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• Motivation 
 

• Accelerator-based positron production and annihilation studies 
at a superconducting electron LINAC: What marks the difference 
to reactors and radio-isotope sources? 
 

• Applying pulsed beams: positron annihilation lifetime 
spectroscopy at thin films, bulk materials, and fluids 
 

• Development of a pixelated detection system for position-
sensitive positron annihilation lifetime measurements and 
experiments with structured targets and tomographic image 
reconstruction 

Outline 

Courtesy: R. Krause-Rehberg / M. Butterling 
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Isotopes, reactors, accelerators 
Production of  positrons in weak (W+) or electromagnetic interactions (γ) 

(u  d  d) 

(u  d   u) 

νe e+ 

W+ 

e- e+ 

γ 

e- 

e- 

Free proton decay is forbidden by energy conservation  
  we need the proton inside a nucleus where it undergoes β+-decay 

proton 

neutron 
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Isotopes, reactors, accelerators 

Production of  positrons in weak interactions (mediated by W’s) 

proton 

neutron 27Al(p,n)27Si(β+νe, 4.2 s) 27Al 
(u  d  d) 

(u  d   u) 

νe e+ 

W+ 

Sumitomi Heavy Industries Cyclotron 
18 MeV protons, 50 µA beam current 
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Isotopes, reactors, accelerators 

Production of  positrons through electromagnetic interactions (photons)   

e- e+ 

γ 

e- 

e- 

Use intense source of photons for pair production 
  Capture-neutron gamma-rays from reactor 
113Cd(n,γ)114Cd 
 
 
 
 FRMII Munich 

AIST, Tsukuba, Japan ELBE, Dresden 

  Bremsstrahlung from electron accelerators 
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Accelerators can produce intense and pulsed slow positron beams. 

LINear ACcelerators are favored due to their high beam power and time structure.   

Positrons from accelerators 

A) normal conducting LINAC (AIST) 
E ~ 50 MeV 
Ipeak ~ 100 mA            beam power  
tbunch ~ 1 µs                   500 W 
frep ~ 100 Hz 
 

B) superconducting LINAC (HZDR) 
E ~ 50 MeV 
Iaverage ~ 1 mA            beam power 
frep ~ 10 MHz                 50 kW 
 

sophisticated converter designs  
and heavy shielding needed 

stack of 50 
100 µm thick W foils 

EPOS water-cooled 
converter 
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SC-LINAC in CW mode 
 
EPOS facility 

38 ns / 26 MHz 

~ 2.8 GHz / 1 µs / 100 Hz / 10 µA 

Positrons from accelerators 

NC-LINAC in bunched mode 

e+ 

converter 

moderator 
linear storage 

chopper 
subh. buncher buncher 

sa
m

p
le
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1.6 mA, 40 MeV (64 kW)  
CW electron accelerator 

coherent IR-radiation   
3 – 230 µm 

THz radiation 
100 µm – 3 mm 

electrons  34MeV 
radiation biology 

detector tests 

Bremsstrahlung 
 16 MeV 

Gamma-induced 
Positrons 

pulsed, mono-energetic 
positrons  0.2 – 20 keV 

Positrons from accelerators 

mono-energetic 
positrons  0.2 – 30 keV 

from 22Na 
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SC-LINAC in CW mode 38 ns / 26 MHz 

What about bulk materials, fluids, gases …? 
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GiPS 
The Gamma-induced 
Positron annihilation  
Spectroscopy  

e+ 
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Positron beams for material research 

Nb foil: 10-3 X0 

ps 10σ

MHz 26f

µA 900I

MeV 16E

t

e

e









photon beam 
2 cm diameter 
108 cm-2 s-1 

 

Annihilation Lifetime Spectroscopy  
(Coincidence) Doppler Broadening 
Age-momentum Correlation  
 

Positron production using electron-

bremsstrahlung M. Butterling, et al.,  
Nucl. Instr. Meth. B 269 (2011) 2623  

studies done so far: 
- water, glycerol from 10°C to 100°C 
- animal tissue 
- metals and alloys  
- neutron-activated reactor materials 
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Positrons: backgnd for nuclear physics exp’ts 

Seite 11 

Hard bremsstrahlung produces a huge amount of positrons via pair production 

inside the target material. High-energy photons act as a volume source of 

positrons throughout the entire volume. 

Kapton 
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High resolution lifetime spectrum with 
signal to noise ratios of better than 105:1 
using gamma-gamma coincidence 
techniques for background reduction. 
Lifetime spectra are free from artefacts. 
 
→ Long lifetimes reveal atomic defects 
caused by neutron-induced damage.  
→ Can (and how) defects be removed by 
thermal annealing? 

conventional LINAC mode 
pulsed RF, highest energy 
typically pile-up problems 
F.A. Selim, D.P. Wells, J.F. Harmon, et al.  
Nucl. Instr. Meth. A 495 (2002) 154 
 
SC-LINAC in CW mode 
highest average power – 
high yield and low pile-up 

38 ns / 26 MHz 

~ 1 µs / 100 Hz 

Gamma-induced Positron Spectroscopy 
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Physics with GiPS: RPV steel 
Reactor vessel steel becomes brittle due to neutron-
induced defects like open-volume defects. The atomic 
defects act as seeds for cracks.  

→ Preferential formation of double vacancies 
→ Thermal annealing (290°C) not sufficient to remove defects! 

Collaboration with Reactor 
Safety Division. 
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Physics with GiPS: Kapton 
Annihilation lifetime in Kapton has been under debate 
for quite some time. Here, we try to get a 
measurement without source correction. 

→ consistent single positron lifetime of (381 ± 1) ps 
     two components show larger χ2 

applied cuts on Germanium 
and BaF2 detector energy signal 
reduce background from 
interactions outside the sample   

Kapton 
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Physics with GiPS: Fluids 
Conventional lifetime measurements: 
→ dissolve 22Na and dispose it afterwards 
 
Positrons from bremsstrahlung 
→ homogeneously distributed, sharp time stamp 
 
Target is temperature-stabilized, continuously 
circulated, degassed, dry-nitrogen flushed.  

Kapton tube target 

Positron Physics 
Ortho-Positronium (o-Ps) in a fluid forms a bubble 
given by its zero-point energy and the surface 
tension. 
 
We know estimate the change of the o-Ps pick-off 
annihilation lifetime with temperature in a bubble 
created by the o-Ps itself…. 
 
 
R.A. Ferell, Phys. Rev., 108,167, 1957 
S.J. Tao, J. Chem. Phys., 56,5499, 1972 
M. Eldrup et al., Chem. Phys., 63,51, 1981 

 

fluid 

e+ 

e- 

142 ns 

125 ps 

o-Ps 

p-Ps 
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Physics with GiPS: Fluids 

e+ 

e- 
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Physics with GiPS: Positron Chemistry 
Experiments with water are in variance with a simple bubble-type model. 
Extension: chemical reactions between radiolysis products of the slowing-
down of the positron → Ps chemistry. 
 

→ Radicals are positron scavengers which reduce 
      annihilation lifetimes. 
→ Extended bubble model including chemistry 
      [S.V. Stepanov et al., Mat. Sci. Forum 607] 
      describes data well. 
→ Relevance for PET diagnostics since 2γ / 3γ ratio  
      is affected. 
→ Chemistry of radiolysis directly accessible since  
     the probe creates the ionization itself 

Courtesy: Maik Butterling, S V.Stepanov 
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Towards imaging of defects 
Material failures impose a significant threat to the integrity and the safety 
of technical  systems. A thorough understanding of the microscopic origin 
and the development of defects requires advanced methods.  

… early days of material analysis … and the quests of today 
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Motivation 
Establish a non-destructive and non-intrusive method which allows for 
spatially resolved positron-lifetime spectroscopy. Reconstruct PET-like 
images plus positron annihilation lifetime.  
 
Possible Applications (list not complete): 
• Porosimetry  
• Medicine in-beam positron lifetime spectroscopy during hard x-ray 

  tumor therapy 
• Engineering pre-failure diagnostics of micro fractures 

  fuel rod inspection   

APS Physics & Society Newsletter 
2011. R. Hargraves, R. Moir 
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Prerequisites 

• Intense source of positrons with deep penetration (cm) ≈15 MeV X-rays  
• Accurate time-stamping of positron creation (<10 ps) CW LINAC 
• Position-sensitive positron detectors (mm)  Siemens LSO PET 
• Time-resolution for lifetime spectroscopy (~100 ps) in-house (physics) 
• Efficient data acquisition    in-house (physics) 
• 3-D image reconstruction    in-house (medicine) 

e- 

e- 

sample 

Gamma-induced Positron Spectroscopy 
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Towards 2/3-D positron lifetime tomography 

• Two position-sensitive photon detectors with 169 elements each 

LSO-based commercial 13x13 PET pixel  
       detector 

4 mm x 4 mm x 20 mm LSO crystals 

• Each crystal array read out using 4 PMT 
• Summed PMT signal -> gamma energy 
• Correlation of individual PMT signals -> 

position 
• Positron annihilation time given by sum 

over all 8 PMT involved 
 
 

Lutetium oxyorthosilicate 
Lu2SiO5:Ce 

courtesy: university hospital Dresden ©Siemens 
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Electronics (VME) 

transimpedance  
amplifier 

CFD 
LE 

100 ns 
delay 

CAEN 
V965 
QDC 

CAEN 
V1495 
FPGA 

CAEN 
V1290 

TDC 

block detector NIM VME 

25 m 
CES 

RIO4 
ROC 

Multi-hit and multi-event buffered 
readout in VME block mode and readout 
with 10 µs dead time for 36 channels 
(QDC & TDC) per event. 
Throughput is about 10 MB/s sustained. 
Data acquisition and analysis framework 
using Multiple-Branch System MBS by 
Helmholtz-Center for Heavy Ion Research 
(GSI).  
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Calibrations 

𝐸 = 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 
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t = 225 ps 

Calibration done using 7 cm x 7 cm aqueous 18F  source 
w/ 200 MBq (T½ ≈ 2 h) produced in-house.  
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Si 

SiO2 

Proof of principle, first test 
Simple 2D target 
→ proof of principle  
→ simple back-projection method  

3D target 
→ Reconstruction of data as a function of life time 

Real world sample (cutout from 91.4 T magnet coil) 
→ What we can learn from our method 

Sample cases 
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Setup and results: 2D image reconstruction 

sample 

511 keV 

511 keV 

Si 

SiO2 

all t t > 2 σt 

Sample selected to give balanced positron yield. 
Lifetime-gated 2D reconstructed image by back-projection.  
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Bremsstrahlung beam 

γ 

0° 180° 

3D reconstruction 

Fe 

Cu 

Al 

PTFE 

γ 

3D tomography applied for 
the first time using bulk 
volume positron production. 
Target is rotated in 2 deg. 
steps and the image is 
reconstructed using a cubical 
(30 mm)3 voxel space and 
back-projection algorithm.  
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Copper 

Aluminium 

Steel 

Maximum Likelihood Expectation Maximization 

Iterative method for image reconstruction based on a 
algorithm developed in PET  
[L.A. Shepp, Y. Vardi, IEEE-MI 2 (1982) 113]. 
 
Solves the inversion problem numerically where one 

has a system matrix M, an a-priori unknown source 

distribution s and a measured distribution r.  

rsM ˆ
The system matrix has a size of  
132  x 132  x 180 x 303 = 138 x 109. 

all prompt long 
step 1 
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2nd Iteration 

all prompt long 

Copper 

Aluminium 

Steel 
long 
gate 

short 
gate 

step 2 

MLEM 
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5th Iteration 

all prompt long 

Copper 

Aluminium 

Steel 

step 5 

long 
gate 

short 
gate 

MLEM 
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10th Iteration 

all prompt long 

Copper 

Aluminium 

Steel 

step 10 

long 
gate 

short 
gate 

MLEM 
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20th Iteration 

all prompt long 

Copper 

Aluminium 

Steel 

step 20 

long 
gate 

short 
gate 

MLEM 
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all prompt prompt / all 

Copper 

Aluminium 

Steel 
long 
gate 

short 
gate 

MLEM 
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all prompt prompt / all 

Copper 

Aluminium 

Steel 

MLEM 
Gating on positron lifetimes with  
225 ps timing resolution.  
 
Now the Al is clearly discriminated against the 
surrounding Teflon. 
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Courtesy: Jochen Wosnitza 

Lifetime-sensitive analysis 

B-field coil 

Cut through the record coil which reached 91.4 T 
peak field. Coil is fed by the world’s largest 
capacitor bank w/ 50 MJ stored energy. 
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Copper 

Zylon® 
Teflon 

Tomography: B-field coil 

48 h measurement time, 316 GB, 1.6 G events 
324 M filtered coincidences  

y 

x z 
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Lifetime-sensitive analysis: B-field coil 
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Lifetime-sensitive analysis: B-field coil 

Now, we select specific voxels and determine the annihilation lifetimes for spatially 
separated regions. Since the voxel is identified as an ensemble over all possible 
lines-of-response between two detector crystals, the lifetime distribution is a 
convolution as well. Some real physics questions needed … 

τ = 1.48 ns 
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Extensions 
Digital Silicon Photomultiplier (dSiPM) 
Module 
DPC3200-22-44 
(819200 pixel each) 
  

#Courtesy: Philips Digital Photon Counting 

# 

# 

Digitally counting the 
number and the time of 
arrival of scintillation 
photons (here LYSO) 
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Extensions 
digital Silicon Photomultiplier (dSiPM) 
  

CRT 

Employ the scaled accelerator radio frequency (13 MHz) 
via a phase-locked loop (PLL)  as dSiPM system clock.  
-> Intrinsic synchronization for optimal timing resolution. 
-> 170 ps FWHM seem possible 

Collaborative effort within gamma-ray imaging group at 
particle-therapy center Oncoray. 
(Courtesy: J. Petzoldt, K. Römer, G. Pausch, et al.)   

Scintillation materials 

energy resolution 
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Summary 
Summary: 
• Accelerator-driven positron production  
• Annihilation lifetime spectroscopy 

for fluids, reactor materials…  
• First results for 3D tomography 
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