IBM Systems Group

Porting Linux to the IBM zSeries platform

Dr. Ulrich Weigand <uweigand@de.ibm.com>
Linux on zSeries Development, IBM Lab B6blingen

© 2003 IBM Corporation

IBM Systems Group

Agenda

= Linux on zSeries
» Platform overview
» The Linux port

= zSeries Architecture
» Processor
» Memory
» |/O Subsystem

= Virtualization issues
» Why virtualization?
» Memory management
» Timer ticks

© 2003 IBM Corporation

IBM Systems Group

ZSeries Hardware

i

© 2003 IBM Corporation

Ll qu
l 1

IBM Systems Group

zZSeries Historical Overview

m 1964 System/360
» First system to define architecture common across implementation
» 24-bit address space
m 1971: System/370
» Virtual storage, multi-processor support
= 1981: System/370 XA (Extended Architecture)
» 31-bit address space, channel subsystem, interpretive execution
= 1988: Enterprise System Architecture/370
» Multiple address spaces, LPAR
= 1990: Enterprise System Architecture/390
» Enhanced instruction set, IEEE floating point
= 1994 Parallel Sysplex
» Coupling facility, 32-way clusters
= 2000: z/Architecture
» 64-bit arithmetic and address space
» HiperSockets, SCSI/FCP

© 2003 IBM Corporation

IBM Systems Group

ZSeries Architecture Overview

= Core features
» CISC using 600+ instructions
» Channel-based I/O subsystem
» Efficient virtualization capabilities

= Designed for RAS
» Two units operated in parallel, checkpoint-restart on miscompare

» Hot-spare CPU take-over without OS involvement
» Concurrent firmware update without downtime

= Typical usage
» Transaction systems, database servers, ...
» Operating systems: z/OS, VSE/ESA, TPF, z/VM, Linux
» Linux brings 'modern’ applications to the platform!

© 2003 IBM Corporation

IBM Systems Group

Linux on zSeries System Components

© 2003 IBM Corporation

IBM Systems Group

Linux on zSeries System Structure

© 2003 IBM Corporation

IBM Systems Group

Linux on zSeries Code Contributions

© 2003 IBM Corporation

IBM Systems Group

Linux on zSeries Development Process

© 2003 IBM Corporation

IBM Systems Group

2900 Processor and Memory
(up to 2 x 16 GB)
||. Level 2 Cache (16 MB) .“

6x1GB/s 6x1GB/s

| Level 2Cache (16 MB)

Memory
(up to 2 x 16 GB)

© 2003 IBM Corporation

6x1GB/s 6x1GB/s

IBM Systems Group

z900 Multi-Chip Module (MCM) - 20 PUs

© 2003 IBM Corporation

IBM Systems Group

zSeries Processor Architecture

= Architecture modes
» ESA/390 (32-bit) vs. z/Architecture (64-bit)
» S/390 machines (1990..1999) support only ESA/390
» zSeries machines (2000..) operate in either mode

= Addressing modes
» 24-bit, 31-bit, 64-bit (z/Architecture only)
» Support for mixed addressing mode operation

= Register file
» Program Status Word (instruction address, condition code, ...)
» 16 general purpose registers (32-bit / 64-bit)
» 16 floating point registers (64-bit) + floating point control word
» 16 access registers (32-hit)
» 16 control registers (32-bit / 64-bit)

© 2003 IBM Corporation

IBM Systems Group

zSeries Processor Architecture (cont.)

= |nstruction format
» 2-byte, 4-byte, or 6-byte instructions (2-byte aligned)
» Pre-defined instruction formats

= Example: OR instruction family (32-bit)

OR Rl,R2 [RR] |["1€’ |R1lR2

o R1,D2(X2,B2) [RX] |’56’' R1X2B2 D2

OILL R1,I2 [RI] ["A5' |RY B’ I2

OI D1(Bl),I2 [ST] |’96’| 12 |B1 D1

ocC D1(Bl),D2(B2) [Ss8] |'Deé’ L |[Bl D1 B2 D2

© 2003 IBM Corporation

IBM Systems Group

Example "Hello World" Application

.section .rodata

.align 2
. LQO: .string "Hello, world!"
. text
.align 4
.globl main
mai n:
stm % 13, % 15, 52(% 15)
br as % 13, . L3
.L2: .align 4
. LCIL: .l ong .LQO
. LC2: .1 ong put s
.align 2
. L3:
Ir % 14, % 15
ahi % 15, - 96

I % 1,.LC2-.L2(% 13)
I % 2,.LCL-. L2(% 13)

st % 14, 0(% 15)

basr % 14, % 1

[hi % 2, 0

I m % 13, % 15, 148(% 15)
br % 14

© 2003 IBM Corporation

IBM Systems Group

Condition Code Handling

m zSeries condition code
» Two-bit value (0..3) stored in the Program Status Word
» Set by various instructions (arithmetical, logical, comparison, ...)
» Used by conditional branch instructions
» No globally fixed semantics of condition code values!

= Branch condition mask
» Current CC value selects one of four mask bits
» Branch taken if that bit is set
» Mask 0 is 'branch never' (nop), mask 15 is unconditional branch
» Every branch condition invertible!

© 2003 IBM Corporation

IBM Systems Group

Condition Code Handling (cont.)

= Some regular CC examples

© 2003 IBM Corporation

IBM Systems Group

Condition Code Handling (cont.)

= |rregular CC example: TEST UNDER MASK LOW

» Instruction: TML R1, 12

» Compares low 16 bits of operand 1 bitwise with operand 2

» Sets condition code according to the result
— 0: Selected bits all zeros; or mask bit all zeros
— 1: Selected bits mixed ones and zeros, and leftmost is zero
— 2: Selected bits mixed ones and zeros, and leftmost is one
— 3: Selected bits all ones

m Usage example
» Source: If ((flags & 0x80) && !(flags & 0x04)) { ... }
» Assembler: tm %1, 0x84 ; brc 2, ...
» GCC 3.3 generates optimal code sequence

© 2003 IBM Corporation

IBM Systems Group

zSeries Program Status Word

[I I N R A = I I | Prog | | El
|0|RI0]0]O|T|AX Key |O|MWP|ASCC Msk [0000OOOA
I I I I I IO Y I | _|
0 5 8 12 16 18 20 24 31
| Bl |

|[AAOOO0OO0OO0OO0O0O0O0O00O00O00O00O00O00O00O0O0O0O0O0OO0OO0OO0O0OO0OOO0OOOOOO0OO0O0]

| _| |
32 63

I nstructi on Address

o———
D
(]
a———

I nstruction Address (Conti nued)

©o———
(o]
[any
N
g———

Program Event Recordi ng Mask
Dynam ¢ Address Transl ati on Mode
I /O Interruption Mask
External Interruption Mask
PSW Key (storage proctection)
Machi ne Check Mask

Wait State

Probl em State

Addr ess Space Control

Condi ti on Code

Program Mask

Ext ended Addressi ng Mode

Basi ¢ Addressi ng Mbde

© 2003 IBM Corporation

IBM Systems Group

zSeries Interruption Actions

= Types of Interruptions
» Restart Interruption (once at boot)
» |/O Interruption (associated with subchannel)
» External Interruption (e.g. timer, inter-processor interrupt)
» Machine Check Interruption (e.g. dynamic device reconfiguration)
» Program Interruption (e.g. page fault, illegal instruction, ...)
» Supervisor Call Interruption (Linux system call)

= Interruption Action

» Save interruption code to assigned storage location

» Save old PSW to assigned storage location

» Load new PSW from assigned storage location
— Branch to interruption handler code
— May change addressing mode / address translation mode
— May enable/disable interruptions
— May switch between supervisor state / problem state

© 2003 IBM Corporation

IBM Systems Group

zSeries Dynamic Address Translation: 31-bit

Segment Page Byte
Segment Table Origin Index (11 bit) Index (8 bit) Index (12 bit

\

Segment Table Page Table

=

Page Frame Real Address

© 2003 IBM Corporation

IBM Systems Group

zSeries Dynamic Address Translation: 64-bit

Region-1st Region-2nd Region-3rd Segment Page Byte
Region Table Origin Index (11 bit '
Region-1st Region-2nd Region-3rd Segment Page

T I ADIE AdDIE AdDIE Table

Real Address

© 2003 IBM Corporation

IBM Systems Group

zSeries DAT: 64-bit Three-Level Translation

Region-1st Region-2nd Region-3rd Segment Page Byte
Region Table Origin ' it) Index (11 bit ' ' -
Region-1st Region-2nd Region-3rd Segment Page
Table Table Table Table Table

Real Address

© 2003 IBM Corporation

IBM Systems Group

zSeries Address Translation Modes

= Directly accessible address spaces
» Primary space: STO/RTO in Control Register 1
» Secondary space: STO/RTO in Control Register 7
» Home space: STO/RTO in Control Register 13
» Access-register specified spaces
= Access registers
» Base register used in memory access identifies access register
» AR indirectly specifies STO/RTO via Access List Entry Token
» Operating System manages ALETs and grants privilege
» Special use: ALET O for primary space, ALET 1 for secondary space
= Translation mode specified in PSW
» Primary space mode: use primary space
» Secondary space mode: instructions in primary, data in secondary
» Home space mode: use home space
» Access register mode: instructions in primary, data AR-specified

© 2003 IBM Corporation

IBM Systems Group

Linux on zSeries: Use of Address Spaces

primary space mode home space mode
OX7FFFFFFE ﬁ
vmalloc
area
0x40000000
physical mvc 0(8,%r2),0(%r4) mvc 0(8,%r2),0(%r4)
memory access register mode
mapping
la 4,<source>
la 2,<destination>
Kernel code sacf 512
0x00000000 mvc 0(8,%r2),0(%r4)
Home Space Primary Space sacf 0
mvc 0(8,%r2),0(%r4)

© 2003 IBM Corporation

IBM Systems Group

zSeries System Structure

G5/G6/ z900

Fast

ICB ISC3 ESCON FICON Com.
16 Pipes

FCS
SCSI

4 x 3.75 GB/s
4x7.5GB/s

Channels LANs SCSI ISCs
ATM

HMC

© 2003 IBM Corporation

IBM Systems Group

zSeries Channel Subsystem

Subchannel Number:

Logical appearance of device to the OS
16-bit number assigned sequentially

Channel Path Identifier (CHPID):
Assigned for each physical path
8-bit number defined in 1/0O configuration data set

Device Number:

Used to identfy a device to the operator
16-bit number defined in I/O configuration data set

A specific device (identifed by the user via its device
number) is accessed by the Operating System using
its subchannel number; the channel subsystem
manages one or more channel paths to one or more
control units connected to the device.

© 2003 IBM Corporation

CHPIDs

IBM Systems Group

zSeries Subchannel Information Block

Pat h Managenent Control Wbrd:
| SC. Interruption Subcl ass

0 | Interruption Paraneter [E: Enabl ed Fl ag
__ _ _ _ _ __ _ _ _ | LM Limt Mde
1|00 |ISC |000 |E[LMM D TV Devi ce Number [MM Measurenment Mode Enabl e
|| | S | B B | D Miltipath Mde
2 | LPM | PNOM | LPUM | PIM | T: Timng Facility
| | | | | V: Devi ce Number Valid
3 | VBl | POM | PAM [LPM Logical - Pat h Mask
| | | | PNOM Pat h Not Operational Mask
4 | CHPI D-0 [CHPID-1 | CHPI D- 2 | CHPI D- 3 [LPUM Last Path Used Mask
| | | | | PIM Path Installed Mask
5| CHPI D- 4 | CHPI D-5 | CHPI D- 6 | CHPI D- 7 | PAM Path Avail abl e Mask
| I | | | POM Path Operational Mask
6 | 00000000 | 00000000 | 00000000 | 0000000 | S| MBI : Measurenent Bl ock | ndex
| | | | | _| S: Concurrent Sense
0 8 16 24 31

Subchannel Status Wrd:

0| Key |S|L| COFP/I|AUZENO FC | AC | sC |
(Y I I I IO I I I I o I | I
1] CCW Addr ess |
| I
2 | Device Status | Subch. Status | Count |
| I I I
0 4 8 16 20 27 31

© 2003 IBM Corporation

IBM Systems Group

zSeries Subchannel Operations

= How to perform an I/O operation
» Build a channel program to execute
» Fill pointer to channel program into an operation request block
» Start operation using START SUBCHANNEL instruction
» Channel subsystem executes operation asynchronously
» Completion triggers I/O interruption
= Channel Program
» Sequence of Channel Command Words
Each CCW specifies Command Code and Data Address / Count
Control flow: command/data chaining, transfer-in-channel, suspend
Generic command codes: e.g. READ / WRITE
Device-specific command codes: e.g. LOCATE RECORD

>
>
>
>

© 2003 IBM Corporation

IBM Systems Group

zSeries Virtualization

Still 4 separate images,

Out...

Web Serving NOW, Dynamic resource
balancing achieved via
Business Intelligence L PAR management

|

f{m Miring.wr "

Batch

Frepdasand |l 28 on Pergantsge
-]

© 2003 IBM Corporation

IBM Systems Group

zSeries Virtualization: z/VVM Operating System

User'| |'User'| |'User| | Rel.xy | PPwX3023 | FIVSIESA || 0890

Control Program, CP

Hardware: Memory, Channels, DASDs, ...

© 2003 IBM Corporation

IBM Systems Group

zSeries Virtualization: Logical Partitioning (LPAR)

LA

VMIESA Rel. | VSEIESA Rel| | Linux/390 Linux/390 0S/390 0S/1390
AB B.C 2.2 24 Rel N:M Rel ST

Hypervisor

X
xxx
X

xxx
XX

© 2003 IBM Corporation

IBM Systems Group

zSeries Virtualization: Hardware Support

= [nterpretive Execution
» START INTERPRETIVE EXECUTION instruction
» Control block describes guest register file
» Fine-grained interception control
» Hardware support for up to two levels of SIE
» Multi-processor guests supported
= Processor architecture
» Wait state to avoid busy loops
» CPU timer to access virtual CPU cycles

= Memory
» Memory zone support for LPAR
» Two-level hardware for DAT and TLB

© 2003 IBM Corporation

IBM Systems Group

Linux under VM: Pseudo Page Faults

= Two-level dynamic address translation
» Linux DAT: Linux virtual address -> Linux 'real' address
» VM DAT: Guest 'real' address -> Host real address

= Two-level page fault handling

» Guest page fault
— Linux page fault handler invoked
— Initiates page-in operation from backing store
— Suspends user process until page-in completed
— Other user processes continue to run

» Host page fault
— VM page fault handler invoked
— Initiates page-in operation from backing store
— Suspends guest until page-in completed
— No other user processes can run

© 2003 IBM Corporation

IBM Systems Group

Linux under VM: Pseudo Page Faults (cont.)

m Solution: Pseudo Page Faults

» VM page fault handler invoked
— Initiates page-in operation from backing store
— Triggers guest 'pseudo page fault’
— Linux pseudo page fault handler suspends user process
— VM does not suspend the guest

» On completion of page-in operation
— VM calls guest pseudo page fault handler again
— Linux handler wakes up blocked user process

= Caveats
» Access to kernel pages
» Access to user page from kernel code

© 2003 IBM Corporation

IBM Systems Group

Linux under VM: Idle Guest Overhead

= Problem: timer tick every 10 ms
» consumes about 0.3% of one G5 CPU
» VM considers guest always busy

= Reasons for timer tick
» Increment internal clock ("jiffies")
» Update wall clock
» Process accounting (user/system time etc.) and scheduling
» Execute scheduled events (timers, time slice expiry, ...)

© 2003 IBM Corporation

IBM Systems Group

Linux under VM: Timer Patch v1

= Solution: "No more jiffies" timer patch
» Provided as kernel patch on developerWorks
> Integrated e.g. in SLES-7 distribution

= Eliminates "jiffies" and 100 Hz timer tick
» Internal clock computed on-the-fly from TOD clock
» Uses clock comparator and CPU timer interrupts as needed for
scheduled events (timers, time slices)
» Process accounting done at system call entry/exit

= Results
» Reduced CPU consumption
» VM recognizes idle guests

© 2003 IBM Corporation

IBM Systems Group

Linux under VM: Timer Patch v2

= Problem: System call overhead
» Timer patch v1 introduces overhead
» Noticable on large, busy servers

= Solution: Timer patch v2
» Available on developerWorks since May 2002
> Integrated e.g. in SLES-8 distribution

= How does it work?
» While CPU is busy: use 100 Hz tick as usual
» While CPU is idle: stop 100 Hz tick
» No system call overhead
» VM still recognizes idle guests

© 2003 IBM Corporation

IBM Systems Group

Linux under VM: Timer Patch Results

1,5 \ 50—
N Y
7 ~
g 0 B L
o 0 Linux
(@)}
2 Z M cp
£ 0,5 2 05
S
0 0
20 20
40 40
80 80 60 g0
of guests # of guests

© 2003 IBM Corporation

IBM Systems Group

Questions

© 2003 IBM Corporation

