and the Risk
Vulnerability. The �rst one corresponds to utility functions for which successive
derivatives alternate in sign, the �rst being positive. The second concept means
that both Absolute Risk Aversion and Absolute Prudence are decreasing, whereas

1Some interesting recent works, however, also show that the ratio [U (3)(:)=U (1)(:)] is also
linked to a risk aversion characteristic of a rational agent, who makes an arbitrage between
the �rst and the third moments (Cf. Crainich and Eeckhoudt, 2011).

2Lajeri-Chaherli (2004) extends the expansion to the order �ve, mentioning in reference
the �fth-order risk �edginess�, whilst Caballé and Pomansky (1996) re�ne even further
the expansion to the n-th order, referring to the �risk aversion of order n�, as an analogue
to the traditional classical Absolute Risk Aversion (see also Eeckhoudt and Schlesinger,
2006).
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the last one implies that Absolute Risk Aversion is decreasing and convex. A graph-
ical observation of this condition is to say that the �rst, second, third and fourth
derivative functions of such utility functions, increasing and convex, tend to an hori-
zontal line. It is obvious that Mixed Risk Aversion implies Standardness, Properness
and Risk Vulnerability (see Caballé and Pomansky, 1996). The advantage with the
concept of Mixed Risk Aversion is that it allows us to deal with higher moments,
while Risk Aversion is restricted to the second order moment and Standard Risk
Aversion is directly related to the second and to the third order moments. Further-
more, most of the traditional utility functions which respects the property of Mixed
Risk Aversion can be expressed according to a generalized form such as (with the
previous notations):

E [Ui (r)] =

NX
n=1

�n;i �mn;p (r) +e�n+1 (r) ; (7)

where �n;i is the sensitivity of an investor i regarding the n-th moments, such as
�n;i = !n;i (n!)

�1 gn;i (�n)
�n for n = [1; : : : ; 4] and i = [1; : : : ; N ], where !n;i is

a weight, n! is the n-factorial, gn;i (�) is a function, �n and �n are two constants
(depending on the underlying utility function); so that our new measure reads:

GUNn;i;p = E [Ui (r)] : (8)

Then, we can express via the generalized formulae in equation (7), the most
used utility functions. As an illustration, we sum up values associated to the di¤erent
parameters de�ned above in order to obtain the main utility functions. We can
see here there exists a link between the new Generalized Utility-based N-moment
measure of performance and the Cumulative Prospect Theory when considering
the investor�s sensitivities as modi�ed (subjective) probabilities associated with the
distribution of non-distorted returns.

3 AComparison with the FourMain Performance
Measures

We present in this section an interpretation of the new �exible measure of
performance and we explain how it can be seen as a generalization of some main
performance measures.
First, we show that it is possible to express some of the main performance

measures, namely the Sharpe (1966) ratio, the Morningstar (2002) RAR and the
Goetzmann-Ingersoll-Spiegel-Welch (2007) MPPM, as a linear combination of dis-
torted moments from a lognormal transformation function. Secondly, using the
simulation scheme presented in Goetzmann et al. (2007), we show how the GUN
can identify good and bad performances by comparing four declinations of it, each
measure characterizing a speci�c investor�s pro�le. Moreover, we show that our
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GUN can replicate the rankings of some of the main performance measures3.

3.1 A Generalization of the Main Performance Measures

The new proposed measure of performance is based on the study of the �rst
four moments of a return distribution. The main innovation of this new measure
of performance is to consider the whole probability distribution. We show below
that it is possible to express from the �rst two moments, some main performance
measures as a linear function of distorted moments: the Sharpe (1966) ratio, the
Morningstar (2002) RAR and the Goetzmann-Ingersoll-Spiegel-Welch (2007) MPPM
measures. Our goal hereafter is to show the �exibility of the new proposed measure
of performance.

The Sharpe (1966) ratio is de�ned as a �Risk Premium�over the risk level of
the studied portfolio such as (with the previous notations):

Sp = [E (rp)� rf ]� (�p)�1 ; (9)

where Sp is the Sharpe (1966) ratio of the portfolio p, rf is the risk free rate and
�p is the standard deviation of the portfolio p. The numerator can be interpreted
as the expectation of an individual in terms of returns and the denominator as the
risk level of the studied portfolio (see Caporin et al., 2012).

The Morningstar Risk-Adjusted Return, MRAR (Morningstar, 2002), is derived
from a power-utility function and it is de�ned as the expected value of the certainty
equivalent annualized geometric return. Then, it is de�ned such as:

MRARp =

8><>: E

��
1+rp
1+rf

��A�� 12
A

� 1 A > �1; A 6= 0

exp
n
E
h
ln
�
1+rp
1+rf

�io
� 1 A = 0;

(10)

where A is the risk aversion coe¢ cient (which is set to 2 by Morningstar).
Finally, the MPPM measure introduced by Goetzmann et al. (2007) is written

such as:

�p � [(1� A)�t]�1 ln
n
E
n�
(1 + rp) (1 + rf )

�1�1�Aoo ; (11)

where the �p statistic is the portfolio�s premium return after adjusting for risk,
�t is the length of time between observations, rp is the portfolio�s (unannualized)
rate of return, rf is the risk-free rate and A is the risk aversion coe¢ cient. The
latter should be selected to make holding the benchmark optimal for an uninformed
manager. Then, the portfolio has the same score as does a risk-free asset whose
continuously-compounded return exceeds the interest rate by �p.

If we now apply the lognormal function to the Sharpe (1966) ratio, the Morn-
ingstar (2002) RAR and the Goetzmann-Ingersoll-Spiegel-Welch (2007) MPPMmea-
sure, we obtain (with the previous notations):

3Those measures belong to the main four families (Cf. Caporin et al., 2013).
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8><>:
ln (Sp) = ln [E (rx)]� ln (�p)
ln (MRARp) = a ln

n
E
h
(r�)b

io
ln (�p) = ln fln fE [(r�)c]gg � ln (d)

(12)

where �p is the standard deviation of the portfolio p, E (rx) is the di¤erence between
the expected return of the portfolio p and the risk-free rate rf , a = �12=A is the risk
aversion level of the investor, b = �A, r�p is equal to (1 + rp) (1 + rf )

�1, c = 1� A,
d = (1� A)�t where �t is the time variation between two observations and ln (�)
is the logarithmic function.

If we restrict our GUN measure to the �rst two moments, we have (with the
previous notations):

GUN2;i;p = �1;im1;p (r)� �2;im2;p (r) ; (13)

where �n;i with n = [1; 2] correspond to the sensitivities of an individual i for the n-
th moment denoted mn;p (�) for n = [1; : : : ; 2] that represents the �rst two moments
of the return distribution of the portfolio p.

Let us now study the behavior of the Sharpe (1966) ratio, the Morningstar
(2002) Risk-Adjusted Return, the Goetzmann-Ingersoll-Spiegel-Welch (2007) MPPM
and the GUN measure of performance when assuming (ceteris paribus) a positive
variation of the mean, or a negative variation of the variance of the underlying return
distribution: an increase of the mean or a decrease of the variance of the investor�s
portfolio return distribution will positively impact all the four measures.

If we now adjust the sensitivities of the GUN measure, to the category of
individuals considered, we should be able to get a similar ranking with our measure of
performance as those obtained with the Sharpe (1966) ratio, the Morningstar (2002)
RAR and the Goetzmann-Ingersoll-Spiegel-Welch (2007) MPPM. To sum up, our
main idea is to show our GUN measure is general and shares identical properties
with other classes of performance measures.

3.2 A Special Focus on the Comparison with the Goetzmann-
Ingersoll-Spiegel-Welch (2007) MPPM

In this section, we �rst show how our GUN identi�es good and bad performances
by comparing four declinations of it, each characterizing a speci�c investor�s pro�le,
to some traditional measures, namely the Sharpe (1966) ratio, the Jensen (1968) al-
pha, the Goetzmann-Ingersoll-Spiegel-Welch (2007) MPPM, the Henriksson-Merton
(1981) and the Treynor-Mazuy (1966) measures. Secondly, we show that our GUN
can replicate the rankings of the performance measures previously mentioned, and
also, of the Darolles-Gouriéroux-Jasiak (2009) L-performance, the Keating-Shadwick
(2002) Omega and the Morningstar (2002) Risk-Adjusted Return measures.

Obviously, we would like our GUN measure, just as such the MPPM, recognizes
good performances as well as penalizes bad performances when they occur. The
following Table 1 and Table 2 display the performances of portfolio managers, who
provide, respectively, stock selection and market timing abilities. Moreover, we
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would wish our GUN to be �exible enough to replicate the rankings of most of the
traditional performance measures. Table 3 and Table 4 present illustrations of the
GUN ranking equivalent on 30 portfolio managers according to several measures of
performance.

Based on the simulation scheme used in Goetzmann et al. (2007), Table 1
reports the average excess, standard deviation and frequencies of the di¤erence
between the managed and market portfolios according to the annualized Sharpe
(1966) ratio, the Jensen (1968) alpha, the Goetzmann-Ingersoll-Spiegel-Welch (2007)
MPPM and four GUNs (on the various lines), each characterizing a speci�c in-
vestor�s pro�les4, for both an informed (left columns) and an uninformed manager
(right columns)5. The former informed is supposed to generate an annual extra-
performance superior to 1% compared to that of the latter uninformed manager.
The two traders hold similar underdiversi�ed portfolios but the uninformed does
not engage in any manipulation. For both managers, we distinguish three panels in
Table 1, corresponding to di¤erent annual residual risk levels, equal, respectively, to
20:00% (Panel A), 2:00% (Panel B) and :20% (Panel C). As mentioned by Goetz-
mann et al. (2007), these speci�c risk levels could re�ect a level of diversi�cation of
portfolios composed by a few, hundreds and thousands of component stocks.

When we look at the results, the Jensen (1968) alphas6 average, as expected,
1.00% and .00% for the informed and uninformed managers in the three panels.
Moreover, the uninformed investor�s portfolios are signi�cantly positive or negative
just about the predicted 5:00% of the time. Indeed, the Jensen (1968) alpha does
not penalize for under-diversi�cation.

For Panel C (that corresponds to a large number of stock portfolios with a small
idiosyncratic risk), all the seven measures show that the informed manager�s port-
folio is better than the market and the uninformed manager�s portfolio is essentially
identical to the market. For Panel B (that is associated with portfolios, composed by
hundreds of stocks, with a reasonable speci�c risk), the Sharpe, MPPM and GUNs
have almost the same results. For Panel A (that re�ects portfolios, composed by
few component stocks, with a high speci�c volatility), the MPPM as well as the four
GUNs do substantially better in showing that the 1% extra-performance does not
properly compensate for the lack of diversi�cation. We also observe that the GUN,
characterizing a risk-averse investor, is more penalized when the residual speci�c
portfolio is high compared to the other agent�s pro�les. Results obtained with our

4We �rst start with the de�nition of a �neutral� agent for who the scalar products,
respectively, between the �rst four sensitivities and the �rst four average moments of the
studied sample are strictly identical. Thus, we secondly specify four di¤erent categories
of investors characterized by a high sensitivity to only one of these four moments (ceteris
paribus). More precisely, we have a greedy investor, denoted GUNG, who is focused on
the mean, a risk-averse agent, named GUNRA, with a high sensitivity to the variance, a
prudent one, called GUNP , characterized by a signi�cant preference to the third moment
and a very temperate investor, alias GUNT , who severely dislikes the fourth moment (Cf.
Appendix A3 for more details).

5Table 1 is a replication of the simulation scheme provided in Goetzmann et al. (2007)
- Cf. Table 5 on page 1534.

6Using the same hypothesis de�ned in Goetzmann et al. (2007), we compute the Jensen
(1968) alphas assuming a systematic risk sensitivity of informed and uninformed managers�
portfolios equals to 1.
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Table 1: The GUN Measure of Performance: Informed versus Uninformed Traders
Informed Trader (
p = 1:00%) Uninformed Trader (
p = :00%)

Residual Avg Std Freq Freq Freq Avg Std Freq Freq Freq
Risk Excess Dev. Won Signif + Signif - Excess Dev. Won Signif + Signif -

Panel A: Annual logarithmic residual standard deviation = 20.00%
Sharpe -.140 .344 34.22% 1.99% 10.74% -.176 .344 30.47% 1.56% 12.75%
Jensen 1.01% 8.99% 54.50% 6.14% 3.90% .01% 8.99% 50.11% 4.93% 4.95%
MPPM -4.99% 8.99% 29.04% 1.37% 13.76% -5.99% 8.99% 25.31% 1.03% 16.30%
GUNG -6.99% 17.97% 34.93% 2.06% 10.41% -8.49% 17.97% 31.88% 1.69% 12.01%
GUNRA -17.00% 9.03% 2.99% .02% 59.08% 17.00% 9.03% 2.98% .02% 59.14%
GUNP -7.94% 8.99% 18.88% .57% 22.20% -8.44% 8.99% 17.37% .48% 23.90%
GUNT -8.05% 8.99% 18.55% .55% 22.55% -8.54% 8.99% 17.07% .47% 24.25%

Panel B: Annual logarithmic residual standard deviation = 2.00%
Sharpe .047 .045 85.15% 26.29% .35% -.003 .045 47.45% 4.28% 5.66%
Jensen 1.00% .90% 86.65% 29.67% .29% -.00% .90% 50.13% 4.93% 4.95%
MPPM .94% .90% 85.17% 27.37% .34% -.06% .90% 47.45% 4.29% 5.66%
GUNG 1.82% 1.80% 84.39% 26.31% .38% -.17% 1.80% 46.36% 4.05% 5.97%
GUNRA .64% .92% 75.78% 17.11% .93% -.34% .91% 35.78% 2.18% 10.02%
GUNP .82% .90% 81.85% 23.06% .52% -.17% .90% 42.77% 3.32% 7.13%
GUNT .82% .90% 81.80% 22.97% .52% -.17% .90% 42.66% 3.29% 7.17%

Panel C: Annual logarithmic residual standard deviation = .20%
Sharpe .050 .005 100.00% 100.00% .00% .000 .005 49.88% 4.84% 4.99%
Jensen 1.00% .09% 100.00% 100.00% .00% .00% .09% 50.13% 4.93% 4.99%
MPPM 1.00% .09% 100.00% 100.00% .00% .00% .09% 49.88% 4.85% 5.02%
GUNG 2.00% .18% 100.00% 100.00% .00% .00% .18% 49.76% 4.82% 5.04%
GUNRA .99% .09% 100.00% 100.00% .00% .00% .09% 48.63% 4.53% 5.33%
GUNP 1.00% .09% 100.00% 100.00% .00% .00% .09% 49.36% 4.72% 5.13%
GUNT 1.00% .09% 100.00% 100.00% .00% .00% .09% 49.37% 4.72% 5.13%

Source: This table analyzes the e¤ect of a variation of the portfolio residual risk according to four variants of the
Generalized Utility-based N-moment measure of performance and three other measures (Sharpe, 1966; Jensen,
1968; Goetzmann et al., 2007) for an (un-)informed trader who can create a portfolio with a positive extra -
performance by taking on various levels of increased unsystematic risk. The Ingersoll-Spiegel-Goetzmann-Welch
(2007) MPPM is de�ned such as: �̂p = lnf1=T

PT
t=1[(1 + rf )

�1 � (1 + rp;t)]1�Ag � [(1 � A)�t]�1 and the
Generalized Utility-based N-moment measure of performance - in short GUN - for an individual i as follows:
4;i;p = [�1;i �m1;p(rp)]� [�2;i �m2;p(rp)] + [�3;i �m3;p(rp)]� [�4;i �m4;p(rp)]. The latter is declined according
to four investor�s pro�les, namely GUNG, GUNRA, GUNP and GUNT , which respectively refer to an investor
strongly greedy, risk averse, prudent and temperate. The frequencies with which the investor�s portfolio beats
the market portfolio according to each measure are given along with the approximate frequencies with which the
portfolio signi�cantly (5.00%) outperforms or underperforms the market. These numbers are estimated as the
frequency with which the performance measure was more than 1.65 standard deviations positive or negative. The
computation is based on 350,000 managed portfolios with a 5-year return history, respecting the following market
hypotheses (with a four-digit accuracy): risk free rate 5.00% per year, market premium 12.00%, market standard
deviation 20.00% and an investor�s degree of risk aversion set to 3. Computations by the authors.

four variants of GUN lead us to think that the MPPM would correspond to a greedy
investor.

In the main, we can here write that the GUN always coherently leads us to
prefer the informed manager, whatever the quality of the signal, just as the MPPM
does. Similarly, the more precise the signal, the better the performance (Panel A,
B and C), for all the pro�les of investors considered. However, the �nal impact on
measures ultimately depends on the preferences of investors.

Grounded on the simulation parameters de�ned in Goetzmann et al. (2007),
Table 2 reports the average, standard deviation and frequencies of timing coe¢ cients
and total contributed values for the Henriksson-Merton (1981) and Treynor-Mazuy
(1966) measures, of the di¤erences between the managed and market portfolios
according to the Goetzmann-Ingersoll-Spiegel-Welch (2007) MPPM and the four
GUNs, previously de�ned in Table 1, for both an informed (left columns) and a
random market timer (right columns)7. The timing measures of Treynor and Mazuy

7Table 2 is a second replication of the simulation scheme used in Goetzmann et al.
(2007) - Cf. Table 6 on page 1535.

13



(1966) and Henriksson and Merton (1981) are regressions that are based on an extra
market factor to capture managers�timing abilities de�ned such as:

erp � rf = �p + (erm � rf )� �1;p + ewm � �2;p + e"; (14)

where erp are the managed portfolio returns, rf is the risk-free rate, �p is the
Jensen (1968) alpha, �1;p is the systematic risk sensitivity of the portfolio p to
the market portfolio m, �2;p is the market timing coe¢ cient, ewm is equal to ewm =
max (rf � erp; 0) and ew = (erp � rf )2 for, respectively, Henriksson and Merton (1981)
and Treynor and Mazuy (1966).
The total contribution values corresponding to the money manager�s contribution

to timing and selectivity are respectively written as:(
HMV = �pe

�rf�t + �2;pP
�
1;�t; erf�t

�
TMV = �pe

�rf�t + �2;pe
rf�t

�
e�

2
m�t � 1

�
;

(15)

where P (1; � ;K) is the value of a � -period put option on the market with a strike
price of K.
The total contribution is the amount by which the value of the protective put

exceeds its average �cost�measured by the lowered present value of the extra average
return. The informed market timer optimally adjusts the systematic risk sensitivity
of his portfolio according to his information that explains :10% (top part) or 1:00%
(bottom part) of the market portfolio�s variation. The uninformed trader wrongly
believes that he has the same quality information and adjusts his leverage randomly
to the same degree.

The Henriksson-Merton (1981) and Treynor-Mazuy (1966) measures are built
to only identify informed traders, but not to penalize the uninformed ones. Thus,
these two models show results consistent with the null hypothesis for the unin-
formed timer just as they would for a manager not trying to time at all. Regarding
the MPPM, we observe that the uninformed market timer, who incorrectly thinks
to have better information, is de�nitely hurting the portfolio�s performance. The
Henriksson-Merton (1981) and Treynor-Mazuy (1966) models frequently recognize
the informed traders because, unlike the MPPM, they do not penalize the portfolio�s
performance for the induced lack of intertemporal diversi�cation. However, when
we look at the four GUNs, only the greedy investor prefers the very informed trader
compared to the three other speci�c pro�les since he displays a signi�cant preference
to the mean. Consequently, those results lead us to think that the MPPM may be
biased towards the mean.

As in Darolles et al. (2009), Table 3 (Panel A) reports the implied sensitivi-
ties, scores and rankings of 30 managed portfolios8 according to the Sharpe (1966)
ratio, the Jensen (1968) alpha and four variants of the Goetzmann-Ingersoll-Spiegel-
Welch (2007) MPPM when varying the risk aversion level. The second line displays
�Implied sensitivities�corresponding to coe¢ cients used in the computation of our
GUN that allows us to exactly replicate the portfolios rankings obtained with each

8The 30 ranked portfolios correspond to 15 informed and 15 uninformed managers
whom portfolio returns respect the simulation scheme de�ned in Table 1 (Cf. Goetzmann
et al., 2007).
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Table 2: The GUN Measure of Performance: Informed versus Random Market Timers
Informed Timer (�p = :10%) Random Timer

Residual Avg Std Freq Freq Freq Avg Std Freq Freq Freq
Risk Dev. Won Signif + Signif - Dev. Won Signif + Signif -

HM �2;p .012 .043 60.42% 8.60% 2.64% .000 .044 49.29% 4.78% 5.06%
HM V .10% .35% 60.68% 8.66% 2.62% .00% .36% 49.22% 4.74% 5.02%
TM �2;p .211 .940 58.58% 7.72% 3.18% -.001 .955 49.94% 4.64% 4.66%
TM V .01% .02% 62.02% 9.38% 2.58% .00% .02% 49.62% 4.92% 5.02%
MPPM .42% 2.37% 57.22% 6.80% 3.52% -.50% 2.46% 42.02% 3.14% 7.38%
GUNG .51% 4.76% 54.28% 5.92% 3.94% -1.28% 4.95% 39.42% 2.90% 8.20%
GUNRA -1.45% 3.28% 33.18% 1.62% 11.42% -2.33% 2.56% 18.16% .32% 22.52%
GUNP -.27% 2.56% 46.30% 3.62% 6.22% -1.17% 2.55% 31.88% 1.92% 11.38%
GUNT -.33% 2.53% 45.44% 3.36% 6.50% -1.22% 2.51% 30.76% 1.74% 12.08%

Informed Timer (�p = 1:00%) Random Timer
Avg Std Freq Freq Freq Avg Std Freq Freq Freq

Dev. Won Signif + Signif - Dev. Won Signif + Signif -

HM 
2 .114 .138 80.12% 20.14% .82% .000 .138 50.16% 5.22% 4.44%
HM V .95% 1.14% 80.42% 20.38% .74% .00% 1.14% 50.24% 5.20% 4.50%
TM 
2 2.057 3.014 75.68% 16.14% 1.10% .006 2.99 49.70% 5.26% 4.94%
TM V .07% .07% 82.64% 23.16% .52% .05% .07% 50.38% 5.14% 4.46%
MPPM 4.09% 7.50% 70.34% 13.38% 1.16% -4.16% 7.67% 29.04% 1.62% 13.48%
GUNG 6.09% 14.99% 65.52% 10.72% 1.90% -6.57% 15.32% 33.18% 1.94% 11.22%
GUNRA -12.55% 8.14% 6.46% .06% 45.66% -15.23% 7.81% 2.50% .02% 62.04%
GUNP -2.06% 7.62% 38.94% 2.92% 8.30% -7.20% 7.76% 17.40% .58% 22.96%
GUNT -2.24% 7.58% 38.14% 2.74% 8.76% -7.33% 7.71% 16.72% .50% 23.58%

Source: This table compares the timing coe¢ cient and the contributed value, denoted 
2 and V, when using the
Henriksson-Merton (1981) parametric model and the Treynor-Mazuy (1966) market timing model, along with the
Ingersoll-Spiegel-Goetzmann-Welch (2007) MPPM and four variants of the GUN, for an informed market timer
whose information about a changing mean explains .10% and 1.00% of the market�s variance, and a random market
timer who varies leverage randomly to the same degree. The Goetzmann et al. (2007) Manipulation-Proof Perfor-
mance Measure - say MPPM - is de�ned such as: �̂p = lnf1=T

PT
t=1[(1+rf )

�1�(1+rp;t)]1�Ag�[(1�A)�t]�1 and
the GUN for an individual i as follows: 4;i;p = [�1;i�m1;p(rp)]�[�2;i�m2;p(rp)]+[�3;i�m3;p(rp)]�[�4;i�m4;p(rp)].
The latter is declined according to four investor pro�les, namely GUNG, GUNRA, GUNP and GUNT , which
respectively refer to an investor strongly greedy, risk averse, prudent and temperate. The frequencies with
which the investor�s portfolio beats the market portfolio according to each measure are given along with the
approximate frequencies with which the portfolio signi�cantly (5.00%) outperforms or underperforms the market.
These numbers are estimated as the frequency with which the performance measure was more than 1.65 standard
deviations positive or negative. The computation is based on a simulation of 350,000 managed portfolios, with a
5-year return history, respecting the following market hypotheses (with a four-digit accuracy): risk free rate 5.00%
per year, market premium 12.00%, market standard deviation 20.00% and an investor�s degree of risk aversion set
to 3. Computations by the authors.

measure of the six studied. We also present a summary statistics of Spearman�s
and Kendall�s rank correlation coe¢ cients computed from a large sample of portfo-
lios when only varying the �rst two moments (Panel B) and the �rst four moments
(Panel C).
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Table 3: GUN Ranking Equivalence
Panel A: An illustration of Iso-GUN Rankings on 30 Portfolios

Measures Sharpe Jensen MPPM 2 MPPM 3 MPPM 4 MPPM 5
(1966) (1968) (2007) (2007) (2007) (2007)

An Implied
Sensitivity
Vector GUN GUN GUN GUN GUN GUN
( 1, 2 (1.00, -.16 (1.00, .00 (1.00, -1.00 (1.00, -1.50 (1.00, -2.00 (1.00, -2.50
3, 4 ) .00, .00) .00, .00) .00, .00) .00, .00) .00, .00) .00, .00)

SR Rank JA Rank MPPM2 Rank MPPM3 Rank MPPM4 Rank MPPM5 Rank
.40 1 9.59% 2 3.28% 3 -.75% 15 -4.16% 19 -6.15% 1
.35 2 8.11% 1 1.81% 23 -2.17% 29 -4.50% 5 -6.48% 8
.29 3 6.59% 20 .19% 27 -2.21% 11 -4.80% 9 -6.87% 24
.26 4 5.30% 10 -.18% 29 -2.52% 9 -4.87% 21 -7.01% 3
.19 5 2.05% 29 -.54% 10 -2.86% 19 -5.04% 12 -7.05% 18
.17 6 1.67% 3 -.54% 2 -3.07% 6 -5.08% 8 -7.14% 14
.16 7 1.40% 5 -.86% 5 -3.11% 5 -5.17% 10 -7.21% 27
.14 8 1.09% 11 -1.10% 11 -3.20% 4 -5.24% 24 -7.26% 11
.14 9 1.05% 15 -1.14% 15 -3.26% 23 -5.26% 11 -7.28% 9
.14 10 .99% 4 -1.23% 19 -3.27% 18 -5.31% 2 -7.39% 12
.14 11 .96% 19 -1.26% 4 -3.34% 2 -5.42% 6 -7.81% 2
.13 12 .90% 8 -1.30% 8 -3.44% 14 -5.81% 15 -7.95% 17
.13 13 .83% 12 -1.37% 12 -3.81% 3 -5.98% 20 -8.01% 26
.12 14 .72% 23 -1.47% 1 -3.88% 20 -6.04% 29 -8.03% 19
.11 15 .44% 6 -1.81% 6 -4.01% 27 -6.06% 1 -8.07% 16
.10 16 .15% 24 -2.04% 24 -4.07% 1 -6.10% 16 -8.11% 22
.09 17 .09% 30 -2.10% 30 -4.09% 26 -6.15% 22 -8.16% 10
.09 18 .07% 7 -2.12% 26 -4.13% 16 -6.17% 17 -8.43% 20
.09 19 .05% 27 -2.16% 16 -4.18% 30 -6.23% 14 -8.48% 13
.09 20 .04% 16 -2.19% 20 -4.18% 22 -6.43% 30 -8.85% 5
.09 21 -.03% 22 -2.21% 22 -4.33% 10 -6.48% 13 -8.92% 28
.08 22 -.18% 21 -2.43% 21 -4.43% 24 -6.93% 28 -10.24% 6
.08 23 -.23% 13 -2.48% 13 -4.48% 13 -7.96% 4 -11.93% 23
.05 24 -.46% 14 -2.95% 28 -4.94% 28 -8.13% 23 -12.04% 29
.04 25 -.71% 28 -7.00% 14 -11.14% 12 -15.30% 3 -19.46% 15
-.01 26 -1.93% 25 -8.19% 25 -12.18% 25 -16.18% 25 -20.17% 25
-.24 27 -8.62% 18 -14.91% 18 -18.92% 21 -22.92% 27 -26.91% 30
-.30 28 -10.26% 26 -16.36% 7 -20.28% 7 -24.90% 7 -28.12% 7
-.35 29 -11.69% 9 -17.94% 9 -21.94% 8 -25.94% 18 -29.94% 21
-.57 30 -18.28% 17 -24.90% 17 -29.09% 17 -33.94% 26 -37.49% 4

Spearman � 1.00 1.00 1.00 1.00 1.00 1.00
Kendall � 1.00 1.00 1.00 1.00 1.00 1.00

Panel B: Summary Statistics of 1000 Draws when only varying the First Two Moments
Sharpe Jensen MPPM2 MPPM3 MPPM4 MPPM5
� � � � � � � � � � � �

Minimum .37 .26 1.00 1.00 .76 .79 .76 .54 .75 .69 .68 .46
1st Quartile .90 83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .99
Median .98 .94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3rd Quartile 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Maximum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel C: Summary Statistics of 1000 Draws when varying the First Four Moments
Sharpe Jensen MPPM2 MPPM3 MPPM4 MPPM5
� � � � � � � � � � � �

Minimum .37 .26 1.00 1.00 .99 .96 1.00 .98 .98 .94 1.00 .98
1st Quartile .94 .87 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Median 1.00 .98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3rd Quartile 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Maximum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Source: This table compares the ranking of 30 simulated funds obtained according to six performance measures
(respectively, Sharpe, 1966; Jensen, 1966; Goetzmann et al., 2007). Similarly to Table 1 and to Goetzmann et al.
(2007), managed portfolio return distributions are de�ned such as: ~rp = expf[�m+
p�0:5(�2m+ �2m)]�t+(�m~�+
�p~�)

p
�tg � 1 and market portfolio returns as: ~rp = expf[�m � 0:5(�2m)]�t + (�m~�)

p
�tg � 1, where �m is the

market rate of return, 
p is the extra -performance of managed portfolios, �m is the market standard deviation, �p
is the residual standard deviation of the manager, ~� and ~� are Gaussian random variables. The 30 portfolios under
study correspond to 15 informed traders and 15 uninformed managers when setting the annual residual risk to .20%,
2.00% and 20.00%. The second line displays the "Implied Sensitivities", varying from -1.00 to 1.00 with a step
equals to .10, for each of the �rst four moments that allows us to obtain with the GUN exactly the same rankings
as those obtained with the six other performance measures previously mentioned. The computation is based on
1,250 random series, equivalent to a 5-year return history, respecting the following market hypotheses: risk free rate
5.00% per year, market premium 12.00%, market standard deviation 20.00%. Computations by the authors.

16



Table 4: GUN Ranking Equivalence
Panel A: An illustration of Iso-GUN Rankings on 30 Portfolios

Measures Henriksson-Merton Treynor-Mazuy MPPM 2 MPPM 3 MPPM 4 MPPM 5
(1981) (1966) (2007) (2007) (2007) (2007)

An Implied
Sensitivity
Vector GUN GUN GUN GUN GUN GUN
( 1, 2 (1.00, .00 (1.00, .00 (1.00, -1.00 (1.00, -1.58 (1.00, -2.00 (1.00, -2.44
3, 4 ) .00, .00) .00, .00) .00, .00) .00, .00) .00, .00) .00, .00)

HM Rank TM Rank MPPM2 Rank MPPM3 Rank MPPM4 Rank MPPM5 Rank
-3.54 1 -4.67 4 50.56% 1 47.05% 1 43.55% 6 40.08% 30
-3.61 2 -4.75 13 43.42% 13 40.35% 27 37.29% 27 34.25% 27
-3.80 3 -4.93 7 23.60% 2 19.66% 2 16.07% 12 14.09% 12
-3.84 4 -4.97 6 20.30% 15 18.06% 12 15.73% 2 11.83% 2
-3.87 5 -5.01 20 20.04% 27 16.79% 15 13.29% 15 11.02% 1
-3.89 6 -5.02 15 17.80% 6 15.54% 6 13.28% 1 10.34% 5
-3.90 7 -5.03 17 16.81% 3 14.65% 5 12.50% 5 9.78% 15
-3.91 8 -5.04 9 14.94% 23 12.73% 3 10.53% 3 8.33% 3
-3.92 9 -5.05 23 13.88% 9 10.46% 9 7.67% 10 5.59% 10
-3.93 10 -5.07 8 11.81% 10 9.74% 10 7.05% 9 3.98% 19
-3.95 11 -5.09 10 10.51% 21 8.33% 19 6.16% 19 3.64% 16
-3.96 12 -5.10 25 10.33% 8 7.23% 16 4.96% 16 2.70% 8
-3.96 13 -5.10 21 9.50% 16 6.52% 24 2.72% 14 -1.08% 14
-3.97 14 -5.11 16 8.60% 25 5.36% 25 2.12% 25 -1.12% 25
-4.01 15 -5.14 18 4.92% 12 2.77% 14 .67% 24 -1.42% 24
-4.02 16 -5.15 27 4.87% 14 2.48% 8 .42% 8 -1.65% 9
-4.02 17 -5.15 26 4.54% 24 2.10% 11 -.11% 29 -2.31% 29
-4.02 18 -5.16 14 4.30% 11 2.00% 13 -.41% 13 -2.46% 13
-4.03 19 -5.16 11 3.70% 20 1.65% 17 -.93% 17 -3.27% 22
-4.03 20 -5.16 24 3.70% 5 1.13% 23 -1.07% 22 -3.53% 20
-4.03 21 -5.16 2 3.33% 28 .93% 18 -1.30% 18 -3.87% 17
-4.03 22 -5.17 22 3.16% 17 .76% 28 -2.03% 4 -4.09% 4
-4.04 23 -5.17 3 2.52% 4 .03% 4 -2.17% 28 -5.12% 28
-4.04 24 -5.17 5 2.40% 26 -.53% 7 -3.58% 7 -6.64% 7
-4.05 25 -5.18 30 2.09% 7 -1.03% 29 -4.47% 11 -7.91% 11
-4.07 26 -5.21 19 -2.20% 19 -5.07% 26 -7.22% 26 -9.36% 26
-4.10 27 -5.23 29 -2.93% 29 -5.20% 21 -7.78% 30 -9.98% 6
-4.10 28 -5.24 1 -3.38% 30 -5.58% 30 -8.22% 21 -11.25% 21
-4.11 29 -5.25 28 -6.74% 22 -10.10% 20 -13.42% 20 -16.74% 23
-4.11 30 -5.25 12 -6.79% 18 -10.12% 22 -13.51% 23 -16.89% 18

Spearman � 1.00 1.00 1.00 1.00 1.00 1.00
Kendall � 1.00 1.00 1.00 1.00 1.00 .99

Panel B: Summary Statistics of 1000 Simulations when only varying the First Two Moments
Henriksson-Merton Treynor-Mazuy MPPM2 MPPM3 MPPM4 MPPM5
� � � � � � � � � � � �

Minimum 1.00 1.00 1.00 1.00 .80 .81 .72 .59 .68 .66 .58 .48
1st Quartile 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .98 .95 .96 .91
Median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .98
3rd Quartile 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Maximum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel C: Summary Statistics of 1000 Simulations when varying the First Four Moments
Henriksson-Merton Treynor-Mazuy MPPM2 MPPM3 MPPM4 MPPM5
� � � � � � � � � � � �

Minimum 1.00 1.00 1.00 1.00 1.00 .97 1.00 .98 1.00 .97 1.00 .97
1st Quartile 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3rd Quartile 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Maximum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Source: This table compares the ranking of 30 simulated funds obtained according to six performance measures
(respectively, Henriksson and Merton, 1981; Treynor and Mazuy, 1966; Goetzmann et al., 2007). Similarly to Table
2 and to Goetzmann et al. (2007), market portfolio return distributions are de�ned such as: ~rm = exp[(�m +

~s � 0:5�2m)�t + (�m~�)
q
(1� �2p)�t] � 1, where �m is the market rate of return, ~s is the signal, �m is the market

standard deviation, �p is the information, ~� is a Gaussian random variable. The market�s unconditional expected
rate of return and logarithmic variance per unit time are �m and �2m, respectively. The information about the
changing mean is in the signal, ~s, which is normally distributed with mean zero and variance �2p�

2
m�t, where �p

is the fraction of variation known to the informed trader. In the simulations, �p is set to .10% and 1.00%. The
optimal market holding conditional on a signal, s, is equal to the conditional risk premium divided by the relative
risk aversion times the conditional variance, (�m + s� r)[�(1� �2p)�2m]�1. Since the unconditional risk premium is
equal to the relative risk aversion times the unconditional variance, the optimal leverage conditional on a signal s is
[1 + s(��2m)

�1](1� �2p)�1. The 30 portfolios under study correspond to 15 informed market timers and 15 random
managers as de�ned in Table 2. The Implied Sensitivities display the average sensitivities, varying from -1.00 to
1.00 with a step equals to .10, for each of the �rst four moments that allows us to obtain with the GUN exactly the
same rankings as those obtained with the six other performance measures previsouly mentioned. The computation
is based on 1,250 random series, equivalent to a 5-year return history, respecting the following market hypotheses:
risk free rate 5.00% per year, market premium 12.00%, market standard deviation 20.00%. Computations by the
authors.
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As expected, Table 3 shows that the rankings of the 30 managed portfolios
obtained according to the Sharpe (1966) ratio, the Jensen (1968) alpha and four
variants of the Goetzmann-Ingersoll-Spiegel-Welch (2007) MPPM can be exactly
replicated �as shown by the Spearman�s and Kendall�s rank correlation coe¢ cients
equals to 1.00 for each of these six measures - when adjusting the sensitivities applied
to the �rst four moments when computing GUN measures. Those results lead us
to conclude that our GUN is �exible enough to replicate, with a �ne accuracy, the
rankings of the main traditional performance measures.

Table 4 (Panel A) reports the implied sensitivities, scores and rankings of 30
managed portfolios9 according to the Henriksson-Merton (1981) and the Treynor-
Mazuy (1966) measures, and four variants of the Goetzmann-Ingersoll-Spiegel-Welch
(2007) MPPM when varying the risk aversion level. The second line displays �Im-
plied sensitivities�, corresponding to coe¢ cients used in the computation of our
GUN that allows us to exactly replicate the portfolios rankings obtained with the
six studied performance measures. We also present a summary statistics of the
Spearman�s and Kendall �s rank correlation coe¢ cients computed from a large sam-
ple of portfolios when only varying the �rst two moments (Panel B) and the �rst
four moments (Panel C).
As anticipated, this second illustration of the �exibility of our measure is able to

exactly reproduce the rankings obtained according to the Henriksson-Merton (1981)
and Treynor-Mazuy (1966) measures, as shown by the value of Spearman�s and
Kendall�s rank correlation coe¢ cients equals to 1.00 for each of these six measures.

4 Financial Applications on Hedge Funds

In this section, we compare the rankings of hedge funds according to several
performance measures on a sample as in Darolles et al. (2009). We use the HFR
database including 2,294 pure hedge funds and 1,926 funds of funds expressed in US
dollars. At inception, the hedge funds are self-declared in one or several categories,
called styles (see e.g. Das and Das (2004) for a description of styles in various data-
bases). These categories describe either the type of assets in the portfolio (styles
�Currencies�, �Distressed Securities�), or the type of portfolio management (styles
�Global Macro�, �Merger Arbitrage�), or both (styles �Fixed Income Arbitrage�,
�Equity Long/Short�). A majority of pure hedge funds belong in 9 categories, that
are �Equity Long/Short�, �Fixed Income�, �Global Macro�, �Currency�, �Futures�,
�Equity Long Short Equally Weighted�, �Fixed Income Arbitrage�, �Merger Arbi-
trage�and �Distressed Securities�. We select 30 hedge funds that represent various
styles and report the information on the management company, the self-declared
strategy and the assets under management.

9The 30 ranked portfolios correspond to 15 informed and 15 random market timers
whom portfolio returns respect the simulation scheme de�ned in Table 2 (Cf. Goetzmann
et al., 2007).

18



Table 5: Hedge Funds classi�ed by Style
N� Fund Name Style Company Name
1 Exane Investors Gulliver Fund Equity Hedge Exane Structured Asset Management
2 Ibis Capital, LP Equity Hedge Ibis Management, LLC
3 Odey European Inc. Equity Hedge Odey Asset Management Limited
4 Platinum Fund Ltd. Equity Hedge Optima Fund Management
5 Permal U.S. Opportunities Ltd. Equity Hedge Permal Investment Management Services Ltd
6 RAB Europe Fund Equity Hedge RAB Capital PLC
7 Pioneer Long Short European Equity Equity Hedge Pioneer Asset Management
8 Emerging Value Opportunities Fund Ltd. Equity Hedge Value Line, Inc
9 Robbins Capital Partners, L.P. Equity Hedge T. Robbins Capital Management, LLC
10 Invesco QLS Equity Equity Market Neutral Invesco Structured Products Group
11 Thames River European Fund Equity Non-Hedge Thames River Capital LLP
12 Craigmillar Partners L.P. Equity Non-Hedge Craigmillar Ltd.
13 SSI Long/Short Equity Market Neutral L.P. Long/Short SSI Investment Management, Inc.
14 Friedberg Global Macro Hedge Fund Ltd. Macro Friedberg Mercantile Group Ltd.
15 Sunrise Capital Diversi�ed, Ltd. Macro Sunrise Capital Partners
16 FX Concepts Global Currency Program Macro FX Concepts, Inc.
17 Haidar Jupiter International Ltd. Macro Haidar Capital Management, LLC
18 GLC Directional Fund, Ltd. Macro Glc Directional Fund, L.P.
19 R.G. Niederho¤er Diversi�ed Fund II, Ltd. Macro R.G. Niederho¤er Diversi�ed Fund II, Ltd.
20 QM Premier Fund USD Share Class Macro QM Premier Fund USD Share Class
21 Alternative Treasury Strategy, LLC Macro Alternative Treasury Strategy, LLC
22 Forest Multi Strategy Fund LLC Relative Value Arbitrage Forest LLC
23 Aristeia International, Ltd. Convertible Arbitrage Aristeia Capital LLC
24 Paulson International Ltd. Merger Arbitrage Paulson & Co., Inc.
25 Schultze O¤shore Fund, Ltd. Event-driven Schultze O¤shore Ltd.
26 York European Opportunities Fund, L.P. Event-driven York European Opportunities L.P
27 Lion Fund Limited Event-driven Lion Fund Limited
28 Fletcher Income Arbitrage Fund, Ltd. Fixed Income Arbitrage Fletcher Income Arbitrage Fund, Ltd.
29 Coast Arbitrage Fund II, Ltd. Fixed Income Arbitrage Coast Arbitrage Fund II, Ltd.
30 Global Distressed Fund Distressed Global Investment House

Source: 30 Hedge Funds have been extracted from the HFR database and 18 are also present in Darolles et al.
(2009). They are all expressed in US dollars and the period of interest goes from June 2004 to July 2007. Historical
return data are on a monthly basis.

As in Darolles et al. (2009), Table 6 reports the implied sensitivities, scores and
rankings of 30 Hedge Funds according to the Sharpe (1966) ratio, the Jensen (1968)
alpha and four variants of the Goetzmann-Ingersoll-Spiegel-Welch (2007) MPPM.
Implied sensitivities are coe¢ cients that make equal the ranking obtained with the
GUN and the six studied measures.
As anticipated, the implied sensitivities of the Jensen (1968) alpha are equal to

1 for the �rst moment and null for the three others.
As in Darolles et al. (2009), Table 7 reports the implied sensitivities, scores

and rankings of 30 Hedge Funds according to the Henriksson-Merton (1981) and
the Treynor-Mazuy (1966) measures, two variants of the Darolles-Gouriéroux-Jasiak
(2009) L-performance, the Morningstar (2002) RAR and the Keating-Shadwick
(2002) Omega measure. The second line displays �Implied Sensitivities� that are
coe¢ cients that make equal the ranking obtained with the GUN and each measure
of the six studied.
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Table 6: Iso-GUN Rankings on 30 Hedge Funds

Measures Sharpe Jensen MPPM2 MPPM3 MPPM4 MPPM5
(1966) (1968) (2007) (2007) (2007) (2007)

An Implied
Sensitivity
Vector GUN GUN GUN GUN GUN GUN
( 1, 2 (1.00, -4.84 (1.00, .00 (1.00, -1.00 (1.00, -1.65 (1.00, -2.26 (1.00, -2.67
3, 4 ) .00, .00) .00, .00) .00, .00) .00, .00) .00, .00) .00, .00)

SR Rank JA Rank MPPM2 Rank MPPM3 Rank MPPM4 Rank MPPM5 Rank
1.90 1 -6.35% 16 34.41% 27 31.08% 27 27.83% 27 24.63% 27
1.82 2 -7.94% 19 19.90% 19 18.50% 19 17.13% 19 16.22% 19
1.69 3 -7.81% 7 18.75% 7 17.88% 7 17.04% 20 15.80% 20
1.57 4 -8.13% 22 17.17% 22 16.56% 22 15.96% 22 15.36% 22
1.55 5 -8.31% 4 16.18% 4 15.27% 4 14.36% 30 13.46% 30
1.49 6 -8.55% 14 14.39% 14 13.78% 16 13.16% 16 12.55% 16
1.47 7 -8.60% 27 13.93% 17 13.34% 17 12.75% 17 12.16% 17
1.44 8 -8.81% 20 11.36% 13 10.93% 13 10.52% 13 10.10% 13
1.36 9 -8.82% 2 11.00% 23 10.41% 3 9.87% 6 9.34% 4
1.23 10 -8.84% 15 10.95% 2 10.24% 21 9.52% 21 8.80% 21
1.12 11 -8.85% 6 10.95% 3 10.23% 23 9.45% 23 8.66% 23
1.11 12 -8.92% 26 9.81% 26 9.10% 26 8.43% 9 8.15% 9
1.03 13 -8.93% 24 9.67% 11 9.00% 11 8.39% 26 7.69% 11
1.01 14 -8.94% 11 9.63% 24 8.87% 24 8.34% 11 7.67% 26
.99 15 -9.06% 9 9.00% 9 8.71% 9 8.12% 24 7.37% 25
.98 16 -9.21% 21 6.63% 1 6.33% 1 6.02% 7 5.72% 2
.80 17 -9.23% 25 5.98% 25 5.21% 20 4.79% 2 4.36% 5
.79 18 -9.25% 12 5.91% 12 5.18% 12 4.61% 18 4.31% 18
.75 19 -9.26% 1 5.81% 21 5.14% 25 4.45% 12 4.11% 15
.74 20 -9.32% 29 5.63% 29 4.90% 18 4.37% 15 3.94% 8
.68 21 -9.38% 18 5.20% 18 4.79% 29 4.31% 25 3.71% 12
.68 22 -9.41% 13 4.90% 15 4.64% 15 4.22% 8 3.50% 10
.66 23 -9.42% 8 4.78% 8 4.50% 8 3.81% 10 3.46% 24
.63 24 -9.45% 10 4.42% 10 4.11% 10 3.76% 28 3.44% 28
.59 25 -9.46% 23 4.31% 20 4.02% 2 3.73% 5 2.73% 1
.37 26 -9.56% 28 2.57% 28 2.00% 28 1.43% 1 .85% 7
.16 27 -9.76% 30 .61% 6 .30% 6 .00% 4 - .31% 6
.09 28 -9.77% 3 - .78% 30 -1.78% 30 -2.77% 3 -3.76% 3
.03 29 -9.83% 5 -1.85% 5 -3.00% 5 -4.14% 29 -5.27% 29
-.07 30 -9.98% 17 -5.23% 16 -7.16% 14 -9.10% 14 -11.05% 14

Spearman � 1.00 1.00 1.00 1.00 1.00 1.00
Kendall � 1.00 1.00 1.00 1.00 .99 .99

Source: Monthly quotes in US dollars from June 2004 to July 2007. This table compares the ranking of 30 Hedge
Funds obtained according to the Sharpe (1966) ratio, the Jensen (1966) alpha and four variations of the MPPM
(Goetzmann et al., 2007). The second line displays the "implied sensitivities" for each of the four moments allowing
us to obtain with the GUN exactly the same rankings as those obtained with the six studied performance measures.
Sensitivities with an asterix have been divided by 100. Computations by the authors.
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Table 7: Iso-GUN Rankings on 30 Hedge Funds

Measures Henriksson-Merton Treynor-Mazuy L-performance 1 L-performance 3 Morningstar Keating-Shadwick
(1981) (1966) (2009) (2009) (2002) (2002)

An Implied
Sensitivity
Vector GUN GUN GUN GUN GUN GUN
( 1, 2 (1.00, -2.01 (1.00, -1.00, (1.00, -.10, (1.00, -0.15, (1.00, -1.66 (1.00, -4.89,
3, 4 ) 7.08*, -12.77*) 6.81, -9.78) .08, -12.57) 7.88*, -9.08*) .00, .00) .01, -.61*)

HM Rank TM Rank L1 Rank L3 Rank MRAR Rank Omega Rank
41.53% 1 30.17% 18 25.68% 17 33.50% 30 36.46% 27 3.55 1
20.84% 2 17.10% 23 25.43% 2 33.30% 12 20.32% 19 3.42 2
17.44% 3 13.71% 30 24.85% 4 32.83% 30 19.58% 7 3.21 3
13.70% 4 11.75% 17 23.64% 1 31.31% 1 18.01% 22 2.75 4
12.47% 5 10.33% 16 23.37% 3 31.01% 16 16.50% 4 2.67 5
11.32% 6 9.92% 20 22.17% 6 30.40% 13 14.77% 16 2.66 6
11.17% 7 9.88% 14 22.17% 7 30.30% 23 14.27% 17 2.64 7
9.16% 8 7.75% 9 21.79% 5 28.60% 9 11.56% 13 2.61 8
7.46% 9 6.67% 13 21.53% 13 27.76% 20 10.97% 3 2.59 9
6.33% 10 5.61% 2 20.51% 23 27.06% 14 10.78% 21 2.40 10
6.15% 11 5.45% 3 19.90% 16 26.93% 3 10.77% 23 2.27 11
5.94% 12 5.27% 29 19.44% 29 24.83% 29 9.53% 26 2.14 12
5.80% 13 5.19% 25 19.28% 25 24.81% 25 9.42% 11 2.05 13
5.80% 14 5.10% 5 18.85% 9 24.43% 22 9.28% 24 1.95 14
5.13% 15 4.56% 12 18.48% 12 24.13% 2 9.10% 9 1.91 15
4.76% 16 4.13% 8 18.37% 8 23.34% 8 6.53% 1 1.87 16
3.66% 17 3.42% 1 17.49% 14 22.91% 18 5.35% 20 1.72 17
2.87% 18 2.43% 15 17.11% 15 20.79% 15 5.32% 12 1.70 18
2.23% 19 1.83% 7 17.10% 18 19.70% 7 5.28% 25 1.66 19
1.94% 20 1.76% 26 16.61% 26 19.33% 26 5.02% 18 1.66 20
1.82% 21 1.69% 10 16.61% 10 18.47% 10 4.91% 29 1.57 21
1.37% 22 1.55% 19 14.90% 19 18.14% 21 4.75% 15 1.56 22
1.32% 23 1.33% 6 14.39% 20 17.27% 11 4.60% 8 1.56 23
1.11% 24 1.05% 24 13.21% 24 17.21% 24 4.20% 10 1.55 24
1.11% 25 .88% 22 12.15% 22 16.80% 5 4.11% 2 1.52 25
.89% 26 .47% 28 12.10% 28 15.38% 19 2.02% 28 1.27 26
-2.84% 27 -2.42% 28 9.89% 11 13.55% 6 .30% 6 1.12 27
-2.91% 28 -2.71% 4 3.33% 30 4.00% 4 -1.76% 30 1.06 28
-7.11% 29 -6.53% 21 .68% 21 .53% 28 -2.95% 5 1.02 29
-11.66% 30 -11.18% 27 - .19% 27 -1.04% 27 -6.91% 14 .95 30

Spearman � .92 .85 .81 .89 1.00 1.00
Kendall � .94 .88 .83 .91 1.00 .99

Source: Monthly quotes in US dollars from June 2004 to July 2007. This table compares the ranking of 30 Hedge
Funds obtained according to the Henriksson- Merton (1981) and Treynor-Mazuy (1966) measures, two variants of
the L-performance (Darolles et al., 2009), the MRAR (Morningstar, 2002) and the Omega (Keating and Shadwick,
2002). The second line displays the "Implied Sensitivities" for each of the four moments allowing us to obtain with
the GUN exactly the same ranking as those obtained with the six studied performance measures. Computations by
the authors.
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As in the previous examples (Cf. Tables 3 and 4), Table 6 and Table 7 show that
we can almost reproduce any ranking based on main performance measures when
assets are non-Gaussian.

5 Conclusion

Portfolio performance measurement is a topic of interest within both academic
and practitioner communities, as well as �nancial authorities. Funds are generally
ranked according to di¤erent criteria by investment banks and �nancial advisors.
Such published rankings can have a signi�cant impact on allocation decisions of fund
managers. Numerous measures have been proposed to evaluate the performance of
an active management since the introduction of the main one in 1966 by William
Sharpe. However, a reasonable concern among those who use a particular measure
is whether or not the manager being evaluated might react by attempting to ma-
nipulate it. More formally, manipulation is the action taken to increase a fund�s
performance measure that does not actually add value for the fund�s investor. Sev-
eral articles have noted that even when the evaluator knows the moments of the
return distribution, it is still possible to use informationless trades to boost the ex-
pected Sharpe ratio. If most of the performance measures can be manipulated, can
we then �nd one that is not gamable for investors?

This article is organized into three sections: the introduction of our new �exible
Generalized Utility-based N-moment measure of performance, a comparison with
some of the main performance measures and �nancial applications on Hedge Funds.

The new measure of performance, built as a generalization of the Sharpe (1966)
ratio, nicely compete with the Morningstar (2002) measure and the Goetzmann-
Ingersoll-Spiegel-Welch (2007) MPPM. It is founded on an extension of the Mean-
variance analysis in a �rst four moment framework. The GUN measure is a simple
basic generalization of the well-known Sharpe (1966) ratio, making �exible the �rst
four sensitivities in the utility function of the investor applied to the mean, the
variance, the skewness and the kurtosis. The main objective of this adjustment is
to be able in a near future to adapt the proposed measure of performance for each
category of individuals by taking into account their preferences and risk pro�les. For
instance, the sensitivities applied to the �rst four moments of the Generalized Utility-
based N-moment measure of performance will be di¤erent between an individual who
mainly wants to maximize the excess return, another one who prefers to minimize his
portfolio risk or a last one who mainly considers a constraint on the fourth moment
adopting a �safety �rst�behavior. This is the main point for justifying the proposed
measure of performance.

Furthermore, we can distinguish two main potential uses of the Generalized
Utility-based N-moment measure of performance for �nancial regulators and �nan-
cial advisors. First, the GUN can be used as any other common ranking criteria,
but also considered as an optimization function in some asset allocation problems or
used for recovering risk aversion parameters from a speci�c ranking. Secondly, the
GUN can be viewed as a potential fraud indicator (see Bernard and Boyle, 2009;
Brown et al., 2010) that could be very helpful for investors and �nancial regulators.
We have also planned to complement our intuition that our measure respects all
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the axioms that have to be satis�ed by a �good�performance measure (Cf. Chen
and Knez, 1996; Pedersen and Satchell, 1998; Hübner, 2006; Eberlein and Madan,
2008).
But this is left for a further research.
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Appendix A1 

This first appendix presents the performance of Funds A and B on a 12-year period 

(see Figure A1.1) as well as the main descriptive statistics over a long (Table A1.1) 

and a short term period (Table A1.2). We also detail the sketch of the algorithm 

used for building Figure 3. 

 

 

 

Figure A1.1: Performance of the Fund A (Informed Investor), 

the Fund B (Uninformed Agent) and the DJI (Benchmark) on a 12-year 

Period 
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Source: USD Daily quotes, from 01/01/1999 to 05/13/2011. We compare in this illustration 

the performance of the Fund A and the Fund B – the uninformed agent – to their 

benchmark which is the DJI. Fund A corresponds to the informed investor who is 

characterized by an alpha set to .01% and a sensitivity of his portfolio to the benchmark 

equals to .39, while the Fund B, namely the uninformed investor, has respectively an alpha -

.01% sets to and a beta equals to 1.10. Computations by the authors. 
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Table A1.1: Main Descriptive Statistics on the Fund A and B  

on a 12-year Period 
 

 Fund A Fund B Ranking

Daily Mean Return    .02%    .01% A 

Standard Deviation    .65%  1.36% A 

Ann. Performance   4.36%   -.21% A 

Ann. Volatility  10.39% 21.60% A 

Skewness  -.08  .18 B 

Kurtosis 5.81   11.26 A 

Max Drawdown  -32.00%  -63.00% A 

Value-at-Risk 95%   -1.05%   -2.15% A 

Value-at-Risk 99%   -1.75%   -3.80% A 

Sharpe     -.01     -.13 A 

Omega     -.31    -6.30 A 

Sortino     -.01 -.17 A 

Kappa 3     -.12    -1.96 A 

Calmar     -.01 -.05 A 

Burke     -.00     -.01 A 

Sharpe-Omega      .05      .01 A 

Treynor   -.03    -.05% A 

Treynor-Black   -.01 -.02 A 

Graham-Harvey    .01 -.02 A 

Cornell    4.03%  -2.79% A 

RAP    4.86%   2.41% A 

MRAP    1.78%  .26 A 

SRAP     .37%  -2.08% A 

Ulcer  -.01     -.09 A 

Ziemba  -.01  -.13 A 

MPPM (A = 2)   -1.15%   -7.42% A 

MPPM (A = 3)   -1.69%   -9.75% A 

MPPM (A = 4)   -2.23%  -12.09% A 

MPPM (A = 5)   -2.77%  -14.43% A 

GUN Greedy    9.97%     4.32% A 

GUN Risk Averse   -9.50%    -4.23% B 

GUN Prudent      .16%       .04% A 

GUN Temperate      .08%       .01% A 

 

Source: All these figures have been computed for Fund A and Fund B on a 12-year period (from 01/01/1999 to 05/13/2011). 

Fund A corresponds to the informed investor who is characterized by an alpha set to .01% and a sensitivity of his portfolio 

to the benchmark equals to .39, while the Fund B, namely the uninformed investor, has respectively an alpha -.01% sets to 

and a beta equals to 1.10. Cf Caporin et al. (2013) for the definition of the performance measures used in this table.

Computations by the authors. 
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Table A1.2: Main Descriptive Statistics of Returns on Fund A and B 

over the one-year period 

 Fund A Fund B Ranking 

Daily Mean Return     .06%  .07% B 

Standard Deviation     .99% 1.14% A 

Ann. Performance  15.53% 16.47% B 

Ann. Volatility  15.79% 18.09% A 

Skewness 2.12     -2.44 A 

Kurtosis 9.86    16.06 A 

Max Drawdown    -10.00%   -20.00% A 

Value-at-Risk 95%     -1.06%  -1.68% A 

Value-at-Risk 99%  -1.54%  -4.09% A 

Sharpe   .99  .96 A 

Omega 57.16    55.45 A 

Sortino  2.30  .83 A 

Kappa 3 23.51    10.87 A 

Calmar  1.56  .89 A 

Burke   .54  .37 A 

Sharpe-Omega   .13  .11 A 

Treynor   .32  .22 A 

Treynor-Black   .28  .18 A 

Graham-Harvey   .13  .12 A 

Cornell   13.41% 13.29% A 

RAP   19.99% 19.50% A 

MRAP   33.00% 22.82% A 

SRAP   12.72% 12.22% A 

Ulcer  1.92     1.58 A 

Ziemba  1.62       .59 A 

MPPM (A = 2)   11.95%  12.56% B 

MPPM (A = 3)   10.76%  10.83% B 

MPPM (A = 4)    9.58%   9.07% A 

MPPM (A = 5)    8.42%   7.27% A 

GUN Greedy   17.86% 19.93% B 

GUN Risk Averse  -14.14% 15.41% A 

GUN Prudent     1.30%   1.58% B 

GUN Temperate     1.18%   1.44% B  
 

Source: All these figures have been computed for Fund A and Fund B on the year 2010. Fund A corresponds to the informed 

investor who is characterized by an alpha set to .05% and a sensitivity of his portfolio to the benchmark equals to .36, while 

the Fund B, namely the uninformed investor, has respectively an alpha .03% sets to and a beta equals to .86. Cf Caporin et al. 

(2013) for the definition of the performance measures used in this table. Computations by the authors. 
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Figure A1.2: Iso-MPPM Frontiers displaying the Quantity of Skewness 

required for a Given Over-performance 

for reversing the MPPM Ranking - in a Pure Simulation Case 
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Source: Illustration of the over-performance (the y-axis) - expressed in % - and over-skewness (the x-

axis). Fund B, compared to Fund A, is symbolized by a blue point. Ranking frontiers (solid lines) are 

computed from the Manipulation-Proof Performance Measure (see, Goetzmann et al., 2007) when 

varying the risk aversion coefficient from 2 to 10 (A is equal to 3 in the original paper). They are 

realized by comparing 10,000 pairs of portfolios - each represented by 250 returns generated with a 

Hansen (1994) t-skew Student law with mean performance de.ned on the y-axis, volatility of Fund B 

and various skewness-governing parameters. For each comparison, for a given over-performance and 

the return series of the worst performer fund is distorted (by intensification of the skewness only) 

making equal both fund skewnesses; then the skewness of the worst performer is once again distorted 

until an inversion of the ranking is obtained. Please see the sketch of the algorithm in Appendix A2. 

Computations by the authors. 
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Appendix A2: Sketch of the Algorithm for building Figure 3 

Parameters: 

10,000N   (number of return series), .01%   (increment for distortion),  ir  

(time-series of returns on fund i), j  (an increment),  tooσ  (vector of 

over-volatilities),  toE o  (vector of over-performances),  .00,...,.10   (the 

threshold is fixed). 

Choose one  . 

 

Main Program: 

 0j  ; 1j j   ; 

1. Choose  1,...,i N  and pick the fund i ; 

 

2. Compute      
j

i iA
j   r r  ; 

/* Distort the series such as      i ij
E Er r j     (with same volatility) */ 

 

3. Compute        
j

i i j iB
j E r   r r ; 

/* Distort the series such as      i ij
r r j      (with the same mean when 

rescaled) */ 
 

4. Compute  .
jA  and  .

jB  for one specific threshold,  ; 

 

5. If    . .
j jA B    stop, then: 

      
j

i iB
  oσ oσ r r  ; 

/* We add here the over-volatility of fund B in the vector of over-volatilities 

oσ  */ 
 

      
j

i iA
E E oE oE r r ; 

/* We add here the over-performance of fund A in the vector of over-

performances o  */ 

 

If not (i.e.    . .
j jA B   ) then repeat (next j)… 
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Appendix A3: Algorithm for the Simulation of the Table 2 

The computation of the table 2 follows the simulation scheme defined in 
Goetzmann et al. (2007). It is based on return distributions corresponding to a 
10,000 random return series, recalibrated in order to respect the following market 
hypotheses (with a four-digit accuracy): risk free rate 5.00% per year, market 
premium 12.00%, market standard deviation 20.00% and an investor’s degree of 
risk aversion set to 3 to be consistent. The frequencies, at which the portfolio 
beats the market according to each, are given along with the approximate 
frequencies with which the portfolio significantly (5.00%) outperformed or 
underperformed the market. These numbers are estimated as the frequency with 
which the measure was more than 1.65 standard deviations positive or negative. 

 
Return distributions of the timer’s portfolio and those of the market portfolio are 
simulated according to following formula: 
 

    2 2exp 0.5 1 1p m m m pr s t t              ,                     (A3.1) 

and: 

  2exp 0.5 1m m m mr t         ,                                 (A3.2) 
 

where s  is the signal characterizing the information about the changing mean, 

m  is the total risk of the market portfolio m , p  is a constant and   is a 
Gaussian random variable. 

 
The table below summarized the different parameters used to compute the 
market and random timer’s portfolio return distributions. 

 
Table A3.1: Parameters characterizing the Random, the Informed Timer’s and 
the Market Portfolio Returns 

 

  Portfolio Returns 

  m  s  m  p  t    

Informed 7.00%  2 20, p mN t   20.00%  .01%,1.00%  1.00  0,1N

Timer 

Random 7.00%  2 20, p mN t   20.00%  .01%,1.00%  1.00  0,1N

Market 7.00% - 20.00% - 1.00  0,1N  
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Source: the table displays the different market hypotheses used in Equation (A3.1) and (A3.2) for 
the computation of the market timer’s and the market portfolio returns. 
The table 2 then compares respectively the market timing coefficient and the 
contribution value obtained with the Henriksson and Merton (1981) parametric 
model and the Treynor and Mazuy (1966) market timing model, the Goetzmann 
et al. (2007) Manipulation-Proof Performance Measure and the Generalized 
Utility-based N-moment measure of performance for both, an informed timer 
whose information about a changing mean explains .10% or 1.00% of the 
market’s variance and a random market timer who varies leverage randomly to 
the same degree (see Table 6 in Goetzmann et al., 2007, on page 1,535). The 
Generalized Utility-based N-moment measure of performance (in short GUN) is 
declined according to four investor profiles, namely GUNG, GUNRA, GUNP and 
GUNT, which respectively refer to an agent strongly greedy, risk averse, prudent 
or temperate. More precisely, these different performance measures are defined 
such as: 

 

     

     
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2
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     (A3.3) 

 
where pHM  is the Henriksson-Merton (1981) ratio, pTM  is the Treynor and 
Mazuy (1966) market timing model, p  is the Goetzmann et al. (2007) MPPM, 

4, ,G pGUN , 4, ,RA pGUN , 4, ,P pGUN  and 4, ,T pGUN  are the four declinations of the 
GUN measures, pr  and mr  are the returns of the investor’s portfolio p and the 
market portfolio m , fr  is the risk-free rate, 1, p  is the systematic risk sensitivity 
of the portfolio p , 2, p  is the market timing coefficient of the investor’s portfolio 
p ,  , .n pm  with  1, , 4n    is the n-th (centered) C-moment.  
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