
Porting the Arduino Library to the
Cypress PSoC in PSoC Creator

Matt Durak

November 11, 2011

Design Team 1

Abstract
Arduino, the open-source electronic platform is a useful tool to hobbyists in building embedded

systems. It provides an easy to use library which includes components to work with an Ethernet board,

called the Ethernet shield. PSoC is a programmable system-on-chip made by Cypress Semiconductor. It is

a very flexible platform which includes an ARM Cortex M3 processor. This application note includes the

steps necessary to port parts of the Arduino library to the PSoC in order to use Arduino software and

hardware, known as shields, with the PSoC. The note will cover many issues which must be overcome in

porting this software.

Keywords
PSoC, Arduino, C++, C, Library, Software, Porting, PSoC Creator, Ethernet shield

Introduction

Arduino Library
The Arduino is an open-source electronics hardware platform that is designed primarily for students and

hobbyists (1). Arduino provides the schematics to build the hardware, as well as kits which can be pre-

assembled or just include the parts. This application note will focus on the software for Arduino. Arduino

has its own open-source development environment based on Wiring, a platform for programming

electronics (2). The software library used by Arduino is written in C++ and is also open-source and freely

available (3).

This library is composed of a low layer which communicates directly with hardware registers and

provides an abstraction for programmers to set whether a pin is an input or an output and to read and

write to those pins. This low layer also handles the other hardware components on the Arduino, such as

memory access, timers, pulse width modulators, and several forms of communication. The library also

provides higher-level abstractions on top of this in order to make development easier.

The library contains sub-libraries for several Arduino daughterboards, which are called shields. This note

will focus on the Ethernet shield as an example, although the note should be applicable to most

components of the library. The Ethernet library itself also has a layer which defines the low level

registers to communicate with over serial peripheral interface (SPI), as well as high level abstractions

which make application code easier to write (4). The Ethernet library uses a separate SPI library

component to handle the communication. This library provides an abstract interface to transmit bytes of

data. It wraps the actual low level hardware communication in its implementation.

PSoC Development
The Cypress Programmable System-on-Chip (PSoC), is a configurable piece of hardware which contains a

number of programmable virtual components in order to implement a wide range of hardware features.

This application note will focus on the PSoC 5, the latest family of PSoC. This version of the board

contains an ARM Cortex M3 processor (5).

The development environment used by the PSoC is called PSoC Creator. This software is a full

development environment for the PSoC. It contains a schematic layout tool in order to configure the

programmable virtual hardware components. It also has a full C language IDE for developing code to run

on the PSoC processor (6). This application note will focus on the programming side of PSoC Creator.

Objective
The objective of this application note is to provide the steps necessary to take the Arduino software

libraries, and compile them for the PSoC. This would allow a developer using a PSoC to run Arduino code

and to possibly interface with an Arduino shield. The objective is not to show how to actually interface

the PSoC hardware with an Arduino shield or to use the schematic layout tool in PSoC Creator. This

application note assumes that the reader has acquired the latest development version of Arduino, found

on Github (7).

Issues
There are several issues to be aware of when porting code from one platform to another. The primary

concerns in this case are the programming language, the standard libraries used by the code, and the

implementation of the low-level details.

The issue with the programming language is mostly an minor incompatibility when using PSoC Creator.

The Arduino libraries are primarily written in C++, although a few files are written in C. The PSoC Creator

environment only officially supports C. However, PSoC Creator ships with the complete GNU Compiler

Collection (GCC), which includes compilers for both C and C++. With a few minor modifications, PSoC

Creator can compile C++ code. Another issue is the use of C++ in an embedded environment with very

limited memory. C++ uses many advanced features such as polymorphism and virtual methods,

templates, and run time type information which can add code bloat if used improperly (8). Fortunately,

the standard Arduino board has a flash memory size of 32 KB, which is the same as the simplest PSoC 5

board. This means that the Arduino library has already been optimized to work with a similar memory

constraint.

The next issue with the Arduino library code, is that the development library used by Arduino for its AVR

ATMega processor uses standard AVR libraries with GCC. The PSoC uses the same version of GCC for

embedded development; however it does not contain the AVR library used by Arduino. This requires

some modification of the code to use the standard libraries available to PSoC.

Finally, the primary issue which will be addressed in this application note lies in the actual hardware

implementations and low-level details of the Arduino library. This part of the code is very specific to the

Arduino platform. The implementations will need to be re-written in order to make the library work on

the PSoC platform.

Steps

Importing Arduino Sources
The process of porting the Arduino code begins with creating a new project in PSoC Creator. Next, it is

necessary to create the digital and analog pins as well as any hardware components such as SPI and

UART which will be used by the Arduino code. That process should be completed separately. The

remaining steps assume that the PSoC Creator project contains a project with the schematic

components necessary to emulate an Arduino board.

First, the following sources from the Arduino folder /hardware/cores/arduino/ must be added to the

project: Arduino.h, Client.h, IPAddress.cpp, IPAddress.h, Print.cpp, Print.h, Printable.h, Server.h,

Stream.cpp, Stream.h, Udp.h, WMath.cpp, binary.h, and new.cpp. It is recommended to add these to a

new folder within the PSoC project in order to keep them separated from application code. Next, all files

within the directory /libraries/Ethernet/, /libraries/Ethernet/utility/, and /libraries/SPI/ must be added

to the project.

At this point, the project will probably build. This is because PSoC Creator does not compile files ending

with the “.cpp” file extension. Fixing this requires manually modifying the “.cyprj” file. Open this file and

find every “.cpp” file with a line like the following in Figure 1 and change the build action from “NONE”

to “C_FILE” as in Figure 2. After repeating this for every C++ source file, save the file and PSoC Creator

should reload the file. At this point, the files will all be built, but the compilation will fail.

Figure 1 Project file before modification

Figure 2 Project file after modification

Fixes to get C++ Working
Now that C++ files can be built by PSoC Creator, some changes need to be made to get the project to

compile. The first change is to modify the build settings of the project under the “Compiler” section and

“Command Line” subsection. That command should include “-I./lib” where “lib” is the folder name

where the Arduino sources are located. The command must also include “-fno-rtti” in order to disable

run time type information in C++. These two command switches must both be added to make the library

work.

Some of the other idiosyncrasies with using C++ are handled nicely by the Arduino library. Take a look at

the file New.cpp to see some of the implementation used in order to get C++ working on an embedded

system (9). This file is required to get the library to compile and link in PSoC Creator.

At this point, the remaining issues are due to including files that do not exist, using Arduino

implementations, and some misnamed functions. However, one final item to note is that when working

with C++ and including a C header, it is important to include the code in Listing 1 below. Without the

‘extern “C”’, the code will compile, but it will not link due to C++ name mangling (10). It is important to

include this section of code whenever C header files are needed.

Listing 1 Including C headers in C++

Getting the Library to Compile
The first step to getting the library to compile is to trim out any missing headers and to remove any

Arduino specific implementations. The project already only includes a small subset of the entire library,

but this next step will polish those sources to get them to work.

All files should have any reference to “AVR” includes removed (Listing 2). This is the standard library

used by the AVR ATMega and it is not available for PSoC. The Arduino.h file has these include

statements which should be removed. Likewise, any conditional statements using AVR, such as that in

Listing 3, should be removed so that only the “else” portion remains.

The following functions in Arduino.h should be removed: init, pinMode, digitalWrite, digitalRead,

analogRead, analogReference, analogWrite, micros, delay, delayMicroseconds, pulseIn, shiftOut, shiftIn,

attachInterrupt, detachInterrupt, setup, loop, makeWord, tone, and noTone. The functions marked

extern should also be removed. The “defines” starting at analogInPinToBit and continuing through

TIMER5C should all be removed. Finally, the “includes” for WCharacter.h, WString.h, HardwareSerial.h,

and pins_arduino.h should be removed. Within the extern “C” section, an “include” to CyLib.h must be

added. This will provide useful functions which were removed from Arduino.h The final source code is

included in the appendix.

Listing 2 Example AVR includes to remove

#ifdef __cplusplus

extern "C"{

#endif

#include <device.h>

#ifdef __cplusplus

}

#endif

#include <avr/pgmspace.h>

#include <avr/io.h>

#include <avr/interrupt.h>

Listing 3 Example AVR conditional statements

The next file to modify is Print.h and Print.cpp. Each of these files must be modified to remove the

“includes” to WString.h and instead include string.h. All methods that take a “String” or a

“__FlashStringHelper” should be removed (Listing 4). These are simply function overloads and it is much

easier to not include WString.h. The classes will still work with char* arrays.

Listing 4 Functions to remove

The next file to modify is WMath.cpp. This file must have an “include” to Arduino.h added. It must also

change “srandom” and “random” to the standard “srand” and “rand” function calls. Finally, this is a

good place to implement the “millis()” function. This function is used in Arduino to report the number of

milliseconds which have elapsed since the device was powered on. It can be implemented using a

counter in PSoC, but that is left to the reader to implement. This finishes the main parts of the Arduino

library; next the Ethernet library must be fixed.

One change to make throughout several files here and any others added later, is to change all

occurrences of “delay()” to “CyDelay()”. This will be a simple find and replace operation, as the “delay()”

function is declared in Arduino.h and now Arduino.h includes CyLib.h which declares “CyDelay()”. This

must be fixed in Dhcp.cpp, EthernetClient.cpp, Dns.cpp, and w5100.h.

It should be noted that there are two util.h files. These files should be merged from the main one in

hardware to include the one found in the Ethernet library. The Ethernet library version of util.h defines

the functions htonl, htons, ntohl, and ntohs in order to convert numbers from host to network endians

#if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) ||

defined(__AVR_ATtiny84__) || defined(__AVR_ATtiny25__) ||

defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)

#define DEFAULT 0

#define EXTERNAL 1

#define INTERNAL 2

#else

#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)

#define INTERNAL1V1 2

#define INTERNAL2V56 3

#else

#define INTERNAL 3

#endif

 size_t print(const __FlashStringHelper *);

 size_t print(const String &);

 //…

 size_t println(const __FlashStringHelper *);

 size_t println(const String &s);

(which define the order of the bits in a number (11)). The merged version of util.h can be found in the

appendix.

The final part of the Ethernet library to fix is the w5100.cpp and w5100.h. The w5100.h file must remove

references to the avr headers and add includes to cytypes.h, util.h, and the digital pin used for the

Ethernet slave select. The methods initSS, setSS, and resetSS must be changed in order to properly set

the SPI slave select pin on the PSoC. The new implementation will not need to initialize the slave select,

but it will need to write a “0” to the pin in setSS and write a “1” in resetSS. This code is shown in Listing

5 below. The w5100.cpp file must change delay to “CyDelay” as well as include CyLib.h for this function.

There is also a required change in the function “void W5100Class::read_data(SOCKET s, volatile uint8_t

*src, volatile uint8_t *dst, uint16_t len)”. There is a compiler error, but the changed code in Listing 6

below will fix this.

Listing 5 The slave select code

Listing 6 Fixing a compiler error

The final library component to fix is the SPI. The file SPI.cpp requires major changes to the

implementation. First the “include” to pins_arduino.h is removed. Next, all function implementation

bodies may be removed. The only useful methods are “begin” and “end”. The body for begin should

simply call “SPIM_1_Start();” and the body for end should call “SPIM_1_Stop();”. The other functions are

configurations of SPI that must be made in the schematic layout mode. They are not necessary for the

inline static void initSS() {};

inline static void setSS() { D10_Write(0); /*PORTB &= ~_BV(2);*/ };

inline static void resetSS() { D10_Write(1); /*PORTB |= _BV(2);*/ };

void W5100Class::read_data(SOCKET s, volatile uint8_t *src, volatile

uint8_t *dst, uint16_t len)

{

 uint16_t size;

 const uint16_t newsrc = (uintptr_t) src; // FIXED

 uint16_t src_mask;

 uint16_t src_ptr;

 src_mask = newsrc & RMASK; // FIXED

 src_ptr = RBASE[s] + src_mask;

 if((src_mask + len) > RSIZE)

 {

 size = RSIZE - src_mask;

 read(src_ptr, (uint8_t *)dst, size);

 dst += size;

 read(RBASE[s], (uint8_t *) dst, len - size);

 }

 else

 read(src_ptr, (uint8_t *) dst, len);

}

Ethernet library. The file SPI.h must remove the “include” to the avr header and add an “include” to the

automatically generated SPI master header (SPIM_1.h by default). In this file, the bodies of

attachInterrupt and detachInterrupt can be commented out temporarily. They are not used in the

Ethernet code and can be implemented at a later point when they are needed. The most important

function is transfer. This function handles actual SPI communication. The body of the function should be

replaced with that in Listing 7. This uses the PSoC implementation of SPI. This is the final and most

important implementation change to make.

Listing 7 The SPI transfer method

Results
After following the steps of the application note, and creating the proper virtual components in the

schematic layout tool, the Arduino library can be built and programmed onto the PSoC. This is a subset

of the library including the base components and the Ethernet and SPI libraries. Code that worked on

Arduino can be copied into PSoC Creator and compiled to run on the PSoC with very minor modification.

After building the hardware to connect the PSoC to an Arduino Ethernet shield, the Arduino Ethernet

demos can be run on the PSoC with minor modification.

Conclusions
Porting code from one embedded system to another can be a challenging task. There are many small

implementation details which need to be considered. Likewise, it can be tricky to get C++ code working

in an embedded environment which expects C code. However, the end result of this port which leaves

the abstract interface intact is that code from one platform can be ported to the other platform for free.

Porting the library is an investment which will make future work much easier.

References
1. Arduino Team. Arduino - Homepage. Arduino. [Online] September 24, 2011. [Cited: November 9,

2011.] http://www.arduino.cc/.

2. Wiring. About Wiring. Wiring. [Online] November 9, 2011. [Cited: November 9, 2011.]

http://wiring.org.co/about.html.

byte SPIClass::transfer(byte _data) {

 SPIM_1_WriteTxData(_data);

 while (!(SPIM_1_ReadTxStatus() & SPIM_1_STS_SPI_DONE));

 while (SPIM_1_GetRxBufferSize() == 0);

 return SPIM_1_ReadRxData();

}

3. Mellis, David A. Introduction. Arduino. [Online] December 23, 2009. [Cited: November 9, 2011.]

http://arduino.cc/en/Guide/Introduction.

4. —. Arduino. Ethernet. [Online] February 10, 2009. [Cited: November 9, 2011.]

http://arduino.cc/en/Reference/Ethernet.

5. Cypress Semiconductor. PSoC 5 Introduction. Cypress. [Online] November 9, 2011. [Cited: November

9, 2011.] http://www.cypress.com/?id=2233&rID=37591.

6. —. PSoC Creator Overview. Cypress. [Online] November 9, 2011. [Cited: November 9, 2011.]

http://www.cypress.com/?id=2494.

7. Arduino. Arduino. Github. [Online] November 9, 2011. [Cited: November 9, 2011.]

https://github.com/arduino/Arduino.

8. Neundorf, Alexander. C vs. C++ for embedded development. KDE Blog. [Online] June 7, 2005. [Cited:

November 9, 2011.] http://blogs.kde.org/node/1138.

9. Zed, Rob. GCC C++ Link problems on small embedded target. Zedcode. [Online] February 17, 2007.

[Cited: November 9, 2011.] http://zedcode.blogspot.com/2007/02/gcc-c-link-problems-on-small-

embedded.html.

10. Cline, Marshall. Why is the linker giving errors for C/C++ functions being called from C++/C

functions? C++ FAQ Lite. [Online] July 28, 2011. [Cited: November 9, 2011.]

http://www.parashift.com/c++-faq-lite/mixing-c-and-cpp.html#faq-32.7.

11. Hall, Brian. Beej's Guide to Network Programming. Beej.us. [Online] September 8, 2009. [Cited:

November 9, 2011.] http://beej.us/guide/bgnet/output/html/multipage/htonsman.html.

Appendix

Arduino.h
#ifndef Arduino_h

#define Arduino_h

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "binary.h"

#ifdef __cplusplus

extern "C"{

#endif

#include <CyLib.h>

#define HIGH 0x1

#define LOW 0x0

#define INPUT 0x0

#define OUTPUT 0x1

#define true 0x1

#define false 0x0

#define PI 3.1415926535897932384626433832795

#define HALF_PI 1.5707963267948966192313216916398

#define TWO_PI 6.283185307179586476925286766559

#define DEG_TO_RAD 0.017453292519943295769236907684886

#define RAD_TO_DEG 57.295779513082320876798154814105

#define SERIAL 0x0

#define DISPLAY 0x1

#define LSBFIRST 0

#define MSBFIRST 1

#define CHANGE 1

#define FALLING 2

#define RISING 3

#define INTERNAL 3

#define DEFAULT 1

#define EXTERNAL 0

// undefine stdlib's abs if encountered

#ifdef abs

#undef abs

#endif

#define min(a,b) ((a)<(b)?(a):(b))

#define max(a,b) ((a)>(b)?(a):(b))

#define abs(x) ((x)>0?(x):-(x))

#define constrain(amt,low,high)

((amt)<(low)?(low):((amt)>(high)?(high):(amt)))

#define round(x) ((x)>=0?(long)((x)+0.5):(long)((x)-0.5))

#define radians(deg) ((deg)*DEG_TO_RAD)

#define degrees(rad) ((rad)*RAD_TO_DEG)

#define sq(x) ((x)*(x))

#define interrupts() sei()

#define noInterrupts() cli()

#define clockCyclesPerMicrosecond() (F_CPU / 1000000L)

#define clockCyclesToMicroseconds(a) (((a) * 1000L) / (F_CPU / 1000L))

#define microsecondsToClockCycles(a) (((a) * (F_CPU / 1000L)) / 1000L)

#define lowByte(w) ((uint8_t) ((w) & 0xff))

#define highByte(w) ((uint8_t) ((w) >> 8))

#define bitRead(value, bit) (((value) >> (bit)) & 0x01)

#define bitSet(value, bit) ((value) |= (1UL << (bit)))

#define bitClear(value, bit) ((value) &= ~(1UL << (bit)))

#define bitWrite(value, bit, bitvalue) (bitvalue ? bitSet(value, bit) :

bitClear(value, bit))

typedef unsigned int word;

#define bit(b) (1UL << (b))

typedef uint8_t boolean;

typedef uint8_t byte;

unsigned long millis(void);

#ifdef __cplusplus

} // extern "C"

#endif

#ifdef __cplusplus

// WMath prototypes

long random(long);

long random(long, long);

void randomSeed(unsigned int);

long map(long, long, long, long, long);

#endif

#endif

Util.h

#ifndef UTIL_INCLUDED

#define UTIL_INCLUDED

#define _BV(bit) (1 << (bit))

#ifdef __cplusplus

extern "C"{

#endif

#include <CyLib.h>

#ifdef __cplusplus

}

#endif

#define htons(x) CYSWAP_ENDIAN16(x)

#define ntohs(x) htons(x)

#define htonl(x) CYSWAP_ENDIAN32(x)

#define ntohl(x) htonl(x)

#endif

