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Abstract 

 

In this thesis lower partial moments (LPM) are introduced as risk measures in portfolio optimization 
(mean-LPM optimization). LPM has several features making it a more suitable risk measure for the 
investor compared to variance. Empirical tests will be carried out to compare mean-variance 
optimization with mean-LPM optimization. The results will be discussed in light of a robustness 
analysis under a resampled efficiency framework (Michaud, 1998) performed in order to discuss the 
models´ sensitivities to estimation errors. 
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Chapter 1 

 

Introduction 
 

 

 

In the beginning of the last century, Louis Bachelier published his PhD thesis, “Theory of 
Speculation” at Sorbonne, Paris (Bachelier, 1900). It was the first time someone had tried to develop 
ideas in finance with rigorous mathematics. His thesis came to be a prominent work upon which many 
of the financial models and theories of today are partly built. Among these theories is the portfolio 
theory developed by Harry Markowitz (1952). Markowitz was a pioneer in the field of quantitative 
portfolio selection and was awarded the Nobel Prize in 1990. Using his model an investor can weight 
his portfolio in a way that maximizes the expected return for a given risk.  

This breakthrough was a major step forward for financial mathematics. The theory did however not 
meet the same enthusiasm outside academia. Practitioners often found the resulting set of asset 
weights unintuitive and thus did not consider the model a practical tool for investment purposes. This 
is one of the main dilemmas with portfolio theory and the idea with this thesis is to find a way to bring 
portfolio theory closer to practitioners. 

More specifically, the aim of this thesis is to look at an alternative risk measure and examine whether 
it could be suitable for portfolio optimization. Markowitz used variance as measure of risk in his 
original paper but in this thesis variance will be replaced by lower partial moments (LPM). The 
hypothesis is that the theoretical benefits of using lower partial moments that will be discussed will 
yield satisfactory results when the model is tested on historical data. The change of risk measure will 
furthermore allow for a relaxation of the normal distribution assumption necessary when using 
variance as risk measure. 

The entry of LPM in portfolio theory has mainly been driven by Bawa (1975), Fishburn (1977) and 
Nawrocki (1991, 1992 and 1999). This thesis can partly be seen as a development of their ideas.  

The outline of this thesis is as follows: In Chapter 2 the concepts of risk and return are introduced. In 
Chapter 3 classical portfolio theory is derived and discussed. In Chapter 4 mean-LPM portfolio theory 
is introduced. In Chapter 5 empirical tests are simulated. In Chapter 6 a robustness analysis is 
performed on the methods used in Chapter 5. In Chapter 7 summary and conclusions are stated.  
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Chapter 2 
 

The Concept of Risk and Return 
 

 

 
There is a saying that goes “there is no such thing as a free lunch”, meaning that if an investor wants 
higher returns he needs to take on lager risks. There is however no clear-cut definition of risk. 
Intuitively, risk is something that takes into account the probability as well as the severity of an event. 
People know that to win they need to bet, and to win big they need to bet a lot. In financial terms, 
large returns are often associated with large risks.  
 
Harry Markowitz was the first person to quantify this risk – return relationship in an optimization 
framework that came to be the foundation of modern portfolio theory (Markowitz, 1952). Using his 
theory an investor can pick out assets and weight his portfolio to maximize the expected portfolio 
return for a given portfolio risk.  
 
At the core of the theory lies the understanding of risk and return. In this chapter the rate of return and 
different ways of measuring risks will be introduced. This will encompass the basis needed for a 
comprehensive understanding of the portfolio theory that will be developed in later chapters. 
  

2.1  Rate of Return 

 
Portfolio theory is about maximizing the return for a given risk. The natural way of measuring return 

is by first defining the initial value 0V
 
of a portfolio. 

 

0 01
0

n k
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V h S

=
= ≥∑  

 

1( ,..., )nh h=h
 is a vector with the units of the 

n assets held in the portfolio. Notice that some 

elements in h  can be negative, that is, short selling is to some extent allowed. The value of asset k  at 

time t  is 
k

t
S . The vector of asset values at this time can be expressed as 

1( ,..., )n

t t
S S=

t
S . The value of 

the portfolio at time 1t =  is 
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The weight and the return of asset k can be expressed as 
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The portfolio return pr  
can now be written in the following way 
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The way that returns are normally measured is pretty straightforward. The value of the portfolio today 
is compared with the value of the portfolio yesterday, the percentage change is the return of the 
portfolio. This is the most common way to measure returns of portfolios and it will be the choice of 
measure for the rest of this thesis. It should however be mentioned that there are other ways of 
measuring returns, for example by use of upper partial moments (Cumova et al., 2004) which however 
will not be discussed. 
 

2.2  Risk Measures 

 
In this section the topic of risk measurement will be discussed. In the portfolio theory developed by 
Markowitz risk is measured by standard deviation. 
 
 
Definition 1 Given a random variable X  with expected value µ  the standard deviation σ of 

X is given by 

 

2[( ) ]E Xσ µ= −  

 

 For a continuous distribution where the random variable X has a probability 

density ( )p x
 
the standard deviation can be expressed as 

 

2( ) ( )x p x dxσ µ= −∫  
 

 with 

 

( )xp x dxµ = ∫  

 

 

 

The most frequently used estimator of σ  is * 2
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= −
− ∑  where 1,..., nx x

 is the sample  
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and 
1

1 n

i

i

x x
n =

= ∑ is its mean where n is the number of observations. Standard deviation is often used in  

portfolio optimization as well as in other fields where a simple measure of risk is needed. Sometimes  

variance is discussed instead of standard deviation and the two are related such that 
2( )var X σ= . 

 
Nonetheless, as Markowitz has argued (Markowitz, 1959) a better measure of risk ought to be variance  
below a certain reference point. Variance measures the variation around a mean. However, variations  
don´t necessarily have to be bad if they are above a certain threshold. To deal with this limitation of  
variance, semi-variance was introduced. 
 
 
Definition 2  If X  is a random variable with cumulative distribution function ( )XF x

 
and the 

reference level is τ , semi-variance is given by 

 

 2 2( ) (max( ,0) ) ( ) ( )X XSV F E X x dF x

τ

τ τ τ
−∞

= − = −∫  

 
 
It is intuitive that in the case of portfolio optimization downside risk should be minimized and not  
upside risk. Minimizing standard deviation would mean minimizing upside risk as well. The  
discussion of downside risk measures will continue by examining two commonly used downside risk  
measures, Value at Risk (VaR) and Expected Shortfall (ES).  
 
Companies face a wide range of risks. Let´s consider a company consisting of n units. The loss 
variable for the units will be 1,..., nL L  and for the whole firm 1 ... nL L L= + + . 

 
The amount of cash the company is required to hold (decided internally by risk management or 
externally by regulators) is decided by the risk measure ρ . Depending on how acceptable the risk is, 

the firm must hold a certain amount of buffer capital. If the risk is acceptable 0ρ ≤  shall hold and if 

not, 0ρ ≥  is the additional amount of capital that needs to be added to the buffer capital for the risk to 
be acceptable. Different families of risk measures have been defined but one of the families of 
measures that frequently appear in the literature is the family of coherent risk measures (Acerbi et al., 
2001). A coherent risk measure is supposed to be a “good” measure of risk, in the sense that it has four 
desirable properties. 
 
 
Definition 3 A risk measure ρ  is called a coherent risk measure if it satisfies Axiom 1-4 where 

1Z  
and 2Z  

are random variables. 

 

 Axiom 1 – Monotonicity  If 1 2Z Z≤
 
then 1 2( ) ( )Z Zρ ρ≥  

   

 Axiom 2 – Sub-Additivity  1 2 1 2( ) ( ) ( )Z Z Z Zρ ρ ρ+ ≤ +  

  

 Axiom 3 – Positive Homogeneity  If 0α ≥  then ( ) ( )Z Zρ α αρ=  

 

 Axiom 4 – Translation Invariance  If α ∈R  then ( ) ( )Z Zρ α ρ α+ = −  
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Convex risk measures constitute another family of risk measures that were introduced by Föllmer and 
Scheid (2002). According to their definition convex risk measures take into account the fact that large 
positions may be exposed to liquidity risk. If a position is increased the risks may increase in a non-
linear way. To deal with this Föllmer and Scheid relaxed Axiom 2 and 3 in Definition 3 and replaced 
them with a convexity axiom  
 

Axiom 5 – Convexity 1 2 1 2( (1 ) ) ( ) (1 ) ( )Z Z Z Zρ λ λ λρ λ ρ+ − ≤ + −  for any (0,1)λ∈  

 
Axiom 1, 4 and 5 together defines a convex risk measure. In this thesis different risk measures will be 
discussed and they will not necessarily be convex or coherent.  
 

2.2.1  Value at Risk and Expected Shortfall 

  
During the last 20 years one of the most popular ways for financial institutions to assess risk has been 
through Value at Risk (VaR). VaR measures the worst expected loss given a certain confidence level 
and time horizon. For example, a portfolio with a VaR equal to $1 million given a confidence level of 
5% and a time horizon of one week means that the probability that the loss of the portfolio will exceed 
$1 million in one week is less than 5%. VaR can furthermore be expressed more formally. 
 
 

Definition 4   Assume that the stochastic loss X  follows the distribution XF . Given (0,1)α ∈ ,

( )VaR Xα is given by the smallest number x  so that the probability that the loss X

exceeds x  is not greater than 1 α− . 

 

{ }( ) inf : ( ) 1VaR X x P X xα α= ∈ > ≤ −R
 

                 { }inf :1 ( ) 1Xx F x α= ∈ − ≤ −R
 

                                                              { }inf : ( )Xx F x α= ∈ ≥R  

 
 
The measure grew in popularity among professionals because of its simplicity and could often (and 
still can) be found on the financial statements of major financial institutions. However, in 1999 VaR 
was for the first time sharply criticized in the article by Artzner et al. (Artzner et al., 1999) where the 
definitions of a coherent measure of risk were outlined (Definition 3). VaR does not satisfy the sub-
additivity axiom and use of VaR could thereby lead to excess risk taking. VaR could for example 
suggest that diversification should be decreased in order to reduce risk, something that contradicts 
empirical tests and fundamental financial theory.  
 
Because of the limitations and the weaknesses of VaR new ways of assessing risk have emerged. One 
such way which has slowly started to get foothold outside academia is expected shortfall (also called 
Tail Expected Loss or Conditional Value at Risk). Instead of looking at what is likely to happen, 
expected shortfall (ES) takes into account how bad things will go when they will really go bad. This is 
done by examining the conditional expectation and investigating the expected loss of a portfolio when 
the loss is bigger than a certain threshold value.  
 
 
Definition 5  Given the stochastic loss X  and (0,1)α ∈  Expected Shortfall (ES) is given by 
 

( ) ( | ( ))ES X E X X VaR Xα α= ≥
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A common way to rewrite the expression for ES is 
 

[ ( ), ]
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where 
 

[ ( ), ]

1 ( )
( )

0 ( )q X

for X q X
X

for X q Xα

α

α
∞

>
Ι = 

≤
 

 
As was the case with VaR, ES returns an easily interpreted value that gives the investor a sense of how 
bad things can go. Risk management is often focused on extreme risks that can ruin a company or a 
portfolio, and these risks are captured in ES. A more general definition of ES is given by General 
Expected Shortfall (GES) which is not limited to the case where the stochastic loss X  follows a 
continuous distribution. 
 
 
 Definition 6 Consider the stochastic loss X . If (0,1)α ∈  General Expected Shortfall (GES) is 

given by 
 

( )[ ( ), ]

1
( ) ( ( )) ( )(1 ( ( )))

1 q XGES X E X X q X P X q X
αα α αα

α ∞= Ι + − − ≥
−

 

 

  

GES is a coherent risk measure along the lines of Definition 3. Furthermore, when the distribution of 

the stochastic loss X  is continuous it holds that ( ) ( )ES X GES Xα α= . 

 
There are several other measures of risks than VaR or ES, but for asset managers VaR and ES have 
played an important role and it is vital to understand their strengths and weaknesses when discussing 
other risk measures and their use in portfolio optimization. Before discussing portfolio optimization 
another risk measure will be introduced, lower partial moments. In later chapters the differences 
between portfolio optimization based on variance and lower partial moments will be analyzed.  
 

2.2.2  Lower Partial Moments 

 
The concept of moments in mathematics originally comes from the world of physics. Mean and 
variance are moments of the first and second order but it is possible to make a more general definition 
of moments. 
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Definition 7  If X is a random variable with cumulative distribution function ( )XF x
 
and 

reference level τ  the moment of degree n  is  
 

, ( ( )) (( ) ) ( ) ( )n n

n X XF x E X x dF xτµ τ τ
∞

−∞

= − = −∫  

 
 
The special case when the reference level τ  equals the mean of the distribution is called the central 
moment. The first moment around zero is thus the mean of the distribution and the second central 
moment is the variance. Normalized central moments are also introduced  
 
 

,

(( ) )
( ( ))

n

n X n

E X
F xτ

τ
µ

σ
−

=  

 

where nσ  is the standard deviation to the power of the degree of the moment. Two important special 
cases of moments are skewness and kurtosis.  
 
Skewness is the normalized central moment of the third order and is a measure of the asymmetry of a 
distribution. Positive skewness occurs when the right tail of a distribution is long and negative 
skewness occurs when the left tail of a distribution is long.  
 
Kurtosis is the fourth normalized central moment minus three. Figure 1 shows what happens to a 
distribution when the skewness is increased. Figure 2 shows the similar relationship but for kurtosis. 
Some probability distributions with very large kurtosis may exhibit fat tails. The distribution of a 
random variable X is said to have a fat tail if 
 

( ) ~P X x x α−>  as x → ∞  for 0a >  
 
meaning that a fat tailed distribution has a power law decay. More intuitively, for a distribution with a 
large kurtosis the probability of extreme events (events in the tails of the distribution) are higher than 
if the distribution would have been normal.  
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Figure 1. Chi-2-distribution for increasing degrees of freedom ν . The skewness decreases with increasing ν . 
 
 
 

 
 
 
 
 
 

 
Figure 2. The kurtosis of a t-distribution decreases when the degrees of freedom ν increases. 
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So far the general definition of moments and some of their features have been considered. Lower 
Partial Moments (LPM) can be said to be to moments what semi-variance is to variance. LPM simply 
examines the moment of degree n  below a certain threshold τ . LPM was first defined by Fishburn 
(Fishburn, 1977) 
 
 
Definition 8 If τ is a chosen reference level, n  is the degree of the moment and X  is a random 

variable with cumulative distribution ( )XF x  the Lower Partial Moments (LPM) 

are given by 
 

, ( ) (max( ,0) ) ( ) ( )n n

n X XLPM F E X x dF x

τ

τ τ τ
−∞

= − = −∫
 

 
In practice LPM can for m  observations be estimated by the following expression 
 

*
, , ,

1

1
(max(0, ))

m
n

n i i t

t

LPM X
m

τ τ
=

= −∑
 

 
LPM is a family of risk measures specified by τ  and n . τ  is often set to the risk free rate or simply to 
zero. By choosing the degree of the moment an investor can specify the measure to suit his risk 
aversion. Intuitively, large values of n  will penalize large deviations more than low values. Semi-
variance is a special case of LPM for which the degree of the moment is set to two.  
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Chapter 3 
 

Classical Portfolio Theory 
 

 

 
In previous chapters the theory necessary to derive and understand classical portfolio theory (mean-
variance portfolio theory) was outlined. This is a theory of investment which explains how an investor 
should weight his portfolio to maximize the return for a given risk. In the original paper of Markowitz 
(Markowitz, 1952) the risk measure used is variance. The consequences of using variance as risk 
measure will in detail be discussed later but the immediate advantage is that the mathematical 
derivation will be rather straightforward. Mean-variance portfolio theory as discussed in Markowitz 
(Markowitz, 1952) rests on a set of assumptions. 
 
 

1. Short-selling is allowed. 
2. Investors are rational and risk averse. 
3. There are no transaction costs or bid-ask spreads. 
4. The size of a position in an asset is not limited. 
5. Investors care only about the risk and the return of assets. 

 6. The return vector r  is multivariate normal distributed.  
  
 
The goal of each rational investor is either to minimize the risk (variance) for a chosen return or to 
maximize the return for a chosen level of risk. Later a proof will be derived showing that these 
problems (Problem 1 and Problem 2) lead to equivalent solutions.  
 
 
 Problem 1: 

 Minimize the risk of the portfolio for a given expected portfolio return. 
 
 Problem 2: 

 Maximize the expected return of the portfolio for a given portfolio risk. 
 
 
In these problems an additional constraint forcing the weights to sum to one will be added.  
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3.1  Deriving the Efficient Frontier 

 
Before looking into the details of the optimal allocation problem some matrix algebra which will be 
used in this chapter is reviewed.  
 
If A and B are matrices, 1η and 2η are vectors and c  is a scalar the following relations hold. 

 

 

( )
( )

( )

( )

T
T

T T T

T T T

T T

A A

A B A B

AB B A

cA cA

=

+ = +

=

=

 

 
If A is invertible it holds that 
  

 
1 1( ) ( )T TA A− −=  

 
If A is symmetric it holds that 
 

  TA A=  
 
If A is invertible and symmetric it holds that 
 

1 1 1 1
1 2 1 2 2 1 2 1( ) ( )T T T T T TA A A A− − − −= = =η η η η η η η η

 
 
The analytical solution of the optimization problem that comes with classical portfolio theory in the 
form of Problem 1 will now be derived1.   
 
Consider the single-period optimal allocation problem with 2n ≥ risky assets. The return of asset k  is 

kr  and ( )E =r µ with 1( ,..., )T

nr r=r
 and 1( ,..., )T

nµ µ=µ . Thus, the expected portfolio return can 

be written as ( )T T

pr E= =ω r ω µ . In mean-variance portfolio theory the measure of risk is variance, 

 

1 1 ,
1 1 1 1

( ) ( ... ) ( , )
n n n n

p n n j j k k j k j k

j k j k

var r var r r cov r rω ω ω ω ω ω
= = = =

= + + = = Σ∑∑ ∑∑  

 

This can be expressed more compactly 
 

1,1 1, 1

1

,1 ,

( ) ( ,..., )
n

T

p n

n n n n

var r

ω
ω ω

ω

 Σ Σ  
  = = Σ  

  Σ Σ   

ω ω

L

M O M M

L

 

 
 

                                                      
1 The derivation of the theory and the discussion in this chapter is based on lecture notes by Filip Lindskog from   
the course “Portfolio Theory and Risk Management” taught in 2008 at the Royal Institute of Technology as well  
as lecture notes from the course “Financial Markets: Theory & Evidence”, taught by Thomas Renström in 2002 
at the University of Rochester (http://www.econ.rochester.edu/Wallis/Renstrom/Eco217.html). The original 
analytical derivation of the problem can be found in Merton (1972). 
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Σ is the covariance matrix with , ,j k j k j kρ σ σΣ =  and ,

cov( , )j k

j k

j k

r r
ρ

σ σ
= . The optimal allocation 

problem can now be formulated. The solution will return the vector of optimal asset weights 
* * *

1( ,..., )T

nω ω=ω .  

 
Problem 1 can be expressed as a quadratic optimization problem (referred to as 1( )m v−  for mean-

variance. Sub-index 1 refers to Problem 1) 
 

 

 

The factor 
1

2
will make calculations easier and will not affect the optimization problem. The problem 

can be solved analytically by forming the Lagrange function.  
 

1 2 1 2

1
( , , ) ( ) 1 )

2
T T T

prγ γ γ γ= Σ + − + −L ω ω ω ω µ ( ω 1  

 

1γ  and 2γ  are Lagrange multipliers. To find optimal weights the Lagrange function is differentiated 

with respect to ω . 
 

1 2 1 2( , , )γ γ γ γ∇ = Σ − −ωL ω ω µ 1  

 
By letting this equal zero an expression for the optimal weights is found. 
 

* 1 1
2 1γ γ− −= Σ + Σω 1 µ  

 
Consequently, the conditions of the problem can be expressed in the following way 
 

* 1 1
1 2

T T Tγ γ− −= Σ + Σµ ω µ µ µ 1 

 
* 1 1

1 2
T T Tγ γ− −= Σ + Σ1 ω 1 µ 1 1 

 

Using the constraints, 1T =ω 1  and T

pr=ω µ , the equations above can be rewritten as 

 

1 2pr a bγ γ= +  

 

1 21 b cγ γ= +  

 

where 
1Ta −= Σµ µ ,

1Tb −= Σµ 1 and 1Tc −= Σ1 1 . 1γ  and 2γ  can now be explicitly expressed. 

 

1

1
min

2
. . ( )

1

T

T

T

p

s t m v
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 Σ


−
 =


=

ω ω ω

ω 1
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1 2

pr c b

ac b
γ

−
=

−
   2 2

pa r b

ac b
γ

−
=

−  
 

If this is inserted in the expression for *
ω  an expression for the optimal portfolio weights is found. 

 
1 1 1 1

* 1 1 1
1 22 2 2 2

( )p p

p

r c b a r b b b c b
r g g

ac b ac b ac b ac b

− − − −
− − −− − Σ − Σ Σ − Σ

= Σ + Σ = + = Σ +
− − − −

1 µ µ 1
ω µ 1 µ 1

 
 

where 
 

1 2

pcr b
g

ac b

−
=

−
  2 2

pa br
g

ac b

−
=

−
 

 
This is the solution to the problem 1( )m v− . By inserting the optimal portfolio weights in the 

expression for variance the relationship between mean and variance of optimal portfolios when the 
expected portfolio return varies can be examined. 
 

2
*2 * *

2

2p pT
cr br a

ac b
σ

− +
= ∑ =

−
ω ω  

 
The solution is traced out in Figure 3. The solid line is called the efficient frontier, the dotted line the 
inefficient frontier and the point connecting the efficient and the inefficient frontier is called the 
minimum variance portfolio. The expected portfolio return and the standard deviation are expressed in 
terms of yearly values. 
  
 

 
Figure 3. The solid line is the efficient frontier which is the solution to Problem 1. The dotted line is the 

inefficient frontier and the point connecting the two is the minimum variance portfolio. 

 
 
A portfolio has to exist somewhere within the area enclosed by the lines in Figure 3. A random choice 
of portfolio weights will indeed position a portfolio somewhere between the efficient and the 
inefficient frontier. By optimizing a portfolio however the portfolio will inevitably end up somewhere 
on the efficient frontier. Where exactly the portfolio ends up depends on the preferences of the 
investor.  
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3.2  Duality 

 
As mentioned earlier, Problem 1 and Problem 2 are equivalent in the sense that they have the same 
solution, the problems are said to be dual. Duality is a common feature in optimization theory and it is 
often useful when trying to find solutions that need less computations. Problem 2 can be solved in a 
similar way that Problem 1 was solved. The optimization problem 2( )m v− is written as 

 
 
 

 
 
 
 
 
 

 
The Lagrange function is formed 
 

2
1 2 1 2( , , ) ( ) (1 )T T T

pλ λ λ σ λ= + − Σ + −L ω ω µ ω ω ω 1  

 
The Lagrange function is differentiated with respect to ω . By letting this equal zero an expression for 
the optimal weights is derived. 
 

1 2 1 2

1 2

* 1 12
1 2

1 1

( , , ) 2 0

2

1
( ) ( )
2 2

f f

λ λ λ λ

λ λ

λ
λ λ

− −

∇ = − Σ − =

⇒ Σ = −

⇒ = Σ − = Σ +

ωL ω µ ω 1

ω µ 1

ω µ 1 µ 1

 

 
This looks similar to the solution of the problem 1( )m v− . When 1 1f g= and 2 2f g= the problems 

should lead to equivalent solutions. The Lagrange multipliers 1λ  and 2λ  are found by inserting 
*

ω  in 

the equations for the constraints.  
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The second constraint can now be used to find a second relation between 1λ  and 2λ . 
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This is inserted in the expression for 2λ   
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Finally, inserting 1λ  and 2λ in the expression for the optimal weights a deterministic expression for the 

optimal weights is found. 
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= Σ +

1

µ 1

 

 
As mentioned before, the problems 1( )m v−  and 2( )m v−  yield the same solution when 

1 1f g= and 2 2f g= . Using the first relation yields 
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This relation is the same as the relation found when solving the problem 1( )m v− . The same result is 

obtained by using 2 2f g= . The proof is completed, 1( )m v− and 2( )m v− have the same solution. 

 

3.3  Limitations of Classical Portfolio Theory 

 
Two of the limitations of classical portfolio theory will now be discussed. First (i), the use of means 
and variances in portfolio theory is not always feasible. In fact it can be shown that this is only 
reasonable when the distribution of r  is approximated by a multivariate normal distribution or if the 
investor has a quadratic utility function. If the distribution of r  is approximated by a multivariate 
normal distribution an investor will only have to observe the mean and variance, there is nothing else 
he can observe even if he wanted to. If the investor has a quadratic utility function he won´t care about 
other factors than means and variances, even if they did exist (e.g. higher moments). This will be 
covered in more detail in Chapter 4.3. 
 
Second (ii), the covariance matrix Σ  and the mean vector µ  are not observable and have to be 
estimated. This is often done using historical data. However, one cannot use too old data since it will 
be irrelevant and a bad prediction of an asset´s future movement. Thus investors are often forced to 
use less data which could lead to large estimation errors. This will be covered in more detail in 
Chapter 6. 
 
By replacing variance as measure of risk the normality assumptions in classical portfolio theory will 
be relaxed. The first step is to introduce portfolio optimization with LPM as measure of risk. 
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Chapter 4 
 

Beyond Classical Portfolio Theory 
 

 

 

In the last chapter the concept of portfolio theory was developed and in the end some of its limitations 
were discussed. The questions that now have to be answered are; “is classical portfolio theory good 

enough?” and second; “if it is not good enough, what can we do about it?”. These questions will be 
answered with the limitation (i) of classical portfolio theory in mind from the discussion in Chapter 
3.3. 
 

4.1  The Need for a New Theory 

 

Initially the first question from the last paragraph will be addressed. If asset returns were normally 
distributed the variance and the mean would be the only parameters an investor would need in order to 
describe the distribution. To be more specific, the return vector r  must be multivariate normally 
distributed. The random space Z has a multivariate normal distribution if its components 

kZ  are 

independent and if ~ (0,1)kZ N . A random vector 1( ,..., )T

nX X=X
 has a multivariate normal 

distribution with mean 1( ,..., )T

nµ µ=µ  and covariance matrix Σ if 
 

A= +X µ Z  
 

where A satisfies the relation 
TAA = Σ . If this would be the case and if empirical tests would confirm 

this then mean-variance portfolio theory would not suffer from limitation (i). However, the assumption 
that the distribution of the return vector is multivariate normally distributed is not always supported by 
empirical tests.  
 
To better understand how to test whether an asset has a normal distribution one of the most common 
tests will be made on the return of the currency pair USD/FJD (United States Dollars to Fiji Dollars). 
A Q-Q-plot is a graphical method to compare two distributions with one another. What is done is 
basically that the quantiles of two distributions are plotted against one another. Similar distributions 
will plot along a straight line.  
 
However, comparing our unknown distribution with the normal distribution a normal probability plot 
which relies on the same theory as the Q-Q-plot will be used. The data set will be plotted against a 
theoretical normal distribution and if the distribution is normal it should result in the data being plotted 
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along a straight line. In the test year to date data of the closing price of the currency pair USD/FJD 
was used. The result is shown in Figure 4 and it is clear that the distribution deviates severely from the 
normal. In fact, the “S-shape” is typical for a fat tailed distribution and it looks as if both the upper and 
the lower tails are fat. 
 

 

 
Figure 4. A normal probability plot of the currency pair USD/FJD. If the data would have been normally 

distributed it would have traced out along the straight line. 
 
 
It is very easy for an investor to check whether his assets are normally distributed by for example 
using a normal probability plot. This partly answers the question stated in the beginning of this 
chapter, “is classical portfolio theory good as it is?”. The answer is that in the general case it is not, 
but in special cases it can be.  
 
There is another possibility which has only been mentioned briefly. If an investor´s utility function is 
quadratic he won´t care about other things than means and variances, so classical portfolio theory will 
be a good alternative for the investor with that kind of preferences (this will be more carefully 
explained in chapter 4.3.1).  
 
In conclusion, if asset returns are normally distributed or investors’ utility functions are quadratic 
mean-varaince portfolio theory may be used. If however this is not the case the model should be 
modified for more accurate results. This will be the topic of the next chapter and will be done by 
introducing LPM as measure of risk in portfolio optimization. 
 

4.2  Mean-LPM Portfolio Theory 

 

The goal of this chapter is to modify classical portfolio theory so that the normal distribution 
assumption can be relaxed. This is done by using LPM as risk measure. Investors will instead of 
caring solely about means and variances, care about means and LPMs, thus this portfolio theory will 
be called mean-LPM portfolio theory.  
 
Before discussing the technicalities of this change of risk measure the benefits of using LPM instead 
of variance as a measure of risk shall briefly be discussed. In fact, Markowitz himself argued that 
semi-variance would probably be a more suitable risk measure for portfolio optimization. Semi-
variance did however not allow for the simple analytical solution that was derived in chapter 3.1. 
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Since computers were not available at the time when Markowitz presented his ideas variance evolved 
as the standard risk measure in portfolio optimization.  The advantages arising from using LPM 
instead of variance in portfolio optimization are summarized below. 
 
 

- Variance measures upside as well as downside risk. Investors should however be more 
interested in maximizing upside risk rather than minimizing it. LPM avoids the minimization 
of upside risk. 

 
- Variance is a moment of second order. As has been discussed, moments of higher order are 

sometimes needed to describe distributions. Using LPM results in the option to capture these 
higher moments.  
 

- The use of variance implies that the investor has a quadratic utility function. If an investor 
disagrees with this view, classical portfolio theory will not maximize his utility. The use of 
LPM gives the investor the option to select the order of his utility function (This will be 
discussed in more detail later). 

 
 
The computational issues of the optimization problem shall now be discussed. To solve the 
optimization problem that comes with mean-LPM portfolio theory co-lower partial moments (CLPM) 
have to be introduced.  
 
So far the LPM of a single return series can easily be calculated using the definition in previous 
chapters. The framework can however be extended to cover the co-moments of assets in a lower 
partial moment framework. In terms of many return series the co-lower partial moment of the return 
on asset i  with asset j  can for the semi-variance case be written as (Scherer, 2007) 
 

2, , ,
1

1
( )( )

m

i j i j i

i

CLPM X X d
m

τ τ τ
=

= − −∑  

 
where 1id =  when asset i  is below the reference level τ . Similarly, the co-lower partial moment of 

the return on asset j  with asset i  is 
 

2, , ,
1

1
( )( )

m

j i j i j

i

CLPM X X d
m

τ τ τ
=

= − −∑
  

where 1jd =  when asset j  is below the reference level τ . In general it holds that i jd d≠ , thus a 

symmetric CLPM matrix cannot be created which would let us express the LPM in a similar way as 
the variance was expressed in classical portfolio theory. The relations above were first derived by 
Hogan and Warren (1972) for the case 2n =  and later generalized by Nawrocki (1991) who 
expressed LPM for a portfolio as 
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1 1
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As mentioned above, CLPM is in general not symmetric. This implies that 

 

1, , , 1, , ,n i j n j iCLPM CLPMτ τ− −≠  i j≠  

 

However, as Nawrocki (1991) shows, calculating CLPM as a symmetric measure yields good results, 

and since it will make computations easier his assumption will be used. This means that the CLPM 

between two assets can be expressed in terms of LPM as 

 

( )
1

* *
, , , , , , , ,

n
n i j n i n j i jCLPM LPM LPMτ τ τ ρ=

 
 

Where ,i jρ  is the correlation between asset i  and asset j . Recalling how the variance was expressed  
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It is clear that LPM can be expressed as   

 

, , 1, , ,
1 1

n p

m m
T

i j n i j

i j

LPM CLPM L
τ τωω −

= =

= =∑∑ ω ω

 
 

where sub-index p  refers to the LPM for the portfolio. Furthermore the matrix L  is introduced 
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The optimization problem that should be solved can now be written as 
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Since L is symmetric the problem is almost identical to the one solved in the case of mean-variance 
optimization. The only difference is that the covariance matrix is replaced by the matrix L. 
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4.3  Utility Theory 

 
Utility theory is a theory about ranking levels of wealth. It has slowly been changing the framework of 
portfolio theory by focusing on the maximization of expected utility instead of on the maximization of 
return for a given risk. In a sense, to work with utility in portfolio theory gives the investor more 
choice to shape a portfolio in a way that will maximize his personal utility. In this chapter the basics 
behind utility theory will be explained. It will also be shown how mean-LPM portfolio optimization 
goes hand in hand with expected utility maximization. 
 
Consider a utility function ( )u x where x  is wealth and ( )u x can be thought of as the “happiness” of 

owning x . A utility function will in general be concave, reflecting the fact that investors experience 
diminishing marginal utility. This means that the wealthier a person is, the less an extra dollar will 
improve his utility. Thus the following must hold, as for all concave functions 
 

( (1 ) ) ( ) (1 ) ( )u ax a y au x a u x+ − ≥ + −  (0,1)a∈  
 

Furthermore, ( )u x  should be twice differentiable and in general, (́ ) 0u x ≥  and ´́ ( ) 0u x ≤ . The 
Arrow-Pratt measure of absolute risk aversion r  is moreover defined as 
 

´́ ( )
( )

(́ )

u c
r c

u c
= −  

 
This measure explains how the risk aversion changes with the level of wealth. For example, 

( ) ln( )u x x=  implies that 
1

r
x

=  meaning that the risk aversion declines the wealthier an investor is2. 

The certainty equivalent C  is also defined 
 

( ) ( ( ))u C E u X=  
 

Thus the amount that can be gotten for certain,C , has the same level of utility as the expected utility 
of the amount X . 

 

It should be noticed that in general the absolute values given by utility functions cannot really be 
interpreted; instead the utilities of wealth are ranked. Next it will be shown that classical portfolio 
theory is congruent with an investor with quadratic utility function3 and later that mean-LPM portfolio 
theory offers much more variety for investors.  
 

4.3.1  Utility Theory and Classical Portfolio Theory 

 

The return pr  of a portfolio can in a one period model be expressed as T

pr =ω r . This means that the 

value of the portfolio at time 1t =  will have grown from 0V  to 0 1(1 )TV V+ =ω r . This implies that 

the optimization problem of interest in the expected utility framework is 
 

                                                      
2 Example taken from D. G. Lueneberger, 1998, Investment Science, Oxford University Press, p.233 
3 The theory behind this part is inspired by the lecture notes in the course Portfolio Theory and Risk 
Management, by Filip Lindskog at the Royal Institute of Technology, 2008.  
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where ( )EU  stands for expected utility. By assuming that the investor has a quadratic utility function 
on the form  
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The expression for the expected utility function can be rewritten in the following way 
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where the following relation was used  
 

2 2 2( ) ( ) ( )var X E X E X= −  

 

Introducing the constant 
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the expression for the expected utility can be written as 
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Hence the problem ( )EU can be rewritten as 
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This optimization problem can be solved in exactly the same way as the duality problem in Chapter 
3.2 was solved. To avoid tedious algebra the solution is simply stated. The optimal set of weights in 
the problem ( )EU will be identical to those in the problem 1( )m v−  if the problem is solved for  

 
2

2p

b ac b c b
r

c ac b c c

φ − − = +   − +   
 

 

Looking at this expression, 
b

c  
is identified as the expression for the minimum variance portfolio 

shown in Figure 3. The expression for the variance when solving the problem 1( )m v− was  
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2p pT
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σ
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−
ω ω  

 

The minimum variance portfolio is found by letting the derivative equal zero and solving for pr . 

 
*2

0 p

p

b
r

r c

σ∂
= ⇒ =

∂
 

 
Thus the solution to the problem ( )EU is an efficient portfolio if b cφ > . 
 
To sum up, in this chapter it was shown that maximizing the expected utility of an investor with 
quadratic utility function yields the same optimal weights as when solving the mean-variance portfolio 
problem. In this sense, mean-variance portfolio theory is very limited, since it can only optimize 
portfolios of one kind of investors.  
 

4.3.2  Utility Theory and Mean-LPM Portfolio Theory 

 
In this chapter it will be shown that in the case of mean-LPM optimization, the investor is no longer 
forced to have one specific utility function.  To realize how mean-LPM optimization and utility theory 
are related the article by Fishburn (1977) was studied where he developed this relation.  
 
Consider the distributions F and G . Furthermore, assume that the investor makes his investment 
decision entirely based on ( )Fµ , ( )Fρ , ( )Gµ  and ( )Gρ  where ρ  is a risk measure and µ  is the 

mean of the distribution. Furthermore, consider a real valued function ( , )u µ ρ , increasing in µ  and 

decreasing in ρ . It holds that 
 

F Gf if and only if 
 

( ( ), ( )) ( ( ), ( ))u F F u G Gµ ρ µ ρ>  
 
where F Gf  is read “F is preferred to G ”. The last relation should hold if and only if 
 

( ) ( ) ( ) ( )x dF x x dG xψ ψ
∞ ∞

−∞ −∞

>∫ ∫  

 



26 

 

 where ( )xψ is a real-valued function. Then there exists constants 1c , 2c and 3c such that 

 

1 2

1 2 3

( )
( )n

c c x for x
u x

c c x c x for x

τ
τ τ

+ ≥
=  + − − <

 

 
where τ  is a reference level and n  the degree of the moment. By plotting the utility function for 

1 0c = , 2 3 1c c= =
 and for eight different values of 

n  reaching from 0.5 to 4 it is possible to examine 

how an investor´s risk aversion varies with n . The plot is shown in Figure 5.  
 
 
 

 
Figure 5. The utility functions for the mean-LPM investor with 1 0c =  , 2 3 1c c= =

 
and 

{ }0.5 1 1.5 2 2.5 3 3.5 4n =  

 
 
Now it will be shown how an investor having a utility function of this kind can maximize his expected 
utility. Furthermore, it will be proved that maximizing expected utility yields the same solution as 
minimizing LPM if the investor has the utility function on the form as written above.  
 
More generally, the utility function of an investor with downside risk preferences can be expressed as  
 

( )
( )

( ) ( )

f x for x
u x

f x g x for x

τ
τ

≥
=  + <

 

 
Using the fact that the utility function can be expressed in terms of ( )f x and ( )g x  the expression for 
the expected utility can along the lines of Jarrow and Zhao (2005) be rewritten as 
 

( ( )) ( ( )) ( ( )) ( ( )) ( ) ( )XE u X f E X E f X f E X g x dF x

τ

−∞

= + − + ∫  
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Where X  follows the distribution XF , ( ( ))f E X  is a function of the expected return, 

( ( )) ( ( ))E f X f E X− incorporates the risk in term of variation and ( ) ( )Xg x dF x

τ

−∞
∫  

is a measure of 

downside risk. The calculations are simplified by defining 
 

( ( )) ( ( )) ( ( ))f SD X f E X E f X= −  where 2 2( ) ( ) ( )SD X E X E X= −
 

 

The downside risk measure of X following the distribution XF
 is defined as 

 

( ) ( )X XDRM g x dF x

τ

−∞

= − ∫  

 

Thus in the case where LPM is used as downside risk measure it holds that 
 

, ( )X n XDRM LPM Fτ=  

 

Now the expected utility can be rewritten  
 

,( ( )) ( ( )) ( ( )) ( )n XE u X f E X f SD X LPM Fτ= − −  

 
As mentioned before, the 1( )m v−  problem will give the same solutions as when maximizing an 

investor´s quadratic utility function. It can be shown that maximizing the expected utility expressed as 
above will give the same solutions as when solving the problem ( )m LPM− . That is, for the expected 

utility function above the solution *
ω will be the same for both optimization problems  
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Let´s look at the proof derived by Jarrow and Zhao (2005). Their proof holds not only for LPM but for 
all kinds of downside risk measures for which the utility function can be expressed in terms of ( )f x

and ( )g x as was done on the previous page. 
 

Suppose that *
pr solves ( )EU LPM−  but not ( )m LPM− . Then there must exist a pr

•  satisfying the 

conditions shared by both problems such that *( ) ( )p pE r E r• ≥ , *( ) ( )p pSD r SD r• ≤ and

*, ,( ) ( )
p p

n nr r
LPM F LPM Fτ τ• ≤ . The expected utility can then be written as  

 

,( ( )) ( ( )) ( ( )) ( )
p

p p p n r
E u r f E r f SD r LPM Fτ •

• • •= − −
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Since f is increasing and f and LPM are non-decreasing, it must hold that *( ( )) ( ( ))p pE u r E u r• > . 

This contradicts that *
pr  solves ( )EU LPM− . Thus, if a set of weights solve one of the problems they 

will also solve the other one. �  
 
Thus the m-LPM optimization is congruent with the maximization of expected utility. An investor 
does have some choice regarding his utility function and risk aversion in contrast to the case of 
classical portfolio optimization. The power utility function an investor experiences in the mean-LPM 
model is also more realistic than the quadratic utility function experienced by the 1( )m v−  investor. 

However, above the reference level τ  the investor is assumed to be risk neutral. This is acknowledged 
as one of the mean-LPM model´s main weaknesses.  
 
In this chapter LPM was introduced as a risk measure in portfolio optimization instead of variance. As 
has been discussed, LPM has several features which make it superior as a risk measure to variance. It 
was moreover shown that using mean-LPM portfolio optimization allows the investor to have a wide 
range of utility functions which is a clear advantage to classical portfolio theory where investors are 
assumed to have quadratic utility functions.  
 

4.4  Multi-Period Mean Variance Optimization 

 
When deriving the optimization problem 1( )m v−  in Chapter 3.1 the assumption that the investor 

made his choice of weights at time 0t =  and evaluated the result of the portfolio at time 1t =  was 
made. Thus the problem was a single-period problem. In reality, investors often invest over longer 
time horizons where they will have to rebalance their portfolios according to movements in the 
markets and to new information. Because of this a multi-period model emerged and the topic has been 
developed by Smith (1967), Samuelson (1969) and lately by Li and Ng (2000) to name a few. Li and 
Ng (2000) extended the analytical solution of the single-period case to the more general multi-period 
model and our theoretical review will be based partly on their work and partly on Rudoy (2009). The 
aim of this chapter is to extend the theory of the single-period model in a natural way. 
 

The objective for an investor will be to maximize terminal wealth given an equality constraint on the 
variance. In this formulation the budget constraint is relaxed to make calculations easier to follow. The 
optimization problem 1( )mp  can be expressed as 
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Where 1k k k k −= ∆ = −r x x x  and 
kx is the vector of asset values at period k . The problem 1( )mp  

cannot be solved directly using dynamic programming techniques, however, as Li and Ng (2000) show 
a technique called the principle of separable embedding can be used that will yield the optimal 
portfolios. When using this technique a related problem 2( )mp is solved instead of directly solving the 

problem 1( )mp . 
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The optimal weights  0 1 1, , ..., N −ω ω ω  for the problem 2( )mp will be optimal for the problem 1( )mp  

for an appropriate choice of 
Nγ  and 

Nλ . Furthermore, Rudoy (2009) identifies the value function  
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The problem 2( )mp is rewritten below for the special case 1t N= −   
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The optimal set of weights is found by letting the derivative of the expression above equal zero and 

solving for *
1N−ω . This yields 
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Making the same calculations the solution for *
2N−ω  is found which is expressed in a similar way as 

*
1N−ω . By recursion it can be shown that in the general case,  
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To reach a solution for the problem 1( )mp  a way to calculate ( )k kv x , ( )k km x and ( )k kS x first needs 

to be found. Then 
Nλ , 

Nγ  and 2
0σ  will be chosen so that the problems  1( )mp  and 2( )mp  will be 

equivalent. The former issue has to be dealt with numerically, and this can be done by using a Monte 
Carlo based algorithm described in Rudoy (2009). Regarding the second issue it is first noticed that 
it´s not necessary to work with both the parameters 

Nλ  and 
Nγ  but enough to work with the factor 

N

N

λ
γ

 in front of the quadratic term in the formulation of 2( )mp . Consequently, 
Nγ  can be set to one. 

To find a relationship between 
Nλ  and 2

0σ  we recall that *
1N−ω  could be expressed on the form 

*
1 1

1
N N

Nλ− −=ω c . Similarly, all sets of weights can be expressed as the factor 
1

Nλ
 multiplied with 

some vector 
kc . This relation is used when rewriting the expression for the variance from the 

formulation of problem 1( )mp . 
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This yields the relationship between 
Nλ  and 2
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This is again calculated by means of Monte Carlo optimization. Using this relationship a solution to 
the problem 1( )mp can be reached.  

 
The derivation of this multi-period model was made to show that a single-period model is not 
necessarily the optimal choice. However, the single-period model can be repeated over several time 
steps to create a simplified multi-period model. This will be the case in the following chapter where 
empirical tests will be performed. It is however important to be aware of the difference between a 
multi-period model and a repeated single-period model. A multi-period model optimizes with respect 
to the final wealth, while a repeated single-period model will simply maximize wealth over each time 
step. The results of these methods are not necessarily the same. 
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Chapter 5 
 

Empirical Tests 
 

 

 
In previous chapters the tools necessary for our analysis were developed. In this chapter mean-
variance optimization will be compared to mean-LPM optimization. This will be done by back-testing 
the two methods and see how they perform on real data.   
 

5.1   Data 

 
For the empirical analysis three indices will be used, the S&P 500 (asset 1), Roger´s International 
Commodities Index (asset 2) and the Nasdaq Telecommunications Index (asset 3). These indices 
together consist of a wide range of different assets. The distributions and the normal probability plots 
of the returns of approximately 850 trading days (with last trading day on 06/11/09) are shown in 
Figure 6.   
 
Figure 6 clearly shows that the return distributions of the three securities seem to exhibit fat tails, the 
“S-shaped” normal probability plots are typical signs of these. When comparing the performance of 
classical portfolio theory with mean-LPM portfolio theory it will be shown if the latter manages to 
account for these deviations from normality and yield higher returns.  
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Figure 6. The distributions and normal probability plots of the returns of Rogers International Commodities 

Index, the S&P 500 and the Nasdaq Telecommunications Index. 

 
 

5.2   Back-Testing Classical Portfolio Theory and Mean-LPM Portfolio Theory 

 
Initially three investors will be compared. The first investor has an equally weighted portfolio of the 
three assets. This is a kind of reference portfolio. It is clearly a bad sign if for example none of the 
other investors can beat the reference portfolio. The second investor has mean-variance beliefs and the 
third investor has mean-LPM beliefs initially of second order (mean-LPM(2)). The reference level τ
will in all further tests equal zero. This is motivated by the fact that the Federal Reserve´s benchmark 
interest rate at the moment is very close to zero. 
 
At each date, the investors estimate the parameters they need for the optimization. This is done by 
using historical data from the previous 150 trading days. The investors then optimize their weights, 
and buy the assets accordingly. At the next trading day, the investors sell all their assets, redo the 
process and buy new proportions of the assets according to updated optimal weights (The assumption 
of no transaction costs still holds). The set of data used is the same as in Chapter 5.1. Basically this is a 
single period model that is recalculated at each time step. 
 
At first the analysis was performed without a constraint on short-selling. This however led to 
unrealistic long and short positions. Hence a short-sell constraint was added and an additional 
constraint that each investor was required to hold at least 5% of his wealth in each asset was imposed. 
Because of these restrictions the analytical solutions derived in chapter 3.1 and 4.2 cannot be used. 
Instead, a numerical optimization method for quadratic optimization problems was used (quadprog in 
Matlab). All investors were assumed to have an initial amount of $1000 to spend and the result can be 
seen in Figure 7. In Figure 8 a closer look is taken on the relationship between the mean-variance 
investor and the mean-LPM(2) investor. Clearly the portfolio value of the mean-LPM(2) investor is 
more volatile. 
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Figure 7. The outcome of the trading simulation. Surprisingly, the investor that weighted his assets equally was 

best off. The mean-variance optimizer and the mean-LPM(2) optimizer followed each other closely. 

 
 

 

 

 

 

 

 

 
Figure 8. This figure is a zoom of the mean-variance and mean-LPM(2) portfolio simulations from Figure 7. 

Clearly it can be seen how mean-LPM(2) optimization leads to more volatile portfolio values. 
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Figure 7 shows that the investor that weighted his assets equally was best off. The other two, the 
optimizers, had similar returns over the period. However, the value of the mean-LPM(2) optimizer´s 
portfolio seems to fluctuate a bit more. A summary of more detailed results are shown in Table 1. 
 
 
 
 Equally weighted portfolio Mean-variance portfolio Mean-LPM(2) portfolio 

Return (daily) 0.031% 0.023% 0.023% 
Standard deviation 

(on daily returns) 

1.1% 1.5% 2.7% 

LPM(2), [����] 1.2 95.4 310.0 
 

Table 1. Results of the trading simulation shown in Figure 7. 

 

 

The weights of the two optimizing investors will also be analyzed in more detail. In Figure 9 the 
weights of the mean-variance optimizer can be seen. This figure clearly demonstrates one of the 
problems with mean-variance optimization, most of the time the money is put in one single asset, in 
this case in asset 2.  
 
The weights of the mean-LPM(2) investor is shown in Figure 10. Clearly the weights are less extreme 
in the sense that not all money is put in one or two of the assets. Looking at the results in Table 1 the 
mean-LPM(2) investor seems to hold a slightly riskier portfolio than the mean-variance investor. 
However, the fact that the mean-variance investor puts almost all his money in one asset is a big risk 
in itself which is not accounted for in the risk measures used.  
 
 
 

 
Figure 9. The weights of the mean-variance investor during the trading period. 

 

 

 

The empirical analysis is now extended to mean-LPM optimizing investors with varying risk aversion. 
For 2, 4 and 6 degrees of the moment the mean-LPM portfolios are shown in Figure 10. The 
differences between the portfolios are hardly seen, and Table 2 shows that the risk and return for the 
different portfolios differ only slightly.  
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Figure 10. The weights of the mean-LPM(2) investor during the trading period. 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. Mean-LPM portfolio values for three investors with different degree of the moment, 2, 4 and 6. There 

is hardly any difference at all between the performances of the portfolios.   
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Figure 12. This figure is a zoom of the mean-LPM portfolio simulations from Figure 11 for three values of the 

degree of the moment, 2, 4 and 6. It seems as if the portfolio value of mean-LPM(6) has the highest volatility.  

 
 
 
 
 
 
 
 
 

 
Table 2. Results of the empirical test shown in Figure 11. 

 

 

 
In Figure 13, 14 and 15 the weights of the three mean-LPM portfolios are shown. The higher the 
degree of the moment is (that is, the more risk averse the investor is) the more the weights tend to the 
extreme. 

 

 

 

 

 

 

 

 

 

 Mean-LPM(2) portfolio Mean-LPM(4) portfolio Mean-LPM(6) portfolio 
Return (daily) 0.023% 0.023% 0.023% 
Standard deviation 

(on daily returns) 
2.7% 2.8% 2.9% 

LPM(2), [����] 310.0 335.0 353.0 
LPM(4), [����] 1.5 1.6 1.8 
LPM(6), [����] 0.020 0.021 0.023 
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Figure 13. Portfolio weights of the mean-LPM(2) portfolio over the trading period. 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Portfolio weights of the mean-LPM(4) portfolio over the trading period. 
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Figure 15. Portfolio weights of the mean-LPM(6) portfolio over the trading period. 

 

 

 

A brief summary of the results in this chapter will follow. First, the mean-LPM portfolio and the 
mean-variance portfolio seemed to yield rather similar results with the mean-LPM portfolio being 
slightly riskier both in terms of variance and in terms of LPM with different degree of the moment. 
Second, the weights of the mean-variance portfolio were much more extreme than the weights of the 
mean-LPM portfolios which were more realistic. Another observation was that the more we increased 
the degree of the moment the more extreme became the weights.  
 

The results however need to be questioned. Looking at Table 1 it is clear that even if LPM of second 
order is minimized both the equally weighted portfolio as well as the mean-variance portfolio exhibit 
lower LPM. One explanation of this could be found when looking at the second limitation (ii) of 
mean-variance portfolio theory discussed in Chapter 3.3. The covariance matrix ∑ (or the matrix L  in 
the case of mean-LPM optimization) and the vector of expected returns µ  are not observable and have 
to be estimated. For our empirical analysis these parameters have been estimated using the sample 
mean and the sample covariance matrix which may be a bad prediction of what is going to happen in 
the future. To see how big effect errors in the estimate of the mentioned parameters have the 
robustness of the models will be discussed in the following chapters.  
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Chapter 6 
 

Robustness Analysis 
 

 

 

Looking at the results from Chapter 5 two conclusions can be draw. First, mean-LPM optimization did 
not yield significantly better portfolios in terms of risk and return. Second, both mean-LPM and mean-
variance optimization were clearly bad investment strategies compared to the equally weighted 
portfolio strategy. After the discussions in Chapter 2, 3 and 4 where the theory behind portfolio 
optimization was outlined this chapter will try to explain how it failed the empirical tests in the last 
chapter. Since the difference in terms of risk and return between mean-variance optimization and 
mean-LPM optimization was relatively small most of this chapter will discuss the robustness of mean-
variance optimization. In Chapter 6.2 however both models will be compared and discussed. 

 

6.1   Robustness 

 

The de facto problem with mean-variance optimization that is known by practitioners and that occured 
in the last chapter is that all wealth is placed in a few assets and that the results (the efficient frontier 
and the portfolio weights) are sensitive to small changes in the estimated parameters µ  and Σ . In fact, 

Michaud (1989) goes as far as saying that mean-variance optimization is error-maximizing. “MV 

optimization significantly overweighs those securities that have large estimated returns, negative 

correlations and small variances. These securities are, of course, the ones most likely to have large 

estimation errors”. This implies that if mean-variance optimization should yield good results the input 
parameters need to be estimated very accurately. In Chapters 6.3 and 6.4 two methods of doing this 
will be outlined. It is also important to mention that there is no clear-cut definition of robustness. 
Intuitively however, robustness is seen as the sensitivity of the output as a result of changes in the 
input. Optimally, small changes in the input parameters should yield small changes in the output 
parameters (the efficient frontier and the set of weights). To begin with however, a more general 
model of making portfolios more robust will be analyzed.  
 
The model was developed by König and Tüntücü (2004). They reformulate a more robust portfolio 
optimization problem by maximizing the worst-case scenario in the following way 
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These sets are called the uncertainty sets and consist of most of the possible values of µ  and Σ . 

Furthermore it must hold that Σ  is positive semidefinite. To understand why the above stated 
optimization problem could lead to more robust portfolios it must be studied more carefully. 
Maximizing the variance is clearly the worst-case scenario. In Figure 3 this would correspond to a 
portfolio on the inefficient frontier. Hence by minimizing the worst case variance, the investor takes a 
rather pessimistic view.  
 
The general solution to the problem 1( )R m v− is not trivial and has to be solved numerically. For a 

large number of securities the problem will be infeasible. With a short-sell constraint however, 
problem 1( )R m v− can be simplified to  
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This is pretty intuitive. The expression for the variance will be larger the larger the elements in the 
covariance matrix are. Along the same lines will the expected portfolio return be smaller the smaller 
the vector µ  is. Since the problem is limited by U

µ
and U Σ the optimal values that will maximize the 

variance under given constraints will be UΣ and Lµ . Numerically, the boundaries in U
µ
and U Σ can be 

attained by using a technique called resampling (see Chapter 6.2 for a detailed description of 
resampling). By ordering each resampled element in the covariance matrix and choosing the 5% 

largest a component of UΣ is calculated. This is repeated for the other components until the matrix is 
built up. In a similar fashion the vector Lµ is created.  
 
This numerical method was tested and solved for the problem 1

0

( )R m v
≥

−
ω

. The result is shown in 

Figure 16. 
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Figure 16. The mean-variance efficient frontier and the robust min-max frontier with a short-sell restriction. 

 

 
 
 
 
 
 
 
 

 
Figure 17. Weights of the mean-variance portfolios with changing expected portfolio return. 
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Figure 18. Weights of the max-min portfolios with changing expected portfolio return. 

 
 
From Figure 16 it is clear that the efficient frontier of the robust optimization method plots below the 
mean-variance frontier. This is however not strange since the robust method uses worst case means 
and the worst case covariance matrix while the mean-variance optimization was performed with 
nominal values on the input parameters. In figure 17 and 18 the graphs show how the weights change 
when the expected return is increased. The models seem to exhibit rather similar behavior.   
 
Solving the problem 1

0

( )R m v
≥

−
ω

 with nominal input parameters will of course yield the same efficient 

frontier as in the normal mean-variance case. This is however not the case if a short-sell constraint is 
not added to the problem 1( )R m v− . In that case a numerical solution to the problem is necessary 

which is derived in König and Tüntücü (2004) and Halldórsson and Tütüncü (2003). Empirical tests 
performed by König and Tüntücü (2004) for the unconstrained problem yield the following three 
conclusions. First, much better worst-case performance was observed. Second, stability over time. 
Third, concentration on a small number of assets. It is not really possible to draw the same conclusions 
for the constrained case since the robust optimization problem solved in König and Tüntücü (2004) 
will be equivalent to the classical mean-variance problem when nominal input parameters are used in 
both methods.  
 
Thus it is more likely that the robust formulation of the mean-variance optimization problem could 
yield better results if short-selling is allowed. Since this was not the case in the empirical tests 
performed in Chapter 5 the results would probably not have been improved by solving the problem 

1
0

( )R m v
≥

−
ω

 nor would it have led to more robust portfolios.  

 
To examine how portfolio theory can be made more robust a different approach will now be used. 
Specifically, two methods to make better estimates of the expected return vector and the covariance 
matrix will be explained. Before doing this however the de facto effects of errors in the input 
parameters will be analyzed. This will be done by a technique called resampling.  
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6.2  Resampling 

 
In this chapter the effects of estimation errors when using the sample mean and the sample covariance 
matrix will be discussed. This will be done by using a technique called resampling. Basically the 
method can be thought of as small errors being added to the “true” parameters. The effect of these 
added errors will thereafter be analyzed first by looking at the effect on the efficient frontiers and 
second by looking at the effect on the portfolio weights. This analysis will be performed to realize how 
estimation errors in Chapter 5 may have affected the results. The method will now be explained in 
more detail.  
 
By using resampling it can graphically be shown how the estimation errors in µ  and ∑ affects the 
efficient frontier. Resampling works the following way. Assume that the input parameters have been 
estimated using T observations from m securities resulting in a T m×  matrix consisting of the data. 

This yields the parameters 
*
0µ  and 

*
0∑ . Next, a new T m×  matrix is created by randomly drawing one 

row at the time from the original matrix until the whole matrix has been filled with data (one row can 

be drawn many times). The parameters are thereafter estimated again, resulting in 
*
1µ  and 

*
1∑ . This 

process is repeated n  times. For each of the estimated pairs of parameters optimal weights are 

calculated. When plotting the efficient frontiers however, 
*
0µ  and 

*
0∑  are used. Since the optimized 

weights are not optimal for 
*
0µ  and 

*
0∑  all the resampled frontiers will plot below the original frontier. 

Resampling is thus used as a way of observing the effects of errors in the parameter estimates. 
 
The data used consists of the daily closing prices of the indices used for the empirical tests in Chapter 
5.2. The last 150 trading days have been used which is a realistic number if we want to make sure that 
the data is still relevant.  
 
In Figure 20 the resampled efficient frontiers of the mean-variance investor are shown. Small errors in 
the parameters seem to shift the efficient frontier rather much. The following tests will all be made 
with a short-sell constraint. This is crucial for the results. Allowing short-selling yields resampled 
frontiers that can be seen in Figure 19. It is clear that a short-sell constraint has a strong influence on 
the portfolios. 
 
It is however hard to make comparations with mean-LPM efficient frontiers based on these kinds of 
plots. To deal with this a technique developed by Michaud (1998) called resampled efficiency will be 
used. This method calculates an average of all the resampled efficient frontiers based on their weights. 
Thus the average set of weights that will constitute the portfolio number m  along the average 
resampled efficient frontier is expressed as 
 

,
1

1 n
resampled

m i m

in =

= ∑ω ω  

 
where n  is the number of resampled frontiers and ,i mω  is the portfolio number m along one of the 

resampled frontiers. Using this relation an average resampled efficient frontier can be traced out. This 
will then plot below the original efficient frontier. The result of this when applied to Figure 20 can be 
seen in Figure 21. To make it comparable with the following plots the length scale on the vertical axis 
is of the same size in Figure 21, 23, 25 and 27. The procedure is repeated for the mean-LPM efficient 
frontiers with 2, 3 and 4 degrees of freedom respectively. The results are shown in Figure 22-27. For 
clarity the original efficient frontier has been marked with stars in Figure 20, 22, 24 and 26. The 
distance between the original efficient frontier and the average resampled efficient frontier is a sign of 
robustness. The smaller the distance, the less sensitive the frontier is for changes in the input data and 
the more robust the method is.  
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F 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 19. Resampled frontiers of the mean-variance investor when short-selling is allowed. The stars on the 

optimal frontier mark the original frontier. The figure should be compared to Figure 20, where short-selling has 

been restricted. A short-sell constraint puts strong restrictions on the possible solutions. 
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Figure 19. The resampled frontiers of the mean-variance investor. The stars on the optimal frontier mark the 

original frontier. 

 

 

 

 

 

 

 

 

 
Figure 20. The average resampled frontier of the mean-variance investor.  
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Figure 21. The resampled frontiers of the mean-LPM(2) investor. The stars on the optimal frontier mark the 

original frontier. 

 

 

 

 

 

 

 

 

 
Figure 22. The average resampled frontier of the mean-LPM(2) investor. 
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Figure 23. The resampled frontiers of the mean-LPM(3) investor. The stars on the optimal frontier mark the 

original frontier. 

 

 

 

 

 
Figure 24. The average resampled frontier of the mean-LPM(3) investor. 
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Figure 25. The resampled frontiers of the mean-LPM(4) investor. The stars on the optimal frontier mark the 

original frontier. 

 

 

 

 
 

 
Figure 26. The average resampled frontier of the mean-LPM(4) investor. 
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Looking at Figure 20, 22, 24 and 26 it seems as if the higher the degree of the moment the more robust 
the optimization method will be. The distance between the original efficient frontier and the resampled 
efficient frontier seems to get smaller each time the degree of the moment is increased. Mean-variance 
optimization seems to have the same robustness as mean-LPM optimization with a degree of the 
moment somewhere between 3 and 4.  
 
However, since the risk measures are different we should be a bit careful before drawing too general 
conclusions of the robustness tests performed above.  
 

Another way of trying to capture how the estimation error affects portfolios is by looking at how the 
weights change for the resampled portfolios. The result can be seen in Figure 27. What is interesting to 
notice in the figure is the variance of the weights. Optimally small changes in the parameters should 
give rise to small changes in the weights. Looking at Figure 27 this is however not the case. The 
variance of the weights from Figure 27 are summarized in Table 3 below. 
 
 
 

 
 

Figure 27. Distributions of the weights of the mean-variance investor and the mean-LPM investor with 2, 3 and 

4 degrees of the moment. 

 
 
 
 
 

 
  Weight 1 Weight 2 Weight 3 

 

Variance 

 

Mean-Variance 0.0454 0.0270 0.0307 
Mean-LPM(2) 0.0793 0.0462 0.0822 
Mean-LPM(3) 0.0418 0.0229 0.0283 
Mean-LPM(4) 0.0136 0.0094 0.0106 

 
Table 3. Variance of the weights when the different models were tested using resampling. 
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Looking at Table 3 it is clear that the higher the degree of the moment the lower the variance of the 
weights. Increasing the degree of the moment with one unit means decreasing variance with almost a 
half of its prior value. This goes in line with results from the resampling efficiency analysis performed 
before where the same conclusion was reached. The mean-variance weights had the same variance as 
mean-LPM weights with a degree of the moment of between 2 and 3.  
 

6.3  The Black-Litterman Model 

 
The Black Litterman model was developed by Robert Litterman and Fischer Black in 1992 (Black and 
Litterman, 1992). The idea of maximizing the expected return for a given risk is kept from the 
portfolio theory developed by Markowitz. The difference however, is how the expected return is 
estimated. In classical portfolio optimization the estimate of the expected return by simply using the 
arithmetic means of historical data leads to portfolios that are very sensitive to the input parameters. 
This has been shown by Best and Grauer (1991) and an example of this will be shown in Chapter 6.2. 
 

The expected return of a portfolio can be expressed as ( )T T

pr E= =ω r ω µ
 
where 1( ,..., )T

nµ µ=µ
 

is simply the arithmetic average of the historical mean.  
 
The Black-Litterman model instead commences with something called the equilibrium portfolio. This 
is the portfolio held in equilibrium, when supply equals demand (could be thought of as the market 
portfolio). Black and Litterman acknowledge that equilibrium must not constantly be persistent, 
however, “when expected returns move away from their equilibrium values, imbalances in markets 

will tend to push them back” (Black and Litterman, 1992). Thus, investors could possibly profit from 
combining their personal beliefs with the equilibrium beliefs. In the Black-Litterman model these 
personal beliefs are stated as absolute or relative expected returns, each with a by the investor 
determined confidence. What will follow is not a strict proof of the model but rather an intuitive 
development of the ideas behind which captures the main concepts4.  
 
First, consider a market consisting of n  assets. The expected excess return of the assets according to 
the market is given by 
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The market covariance matrix MΣ  is also defined. Similarly, an investor may have his own personal 
views regarding the expected excess return of assets and the covariance matrix.  
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The essence of the Black-Litterman model was to weigh the investor´s beliefs with the beliefs of the 
market. Intuitively, a covariance matrix describes uncertainties, and thus an inverted covariance matrix 

                                                      
4
 The theory behind the outline this part was inspired by a report by Eola Investments, “A Layman´s Approach to 
Black Litterman Model”, 2009.  
http://eolainvestments.com/Documents/A%20laymans%20Approach%20to%20Black-Litterman%20Model.pdf 
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should be related to certainties. A good choice of weights should favor more certain views. Thus, a 
reasonable weighted average of covariance matrices and expected excess returns could be 
 

1 1 1 1 1( ( ) ) ( ( ) )
II Ir − − − − −= Σ + Σ Σ + ΣΠ r%  

 
It is also reasonable to believe that an investor should be able to prefer one view more than the other, 
thus a scaling factor ς  is introduced.  

 
1 1 1 1 1( ( ) ) ( ( ) )

II Ir ς ς− − − − −= Σ + Σ Σ + ΣΠ r%  
 
The expected return of each portfolio is introduced as 
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These excess returns are attained by weighting the excess returns of the basis assets 
I

r with a matrix 
consisting of weights, P . 
 

1,1 1,

,1 ,

n

m m n

w w

P

w w

 
 

=  
 
 

L

M O M

L

 

 

where i

jw  is the weight of asset i  in portfolio j . It could be and thatm n< , that is, the investor does 

not have as many views as there are assets. In that case it is assumed that he shares the market view on 
those asset, otherwise the problem would not be solvable. Moreover it holds that 
 

I

P=q r  
 

Next, uncertainties are assigned to the investor´s view on each portfolio by letting Ω  be the 

covariance matrix of q . Using this and the linear relation between q  and 
I

r ,  IΣ can be expressed  as 

 
1 1( )I TP P− −Σ = Ω  
 

This is inserted in the expression for r%   
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This is the expression for the expected return in the Black-Litterman framework. To see how the 
expression is divided in a part relating to the market view and a part relating to the investor´s personal 
view the expression can be rewritten as (Mankert, 2006) 
 

1( ) ( )T TP P P Pς ς −= + Σ Ω + Σ −r Π q Π%  



52 

 

Written on this form it is clear that the first part expresses the views of the market while the second 

part expresses the views of the investor. Recall for example the relation  
I

P=q r . If the views of the 
investor equals the views of the market (which happened if the investor didn´t have any personal 

views at all) then 
I

=r Π  and thus P=q Π  and the expected return will equal the expected return 
according to the market view.  
 

To get a better understanding of the Black-Litterman model a numerical example will be discussed. 
Assume that the data is the same as in Chapter 6.2. Our personal views about the three assets need to 
be specified. Suppose that we believe that asset 1 will outperform asset 3 with 1% on a yearly basis. 
Furthermore, assume that we think that asset 2 will have an excess return of 2% on a yearly basis. 

Since the universe of assets only consists of three assets, the matrix P and the vector q  that 

summarize our views about the market are given by 

 

1 0 1

0 1 0
P

− 
=  
 

  
1%

2%

 
=  
 

q  

 
Π  is the mean of historical returns and Σ is the well known sample covariance matrix. The parameter  
ς  is often calculated as the ratio between the number of views (two in this example) and the number 

of assets (three in this example) (Mankert, 2006). Thus, 
2

3

n

m
ς = = . The matrix Ω  associates risk 

with our personal views about the market. Ω  is assumed to be diagonal, that is, the correlation 
between views are zero. He and Litterman (1999) express Ω  as  
 

( ( ) )Tdiag P PςΩ = Σ  

 

assuming that the variance of our views will be proportional to the variance of the asset returns. The 
input parameters to the Black-Litterman model are now determined and the efficient frontier can now 
be plotted. The result can be seen in Figure 28 and to have something to compare with the efficient 
frontier when the sample mean was used as input parameter is plotted as well. Clearly, our personal 
views mattered quite a lot since the frontiers in Figure 28 look pretty different.   
 
Subsequently the same robustness tests as in the last chapter was performed. First resampling was used 
to create 1000 frontiers (Figure 29 and 31) and then the theory behind resampled efficiency was used 
to find an average of the resampled frontiers (Figure 30 and 32).  
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Figure 28. Efficient frontiers when sample mean and robust return estimate was used for the mean-variance 

investor. 
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Figure 29. The resampled frontiers of the mean-variance investor when the sample mean was used. The stars on 

the optimal frontier mark the original frontier. 

 

 
 
 
 
 

 
 

 
Figure 30. The average resample frontier of the mean-variance investor when the sample mean was used. 
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Figure 31. The resampled frontiers of the mean-variance investor when the Black-Litterman mean was used. The 

stars on the optimal frontier mark the original frontier. 

 
 
 
 
 
 
 
 
 

 
Figure 32. The average resampled frontier of the mean-variance investor when the Black-Litterman mean was 

used. 
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Figure 33. The resampled frontiers of the mean-LPM(2) investor when the Black-Litterman mean was used. The 

stars on the optimal frontier mark the original frontier. 

 

 

 

 

 

 

 

 
Figure 34. The average resampled frontier of the mean-LPM(2) investor when the Black-Litterman mean was 

used. 
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Figure 35. Distributions of the weights of the mean-variance and mean-LPM(2) investor when the sample mean 

and the robust estimate of the return were used. The results of the mean-LPM(2) investor should be compared 

with the results from Table 3 where the same tests were made but with sample mean. 

 

 

 

 
 

 

 
 
 
Variance 

 Weight 1 Weight 2 Weight 3 

Mean-Variance,  

Sample Mean 

0.0360 0.0226 0.0205 

Mean-Variance,  

Black-Litterman Mean 

0.0315 0.0181 0.0196 

Mean-LPM(2),  

Black-Litterman Mean 

0.0333 0.0278 0.0160 

 

Table 4. Variance of the weights in Figure 35.  

 

 

Comparing Figure 30 and 32, it is clear that the Black-Litterman model gives rise to slightly more 
robust solutions for the mean-variance investor. The same is true if comparing Figure 34 and 22. In 
fact, using the Black-Litterman model on the mean-LPM(2) investor increased his robustness severely. 
 
To complement the analysis the distribution of the weights for the resampled frontiers can be found in 
Figure 35 and the variance of these distributions in Table 4. It is clear that the weights in the Black-
Litterman for the mean-variance model vary less. The same conclusion can be drawn by looking at the 
variance of the weights in the case of the mean-LPM(2) investor in Table 4 and Table 3. It is however 
important to remember that the example made with the Black-Litterman model is likely to be sensitive 
to the views specified initially.  
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6.4  Shrinkage Estimation of the Covariance Matrix 

 
Even if it was empirically shown by Chopra and Ziemba (1993) that errors in risk estimates are less 
significant than errors in return estimates the estimation of covariance matrices is still significant and 
important to be aware off. In practice, fund managers often end up with a larger number of assets than 
data observations and this will make estimation errors significant. In classical portfolio optimization 
the sample covariance estimator is used. An element of the sample covariance matrix is estimated 
according to 
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( )( )

1
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T
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x x x x
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Σ = − −
− ∑

 

 

where N is the number of historical observations. It has been shown by Jobson and Korkie (1980) that 
the sample estimator is biased with considerable estimation errors when the number of assets is large 
and the number of observations is small. Since this scenario is often present when using financial data, 
methods to better estimate the covariance matrix have been developed. An estimation method 
developed by Ledoit and Wolf (2003) will now be discussed. 
 
Before going through the details of their estimation method the ideas behind Sharpe´s (1963) single 
index model will be developed. This is one of the simplest models to characterize asset returns where 
the returns only depend on one factor, usually a market index

mf .  
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Where 

mr  is the market return and 
iα  is a constant. Moreover the following assumptions hold 
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The covariance matrix of the asset returns can then be expressed as  
 

2

m

T

f εσΦ = +Σββ  

 
Where εΣ  is the covariance matrix of 

iε . The estimated version of Φ  is expressed as 

 
* 2* * * *

m

T

fF εσ= +Σβ β  

 
The reason why the single index model was explained is because in the article by Ledoit and Wolf the 
estimated covariance matrix is a weighted average of the covariance matrix F and the sample 

covariance matrix *Σ  
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The tricky part is to chose α optimally. The solution is found by minimizing the distance L between 

the estimated covariance matrix *Ψ and the true covariance matrix Σ. 
 

2* *( ) (1 )L Fα α α= + − Σ − Σ  

 
The calculations are not hard but tedious so we turn directly to the answer, 
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According to Theorem 1 in Ledoit and Wolf (2003) *α  can be expressed as  
 

*
2

1 1

T T

π ρ
α

γ
−  

= + Ο 
 

 

 

Where T  is the number of assets and ρ , π  and γ can be expressed as  
 

,
1 1

N N

i j

i j

π π
= =

=∑∑  with ( )*
, ,AsyVari j i jTπ = Σ  

 

( )*AsyVar t  is an abbreviation for the asymptotic variance of the estimator *t and is basically the 

variance of the estimator *t  when the number of observation the estimate is based on tends to infinity. 

The same holds for ( )* *AsyCov ,b t where *b  and *t  are arbitrary estimators which will be used 

below. 
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=∑∑ with ( )2*
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By using 
π ρ

κ
γ
−

=
 

the asymptotically optimal shrinkage estimator can be expressed as 

 

* *(1 )F
T T

κ κ
+ − Σ

 
 

To reach an estimation of κ  the parameters ρ , π  and γ  first need to be estimated. In Ledoit and Wolf 

(2003) these are given by 
 

* * *(1 )Fα αΨ = + − Σ
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If *
,j mΣ is the covariance of the return of asset j  with the return of the market and mx the average return 

of the market then 
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And finally 
 

( )2* *
, , ,i j i j i jFγ = −Σ  

 
The derivation of the robust estimate of the covariance matrix according to Ledoit and Wolf (2003) 
was not trivial. To get a better sense of how their estimate performs versus the sample covariance 
matrix it will numerically be tested on the same set of data that was used in Chapter 6.2. In these 
examples the mean-LPM investor will not be considered since the estimation technique developed by 
Ledoit and Wolf (2003) was specifically made for the covariance matrix. In Figure 36 the efficient 
frontier when using the robust estimate of the covariance matrix plots below the efficient frontier 
drawn when using the sample estimate of the covariance matrix.  
 
 
 

 
Figure 36. The efficient frontiers of the mean-variance investor when the sample estimate of the covariance 

matrix was used compared with when the robust estimate of the covariance matrix was used. 
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Figure 37. The resampled frontiers of the mean-variance investor when using the sample covariance matrix. The 

stars on the optimal frontier mark the original frontier. 

 
 
 
 
 
 
 

 
Figure 38. The average of resampled frontiers of the mean-variance investor when using the sample covariance 

matrix. 
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Figure 39. The resampled frontiers of the mean-variance investor when using the robust covariance matrix. The 

stars on the optimal frontier mark the original frontier. 
 
 
 
 
 
 
 

 
Figure 40. The average of resampled frontiers of the mean-variance investor when using the robust covariance 

matrix. 
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Figure 41. Distributions of the weights of the resampled frontiers in Figure 37 and 39. 

 
 
 
 
 
 
 

Table 5. Variance of the weights in Figure 29. 

 
 
In Figure 37 and 39 the resampled efficient frontiers are plotted when the sample and the robust 
covariance matrix estimate were used. In Figure 41 and Table 5 it´s shown that the weights spread less 
when using the robust covariance matrix. By comparing Figure 38 and 40 it´s clear that the robust 
covariance matrix estimate yields more robust solutions since the average resampled frontier deviates 
less from the original efficient frontier.  
 
In Chapter 6 several empirical tests have made that shed light on the results from Chapter 5. First, the 
robustness of mean-LPM optimization increases the higher the degree of the moment. Second, the 
Black-Litterman model and the covariance matrix estimate found in Ledoit and Wolf (2003) can both 
be used to make portfolio optimization more robust.  
 
These results are some of the reasons why mean-variance optimization and mean-LPM optimization 
performed poorly in the empirical tests in Chapter 5. These results are however by no means strange. 
Similar observations has been made by Frankfurter et al. (1972) who showed that in their three asset 
numerical tests it is hardly any idea to optimize since it would yield similar results simply to weigh the 
portfolio randomly. An even more extensive empirical analysis was performed by DeMiguel et al. 
(2009) who tested the equally weighted portfolio strategy against fourteen other strategies and came to 
the conclusion that none of the models could compete with it for a number of historical observations 
normally used. This is because the diversification benefit is offset by the estimation error, making 
optimization rather useless. This sheds some light on the results in Chapter 5.2 and highlights that 
estimation errors and robustness is a serious issue that has to be discussed when examining different 
methods of portfolio optimization.  

 
Variance 

 Weight 1 Weight 2 Weight 3 

Sample covariance matrix 0.0360 0.0226 0.0205 
Robust covariance matrix 0.0315 0.0181 0.0196 
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Chapter 7 
 

Conclusions 
 

 

7.1  Conclusions 

 

In this thesis the mean-variance optimization problem was first discussed. This model was extended to 
mean-LPM portfolio optimization which had some theoretically favorable features which mean-
variance optimization lacked. The models were empirically tested and they had a similar performance 
in terms of risk and return, the mean-LPM model however being slightly riskier. They were both 
outperformed by an equally weighted portfolio strategy. This raised a serious question whether the 
optimization methods were reliable. A robustness analysis was performed to provide some answers 
and to examine whether the models could be affected severely by estimation errors. The following 
conclusions were drawn. 
 
Even if mean-LPM optimization has some superior features over mean-variance optimization the 
models yield similar returns while mean-LPM optimization was slightly riskier in terms of standard 
deviation and LPM of degree 2, 4 and 6. 
 
Mean-LPM optimization did have the desirable feature of avoiding extreme allocations. This was not 
the case for mean-variance allocation, where all wealth was put in one asset over almost the whole 
trading period. 
 
Both optimization methods performed worse than the equally weighted portfolio and they were also 
riskier in terms of the same risk measures as mentioned above. A robustness analysis showed that the 
higher the degree of the moment the more robust were the mean-LPM optimization. One method of 
estimating the expected return was tested and results showed that the portfolios were indeed more 
robust both for mean-variance and for mean-LPM(2) investors. The same tests were performed on a 
method for estimating covariance matrices, again with the result that resulting mean-variance 
portfolios were more robust. 
 
In summary, mean-LPM optimization does provide the investor with some beneficial features. 
However, both mean-LPM and mean-variance optimization are sensitive to estimation errors. The 
robustness of the methods can indeed be improved by using modern estimation techniques. However, 
in our tests the optimization methods yielded so bad results that the question whether it is worthwhile 
to optimize remains open. 
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7.2  Future Analysis 

 
For future improvements of the results in this thesis to be made several different topics could be 
developed further. The analysis could be extended to include more assets to examine whether this 
affects the performance of the models. The methods could in addition be tested on more periods of 
different time scales. An interesting topic could also be to examine different multi-period models and 
see whether they would outperform the single-period model used in this thesis. The more robust 
estimation techniques could be used in the back-testing simulation which would possibly show their 
real strengths. With that said, there are many interesting topics that could be developed further. 
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